
Avalon® Interface Specifications

Updated for Intel® Quartus® Prime Design Suite: 20.1

Subscribe
Send Feedback

MNL-AVABUSREF | 2020.04.13
Latest document on the web: PDF | HTML

https://www.intel.com/content/www/us/en/programmable/bin/rssdoc?name=nik1412467993397
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html

Contents

1. Introduction to the Avalon® Interface Specifications..4
1.1. Avalon Properties and Parameters..5
1.2. Signal Roles..5
1.3. Interface Timing..5
1.4. Example: Avalon Interfaces in System Designs.. 5

2. Avalon Clock and Reset Interfaces..8
2.1. Avalon Clock Sink Signal Roles.. 8
2.2. Clock Sink Properties... 9
2.3. Associated Clock Interfaces ..9
2.4. Avalon Clock Source Signal Roles...9
2.5. Clock Source Properties..9
2.6. Reset Sink.. 10
2.7. Reset Sink Interface Properties..10
2.8. Associated Reset Interfaces ...10
2.9. Reset Source...10
2.10. Reset Source Interface Properties...11

3. Avalon Memory-Mapped Interfaces...12
3.1. Introduction to Avalon Memory-Mapped Interfaces... 12
3.2. Avalon Memory-Mapped Interface Signal Roles.. 14
3.3. Interface Properties..17
3.4. Timing..20
3.5. Transfers.. 20

3.5.1. Typical Read and Write Transfers..21
3.5.2. Transfers Using the waitrequestAllowance Property.......................................23
3.5.3. Read and Write Transfers with Fixed Wait-States ... 26
3.5.4. Pipelined Transfers... 27
3.5.5. Burst Transfers.. 30
3.5.6. Read and Write Responses.. 34

3.6. Address Alignment...36
3.7. Avalon-MM Slave Addressing... 36

4. Avalon Interrupt Interfaces.. 38
4.1. Interrupt Sender..38

4.1.1. Avalon Interrupt Sender Signal Roles..38
4.1.2. Interrupt Sender Properties...38

4.2. Interrupt Receiver..39
4.2.1. Avalon Interrupt Receiver Signal Roles..39
4.2.2. Interrupt Receiver Properties...39
4.2.3. Interrupt Timing.. 39

5. Avalon Streaming Interfaces.. 40
5.1. Terms and Concepts...41
5.2. Avalon Streaming Interface Signal Roles... 42
5.3. Signal Sequencing and Timing .. 43

5.3.1. Synchronous Interface..43
5.3.2. Clock Enables..43

Contents

Avalon® Interface Specifications Send Feedback

2

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.4. Avalon-ST Interface Properties...43
5.5. Typical Data Transfers ..44
5.6. Signal Details.. 44
5.7. Data Layout ... 45
5.8. Data Transfer without Backpressure... 46
5.9. Data Transfer with Backpressure.. 46

5.9.1. Data Transfers Using readyLatency and readyAllowance................................ 47
5.9.2. Data Transfers Using readyLatency...49

5.10. Packet Data Transfers... 50
5.11. Signal Details ... 51
5.12. Protocol Details ...52

6. Avalon Streaming Credit Interfaces.. 53
6.1. Terms and Concepts...53
6.2. Avalon Streaming Credit Interface Signal Roles.. 54

6.2.1. Synchronous Interface..55
6.2.2. Typical Data Transfers...56
6.2.3. Returning the Credits... 57

6.3. Avalon Streaming Credit User Signals... 58
6.3.1. Per-Symbol User Signal.. 58
6.3.2. Per-Packet User Signal..59

7. Avalon Conduit Interfaces...60
7.1. Avalon Conduit Signal Roles.. 61
7.2. Conduit Properties .. 61

8. Avalon Tristate Conduit Interface... 62
8.1. Avalon Tristate Conduit Signal Roles... 64
8.2. Tristate Conduit Properties.. 65
8.3. Tristate Conduit Timing ..65

A. Deprecated Signals... 67

B. Document Revision History for the Avalon Interface Specifications..............................68

Contents

Send Feedback Avalon® Interface Specifications

3

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Introduction to the Avalon® Interface Specifications
Avalon® interfaces simplify system design by allowing you to easily connect
components in Intel® FPGA. The Avalon interface family defines interfaces appropriate
for streaming high-speed data, reading and writing registers and memory, and
controlling off-chip devices. Components available in Platform Designer incorporate
these standard interfaces. Additionally, you can incorporate Avalon interfaces in
custom components, enhancing the interoperability of designs.

This specification defines all the Avalon interfaces. After reading this specification, you
should understand which interfaces are appropriate for your components and which
signal roles to use for particular behaviors. This specification defines the following
seven interfaces:

• Avalon Streaming Interface (Avalon-ST)—an interface that supports the
unidirectional flow of data, including multiplexed streams, packets, and DSP data.

• Avalon Memory Mapped Interface (Avalon-MM)—an address-based read/write
interface typical of master–slave connections.

• Avalon Conduit Interface— an interface type that accommodates individual signals
or groups of signals that do not fit into any of the other Avalon types. You can
connect conduit interfaces inside a Platform Designer system. Alternatively, you
can export them to connect to other modules in the design or to FPGA pins.

• Avalon Tri-State Conduit Interface (Avalon-TC) —an interface to support
connections to off-chip peripherals. Multiple peripherals can share pins through
signal multiplexing, reducing the pin count of the FPGA and the number of traces
on the PCB.

• Avalon Interrupt Interface—an interface that allows components to signal events
to other components.

• Avalon Clock Interface—an interface that drives or receives clocks.

• Avalon Reset Interface—an interface that provides reset connectivity.

A single component can include any number of these interfaces and can also include
multiple instances of the same interface type.

Note: Avalon interfaces are an open standard. No license or royalty is required to develop
and sell products that use or are based on Avalon interfaces.

Related Information

• Introduction to Intel FPGA IP Cores
Provides general information about all Intel FPGA IP cores, including
parameterizing, generating, upgrading, and simulating IP cores.

• Generating a Combined Simulator Setup Script
Create simulation scripts that do not require manual updates for software or IP
version upgrades.

MNL-AVABUSREF | 2020.04.13

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960636914.html#mwh1409958250601
https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960636914.html#mwh1409958301774
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Project Management Best Practices
Guidelines for efficient management and portability of your project and IP files.

1.1. Avalon Properties and Parameters

Avalon interfaces describe their behavior with properties. The specification for each
interface type defines all the interface properties and default values. For example, the
maxChannel property of Avalon-ST interfaces allows you to specify the number of
channels supported by the interface. The clockRate property of the Avalon Clock
interface provides the frequency of a clock signal.

1.2. Signal Roles

Each Avalon interface defines signal roles and their behavior. Many signal roles are
optional. You have the flexibility to select only the signal roles necessary to implement
the required functionality. For example, the Avalon-MM interface includes optional
beginbursttransfer and burstcount signal roles for components that support
bursting. The Avalon-ST interface includes the optional startofpacket and
endofpacket signal roles for interfaces that support packets.

Except for Avalon Conduit interfaces, each interface may include only one signal of
each signal role. Many signal roles allow active-low signals. Active-high signals are
generally used in this document.

1.3. Interface Timing

Subsequent chapters of this document include timing information that describes
transfers for individual interface types. There is no guaranteed performance for any of
these interfaces. Actual performance depends on many factors, including component
design and system implementation.

Most Avalon interfaces must not be edge sensitive to signals other than the clock and
reset. Other signals may transition multiple times before they stabilize. The exact
timing of signals between clock edges varies depending upon the characteristics of the
selected Intel FPGA. This specification does not specify electrical characteristics. Refer
to the appropriate device documentation for electrical specifications.

1.4. Example: Avalon Interfaces in System Designs

In this example the Ethernet Controller includes six different interface types:

• Avalon-MM

• Avalon-ST

• Avalon Conduit

• Avalon-TC

• Avalon Interrupt

• Avalon Clock.

The Nios® II processor accesses the control and status registers of on-chip
components through an Avalon-MM interface. The scatter gather DMAs send and
receive data through Avalon-ST interfaces. Four components include interrupt

1. Introduction to the Avalon® Interface Specifications

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

5

https://www.intel.com/content/www/us/en/programmable/documentation/mwh1409960181641.html#esc1444754592005
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

interfaces serviced by software running on the Nios II processor. A PLL accepts a clock
via an Avalon Clock Sink interface and provides two clock sources. Two components
include Avalon-TC interfaces to access off-chip memories. Finally, the DDR3 controller
accesses external DDR3 memory through an Avalon Conduit interface.

Figure 1. Avalon Interfaces in a System Design with Scatter Gather DMA Controller and
Nios II Processor

IRQ1 IRQ2

C1

Conduit

Avalon-MM

C2

Avalon-ST

C1C1

Avalon-ST

FIFO Buffer

FIFO Buffer

Avalon-ST Avalon-ST

C2

C2C2

C1

C2
Ref Clk

FlashSSRAM DDR3

Intel FPGA

Printed Circuit Board

IRQ3

IRQ4

IRQ3

IRQ4

TimerUART
Nios II

C1C1

Tristate Cntrl
SSRAM

PLL

TCM

TCM

TCSTCS

M S

S

S S

MS

MS

TCM

S S

Cn

Cn

Cn

CSnk
CSrc

CSrc

CSnk

CSrc

Src

SrcSnk

Snk

Avalon-MM Master

Avalon-MM Slave

Avalon-ST Source

Avalon Conduit

Avalon-TC Master

Avalon-TC Slave

Avalon Clock Source

Avalon Clock Sink

Avalon-ST Sink

TCS

TCM

M

S

Cn

Src

Snk

Cn Cn Cn

TCS

Tristate Cntrl
Flash

DDR3
Controller

Scatter Gather
DMA

Scatter Gather
DMA

Ethernet
Controller

Tristate Conduit
Bridge

Tristate Conduit
Pin Sharer

In the following figure, an external processor accesses the control and status registers
of on-chip components via an external bus bridge with an Avalon-MM interface. The
PCI Express Root Port controls devices on the printed circuit board and the other
components of the FPGA by driving an on-chip PCI Express Endpoint with an Avalon-
MM master interface. An external processor handles interrupts from five components.
A PLL accepts a reference clock via a Avalon Clock sink interface and provides two

1. Introduction to the Avalon® Interface Specifications

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

6

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

clock sources. The flash and SRAM memories share FPGA pins through an Avalon-TC
interface. Finally, an SDRAM controller accesses an external SDRAM memory through
an Avalon Conduit interface.

Figure 2. Avalon Interfaces in a System Design with PCI Express Endpoint and External
Processor

Avalon-MM

C1C1

C1

C2
Ref Clk

Intel FPGA

Printed Circuit Board

IRQ1 IRQ2 IRQ3

C1

Custom
Logic

Ethernet
MAC

PLL

M M

S

Cn

CSnk
CSrc

CSrc

SDRAM
Controller

IRQ4

C2

IRQ5

C2

FlashSSRAM

C1

TCS

TCM TCM

TCS TCS

Cn

TCM
S

UART

S

Custom
Logic

SDRAM

CnCn Cn

SS

Tristate Cntrl
SSRAM

Tristate Cntrl
Flash

Tristate Conduit
Pin Sharer

Tristate Conduit
Bridge

C1

PCI Express
Endpoint

M
IRQ1
IRQ2
IRQ3
IRQ4
IRQ5

External Bus
Protocol

Bridge

M

PCI Express
Root Port

External
CPU

1. Introduction to the Avalon® Interface Specifications

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

7

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2. Avalon Clock and Reset Interfaces
Avalon Clock interfaces define the clock or clocks used by a component. Components
can have clock inputs, clock outputs, or both. A phase locked loop (PLL) is an example
of a component that has both a clock input and clock outputs.

The following figure is a simplified illustration showing the most important inputs and
outputs of a PLL component.

Figure 3. PLL Core Clock Outputs and Inputs

PLL Core

altpll
Intel FPGA IP

ref_clk

Clock Output
Interface1

Clock Output
Interface2

Clock Output
Interface_n

reset

Clock
Sink

Clock
Source

Clock
Source

Clock
Source

Reset
Sink

2.1. Avalon Clock Sink Signal Roles

A clock sink provides a timing reference for other interfaces and internal logic.

Table 1. Clock Sink Signal Roles

Signal Role Width Direction Required Description

clk 1 Input Yes A clock signal. Provides synchronization for internal
logic and for other interfaces.

MNL-AVABUSREF | 2020.04.13

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

2.2. Clock Sink Properties

Table 2. Clock Sink Properties

Name Default Value Legal Values Description

clockRate 0 0–232–1 Indicates the frequency in Hz of the clock sink interface. If 0, the
clock rate allows any frequency. If non-zero, Platform Designer
issues a warning if the connected clock source is not the
specified frequency.

2.3. Associated Clock Interfaces

All synchronous interfaces have an associatedClock property that specifies which
clock source on the component is used as a synchronization reference for the
interface. This property is illustrated in the following figure.

Figure 4. associatedClock Property

Dual Clock FIFO

rx_clk

ST
Sink

Clock
Sink

tx_clk

ST
Source

associatedClock = "rx_clk" associatedClock = "tx_clk"

Clock
Sink

rx_data tx_data

2.4. Avalon Clock Source Signal Roles

An Avalon Clock source interface drives a clock signal out of a component.

Table 3. Clock Source Signal Roles

Signal Role Width Direction Required Description

clk 1 Output Yes An output clock signal.

2.5. Clock Source Properties

Table 4. Clock Source Properties

Name Default
Value

Legal
Values

Description

associatedDirectClock N/A an input
clock name

The name of the clock input that directly drives this
clock output, if any.

clockRate 0 0–232–1 Indicates the frequency in Hz at which the clock output
is driven.

clockRateKnown false true, false Indicates whether or not the clock frequency is known.
If the clock frequency is known, you can customize
other components in the system.

2. Avalon Clock and Reset Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

9

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.6. Reset Sink

Table 5. Reset Input Signal Roles
The reset_req signal is an optional signal that you can use to prevent memory content corruption by
performing reset handshake prior to an asynchronous reset assertion.

Signal Role Width Direction Required Description

reset,
reset_n

1 Input Yes Resets the internal logic of an interface or component
to a user-defined state. The synchronous properties of
the reset are defined by the synchronousEdges
parameter.

reset_req 1 input No Early indication of reset signal. This signal acts as a
least a one-cycle warning of pending reset for ROM
primitives. Use reset_req to disable the clock enable
or mask the address bus of an on-chip memory, to
prevent the address from transitioning when an
asynchronous reset input is asserted.

2.7. Reset Sink Interface Properties

Table 6. Reset Input Signal Roles

Name Default
Value

Legal
Values

Description

associatedClock N/A a clock
name

The name of a clock to which this interface is
synchronized. Required if the value of
synchronousEdges is DEASSERT or BOTH.

synchronous-Edges DEASSERT NONE
DEASSERT

BOTH

Indicates the type of synchronization the reset input
requires. The following values are defined:
• NONE–no synchronization is required because the

component includes logic for internal
synchronization of the reset signal.

• DEASSERT–the reset assertion is asynchronous and
deassertion is synchronous.
BOTH–reset assertion and deassertion are
synchronous.

2.8. Associated Reset Interfaces

All synchronous interfaces have an associatedReset property that specifies which
reset signal resets the interface logic.

2.9. Reset Source

Table 7. Reset Output Signal Roles
The reset_req signal is an optional signal that you can use to prevent memory content corruption by
performing reset handshake prior to an asynchronous reset assertion.

Signal Role Width Direction Required Description

reset
reset_n

1 Output Yes Resets the internal logic of an interface or component
to a user-defined state.

reset_req 1 Output Optional Enables reset request generation, which is an early
signal that is asserted before reset assertion. Once
asserted, this cannot be deasserted until the reset is
completed.

2. Avalon Clock and Reset Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

10

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

2.10. Reset Source Interface Properties

Table 8. Reset Interface Properties

Name Default
Value

Legal
Values

Description

associatedClock N/A a clock
name

The name of a clock to which this interface
synchronized. Required if the value of
synchronousEdges is DEASSERT or BOTH.

associatedDirectReset N/A a reset
name

The name of the reset input that directly drives this
reset source through a one-to-one link.

associatedResetSinks N/A a reset
name

Specifies reset inputs that cause a reset source to
assert reset. For example, a reset synchronizer that
performs an OR operation with multiple reset inputs to
generate a reset output.

synchronousEdges DEASSERT NONE

DEASSERT

BOTH

Indicates the reset output's synchronization. The
following values are defined:
• NONE–The reset interface is asynchronous.
• DEASSERT–the reset assertion is asynchronous and

deassertion is synchronous.
• BOTH–reset assertion and deassertion are

synchronous.

2. Avalon Clock and Reset Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

11

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3. Avalon Memory-Mapped Interfaces

3.1. Introduction to Avalon Memory-Mapped Interfaces

You can use Avalon Memory-Mapped (Avalon-MM) interfaces to implement read and
write interfaces for master and slave components. The following are examples of
components that typically include memory-mapped interfaces:

• Microprocessors

• Memories

• UARTs

• DMAs

• Timers

Avalon-MM interfaces range from simple to complex. For example, SRAM interfaces
that have fixed-cycle read and write transfers have simple Avalon-MM interfaces.
Pipelined interfaces capable of burst transfers are complex.

MNL-AVABUSREF | 2020.04.13

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Figure 5. Focus on Avalon-MM Slave Transfers
The following figure shows a typical system, highlighting the Avalon-MM slave interface connection to the
interconnect fabric.

RS-232

Avalon-MM System

 Interconnect

Ethernet
PHY

Avalon
Slave Port

Avalon-MM
Slave

Avalon-MM
Slave

RAM
Memory

Avalon-MM
Master

Processor

Flash
Memory

Tristate
Conduit

Slave

Tristate
Conduit

Slave

SRAM
Memory

Avalon-MM
Master

Avalon-MM
Master

Ethernet MAC Custom Logic

RAM
Controller

UART Custom
Logic

Flash
Controller

Avalon-MM
Slave

Tristate Conduit Pin Sharer &
Tristate Conduit Bridge

Tristate Conduit Slave

Tristate Conduit Master

SRAM
Controller

Avalon-MM
Slave

Avalon-MM
Slave

Custom
Logic

Avalon-MM components typically include only the signals required for the component
logic.

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

13

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 6. Example Slave Component
The 16-bit general-purpose I/O peripheral shown in the following figure only responds to write requests. This
component includes only the slave signals required for write transfers.

Avalon-MM
 Interface

(Avalon-MM
 Slave Interface)

Application-
Specific

Interface

writedata[15..0]

write

clk

pio_out[15..0]

CLK_EN

D Q

Avalon-MM Peripheral

Each signal in an Avalon-MM slave corresponds to exactly one Avalon-MM signal role.
An Avalon-MM interface can use only one instance of each signal role.

3.2. Avalon Memory-Mapped Interface Signal Roles

Signal roles define the signal types that Avalon-MM master and slave ports allow.

This specification does not require all signals to exist in an Avalon-MM interface. There
is no one signal that is always required. The minimum requirements for an Avalon-MM
interface are readdata for a read-only interface, or writedata and write for a
write-only interface.

The following table lists signal roles for the Avalon-MM interface:

Table 9. Avalon-MM Signal Roles
Some Avalon-MM signals can be active high or active low. When active low, the signal name ends with _n.

Signal Role Width Direction Required Description

Fundamental Signals

address 1 - 64 Master →
Slave

No Masters: By default, the address signal represents a byte
address. The value of the address must align to the data width.
To write to specific bytes within a data word, the master must
use the byteenable signal. Refer to the addressUnits
interface property for word addressing.
Slaves: By default, the interconnect translates the byte address
into a word address in the slave’s address space. From the
perspective of the slave, each slave access is for a word of data.
For example, address = 0 selects the first word of the slave.
address = 1 selects the second word of the slave. Refer to the
addressUnits interface property for byte addressing.

byteenable

byteenable_n

2, 4,
8, 16,
32,
64,
128

Master →
Slave

No Enables one or more specific byte lanes during transfers on
interfaces of width greater than 8 bits. Each bit in byteenable
corresponds to a byte in writedata and readdata. The master
bit <n> of byteenable indicates whether byte <n> is being
written to. During writes, byteenables specify which bytes are
being written to. Other bytes should be ignored by the slave.
During reads, byteenables indicate which bytes the master is

continued...

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

14

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Required Description

reading. Slaves that simply return readdata with no side effects
are free to ignore byteenables during reads. If an interface
does not have a byteenable signal, the transfer proceeds as if
all byteenables are asserted.
When more than one bit of the byteenable signal is asserted,
all asserted lanes are adjacent.

debugaccess 1 Master →
Slave

No When asserted, allows the Nios II processor to write on-chip
memories configured as ROMs.

read

read_n

1 Master →
Slave

No Asserted to indicate a read transfer. If present, readdata is
required.

readdata 8, 16,
32,
64,
128,
256,
512,
1024

Slave →
Master

No The readdata driven from the slave to the master in response
to a read transfer. Required for interfaces that support reads.

response
[1:0]

2 Slave →
Master

No The response signal is an optional signal that carries the
response status.
Note: Because the signal is shared, an interface cannot issue or

accept a write response and a read response in the same
clock cycle.

• 00: OKAY—Successful response for a transaction.
• 01: RESERVED—Encoding is reserved.
• 10: SLAVEERROR—Error from an endpoint slave. Indicates

an unsuccessful transaction.
• 11: DECODEERROR—Indicates attempted access to an

undefined location.
For read responses:
• One response is sent with each readdata. A read burst

length of N results in N responses. Fewer responses are not
valid, even in the event of an error. The response signal value
may be different for each readdata in the burst.

• The interface must have read control signals. Pipeline support
is possible with the readdatavalid signal.

• On read errors, the corresponding readdata is "don't care".
For write responses:
• One write response must be sent for each write command. A

write burst results in only one response, which must be sent
after the final write transfer in the burst is accepted.

• If writeresponsevalid is present, all write commands
must be completed with write responses.

write

write_n

1 Master →
Slave

No Asserted to indicate a write transfer. If present, writedata is
required.

writedata 8, 16,
32,
64,
128,
256,
512,
1024

Master →
Slave

No Data for write transfers. The width must be the same as the
width of readdata if both are present. Required for interfaces
that support writes.

Wait-State Signals

lock 1 Master →
Slave

No lock ensures that once a master wins arbitration, the winning
master maintains access to the slave for multiple transactions.
Lock asserts coincident with the first read or write of a locked

continued...

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

15

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Required Description

sequence of transactions. Lock deasserts on the final
transaction of a locked sequence of transactions. lock assertion
does not guarantee that arbitration is won. After the lock-
asserting master has been granted, that master retains grant
until lock is deasserted.
A master equipped with lock cannot be a burst master.
Arbitration priority values for lock-equipped masters are ignored.
lock is particularly useful for read-modify-write (RMW)
operations. The typical read-modify-write operation includes the
following steps:
1. Master A asserts lock and reads 32-bit data that has multiple

bit fields.
2. Master A deasserts lock, changes one bit field, and writes the

32-bit data back.
lock prevents master B from performing a write between
Master A’s read and write.

waitrequest

waitrequest_
n

1 Slave →
Master

No A slave asserts waitrequest when unable to respond to a
read or write request. Forces the master to wait until the
interconnect is ready to proceed with the transfer. At the start of
all transfers, a master initiates the transfer and waits until
waitrequest is deasserted. A master must make no
assumption about the assertion state of waitrequest when the
master is idle: waitrequest may be high or low, depending on
system properties.
When waitrequest is asserted, master control signals to the
slave must remain constant except for beginbursttransfer.
For a timing diagram illustrating the beginbursttransfer
signal, refer to the figure in Read Bursts.
An Avalon-MM slave may assert waitrequest during idle
cycles. An Avalon-MM master may initiate a transaction when
waitrequest is asserted and wait for that signal to be
deasserted. To avoid system lockup, a slave device should assert
waitrequest when in reset.

Pipeline Signals

readdatavali
d

readdatavali
d_n

1 Slave →
Master

No Used for variable-latency, pipelined read transfers. When
asserted, indicates that the readdata signal contains valid data.
For a read burst with burstcount value <n>, the
readdatavalid signal must be asserted <n> times, once for
each readdata item. There must be at least one cycle of latency
between acceptance of the read and assertion of
readdatavalid. For a timing diagram illustrating the
readdatavalid signal, refer to Pipelined Read Transfer with
Variable Latency.
A slave may assert readdatavalid to transfer data to the
master independently of whether the slave is stalling a new
command with waitrequest.
Required if the master supports pipelined reads. Bursting
masters with read functionality must include the
readdatavalid signal.

writerespons
evalid

1 Slave →
Master

No An optional signal. If present, the interface issues write
responses for write commands.
When asserted, the value on the response signal is a valid write
response.
Writeresponsevalid is only asserted one clock cycle or more
after the write command is accepted. There is at least a one
clock cycle latency from command acceptance to assertion of
writeresponsevalid.

Burst Signals
continued...

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

16

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Role Width Direction Required Description

burstcount 1 – 11 Master →
Slave

No Used by bursting masters to indicate the number of transfers in
each burst. The value of the maximum burstcount parameter
must be a power of 2. A burstcount interface of width <n> can
encode a max burst of size 2(<n>-1). For example, a 4-bit
burstcount signal can support a maximum burst count of 8.
The minimum burstcount is 1. The
constantBurstBehavior property controls the timing of the
burstcount signal. Bursting masters with read functionality
must include the readdatavalid signal.
For bursting masters and slaves using byte addresses, the
following restriction applies to the width of the address:

<address_w> >=
 <burstcount_w> +
log2(<symbols_per_word_of_interface>)

For bursting masters and slaves using word addresses, the log2
term above is omitted.

beginbursttr
ansfer

1 Interconnect
→ Slave

No Asserted for the first cycle of a burst to indicate when a burst
transfer is starting. This signal is deasserted after one cycle
regardless of the value of waitrequest. For a timing diagram
illustrating beginbursttransfer, refer to the figure in Read
Bursts.
beginbursttransfer is optional. A slave can always internally
calculate the start of the next write burst transaction by counting
data transfers.
Warning: do not use this signal. This signal exists to support

legacy memory controllers.

3.3. Interface Properties

Table 10. Avalon-MM Interface Properties

Name Default
Value

Legal
Values

Description

addressUnits Master -
symbols
Slave -
words

words,
symbols

Specifies the unit for addresses. A symbol is typically a
byte.
Refer to the definition of address in the Avalon
Memory-Mapped Interface Signal Types table for the
typical use of this property.

alwaysBurstMaxBurst false true, false When true, indicates that the master always issues the
maximum-length burst. The maximum burst length is
2burstcount_width - 1. This parameter has no effect for
Avalon-MM slave interfaces.

burstcountUnits words words,
symbols

This property specifies the units for the burstcount
signal. For symbols, the burstcount value is
interpreted as the number of symbols (bytes) in the
burst. For words, the burstcount value is interpreted
as the number of word transfers in the burst.

burstOnBurstBoundariesOnly false true, false If true, burst transfers presented to this interface begin
at addresses which are multiples of the maximum burst
size.

constantBurstBehavior Master -
false

Slave -false

true, false Masters: When true, declares that the master holds
address and burstcount constant throughout a burst
transaction. When false (default), declares that the
master holds address and burstcount constant only for
the first beat of a burst.

continued...

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

17

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Default
Value

Legal
Values

Description

Slaves: When true, declares that the slave expects
address and burstcount to be held constant throughout
a burst. When false (default), declares that the slave
samples address and burstcount only on the first beat
of a burst.

holdTime(1) 0 0 – 1000
cycles

Specifies time in timingUnits between the
deassertion of write and the deassertion of address
and data. (Only applies to write transactions.)

linewrapBursts false true, false Some memory devices implement a wrapping burst
instead of an incrementing burst. When a wrapping
burst reaches a burst boundary, the address wraps
back to the previous burst boundary. Only the low-
order bits are required for address counting. For
example, a wrapping burst to address 0xC with burst
boundaries every 32 bytes across a 32-bit interface
writes to the following addresses:
• 0xC
• 0x10
• 0x14
• 0x18
• 0x1C
• 0x0
• 0x4
• 0x8

maximumPendingReadTransacti
ons (1)

1(2) 1 – 64 Slaves: This parameter is the maximum number of
pending reads that the slave can queue. The value
must be non-zero for any slave with the
readdatavalid signal.
Refer to Pipelined Read Transfer with Variable Latency
for a timing diagram that illustrates this property and
for additional information about using waitrequest
and readdatavalid with multiple outstanding reads.
Masters: This property is the maximum number of
outstanding read transactions that the master can
generate.
Note: Do not set this parameter to 0. (For backwards

compatibility, the software supports a
parameter setting of 0. However, you should
not use this setting in new designs).

maximumPendingWriteTransact
ions

0 1 – 64 The maximum number of pending non-posted writes
that a slave can accept or a master can issue. A slave
asserts waitrequest once the interconnect reaches
this limit, and the master stops issuing commands.
The default value is 0, which allows unlimited pending
write transactions for a master that supports write
responses. A slave that supports write responses must
set this to a non-zero value.

minimumResponseLatency 1 For interfaces that support readdatavalid or
writeresponsevalid, specifies the minimum
number of cycles between a read or write command
and the response to the command.

readLatency(1) 0 0 – 63 Read latency for fixed-latency Avalon-MM slaves. For a
timing diagram that uses a fixed latency read, refer to
Pipelined Read Transfers with Fixed Latency.

continued...

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

18

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Default
Value

Legal
Values

Description

Avalon-MM slaves that are fixed latency must provide a
value for this interface property. Avalon-MM slaves that
are variable latency use the readdatavalid signal to
specify valid data.

readWaitTime(1) 1 0 – 1000
cycles

For interfaces that do not use the waitrequest
signal. readWaitTime indicates the timing in
timingUnits before the slave accepts a read
command. The timing is as if the slave asserted
waitrequest for readWaitTime cycles.

setupTime(1) 0 0 – 1000
cycles

Specifies time in timingUnits between the assertion
of address and data and assertion of read or write.

timingUnits(1) cycles cycles,
nanosecond

s

Specifies the units for setupTime, holdTime,
writeWaitTime and readWaitTime. Use cycles for
synchronous devices and nanoseconds for
asynchronous devices. Almost all Avalon-MM slave
devices are synchronous.
An Avalon-MM component that bridges from an Avalon-
MM slave interface to an off-chip device may be
asynchronous. That off-chip device might have a fixed
settling time for bus turnaround.

waitrequestAllowance 0 Specifies the number of transfers that can be issued or
accepted after waitrequest is asserted.
When the waitrequestAllowance is 0, the write,
read and waitrequest signals maintain their existing
behavior as described in the Avalon-MM Signal Roles
table.
When the waitrequestAllowance is greater than 0,
every clock cycle on which write or read is asserted
counts as a command transfer. Once waitrequest is
asserted, only waitrequestAllowance more
command transfers are legal while waitrequest
remains asserted. After the waitrequestAllowance
is reached, write and read must remain deasserted
for as long as waitrequest is asserted.
Once waitrequestdeasserts, transfers may resume
at any time without restrictions until waitrequest
asserts again. At this time, waitrequestAllowance
more transfers may complete while waitrequest
remains asserted.

writeWaitTime(1) 0 0 – 1000
Cycles

For interfaces that do not use the waitrequest
signal, writeWaitTime specifies the timing in
timingUnits before a slave accepts a write. The
timing is as if the slave asserted waitrequest for
writeWaitTime cycles or nanoseconds.
For a timing diagram that illustrates the use of
writeWaitTime, refer to Read and Write Transfers
with Fixed Wait-States.

Interface Relationship Properties

associatedClock N/A N/A Name of the clock interface to which this Avalon-MM
interface is synchronous.

continued...

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

19

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Name Default
Value

Legal
Values

Description

associatedReset N/A N/A Name of the reset interface which resets the logic on
this Avalon-MM interface.

bridgesToMaster 0 Avalon-MM
Master

name on
the same

component

An Avalon-MM bridge consists of a slave and a master,
and has the property that an access to the slave
requesting a byte or bytes causes the same byte or
bytes to be requested by the master. The Avalon-MM
Pipeline Bridge in the Platform Designer component
library implements this functionality.

Notes:
1. Although this property characterizes a slave device, masters can declare this property to enable direct connections

between matching master and slave interfaces.
2. If a slave interface accepts more read transfers than allowed, the interconnect pending read FIFO may overflow with

unpredictable results. The slave may lose readdata or route readdata to the wrong master interface. Or, the system
may lock up. The slave interface must assert waitrequest to prevent this overflow.

Related Information

• Avalon Memory-Mapped Interface Signal Roles on page 14

• Read and Write Responses on page 34

• Pipelined Read Transfer with Variable Latency on page 28

• Pipelined Read Transfers with Fixed Latency on page 29

• Read and Write Responses
In Platform Designer User Guide: Intel Quartus® Prime Pro Edition

3.4. Timing

The Avalon-MM interface is synchronous. Each Avalon-MM interface is synchronized to
an associated clock interface. Signals may be combinational if they are driven from
the outputs of registers that are synchronous to the clock signal. This specification
does not dictate how or when signals transition between clock edges. Timing diagrams
are devoid of fine-grained timing information.

3.5. Transfers

This section defines two basic concepts before introducing the transfer types:

• Transfer—A transfer is a read or write operation of a word or one or more symbol
of data. Transfers occur between an Avalon-MM interface and the interconnect.
Transfers take one or more clock cycles to complete.

Both masters and slaves are part of a transfer. The Avalon-MM master initiates the
transfer and the Avalon-MM slave responds.

• Master-slave pair—This term refers to the master interface and slave interface
involved in a transfer. During a transfer, the master interface control and data
signals pass through the interconnect fabric and interact with the slave interface.

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

20

https://www.intel.com/content/www/us/en/programmable/documentation/zcn1513987282935.html#mwh1409958893316
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.1. Typical Read and Write Transfers

This section describes a typical Avalon-MM interface that supports read and write
transfers with slave-controlled waitrequest. The slave can stall the interconnect for
as many cycles as required by asserting the waitrequest signal. If a slave uses
waitrequest for either read or write transfers, the slave must use waitrequest for
both.

A slave typically receives address, byteenable, read or write, and writedata
after the rising edge of the clock. A slave asserts waitrequest before the rising clock
edge to hold off transfers. When the slave asserts waitrequest, the transfer is
delayed. While waitrequest is asserted, the address and other control signals are
held constant. Transfers complete on the rising edge of the first clk after the slave
interface deasserts waitrequest.

There is no limit on how long a slave interface can stall. Therefore, you must ensure
that a slave interface does not assert waitrequest indefinitely. The following figure
shows read and write transfers using waitrequest.

Note: waitrequest can be decoupled from the read and write request signals.
waitrequest may be asserted during idle cycles. An Avalon-MM master may initiate
a transaction when waitrequest is asserted and wait for that signal to be
deasserted. Decoupling waitrequest from read and write requests may improve
system timing. Decoupling eliminates a combinational loop including the read,
write, and waitrequest signals. If even more decoupling is required, use the
waitrequestAllowance property. waitrequestAllowance is available starting
with the Quartus® Prime Pro v17.1 Stratix® 10 ES Editions release.

Figure 7. Read and Write Transfers with Waitrequest

clk

address

byteenable

read

write

waitrequest

readdata

writedata

address

byteenable

readdata

1 2 3 4 5 76

responseresponse

writedata

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

21

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The numbers in this timing diagram, mark the following transitions:

1. address, byteenable, and read are asserted after the rising edge of clk. The
slave asserts waitrequest, stalling the transfer.

2. waitrequest is sampled. Because waitrequest is asserted, the cycle becomes
a wait-state. address, read, write, and byteenable remain constant.

3. The slave deasserts waitrequest after the rising edge of clk. The slave asserts
readdata and response.

4. The master samples readdata, response and deasserted waitrequest
completing the transfer.

5. address, writedata, byteenable, and write signals are asserted after the
rising edge of clk. The slave asserts waitrequest stalling the transfer.

6. The slave deasserts waitrequest after the rising edge of clk.

7. The slave captures write data ending the transfer.

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

22

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.2. Transfers Using the waitrequestAllowance Property

The waitrequestAllowance property specifies the number of transfers an Avalon-
MM master can issue or an Avalon-MM slave must accept after the waitrequest
signal is asserted. waitrequestAllowance is available starting with the Intel
Quartus Prime 17.1 software release.

The default value of waitrequestAllowance is 0, which corresponds to the
behavior described in Typical Read and Write Transfers, where waitrequest
assertion stops the current transfer from being issued or accepted.

An Avalon-MM slave with a waitrequestAllowance greater than 0 would typically
assert waitrequest when its internal buffer can only accept
waitrequestAllowance more entries before becoming full. Avalon-MM masters with
a waitrequestAllowance greater than 0 have waitrequestAllowance additional
cycles to stop sending transfers, which allows more pipelining in the master logic. The
master must deassert the read or write signal when the waitrequestallowance
has been spent.

Values of waitrequestAllowance greater than 0 support high-speed design where
immediate forms of backpressure may result in a drop in the maximum operating
frequency (FMAX) often due to combinatorial logic in the control path. An Avalon-MM
slave must support all possible transfer timings that are legal for its
waitrequestAllowance value. For example, a slave with waitrequestAllowance
= 2 must be able to accept any of the master transfer waveforms shown in the
following examples.

Related Information

Typical Read and Write Transfers on page 21

3.5.2.1. waitrequestAllowance Equals Two

The following timing diagram illustrates timing for an Avalon-MM> master that has
two clock cycles to start and stop sending transfers after the Avalon-MM> slave
deasserts or asserts waitrequest, respectively.

Figure 8. Master write: waitrequestAllowance Equals Two Clock Cycles

clock

write

waitrequest

data[7:0] A0 A1 A2 A3 A4 B0 B1 B3

1 2 3 4 5 6

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

23

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The markers in this figure mark the following events:

1. The Avalon-MM> master drives write and data.

2. The Avalon-MM> slave asserts waitrequest. Because the
waitrequestAllowance is 2, the master is able to complete the 2 additional
data transfers.

3. The master deasserts write as required because the slave is asserting
waitrequest for a third cycle.

4. The Avalon-MM> master drives write and data. The slave is not asserting
waitrequest. The writes complete.

5. The Avalon master drives write and data even though the slave is asserting
waitrequest. Because the waitrequestAllowance is 2 cycles, the write
completes.

6. The Avalon master drives write and data. The slave is not asserting
waitrequest. The write completes.

3.5.2.2. waitrequestAllowance Equals One

The following timing diagram illustrates timing for an Avalon-MM master that has one
clock cycle to start and stop sending transfers after the Avalon-MM slave deasserts or
asserts waitrequest, respectively:

Figure 9. Master Write: waitrequestAllowance Equals One Clock Cycle

clk

write

waitrequest

data[7:0] A0 A1 A2 A3 A4 B0 B1 B2 B3

1 2 3 4 5 6 7 8

The numbers in this figure mark the following events:

1. The Avalon-MM master drives write and data.

2. The Avalon-MM slave asserts waitrequest. Because the
waitrequestAllowance is 1, the master can complete the write.

3. The master deasserts write because the slave is asserting waitrequest for a
second cycle.

4. The Avalon-MM master drives write and data. The slave is not asserting
waitrequest. The writes complete.

5. The slave asserts waitrequest. Because the waitrequestAllowance is 1
cycle, the write completes.

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

24

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Avalon-MM master drives write and data. The slave is not asserting
waitrequest. The write completes.

7. The Avalon-MM slave asserts waitrequest. Because the
waitrequestAllowance is 1, the master can complete one additional data
transfer.

8. The Avalon master drives write and data. The slave is not asserting
waitrequest. The write completes.

3.5.2.3. waitrequestAllowance Equals Two - Not Recommended

The following diagram illustrates timing for an Avalon-MM> master that can send two
transfers after waitrequest is asserted.

This timing is legal, but not recommended. In this example the master counts the
number of transactions instead of the number of clock cycles. This approach requires a
counter that makes the implementation more complex and may affect timing closure.
When the master determines when to drive transactions with the waitrequest signal
and a constant number of cycles, the master starts or stops transactions based on the
registered signals.

Figure 10. waitrequestAllowance Equals Two Transfers

clk

write

waitrequest

data

1 2 3 4 5 6 7

The numbers in this figure mark the following events:

1. The Avalon-MM> master asserts write and drives data.

2. The Avalon-MM> slave asserts waitrequest.

3. The Avalon-MM> master drives write and data. Because the
waitrequestAllowance is 2, the master drives data in 2 consecutive cycles.

4. The Avalon-MM> master deasserts write because the master has spent the 2-
transfer waitrequestAllowance.

5. The Avalon-MM> master issues a write as soon as waitrequest is deasserted.

6. The Avalon-MM> master drives write and data. The slave asserts waitrequest
for 1 cycle.

7. In response to waitrequest, the Avalon-MM> master holds data for 2 cycles.

3.5.2.4. waitrequestAllowance Compatibility for Avalon-MM Master and Slave
Interfaces

Avalon-MM masters and slaves that support the waitrequest signal support
backpressure. Masters with backpressure can always connect to slaves without
backpressure. Masters without backpressure cannot connect to slaves with
backpressure.

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

25

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 11. waitrequestAllowance Compatibility for Avalon-MM Masters and Slaves

Master and Slave
waitrequestAllowance Compatibility

master = 0
slave = 0

Follows the same compatibility rules as standard Avalon-MM interfaces.

master = 0
slave > 0

Direct connections are not possible.
Simple adaptation is required for the case of a master with a waitrequest signal. A
connection is impossible if the master does not support the waitrequest signal.

master > 0
slave = 0

Direct connections are not possible.
Adaptation (buffers) are required when connecting to a slave with a waitrequest signal or
fixed wait states.

master > 0
slave > 0

No adaptation is required if the master’s allowance <= slave’s allowance.
If the master allowance < slave allowance, pipeline registers may be inserted.
For point-to-point connections, you can add the pipeline registers on the command signals or
the waitrequest signals. Up to <d> register stages can be inserted where <d> is the
difference between the allowances.
Connecting a master with a higher waitrequestAllowance than the slave requires
buffering.

3.5.2.5. waitrequestAllowance Error Conditions

Behavior is unpredictable for if an Avalon-MM interface violates the waitrequest
allowance specification.

• If a master violates the waitrequestAllowance = <n> specification by sending
more than <n> transfers, transfers may be dropped or data corruption may occur.

• If a slave advertises a larger waitrequestAllowance than is possible, some
transfers may be dropped or data corruption may occur.

3.5.3. Read and Write Transfers with Fixed Wait-States

A slave can specify fixed wait-states using the readWaitTime and writeWaitTime
properties. Using fixed wait-states is an alternative to using waitrequest to stall a
transfer. The address and control signals (byteenable, read, and write) are held
constant for the duration of the transfer. Setting readWaitTime or writeWaitTime
to <n> is equivalent to asserting waitrequest for <n> cycles per transfer.

In the following figure, the slave has a writeWaitTime = 2 and readWaitTime =
1.

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

26

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 11. Read and Write Transfer with Fixed Wait-States at the Slave Interface

clk

address

byteenable byteenable

read

write

readdata

writedata

address address

readdata

response response

writedata

4 51 2 3

The numbers in this timing diagram mark the following transitions:

1. The master asserts address and read on the rising edge of clk.

2. The next rising edge of clk marks the end of the first and only wait-state cycle.
The readWaitTime is 1.

3. The slave asserts readdata and response on the rising edge of clk. The read
transfer ends.

4. writedata, address, byteenable, and write signals are available to the
slave.

5. The write transfer ends after 2 wait-state cycles.

Transfers with a single wait-state are commonly used for multicycle off-chip
peripherals. The peripheral captures address and control signals on the rising edge of
clk. The peripheral has one full cycle to return data.

Components with zero wait-states are allowed. However, components with zero wait-
states may decrease the achievable frequency. Zero wait-states require the
component to generate the response in the same cycle that the request was
presented.

3.5.4. Pipelined Transfers

Avalon-MM pipelined read transfers increase the throughput for synchronous slave
devices that require several cycles to return data for the first access. Such devices can
typically return one data value per cycle for some time thereafter. New pipelined read
transfers can start before readdata for the previous transfers is returned.

A pipelined read transfer has an address phase and a data phase. A master initiates a
transfer by presenting the address during the address phase. A slave fulfills the
transfer by delivering the data during the data phase. The address phase for a new
transfer (or multiple transfers) can begin before the data phase of a previous transfer
completes. The delay is called pipeline latency. The pipeline latency is the duration
from the end of the address phase to the beginning of the data phase.

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

27

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Transfer timing for wait-states and pipeline latency have the following key differences:

• Wait-states—Wait-states determine the length of the address phase. Wait-states
limit the maximum throughput of a port. If a slave requires one wait-state to
respond to a transfer request, the port requires two clock cycles per transfer.

• Pipeline Latency—Pipeline latency determines the time until data is returned
independently of the address phase. A pipelined slave with no wait-states can
sustain one transfer per cycle. However, the slave may require several cycles of
latency to return the first unit of data.

Wait-states and pipelined reads can be supported concurrently. Pipeline latency can be
either fixed or variable.

3.5.4.1. Pipelined Read Transfer with Variable Latency

After capturing address and control signals, an Avalon-MM pipelined slave takes one or
more cycles to produce data. A pipelined slave may have multiple pending read
transfers at any given time.

Variable-latency pipelined read transfers:

• Require one additional signal, readdatavalid, that indicates when read data is
valid.

• Include the same set of signals as non-pipelined read transfers.

In variable-latency pipelined read transfers, Slave peripherals that use
readdatavalid are considered pipelined with variable latency. The readdata and
readdatavalid signals corresponding to a read command can be asserted the cycle
after that read command is asserted, at the earliest.

The slave must return readdata in the same order that the read commands are
accepted. Pipelined slave ports with variable latency must use waitrequest. The
slave can assert waitrequest to stall transfers to maintain an acceptable number of
pending transfers. A slave may assert readdatavalid to transfer data to the master
independently of whether the slave is stalling a new command with waitrequest.

Note: The maximum number of pending transfers is a property of the slave interface. The
interconnect fabric builds logic to route readdata to requesting masters using this
number. The slave interface, not the interconnect fabric, must track the number of
pending reads. The slave must assert waitrequest to prevent the number of
pending reads from exceeding the maximum number. If a slave has
waitrequestAllowance > 0, the slave must assert waitrequest early enough so
that the total pending transfers, including those accepted while waitrequest is
asserted, does not exceed the maximum number of pending transfers specified.

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

28

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 12. Pipelined Read Transfers with Variable Latency

The following figure shows several slave read transfers. The slave is pipelined with variable latency. In this
figure, the slave can accept a maximum of two pending transfers. The slave uses waitrequest to avoid
overrunning this maximum.

clk

address

read

waitrequest

readdata

readdatavalid

addr1 addr2 addr3 addr4 addr5

data 1 data2 data 3 data4 data5

1 2 3 4 6 115 9 1087

The numbers in this timing diagram, mark the following transitions:

1. The master asserts address and read, initiating a read transfer.

2. The slave captures addr1.

3. The slave captures addr2.

4. The slave asserts waitrequest because the slave has already accepted a
maximum of two pending reads, causing the third transfer to stall.

5. The slave asserts data1, the response to addr1. The slave deasserts
waitrequest.

6. The slave captures addr3. The interconnect captures data1. The interconnect
captures data1.

7. The slave captures addr4. The interconnect captures data2.

8. The slave drives readdatavalid and readdata in response to the third read
transfer.

9. The slave captures addr5. The interconnect captures data3. The read signal is
deasserted. The value of waitrequest is no longer relevant.

10. The interconnect captures data4.

11. The slave drives data5 and asserts readdatavalid completing the data phase
for the final pending read transfer.

If the slave cannot handle a write transfer while processing pending read transfers,
the slave must assert waitrequest and stall the write operation until the pending
read transfers have completed. The Avalon-MM specification does not define the value
of readdata in the event that a slave accepts a write transfer to the same address as
a currently pending read transfer.

3.5.4.2. Pipelined Read Transfers with Fixed Latency

The address phase for fixed latency read transfers is identical to the variable latency
case. After the address phase, a pipelined slave with fixed read latency takes a fixed
number of clock cycles to return valid readdata. The readyLatency property
specifies the number of clock cycles to return valid readdata. The interconnect
captures readdata on the appropriate rising clock edge, ending the data phase.

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

29

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

During the address phase, the slave can assert waitrequest to hold off the transfer.
Or, the slave specifies the readyLatency for a fixed number of wait states. The
address phase ends on the next rising edge of clk after wait states, if any.

During the data phase, the slave drives readdata after a fixed latency. For a read
latency of <n>, the slave must present valid readdata on the <nth> rising edge of
clk after the end of the address phase.

Figure 13. Pipelined Read Transfer with Fixed Latency of Two Cycles
The following figure shows multiple data transfers between a master and a pipelined slave. The slave drives
waitrequest to stall transfers. and has a fixed read latency of 2 cycles.

clk

address

read

waitrequest

readdata

addr1 addr2 addr3

data1 data2 data3

1 2 3 4 5 6

The numbers in this timing diagram, mark the following transitions:

1. A master initiates a read transfer by asserting read and addr1.

2. The slave asserts waitrequest to hold off the transfer for one cycle.

3. The slave captures addr1 at the rising edge of clk. The address phase ends here.

4. The slave presents valid readdata after 2 cycles, ending the transfer.

5. addr2 and read are asserted for a new read transfer.

6. The master initiates a third read transfer during the next cycle, before the data
from the prior transfer is returned.

3.5.5. Burst Transfers

A burst executes multiple transfers as a unit, rather than treating every word
independently. Bursts may increase throughput for slave ports that achieve greater
efficiency when handling multiple words at a time, such as SDRAM. The net effect of
bursting is to lock the arbitration for the duration of the burst. A bursting Avalon-MM
interface that supports both reads and writes must support both read and write
bursts.

Bursting Avalon-MM interfaces include a burstcount output signal. If a slave has a
burstcount input, the slave is burst capable.

The burstcount signal behaves as follows:

• At the start of a burst, burstcount presents the number of sequential transfers
in the burst.

• For width <n> of burstcount, the maximum burst length is 2(<n>-1).The
minimum legal burst length is one.

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

30

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To support slave read bursts, a slave must also support:

• Wait states with the waitrequest signal.

• Pipelined transfers with variable latency with the readdatavalid signal.

At the start of a burst, the slave sees the address and a burst length value on
burstcount. For a burst with an address of <a> and a burstcount value of ,
the slave must perform consecutive transfers starting at address <a>. The burst
completes after the slave receives (write) or returns (read) the <bth> word of data.
The bursting slave must capture address and burstcount only once for each burst.
The slave logic must infer the address for all but the first transfers in the burst. A
slave can also use the input signal beginbursttransfer, which the interconnect
asserts on the first cycle of each burst.

3.5.5.1. Write Bursts

These rules apply when a write burst begins with burstcount greater than one:

• When a burstcount of <n> is presented at the beginning of the burst, the slave
must accept <n> successive units of writedata to complete the burst.
Arbitration between the master-slave pair remains locked until the burst
completes. This lock guarantees that no other master can execute transactions on
the slave until the write burst completes.

• The slave must only capture writedata when write asserts. During the burst,
the master can deassert write indicating that writedata is invalid. Deasserting
write does not terminate the burst. The write deassertion delays the burst and
no other master can access the slave, reducing the transfer efficiency.

• The slave delays a transfer by asserting waitrequest forcing writedata,
write, burstcount, and byteenable to be held constant.

• The functionality of the byteenable signal is the same for bursting and non-
bursting slaves. For a 32-bit master burst-writing to a 64-bit slave, starting at
byte address 4, the first write transfer seen by the slave is at its address 0, with
byteenable = 8'b11110000. The byteenables can change for different
words of the burst.

• The byteenable signals do not all have to be asserted. A burst master writing
partial words can use the byteenable signal to identify the data being written.

• Writes with byteenable signals being all 0's are simply passed on to the Avalon-
MM slave as valid transactions.

• The constantBurstBehavior property specifies the behavior of the burst
signals.

— When constantBurstBehavior is true for a master, the master holds
address and burstcount stable throughout a burst. When true for a slave,
constantBurstBehavior declares that the slave expects address and
burstcount to be held stable throughout a burst.

— When constantBurstBehavior is false, the master holds address and
burstcount stable only for the first transaction of a burst. When
constantBurstBehavior is false, the slave samples address and
burstcount only on the first transaction of a burst.

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

31

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 14. Write Burst with constantBurstBehavior Set to False for Master and Slave
The following figure demonstrates a slave write burst of length 4. In this example, the slave asserts
waitrequest twice delaying the burst.

clk

address

beginbursttransfer

burstcount

write

writedata

waitrequest

addr1

4

data1 data2 data3 data4

1 2 3 4 5 76 8

The numbers in this timing diagram mark the following transitions:

1. The master asserts address, burstcount, write, and drives the first unit of
writedata.

2. The slave immediately asserts waitrequest, indicating that the slave is not
ready to proceed with the transfer.

3. waitrequest is low. The slave captures addr1, burstcount, and the first unit
of writedata. On subsequent cycles of the transfer, address and burstcount
are ignored.

4. The slave captures the second unit of data at the rising edge of clk.

5. The burst is paused while write is deasserted.

6. The slave captures the third unit of data at the rising edge of clk.

7. The slave asserts waitrequest. In response, all outputs are held constant
through another clock cycle.

8. The slave captures the last unit of data on this rising edge of clk. The slave write
burst ends.

In the figure above, the beginbursttransfer signal is asserted for the first clock
cycle of a burst and is deasserted on the next clock cycle. Even if the slave asserts
waitrequest, the beginbursttransfer signal is only asserted for the first clock
cycle.

Related Information

Interface Properties on page 17

3.5.5.2. Read Bursts

Read bursts are similar to pipelined read transfers with variable latency. A read burst
has distinct address and data phases. readdatavalid indicates when the slave is
presenting valid readdata. Unlike pipelined read transfers, a single read burst
address results in multiple data transfers.

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

32

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

These rules apply to read bursts:

• When a master connects directly to a slave, a burstcount of <n> means the
slave must return <n> words of readdata to complete the burst. For cases
where interconnect links the master and slave pair, the interconnect may suppress
read commands sent from the master to the slave. For example, if the master
sends a read command with a byteenable value of 0, the interconnect may
suppress the read. As a result, the slave does not respond to the read command.

• The slave presents each word by providing readdata and asserting
readdatavalid for a cycle. Deassertion of readdatavalid delays but does not
terminate the burst data phase.

• For reads with a burstcount > 1, Intel recommends asserting all byteenables.

Note: Intel recommends that burst capable slaves not have read side effects. (This
specification does not guarantee how many bytes a master reads from the slave in
order to satisfy a request.)

Figure 15. Read Burst
The following figure illustrates a system with two bursting masters accessing a slave. Note that Master B can
drive a read request before the data has returned for Master A.

clk

address

read

beginbursttransfer

waitrequest

burstcount

readdatavalid

readdata

A0 (master A) A1 (master B)

4 2

D(A0) D(A0+1) D(A0+2) D(A0+3) D(A1) D(A1+1)

2 3 5 61 4

The numbers in this timing diagram, mark the following transitions:

1. Master A asserts address (A0), burstcount, and read after the rising edge of
clk. The slave asserts waitrequest, causing all inputs except
beginbursttransfer to be held constant through another clock cycle.

2. The slave captures A0 and burstcount at this rising edge of clk. A new transfer
could start on the next cycle.

3. Master B drives address (A1), burstcount, and read. The slave asserts
waitrequest, causing all inputs except beginbursttransfer to be held
constant. The slave could have returned read data from the first read request at
this time, at the earliest.

4. The slave presents valid readdata and asserts readdatavalid, transferring the
first word of data for master A.

5. The second word for master A is transferred. The slave deasserts readdatavalid
pausing the read burst. The slave port can keep readdatavalid deasserted for
an arbitrary number of clock cycles.

6. The first word for master B is returned.

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

33

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.5.5.3. Line–Wrapped Bursts

Processors with instruction caches gain efficiency by using line-wrapped bursts. When
a processor requests data that is not in the cache, the cache controller must refill the
entire cache line. For a processor with a cache line size of 64 bytes, a cache miss
causes 64 bytes to be read from memory. If the processor reads from address 0xC
when the cache miss occurred, then an inefficient cache controller could issue a burst
at address 0, resulting in data from read addresses 0x0, 0x4, 0x8, 0xC, 0x10, 0x14,
0x18, . . . 0x3C. The requested data is not available until the fourth read. With line-
wrapping bursts, the address order is 0xC, 0x10, 0x14, 0x18, . . . 0x3C, 0x0, 0x4,
and 0x8. The requested data is returned first. The entire cache line is eventually
refilled from memory.

3.5.6. Read and Write Responses

For any Avalon-MM slave, commands must be processed in a hazard-free manner.
Read and write responses issue in the order in which commands they were accepted.

3.5.6.1. Transaction Order for Avalon-MM Read and Write Responses (Masters
and Slaves)

For any Avalon-MM master:

• The Avalon Interface Specifications guarantees that commands to the same slave
reach the slave in command issue order, and the slave responds in command issue
order.

• Different slaves may receive and respond to commands in a different order than
which the master issues them. When successful, the slave responds in command
issue order.

• Responses (if present) return in command issue order, regardless of whether the
read or write commands are for the same or different slaves.

• The Avalon Interface Specifications does not guarantee transaction order between
different masters.

3.5.6.2. Avalon-MM Read and Write Responses Timing Diagram

The following diagram shows command acceptance and command issue order for
Avalon-MM read and write responses. Because the read and write interfaces share the
response signal, an interface cannot issue or accept a write response and a read
response in the same clock cycle.

Read responses, send one response for each readdata. A read burst length of <N>
results in <N> responses.

Write responses, send one response for each write command. A write burst results in
only one response. The slave interface sends the response after accepting the final
write transfer in the burst. When an interface includes the writeresponsevalid
signal, all write commands must complete with write responses.

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

34

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 16. Avalon-MM Read and Write Responses Timing Diagram

clk
R0 W0 W1 R1

R1

address

read

write

readdatavalid

writeresponsevalid

response R0 W0 W1

3.5.6.2.1. minimumResponseLatency Timing Diagram with readdatavalid or
writeresponsevalid

For interfaces with readdatavalid or writeresponsevalid, the default a one-
cycle minimumResponseLatency can lead to difficulty closing timing on Avalon-MM
masters.

The following timing diagrams show the behavior for a minimumResponseLatency of
1 or 2 cycles. Note that the actual response latency can also be greater than the
minimum allowed value as these timing diagrams illustrate.

Figure 17. minimumResponseLatency Equals One Cycle

clk

read

readdatavalid

data

 1 cycle minimum response latency

Figure 18. minimumResponseLatency Equals Two Cycles

clk

read

2 cycles minimumResponseLatency

readdatavalid

data

Compatibility

Interfaces with the same minimumResponseLatency are interoperable without any
adaptation. If the master has a higher minimumResponseLatency than the slave,
use pipeline registers to compensate for the differences. The pipeline registers should
delay readdata from the slave. If the slave has a higher
minimumResponseLatency than the master, the interfaces are interoperable without
adaptation.

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

35

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

3.6. Address Alignment

The interconnect only supports aligned accesses. A master can only issue addresses
that are a multiple of its data width in symbols. A master can write partial words by
deasserting some byteenables. For example, the byteenables of a write of 2
bytes at address 2 is 4’b1100.

3.7. Avalon-MM Slave Addressing

Dynamic bus sizing manages data during transfers between master-slave pairs of
differing data widths. Slave data are aligned in contiguous bytes in the master address
space.

If the master data width is wider than the slave data width, words in the master
address space map to multiple locations in the slave address space. For example, a
32-bit master read from a 16-bit slave results in two read transfers on the slave side.
The reads are to consecutive addresses.

If the master is narrower than the slave, then the interconnect manages the slave
byte lanes. During master read transfers, the interconnect presents only the
appropriate byte lanes of slave data to the narrower master. During master write
transfers, the interconnect automatically asserts the byteenable signals to write
data only to the specified slave byte lanes.

Slaves must have a data width of 8, 16, 32, 64, 128, 256, 512 or 1024 bits. The
following table shows the alignment for slave data of various widths within a 32-bit
master performing full-word accesses. In this table, OFFSET[N] refers to a slave word
size offset into the slave address space.

Table 12. Dynamic Bus Sizing Master-to-Slave Address Mapping

Master Byte
Address (1)

Access 32-Bit Master Data

When Accessing
an 8-Bit Slave Interface

When Accessing
a 16-Bit Slave Interface

When Accessing
a 64-Bit Slave Interface

0x00 1 OFFSET[0]7..0 OFFSET[0]15..0 (2) OFFSET[0]31..0

2 OFFSET[1]7..0 OFFSET[1]15..0 —

3 OFFSET[2]7..0 — —

4 OFFSET[3]7..0 — —

0x04 1 OFFSET[4]7..0 OFFSET[2]15..0 OFFSET[0]63..32

2 OFFSET[5]7..0 OFFSET[3]15..0 —

3 OFFSET[6]7..0 — —

4 OFFSET[7]7..0 — —

0x08 1 OFFSET[8]7..0 OFFSET[4]15..0 OFFSET[1]31..0

2 OFFSET[9]7..0 OFFSET[5]15..0 —

3 OFFSET[10]7..0 — —

4 OFFSET[11]7..0 — —

0x0C 1 OFFSET[12]7..0 OFFSET[6]15..0 OFFSET[1]63..32

continued...

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

36

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Master Byte
Address (1)

Access 32-Bit Master Data

When Accessing
an 8-Bit Slave Interface

When Accessing
a 16-Bit Slave Interface

When Accessing
a 64-Bit Slave Interface

2 OFFSET[13]7..0 OFFSET[7]15..0 —

3 OFFSET[14]7..0 — —

4 OFFSET[15]7..0 — —

And so on And so on And so on And so on

Notes:
1. Although the master issues byte addresses, the master accesses full 32-bit words.
2. For all slave entries, [<n>] is the word offset and the subscript values are the bits in the word.

3. Avalon Memory-Mapped Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

37

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

4. Avalon Interrupt Interfaces
Avalon Interrupt interfaces allow slave components to signal events to master
components. For example, a DMA controller can interrupt a processor after completing
a DMA transfer.

4.1. Interrupt Sender

An interrupt sender drives a single interrupt signal to an interrupt receiver. The timing
of the irq signal must be synchronous to the rising edge of its associated clock. irq
has no relationship to any transfer on any other interface. irq must be asserted until
acknowledged on the associated Avalon-MM slave interface.

Interrupts are component specific. The receiver typically determines the appropriate
response by reading an interrupt status register from an Avalon-MM slave interface.

4.1.1. Avalon Interrupt Sender Signal Roles

Table 13. Interrupt Sender Signal Roles

Signal Role Width Direction Required Description

irq

irq_n

1-32 Output Yes Interrupt Request. An interrupt sender drives an
interrupt signal to an interrupt receiver.

4.1.2. Interrupt Sender Properties

Table 14. Interrupt Sender Properties

Property Name Default
Value

Legal Values Description

associatedAddressabl
ePoint

N/A Name of Avalon-MM
slave on this
component.

The name of the Avalon-MM slave interface that
provides access to the registers to service the
interrupt.

associatedClock N/A Name of a clock
interface on this

component.

The name of the clock interface to which this interrupt
sender is synchronous. The sender and receiver may
have different values for this property.

associatedReset N/A Name of a reset
interface on this

component.

The name of the reset interface to which this interrupt
sender is synchronous.

MNL-AVABUSREF | 2020.04.13

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

4.2. Interrupt Receiver

An interrupt receiver interface receives interrupts from interrupt sender interfaces.
Components with Avalon-MM master interfaces can include an interrupt receiver to
detect interrupts asserted by slave components with interrupt sender interfaces. The
interrupt receiver accepts interrupt requests from each interrupt sender as a separate
bit.

4.2.1. Avalon Interrupt Receiver Signal Roles

Table 15. Interrupt Receiver Signal Roles

Signal Role Width Direction Required Description

irq 1–32 Input Yes irq is an <n>-bit vector, where each bit corresponds
directly to one IRQ sender with no inherent assumption
of priority.

4.2.2. Interrupt Receiver Properties

Table 16. Interrupt Receiver Properties

Property Name Default
Value

Legal
Values

Description

associatedAddressable
Point

N/A Name of
Avalon-MM

master
interface

The name of the Avalon-MM master interface used to
service interrupts received on this interface.

associatedClock N/A Name of an
Avalon
Clock

interface

The name of the Avalon Clock interface to which this
interrupt receiver is synchronous. The sender and
receiver may have different values for this property.

associatedReset N/A Name of an
Avalon
Reset

interface

The name of the reset interface to which this interrupt
receiver is synchronous.

4.2.3. Interrupt Timing

The Avalon-MM master services the priority 0 interrupt before the priority 1 interrupt.

Figure 19. Interrupt Timing
In the following figure, interrupt 0 has higher priority. The interrupt receiver is in the process of handling int1
when int0 is asserted. The int0 handler is called and completes. Then, the int1 handler resumes. The
diagram shows int0 deasserts at time 1. int1 deasserts at time 2.

clk

int0

int1

1 2

Individual
Requests

4. Avalon Interrupt Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

39

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Avalon Streaming Interfaces
You can use Avalon Streaming (Avalon-ST) interfaces for components that drive high-
bandwidth, low-latency, unidirectional data. Typical applications include multiplexed
streams, packets, and DSP data. The Avalon-ST interface signals can describe
traditional streaming interfaces supporting a single stream of data without knowledge
of channels or packet boundaries. The interface can also support more complex
protocols capable of burst and packet transfers with packets interleaved across
multiple channels.

Note: If you need a high-performance data streaming interface, refer to Chapter 6 Avalon
Streaming Credit Interfaces.

Figure 20. Avalon-ST Interface - Typical Application of the Avalon-ST Interface

SDRAM
Memory

Avalon-MM
Master Interface

Processor

Avalon-MM Interface (Control Plane)

Avalon-MM
Master Interface

IO Control

Avalon-MM
Slave Interface

SDRAM Cntl

Source Sink SinkSource
ch
0-2

2

1

0

Scheduler

Tx IF CoreRx IF Core
Avalon-ST

Input
Avalon-ST

Output

Avalon-ST Interfaces (Data Plane)

Intel FPGA

Printed Circuit Board

All Avalon-ST source and sink interfaces are not necessarily interoperable. However, if
two interfaces provide compatible functions for the same application space, adapters
are available to allow them to interoperate.

MNL-AVABUSREF | 2020.04.13

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Avalon-ST interfaces support datapaths requiring the following features:

• Low-latency, high-throughput point-to-point data transfer

• Multiple channels support with flexible packet interleaving

• Sideband signaling of channel, error, and start and end of packet delineation

• Support for data bursting

• Automatic interface adaptation

5.1. Terms and Concepts

The Avalon-ST interface protocol defines the following terms and concepts:

• Avalon Streaming System—An Avalon Streaming system contains one or more
Avalon-ST connections that transfer data from a source interface to a sink
interface. The system shown above consists of Avalon-ST interfaces to transfer
data from the system input to output. Avalon-MM control and status register
interfaces provide for software control.

• Avalon Streaming Components—A typical system using Avalon-ST interfaces
combines multiple functional modules, called components. The system designer
configures the components and connects them together to implement a system.

• Source and Sink Interfaces and Connections—When two components connect, the
data flows from the source interface to the sink interface. The Avalon Interface
Specifications calls the combination of a source interface connecting to a sink
interface a connection.

• Backpressure—Backpressure allows a sink to signal a source to stop sending data.
Support for backpressure is optional. The sink uses backpressure to stop the flow
of data for the following reasons:

— When the sink FIFOs are full

— When there is congestion on its output interface

• Transfers and Ready Cycles—A transfer results in data and control propagation
from a source interface to a sink interface. For data interfaces, a ready cycle is a
cycle during which the sink can accept a transfer.

• Symbol—A symbol is the smallest unit of data. For most packet interfaces, a
symbol is a byte. One or more symbols make up the single unit of data transferred
in a cycle.

• Channel—A channel is a physical or logical path or link through which information
passes between two ports.

• Beat—A beat is a single cycle transfer between a source and sink interface made
up of one or more symbols.

• Packet—A packet is an aggregation of data and control signals that a source
transmits simultaneously. A packet may contain a header to help routers and other
network devices direct the packet to the correct destination. The application
defines the packet format, not this specification. Avalon-ST packets can be
variable in length and can be interleaved across a connection. With an Avalon-ST
interfaces, the use of packets is optional.

5. Avalon Streaming Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

41

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.2. Avalon Streaming Interface Signal Roles

Each signal in an Avalon-ST source or sink interface corresponds to one Avalon-ST
signal role. An Avalon-ST interface may contain only one instance of each signal role.
All Avalon-ST signal roles apply to both sources and sinks and have the same meaning
for both.

Table 17. Avalon-ST Interface Signals
In the following table, all signal roles are active high.

Signal Role Width Direction Required Description

Fundamental Signals

channel 1 – 128 Source → Sink No The channel number for data being transferred
on the current cycle.
If an interface supports the channel signal, the
interface must also define the maxChannel
parameter.

data 1 – 4,096 Source → Sink No The data signal from the source to the sink,
typically carries the bulk of the information being
transferred.
Parameters further define the contents and
format of the data signal.

error 1 – 256 Source → Sink No A bit mask to mark errors affecting the data
being transferred in the current cycle. A single bit
of the error signal masks each of the errors the
component recognizes. The errorDescriptor
defines the error signal properties.

ready 1 Sink → Source No Asserts high to indicate that the sink can accept
data. ready is asserted by the sink on cycle <n>
to mark cycle <n + readyLatency> as a ready
cycle. The source may only assert valid and
transfer data during ready cycles.
Sources without a ready input do not support
backpressure. Sinks without a ready output
never need to backpressure.

valid 1 Source → Sink No The source asserts this signal to qualify all other
source to sink signals. The sink samples data and
other source-to-sink signals on ready cycles
where valid is asserted. All other cycles are
ignored.
Sources without a valid output implicitly
provide valid data on every cycle that a sink is
not asserting backpressure. Sinks without a
valid input expect valid data on every cycle
that they are not backpressuring.

Packet Transfer Signals

empty 1 – 5 Source → Sink No Indicates the number of symbols that are empty,
that is, do not represent valid data. The empty
signal is not necessary on interfaces where there
is one symbol per beat.

endofpacket 1 Source → Sink No Asserted by the source to mark the end of a
packet.

startofpacket 1 Source → Sink No Asserted by the source to mark the beginning of
a packet.

5. Avalon Streaming Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

42

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.3. Signal Sequencing and Timing

5.3.1. Synchronous Interface

All transfers of an Avalon-ST connection occur synchronous to the rising edge of the
associated clock signal. All outputs from a source interface to a sink interface,
including the data, channel, and error signals, must be registered on the rising
edge of clock. Inputs to a sink interface do not have to be registered. Registering
signals at the source facilitates high frequency operation.

5.3.2. Clock Enables

Avalon-ST components typically do not include a clock enable input. The Avalon-ST
signaling itself is sufficient to determine the cycles that a component should and
should not be enabled. Avalon-ST compliant components may have a clock enable
input for their internal logic. However, components using clock enables must ensure
that the timing of the interface adheres to the protocol.

5.4. Avalon-ST Interface Properties

Table 18. Avalon-ST Interface Properties

Property Name Default
Value

Legal
Values

Description

associatedClock 1 Clock
interface

The name of the Avalon Clock interface to which this
Avalon-ST interface is synchronous.

associatedReset 1 Reset
interface

The name of the Avalon Reset interface to which this
Avalon-ST interface is synchronous.

beatsPerCycle 1 1,2,4,8 Specifies the number of beats transferred in a single
cycle. This property allows you to transfer 2 separate,
but correlated streams using the same
start_of_packet, end_of_packet, ready and
valid signals.
beatsPerCycle is a rarely used feature of the Avalon-
ST protocol.

dataBitsPerSymbol 8 1 – 512 Defines the number of bits per symbol. For example,
byte-oriented interfaces have 8-bit symbols. This value
is not restricted to be a power of 2.

emptyWithinPacket false true, false When true, empty is valid for the entire packet.

errorDescriptor 0 List of
strings

A list of words that describe the error associated with
each bit of the error signal. The length of the list must
be the same as the number of bits in the error signal.
The first word in the list applies to the highest order
bit. For example, “crc, overflow" means that bit[1]
of error indicates a CRC error. Bit[0] indicates an
overflow error.

firstSymbolInHigh
OrderBits

true true, false When true, the first-order symbol is driven to the most
significant bits of the data interface. The highest-order
symbol is labeled D0 in this specification. When this
property is set to false, the first symbol appears on the
low bits. D0 appears at data[7:0]. For a 32-bit bus, if
true, D0 appears on bits[31:24].

continued...

5. Avalon Streaming Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

43

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Property Name Default
Value

Legal
Values

Description

maxChannel 0 0 – 255 Maximum number of channels that a data interface can
support.

readyLatency 0 0 – 8 Defines the relationship between the assertion of a
ready signal and the assertion of a valid signal. If
readyLatency = <n> where n > 0, valid can be
asserted only <n> cycles after assertion of ready.

readyAllowance(1) 0 0 – 8 Defines the number of transfers that the sink can
capture after ready is deasserted.
When readyAllowance = 0, the sink cannot accept
any transfers after ready is deasserted. If
readyAllowance = <n> where <n > 0>, the sink
can accept up to <n> transfers after ready is
deasserted.

5.5. Typical Data Transfers

This section defines the transfer of data from a source interface to a sink interface. In
all cases, the data source and the data sink must comply with the specification. The
data sink is not responsible for detecting source protocol errors.

5.6. Signal Details

The figure shows the signals that Avalon-ST interfaces typically includes. A typical
Avalon-ST source interface drives the valid, data, error, and channel signals to
the sink. The sink can apply backpressure with the ready signal.

Figure 21. Typical Avalon-ST Interface Signals

valid

data

error

ready

Data SinkData Source

channel
<max_channel>

(1) • If readyLatency = 0 readyAllowance can be 0 or greater than 0.
• If readyLatency > 0 readyAllowance must be equal to or greater than

readyLatency.
• If the source or the sink do not specify a value for readyAllowance then

readyAllowance= readyLatency. Designs do not require the addition of
readyAllowance unless you want the source or the sink to take advantage of this
feature.

5. Avalon Streaming Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

44

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

More details about these signals:

• ready—On interfaces supporting backpressure, the sink asserts ready to mark
the cycles where transfers may take place. If ready is asserted on cycle <n>,
cycle <n + readyLatency> is considered a ready cycle.

• valid—The valid signal qualifies valid data on any cycle with data transferring
from source to sink. On each valid cycle the sink samples the data signal and
other source to sink signals.

• data—The data signal carries the bulk of the information transferred from the
source to the sink. The data signal consists of one or more symbols transferred on
every clock cycle. The dataBitsPerSymbol parameter defines how the data
signal is divided into symbols.

• error—In the error signal, each bit corresponds to a possible error condition. A
value of 0 on any cycle indicates error-free data on that cycle. This specification
does not define the action that a component takes when an error is detected.

• channel—The source drives the optional channel signal to indicate to which
channel the data belongs. The meaning of channel for a given interface depends
on the application. In some applications, channel indicates the interface number.
In other applications, channel indicates the page number or timeslot. When the
channel signal is used, all the data transferred in each active cycle belongs to the
same channel. The source may change to a different channel on successive active
cycles.

Interfaces that use the channel signal must define the maxChannel parameter
to indicate the maximum channel number. If the number of channels an interface
supports changes dynamically, maxChannel indicates the maximum number the
interface can support.

5.7. Data Layout

Figure 22. Data Symbols
The following figure shows a 64-bit data signal with dataBitsPerSymbol=16. Symbol 0 is the most
significant symbol.

 symbol 0 symbol 3symbol 2symbol 1
63 48 47 32 31 16 15 0

The Avalon Streaming interface supports both the big-endian and little-endian modes.
The figure below is an example of the big-endian mode, where Symbol 0 is in the
high-order bits.

5. Avalon Streaming Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

45

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 23. Layout of Data
The timing diagram in the following figure shows a 32-bit example where dataBitsPerSymbol=8, and
beatsPerCycle=1.

clk

ready

valid

channel

error

data[31:24]

data[23:16]

data[15:8]

data[7:0]

D0 D4 D8

D1

D2

D3

D5

D6

D7

D9

DA

DD

DC

DE

DF

D11

D12

DB

D10

D13

5.8. Data Transfer without Backpressure

The data transfer without backpressure is the most basic of Avalon-ST data transfers.
On any given clock cycle, the source interface drives the data and the optional
channel and error signals, and asserts valid. The sink interface samples these
signals on the rising edge of the reference clock if valid is asserted.

Figure 24. Data Transfer without Backpressure

clk
valid

channel

error

data D1 D2 D3D0

5.9. Data Transfer with Backpressure

The sink asserts ready for a single clock cycle to indicate it is ready for an active
cycle. If the sink is ready for data, the cycle is a ready cycle. During a ready cycle, the
source may assert valid and provide data to the sink. If the source has no data to
send, the source deasserts valid and can drive data to any value.

Interfaces that support backpressure define the readyLatency parameter to indicate
the number of cycles from the time that ready is asserted until valid data can be
driven. If the readyLatency is nonzero, cycle <n + readyLatency> is a ready
cycle if ready is asserted on cycle <n>.

When readyLatency = 0, data transfer only happens when ready and valid are
asserted on the same cycle. In this mode, the source does not receive the sink’s ready
signal before sending valid data. The source provides the data and asserts valid
whenever the source has valid data. The source waits for the sink to capture the data
and assert ready. The source can change the data at any time. The sink only
captures input data from the source when ready and valid are both asserted.

5. Avalon Streaming Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

46

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

When readyLatency >= 1, the sink asserts ready before the ready cycle itself.
The source can respond during the appropriate cycle by asserting valid. The source
may not assert valid during cycles that are not ready cycles.

readyAllowance defines the number of transfers that the sink can capture when
ready is deasserted. When readyAllowance = 0, the sink cannot accept any
transfers after ready is deasserted. If readyAllowance = <n> where n > 0, the
sink can accept up to <n> transfers after ready is deasserted.

5.9.1. Data Transfers Using readyLatency and readyAllowance

The following rules apply when transferring data with readyLatency and
readyAllowance.

• If readyLatency is 0, readyAllowance can be greater than or equal to 0.

• If readyLatency is greater than 0, readyAllowance can be greater than or
equal to readyLatency.

When readyLatency = 0 and readyAllowance = 0, data transfers only when
both ready and valid are asserted. In this case, the source does not receive the
sink’s ready signal before sending valid data. The source provides the data and
asserts valid whenever possible. The source waits for the sink to capture the data
and assert ready. The source can change the data at any time. The sink only
captures input data from the source when ready and valid are both asserted.

Figure 25. readyLatency = 0, readyAllowance = 0

When readyLatency = 0 and readyAllowance = 0 the source can assert valid at any time. The sink
captures the data from source only when ready = 1.

The following figure demonstrates these events:

1. In cycle 1 the source provides data and asserts valid.

2. In cycle 2, the sink asserts ready and D0 transfers.

3. In cycle 3, D1 transfers.

4. In cycle 4, the sink asserts ready, but the source does not drive valid data.

5. The source provides data and asserts valid on cycle 6.

6. In cycle 8, the sink asserts ready, so D2 transfers.

7. D3 transfers at cycle 9 and D4 transfers at cycle 10.

clk0

ready

valid

data

0 1 2 3 4 6 7 8 9 10 11 12 135

D2 D3 D4 D5D1D0

5. Avalon Streaming Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

47

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 26. readyLatency = 0, readyAllowance = 1

When readyLatency = 0 and readyAllowance = 1 the sink can capture one more data transfer after
ready = 0.

The following figure demonstrates these events:

1. In cycle 1 the source provides data and asserts valid while the sink asserts ready. D0 transfers.

2. D1 is transferred in cycle 2.

3. In cycle 3, ready deasserts, however since readyAllowance = 1 one more transfer is allowed, so D2
transfers.

4. In cycle 5 both valid and ready assert, so D3 transfers.

5. In cycle 6, the source deasserts valid, so no data transfers.

6. In cycle 7, valid asserts and ready deasserts, however since readyAllowance = 1 one more transfer
is allowed, so D4 transfers.

clk0

ready

valid

data D0 D1 D2 D3 D4 D5 D6 D7

0 1 2 3 4 6 7 8 9 10 11 12 135

Figure 27. readyLatency = 1, readyAllowance = 2

When readyLatency = 1 and readyAllowance = 2 the sink can transfer data one cycle after ready
asserts, and two more cycles of transfers are allowed after ready deasserts.

The following figure demonstrates these events:

1. In cycle 0 the sink asserts ready.

2. In cycle 1, the source provides data and asserts valid. The transfer occurs immediately.

3. In cycle 3, the sink deasserts ready, but the source is still asserting valid, and drives valid data
because the sink can capture data two cycles after ready deasserts.

4. In cycle 10, the sink has deasserted ready, but the source asserts valid and drives valid data because
the sink can capture data two cycles after ready deasserts.

clk0

ready

valid

data D0 D1 D2 D3 D6 D7D4 D5

0 1 2 3 4 6 7 8 9 10 11 12 135

Adaptation Requirements

The following table describes whether source and sink interfaces require adaptation.

5. Avalon Streaming Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

48

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 19. Source/Sink Adaptation Requirements

readyLatency readyAllowance Adaptation

Source readyLatency = Sink
readyLatency

Source readyAllowance =
Sink readyAllowance

No adaptation required: The sink can capture all
transfers.

Source readyAllowance >
Sink readyAllowance

Adaptation required: After ready is deasserted,
the source can send more transfers than the sink can
capture.

Source readyAllowance <
Sink readyAllowance

No adaptation required: After ready is
deasserted, the sink can capture more transfers than
the source can send.

Source readyLatency > Sink
readyLatency

Source readyAllowance =
Sink readyAllowance

No adaptation required: After ready is asserted,
the source starts sending later than the sink can
capture. After ready is deasserted, the source can
send as many transfers as the sink can capture.

Source readyAllowance>
Sink readyAllowance

Adaptation required: After ready is deasserted,
the source can send more transfers than the sink can
capture.

Source readyAllowance<
Sink readyAllowance

No adaptation required: After ready is
deasserted, the source sends fewer transfers than
the sink can capture.

Source readyLatency <
SinkreadyLatency

Source readyAllowance =
Sink readyAllowance

Adaptation required: The source can start sending
transfers before sink can capture.

Source readyAllowance>
Sink readyAllowance

Adaptation required: The source can start sending
transfers before the sink can capture. Also, after
ready is deasserted, the source can send more
transfers than the sink can capture.

Source readyAllowance <
Sink readyAllowance

Adaptation required: The source can start sending
transfers before the sink can capture.

5.9.2. Data Transfers Using readyLatency

If the source or the sink do not specify a value for readyAllowance then
readyAllowance= readyLatency. Designs that use source and sink do not require
the addition of readyAllowance unless you want the source or the sink to take
advantage of this feature.

5. Avalon Streaming Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

49

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 28. Transfer with Backpressure, readyLatency=0
The following figure illustrates these events:

1. The source provides data and asserts valid on cycle 1, even though the sink is not ready.

2. The source waits until cycle 2, when the sink does assert ready, before moving onto the next data cycle.

3. In cycle 3, the source drives data on the same cycle and the sink is ready to receive data. The transfer
occurs immediately.

4. In cycle 4, the sink asserts ready, but the source does not drive valid data.

clk

ready

valid

channel

error

data

0 1 2 3 5 6 7 84

D0 D1 D2 D3

Figure 29. Transfer with Backpressure, readyLatency=1
The following figures show data transfers with readyLatency=1 and readyLatency=2, respectively. In both
these cases, ready is asserted before the ready cycle, and the source responds 1 or 2 cycles later by providing
data and asserting valid. When readyLatency is not 0, the source must deassert valid on non-ready
cycles.

clk

ready

valid

channel

error

data D0 D1 D2 D3 D4 D5

Figure 30. Transfer with Backpressure, readyLatency=2

clk

ready

valid

channel

error

data D0 D1 D2 D3

5.10. Packet Data Transfers

The packet transfer property adds support for transferring packets from a source
interface to a sink interface. Three additional signals are defined to implement the
packet transfer. Both the source and sink interfaces must include these additional
signals to support packets. You can only connect source and sink interfaces with

5. Avalon Streaming Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

50

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

matching packet properties. Platform Designer does not automatically add the
startofpacket , endofpacket, and empty signals to source or sink interfaces that
do not include these signals.

Figure 31. Avalon-ST Packet Interface Signals

channel
<max channel>

valid

data
error

ready

Data Source Data Sink

empty

startofpacket
endofpacket

5.11. Signal Details

• startofpacket—All interfaces supporting packet transfers require the
startofpacket signal. startofpacket marks the active cycle containing the
start of the packet. This signal is only interpreted when valid is asserted.

• endofpacket—All interfaces supporting packet transfers require the
endofpacket signal. endofpacket marks the active cycle containing the end of
the packet. This signal is only interpreted when valid is asserted.
startofpacket and endofpacket can be asserted in the same cycle. No idle
cycles are required between packets. The startofpacket signal can follow
immediately after the previous endofpacket signal.

• empty—The optional empty signal indicates the number of symbols that are
empty during the endofpacket cycle. The sink only checks the value of the
empty during active cycles that have endofpacket asserted. The empty symbols
are always the last symbols in data, those carried by the low-order bits when
firstSymbolInHighOrderBits = true. The empty signal is required on all
packet interfaces whose data signal carries more than one symbol of data and
have a variable length packet format. The size of the empty signal in bits is
ceil[log2(<symbols per cycle>)].

5. Avalon Streaming Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

51

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5.12. Protocol Details

Packet data transfer follows the same protocol as the typical data transfer with the
addition of the startofpacket, endofpacket, and empty.

Figure 32. Packet Transfer
The following figure illustrates the transfer of a 17-byte packet from a source interface to a sink interface,
where readyLatency=0. This timing diagram illustrates the following events:

1. Data transfer occurs on cycles 1, 2, 4, 5, and 6, when both ready and valid are asserted.

2. During cycle 1, startofpacket is asserted. The first 4 bytes of packet are transferred.

3. During cycle 6, endofpacket is asserted. empty has a value of 3. This value indicates that this is the
end of the packet and that 3 of the 4 symbols are empty. In cycle 6, the high-order byte, data[31:24]
drives valid data.

clk

ready

valid

startofpacket

endofpacket

empty

channel

error

data[31:24]

data[23:16]

data[15:8]

data[7:0]

0 0 0 0 0

0 0 0 0 0

D0 D4 D8 D12 D16

D1 D5 D9 D13

D2 D6 D10 D14

D3 D7 D11 D15

3

1 2 3 4 5 6 7

5. Avalon Streaming Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

52

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

6. Avalon Streaming Credit Interfaces
Avalon Streaming Credit interfaces can be used for components that drive high-
bandwidth, low-latency, unidirectional data. Typical applications include multiplexed
streams, packets, and DSP data. The Avalon Streaming Credit interface signals can
describe traditional streaming interfaces supporting a single stream of data without
knowledge of channels or packet boundaries. The interface can also support more
complex protocols capable of burst and packet transfers with packets interleaved
across multiple channels.

All Avalon Streaming Credit source and sink interfaces are not necessarily
interoperable. However, if two interfaces provide compatible functions for the same
application space, adapters are available to allow them to interoperate.

Avalon Streaming Credit source can also be connected to an Avalon Streaming sink via
an adapter. Similarly, Avalon Streaming source can be connected to an Avalon
Streaming Credit sink via an adapter.

Avalon Streaming Credit interfaces support datapaths requiring the following features:

• Low-latency, high-throughput point-to-point data transfer

• Multiple channels support with flexible packet interleaving

• Sideband signaling of channel, error, and start and end of packet delineation

• Support for data bursting

6.1. Terms and Concepts

The Avalon Streaming Credit interface protocol defines the following terms and
concepts:

• Avalon Streaming Credit System— An Avalon Streaming Credit system
contains one or more Avalon Streaming Credit connections that transfer data from
a source interface to a sink interface.

• Avalon Streaming Credit Components— A typical system using Avalon
Streaming interfaces combines multiple functional modules, called components.
The system designer configures the components and connects them together to
implement a system.

• Source and Sink Interfaces and Connections—When two components are
connected, credits flow from the sink to the source; and the data flows from the
source interface to the sink interface. The combination of a source interface
connected to a sink interface is referred to as a connection.

• Transfers— A transfer results in data and control propagation from a source
interface to a sink interface. For data interfaces, source can start data transfer
only if it has credits available. Similarly, sink can accept data only if it has
outstanding credits.

MNL-AVABUSREF | 2020.04.13

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

• Symbol—A symbol is the smallest unit of data. One or more symbols make up the
single unit of data transferred in a cycle.

• Beat—A beat is a single cycle transfer between a source and sink interface made
up of one or more symbols.

• Packet—A packet is an aggregation of data and control signals that is transmitted
together. A packet may contain a header to help routers and other network
devices direct the packet to the correct destination. The packet format is defined
by the application, not this specification. Avalon Streaming packets can be variable
in length and can be interleaved across a connection. With an Avalon Streaming
Credit interfaces, the use of packets is optional.

6.2. Avalon Streaming Credit Interface Signal Roles

Each signal in an Avalon Streaming Credit source or sink interface corresponds to one
Avalon Streaming Credit signal role. An Avalon Streaming Credit interface may contain
only one instance of each signal role. All Avalon Streaming Credit signal roles apply to
both sources and sinks and have the same meaning for both.

Table 20. Avalon Streaming Credit Interface Signals

Signal Name Direction Width Optional /
Required

Description

update Sink to
source

1 Required Sink sends update and source updates
the available credit counter. Sink sends
update to source when a transaction is
popped from its buffer.
Credit counter in source is increased by
the value on the credit bus from sink to
source.

credit Sink to
source

1-9 Required Indicates additional credit available at sink
when update is asserted.
This bus carries a value as specified by the
sink. Width of the credit bus is
ceilog2(MAX_CREDIT + 1). Sink sends
available credit value on this bus which
indicates the number of transactions it can
accept. Source will capture credit value
only if update signal is asserted.

return_credit Source to
sink

1 Optional Asserted by source to return 1 credit back
to sink.
Note: For more details, refer to Section

6.2.3 Returning the Credits.

data Source to
sink

1-16368 Required Data is divided into symbols as per
existing Avalon Streaming definition.

valid Source to
sink

1 Required Asserted by the source to qualify all other
source to sink signals. Source can assert
valid only when the credit available to it
is greater than 0.

error Source to
sink

1-256 Optional A bit mask used to mark errors affecting
the data being transferred in the current
cycle. A single bit in error is used for each
of the errors recognized by the
component, as defined by the
errorDescriptor property.

continued...

6. Avalon Streaming Credit Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

54

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Signal Name Direction Width Optional /
Required

Description

channel Source to
sink

1-128 Optional The channel number for data being
transferred on the current cycle.
If an interface supports the channel
signal, it must also define the
maxChannel parameter.

Packet Transfer Signals

startofpacket Source to
sink

1 Optional Asserted by the source to mark the start
of a packet.

endofpacket Source to
sink

1 Optional Asserted by the source to mark the end of
a packet.

empty Source to
sink

ceil(log2(NUM_SYMBOLS)) Optional Indicates the number of symbols that are
empty, that is, do not represent valid data.
The empty signal is not used on interfaces
where there is one symbol per beat.

User Signals

<Per-Packet
User Signals>

Source to
sink

1-16368 Optional Any number of per-packet user signals can
be present on source and sink interfaces.
Source sets value of this signal when
startofpacket is asserted. Source
should not change the value of this signal
until start of new packet. More details are
in the User Signal section.

<Per-Symbol
User Signals>

Source to
sink

1-16368 Optional Any number of per-symbol user signals
can be present on source and sink. More
details are in the User Signal section.

6.2.1. Synchronous Interface

All transfers of an Avalon Streaming connection occur synchronous to the rising edge
of the associated clock signal. All outputs from a source interface to a sink interface,
including the data, channel, and error signals, must be registered on the rising
edge of clock. Inputs to a sink interface do not have to be registered. Registering
signals at the source facilitates high-frequency operation.

Table 21. Avalon Streaming Credit Interface Properties

Property Name Default
Value

Legal Value Description

associatedClock 1 Clock
interface

The name of the Avalon Clock interface to which this
Avalon Streaming interface is synchronous.

associatedReset 1 Reset
interface

The name of the Avalon Reset interface to which this
Avalon Streaming interface is synchronous.

dataBitsPerSymbol 8 1 – 16368 Defines the number of bits per symbol. For example,
byte-oriented interfaces have 8-bit symbols. This value is
not restricted to be a power of 2.

symbolsPerBeat 1 1 – 16368 The number of symbols that are transferred on every
valid cycle.

maxCredit 256 1-256 The maximum number of credits that a data interface
can support.

continued...

6. Avalon Streaming Credit Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

55

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Property Name Default
Value

Legal Value Description

errorDescriptor 0 List of strings A list of words that describe the error associated with
each bit of the error signal. The length of the list must be
the same as the number of bits in the error signal.The
first word in the list applies to the highest order bit. For
example, “crc, overflow" means that bit[1] of error
indicates a CRC error. Bit[0] indicates an overflow error.

firstSymbolInHighOrderBits true true, false When true, the first-order symbol is driven to the most
significant bits of the data interface. The highest-order
symbol is labeled D0 in this specification. When this
property is set to false, the first symbol appears on the
low bits. D0 appears at data[7:0]. For a 32-bit bus, if
true, D0 appears on bits[31:24].

maxChannel 0 0 The maximum number of channels that a data interface
can support.

6.2.2. Typical Data Transfers

This section defines the transfer of data from a source interface to a sink interface. In
all cases, the data source and the data sink must comply with the specification. It is
not the responsibility of the data sink to detect source protocol errors.

The below figure shows the signals that are typically used in an Avalon Streaming
Credit interface.

Figure 33. Typical Avalon Streaming Credit Signals

As this figure indicates, a typical Avalon Streaming Credit source interface drives the
valid, data, error, and channel signals to the sink. The sink drives update and
credit signals.

6. Avalon Streaming Credit Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

56

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 34. Typical Credit and Data Transfer

The above figure shows a typical credit and data transfer between source and sink.
There can be an arbitrary delay between the sink asserting update and source
receiving the update. Similarly, there can be an arbitrary delay between source
asserting valid for data and sink receiving that data. Delay on credit path from sink
to source and data path from source to sink need not be equal. These delays can be 0
cycle as well, i.e. when the sink asserts update, it is seen by the source in the same
cycle. Conversely, when the source asserts valid, it is seen by the sink in the same
cycle. If source has zero credits, it cannot assert valid. Transferred credits are
cumulative. If sink has transferred credits equal to its maxCredit property, and has not
received any data, it cannot assert update until it receives at least 1 data or has
received a return_credit pulse from the source.

Sink cannot backpressure data from source if sink has provided credits to the source,
i.e. sink must accept data from source if there are outstanding credits. Source cannot
assert valid if it has not received any credit or exhausted the credits received, i.e.
already sent the data in lieu of credits received.

If source has zero credits, source cannot start the data transfer in the same cycle it
receives credits. Similarly, if sink has transferred credits equal to its maxCredit
property and it receives data, sink cannot send an update in the same cycle as it
received data. These restrictions have been put in place to avoid combinational loops
in the implementation.

6.2.3. Returning the Credits

Avalon Streaming Credit protocol supports an optional signal return_credit. This is
used by source to return the credits back to sink. Every cycle this signal is asserted, it
indicates source is giving back 1 credit. If source wants to return multiple credits, this
signal needs to be asserted for multiple cycles. For example, if source wants to return
10 outstanding credits, it will assert return_credit signal for 10 cycles. Sink should
account for returned credits in its internal credit maintenance counters. Credits can be
returned by source at any point in time as long as it has credits greater than 0.

The below figure exemplifies source returning credits. As shown in the figure,
outstanding_credit is an internal counter for the source. When source returns credits,
this counter is decremented.

6. Avalon Streaming Credit Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

57

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 35. Source Returning Credits

Note: Although the diagram above shows the returning of credits when valid is deasserted,
return_credit can also be asserted while valid is asserted. In this case, source
will effectively spend 2 credits - one for valid and one for return_credit.

6.3. Avalon Streaming Credit User Signals

User signals are optional sideband signals which flow along with data. They are
considered valid only when data is valid. Given that user signals do not have any
defined meaning or purpose, caution must be used while using these signals. It is the
responsibility of the system designer to make sure that two IPs connected to each
other agree on the roles of the user signals.

Two types of user signals are being proposed: per-symbol user signals and per-packet
user signals.

6.3.1. Per-Symbol User Signal

As the name suggests, a per-symbol user signal (symbol_user) is defined per
symbol in the data, i.e. each symbol in the data can have a user signal associated with
it. For example, if the number of symbols in the data is 8, and symbol_user width is
2 bits, the total width of the symbol_user signal will be 16 bits.

Symbol_user is valid only when data is valid. Source can change this signal every
cycle when data is valid. Sink can disregard the value of symbol_user bits for empty
symbols.

If a source which has this signal is connected to a sink which does not have this signal
on its interface, the signal from source will remain dangling in the generated
interconnect.

If a source which does not have this signal is connected to a sink which has this signal
on its interface, the sink’s input user signal will be tied to 0.

If both source and sink have equal number of symbols in the data, then the user
signals for both must have equal widths. Otherwise, they cannot be connected.

6. Avalon Streaming Credit Interfaces

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

58

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

If a wide source is connected to a narrow sink, and both have per-symbol user signals,
then both must have equal bits of user signal associated with each symbol. For
example, if a 16-symbol source has 2 bits of user signal associated with each symbol
(for a total of 32 bits of user signal), then a 4-symbol sink must have an 8-bit wide
user signal (2 bits associated with each symbol). A data format adapter will convert
the 16-symbol source data to 4-symbol sink data and 32-bit user signal to 8-bit user
signal. It will maintain the association of symbols with corresponding user signal bits.

Similarly, if a narrow source is connected to a wide sink, and both have per-symbol
user signals, then both must have equal bits of user signal associated with each
symbol. For example, if a 4-symbol source has 2 bits of user signal associated with
each symbol (for a total of 8 bits of user signal), then a 16-symbol sink must have a
32-bit wide user signal (2 bits associated with each symbol). A data format adapter
will convert the 4-symbol source data to 16-symbol sink data and 8-bit user signal to
32-bit user signal. It will maintain the association of symbols with corresponding user
signal bits. If the packet is smaller than the ratio of data widths, the data format
adapter will set the value of empty accordingly. Sink should disregard the value of
user bits associated with empty symbols.

6.3.2. Per-Packet User Signal

In addition to symbol_user, per-packet user signals (packet_user) can also be
declared on the interface. Packet_user can be of arbitrary width. Unlike
symbol_user, packet_user must remain constant throughout the packet, i.e. its
value should be set at the start of the packet and must remain the same until the end
of the packet. This restriction makes the implementation of the data format adapter
simpler as it eliminates the option to replicate or chop (wide source, narrow sink) or
concatenate (narrow source, wide sink) packet_user.

If a source has packet_user and sink does not, the packet_user from source will
remain dangling. In such a case, the system designer must be careful and not
transmit any critical control information on this signal as it will be completely or
partially ignored.

If a source does not have packet_user and the sink does, the packet_user to sink
will be tied to 0.

6. Avalon Streaming Credit Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

59

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

7. Avalon Conduit Interfaces
Avalon Conduit interfaces group an arbitrary collection of signals. You can specify any
role for conduit signals. However, when you connect conduits, the roles and widths
must match, and the directions must be opposite. An Avalon Conduit interface can
include input, output, and bidirectional signals. A module can have multiple Avalon
Conduit interfaces to provide a logical signal grouping. Conduit interfaces can declare
an associated clock. When connected conduit interfaces are in different clock domains,
Platform Designer generates an error message.

Note: If possible, you should use the standard Avalon-MM or Avalon-ST interfaces instead of
creating an Avalon Conduit interface. Platform Designer provides validation and
adaptation for these interfaces. Platform Designer cannot provide validation or
adaptation for Avalon Conduit interfaces.

Conduit interfaces typically used to drive off-chip device signals, such as an SDRAM
address, data and control signals.

Figure 36. Focus on the Conduit Interface

Avalon-MM System

System Interconnect Fabric

Ethernet
PHY

Avalon
Slave

Avalon-MM
Slave

SDRAM
Memory

Avalon-MM
Master

Processor

Avalon-MM
Master

Avalon-MM
Master

Ethernet MAC Custom Logic

SDRAM
Controller

Custom
Logic

Conduit
Interface

Custom
Logic

MNL-AVABUSREF | 2020.04.13

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

7.1. Avalon Conduit Signal Roles

Table 22. Conduit Signal Roles

Signal Role Width Direction Description

<any> <n> In, out, or
bidirectional

A conduit interface consists of one or more input, output,
or bidirectional signals of arbitrary width. Conduits can
have any user-specified role. You can connect compatible
Conduit interfaces inside a Platform Designer (Standard)
system provided the roles and widths match and the
directions are opposite.

7.2. Conduit Properties

There are no properties for conduit interfaces.

7. Avalon Conduit Interfaces

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

61

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

8. Avalon Tristate Conduit Interface
The Avalon Tristate Conduit Interface (Avalon-TC) is a point-to-point interface
designed for on-chip controllers that drive off-chip components. This interface allows
data, address, and control pins to be shared across multiple tristate devices. Sharing
conserves pins in systems that have multiple external memory devices.

The Avalon-TC interface restricts the more general Avalon Conduit Interface in two
ways:

• The Avalon-TC requires request and grant signals. These signals enable bus
arbitration when multiple Tristate Conduit Masters (TCM) are requesting access to
a shared bus.

• The pin type of a signal must be specified using suffixes appended to a signal’s
role. The three suffixes are: _out, _in, and _outen. Matching role prefixes
identify signals that share the same I/O Pin. The following illustrates the naming
conventions for Avalon-TC shared pins.

Figure 37. Shared Pin Types

data_out data
data_in

data_outen

Intel FPGA
Bidirectional Pin

busy_in busy

Intel FPGA
Input Only Pin

reset_out reset

Intel FPGA
Tri-State Output Only Pin

reset_outen ~reset

Intel FPGA
Output Only Pin

write_out write

MNL-AVABUSREF | 2020.04.13

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

The next figure illustrates pin sharing using Avalon-TC interfaces. This figure illustrates
the following points.

• The Tristate Conduit Pin Sharer includes separate Tristate Conduit Slave Interfaces
for each Tristate Conduit Master. Each master and slave pair has its own request
and grant signals.

• The Tristate Conduit Pin Sharer identifies signals with identical roles as tristate
signals that share the same FPGA pin. In this example, the following signals are
shared: addr_out, data_out, data_in, read_out, and write_out.

• The Tristate Conduit Pin Sharer drives a single bus including all the shared signals
to the Tristate Conduit Bridge. If the widths of shared signals differ, the Tristate
Conduit Pin Sharer aligns them on their 0th bit. Tristate Conduit Pin Sharer drives
the higher-order pins to 0 whenever the smaller signal has control of the bus.

• Signals that are not shared propagate directly through the Tristate Conduit Pin
Sharer. In this example, the following signals are not shared: chipselect0_out,
irq0_out, chipselect1_out, and irq1_out.

• All Avalon-TC interfaces connected to the same Tristate Conduit Pin Sharer must
be in the same clock domain.

8. Avalon Tristate Conduit Interface

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

63

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 38. Tristate Conduit Interfaces
The following illustrates the typical use of Avalon-TC Master and Slave interfaces and signal naming.

Intel FPGA

TCM

Tristate Conduit
Pin Sharer TCS

Tristate Conduit
Bridge

S

 Controller
for 2 MByte
x32 SSRAM

CS
IRQ

A[20:0]
D_EN

D[31:0]
DI[31:0]

Rd
Wr

Request
Grant

TCM

S

Grant
Req

A[22:0]
D_EN

D[15:0]
DI[15:0]

Rd
Wr

TCM

chipselect_out

dataout_outen
dataout_out[31:0]

data_in[31:0]
read_out
write_out

request
grant

request
grant

addr_out_[20:0]

chipselect_out
irq_in

Controller
for 8 MByte

x16 Flash

addr_out<n>

data_out<n>

data_in<n>

data_outen<n>

chipselect_out

request
grant

irq_in
chipselect_out

write_out

read_out

clock

Avalon-MM
Master

TCS

TCS

CS
IRQ

Avalon-MM SlaveS

TCM Tristate Conduit Master

Tristate Conduit SlaveTCS

Arb

dataout_outen
dataout_out[15:0]

data_in[15:0]
read_out
write_out

addr_out_[22:0]

For more information about the Generic Tristate Controller and Tristate Conduit Pin
Sharer, refer to the Avalon Tristate Conduit Components User Guide.

Related Information

Avalon Tristate Conduit Components User Guide

8.1. Avalon Tristate Conduit Signal Roles

The following table lists the signal defined for the Avalon Tristate Conduit interface. All
Avalon-TC signals apply to both masters and slaves and have the same meaning for
both

8. Avalon Tristate Conduit Interface

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

64

http://www.altera.com/literature/ug/ug_avalon_tc.pdf
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Table 23. Tristate Conduit Interface Signal Roles

Signal Role Width Direction Required Description

request 1 Master → Slave Yes The meaning of request depends on the state of the
grant signal, as the following rules dictate.
When request is asserted and grant is deasserted,
request is requesting access for the current cycle.
When request is asserted and grant is asserted,
request is requesting access for the next cycle.
Consequently, request should be deasserted on the
final cycle of an access.
The request signal deasserts in the last cycle of a
bus access. The request signal can reassert
immediately following the final cycle of a transfer.
This protocol makes both rearbitration and
continuous bus access possible if no other masters
are requesting access.
Once asserted, request must remain asserted until
granted. Consequently, the shortest bus access is 2
cycles. Refer to Tristate Conduit Arbitration Timing
for an example of arbitration timing.

grant 1 Slave → Master Yes When asserted, indicates that a tristate conduit
master has access to perform transactions. The
grant signal asserts in response to the request
signal. The grant signal remains asserted until 1
cycle following the deassertion of request.

<name>_in 1 – 1024 Slave → Master No The input signal of a logical tristate signal.

<name>_out 1 – 1024 Master → Slave No The output signal of a logical tristate signal.

<name>_outen 1 Master → Slave No The output enable for a logical tristate signal.

8.2. Tristate Conduit Properties

There are no special properties for the Avalon-TC Interface.

8.3. Tristate Conduit Timing

The following illustrates arbitration timing for the Tristate Conduit Pin Sharer. Note that
a device can drive or receive valid data in the granted cycle.

8. Avalon Tristate Conduit Interface

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

65

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 39. Tristate Conduit Arbitration Timing
This figure shows the following sequence of events:

1. In cycle 1, the tristate conduit slave asserts grant. The slave drives valid data in cycles1 and 2.

2. In cycle 4, the tristate conduit slave asserts grant. The slave drives valid data in cycles 5–8.

3. In cycle 9, the tristate conduit slave asserts grant. The slave drives valid data in cycles 10–17.

4. Cycles 3, 4 and 9 do not contain valid data.

clk

request

grant

data_out[31:0] 0 a b c d e f 10 11 12 13 14 15 16 17

1 3 62 74 5 8 10 139 1411 12 16 1715

.

8. Avalon Tristate Conduit Interface

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

66

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

A. Deprecated Signals
Deprecated signals implement functionality that is no longer required or has been
superseded.

begintransfer
An output of Avalon-MM masters. Asserted for a single cycle at the beginning of a
transfer. This is signal is not used and not necessary.

chipselect or chipselect_n

chipselect or chipselect_n: The chip select signal as described below was
deprecated with the release of the Avalon Tristate Conduct (Avalon-TC) interface type
which includes a chip select signal.

Formerly chipselect was a 1-bit input to an Avalon Memory-Mapped (Avalon-MM)
slave interface signaling the beginning of a read or write transfer. The current Platform
Designer interconnect filters read and write signals from masters according to the
address and address map. The Platform Designer interconnect only drives read and
write signals to the appropriate Avalon-MM slave, making a chip select unnecessary.

This signal dates from very early microprocessor designs. CPLDs decoded
microprocessor addresses and generated chip selects for peripherals that were
frequently asynchronous. With synchronous systems this signal is unnecessary.

flush

Signal removed in version 1.2 of the Avalon Interface Specifications. Formerly
available to masters to clear pending transfers for pipelined reads.

MNL-AVABUSREF | 2020.04.13

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

B. Document Revision History for the Avalon Interface
Specifications

Document
Version

Intel Quartus Prime
Version

Changes

2020.04.13 20.1 Added the chapter Avalon Streaming Credit Interfaces.

2020.01.03 18.1 Corrected the definition of the burstOnBurstBoundaries interface
property. When true, the burst must begin on a multiple of the maximum
burst size.

2019.10.08 18.1 Removed references to symbolsPerBeat because it is a deprecated
parameter.
Added a note in the Data Layout topic to clarify that the Avalon Streaming
Interface supports both big-endian and little-endian modes.

2019.10.03 18.1 Corrected the property that specifies the fixed latency in the Pipelined
Read Transfers with Fixed Latency topic. The readyLatency property, not
the readWaitTime property specifies this value.

2018.09.26 18.1 In the Write Bursts section, added a statement saying that writes with
byteenables being all 0's are passed on to the Avalon-MM slave as valid
transactions.

2018.09.24 18.1 In Avalon Memory-Mapped Interface Signal Roles, added consecutive
byte-enable support.

2018.05.22 18.0 Made the following changes:
• In the Avalon-ST Interface Properties table, corrected the default value

for beatsPerCycle. The default value is 1.
• In the Avalon-ST Interface Properties table, added legal values for

beatsPerCycle. Legal values are 1, 2, 4, and 8.
• Corrected minor errors and typos.

2018.05.07 18.0 Made the following changes:
• Added support for the readyAllowance parameter.
• Updated the Data Transfers with Backpressure topic to incorporate

support for the readyAllowance parameter.
• Fixed minor errors and typos.

2018.03.22 17.1 Made the following changes:
• Made the following changes to the Read and Write Transfers with

Waitrequest timing diagram
— Removed readdatavalid signal which is not relevant when using

waitrequest

— Moved the number 4, readdata and response forward one cycle.
— Aligned the read signal to number 1.

• Expanded the Transfers Using the waitrequestAllowance Property
section. Provided more complex timing diagrams.

• Updated the discussion in the Read Bursts section. For reads with a
burstcount > 1, Intel recommends asserting all byteenables.

• Enhanced discussion in the waitrequestAllowance Equals Two - Not
Recommended topic. Corrected timing diagram. Data must be held for
2 cycles starting at clock cycle 11.

continued...

MNL-AVABUSREF | 2020.04.13

Send Feedback

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or
other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in
accordance with Intel's standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel
customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html
https://www.intel.com/content/www/us/en/quality/intel-iso-registrations.html

Document
Version

Intel Quartus Prime
Version

Changes

November 2017 17.1 Made the following changes:
• Updated the discussion of Read Bursts as follows:

— Qualified the statement, " When a master connects directly to a
slave, a burstcount of <n>, means the slave must return <n>
words of readdata to complete the burst. " This statement is true if
the master connects directly to the slave. It may not be true if
interconnect links the master and slave.

— Removed the following statement from the description of read
bursts: "The byteenables presented with a read burst command
apply to all cycles of the burst." This statement is no longer true.
However, Intel recommends that reads with burstcount > 1
assert all byteenables.

• Removed the following statement form the Pipelined Transfers section:
Write transfers cannot be pipelined. You can pipeline writes using the
writeresponsevalid signal.

• Expanded the description of read and write responses in the Avalon-
MM Read and Write Responses Timing Diagram section.

• Revised the description of the reset_req signal.
• Changed width of irq from 1 bit to 1-32 bits. Both the Intel Quartus

Prime Pro Edition and Intel Quartus Prime Standard Edition software
support interrupt vectors.

May 2017 Quartus Prime Pro v17.1
Stratix 10 ES Editions

Made the following changes:
• Added the following interface property parameters.

— waitrequestAllowance parameter to support high speed
operation. This parameter is available for Avalon-MM interfaces.
Added timing diagrams illustrating use of this parameter.

— minimumResponseLatency parameter to facilitate timing
closure for Avalon-MM interface. Added timing diagrams illustrating
use of this parameter.

December 2015 15.1 Made the following changes:
• Changed the width of the empty signal from a maximum of 8 bits to a

maximum of 5 bits.
• Improved the definition of the reset_req signal.
• Removed the readdatavalid signal from the Pipelined Read Transfer

with Fixed Latency of Two Cycles timing diagram. This signal is not
relevant for fixed latency transfers.

• Corrected equation defining the empty signal.
• Made the following changes in the Pipelined Read Transfers with

Variable Latency timing diagram:
— Moved the deassertion of the read signal to cycle 9
— Changed waitrequest to don't care in cycle 9.

March 2015 14.1 Fixed typo in Figure 1-1.

January 2015 14.1 Made the following changes:
• Clarified address alignment example. The Avalon-MM master and slave

interfaces are different widths.
• Improved discussion of Pipelined read Transfers with Variable Latency.

Corrected timing marker 2 which should be exactly on the rising edge
of clock.

• Improved discussion of Pipelined Read Transfer with Fixed Latency of
Two Cycles.

• Clarified use of beatsPerCycle property.
• Corrected the address range for line-wrapped bursts. The correct

address range for a 64-byte burst is 0x0–0x3C, not 0x0–0x1C.

continued...

B. Document Revision History for the Avalon Interface Specifications

MNL-AVABUSREF | 2020.04.13

Send Feedback Avalon® Interface Specifications

69

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document
Version

Intel Quartus Prime
Version

Changes

• Corrected description of the Tristate Conduit Arbitration Timing
diagram in the following ways:
— The tristate conduit slave asserts grant, not the tristate conduit

master.
— The final grant comes in cycle 9, not cycle 8.

• Added a Deprecated Signals appendix.
• Added read response signal.
• Improved definitions of clock and reset signal types.
• Corrected definition of clock sink properties.
• Corrected definition of synchronousEdges for reset source interface.
• Clarified the Avalon-MM response signal type.
• Updated definition of empty. The signal must be interpreted

emptyWithinPacket is true.
• Edited for clarity and consistency.

June 2014 14.0 • Updated the Avalon-MM Signals table, begintransfer,
readdatavalid, and readdatavalid_n.

• Updated the Read and Write Transfers with Waitrequest figure:
— Moved deassertion of write to cycle 6.
— Moved assertion of readdatavalid and readdata to cycle 4.

• Updated the Pipelined Read Transfers with Variable Latency figure:
— Moved assertion of data1 to just after cycle 5, and assertion of

data2 to cycle 6.
— Moved assertion of readdatavalid to match data1 and data2.

April 2014 13.01 Corrected Read and Write Transfers with Waitrequest In Avalon Memory-
Mapped Interfaces chapter .

May 2013 13.0 Made the following changes:
• Minor updates to Avalon Memory-Mapped Interfaces.
• Minor updates to Avalon Streaming Interfaces.
• Updated Avalon Conduit Interfaces to describe the signal roles

supported by Avalon conduit interfaces.
• Updated Shared Pin Types figure in the Avalon Tristate Conduit

Interface chapter.

May 2011 11.0 Initial release of the Avalon Interface Specifications.

B. Document Revision History for the Avalon Interface Specifications

MNL-AVABUSREF | 2020.04.13

Avalon® Interface Specifications Send Feedback

70

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Avalon%20Interface%20Specifications%20(MNL-AVABUSREF%202020.04.13)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	Avalon Interface Specifications
	Contents
	1. Introduction to the Avalon® Interface Specifications
	1.1. Avalon Properties and Parameters
	1.2. Signal Roles
	1.3. Interface Timing
	1.4. Example: Avalon Interfaces in System Designs

	2. Avalon Clock and Reset Interfaces
	2.1. Avalon Clock Sink Signal Roles
	2.2. Clock Sink Properties
	2.3. Associated Clock Interfaces
	2.4. Avalon Clock Source Signal Roles
	2.5. Clock Source Properties
	2.6. Reset Sink
	2.7. Reset Sink Interface Properties
	2.8. Associated Reset Interfaces
	2.9. Reset Source
	2.10. Reset Source Interface Properties

	3. Avalon Memory-Mapped Interfaces
	3.1. Introduction to Avalon Memory-Mapped Interfaces
	3.2. Avalon Memory-Mapped Interface Signal Roles
	3.3. Interface Properties
	3.4. Timing
	3.5. Transfers
	3.5.1. Typical Read and Write Transfers
	3.5.2. Transfers Using the waitrequestAllowance Property
	3.5.2.1. waitrequestAllowance Equals Two
	3.5.2.2. waitrequestAllowance Equals One
	3.5.2.3. waitrequestAllowance Equals Two - Not Recommended
	3.5.2.4. waitrequestAllowance Compatibility for Avalon-MM Master and Slave Interfaces
	3.5.2.5. waitrequestAllowance Error Conditions

	3.5.3. Read and Write Transfers with Fixed Wait-States
	3.5.4. Pipelined Transfers
	3.5.4.1. Pipelined Read Transfer with Variable Latency
	3.5.4.2. Pipelined Read Transfers with Fixed Latency

	3.5.5. Burst Transfers
	3.5.5.1. Write Bursts
	3.5.5.2. Read Bursts
	3.5.5.3. Line–Wrapped Bursts

	3.5.6. Read and Write Responses
	3.5.6.1. Transaction Order for Avalon-MM Read and Write Responses (Masters and Slaves)
	3.5.6.2. Avalon-MM Read and Write Responses Timing Diagram
	3.5.6.2.1. minimumResponseLatency Timing Diagram with readdatavalid or writeresponsevalid

	3.6. Address Alignment
	3.7. Avalon-MM Slave Addressing

	4. Avalon Interrupt Interfaces
	4.1. Interrupt Sender
	4.1.1. Avalon Interrupt Sender Signal Roles
	4.1.2. Interrupt Sender Properties

	4.2. Interrupt Receiver
	4.2.1. Avalon Interrupt Receiver Signal Roles
	4.2.2. Interrupt Receiver Properties
	4.2.3. Interrupt Timing

	5. Avalon Streaming Interfaces
	5.1. Terms and Concepts
	5.2. Avalon Streaming Interface Signal Roles
	5.3. Signal Sequencing and Timing
	5.3.1. Synchronous Interface
	5.3.2. Clock Enables

	5.4. Avalon-ST Interface Properties
	5.5. Typical Data Transfers
	5.6. Signal Details
	5.7. Data Layout
	5.8. Data Transfer without Backpressure
	5.9. Data Transfer with Backpressure
	5.9.1. Data Transfers Using readyLatency and readyAllowance
	5.9.2. Data Transfers Using readyLatency

	5.10. Packet Data Transfers
	5.11. Signal Details
	5.12. Protocol Details

	6. Avalon Streaming Credit Interfaces
	6.1. Terms and Concepts
	6.2. Avalon Streaming Credit Interface Signal Roles
	6.2.1. Synchronous Interface
	6.2.2. Typical Data Transfers
	6.2.3. Returning the Credits

	6.3. Avalon Streaming Credit User Signals
	6.3.1. Per-Symbol User Signal
	6.3.2. Per-Packet User Signal

	7. Avalon Conduit Interfaces
	7.1. Avalon Conduit Signal Roles
	7.2. Conduit Properties

	8. Avalon Tristate Conduit Interface
	8.1. Avalon Tristate Conduit Signal Roles
	8.2. Tristate Conduit Properties
	8.3. Tristate Conduit Timing

	A. Deprecated Signals
	B. Document Revision History for the Avalon Interface Specifications

