
Table of Contents

DIABLO16 INTERNAL FUNCTIONS Page 1 of 554 www.4dlabs.com.au

DIABLO16
Embedded Graphics Processor

INTERNAL
FUNCTIONS

Document Revision: 2.6

Document Date: 13th October 2020

Table of Contents

DIABLO16 INTERNAL FUNCTIONS Page 2 of 554 www.4dlabs.com.au

Table of Contents

1. 4DGL Introduction .. 15

2. Diablo16 Chip-Resident Functions Summary ... 16

2.1. GPIO Functions ... 26

2.1.1 pin_Set(mode, pin) .. 27

2.1.2 pin_HI(pin) ... 28

2.1.3 pin_LO(pin) .. 29

2.1.4 pin_Val(pin) ... 30

2.1.5 pin_Read(pin) .. 31

2.1.6 bus_Read() ... 32

2.1.7 bus_Read8() ... 33

2.1.8 bus_Write8(value) ... 34

2.1.9 bus_SetPins(value) .. 35

2.1.10 bus_ClearPins(value) ... 36

2.1.11 bus_SetChangeInterrupt (function, portmask) ... 37

2.1.12 Qencoder1(PHApin, PHBpin, mode).. 38

2.1.13 Qencoder1Reset() ... 39

2.1.14 Qencoder2(PHApin, PHBpin, mode).. 40

2.1.15 Qencoder2Reset() ... 41

2.1.16 pwm_Init(pin, mode, value) .. 42

2.1.17 pin_Pulseout(pin, value).. 44

2.1.18 pin_Counter(pin, mode, OVFfunction) .. 45

2.1.19 ana_HS(rate, samples, IO1buf, IO2buf, IO3buf, IO4buf, userFunction) 47

2.1.20 pin_PulseoutCount(pin, frequency, count, function).. 48

2.1.21 OW_Reset(pin) .. 49

2.1.22 OW_Read(pin) ... 50

2.1.23 OW_Read9(pin) ... 51

2.1.24 OW_Write(pin, data) ... 52

2.1.25 NP_Write(pin, data, size, Options, RepeatFirst, Repeat, RepeatLast) 54

2.2. System Memory Access Functions .. 56

2.2.1 peekW(address) .. 57

2.2.2 pokeW(address, word_value) ... 58

2.3. Maths Functions ... 59

2.3.1 ABS(value) ... 60

2.3.2 MIN(value1, value2) .. 61

2.3.3 MAX(value1, value2) ... 62

2.3.4 SWAP(&var1, &var2) ... 63

2.3.5 SIN(angle) .. 64

2.3.6 COS(angle) ... 65

2.3.7 RAND() ... 66

Table of Contents

DIABLO16 INTERNAL FUNCTIONS Page 3 of 554 www.4dlabs.com.au

2.3.8 RANDVAL(low, high) .. 67

2.3.9 SEED(number) ... 68

2.3.10 SQRT(number) ... 69

2.3.11 OVF() .. 70

2.3.12 CY() .. 71

2.3.13 EVE_SP() .. 72

2.3.14 EVE_SSIZE() .. 73

2.3.15 uadd_3232(&res32, &val1, &val2) .. 74

2.3.16 usub_3232(&res32, &val1, &val2) .. 75

2.3.17 umul_1616(&res32, val1, val2) ... 76

2.3.18 udiv_3232(&res32, val1, val2) ... 77

2.3.19 ucmp_3232(&val1, &val2) ... 78

2.4. Text and String Functions .. 79

2.4.1 txt_MoveCursor(line, column) .. 80

2.4.2 putch(char) .. 81

2.4.3 putchXY(xpos, ypos, char) ... 82

2.4.4 putstr(pointer) ... 83

2.4.5 putstrXY(xpos, ypos, string) ... 85

2.4.6 putstrCentred(xc, yc, string) .. 86

2.4.7 putnum(format, value) .. 87

2.4.8 print(...) .. 89

2.4.9 to(outstream) .. 91

2.4.10 charwidth('char') ... 93

2.4.11 charheight('char') .. 94

2.4.12 strwidth(pointer) ... 95

2.4.13 strheight() .. 96

2.4.14 strlen(pointer) ... 97

2.4.15 unicode_page(charbeg, charend, charoffset) ... 98

2.4.16 txt_Set(function, value) ... 99

2.4.17 txt_FontBank(bank, address) .. 102

2.4.18 PutnumXY(x, y, format, value)... 103

2.5. Ctype Functions .. 104

2.5.1 isdigit(char) .. 105

2.5.2 isxdigit(char) .. 106

2.5.3 isupper(char) ... 107

2.5.4 islower(char) .. 108

2.5.5 isalpha(char) .. 109

2.5.6 isalnum(char) ... 110

2.5.7 isprint(char) ... 111

2.5.8 isspace(char) .. 112

2.5.9 toupper(char) .. 113

2.5.10 tolower(char) ... 114

Table of Contents

DIABLO16 INTERNAL FUNCTIONS Page 4 of 554 www.4dlabs.com.au

2.5.11 LObyte(var) .. 115

2.5.12 HIbyte(var) ... 116

2.5.13 ByteSwap(var) ... 117

2.5.14 NybleSwap(var) ... 118

2.6. Graphics Functions ... 119

2.6.1 gfx_Cls() ... 121

2.6.2 gfx_ChangeColour(oldColour, newColour) ... 122

2.6.3 gfx_Circle(x, y, radius, colour) ... 123

2.6.4 gfx_CircleFilled(x, y, radius, colour) ... 124

2.6.5 gfx_Line(x1, y1, x2, y2, colour) .. 125

2.6.6 gfx_Hline(y, x1, x2, colour) .. 126

2.6.7 gfx_Vline(x, y1, y2, colour) .. 127

2.6.8 gfx_Rectangle(x1, y1, x2, y2, colour) ... 128

2.6.9 gfx_RectangleFilled(x1, y1, x2, y2, colour) .. 129

2.6.10 gfx_RoundRect(x1, y1, x2, y2, rad, colour) .. 130

2.6.11 gfx_Polyline(n, vx, vy, colour) .. 131

2.6.12 gfx_Polygon(n, vx, vy, colour) ... 133

2.6.13 gfx_Triangle(x1, y1, x2, y2, x3, y3, colour) .. 134

2.6.14 gfx_Dot() .. 135

2.6.15 gfx_Bullet(radius) .. 136

2.6.16 gfx_OrbitInit(&x_dest, &y_dest) ... 137

2.6.17 gfx_Orbit(angle, distance) ... 138

2.6.18 gfx_PutPixel(x, y, colour) ... 139

2.6.19 gfx_GetPixel(x, y) ... 140

2.6.20 gfx_MoveTo(xpos, ypos) ... 141

2.6.21 gfx_MoveRel(xoffset, yoffset) ... 142

2.6.22 gfx_IncX() ... 143

2.6.23 gfx_IncY() ... 144

2.6.24 gfx_LineTo(xpos, ypos) .. 145

2.6.25 gfx_LineRel(xpos, ypos) ... 146

2.6.26 gfx_BoxTo(x2, y2) .. 147

2.6.27 gfx_SetClipRegion() ... 148

2.6.28 gfx_Ellipse(x, y, xrad, yrad, colour) .. 149

2.6.29 gfx_EllipseFilled(x, y, xrad, yrad, colour) ... 150

2.6.30 gfx_Button(state, x, y, buttonColour, txtColour, font, txtWidth txtHeight, text) . 151

2.6.31 gfx_Button2(state, x, y, width, height, buttonColour, txtColour, text) 153

2.6.32 gfx_Button3(state, x, y, width, height, buttonColour, txtColour, text) 154

2.6.33 gfx_Panel(state, x, y, width, height, Colour) ... 155

2.6.34 gfx_RoundPanel(state, x, y, width, height, radius, bevelwidth, Colour) 156

2.6.35 gfx_Slider2(mode, x1, y1, width, height, colour, scale, value) 157

2.6.36 gfx_ScreenCopyPaste(xs, ys, xd, yd, width, height) .. 158

2.6.37 gfx_Slider(mode, x1, y1, x2, y2, colour, scale, value) .. 159

Table of Contents

DIABLO16 INTERNAL FUNCTIONS Page 5 of 554 www.4dlabs.com.au

2.6.38 gfx_RGBto565(RED, GREEN, BLUE) ... 160

2.6.39 gfx_332to565(COLOUR8BIT) ... 161

2.6.40 gfx_565to332(COLOUR) .. 162

2.6.41 gfx_TriangleFilled(x1, y1, x2, y2, x3, y3, colour) .. 163

2.6.42 gfx_PolygonFilled(n, vx, vy, colour) ... 164

2.6.43 gfx_Origin(x, y) .. 165

2.6.44 gfx_Get(mode) .. 166

2.6.45 gfx_ClipWindow(x1, y1, x2, y2) ... 167

2.6.46 gfx_Set(function, value) .. 168

2.6.47 gfx_Arc(xc, yc, radius, step, startangle, endangle, mode) 171

2.6.48 gfx_CheckBox(state, x, y, Width, Height, boxColour, textColour, text) 172

2.6.49 gfx_RadioButton(state, x, y, width, height, boxColour, textColour, text) 173

2.6.50 gfx_FillPattern(patptr, mode) .. 174

2.6.51 gfx_Gradient(style, x1, y1, x2, y2, color1, color2) ... 175

2.6.52 gfx_RoundGradient(style, x1, y1, x2, y2, radius, color1, color2) 176

2.6.53 gfx_PieSlice(cx, cy, spread, radius, step, startangle, endangle, mode, colour) 177

2.6.54 gfx_PointWithinBox(x, y, &rect) .. 178

2.6.55 gfx_PointWithinRectangle(x, y, &recta) .. 179

2.6.56 gfx_ReadBresLine(x1, y1, x2, y2, ptr) .. 180

2.6.57 gfx_WriteBresLine(x1, y1, x2, y2, ptr) ... 181

2.6.58 gfx_ReadGRAMarea(x1, y1, x2, y2, ptr) .. 182

2.6.59 gfx_WriteGRAMarea(x1, y1, x2, y2, ptr) ... 183

2.6.60 gfx_Surround(x1, y1, x2, y2, rad1, rad2, colour) ... 184

2.6.61 gfx_Scope(Left, Width, Yzero, n, Xstep, Yamp, Colourbg, old_y1, new_y1,
Colour1, … old_y4, new_y4, Colour4) .. 185

2.6.62 gfx_RingSegment(x, y, Rad1, Rad2, starta, enda, colour) 186

2.6.63 gfx_AngularMeter(value, &MeterRam, &MeterDef) .. 187

2.6.64 gfx_Panel2(state, x, y, width, height, w1, w2, cl, cr) ... 189

2.6.65 gfx_Needle(value, &NeedleRam, &NeedleDef) .. 190

2.6.66 gfx_Dial(value, &DialRam, &DialDef) .. 192

2.6.67 gfx_Gauge(value, &GaugeRam, &GaugeDef) .. 194

2.6.68 gfx_LedDigits(value, &LedDigitRam, &LedDigitDef) .. 196

2.6.69 gfx_LedDigit(x, y, digitsize, oncolour, offcolour, value) .. 198

2.6.70 gfx_Slider5(value, &SliderRam, &SliderDef) ... 199

2.6.71 gfx_Switch(state, &SwitchRam, &SwitchDef) ... 201

2.6.72 gfx_Button4(state, &gfx_ButtonRam, &gfx_ButtonDef) 202

2.6.73 gfx_Led(state, &LedRam, &LedDef) .. 204

2.6.74 gfx_Scale(&ScaleRam, &ScaleDef) .. 205

2.6.75 gfx_RulerGauge(value, &RulerGaugeRam, &RulerGaugeDef) 207

2.6.76 gfx_GradientShape(GradientRAM, HorzVert, OuterWidth, X, Y, W, H, TLrad,
TRrad, BLrad, BRrad, Darken, OuterColor, OuterType, OuterLevel, InnerColor,
InnerType, InnerLevel, Split) .. 208

2.6.77 gfx_GradientColor (Type, Darken, Level, H, Pos, Color) .. 210

Table of Contents

DIABLO16 INTERNAL FUNCTIONS Page 6 of 554 www.4dlabs.com.au

2.6.78 gfx_GradTriangleFilled(X0, Y0, X1, Y1, X2, Y2, SolidCol, GradientCol,
GradientHeight, GradientY, GradientLevel, Type) ... 211

2.6.79 gfx_XYrotToVal(x,y,base,mina,maxa,minv,maxv) ... 212

2.6.80 gfx_XYlinToVal(x,y,base,minpos,maxpos,minv,maxv) .. 213

2.7. Widget Functions ... 214

2.7.1 widget_Create(count) ... 215

2.7.2 widget_Add(hndl, index, widget) .. 216

2.7.3 widget_Delete(hndl, index) ... 217

2.7.4 widget_Realloc(handle, n) ... 218

2.7.5 widget_GetWord(hndl, index, offset) ... 219

2.7.6 widget_Setposition(hndl, index, xpos, ypos) .. 220

2.7.7 widget_Enable(hndl, index) ... 221

2.7.8 widget_Disable(hndl, index) .. 222

2.7.9 widget_SetWord(hndl, index, offset, value) ... 223

2.7.10 widget_SetAttributes(hndl, index, value) ... 224

2.7.11 widget_ClearAttributes(hndl, index, value) .. 225

2.7.12 widget_Touched(hndl, index).. 226

2.8. Display I/O Functions ... 227

2.8.1 disp_SetReg(register, data) ... 228

2.8.2 disp_setGRAM(x1, y1, x2, y2) .. 229

2.8.3 disp_WrGRAM(colour) .. 230

2.8.4 disp_WriteControl(value) .. 231

2.8.5 disp_WriteWord(value) ... 232

2.8.6 disp_ReadWord() ... 233

2.8.7 disp_Disconnect() .. 234

2.8.8 disp_Init() .. 235

2.8.9 disp_BlitPixelsFromCOMn() ... 236

2.9. Media Functions (SD/SDHC Memory Card or Serial Flash chip) 237

2.9.1 media_Init() ... 238

2.9.2 media_SetAdd(HIword, LOword) .. 239

2.9.3 media_SetSector(HIword, LOword) .. 240

2.9.4 media_RdSector(Destination_Address) .. 241

2.9.5 media_WrSector(Source_Address) ... 242

2.9.6 media_ReadByte() ... 243

2.9.7 media_ReadWord() ... 244

2.9.8 media_WriteByte(byte_val) .. 245

2.9.9 media_WriteWord(word_val) ... 246

2.9.10 media_Flush() .. 247

2.9.11 media_Image(x, y) ... 248

2.9.12 media_Video(x, y) .. 249

2.9.13 media_VideoFrame(x, y, frameNumber) .. 250

Table of Contents

DIABLO16 INTERNAL FUNCTIONS Page 7 of 554 www.4dlabs.com.au

2.10. Flash Memory Chip Functions ... 252

2.10.1 flash_Bank() ... 253

2.10.2 flash_Blit1(bank, offset, count, pallete2colour) .. 254

2.10.3 flash_Blit2(bank, offset, count, pallete4colour) .. 255

2.10.4 flash_Blit4(bank, offset, count, pallete16colour) .. 256

2.10.5 flash_Blit8(bank, offset, count) ... 257

2.10.6 flash_Blit16(bank, offset, count) ... 258

2.10.7 flash_Copy(bank, ptr, dest, count) .. 259

2.10.8 flash_EraseBank(bank, confirmation) ... 260

2.10.9 flash_Exec(flashbank, arglistptr) ... 261

2.10.10 flash_GetByte(bank, ptr) ... 262

2.10.11 flash_GetWord(bank, ptr) ... 263

2.10.12 flash_LoadFile(bank, filename) ... 264

2.10.13 flash_putstr(bank, ptr) .. 265

2.10.14 flash_Run(bank) .. 266

2.10.15 flash_WriteBlock(sourceptr, bank, page) .. 267

2.10.16 flash_FunctionCall(bank, index, state, &FunctionRam, &FunctionDef,
FunctionArgCount, FunctionArgStringMap) ... 268

2.10.17 flash_LoadSPIflash(bank, hndl, idx) ... 269

2.11. SPI Control Functions ... 270

2.11.1 spi_Init(speed, address_mode) ... 271

2.11.2 spi_Read() .. 272

2.11.3 spi_Write(byte).. 273

2.11.4 spi_Disable() .. 274

2.11.5 SPI1_Init(speed, mode, enablepin) or SPI2_Init(speed, mode, enablepin) or
SPI3_Init(speed, mode, enablepin) .. 275

2.11.6 SPI1_Read() or SPI2_Read() or SPI3_Read() .. 277

2.11.7 SPI1_Write(byte) or SPI2_Write(byte) or SPI3_Write(byte) 279

2.11.8 SPI1_SCK_pin(pin) or SPI2_SCK_pin(pin) or SPI3_SCK_pin(pin) 280

2.11.9 SPI1_SDI_pin(pin) or SPI2_SDI_pin(pin) or SPI3_SDI_pin(pin) 281

2.11.10 SPI1_SDO_pin(pin) or SPI2_SDO_pin(pin) or SPI3_SDO_pin(pin) 282

2.11.11 spi_ReadBlock() or spi1_ReadBlock() or spi2_ReadBlock() or spi3_ReadBlock() 283

2.11.12 spi_WriteBlock() or spi1_WriteBlock() or spi2_WriteBlock() or
spi3_WriteBlock() ... 284

2.12. Serial (UART) Communications Functions .. 285

2.12.1 COM1_RX_pin(pin) or COM2_RX_pin(pin) or COM3_RX_pin(pin) 286

2.12.2 COM1_TX_pin(pin) or COM2_TX_pin(pin) or COM3_TX_pin(pin) 287

2.12.3 setbaud(baudnum) .. 288

2.12.4 com_SetBaud(comport, baudrate/10) .. 289

2.12.5 serin() or serin1() or serin2() or serin3().. 290

2.12.6 serout(char) or serout1(char) or serout2(char) or serout3(char) 291

Table of Contents

DIABLO16 INTERNAL FUNCTIONS Page 8 of 554 www.4dlabs.com.au

2.12.7 com_Init(buffer, bufsize, qualifier) or com1_Init(buffer, bufsize, qualifier) or
com2_Init(buffer, bufsize, qualifier) or com3_Init(buffer, bufsize, qualifier) 292

2.12.8 com_Reset() or com1_Reset() or com2_Reset() or com3_Reset() 294

2.12.9 com_Count() or com1_Count() or com2_Count() or com3_Count() 295

2.12.10 com_Full() or com1_Full() or com2_Full() or com3_Full() 296

2.12.11 com_Error() or com1_Error() or com2_Error() or com3_Error()......................... 297

2.12.12 com_Sync() or com1_Sync() or com2_Sync() or com3_Sync() 298

2.12.13 com_TXbuffer(buf, bufsize,pin) or com1_TXbuffer(buf, bufsize,pin) or
com2_TXbuffer(buf, bufsize,pin) or com3_TXbuffer(buf, bufsize,pin) 299

2.12.14 com_TXbufferHold(state) or com1_TXbufferHold(state) or
com2_TXbufferHold(state) or com3_TXbufferHold(state) .. 300

2.12.15 com_TXcount() or com1_TXcount() or com2_TXcount() or com3_TXcount() 301

2.12.16 com_TXemptyEvent(function) or comn_TXemptyEvent(function) 302

2.12.17 com_Mode("databits", "parity", "Stopbits", "comport") 305

2.12.18 com_RXblock() or com1_RXblock() or com2_RXblock() or com3_RXblock() 306

2.12.19 com_TXblock() or com1_TXblock() or com2_TXblock() or com3_TXblock() 307

2.12.20 com_InitBrk(buffer, bufsize, qualifier) or com1_InitBrk (buffer, bufsize,
qualifier) or com2_InitBrk (buffer, bufsize, qualifier) or com3_InitBrk (buffer, bufsize,
qualifier) ... 308

2.12.21 com_TXbufferBrk(buf, bufsize,pin) or com1_TXbufferBrk(buf, bufsize,pin) or
com2_TXbufferBrk(buf, bufsize,pin) or com3_TXbufferBrk(buf, bufsize,pin) 309

2.13. I2C BUS Master Functions ... 310

2.13.1 I2C1_Open(Speed, SCL, SDA) or I2C2_Open(Speed, SCL, SDA) or
I2C3_Open(Speed, SCL, SDA) ... 311

2.13.2 I2C1_Close() or I2C2_Close() or I2C3_Close().. 312

2.13.3 I2C1_Start() or I2C2_Start() or I2C3_Start() .. 313

2.13.4 I2C1_Stop() or I2C2_Stop() or I2C3_Stop() ... 314

2.13.5 I2C1_Restart() or I2C2_Restart() or I2C3_Restart() ... 315

2.13.6 I2C1_Read() or I2C2_Read() or I2C3_Read() ... 316

2.13.7 I2C1_Write(byte) or I2C2_Write(byte) or I2C3_Write(byte) 317

2.13.8 I2C1_Ack() or I2C2_Ack() or I2C3_Ack() .. 318

2.13.9 I2C1_Nack() or I2C2_Nack() or I2C3_Nack() .. 319

2.13.10 I2C1_AckStatus or I2C2_AckStatus or I2C3_AckStatus 320

2.13.11 I2C1_AckPoll(control) or I2C2_AckPoll(control) or I2C3_AckPoll(control) 321

2.13.12 I2C1_Idle() or I2C2_Idle() or I2C3_Idle() .. 322

2.13.13 I2C1_Gets(buffer, size) or I2C2_Gets(buffer, size) or I2C3_Gets(buffer, size) 323

2.13.14 I2C1_Getn() or I2C2_Getn() or I2C3_Getn() .. 324

2.13.15 I2C1_Puts(buffer) or I2C2_Puts(buffer) or I2C3_Puts(buffer) 325

2.13.16 I2C1_Putn() or I2C2_Putn() or I2C3_Putn() ... 326

2.14. Timer Functions .. 327

2.14.1 sys_T() .. 328

2.14.2 sys_T_HI() .. 329

2.14.3 sys_SetTimer(timernum, value) .. 330

Table of Contents

DIABLO16 INTERNAL FUNCTIONS Page 9 of 554 www.4dlabs.com.au

2.14.4 sys_GetTimer(timernum) .. 331

2.14.5 sys_SetTimerEvent(timernum, function) .. 332

2.14.6 sys_EventQueue() .. 333

2.14.7 sys_EventsPostpone() ... 334

2.14.8 sys_EventsResume() .. 335

2.14.9 sys_DeepSleep(units) .. 336

2.14.10 sys_Sleep(units) ... 337

2.14.11 iterator(offset) ... 338

2.14.12 sys_GetDate() .. 339

2.14.13 sys_GetTime() .. 340

2.14.14 sys_SetDate(year, month, day) ... 341

2.14.15 sys_SetTime(hour, minute, second) .. 342

2.14.16 sys_GetDateVar(&year, &month, &day) ... 343

2.14.17 sys_GetTimeVar(&hour, &minute, &second, &msecs) 344

2.15. FAT16 File Functions .. 345

2.15.1 file_Error() ... 346

2.15.2 file_Count(filename) ... 347

2.15.3 file_Dir(filename) .. 348

2.15.4 file_FindFirst(fname) ... 349

2.15.5 file_FindNext() ... 350

2.15.6 file_Exists(fname) .. 351

2.15.7 file_Open(fname, mode) ... 352

2.15.8 file_Close(handle) .. 353

2.15.9 file_Read(destination, size, handle) .. 354

2.15.10 file_Seek(handle, HiWord, LoWord).. 355

2.15.11 file_Index(handle, Hisize, LoSize, recordnum) .. 356

2.15.12 file_Tell(handle, &HiWord, &LoWord) .. 357

2.15.13 file_Write(*source, size, handle)... 358

2.15.14 file_Size(handle, &HiWord, &LoWord) ... 359

2.15.15 file_Image(x, y, handle) ... 360

2.15.16 file_ScreenCapture(x, y, width, height, handle) .. 361

2.15.17 file_PutC(char, handle) .. 362

2.15.18 file_GetC(handle) ... 363

2.15.19 file_PutW(word, handle) .. 364

2.15.20 file_GetW(handle) ... 365

2.15.21 file_PutS(*source, handle) .. 366

2.15.22 file_GetS(*string, size, handle) .. 367

2.15.23 file_Erase(fname) .. 368

2.15.24 file_Rewind(handle) .. 369

2.15.25 file_LoadFunction(fname.4XE) .. 370

2.15.26 file_Run(fname.4XE, arglistptr) ... 372

2.15.27 file_Exec(fname.4XE, arglistptr) .. 377

Table of Contents

DIABLO16 INTERNAL FUNCTIONS Page 10 of 554 www.4dlabs.com.au

2.15.28 file_LoadImageControl(fname1, fname2, mode) .. 379

2.15.29 file_Mount() .. 382

2.15.30 file_Unmount() .. 383

2.15.31 file_PlayWAV(fname) .. 384

2.15.32 file_Rename(oldname, newname) .. 385

2.15.33 file_SetDate(handle, year, month, day, hour, minute, second) 386

2.15.34 file_CheckUpdate(filename, options) ... 387

2.16. Sound Control Functions ... 388

2.16.1 Snd_Volume(var) ... 389

2.16.2 Snd_Pitch(pitch) .. 390

2.16.3 Snd_BufSize(var) .. 391

2.16.4 snd_Stop() ... 392

2.16.5 snd_Pause() ... 393

2.16.6 snd_Continue() .. 394

2.16.7 snd_Playing() ... 395

2.16.8 snd_Freq(frequency, duration) ... 396

2.17. String Class Functions .. 397

2.17.1 str_Ptr(&var) .. 398

2.17.2 str_GetD(&ptr, &var) ... 399

2.17.3 str_GetW(&ptr, &var) .. 400

2.17.4 str_GetHexW(&ptr, &var) ... 401

2.17.5 str_GetC(&ptr, &var) ... 402

2.17.6 str_GetByte(ptr) .. 403

2.17.7 str_GetWord(ptr) .. 404

2.17.8 str_PutByte(ptr, val) .. 405

2.17.9 str_PutWord(ptr, val) .. 406

2.17.10 str_Match(&ptr, *str) .. 407

2.17.11 str_MatchI(&ptr, *str) ... 408

2.17.12 str_Find(&ptr, *str).. 409

2.17.13 str_FindI(&ptr, *str)... 410

2.17.14 str_Length(ptr) .. 411

2.17.15 str_Printf(&ptr, *format) ... 412

2.17.16 str_Cat(&destination, &source) .. 414

2.17.17 str_CatN(&ptr, str, count) ... 415

2.17.18 str_ByteMove(src, dest, count) ... 416

2.17.19 str_Copy(dest, src)... 417

2.17.20 str_CopyN(dest, src, count) ... 418

2.18. Touch Screen Functions ... 419

2.18.1 touch_DetectRegion(x1, y1, x2, y2) .. 420

2.18.2 touch_Set(mode) ... 421

2.18.3 touch_Get(mode) .. 422

Table of Contents

DIABLO16 INTERNAL FUNCTIONS Page 11 of 554 www.4dlabs.com.au

2.18.4 touch_TestArea(&rect) .. 423

2.18.5 touch_TestBox(&rect) ... 424

2.19. Image Control Functions .. 425

2.19.1 img_SetPosition(handle, index, xpos, ypos) .. 426

2.19.2 img_Enable(handle, index) .. 427

2.19.3 img_Disable(handle, index) ... 428

2.19.4 img_Darken(handle, index) ... 429

2.19.5 img_Lighten(handle, index) ... 430

2.19.6 img_SetWord(handle, index, offset, word) ... 431

2.19.7 img_GetWord(handle, index, offset) .. 432

2.19.8 img_Show(handle, index) .. 433

2.19.9 img_SetAttributes(handle, index, value) ... 434

2.19.10 img_ClearAttributes(handle, index, value) ... 435

2.19.11 img_Touched(handle, index) ... 436

2.19.12 img_SelectReadPosition(handle, index, frame, xpos, ypos) 437

2.19.13 img_SequentialRead(count, ptr) ... 438

2.19.14 img_FileRead(*dest, size, handle, index) .. 439

2.19.15 img_FileSeek(handle, index, HiWord, LoWord) .. 440

2.19.16 img_FileIndex(handle, index, HiSize, LoSize, recordnum) 441

2.19.17 img_FileTell(handle, index, &HiWord, &LoWord) ... 442

2.19.18 img_ FileSize(handle, index, &HiWord, &LoWord) ... 443

2.19.19 img_FileGetC(handle, index) ... 444

2.19.20 img_FileGetW(handle, index) .. 445

2.19.21 img_FileGetS(*string, size, handle, index) .. 446

2.19.22 img_FileRewind(handle, index) ... 447

2.19.23 img_FileLoadFunction(handle, index) ... 448

2.19.24 img_FileRun(handle, index, arglistptr) .. 449

2.19.25 img_FileExec(handle, index, arglistptr) ... 450

2.19.26 img_FilePlayWAV(handle, index) .. 451

2.19.27 img_TxtFontID(handle, index) ... 452

2.20. Memory Allocation Functions ... 453

2.20.1 mem_Alloc(size) .. 454

2.20.2 mem_AllocV(size) .. 455

2.20.3 mem_Allocz(size) ... 456

2.20.4 mem_Realloc(&ptr, size) ... 457

2.20.5 mem_Free(allocation) ... 458

2.20.6 mem_Heap() .. 459

2.20.7 mem_Set(ptr, char, size) ... 460

2.20.8 mem_Copy(source, destination, count) .. 461

2.20.9 mem_Compare(ptr1, ptr2, count) ... 462

2.20.10 mem_ArrayOp1(memarray, count, op, value) .. 463

2.20.11 mem_ArrayOp2(memarray1, memarray2, count, op, value) 465

Table of Contents

DIABLO16 INTERNAL FUNCTIONS Page 12 of 554 www.4dlabs.com.au

2.21. General Purpose Functions ... 467

2.21.1 pause(time) ... 468

2.21.2 lookup8(key, byteConstList) .. 469

2.21.3 lookup16(key, wordConstList) ... 470

2.22. Floating point Functions .. 471

2.22.1 flt_ADD(&result, &floatA, &floatB) ... 472

2.22.2 flt_SUB(&result, &floatA, &floatB) .. 473

2.22.3 flt_MUL(&result, &floatA, &floatB) ... 474

2.22.4 flt_DIV(&result, &floatA, &floatB) ... 476

2.22.5 flt_POW(&result, &floatA, &floatB) .. 477

2.22.6 flt_ABS(&result, &floatval) .. 478

2.22.7 flt_CEIL(&result, &floatval) .. 479

2.22.8 flt_FLOOR(&result, &floatval) ... 480

2.22.9 flt_SIN(&result, &floatval) ... 481

2.22.10 flt_COS(&result, &floatval) .. 482

2.22.11 flt_TAN(&result, &floatval) ... 483

2.22.12 flt_ASIN(&result, &floatval) ... 484

2.22.13 flt_ACOS(&result, &floatval) ... 485

2.22.14 flt_ATAN(&result, &floatval) ... 486

2.22.15 flt_EXP(&result, &floatval) .. 487

2.22.16 flt_LOG(&result, &floatval) ... 488

2.22.17 flt_SQR(&result, &floatval) .. 489

2.22.18 flt_LT(&floatA, &floatB) ... 490

2.22.19 flt_EQ(&floatA, &floatB) .. 491

2.22.20 flt_NE(&floatA, &floatB) .. 492

2.22.21 flt_GT(&floatA, &floatB) .. 493

2.22.22 flt_GE(&floatA, &floatB) .. 494

2.22.23 flt_LE(&floatA, &floatB) ... 495

2.22.24 flt_SGN(&floatval) ... 496

2.22.25 flt_FTOI(&floatval) ... 497

2.22.26 flt_ITOF(&fresult, var16) ... 498

2.22.27 flt_UITOF(&fresult, uvar16) ... 499

2.22.28 flt_LTOF(&fresult, var32) ... 500

2.22.29 flt_ULTOF(&fresult, uvar32) .. 501

2.22.30 flt_VAL(&fresult, numstring) ... 502

2.22.31 flt_PRINT (&fvalue, formatstring) ... 503

2.22.32 flt_PRINTxy (x, y, &fvalue, formatstring) ... 506

2.23. Misc System Functions .. 508

2.23.1 sys_PmmC() ... 509

2.23.2 sys_Driver() .. 510

2.24. SPI FLASH Functions ... 511

Table of Contents

DIABLO16 INTERNAL FUNCTIONS Page 13 of 554 www.4dlabs.com.au

2.24.1 spiflash_BlockErase(spi#, Enablepin, block) .. 512

2.24.2 spiflash_BulkErase(spi#, Enablepin) .. 513

2.24.3 spiflash_Exec(spi#, Enablepin, arglistptr) .. 514

2.24.4 spiflash_GetC(spi#, Enablepin) .. 515

2.24.5 spiflash_GetS(*String, size, spi#, Enablepin) ... 516

2.24.6 spiflash_GetW(spi#, Enablepin) .. 517

2.24.7 spiflash_ID(spi#, Enablepin) .. 518

2.24.8 spiflash_Image(x, y, spi#, Enablepin) .. 519

2.24.9 spiflash_LoadFunction(spi#, Enablepin) .. 520

2.24.10 spiflash_LoadImageControl(spi#, Enablepin) .. 522

2.24.11 spiflash_PlayWAV(spi#, Enablepin) ... 525

2.24.12 spiflash_PutC(char, spi#, Enablepin) ... 526

2.24.13 spiflash_PutS(source, spi#, Enablepin) .. 527

2.24.14 spiflash_PutW(word, spi#, Enablepin) .. 528

2.24.15 spiflash_Read(destination, size, spi#, Enablepin) ... 529

2.24.16 spiflash_Run(spi#, Enablepin, arglistptr) ... 530

2.24.17 spiflash_SetAdd(spi#, HiWord, LoWord) ... 531

2.24.18 spiflash_SIG(spi#, Enablepin) .. 532

2.24.19 spiflash_Write(Source, size, spi#, Enablepin) .. 533

2.24.20 spiflash_Block32Erase(spi#, Enablepin) .. 534

2.24.21 spiflash_Sector4Erase(spi#, Enablepin) ... 535

2.24.22 spiflash_ReadByte(flags, spi#, Enablepin) ... 536

2.24.23 spiflash_WriteByte(reg/value, spi#, Enablepin) .. 537

2.24.24 spiflash_SetMode(spi#, mode) .. 538

2.24.25 spiflash_LoadGCFImageControl(spi#, Enablepin) ... 539

2.25. CRC Functions ... 540

2.25.1 crc_16(buf, count) ... 541

2.25.2 crc_CCITT(buf, count, seed) .. 542

2.25.3 crc_CSUM_8(buf, count) ... 543

2.25.4 crc_MODBUS(buf, count) .. 544

3. System Registers Memory Map .. 545

4. Appendix A : Runtime Error Messages .. 547

5. Hardware Tools .. 548

5.1. 4D Programming Tools .. 548

5.2. Display Modules ... 548

5.3. Memory Cards - FAT16 Format ... 549

6. Workshop4 IDE .. 550

6.1. Designer Environment ... 550

6.2. ViSi Environment .. 550

Table of Contents

DIABLO16 INTERNAL FUNCTIONS Page 14 of 554 www.4dlabs.com.au

6.3. ViSi Genie Environment ... 551

6.4. Serial Environment ... 551

7. Revision History ... 552

8. Legal Notice ... 554

9. Contact Information ... 554

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 15 of 554 www.4dlabs.com.au

1. 4DGL Introduction

The 4D-Labs family of embedded graphics processors (Goldelox, Picaso, Diablo16, PIXXI-28 and PIXXI-44) are powered
by a highly optimised soft-core virtual engine, E.V.E. (Extensible Virtual Engine). EVE was designed and created by 4D
Labs in the early 2000’s and should not be confused by FTDI’s solution of EVE, which was developed a decent decade
or so later.

EVE is a proprietary, high performance virtual processor with an extensive byte-code instruction set optimised to
execute compiled 4DGL programs. 4DGL (4D Graphics Language) was specifically developed from ground up for the
EVE engine core. It is a high-level language which is easy to learn and simple to understand yet powerful enough to
tackle many embedded graphics applications.

4DGL is a graphics-oriented language allowing rapid application development. An extensive library of graphics, text
and file system functions and the ease of use of a language that combines the best elements and syntax structure of
languages such as C, Basic, Pascal, etc. Programmers familiar with these languages will feel right at home with 4DGL.
It includes many familiar instructions such as IF..ELSE..ENDIF, WHILE..WEND, REPEAT..UNTIL, GOSUB..ENDSUB, GOTO
as well as a wealth of (chip-resident) internal functions that include SERIN, SEROUT, GFX_LINE, GFX_CIRCLE and many
more.

This document covers the internal (chip-resident) functions available for the Diablo16 Processor. This document
should be used in conjunction with the “4DGL-Programmers-Reference-Manual” document.

Diablo16 Internal Block Diagram

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 16 of 554 www.4dlabs.com.au

2. Diablo16 Chip-Resident Functions Summary

The following is a summary of chip-resident 4DGL functions within the Diablo16 graphics processor. The document is
made up of the following sections:

2.1 GPIO Functions:

• pin_Set(mode, pin)

• pin_HI(pin)

• pin_LO(pin)

• pin_Val(pin, value)

• pin_Read(pin)

• bus_Read()

• bus_Read8()

• bus_Write8(value)

• bus_SetPins(value)

• bus_ClearPins(value)

• bus_SetChangeInterrupt(function, portmask)

• Qencoder1(PHApin, PHBpin, mode)

• Qencoder1Reset()

• Qencoder2(PHApin, PHBpin, mode)

• Qencoder2Reset()

• PWM_Init(pin, mode, value)

• pin_Pulseout(pin, value) or pin_PulseoutB(pin, value)

• pin_Counter(pin, mode, OVFfunction)

• ana_HS(rate, samples, IO1buf, IO2buf, IO3buf, IO4buf, userFunction)

• OW_Reset(pin)

• OW_Read(pin)

• OW_Read9(pin)

• OW_Write(pin, data)

• NP_Write(pin, data, size, Options, RepeatFirst, Repeat, RepeatLast)

2.2 System Memory Access Functions:

• peekW(address)

• pokeW(address, wordvalue)

2.3 Maths Functions:

• ABS(value)

• MIN(value1, value2)

• MAX(value1, value2)

• SWAP(&var1, &var2)

• SIN(angle)

• COS(angle)

• RAND()

• RANDVAL(low, high)

• SEED(number)

• SQRT(number)

• OVF ()

• CY()

• EVE_SP()

• EVE_SSIZE()

• umul_1616(&res32, val1, val2)

• uadd_3232(&res32, &val1, &val2)

• usub_3232(&res32, &val1, &val2)

• udiv_3232(&res32, &var1, &var2)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 17 of 554 www.4dlabs.com.au

• ucmp_3232(&val1, &val2)

2.4 Text and String Functions:

• txt_MoveCursor(line, column)

• putch(char)

• putchXY(xpos, ypos, char)

• putstr(pointer)

• putstrXY(xpos, ypos, string)

• putstrCentred(xc, yc, string)

• putnum(format, value)

• print(...)

• to(outstream)

• charwidth(char)

• charheight(char)

• strwidth(pointer)

• strheight()

• strlen(pointer)

• unicode_page(charbeg, charend, charoffset)

• txt_Set(function, value)
txt_Set shortcuts:

• txt_FGcolour(colour)

• txt_BGcolour(colour)

• txt_FontID(id)

• txt_Width(multiplier)

• txt_Height(multiplier)

• txt_Xgap(pixelcount)

• txt_Ygap(pixelcount)

• txt_Delay(millisecs) [deprecated]

• txt_Opacity(mode)

• txt_Bold(mode)

• txt_Italic(mode)

• txt_Inverse(mode)

• txt_Underline(mode)

• txt_Attributes(value)

• txt_Wrap(value)

• txt_Angle(value)

• txt_FontBank(bank, address)

• PutnumXY(x, y, format, value)

2.5 CType Functions:

• isdigit(char)

• isxdigit(char)

• isupper(char)

• islower(char)

• isalpha(char)

• isalnum(char)

• isprint(char)

• isspace(char)

• iswhite(char)

• toupper(char)

• tolower(char)

• LObyte(var)

• HIbyte(var)

• ByteSwap(var)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 18 of 554 www.4dlabs.com.au

2.6 Graphics Functions:

• gfx_Cls()

• gfx_ChangeColour(oldColour, newColour)

• gfx_Circle(x, y, radius, colour)

• gfx_CircleFilled(x, y, radius, colour)

• gfx_Line(x1, y1, x2, y2, colour)

• gfx_Hline(y, x1, x2, colour)

• gfx_Vline(x, y1, y2, colour)

• gfx_Rectangle(x1, y1, x2, y2, colour)

• gfx_RectangleFilled(x1, y1, x2, y2, colour)

• gfx_RoundRect(x1, y1, x2, y2, rad, colour)

• gfx_Polyline(n, vx, vy, colour)

• gfx_Polygon(n, vx, vy, colour)

• gfx_Triangle(x1, y1, x2, y2, x3, y3, colour)

• gfx_Dot()

• gfx_Bullet(radius)

• gfx_OrbitInit(&x_dest, &y_dest)

• gfx_Orbit(angle, distance)

• gfx_PutPixel(x, y, colour)

• gfx_GetPixel(x, y)

• gfx_MoveTo(xpos, ypos)

• gfx_MoveRel(xoffset, yoffset)

• gfx_IncX()

• gfx_IncY()

• gfx_LineTo(xpos, ypos)

• gfx_LineRel(xpos, ypos)

• gfx_BoxTo(x2, y2)

• gfx_SetClipRegion()

• gfx_Ellipse(x, y, xrad, yrad, colour)

• gfx_EllipseFilled(x, y, xrad, yrad, colour)

• gfx_Button(state, x, y, buttonColour, textColour, font, textWidth, textHeight, text)

• gfx_Button2(state, x, y, width, height, buttonColour, txtColour, text)

• gfx_Button3(state, x, y, width, height, buttonColour, txtColour, text)

• gfx_Panel(state, x, y, width, height, colour)

• gfx_RoundPanel(states, x, y, width, height, radius, bevelwidth, colour)

• gfx_Slider(mode, x1, y1, x2, y2, colour, scale, value)

• gfx_Slider2(mode, x1, y1, width, height, colour, scale, value)

• gfx_ScreenCopyPaste(xs, ys, xd, yd, width, height)

• gfx_RGBto565(RED, GREEN, BLUE)

• gfx_332to565(COLOUR8BIT)

• gfx_565to332(COLOUR)

• gfx_TriangleFilled(x1, y1, x2, y2, x3, y3, colr)

• gfx_PolygonFilled(n, &vx, &vy, colr)

• gfx_Origin(x, y)

• gfx_Get(mode)

• gfx_ClipWindow(x1, y1, x2, y2)

• gfx_Set(function, value)
gfx_Set shortcuts:

• gfx_PenSize(mode)

• gfx_BGcolour(colour)

• gfx_ObjectColour(colour)

• gfx_Clipping(mode)

• gfx_TransparentColour(colour)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 19 of 554 www.4dlabs.com.au

• gfx_Transparency(mode)

• gfx_FrameDelay(delay)

• gfx_ScreenMode(orientation)

• gfx_OutlineColour(colour)

• gfx_Contrast(value)

• gfx_LinePattern(pattern)

• gfx_BevelRadius (radius)

• gfx_BevelWidth(mode)

• gfx_BevelShadow(value)

• gfx_Xorigin(offset)

• gfx_Yorigin(offset)

• gfx_Arc(xc, radius, step, startangle, endangle, mode)

• gfx_CheckBox(state, x, y, width, height, boxColour, textColour, text)

• gfx_RadioButton(state, x, y, width, height, boxColour, textColour, text)

• gfx_FillPattern(patptr, mode)

• gfx_Gradient(style, x1, y1, x2, y2, colour1, colour2)

• gfx_RoundGradient(style, x1, y1, x2, y2, radius, colour1, colour2)

• gfx_PieSlice(cx, cy, spread, radius, step, startangle, endangle, mode)

• gfx_PointWithinBox(x, y, &rect)

• gfx_PointWithinRectangle(x, y, &recta)

• gfx_ReadBresLine(x1, y1, x2, y2, ptr)

• gfx_WriteBresLine(x1, y1, x2, y2, ptr)

• gfx_ReadGRAMarea(x1, y1, x1, y2, ptr)

• gfx_WriteGRAMarea(x1, y1, x2, y2, ptr)

• gfx_Surround(x1, y1, x2, y2, rad1, rad2, oct, colour)

• gfx_Scope(Left, Width, Yzero, n, Xstep, Yamp, Colourbg, &old_y1, &new_y1, Colour1, … &old_y4, &new_y4,
Colour4)

• gfx_RingSegment(x, y, Rad1, Rad2, starta, enda, colour)

• gfx_AngularMeter(value, &MeterRam, &MeterDef)

• gfx_Panel2(state, x, y, width, height, w1, w2, cl, cr, cf)

• gfx_Needle(value, &NeedleRam, &NeedleDef)

• gfx_Dial(value, &DialRam, &DialDef)

• gfx_Gauge(value, &GaugeRam, &GaugeDef)

• gfx_LedDigits(value, &LedDigitRam, &LedDigitDef)

• gfx_LedDigit(x, y, digitsize, oncolour, offcolour, value)

• gfx_Slider5(value, &SliderRam, &SliderDef)

• gfx_Switch(state, &SwitchRam, &SwitchDef)

• gfx_Button4(state, &gfx_ButtonRam, &gfx_ButtonDef)

• gfx_Led(state, &LedRam, &LedDef)

• gfx_Scale(&ScaleRam, &ScaleDef)

• gfx_RulerGauge(state, &RulerGaugeRam, &RulerGaugeDef)

• gfx_GradientShape(GradientRAM, HorzVert, OuterWidth, X, Y, W, H, TLrad, TRrad, BLrad, BRrad, Darken,
OuterColor, OuterType, OuterLevel, InnerColor, InnerType, InnerLevel, Split)

• gfx_GradientColor(Type, Darken, Level, H, Pos, Color)

• gfx_GradTriangleFilled(X0, Y0, X1, Y1, X2, Y2, SolidCol, GradientCol, GradientHeight, GradientY,
GradientLevel, Type)

• gfx_XYrotToVal(x, y, base, mina, maxa, minv, maxv)

• gfx_XYlinToVal(x ,y, base, minpos, maxpos, minv, maxv)

2.7 Widget Functions:

• widget_Create(count)

• widget_Add(hndl, index, widget)

• widget_Delete(hndl, index)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 20 of 554 www.4dlabs.com.au

• widget_Realloc(handle, n)

• widget_GetWord(hndl, index, offset)

• widget_Setposition(hndl, index, xpos, ypos)

• widget_Enable(hndl, index)

• widget_Disable(hndl, index)

• widget_SetWord(hndl, index, offset, value)

• widget_SetAttributes(hndl, index, value)

• widget_ClearAttributes(hndl, index, value)

• widget_Touched(hndl, index)

2.8 Display I/O Functions:

• disp_SetReg(register, data)

• disp_setGRAM(x1, y1, x2, y2)

• disp_WrGRAM(colour)

• disp_WriteControl(value)

• disp_WriteWord(value)

• disp_ReadWord()

• disp_Sync(line)

• disp_Disconnect()

• disp_Init()

2.9 Media Functions (SD/SDHC memory Card or Serial Flash chip):

• media_Init()

• media_SetAdd(HIword, LOword)

• media_SetSector(HIword, LOword)

• media_RdSector(Destination_Address)

• media_WrSector(Source_Address)

• media_ReadByte()

• media_ReadWord()

• media_WriteByte(byte_val)

• media_WriteWord(word_val)

• media_Flush()

• media_Image(x, y)

• media_Video(x, y)

• media_VideoFrame(x, y, frameNumber)

2.10 Flash Memory chip Functions:

• flash_Bank()

• flash_Blit1(bank, offset, count, pallete2colour)

• flash_Blit16(bank, offset, count)

• flash_Blit2(bank, offset, count, pallete4colour)

• flash_Blit4(bank, offset, count, pallete16colour)

• flash_Blit8(bank, offset, count)

• flash_Copy(bank, ptr, dest, count)

• flash_EraseBank(bank, confirmation)

• flash_Exec(bank, arglistptr)

• flash_GetByte(bank, ptr)

• flash_GetWord(bank, ptr)

• flash_LoadFile(bank, filename)

• flash_putstr(bank, ptr)

• flash_Run(bank)

• flash_WriteBlock(sourceptr, bank, page)

• flash_FunctionCall(bank, index, state, &FunctionRam, &FunctionDef, FunctionArgCount,
FunctionArgStringMap)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 21 of 554 www.4dlabs.com.au

• flash_LoadSPIflash(bank, hndl, idx)

2.11 SPI Control Functions:

• spi_Init(speed, input_mode, output_mode)

• spi_Read()

• spi_Write(byte)

• spi_Disable()

• SPI1_Init(speed, mode, enablepin) or SPI2_Init(speed, mode, enablepin) or SPI3_Init(speed, mode,
enablepin)

• SPI1_Read() or SPI2_Read() or SPI3_Read()

• SPI1_Write(byte) or SPI2_Write(byte) or SPI3_Write(byte)

• SPI1_SCK_pin(pin) or SPI2_SCK_pin(pin) or SPI3_SCK_pin(pin)

• SPI1_SDI_pin(pin) or SPI2_SDI_pin(pin) or SPI3_SDI_pin(pin)

• SPI1_SDO_pin(pin) or SPI2_SDO_pin(pin) or SPI3_SDO_pin(pin)

• spiflash_ReadByte(flags, spi#, enablepin)

• spiflash_WriteByte(reg/value, "spi#, enablepin)

• spiflash_SetMode(spi#, mode)

• spiflash_LoadGCFImageControl(spi#, enablepin)

2.12 Serial (UART) Communications Functions:

• COM1_RX_pin(pin) or COM2_RX_pin(pin) or COM3_RX_pin(pin)

• COM1_TX_pin(pin) or COM2_TX_pin(pin) or COM3_TX_pin(pin)

• setbaud(rate)

• com_SetBaud(comport, baudrate/10)

• serin() or serin1() or serin2() or serin3()

• serout(char) or serout1(char) or serout2(char) or serout3(char)

• com_Init(buffer, buffsize, qualifier) or com_Init1(buffer, buffsize, qualifier) or com_Init2(buffer, buffsize,
qualifier) or com_Init3(buffer, buffsize, qualifier)

• com_Reset() or com1_Reset() or com2_Reset() or com3_Reset()

• com_Count() or com1_Count() or com2_Count() or com3_Count()

• com_Full() or com1_Full() or com2_Full() or com3_Full()

• com_Error() or com1_Error() or com2_Error() or com3_Error()

• com_Sync() or com1_Sync() or com2_Sync() or com3_Sync()

• com_TXbuffer(buf, bufsize,pin) or com1_TXbuffer(buf, bufsize,pin) or com2_TXbuffer(buf, bufsize,pin) or
com3_TXbuffer(buf, bufsize,pin)

• com_TXbufferHold(state) or com1_TXbufferHold(state) or com2_TXbufferHold(state) or
com3_TXbufferHold(state)

• com_TXcount() or com1_TXcount() or com2_TXcount() or com3_TXcount()

• com_TXemptyEvent(function) or com1_TXemptyEvent(function) or com2_TXemptyEvent(function) or
com3_TXemptyEvent(function)

2.13 I2C BUS Master Function

• I2C1_Open(Speed, SCLpin, SDApin) or I2C2_Open(Speed, SCLpin, SDApin) or I2C3_Open(Speed, SCLpin,
SDApin)

• I2C1_Close() or I2C2_Close() or I2C3_Close()

• I2C1_Start() or I2C2_Start() or I2C3_Start()

• I2C1_Stop() or I2C2_Stop() or I2C3_Stop()

• I2C1_Restart() or I2C2_Restart() or I2C3_Restart()

• I2C1_Read() or I2C2_Read() or I2C3_Read()

• I2C1_Write(byte) or I2C2_Write(byte) or I2C3_Write(byte)

• I2C1_Ack() or I2C2_Ack() or I2C3_Ack()

• I2C1_Nack() or I2C2_Nack() or I2C3_Nack()

• I2C1_AckStatus() or I2C2_AckStatus() or I2C3_AckStatus()

• I2C1_AckPoll(control) or I2C2_AckPoll(control) or I2C3_AckPoll(control)

• I2C1_Idle() or I2C2_Idle() or I2C3_Idle()

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 22 of 554 www.4dlabs.com.au

• I2C1_Gets(buffer, size) or I2C2_Gets(buffer, size) or I2C3_Gets(buffer, size)

• I2C1_Getn(buffer, size) or I2C2_Getn(buffer, size) or I2C3_Getn(buffer, size)

• I2C1_Puts(buffer) or I2C2_Puts(buffer) or I2C3_Puts(buffer)

• I2C1_Putn(buffer, count) or I2C2_Putn(buffer, count) or I2C3_Putn(buffer, count)

2.14 Timer Functions:

• sys_T()

• sys_T_HI()

• sys_SetTimer(timernum, value)

• sys_GetTimer(timernum)

• sys_SetTimerEvent("timernum","function")

• sys_EventQueue()

• sys_EventsPostpone()

• sys_EventsResume()

• sys_DeepSleep(units)

• sys_Sleep(units)

• iterator(offset)

• sys_GetDate()

• sys_GetTime()

• sys_SetDate(year, month, day)

• sys_SetTime(hours, mins, secs)

• sys_GetDateVar(&year, &month, &day)

• sys_GetTimeVar(&hour, &minute, &second, &msecs)

2.15 FAT16 File Functions:

• file_Error()

• file_Count(filename)

• file_Dir(filename)

• file_FindFirst(fname)

• file_FindNext()

• file_Exists(fname)

• file_Open(fname, mode)

• file_Close(handle)

• file_Read(destination, size, handle)

• file_Seek(handle, HiWord, LoWord)

• file_Index(handle, Hisize, Losize, recordnum)

• file_Tell(handle, &HiWord, &LoWord)

• file_Write(Source, size, handle)

• file_Size(handle, &HiWord, &LoWord)

• file_Image(x, y, handle)

• file_ScreenCapture(x, y, width, height, handle)

• file_PutC(char, handle)

• file_GetC(handle)

• file_PutW(word, handle)

• file_GetW(handle)

• file_PutS(source, handle)

• file_GetS(*String, size, handle)

• file_Erase(fname)

• file_Rewind(handle)

• file_LoadFunction(fname.4XE)

• file_Run(fname..4XE, arglistptr)

• file_Exec(fname..4XE, arglistptr)

• file_LoadImageControl(fname1, fname2, mode)

• file_Mount()

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 23 of 554 www.4dlabs.com.au

• file_Unmount()

• file_PlayWAV

• file_Rename(oldname, newname)

• file_SetDate(handle, year, month, day, hour, minute, second)

• - file_CheckUpdate("Filename", "Options")

2.16 Sound Control Functions:

• snd_Volume(var)

• snd_Pitch(pitch)

• snd_BufSize(var)

• snd_Stop()

• snd_Pause()

• snd_Continue()

• snd_Playing()

• snd_Freq()

2.17 String Class Functions:

• str_Ptr(&var)

• str_GetD(&ptr, &var)

• str_GetW(&ptr, &var)

• str_GetHexW(&ptr, &var)

• str_GetC(&ptr, &var)

• str_GetByte(ptr)

• str_GetWord(ptr)

• str_PutByte(ptr, val)

• str_PutWord(ptr, val)

• str_Match(&ptr, *str)

• str_MatchI(&ptr, *str)

• str_Find(&ptr, *str)

• str_FindI(&ptr, *str)

• str_Length(ptr)

• str_Printf(&ptr, *format)

• str_Cat(&destination, &Source)

• str_CatN(&ptr, str, count)

• str_ByteMove(src, dest, count)

• str_Copy(dest, src)

• str_CopyN(dest, src, count)

2.18 Touch Screen Functions:

• touch_DetectRegion(x1, y1, x2, y2)

• touch_Set(mode)

• touch_Get(mode)

• touch_TestArea(&rect)

• touch_TestBox(&rect)

2.19 Image Control Functions:

• img_SetPosition(handle, index, xpos, ypos)

• img_Enable(handle, index)

• img_Disable(handle, index)

• img_Darken(handle, index)

• img_Lighten(handle, index)

• img_SetWord(handle, index, offset, word)

• img_GetWord(handle, index, offset)

• img_Show(handle, index)

• img_SetAttributes(handle, index, value)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 24 of 554 www.4dlabs.com.au

• img_ClearAttributes(handle, index, value)

• img_Touched(handle, index)

• img_SelectReadPosition(handle, index, frame, x, y)

• img_SequentialRead(count, ptr)

• img_FileRead(*dest, size, handle, index)

• img_FileSeek(handle, index, HiWord, LoWord)

• img_FileIndex(handle, index, HiSize, LoSize,recordnum)

• img_FileTell(handle, index, &HiWord, &LoWord)

• img_FileSize(handle, index, &HiWord, &LoWord)

• img_FileGetC(handle, index)

• img_FileGetW(handle, index)

• img_FileGetS(*string, size, handle, index)

• img_FileRewind(handle, index)

• img_FileLoadFunction(handle, index)

• img_FileRun(handle, index, arglistptr)

• img_FileExec(handle, index, arglistptr)

• img_FilePlayWAV(handle, index)

• img_TxtFontID(handle, index)

2.20 Memory Allocation Functions:

• mem_Alloc(size)

• mem_Allocv(size)

• mem_Allocz(size)

• mem_Realloc(ptr, size)

• mem_Free(allocation)

• mem_Heap()

• mem_Set(ptr, char, size)

• mem_Copy(source, destination, count)

• mem_Compare(ptr1, ptr2, count)

• mem_ArrayOp1(memarray, count, op, value)

• mem_ArrayOP2(memarray1, memarray2, count, op, value)

2.21 General Purpose Functions:

• pause(milliseconds)

• lookup8 (key, byteConstList)

• lookup16 (key, wordConstList)

2.22 Floating Point Functions:

• flt_ADD(&result, &floatA, &floatB)

• flt_SUB(&result, &floatA, &floatB)

• flt_MUL(&result, &floatA, &floatB)

• flt_DIV(&result, &floatA, &floatB)

• flt_POW(&result, &floatA, &floatB)

• flt_ABS(&result, &floatval)

• flt_CEIL(&result, &floatval)

• flt_FLOOR(&result, &floatval)

• flt_SIN(&result, &floatval)

• flt_COS(&result, &floatval)

• flt_TAN(&result, &floatval)

• flt_ASIN(&result, &floatval)

• flt_ACOS(&result, &floatval)

• flt_ATN(&result, &floatval)

• flt_EXP(&result, &floatval)

• flt_LOG(&result, &floatval)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 25 of 554 www.4dlabs.com.au

• flt_SQR(&result, &floatval)

• flt_LT(&floatA, &floatB)

• flt_EQ(&floatA, &floatB)

• flt_NE(&floatA, &floatB)

• flt_GT(&floatA, &floatB)

• flt_GE(&floatA, &floatB)

• flt_LE(&floatA, &floatB)

• flt_SGN(&floatval)

• flt_FTOI(&floatval)

• flt_ITOF(&fresult, &var16)

• flt_UITOF(&fresult, &uvar16)

• flt_LTOF(&fresult, &var32)

• flt_ULTOF(&fresult, &uvar32)

• flt_VAL(&float1, mystring)

• flt_PRINT(&fvalue, formatstring)

• flt_PRINTxy(x, y, &fvalue, formatstring)

2.23 Misc System Functions:

• sys_PmmC()

• sys_Driver()

2.24 SPI Flash Functions:

• spiflash_BlockErase(spi#, Enablepin, block)

• spiflash_BulkErase(spi#, Enablepin)

• spiflash_Exec(spi#, Enablepin, arglistptr)

• spiflash_GetC(spi#, Enablepin)

• spiflash_GetS(*String, size, spi#, Enablepin)

• spiflash_GetW(spi#, Enablepin)

• spiflash_ID(spi#, Enablepin)

• spiflash_Image(x, y, spi#, Enablepin)

• spiflash_LoadFunction(spi#, Enablepin)

• spiflash_LoadImageControl(spi#, Enablepin)

• spiflash_PlayWAV(spi#, Enablepin)

• spiflash_PutC(char, spi#, Enablepin)

• spiflash_PutS(source, spi#, Enablepin)

• spiflash_PutW(word, spi#, Enablepin)

• spiflash_Read(destination, size, spi#, Enablepin)

• spiflash_Run(spi#, Enablepin, arglistptr)

• spiflash_SetAdd(spi#, HiWord, LoWord)

• spiflash_SIG(spi#, Enablepin)

• spiflash_Write(Source, size, spi#, Enablepin)

• spiflash_Block32Erase(spi#, enablepin)

• spiflash_Sector4Erase(spi#, enablepin)

• spiflash_ReadByte(flags, spi#, enablepin)

• spiflash_WriteByte(reg/value, spi#, enablepin)

• spiflash_SetMode(spi#, mode)

• spiflash_LoadGCFImageControl(spi#, enablepin)

2.25 CRC Functions:

• crc_16(buf, count)

• crc_CCITT(buf, count, seed)

• crc_CSUM_8(buf, count)

• crc_MODBUS(buf, count)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 26 of 554 www.4dlabs.com.au

2.1. GPIO Functions

Summary of Functions in this section:

• pin_Set(mode, pin)

• pin_HI(pin)

• pin_LO(pin)

• pin_Val(pin, value)

• pin_Read(pin)

• bus_Read()

• bus_Read8()

• bus_Write(value)

• bus_SetPins(value)

• bus_ClearPins(value)

• bus_SetChangeInterrupt(function, portmask)

• Qencoder1(PHApin, PHBpin, mode)

• Qencoder1Reset()

• Qencoder2(PHApin, PHBpin, mode)

• Qencoder2Reset()

• PWM_Init(pin, mode, value)

• pin_Pulseout(pin, value) or pin_PulseoutB(pin, value)

• pin_Counter(pin, mode, OVFfunction)

• ana_HS(rate, samples, IO1buf, IO2buf, IO3buf, IO4buf, userFunction)

• OW_Reset(pin)

• OW_Read(pin)

• OW_Read9(pin)

• OW_Write(pin, data)

• NP_Write(pin, data, size, Options, RepeatFirst, Repeat, RepeatLast)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 27 of 554 www.4dlabs.com.au

2.1.1 pin_Set(mode, pin)

Syntax pin_Set(mode, pin);

Arguments mode, pin

mode A value (usually a constant) specifying the pin operation.

pin A value (usually a constant) specifying the pin number.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description There are pre-defined constants for mode and pin:

Note: If using PIN_AN or PIN_ANAVG via the pin_Read() function, then if Touch is enabled this function
should be called no more than once per millsecond, otherwise touch behaviour could be eratic.

Example pin_Set(PIN_INP, PA0); // set PA0 to be an intput

pin_Set(PIN_AN, PA1); // set PA1 to be an Analog input

pin_Set(PIN_INP_HI, PA4); // set PA4 to be an intput with int. pullup

pin_Set(PIN_INP_LO, PA5); // set PA5 to be an intput with int. pulldown

pin_Set(PIN_OUT, PA10); // set PA10 to be used as an output

pin_Set(PIN_OUT_OD, PA14); // set PA14 to be an Open Drain Output

pin_Set(PIN_ANAVG, PA0); // set PA0 to be an Averaging Analog Input

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 28 of 554 www.4dlabs.com.au

2.1.2 pin_HI(pin)

Syntax pin_HI(pin);

Arguments pin

pin A value (usually a constant) specifying the pin number or a predefined pin name.

The arguments can be a variable, array element, expression or constant.

Returns value

 value Returns a Logic 1 (0x0001) if the pin number is legal.

Description Set any pin to the HI state, pin is automatically made an output. Pullup, Pulldown, and change
notification will be disabled for the selected pin.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 Yes

PA15 36 Yes

Example pin_HI(PA7); // output a Logic 1 on PA7 pin

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 29 of 554 www.4dlabs.com.au

2.1.3 pin_LO(pin)

Syntax pin_LO(pin);

Arguments pin

pin A value (usually a constant) specifying the pin number or a predefined pin name.

The arguments can be a variable, array element, expression or constant.

Returns value

 value Returns a Logic 1 (0x0001) if the pin number is legal.

Description Set any pin to the LOW state, pin is automatically made an output. Pullup, Pulldown, and change
notification will be disabled for the selected pin.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 Yes

PA15 36 Yes

Example pin_LO(PA7); // output a Logic 0 on PA7 pin

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 30 of 554 www.4dlabs.com.au

2.1.4 pin_Val(pin)

Syntax pin_Val(pin, value);

Arguments pin, value

pin A value (usually a constant) specifying the pin number or a predefined pin name.

value Bit 0 of value

The arguments can be a variable, array element, expression or constant.

Returns value

 value Returns a Logic 1 (0x0001) if the pin number is legal.

Description
Outputs a logic state on a pin depending on the value of bit 0 of a variable. The pin is automatically
made an output. Pullup, Pulldown, and change notification will be disabled for the selected pins.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 Yes

PA15 36 Yes

Example temp := 3;

pin_Val(PA4, temp); // output a Logic 3 on the PA4 pin

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 31 of 554 www.4dlabs.com.au

2.1.5 pin_Read(pin)

Syntax pin_Read(pin);

Arguments pin

pin A value (usually a constant) specifying the pin number or a predefined pin name.

The arguments can be a variable, array element, expression or constant.

Returns value

value Returns state of the pin a Logic 0 (0x0001) or 1 (0x0001) if the pin is set to digital
input.
Returns state of the output latch, a Logic 0 (0x0001) or 1 (0x0001) if the pin is set to
digital output.
Returns 12 bit analogue value if the pin is set to an analogue pin.

Description Read a pin in various ways. If the pin is set to an input, read the state of the input pin. If set to an
output, read the state of the output latch. If set to analogue, read the 12 bit analogue value.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 Yes

PA15 36 Yes

When using PIN_AN or PIN_ANAVG via the pin_Set command, then please note:
If Touch is enabled this function should be called no more than once per millsecond, otherwise touch
behaviour could be eratic.

PIN_AN > 15,000 reads/second

PIN_ANAVG ~3,000 reads/second

Example pin_Set(PA1, PIN_AN); // set PA1 to be used as an Analog input

ANval := pin_Read(PA1); // Read the 12bit analog input

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 32 of 554 www.4dlabs.com.au

2.1.6 bus_Read()

Syntax bus_Read();

Arguments none

Returns value

 value Returns the 16 bit value of the bus.

Description Read the 16 bit port regardless of pin configurations. If a pin is configured as input or analogue, the
pin is read directly as if it were a digital input. If a pin is configured as an output, the pin is also read
directly, giving the output latch state.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 Yes

PA15 36 Yes

Example var1 := bus_Read(); //Read the 16bit value off PA0-PA15 pins

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 33 of 554 www.4dlabs.com.au

2.1.7 bus_Read8()

Syntax bus_Read8();

Arguments none

Returns value

 value Returns the state of the 8 bit bus as an 8bit value.

Description Returns the state of the bus as an 8bit value in to the lower byte of the assigned variable.

The BUS_RD pin set to LO, then, after a settling delay of approx 50nsec, the BUS is read into the lower
8 bits of the assigned variable (the upper 8 bits being set to 0) the BUS_RD pin is then set back to a HI
level.

Note: The BUS_RD pin must be preset to the desired output state must the bus pins to ensure BUS
write integrity.

BUS_RD is PA3

The 8 bit BUS pins 0 to 7 are PA4 to PA11

Example var1 := bus_Read8();

The lower byte of var1 will get loaded with the state of the bus.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 34 of 554 www.4dlabs.com.au

2.1.8 bus_Write8(value)

Syntax bus_Write8(value);

Arguments value

value The lower 8 bits of value are sent to the 8 bit bus.

The argument can be a variable, array element, expression or constant.

Returns nothing

Description The lower 8 bits of arg1 are placed on the BUS, then, after a settling delay of approx 50nsec, the
BUS_WR pin is strobed LO for approx 50nsec then set back HI.
The upper 8 bits of arg1 are ignored.

Note: The BUS_WR pin pin must be preset to the desired output state as must the bus pins to ensure
BUS write integrity.

BUS_WR is PA2

The 8 bit BUS pins 0 to 7 are PA4 to PA11

Example var data1 ;

data1 := 0x05;

bus_Write8(data1);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 35 of 554 www.4dlabs.com.au

2.1.9 bus_SetPins(value)

Syntax bus_SetPins(value);

Arguments value

value A value (usually a constant) specifying the pin number. Bit 0 corresponds to PA0
through to bit9 which corresponds to PA9.

The arguments can be a variable, array element, expression or constant.

Returns Nothing

Description
Any '1' bits in "value" sets the corresponding port pin to an output and forces its state to a '1'. The
state of its previous open drain configuration is not altered. Any ‘0’ bits in "value" will not affect the
pin. pullup, pulldown, and change notification will be disable for the selected pins.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 Yes

PA15 36 Yes

Example var arg1;

arg1 := 0b0011010; // set desired mask

bus_SetPins(arg1); // set PA1, PA3 and PA4 to output, making them HI

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 36 of 554 www.4dlabs.com.au

2.1.10 bus_ClearPins(value)

Syntax bus_ClearPins(value);

Arguments value

value A value (usually a constant) specifying the pin number. Bit 0 corresponds to PA0
through to bit9 which corresponds to PA9.

The arguments can be a variable, array element, expression or constant.

Returns Nothing

Description Any '1' bits in "value" sets the corresponding port pin to an output and forces its state to a '0'. The
state of its previous open drain configuration is not altered. Any ‘0’ bits in "value" will not affect the
pin. pullup, pulldown, and change notification will be disable for the selected pins.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 Yes

PA15 36 Yes

Example var arg1;

arg1 := M_PA1 | M_PA3 | M_PA4 ; // set desired mask (same as 0b0011010)

bus_ClearPins(arg1); // set PA1, PA3 and PA4 to output, making them LO

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 37 of 554 www.4dlabs.com.au

2.1.11 bus_SetChangeInterrupt (function, portmask)

Syntax bus_SetChangeInterrupt(function, portmask);

Arguments function, portmask

function Event Function to be queued when an interrupt occurs.

portmask "portmask" marks that pin to generate an interrupt on change. A value (usually a
constant) specifying the pin number or a predefined pin name.

The arguments can be a variable, array element, expression or constant.

Returns value

value Return the current state of the pins that are selected in "portmask". This can be saved

and later used in "function" to see which pin(s) actually changed

Description
Any '1' bits in "portmask" marks that pin to generate an interrupt on change. A level change on that
pin will cause "function" to be executed. If "function" is zero, the display may be put into sleep mode,
and any change will cause a wakeup reset. Wakeup will always re-start code running in FLASHBANK_0
Bit 0 corresponds to PA0 through to bit15 which corresponds to PA15

Once armed, "function" will only be executed once, it is necessary to re-arm for any further events.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 Yes

PA15 36 Yes

Example bus_SetChangeInterrupt(scanKeypad, M_PA4 | M_PA5 | M_PA6 | M_PA7);

// set PA4 to PA7 to interrupt on change

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 38 of 554 www.4dlabs.com.au

2.1.12 Qencoder1(PHApin, PHBpin, mode)

Syntax Qencoder1(PHApin, PHBpin, mode);

Arguments PHApin, PHBpin, mode

PHApin Phase A input pin, 4D Pin Name reference – see table below

PHBpin Phase B input pin, 4D Pin Name reference – see table below

mode Not currently used, set to 0 only.

The arguments can be a variable, array element, expression or constant.

Returns Nothing

Description Connect a quadrature encoder to a pair of pins, using the predefined 4D Pin Names in the table below,
and the PHApin and PHBpin arguments in this function.

It is necessary to configure the pins first, depending on your requirements, e.g.
pin_Set(PIN_INP_HI, PA4); // PA4 as input, with pullup to Vcc

or maybe
pin_Set(PIN_INP, PA4); // PA4 as input, no pullup or pulldown

The position counter and delta can be read or written to at any time with peekW and pokeW using
the following constants:

QEN1_COUNTER_LO
QEN1_COUNTER_HI
QEN1_DELTA

QEN1_DELTA is reset to 0 once it has been read

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 No

PA15 36 No

Example var qen1Delta;

pin_Set(PIN_INP_HI, PA4); // Set PA4 to be Input with Pullup

pin_Set(PIN_INP_HI, PA5); // Set PA5 to be Input with Pullup

Qencoder1(PA4, PA5, 0); // connect PA4 and PA5 pins to quadrature

 encoder module #1

qen1Delta := peekW(QEN1_DELTA);

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 39 of 554 www.4dlabs.com.au

2.1.13 Qencoder1Reset()

Syntax Qencoder1Reset();

Arguments None

Returns Nothing

Description Resets the Counters and Delta values for Encoder #1

QEN1_COUNTER_LO is reset to zero
QEN1_COUNTER_HI is reset to zero
QEN1_DELTA is reset to zero

Example Qencoder1Reset(); // Reset the Counter and Delta values

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 40 of 554 www.4dlabs.com.au

2.1.14 Qencoder2(PHApin, PHBpin, mode)

Syntax Qencoder2(PHApin, PHBpin, mode);

Arguments PHApin, PHBpin, mode

PHApin Phase A input pin, 4D Pin Name reference – see table below

PHBpin Phase B input pin, 4D Pin Name reference – see table below

mode Not currently used, set to 0 only.

The arguments can be a variable, array element, expression or constant.

Returns Nothing

Description Connect a quadrature encoder to a pair of pins, using the predefined 4D Pin Names in the table below,
and the PHApin and PHBpin arguments in this function.

It is necessary to configure the pins first, depending on your requirements, e.g.
pin_Set(PIN_INP_HI, PA8); // PA8 as input, with pullup to Vcc

or maybe
pin_Set(PIN_INP, PA9); // PA9 as input, no pullup or pulldown

The position counter and delta can be read or written to at any time with peekW and pokeW using
the following constants:
 QEN2_COUNTER_LO
 QEN2_COUNTER_HI
 QEN2_DELTA

QEN2_DELTA is reset to 0 once it has been read

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 No

PA15 36 No

Example var qen2Delta;

pin_Set(PIN_INP, PA8); // Set PA8 to be Input

pin_Set(PIN_INP, PA9); // Set PA9 to be Input

Qencoder2(PA8, PA9, 0); // connect PA8 and PA9 pins to quadrature

 encoder module #2

pokeW(QEN2_COUNTER_HI) := 12; // some ‘preset value’

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 41 of 554 www.4dlabs.com.au

2.1.15 Qencoder2Reset()

Syntax Qencoder2Reset();

Arguments None

Returns Nothing

Description Resets the Counters and Delta values for Encoder #2

QEN2_COUNTER_LO is reset to zero
QEN2_COUNTER_HI is reset to zero
QEN2_DELTA is reset to zero

Example Qencoder2Reset(); // Reset the Counter and Delta values

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 42 of 554 www.4dlabs.com.au

2.1.16 pwm_Init(pin, mode, value)

Syntax pwm_Init(pin, mode, value);

Arguments pin, mode, value

Pin 4D Pin Name to enable the PWM on

mode Modes for the PWM, see description below

value Value determines Duty Cycle/Time Base depending on Mode, see below

The arguments can be a variable, array element, expression or constant.

Returns Status Returns TRUE if the pin number is legal, usually ignored

Description This PWM function enables a PWM output on the desired pin, based on the availability set out by
the table below.
Set the pin using the predefined 4D Pin Name into the pin argument, and select its mode and value,
which are determined by:

PWM Mode Description

PWM_OFF (0) Turn off the PWM (pin is left as Output)

PWM_PLAIN (1) Plan PWM which value is a number between 0 and 1000.
This corresponds to a 0.0 to 100.0% duty cycle.
Raw Frequency is ~70kHz. A value of 1 is not valid.

PWM_SERVO (2) Servo PWM has a value which is between 100 and 200.
This corresponds to 1.00 to 2.00ms. Please note values
from 0 to 600 are valid (0-6ms), but should be used with
caution.
Repitition Rate is ~50Hz or 20ms

PWM_BINARY (3) Binary PWM which value is a number between 0 and
1024. This corresponds to a 0.0 to 100.0% duty cycle.
Raw Frequency is ~68kHz. A value of 1 is not valid.

PWM_625HZ (4)
PWM_5KHZ (5)
PWM_10KHZ (6)
PWM_15KHZ (7)
PWM_20KHZ (8)
PWM_25KHZ (9)
PWM_30KHZ (10)
PWM_35KHZ (11)

Plan PWM which value is a number between 0 and 1000.
This corresponds to a 0.0 to 100.0% duty cycle.
Raw Frequency is as specified.

The pwm_Init is non-blocking and the pwm continues until turned off

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 No

PA1 62 No

PA2 63 No

PA3 64 No

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 43 of 554 www.4dlabs.com.au

PA10 43 No

PA11 44 No

PA12 31 No

PA13 32 No

PA14 37 No

PA15 36 No

Example pwm_Init(PA4, PWM_PLAIN, 676); //Sets Plain PWM of 67.7% on PA4

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 44 of 554 www.4dlabs.com.au

2.1.17 pin_Pulseout(pin, value)

Syntax
pin_Pulseout(pin, value); or
pin_PulseoutB(pin, value)

Arguments pin, value

Pin 4D predefined Pin Name to enable Pulseout on

value Length of pulse in milliseconds

The arguments can be a variable, array element, expression or constant.

Returns Returns TRUE if the pin number is legal (usually ignored)

Description This function will invert the state of an output for "value" milliseconds.

pin_Pulseout is a non-Blocking function, that is, code execution may continue while a pulse is
occuring, and pulses can occur on multiple pins simultaneously.

pin_PulseoutB is a Blocking function, where program execution is suspended during pulse.

If not already an output, pin is automatically made a push/pull output, and the last state of its output
latch will determine pulse polarity.

Its open drain state is not altered if the pin was already an output.

If pulseout is called while pulseout is still active, the pulse timer will simply be updated with the new
"value" and the pulse will continue with the extended value.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 No

PA11 44 No

PA12 31 No

PA13 32 No

PA14 37 No

PA15 36 No

Example pin_Pulseout(PA3, 105); // create a Hi Pulse of 105ms on PA3

…

pin_set(PIN_OUT, PA1); // set PA1 as an Output

pin_HI(PA1); // set PA1 to output HI

pin_Pulseout(PA1, 50); // create a Lo pulse of 50ms on PA1

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 45 of 554 www.4dlabs.com.au

2.1.18 pin_Counter(pin, mode, OVFfunction)

Syntax pin_Counter(pin, mode, OVFfunction);

Arguments pin, mode, OVFfunction

pin 4D predefined Pin Name to enable pin counter on, see table below

mode Counter mode, see table below

OVFfunction Event function to be queued on overflow of counter

The arguments can be a variable, array element, expression or constant.

Returns Nothing

Description Connect a counter to a pin to count transistions, and optionally call an event function when the 16bit
counter wraps from 0xFFFF to zero.

The counter can be read or written to at any time with peekW and pokeW, therefore, the count may
be set to 0xFFF0 for example, so that user function "OVFfuction" will be called after 16 pulses.

If "OVFfunction" is set to zero, only the counter will increment, and simply wrap back to zero from
0xFFFF. If "OVFfunction" points to a user function, wnen the event fires, pin_Counter will be disabled,
and will need to be re-armed (ie '1shot' operation)

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 No

PA1 62 No

PA2 63 No

PA3 64 No

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 No

PA11 44 No

PA12 31 No

PA13 32 No

PA14 37 No

PA15 36 No

The pin may be configured as an input or output, the function behaves the same.

All six pin counters may be active simultaneously, and the maximum frequency of pin transistions
should not exceed a few Khz in mode 1 and 2 and are usually used for simple process control counting.

Pin Counter MODE Description

COUNT_OFF (0) Disconnect the counter from the pin, "OVFfunction" is
therefore ignored, and counting is inhibited.

COUNT_RISE (1) increment counter on every rising edge

COUNT_FALL (2) increment on every falling edge

COUNT_EDGE (3) increment on every rising and falling edge

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 46 of 554 www.4dlabs.com.au

Example func main()

 pin_Set(PIN_INP, PA4); // external start event

 repeat // main loop

 if(pin_Read(PA4))

 pin_Counter(PA2, COUNT_RISE, userFunc);

 endif

 // user code here

 forever

endfunc

func userFunc()

 print("Hello World");

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 47 of 554 www.4dlabs.com.au

2.1.19 ana_HS(rate, samples, IO1buf, IO2buf, IO3buf, IO4buf, userFunction)

Syntax ana_HS(rate, samples, IO1buf, IO2buf, IO3buf, IO4buf, userFunction);

Arguments rate, samples, IO1buf, IO2buf, IO3buf, IO4buf, userFunction

rate Number of samples per second, see rate commend below

samples Number of samples to collect per analog channel

IO1buf Buffer Address for first Analog Channel

IO2buf Buffer Address for second Analog Channel

IO3buf Buffer Address for third Analog Channel

IO4buf Buffer Address for forth Analog Channel

userFunction Function to call once all samples have been collected

The arguments can be a variable, array element, expression or constant.

Returns Nothing

Description Collects "samples" samples at "rate" frequency for 0 to 4 analogue pins and calls "userFunction" when
done.

"rate" is samples represented as 1/100 samples per second, up to 250,000 reads/second across 1-4
channels. For example if you wish to sample at 5000 samples per second, you would set rate to be 50
as 5000 * 1/100 = 50.

Any unused IOx pins should have their buffer addresses (i.e. IO4buf) set to 0

For performance reasons samples are taken in chunks of 32, thus if you request 33 samples there will
be a delay of 31 samples before "userFunction" is called

Note: If Touch is enabled this function should be called no more than once per millsecond, otherwise
touch behaviour could be eratic.

Example var x[100]; // Buffer for IO1buf

var b[100]; // Buffer for IO2buf

var c[100]; // Buffer for IO3buf

// 1000 samples a second, 10000 samples to be collected from 3 channels

ana_HS(1000, 10, a, b, c, 0, myFunc);

func myFunc()

 //do something once samples collected

Endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 48 of 554 www.4dlabs.com.au

2.1.20 pin_PulseoutCount(pin, frequency, count, function)

Syntax pin_PulseoutCount(pin, frequency, count, function);

Arguments pin, frequency, count, function

pin 4D predefined Pin Name to enable PulseoutCount on

frequency The frequency to pulse the pin at (minimum 10Hz)

count The number of times to pulse the specified pin

function Address of a function to be called at completion

The arguments can be a variable, array element, expression or constant.

Returns
Returns TRUE if the pin number is legal and the frequency is at least 10Hz and the maximum number
of 3 simlutaneous pulseoutCount pins is not exceeded

Description

This function will invert the state of an output at a "freq" freuency "count" times. This is a non-
Blocking function, that is, code execution may continue while a pulse is occuring, and pulses can occur
on multiple pins simultaneously. A function can be specified that will be called when all the pulses
have been output. A maximum of 3 pulseoutCount activities can be active at any one point.

If not already an output, pin is automatically made a push/pull output, and the last state of its output
latch will determine pulse polarity.

Its open drain state is not altered if the pin was already an output.

If pulseoutCount is called while pulseoutCount is active, the pulse counter will simply have the new
count value added to it.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 No

PA1 62 No

PA2 63 No

PA3 64 No

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 No

PA11 44 No

PA12 31 No

PA13 32 No

PA14 37 No

PA15 36 No

Example pin_Pulseout(PA3, 105); // create a Hi Pulse of 105ms on PA3

…

pin_set(PIN_OUT, PA1); // set PA1 as an Output

pin_HI(PA1); // set PA1 to output HI

pin_Pulseout(PA1, 50); // create a Lo pulse of 50ms on PA1

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 49 of 554 www.4dlabs.com.au

2.1.21 OW_Reset(pin)

Syntax OW_Reset(pin);

Arguments pin

pin 4D predefined Pin Name, see table below.

The arguments can be a variable, array element, expression or constant.

Returns result

result Reset, and returns the status of the ONEWIRE device
0 = ACK
1 = No Activity

(refer to Dallas 1wired documentation for further information)

Description Resets a ONEWIRE device and returns the status.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 Yes

PA15 36 Yes

Example print ("result=", OW_Reset(PA0));

This example will print a 0 if the device initialised successfully.

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 50 of 554 www.4dlabs.com.au

2.1.22 OW_Read(pin)

Syntax OW_Read(pin);

Arguments pin

Pin 4D predefined Pin Name, see table below.

The arguments can be a variable, array element, expression or constant.

Returns value

 value A word holding the lower 8 bits contain data bits received from the 1-Wire device.

Description Reads the 8 bit value from a 1-Wire devices register.
(refer to Dallas 1wired documentation for further information)

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 No

PA15 36 No

Example // read temperature from DS1821 device

var temp_buf;

OW_Reset(PA0); // reset the device

OW_Write(PA0,0xAA); // send the read command

temp_buf := OW_Read(PA0); // read the device register

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 51 of 554 www.4dlabs.com.au

2.1.23 OW_Read9(pin)

Syntax OW_Read9(pin);

Arguments pin

Pin 4D predefined Pin Name, see table below.

The arguments can be a variable, array element, expression or constant.

Returns value

 value A word holding 9 or more data bits received from the 1-Wire device.

Description Reads the 9 or more bit value from a 1-Wire devices register.
(refer to Dallas 1wired documentation for further information)

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 No

PA15 36 No

Example // read temperature from DS1821 device

var temp_buf;

OW_Reset(PA0); // reset the device

OW_Write(PA0,0xAA); // send the read command

temp_buf := OW_Read9(PA0); // read the device register

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 52 of 554 www.4dlabs.com.au

2.1.24 OW_Write(pin, data)

Syntax OW_Write(pin, data);

Arguments pin, data

Pin 4D predefined Pin Name, see table below.

Data The lower 8 bits of data are sent to the 1-Wire device.

The argument can be a variable, array element, expression or constant.

Returns Nothing

Description Writes the 8 bit data to 1-Wire devices register.
(refer to Dallas 1wired documentation for further information)

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 No

PA15 36 No

Example //===

// For this demo to work, a Dallas DS18B20 must be connected to

// PA0 AND POWERED FROM 3.3 to 5V.

// DS18B20 pin1 = Gnd / pin2 = data in/out / pin 3 = +3.3v

// Refer to the Dallas DS18B20 for further information

//===

func main()

 var temp_buf ;

 pause(1000);

 txt_MoveCursor(0,0);

 if(OW_Reset(PA0)) // initialise and test

 print("No device detected");

 while(1);

 endif

 repeat

 txt_MoveCursor(0, 0);

 print ("result=", OW_Reset(PA0));

 OW_Write(PA0, 0xcc); // skip ROM

 OW_Write(PA0, 0x44); // start conversion

 OW_Reset(PA0); // reset

 OW_Write(PA0, 0xcc); // skip ROM

 OW_Write(PA0, 0xBE); // get temperature

 temp_buf := OW_Read(PA0);

 temp_buf += (OW_Read(PA0) << 8);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 53 of 554 www.4dlabs.com.au

 txt_MoveCursor(1, 0);

 print ("temp_buf=0x", [HEX4] temp_buf);

 forever

endfunc

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 54 of 554 www.4dlabs.com.au

2.1.25 NP_Write(pin, data, size, Options, RepeatFirst, Repeat, RepeatLast)

Syntax NP_Write(pin, data, size, Options, RepeatFirst, Repeat, RepeatLast) ;

Arguments pin, data, size, Options, RepeatFirst, Repeat, RepeatLast

 Pin 4D predefined Pin Name, see table below.

 data The address of the data to be sent

 size The size of the data to be sent, in Pixels

 Options The format of the data pixels, NP_565, NP_RGB or NP_XRGB

RepeatFirst Number of times to repeat the first colour (0 means first colour is not considered

'special')

 Repeat Number of times to repeat the colours between first and last

RepeatLast Number of times to repeat the last colour (0 means last colour is not considered
'special')

The arguments can be a variable, array element, expression or constant.

Returns value

 value Returns TRUE if the pin number is legal (usually ignored)

Description Writes a string of pixels to the NeoPixel array connected to the specified I/O Pin.

Due to the critical timing requirements of the NeoPixel, any interrupts should be stopped, or
otherwise ‘circumvented’ before this command is issued. Internally, the system Timer is disabled
during this command.

Comms Interrupts should also be disabled by the user, otherwise errors may occur. A suitable
workaround is to repeat the NP_Write until ‘com_Count’ does not change during its execution.

Comms TX Buffers, if used, should be held.

Audio should be stopped or paused.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 Yes

PA15 36 Yes

Example var data[4] := [RED, LIME, BLUE, WHITE] ;

// send Red, Lime Blue, and white to the NeoPixel strip twice

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 55 of 554 www.4dlabs.com.au

NP_Write(PA0, data, 4, 0, 2, 0);

// send 2 x Red, Lime, Blue and 2 x White to the NeoPixel strip

NP_Write(PA0, data, 4, 2, 1, 2);

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 56 of 554 www.4dlabs.com.au

2.2. System Memory Access Functions

Summary of Functions in this section:

• peekW(address)

• pokeW(address, word_value)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 57 of 554 www.4dlabs.com.au

2.2.1 peekW(address)

Syntax peekW(address);

Arguments address

address The address of a memory word. The address is usually a pre-defined system register
address constant, (see the address constants for all the system word sized registers
in section 3).

The arguments can be a variable, array element, expression or constant.

Returns word_value

 word_value The 16 bit value stored at address.

Description Read a word from system memory.

Note: that the txt_Set variables (0-15) and gfx_set variables (16-31) can also be accessed with peekW
and pokeW.

Example var myvar;

myvar := peekW(SYSTEM_TIMER_LO);

This example places the low word of the 32 bit system timer in myvar.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 58 of 554 www.4dlabs.com.au

2.2.2 pokeW(address, word_value)

Syntax pokeW(address, word_value);

Arguments address, word_value

address The address of a memory word. The address is usually a pre-defined system register
address constant, (see the address constants for all the system word sized registers
in section 3).

word_value The 16 bit word_value will be stored at address.

The arguments can be a variable, array element, expression or constant.

Returns None

Description This function writes a 16 bit value to a location specified by address.

Note: that the txt_Set variables (0-15) and gfx_set variables (16-31) can also be accessed with peekW
and pokeW.

Example pokeW(TIMER2, 5000);

This example sets TIMER2 to 5 seconds.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 59 of 554 www.4dlabs.com.au

2.3. Maths Functions

Summary of Functions in this section:

• ABS(value)

• MIN(value1, value2)

• MAX(value1, value2)

• SWAP(&var1, &var2)

• SIN(angle)

• COS(angle)

• RAND()

• RANDVAL(low, high)

• SEED(number)

• SQRT(number)

• OVF ()

• CY()

• EVE_SP()

• EVE_SSIZE()

• umul_1616(&res32, val1, val2)

• uadd_3232(&res32, &val1, &val2)

• usub_3232(&res32, &val1, &val2)

• udiv_3232(&res32, &var1, &var2)

• ucmp_3232(&val1, &val2)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 60 of 554 www.4dlabs.com.au

2.3.1 ABS(value)

Syntax ABS(value);

Arguments value

value A variable, array element, expression or constant.

The arguments can be a variable, array element, expression or constant.

Returns value

 value Returns the absolute value.

Description This function returns the absolute value of value.

Example var myvar, number;

number := -100;

myvar := ABS(number * 5);

This example returns 500 in variable myvar.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 61 of 554 www.4dlabs.com.au

2.3.2 MIN(value1, value2)

Syntax MIN(value1, value2);

Arguments value1, value2

value1 A variable, array element, expression or constant.

value2 A variable, array element, expression or constant.

The arguments can be a variable, array element, expression or constant.

Returns value

 value The smaller of the two values.

Description This function returns the the smaller of value1 and value2.

Example var myvar, number1, number2;

number1 := 33;

number2 := 66;

myvar := MIN(number1, number2);

This example returns 33 in variable myvar.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 62 of 554 www.4dlabs.com.au

2.3.3 MAX(value1, value2)

Syntax MAX(value1, value2);

Arguments value1, value2

value1 A variable, array element, expression or constant.

value2 A variable, array element, expression or constant.

The arguments can be a variable, array element, expression or constant.

Returns value

 value The larger of the two values.

Description This function returns the larger of value1 and value2.

Example var myvar, number1, number2;

number1 := 33;

number2 := 66;

myvar := MAX(number1, number2);

This example returns 66 in variable myvar.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 63 of 554 www.4dlabs.com.au

2.3.4 SWAP(&var1, &var2)

Syntax SWAP(&value1, &value2);

Arguments &var1, &var2

&var1 The address of the first variable.

&var2 The address of the second variable.

The arguments can only be a variable or an array element.

Returns nothing

Description Given the addresses of two variables (var1 and var2), the values at these addresses are swapped.

Example var number1, number2;

number1 := 33;

number2 := 66;

SWAP(&number1, &number2);

This example swaps the values in number1 and number2. After the function is executed, number1
will hold 66, and number2 will hold 33.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 64 of 554 www.4dlabs.com.au

2.3.5 SIN(angle)

Syntax SIN(angle);

Arguments angle

angle The angle in degrees. (Note: The input value is automatically shifted to lie within 0-
359 degrees)

The arguments can be a variable, array element, expression or constant.

Returns result

result The sine in radians of an argument specified in degrees. The returned value range is
from 127 to -127 which is a more useful representation for graphics work. The real
sine values vary from 1.0 to -1.0 so appropriate scaling must be done in user code as
required.

Description This function returns the SIN of an angle

Example var myvar, angle;

angle := 133;

myvar := SIN(angle);

This example returns 92 in variable myvar.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 65 of 554 www.4dlabs.com.au

2.3.6 COS(angle)

Syntax COS(angle);

Arguments angle

angle The angle in degrees. (Note: The input value is automatically shifted to lie within 0-
359 degrees)

The arguments can be a variable, array element, expression or constant.

Returns result

result The cosine in radians of an argument specified in degrees. The returned value range
is from 127 to -127 which is a more useful representation for graphics work. The real
sine values vary from 1.0 to -1.0 so appropriate scaling must be done in user code as
required.

Description This function returns the COSINE of an angle

Example var myvar, angle;

angle := 133;

myvar := COS(angle);

This example returns -86 in variable myvar.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 66 of 554 www.4dlabs.com.au

2.3.7 RAND()

Syntax RAND();

Arguments none

Returns value

value Returns a pseudo random signed number ranging from -32768 to +32767 each time the
function is called. The random number generator may first be seeded by using the
SEED(number) function. The seed will generate a pseudo random sequence that is
repeatable. You can use the modulo operator (%) to return a number within a certain
range, eg n := RAND() % 100; will return a random number between -99 and +99. If you
are using random number generation for random graphics points, or only require a
positive number set, you will need to use the ABS function so only a positive number is
returned, eg: X1 := ABS(RAND() % 100); will set co-ordinate X1 between 0 and 99.

Note that if the random number generator is not seeded, the first number returned after
reset or power up will be zero. This is normal behavior.

Description This function returns a pseudo random signed number ranging from -32768 to +32767

Example SEED(1234);

print(RAND(),", ",RAND());

This example will print 3558, 1960 to the display.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 67 of 554 www.4dlabs.com.au

2.3.8 RANDVAL(low, high)

Syntax RANDVAL(low, high);

Arguments low, high

 low Low limit for the random numbers

 high High limit for the random numbers

Returns value

 value A random number between low and high limits.

 The arguments can be a variable, array element, expression or constant.

Description Returns a random number between low and high limits such that low <= N < high The random number
generator may first be seeded by using the SEED(number) function.

RANDVAL is the equivalent of aggregate functions:-
myvar = ABS((RAND()%(high-low)+low));

Note: The lower limit is inclusive, but the upper limit is exclusive.
Note: If the random number generator is not seeded, the first number returned after reset or power
up will be the low number in the range. This is normal behaviour.

Example SEED(1234);

print(RAND(),", ",RAND());

This example will print 3558, 1960 to the display.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 68 of 554 www.4dlabs.com.au

2.3.9 SEED(number)

Syntax SEED(number);

Arguments number

number Specifies the seed value for the pseudo random number generator.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description This function seeds the pseudo random number generator so it will generate a new repeatable
sequence. The seed value can be a positive or negative number.

Example SEED(-50);

print(RAND(),", ",RAND());

This example will print 30129, 27266 to the display.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 69 of 554 www.4dlabs.com.au

2.3.10 SQRT(number)

Syntax SQRT(number);

Arguments number

number Specifies the positive number for the SQRT function.

The arguments can be a variable, array element, expression or constant.

Returns value

value This function returns the integer square root which is the greatest integer less than or

equal to the square root of number.

Description This function returns the integer square root of a number.

Example var myvar;

myvar := SQRT(26000);

This example returns 161 in variable myvar which is the integer square root of 26000.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 70 of 554 www.4dlabs.com.au

2.3.11 OVF()

Syntax OVF();

Arguments none

Returns value

 value The high order 16 bits from certain math and shift functions.

Description This function returns the high order 16 bits from certain math and shift functions. It is extremely
useful for calculating 32 bit address offsets for MEDIA access.

It can be used with the shift operations, addition, subtraction, multiplication and modulus operations.

Example var loWord, hiWord;

loWord := 0x2710 * 0x2710; // (10000 * 10000 in hex format)

hiWord := OVF();

print ("0x", [HEX] hiWord, [HEX] loWord);

This example will print 0x05F5E100 to the display , which is 100,000,000 in hexadecimal

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 71 of 554 www.4dlabs.com.au

2.3.12 CY()

Syntax CY();

Arguments none

Returns Status

 Status Returns Status of carry, 0 or 1.

Description This function returns the carry status of an unsigned overflow from any 16 or 32bit additions or
subtractions.

Example var myvar;

myvar := 0xFFF8 + 9; // result = 1

print(“myvar ”, myvar,"\nCarry ", CY(),"\n"); // carry = 1

This example will print
myvar 1
Carry 1

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 72 of 554 www.4dlabs.com.au

2.3.13 EVE_SP()

Syntax EVE_SP();

Arguments None

Returns value

 value Returns the current stack level.

Description Used for debugging to assess the current stack level, mainly for checking stack leaks.

Example var val;

val := EVE_SP();

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 73 of 554 www.4dlabs.com.au

2.3.14 EVE_SSIZE()

Syntax EVE_SSIZE();

Arguments None

Returns value

 value Returns the stack size.

Description Used to get the current stack size. Mainly for debugging purposes.

Example print(EVE_SSIZE());

Prints stack size on the screen.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 74 of 554 www.4dlabs.com.au

2.3.15 uadd_3232(&res32, &val1, &val2)

Syntax uadd_3232(&res32, &val1, &val2);

Arguments &res32, &val1, &val2)

&res32 Points to 32bit result register.

&val1 points to 32bit augend

&val2 points to 32bit addend

Returns value

value Returns 1 on 32bit unsigned overflow (carry). Carry flag is also set on 32bit unsigned

overflow and can be read with the CY() function.

Description Performs an unsigned addition of 2 x 32bit values placing the 32bit result in a 2 word array.

Example var carry, valA[2], valB[2], Result[2];

var p;

valA[0] := 0;

valA[1] := 1;

valB[0] := 0;

valB[1] := 1;

carry := uadd_3232(Result, valA, valB);

p := str_Ptr(Result);

print("0x");

str_Printf(&p, "%lX"); //prints the value at pointer in Hex long format.

This example will print 0x20000

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 75 of 554 www.4dlabs.com.au

2.3.16 usub_3232(&res32, &val1, &val2)

Syntax usub_3232(&res32, &val1, &val2);

Arguments &res32, &val1, &val2

&res32 Points to 32bit result register.

&val1 points to 32bit minuend

&val2 points to 32bit subtrahend

Returns Value

Value Returns 1 on 32bit unsigned overflow (carry). Carry flag is also set on 32bit unsigned

overflow and can be read with the CY() function.

Description Performs an unsigned subtraction of 2 x 32bit values placing the 32bit result in a 2 word array.

Example var carry, valA[2], valB[2], Result[2];

var p;

valA[0] := 0;

valA[1] := 0xFFFF;

valB[0] := 0;

valB[1] := 0xEFFF;

carry := usub_3232(Result, valA, valB);

p := str_Ptr(Result);

print("0x");

str_Printf(&p, "%lX");

repeat forever

This example will print 0x10000000

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 76 of 554 www.4dlabs.com.au

2.3.17 umul_1616(&res32, val1, val2)

Syntax umul_1616(&res32, val1, val2);

Arguments &res32, val1, val2

&res32 Points to 32bit result register.

val1 16bit register or constant

val2 16bit register or constant

Returns Pointer

 Pointer Returns a pointer to the 32bit result. Carry and overflow are not affected.

Description Performs an unsigned multiply of 2 x 16bit values placing the 32bit result in a 2 word array.

Example var val32[2];

var p;

umul_1616(val32, 500, 2000);

p := str_Ptr(val32);

str_Printf(&p, "%ld");

This example prints 1000000

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 77 of 554 www.4dlabs.com.au

2.3.18 udiv_3232(&res32, val1, val2)

Syntax udiv_3232(&res32, val1, val2);

Arguments &res32, val1, val2

&res32 Points to 32bit result register.

val1 32bit register or dividend

val2 32bit register or divisor

Returns Pointer

 Pointer Returns a pointer to the 32bit result. Carry and overflow are not affected.

Description Performs an unsigned division of 2 x 32bit values placing the 32bit result in a 2 word array.
Note: A division by zero will result is 0xFFFFFFFF

Example var val32[2], dividend[2], divisor[2] ;

 var p;

 dividend[0] := 0x5c21 ; // part of 1661985

 dividend[1] := 0x19 ; // part of 1661985

 divisor[0] := 13 ;

 divisor[1] := 0 ;

 udiv_3232(val32, dividend, divisor);

 p := str_Ptr(val32);

 str_Printf(&p, "%ld"); // 1661985 / 13 = 127845

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 78 of 554 www.4dlabs.com.au

2.3.19 ucmp_3232(&val1, &val2)

Syntax ucmp_3232(&val1, &val2);

Arguments &val1, &val2

&val1 points to 32bit constant

&val2 points to 32bit constant

Returns value

value 0 if equal
1 if val1 > val2
-1 if val1 < val2

This function does not affect the carry flag.

Description Performs an unsigned comparison of 2 x 32bit values.

Example var carry, valA[2], valB[2], Result;

valA[0] := 0;

valA[1] := 0xFFFF;

valB[0] := 0;

valB[1] := 0xEFFF;

Result := cmp_3232(valA, valB); //val1 > val2

print(Result);

repeat forever

This example will print 1.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 79 of 554 www.4dlabs.com.au

2.4. Text and String Functions

Summary of Functions in this section:

• txt_MoveCursor(line, column)

• putch(char)

• putchXY(xpos, ypos, char)

• putstr(pointer)

• putstrXY(xpos, ypos, string)

• putstrCentred(xc, yc, string)

• putnum(format, value)

• print(...)

• to(outstream)

• charwidth(char)

• charheight(char)

• strwidth(pointer)

• strheight()

• strlen(pointer)txt_Set(function, value)

• unicode_page(charbeg, charend, charoffset)

• txt_Set(function, value)
txt_Set shortcuts:

• txt_FGcolour(colour)

• txt_BGcolour(colour)

• txt_FontID(id)

• txt_Width(multiplier)

• txt_Height(multiplier)

• txt_Xgap(pixelcount)

• txt_Ygap(pixelcount)

• txt_Delay(millisecs)

• txt_Opacity(mode)

• txt_Bold(mode)

• txt_Italic(mode)

• txt_Inverse(mode)

• txt_Underline(mode)

• txt_Attributes(value)

• txt_Wrap (value)

• txt_Angle(value)
• txt_FontBank(bank, address)

• PutnumXY(x, y, format, value)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 80 of 554 www.4dlabs.com.au

2.4.1 txt_MoveCursor(line, column)

Syntax txt_MoveCursor(line, column);

Arguments line, column

line Holds a positive value for the required line position.

column Holds a positive value for the required column position.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description

Moves the text cursor to a screen position set by line and column parameters. The line and column
position is calculated, based on the size and scaling factor for the currently selected font. When text
is outputted to screen it will be displayed from this position. The text position could also be set with
gfx_MoveTo(...); if required to set the text position to an exact pixel location. Note that lines and
columns start from 0. So, line 0, column 0 is the top left corner of the display.

Note: This function sets the TEXT_MARGIN the x value, this is so you can easily left align text using
\n. If you don’t want this, simply set TEXT_MARGIN to 0 using pokeW(TEXT_MARGIN,0).

Example txt_MoveCursor(4, 9);

This example moves the text origin to the 5th line and the 10th column.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 81 of 554 www.4dlabs.com.au

2.4.2 putch(char)

Syntax putch(char);

Arguments char

char Holds a positive value for the required character.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description putch prints single characters to the current output stream, usually the display.

Example var v;

v := 0x39;

putch(v); // print the number 9 to the current display location

putch('\n'); // newline

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 82 of 554 www.4dlabs.com.au

2.4.3 putchXY(xpos, ypos, char)

Syntax putchXY(xpos, ypos, char);

Arguments xpos, ypos, char

xpos Specifies the horizontal position of the character.

ypos Specifies the vertical position of the character.

char Holds a positive value for the required character.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description
putchXY prints a single character at position x, y.

Note: This function will also update the origin.

Example var v;

v := 0x39;

putchXY(10, 20, v); // print the number 9 to x,y (10,20)

putch('\n'); // newline

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 83 of 554 www.4dlabs.com.au

2.4.4 putstr(pointer)

Syntax putstr(string);

Arguments string

string A string constant, a word pointer to a string, a pointer to an array, or a pointer to a

data statement. Note that for a byte aligned RAM string you need to use str_Printf

Returns source

 source Returns the pointer to the item that was printed.

Description putstr and, similarly print([STR] x); operate on constant strings in Flash, or word aligned strings in
RAM.
putstr prints a string to the current output stream, usually the display.

Note: The string constants and data statement pointers are byte aligned.
Note: putstr is more efficient than print for printing single strings.
Note: The output of putstr can be redirected to the communications port, the media, or memory
using the to(...); function.

A string constant is automatically terminated with a zero.

A string in a data statement is not automatically terminated with a zero.

All variables in 4DGL are 16bit, if an array is used for holding 8 bit characters; each array element
packs 1 or 2 characters.

Example //==

// Example #1 – print a string constant

//==

putstr("HELLO\n"); //simply print a string constant at current origin

//==

// Example #2 – print string via pointer

//==

var p; // a var for use as a pointer

p := "String Constant\n"; // assign a string constant to pointer s

putstr(p); // print the string using the pointer

putstr(p+8); // print, offsetting into the string

//==

// Example #3 – printing strings from data table

//==

#DATA

 byte message "Week",0

 word days sun,mon,tue,wed,thu,fri,sat // pointers to data items

 byte sun "Sunday\n\0"

 byte mon "Monday\n\0"

 byte tue "Tuesday\n\0"

 byte wed "Wednesday\n\0"

 byte thu "Thursday\n\0"

 byte fri "Friday\n\0"

 byte sat "Saturday\n\0"

#END

var n;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 84 of 554 www.4dlabs.com.au

putstr

n:=0;

while(n < 7)

 putstr(days[n++]); // print the days

wend

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 85 of 554 www.4dlabs.com.au

2.4.5 putstrXY(xpos, ypos, string)

Syntax putstrXY(xpos, ypos, string);

Arguments xpos, ypos, string

 xpos Specifies the horizontal position of the string.

 ypos Specifies the vertical position of the string.

string A string constant, a word pointer to a string, a pointer to an array, or a pointer to a

data statement. Note that for a byte aligned RAM string you need to use str_Printf in

conjunction with gfx_MoveTo(x,y) command

Returns nothing

Description putstrXY prints a string at position x, y on the display.
Note: The string constants and data statement pointers are byte aligned.

A string constant is automatically terminated with a zero.

A string in a data statement is not automatically terminated with a zero.

All variables in 4DGL are 16bit, if an array is used for holding 8 bit characters; each array element
packs 1 or 2 characters.

Example //==

// Example #1 – print a string constant

//==

putstrXY(5,10, "HELLO\n"); //Print ‘Hello’ at 5,10

//==

// Example #2 – print string via pointer

//==

var p; // a var for use as a pointer

p := "String Constant\n"; // assign a string constant to pointer s

putstr(p); // print the string using the pointer

putstr(5, 10, p+8); // print at 5,10, offsetting into the string

//==

// Example #3 – printing strings from data table

//==

#DATA

 byte message "Week",0

 word days sun,mon,tue,wed,thu,fri,sat // pointers to data items

 byte sun "Sunday\0"

 byte mon "Monday\0"

 byte tue "Tuesday\0"

 byte wed "Wednesday\0"

 byte thu "Thursday\0"

 byte fri "Friday\0"

 byte sat "Saturday\0"

#END

var n; n:=0;

while(n < 7)

 putstrXY(0, n+10, days[n++]); // print the days

wend

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 86 of 554 www.4dlabs.com.au

2.4.6 putstrCentred(xc, yc, string)

Syntax putstr(xc, yc, string);

Arguments xc, yc, string

 xc Specifies the horizontal position of the string.

 yc Specifies the vertical position of the string.

string A string constant, a pointer to a string, a pointer to an array, or a pointer to a data

statement.

Returns nothing

Description putstrCentred prints a string centered at position x, y on the display.

Note: The string constants and data statement pointers are byte aligned.

A string constant is automatically terminated with a zero.

A string in a data statement is not automatically terminated with a zero.

All variables in 4DGL are 16bit, if an array is used for holding 8 bit characters; each array element
packs 1 or 2 characters.

Example putstrCentred(120, 0, "4D Labs\n"); //Print ‘4D Labs’centered at 120,0

Assuming X-resolution = 240, this command will print ‘4D Labs’ in the top-middle of the screen.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 87 of 554 www.4dlabs.com.au

2.4.7 putnum(format, value)

Syntax putnum(format, value);

Argume
nts

format, value

format A constant that specifies the number format.

value The number to be printed.

Number formatting bits supplied by format

 bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 | | | | ___ ___/ __ __/ _____ _____/

 | | | | V V V

 | | | | | | |

 | | | | | | |

 | | | | (nb 0 = 16) | |____BASE (usually 2, 10 or 16)

 | | | | displayed |

 | | | | digit qty |

 | | | | |___reserved

 | | | |

 | | | |

 | | | |______ 1 = leading zeros included

 | | | 0 = leading zeros suppressed

 | | |

 | | |_______ 1 = leading zero blanking

 | | 0 = Show Zeros

 | |

 | |_____ sign bit (0 = signed, 1 = unsigned)

 |

 |______ 1 = space before unsigned number

 0 = no space

Pre-Defined format constants quick reference

DECIMAL UNSIGNED DECIMAL HEX BINARY

DEC DECZ DECZB UDEC UDECZ UDECZB HEX HEXZ HEXZB BIN BINZ BINZB

DEC1 DEC1Z DEC1ZB UDEC1 UDEC1Z UDEC1ZB HEX1 HEX1Z HEX1ZB BIN1 BIN1Z BIN1ZB

DEC2 DEC2Z DEC2ZB UDEC2 UDEC2Z UDEC2ZB HEX2 HEX2Z HEX1ZB BIN2 BIN2Z BIN2ZB

DEC3 DEC3Z DEC3ZB UDEC3 UDEC3Z UDEC3ZB HEX3 HEX3Z HEX1ZB BIN3 BIN3Z BIN3ZB

DEC4 DEC4Z DEC4ZB UDEC4 UDEC4Z UDEC4ZB HEX4 HEX4Z HEX1ZB BIN4 BIN4Z BIN4ZB

DEC5 DEC5Z DEC5ZB UDEC5 UDEC5Z UDEC5ZB BIN5 BIN5Z BIN5ZB

 BIN6 BIN6Z BIN6ZB

 BIN7 BIN7Z BIN7ZB

 BIN8 BIN8Z BIN8ZB

 BIN9 BIN9Z BIN9ZB

 BIN10 BIN10Z BIN10ZB

 BIN11 BIN11Z BIN11ZB

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 88 of 554 www.4dlabs.com.au

 BIN12 BIN12Z BIN12ZB

 BIN13 BIN13Z BIN13ZB

 BIN14 BIN14Z BIN14ZB

 BIN15 BIN15Z BIN15ZB

 BIN16 BIN16Z BIN16ZB

Returns field

 field Returns the the default width of the numeric field (digit count), usually ignored.

Descript
ion

putnum prints a 16bit number in various formats to the current output stream, usually the display.

Example var v;
v := 05678;

putnum(HEX, v); // print the number as hex 4 digits

putnum(BIN, v); // print the number as binary 16 digits

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 89 of 554 www.4dlabs.com.au

2.4.8 print(...)

Syntax print(...);

Arguments See Description

Returns nothing

Description 4DGL has a versatile print(...) statement for formatting numbers and strings. In it's simplest form,
print will simply print a number as can be seen below:

myvar := 100;
print(myvar);

This will print 100 to the current output device (usually the display in TEXT mode). Note that if you
wish to add a string anywhere within a print(...) statement, just place a quoted string expression and
you will be able to mix strings and numbers in a variety of formats. See the following example.

print("the value of myvar is :- ", myvar, "and its 8bit binary representation is:-", [BIN8]myvar);

* Refer the the table in putnum(..) for all the numeric representations available.

The print(...) statement will accept directives passed in square brackets to make it print in various
ways, for instance, if you wish to print a number in 4 digit hex, use the [HEX4] directive placed in front
of the variable to be displayed within the print statement. See the following example.

print("myvar as a 4 digit HEX number is :- ", [HEX4]myvar);

Note that there are 2 print directives that are not part of the numeric set and will be explained
separately. these are the [STR] and [CHR] directives.

The [STR] directive expects a string pointer to follow:

s := "Hello World"; // assign a string constant to s
print("Var 's' points to a string constant at address", s ," which is", [STR] s);

The [CHR] directive prints the character value of a variable.

print("The third character of the string is '", [CHR] *(s+2));
also

print("The value of 'myvar' as an ASCII charater is '", [CHR] myvar);

Note that you can freely mix string pointers, strings, variables and expressions within a print
statement. print(...) can also use the to(...) function to redirect it's output to a different output device
other than the screen using the function (refer to the to(...) statement for further examples).

Example #platform "uLCD-70DT"

/////////////////////

// DATA STATEMENT //

/////////////////////

#DATA

 word myData

 myString1, Bert, Fred, main, myString2, baud, barney,

0x1111,0x2222,0x3333,0x4444

 byte myString1 "Data String OK\n\n",0

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 90 of 554 www.4dlabs.com.au

 byte myString2 "\"(and forward referenced!)\"\n\n",0

 word baud 150,300,600,1200,2400,9600

#END

// this constant is a forward reference

#constant barney 9876

func Fred(var str)

 print("string = ", [STR] str);

endfunc

func Bert(var p1, var p2, var p3)

 print("hello from Bert\np1=",p1,"\np2=",p2, "\np3=",p3,"\n");

 return "Bert was here\n";

endfunc

func main()

 var fn; // a variable for a handle for the function

 txt_Set(FONT_ID, FONT_1);

 fn := myData[1]; //Get function pointer from data statement index

 print([STR] fn(100,200,300));

 // use it in a statement to prove engine ok

 fn := myData[2]; //Get function pointer from data statement index

 fn("ABC\n"); // execute the function

 // just shows where main lives

 print("\naddress of main = code[", myData[3],"]\n\n");

 // remember - a var can be a handle, variable, pointer or vector

 print([STR] myData[0]); // pointer table data reference

 print([STR] myData[4]);

 repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 91 of 554 www.4dlabs.com.au

2.4.9 to(outstream)

Syntax to(outstream);

Arguments outstream

outstream A variable or constant specifying the destination for the putch, putstr, putnum,
print and str_Printf functions.

Predefined Name Constant putch(), putstr(), putnum(), print(), str_Printf() redirection

DSK 0xF802 Output is directed to the most recently open file that has
been opened in write mode.

COM0 0xF804 Output is redirected to the COM0 (default serial) port.

COM1 0xFF05 Output is redirected to the COM1 (default serial) port.

COM2 0xFF06 Output is redirected to the COM2 (default serial) port.

COM3 0xFF07 Output is redirected to the COM3 (default serial) port.

I2C1 0xF820 Output is directed to the I2C1 port.

I2C2 0xF821 Output is directed to the I2C2 port.

I2C3 0xF822 Output is directed to the I2C3 port.

MDA 0xF840

Output is directed to the SD/SDHC or FLASH media.
Warning – be careful writing to a FAT16 formatted card
without checking legal partitioned are else the disk
formatting will be destroyed.

APPEND 0x0000 Output is appended to user array if previous redirection was
to an array.

(memory pointer) Array address Output is redirect to the memory pointer argument.

Returns nothing

Description to() sends the printed output to destinations other than the screen. Normally, print just sends its
output to the display in TEXT mode which is the default, however, the output from print can be sent
to 'streams', eg – COM0, COM1, COM2, or COM3, an open FAT16 file with DSK, to raw media with
MDA (media), or to the I2C ports with I2C1, I2C2 or I2C3.

The to(...) function can also stream to a memory array . Note that once the to(...) function has taken
effect, the stream reverts back to the default stream which is TEXT as soon as putch, putstr, putnum,
print, or str_Printf has completed its action.

The APPEND argument is used to append the printed output to the same place as the previous
redirection. This is most useful for building string arrays, or adding sequential data to a media stream.

Example //==

// Example #1 – putstr redirection

//==

var buf[10]; // a buffer that will hold up to 20 bytes/chars

var s; // a var for use as a pointer

to(buf); putstr("ONE "); // redirect putstr to the buffer

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 92 of 554 www.4dlabs.com.au

to(APPEND); putstr("TWO "); // and add a couple more items

to(APPEND); putstr("THREE\n");

putstr(buf); // print the result to the display

while (media_Init()==0); // wait if no SD/SDHC card detected

media_SetSector(0, 2); // at sector 2

//media_SetAdd(0, 1024); // (alternatively, use media_SetAdd(),

 // lower 9 bits ignored).

to(MDA); putstr("Hello World"); // now write a ascii test string

media_WriteByte('A'); // write a further 3 bytes

media_WriteByte('B');

media_WriteByte('C');

to(MDA); putstr(buf); // write the buffer we prepared earlier

media_WriteByte(0); // terminate with ASCII zero

media_Flush();

media_SetAdd(0, 1024); // reset the media address

while(char:=media_ReadByte())

 to(COM0); putch(char); // print the stored string to the COM port

wend

repeat forever

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 93 of 554 www.4dlabs.com.au

2.4.10 charwidth('char')

Syntax charwidth('char');

Arguments 'char'

 'char' The ascii character for the width calculation.

Returns width

 width Returns the width of a single character in pixel units.

Description charwidth is used to calculate the width in pixel units for a character, based on the currently selected
font.

Example //==

// Example

//==

str := "HELLO\nTHERE"; // note that this string spans 2 lines due

 // to the \n.

width := strwidth(str); // get the width of the string, this will

 // also capture the height.

height := strheight(); // note, invoking strwidth also calcs height

 // which we can now read.

// The string above spans 2 lines, strheight(.) will calculate height

// correctly for multiple lines.

len := strlen(str); // the strlen() function returns the number

 // of characters in a string.

print("\nLength=",len); // NB:- the \n in "HELLO\nTHERE" is counted

 // as a character.

txt_FontID(MS_SanSerif8x12); // select this font

w := charwidth('W'); // get a characters width

h := charheight('W'); // and height

txt_FontID(0); // back to default font

print ("\n'W' is " ,w, " pixels wide"); // show width of a character

 // 'W' in pixel units.

print ("\n'W' is " ,h, " pixels high"); // show height of a character

 // 'W' in pixel units.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 94 of 554 www.4dlabs.com.au

2.4.11 charheight('char')

Syntax charheight('char');

Arguments 'char'

 'char' The ascii character for the height calculation.

Returns width

 width Returns the height of a single character in pixel units.

Description charheight is used to calculate the height in pixel units for a character, based on the currently selected
font.

Example See example in charwidth()

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 95 of 554 www.4dlabs.com.au

2.4.12 strwidth(pointer)

Syntax strwidth(pointer);

Arguments pointer

 pointer The pointer to a zero (0x00) terminated string.

 'pointer' may be a constant or pointer to word aligned variable.

Returns width

 width Returns the width of a string in pixel units, can be multi line.

Description strwidth returns the width of a zero terminated string in pixel units. Note that any string constants
declared in your program are automatically terminated with a zero as an end marker by the compiler.
Any string that you create in the DATA section or MEM section must have a zero added as a terminator
for this function to work correctly.

Example See example in charwidth()

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 96 of 554 www.4dlabs.com.au

2.4.13 strheight()

Syntax strheight();

Arguments none

Returns height

 height Returns the height of a string in pixel units, can be multi line.

Description strheight returns the height of a zero terminated string in pixel units. The strwidth function must be
called first which makes available width and height. Note that any string constants declared in your
program are automatically terminated with a zero as an end marker by the compiler. Any string that
you create in the DATA section or MEM section must have a zero added as a terminator for this
function to work correctly.

Example See example in charwidth()

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 97 of 554 www.4dlabs.com.au

2.4.14 strlen(pointer)

Syntax strlen(pointer);

Arguments pointer

 pointer The pointer to a zero (0x00) terminated string.

Returns length

 length Returns the length of a string in character units.

Description strlen returns the length of a zero terminated string in character units. Note that any string constants
declared in your program are automatically terminated with a zero as an end marker by the compiler.
Any string that you create in the DATA section or MEM section must have a zero added as a terminator
for this function to work correctly.

Example See example in charwidth()

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 98 of 554 www.4dlabs.com.au

2.4.15 unicode_page(charbeg, charend, charoffset)

Syntax unicode_page(charbeg, charend, charoffset);

Arguments charbeg, charend, charoffset

 charbeg Offset of first character in Unicode set.

 charend Offset of ending character in Unicode Set.

 charoffset Offset of first ASCII character in Unicode Set.

Returns count

 count Returns count of characters in the set.

Description After selecting a Unicode image control with txt_FontID, this function is called to set the required
font within the Unicode set. The file "Unicode.inc" contains wrappers for this function, and it is not
normally called directly.

Refer to Unicode documentation ‘4DGL-Unicode-REVx.pdf’ and ‘Unicode.inc’ for further information.

Example See Unicode.inc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 99 of 554 www.4dlabs.com.au

2.4.16 txt_Set(function, value)

Syntax txt_Set(function, value);

Arguments function, value

function The function number determines the required action for various text control functions.

Usually a constant, but can be a variable, array element, or expression. There are pre-

defined constants for each of the functions.

value A variable, array element, expression or constant holding a value for the selected

function.

Returns nothing

Description Given a function number and a value, set the required text control parameter, such as size, colour,
and other formatting controls. This function is extremely useful in a loop to select multiple parameters
from a data statement or a control array. Note also that each function available for txt_Set has a single
parameter 'shortcut' function that has the same effect.
(see the Single parameter short-cuts for the txt_Set functions next page)

function value

Predefined Name Description

0 TEXT_COLOUR Set the text foreground colour Colour 0-65535
Default = LIME

1 TEXT_HIGHLIGHT Set the text background colour Colour 0-65535
Default = BLACK

2 FONT_ID Set the required font.
System_5x7
System_8x8
System_8x12
System_12x16
MS_SanSerif8x12
dejaVuSans9pt
dejaVuSansBold9pt
dejaVuSansCondensed9pt
System_3x6
plotted
EGA 8x12 font

Note: The value could be the name of a custom font included
in a users program in a data statement.

1 or FONT_1
2 or FONT_2
3 or FONT_3
4 or FONT_4
5 or FONT_5
6 or FONT_6
7 or FONT_7
8 or FONT_8
9 or FONT_9
10 or FONT_10
11 or FONT_11

Default = FONT_3

3 TEXT_WIDTH Set the text width multiplier. Text will be printed magnified
horizontally by this factor

1 to 16
Default = 1

4 TEXT_HEIGHT Set the text height multiplier. Text will be printed magnified
vertically by this factor.

1 to 16
Default = 1

5 TEXT_XGAP Set the pixel gap between characters. The gap is in pixel units 0 to 32
Default = 0

6 TEXT_YGAP Set the pixel gap between lines. The gap is in pixel units. 0 to 32
Default = 0

7 TEXT_PRINTDELAY Set the delay between character printing to give a 'teletype'
like effect.

0 to 255
Default = 0msec

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 100 of 554 www.4dlabs.com.au

8 TEXT_OPACITY Selects whether or not the 'background' pixels are drawn
(default mode is OPAQUE)

0 or TRANSPARENT
1 or OPAQUE
Default = 0

9 TEXT_BOLD Sets Bold Text mode for the next string or char. The feature
automatically resets after printing using putstr or print has
completed.

0 or 1 (OFF or ON)

10 TEXT_ITALIC Sets Italic Text mode for the next string or char. The feature
automatically resets after printing using putstr or print has
completed.

0 or 1 (OFF or ON)

11 TEXT_INVERSE Sets Inverse Text mode for the next string or char. The feature
automatically resets after printing using putstr or print has
completed.

0 or 1 (OFF or ON)

12 TEXT_UNDERLINED Sets Underlined Text mode for the next string or char. The
feature automatically resets after printing using putstr or print
has completed.

0 or 1 (OFF or ON)

13 TEXT_ATTRIBUTES Allows a combination of text attributes to be defined together
by 'or'ing the bits together. The feature automatically resets
after printing using putstr or print has completed.

Example:
txt_Set(TEXT_ATTRIBUTES, BOLD | INVERSE); // bold + inverse

Note: bits 0-3 and 8-15 are reserved

16 or BOLD
32 or ITALIC
64 or INVERSE
128 or UNDERLINED

14 TEXT_WRAP Sets the pixel position where text wrap will occur at RHS
The feature automatically resets when screen mode is
changed. If the value is set to 0, text wrap is turned off of the
current screen.
Note:
The value is in pixel units.

0 to n (OFF or Value)

Default = 0

15 TEXT_ANGLE Sets the text angle, only for plotted fonts. The feature
automatically resets when screen mode is changed.

0 to 359 degrees

Single parameter short-cuts for the txt_Set(..) functions

Function Syntax Function Action value

txt_FGcolour(colour) Set the text foreground colour Colour 0-65535
Default = LIME

txt_BGcolour(colour) Set the text background colour Colour 0-65535
Default = BLACK

txt_FontID(id) Set the required font.
System_5x7
System_8x8
System_8x12
System_12x16
MS_SanSerif8x12
dejaVuSans9pt
dejaVuSansBold9pt
dejaVuSansCondensed9pt
System_3x6
plotted
EGA 8x12 font

Note: The value could also be the name of a custom font
included in a users program in a data statement, or the handle

1 or FONT_1
2 or FONT_2
3 or FONT_3
4 or FONT_4
5 or FONT_5
6 or FONT_6
7 or FONT_7
8 or FONT_8
9 or FONT_9
10 or FONT_10
11 or FONT_11

Default = FONT_3

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 101 of 554 www.4dlabs.com.au

returned from file_LoadImageControl() for a uSD based font.

txt_Width(multiplier) Set the text width multiplier. Text will be printed magnified
horizontally by this factor

1 to 16
Default = 1

txt_Height(multiplier) Set the text height multiplier. Text will be printed magnified
vertically by this factor.

1 to 16
Default = 1

txt_Xgap(pixelcount) Set the pixel gap between characters. The gap is in pixel units 0 to 32
Default = 0

txt_Ygap(pixelcount) Set the pixel gap between lines. The gap is in pixel units. 0 to 32
Default = 0

txt_Delay(millisecs) Set the delay between character printing to give a 'teletype'
like effect.

0 to 255
Default = 0msec

txt_Opacity(mode) Selects whether or not the 'background' pixels are drawn
(default mode is OPAQUE)

0 or TRANSPARENT
1 or OPAQUE
Default = 0

txt_Bold(mode) Sets Bold Text mode for the next string or char. The feature
automatically resets after printing using putstr or print has
completed.

0 or 1 (OFF or ON)

txt_Italic(mode) Sets Italic Text mode for the next string or char. The feature
automatically resets after printing using putstr or print has
completed.

0 or 1 (OFF or ON)

txt_Inverse(mode) Sets Inverse Text mode for the next string or char. The feature
automatically resets after printing using putstr or print has
completed.

0 or 1 (OFF or ON)

txt_Underline(mode) Sets Underline Text mode for the next string or char. The
feature automatically resets after printing using putstr or print
has completed.

0 or 1 (OFF or ON)

txt_Attributes(value) Allows a combination of text attributes to be defined together
by 'or'ing the bits together. The feature automatically resets
after printing using putstr or print has completed.

Example:
txt_Set(TEXT_ATTRIBUTES, BOLD | INVERSE); // bold + inverse

Note: bits 0-3 and 8-15 are reserved

16 or BOLD
32 or ITALIC
64 or INVERSE
128 or UNDERLINED

txt_Wrap(value) Sets the pixel position where text wrap will occur at RHS
The feature automatically resets when screen mode is
changed. If the value is set to 0, text wrap is turned off of the
current screen.
Note:
The value is in pixel units.

0 to n (OFF or Value)

Default = 0

txt_Angle(value) Sets the text angle, only for plotted fonts. The feature
automatically resets when screen mode is changed.

0 to 359 degrees

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 102 of 554 www.4dlabs.com.au

2.4.17 txt_FontBank(bank, address)

Syntax txt_FontBank(bank, address);

Arguments bank, address

 bank The bank that the font is stored in

 address The address of the font within the bank

Returns font

 font Returns the current font before the change.

Description Enables the usage of fonts stored in banks. See the FontInBankTest and
BookAntiqua2032FontsInBank1 samples. If a single font is the only thing in a bank its address will be
7, otherwise look in the .lst file from the compile to find the address of the font. Assuming there is
space available multiple fonts can be stored in the same bank.

Example txt_FontBank(FONTBANK_1, 7) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 103 of 554 www.4dlabs.com.au

2.4.18 PutnumXY(x, y, format, value)

Syntax putnumXY(x, y, format, value);

Arguments x, y, format, value

x The x position to start printing the number in.

y The y position to start printing the number in.

format A constant that specifies the number format.

value The number to be printed.

Returns field

 field Returns the the default width of the numeric field (digit count), usually ignored.

Description putnumXY prints a 16bit number in various formats to the current output stream, usually the display
at the specified position. The Formats are the same as for the putnum command

Example var v;

v := 05678;

putnumXY(0, 0, HEX, v); // print the number as hex 4 digits

putnumXY(0, 20, BIN, v); // print the number as binary 16 digits

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 104 of 554 www.4dlabs.com.au

2.5. Ctype Functions

Summary of Functions in this section:

• isdigit(char)

• isxdigit(char)

• isupper(char)

• islower(char)

• isalpha(char)

• isalnum(char)

• isprint(char)

• isspace(char)

• iswhite(char)

• toupper(char)

• tolower(char)

• LObyte(var)

• HIbyte(var)

• ByteSwap(var)

• NybleSwap(var)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 105 of 554 www.4dlabs.com.au

2.5.1 isdigit(char)

Syntax isdigit(char);

Arguments char

 char Specifies the ASCII character for the test.

Returns Status

 Status
0: Character is not as ASCII digit
1: Character is an ASCII digit.

Description Tests the character parameter and returns a 1 if the character is an ASCII digit else returns a 0.
Valid range: "0123456789".

Example func main()

 var ch;

 var stat;

 gfx_Cls();

 txt_Set(FONT_ID, FONT_2);

 print ("Serial Input Test\n");

 print ("Download prog to flash\n");

 print ("Then use debug terminal\n");

 to(COM0); print("serial input test:\n");

 // now just stay in a loop

 repeat

 ch := serin();

 if (ch != -1)

 print([CHR] ch); // if a key was received from PC,

 // print its ascii value

 if (isdigit(ch)) print(“Character is an ASCII digit”);

 if (isxdigit(ch)) print(“Character is ASCII Hexadecimal”);

 if (isupper(ch)) print(“Character is ASCII uppercase letter”);

 if (islower(ch)) print(“Character is ASCII uppercase letter”);

 if (isalpha(ch)) print(“Character is an ASCII uppercase or

 lowercase”);

 if (isalnum(ch)) print(“Character is an ASCII Alphanumeric”);

 if (isprint(ch)) print(“Character is a printable ASCII”);

 if (isspace(ch)) print(“Character is a space type character”);

 endif

 forever

endfunc;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 106 of 554 www.4dlabs.com.au

2.5.2 isxdigit(char)

Syntax isxdigit(char);

Arguments char

 char Specifies the ASCII character for the test.

Returns Status

 Status
0: Character is not as ASCII hexadecimal digit
1: Character is an ASCII hexadecimal digit.

Description Tests the character parameter and returns a 1 if the character is an ASCII hexadecimal digit else returns
a 0.
Valid range: "0123456789ABCDEF".

Example Refer to Sec 2.5.1

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 107 of 554 www.4dlabs.com.au

2.5.3 isupper(char)

Syntax isupper(char);

Arguments char

 char Specifies the ASCII character for the test.

Returns Status

 Status
0: Character is not an ASCII upper case letter.
1: Character is an ASCII upper case letter.

Description Tests the character parameter and returns a 1 if the character is an ASCII upper case letter else returns
a 0.
Valid range: "ABCDEF....WXYZ".

Example Refer to Sec 2.5.1

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 108 of 554 www.4dlabs.com.au

2.5.4 islower(char)

Syntax islower(char);

Arguments char

 char Specifies the ASCII character for the test.

Returns Status

 Status
0: Character is not an ASCII lower case letter
1: Character is an ASCII lower case letter.

Description Tests the character parameter and returns a 1 if the character is an ASCII lower case letter else returns
a 0.
Valid range: "abcd....wxyz".

Example Refer to Sec 2.5.1

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 109 of 554 www.4dlabs.com.au

2.5.5 isalpha(char)

Syntax isalpha(char);

Arguments char

 char Specifies the ASCII character for the test.

Returns Status

 Status
0: Character is not as ASCII lower or upper case letter.
1: Character is an ASCII lower or upper case letter..

Description Tests the character parameter and returns a 1 if the character is an ASCII lower or upper case letter
else returns a 0.
Valid range : "abcd....wxyz", “ABCD....WXYZ”

Example Refer to Sec 2.5.1

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 110 of 554 www.4dlabs.com.au

2.5.6 isalnum(char)

Syntax isalnum(char);

Arguments char

 char Specifies the ASCII character for the test.

Returns Status

 Status
0: Character is not as ASCII Alphanumeric character.
1: Character is an ASCII Alphanumeric character.

Description Tests the character parameter and returns a 1 if the character is an ASCII Alphanumeric else returns a
0.
Valid range : "abcd....wxyz", “ABCD....WXYZ”, “0123456789”

Example Refer to Sec 2.5.1

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 111 of 554 www.4dlabs.com.au

2.5.7 isprint(char)

Syntax isprint(char);

Arguments char

 char Specifies the ASCII character for the test.

Returns Status

 Status
0: Character is not a printable ASCII character.
1: Character is a printable ASCII character.

Description Tests the character parameter and returns a 1 if the character is a printable ASCII character else
returns a 0.
Valid range : 0x20... 0x7F

Example Refer to Sec 2.5.1

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 112 of 554 www.4dlabs.com.au

2.5.8 isspace(char)

Syntax isspace(char);

Arguments char

 char Specifies the ASCII character for the test.

Returns Status

 Status
0: Character is not a space type character.
1: Character is a space type character.

Description Tests the character parameter and returns a 1 if the character is any one of the space type character
else returns a 0.
Valid range : space, formfeed, newline, carriage return, tab, vertical tab.

Example Refer to Sec 2.5.1

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 113 of 554 www.4dlabs.com.au

2.5.9 toupper(char)

Syntax toupper(char);

Arguments char

 char Specifies the ASCII character for the test.

Returns char

 char
“ABCD...WXYZ”: If character is lower case letter.
char: If character is not a lower case letter.

Description Tests the character parameter and if the character is a lower cases letter, it returns the upper case
equivalent else returns the passed char.
Valid range: "abcd ... wxyz".

Example func main()

 var ch, Upconvch, Loconvch;

 var stat;

 gfx_Cls();

 txt_Set(FONT_ID, FONT2);

 print ("Serial Input Test\n");

 print ("Download prog to flash\n");

 print ("Then use debug terminal\n");

 to(COM0); print("serial input test:\n");

 // now just stay in a loop

 repeat

 ch := serin();

 if (ch != -1)

 print([CHR] ch); // if a key was received from PC,

 // print its ascii value

 if (isupper(ch))

 print(“Uppercase ASCII found. Converting to lowercase”);

 Loconvch := tolower(ch);

 endif

 if (islower(ch))

 print(“Lowercase ASCII found. Converting to Uppercase”);

 Upconvch := toupper(ch);

 endif

 endif

 forever

endfunc;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 114 of 554 www.4dlabs.com.au

2.5.10 tolower(char)

Syntax tolower(char);

Arguments char

 char Specifies the ASCII character for the test.

Returns Status

 Status
“abcd...wxyz”: If character is upper case letter.
char: If character is not a upper case letter...

Description Tests the character parameter and if the character is a lower case letter it returns the upper case
equivalent else returns the passed char.
Valid range: "ABCD ... WXYZ".

Example Refer to Sec 2.5.9

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 115 of 554 www.4dlabs.com.au

2.5.11 LObyte(var)

Syntax LObyte(var);

Arguments var

 var User variable.

Returns byte

 byte Returns the lower byte (lower 8 bit) of a 16 bit variable.

Description Returns the lower byte (lower 8 bit) of a 16 bit variable.

Example myvar := LObyte(myvar2);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 116 of 554 www.4dlabs.com.au

2.5.12 HIbyte(var)

Syntax Hibyte(var);

Arguments var

 var User variable.

Returns byte

 byte Returns the upper byte (upper 8 bits) of a 16 bit variable.

Description Returns the upper byte (upper 8 bits) of a 16 bit variable.

Example myvar := HIbyte(myvar2);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 117 of 554 www.4dlabs.com.au

2.5.13 ByteSwap(var)

Syntax ByteSwap(var);

Arguments var

 var User variable.

Returns value

 value Returns the endian swapped value of a 16 bit variable.

Description Returns the swapped upper and lower bytes of a 16 bit variable.

Example myvar := ByteSwap(myvar2);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 118 of 554 www.4dlabs.com.au

2.5.14 NybleSwap(var)

Syntax NybleSwap(var);

Arguments var

 var User variable.

Returns value

 value Returns the 16 bit variable with swapped lower nybles

Description Returns the swapped lower bytes nybles, upper byte retained

Example myvar := ByteSwap(myvar2);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 119 of 554 www.4dlabs.com.au

2.6. Graphics Functions

Summary of Functions in this section:

• gfx_Cls()

• gfx_ChangeColour(oldColour, newColour)

• gfx_Circle(x, y, radius, colour)

• gfx_CircleFilled(x, y, radius, colour)

• gfx_Line(x1, y1, x2, y2, colour)

• gfx_Hline(y, x1, x2, colour)

• gfx_Vline(x, y1, y2, colour)

• gfx_Rectangle(x1, y1, x2, y2, colour)

• gfx_RectangleFilled(x1, y1, x2, y2, colour)

• gfx_RoundRect(x1, y1, x2, y2, rad, colour)

• gfx_Polyline(n, vx, vy, colour)

• gfx_Polygon(n, vx, vy, colour)

• gfx_Triangle(x1, y1, x2, y2, x3, y3, colour)

• gfx_Dot()

• gfx_Bullet(radius)

• gfx_OrbitInit(&x_dest, &y_dest)

• gfx_Orbit(angle, distance)

• gfx_PutPixel(x, y, colour)

• gfx_GetPixel(x, y)

• gfx_MoveTo(xpos, ypos)

• gfx_MoveRel(xoffset, yoffset)

• gfx_IncX()

• gfx_IncY()

• gfx_LineTo(xpos, ypos)

• gfx_LineRel(xpos, ypos)

• gfx_BoxTo(x2, y2)

• gfx_SetClipRegion()

• gfx_Ellipse(x, y, xrad, yrad, colour)

• gfx_EllipseFilled(x, y, xrad, yrad, colour)

• gfx_Button(state, x, y, buttonColour, textColour, font, textWidth, textHeight, text)

• gfx_Button2(state, x, y, width, height, buttonColour, txtColour, text)

• gfx_Button3(state, x, y, width, height, buttonColour, txtColour, text)

• gfx_Panel(state, x, y, width, height, colour)

• gfx_RoundPanel(states, x, y, width, height, radius, bevelwidth, colour)

• gfx_Slider(mode, x1, y1, x2, y2, colour, scale, value)

• gfx_Slider2(mode, x1, y1, width, height, colour, scale, value)

• gfx_ScreenCopyPaste(xs, ys, xd, yd, width, height)

• gfx_RGBto565(RED, GREEN, BLUE)

• gfx_332to565(COLOUR8BIT)

• gfx_565to332(COLOUR)

• gfx_TriangleFilled(x1, y1, x2, y2, x3, y3, colr)

• gfx_PolygonFilled(n, &vx, &vy, colr)

• gfx_Origin(x, y)

• gfx_Get(mode)

• gfx_ClipWindow(x1, y1, x2, y2)

• gfx_Set(function, value)
gfx_Set shortcuts:

• gfx_PenSize(mode)

• gfx_BGcolour(colour)

• gfx_ObjectColour(colour)

• gfx_Clipping(mode)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 120 of 554 www.4dlabs.com.au

• gfx_TransparentColour(colour)

• gfx_Transparency(mode)

• gfx_FrameDelay(delay)

• gfx_ScreenMode(orientation)

• gfx_OutlineColour(colour)

• gfx_Contrast(value)

• gfx_LinePattern(pattern)

• gfx_BevelRadius(radius)

• gfx_BevelWidth(mode)

• gfx_BevelShadow(value)

• gfx_Xorigin(offset)

• gfx_Yorigin(offset)

• gfx_Arc(xc, radius, step, startangle, endangle, mode)

• gfx_CheckBox(state, x, y, width, height, boxColour, textColour, text)

• gfx_RadioButton(state, x, y, width, height, boxColour, textColour, text)

• gfx_FillPattern(patptr, mode)

• gfx_Gradient(style, x1, y1, x2, y2, colour1, colour2)

• gfx_RoundGradient(style, x1, y1, x2, y2, radius, colour1, colour2)

• gfx_PieSlice(cx, cy, spread, radius, step, startangle, endangle, mode)

• gfx_PointWithinBox(x, y, &rect)

• gfx_PointWithinRectangle(x, y, &recta)

• gfx_ReadBresLine(x1, y1, x2, y2, ptr)

• gfx_WriteBresLine(x1, y1, x2, y2, ptr)

• gfx_ReadGRAMarea(x1, y1, x1, y2, ptr)

• gfx_WriteGRAMarea(x1, y1, x2, y2, ptr)

• gfx_Surround(x1, y1, x2, y2, rad1, rad2, oct, colour)

• gfx_Scope(Left, Width, Yzero, n, Xstep, Yamp, Colourbg, &old_y1, &new_y1, Colour1, … &old_y4,
&new_y4, Colour4)

• gfx_RingSegment(x, y, Rad1, Rad2, starta, enda, colour)

• gfx_AngularMeter(value, &MeterRam, &MeterDef)

• gfx_Panel2(state, x, y, width, height, w1, w2, cl, cr)

• gfx_Needle(value, &NeedleRam, &NeedleDef)

• gfx_Dial(value, &DialRam, &DialDef)

• gfx_Gauge(value, &GaugeRam, &GaugeDef)

• gfx_LedDigits(value, &LedDigitRam, &LedDigitDef)

• gfx_LedDigit(x, y, digitsize, oncolour, offcolour, value)

• gfx_Slider5(value, &SliderRam, &SliderDef)

• gfx_Switch(state, &SwitchRam, &SwitchDef)

• gfx_Button4(state, &gfx_ButtonRam, &gfx_ButtonDef)

• gfx_Led(state, &LedRam, &LedDef)

• gfx_Scale(&ScaleRam, &ScaleDef)

• gfx_RulerGauge(value, &RulerGaugeRam, &RulerGaugeDef)

• gfx_GradientShape(GradientRAM, HorzVert, OuterWidth, X, Y, W, H, TLrad, TRrad, BLrad, BRrad,
Darken, OuterColor, OuterType, OuterLevel, InnerColor, InnerType, InnerLevel, Split)

• gfx_GradientColor(Type, Darken, Level, H, Pos, Color)

• gfx_GradTriangleFilled(X0, Y0, X1, Y1, X2, Y2, SolidCol, GradientCol, GradientHeight, GradientY,
GradientLevel, Type)

• gfx_XYrotToVal(x, y, XYROT_EAST, starta, enda, minv, maxv)

• gfx_XYlinToVal(x, y, base, minpos, maxpos, minv, maxv)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 121 of 554 www.4dlabs.com.au

2.6.1 gfx_Cls()

Syntax gfx_Cls();

Arguments none

Returns nothing

Description

Clear the screen using the current background colour. gfx_Cls() command brings some of the settings
back to default; such as,

• Transparency turned OFF

• Outline colour set to BLACK

• Opacity set to OPAQUE

• Pen set to OUTLINE

• Line patterns set to OFF

• Right text margin set to full width

• Text magnifications set to 1

• All origins set to 0:0

The alternative to maintain settings and clear screen is to draw a filled rectangle with the required
background colour.

Example gfx_BGcolour(DARKGRAY);

gfx_Cls();

This example clears the entire display using colour DARKGRAY

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 122 of 554 www.4dlabs.com.au

2.6.2 gfx_ChangeColour(oldColour, newColour)

Syntax gfx_ChangeColour(oldColour, newColour);

Arguments oldColour, newColour

oldColour Specifies the sample colour to be changed within the clipping window.

newColour
Specifies the new colour to change all occurrences of old colour within the clipping

window.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Changes all oldColour pixels to newColour within the clipping area.

Example func main()

 txt_Width(3);

 txt_Height(5);

 gfx_MoveTo(8,20);

 print("TEST"); // print the string

 gfx_SetClipRegion(); // force clipping area to extents of text

 // just printed.

 gfx_ChangeColour(BLACK, RED); // test change of background colour

 repeat forever

endfunc

This example prints a test string, forces the clipping area to the extent of the text that was printed
then changes the background colour.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 123 of 554 www.4dlabs.com.au

2.6.3 gfx_Circle(x, y, radius, colour)

Syntax gfx_Circle(x, y, rad, colour);

Arguments x, y, rad, colour

x, y Specifies the centre of the circle.

rad Specifies the radius of the circle.

colour Specifies the colour of the circle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a circle with centre point x1, y1 with radius r using the specified colour.

NB: The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the circle will be

drawn filled, if PEN_SIZE is set to OUTLINE, the circle will be drawn as an outline. If the circle is drawn

as SOLID, the outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set

to 0, no outline is drawn.

Example // assuming PEN_SIZE is OUTLINE

gfx_Circle(50,50,30, RED);

This example draws a BLUE circle outline centred at x=50, y=50 with a radius of 30 pixel units.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 124 of 554 www.4dlabs.com.au

2.6.4 gfx_CircleFilled(x, y, radius, colour)

Syntax gfx_CircleFilled(x, y, rad, colour);

Arguments x, y, rad, colour

x, y Specifies the centre of the circle.

rad Specifies the radius of the circle.

colour Specifies the fill colour of the circle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a SOLID circle with centre point x1, y1 with radius using the specified colour.

The outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set to 0, no

outline is drawn.

NB:- The PEN_SIZE is ignored, the circle is always drawn SOLID.

Example if(state == TOUCH_RELEASED) // if there's a release;

 gfx_CircleFilled(x, y, 10, RED); // we'll draw a solid red circle

 // of radius=10 on touch release

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 125 of 554 www.4dlabs.com.au

2.6.5 gfx_Line(x1, y1, x2, y2, colour)

Syntax gfx_Line(x1, y1, x2, y2, colour);

Arguments x1, y1, x2, y2, colour

x1, y1 Specifies the starting coordinates of the line.

x2, y2 Specifies the ending coordinates of the line.

colour Specifies the colour of the line.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a line from x1, y1 to x2, y2 using the specified colour. The line is drawn using the current object

colour. The current origin is not altered. The line may be tessellated with the gfx_LinePattern(...)

function.

Example gfx_Line(100, 100, 10, 10, RED);

This example draws a RED line from x1=10, y1=10 to x2=100, y2=100

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 126 of 554 www.4dlabs.com.au

2.6.6 gfx_Hline(y, x1, x2, colour)

Syntax gfx_Hline(y, x1, x2, colour);

Arguments y, x1, x2, colour

y Specifies the vertical position of the horizontal line.

x1, x2 Specifies the horizontal end points of the line.

colour Specifies the colour of the horizontal line.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a fast horizontal line from x1 to x2 at vertical co-ordinate y using colour.

Example gfx_Hline(50, 10, 80, RED);

This example draws a fast RED horizontal line at y=50, from x1=10 to x2=80

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 127 of 554 www.4dlabs.com.au

2.6.7 gfx_Vline(x, y1, y2, colour)

Syntax gfx_Vline(x, y1, y2, colour);

Arguments x, y1, y2, colour

x Specifies the horizontal position of the vertical line.

y1, y2 Specifies the vertical end points of the line.

colour Specifies the colour of the vertical line.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a fast vertical line from y1 to y2 at horizontal co-ordinate x using colour.

Example gfx_Vline(20, 30, 70, RED);

This example draws a fast RED vertical line at x=20, from y1=30 to y2=70

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 128 of 554 www.4dlabs.com.au

2.6.8 gfx_Rectangle(x1, y1, x2, y2, colour)

Syntax gfx_Rectangle(x1, y1, x2, y2, colour);

Arguments x1, y1, x2, y2, colour

x1, y1 Specifies the top left corner of the rectangle.

x2, y2 Specifies the bottom right corner of the rectangle.

colour Specifies the colour of the rectangle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a rectangle from x1, y1 to x2, y2 using the specified colour. The line may be tessellated with

the gfx_LinePattern(...) function.

NB: The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the rectangle will

be drawn filled, if PEN_SIZE is set to OUTLINE, the rectangle will be drawn as an outline. If the

rectangle is drawn as SOLID, the outline colour can be specified with gfx_OutlineColour(...). If

OUTLINE_COLOUR is set to 0, no outline is drawn. The outline may be tessellated with the

gfx_LinePattern(...) function.

Example gfx_Rectangle(10, 10, 30, 30, GREEN);

This example draws a GREEN rectangle from x1=10, y1=10 to x2=30, y2=30

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 129 of 554 www.4dlabs.com.au

2.6.9 gfx_RectangleFilled(x1, y1, x2, y2, colour)

Syntax gfx_RectangleFilled(x1, y1, x2, y2, colour);

Arguments x1, y1, x2, y2, colour

x1, y1 Specifies the top left corner of the rectangle.

x2, y2 Specifies the bottom right corner of the rectangle.

colour Specifies the colour of the rectangle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a SOLID rectangle from x1, y1 to x2, y2 using the specified colour. The line may be tessellated

with the gfx_LinePattern(...) function.

The outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set to 0, no

outline is drawn. The outline may be tessellated with the gfx_LinePattern(...) function.

NB:- The PEN_SIZE is ignored, the rectangle is always drawn SOLID.

Example gfx_RectangleFilled(30,30,80,80, RED);

This example draws a filled RED rectangle from x1=30,y1=30 to x2=80,y2=80

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 130 of 554 www.4dlabs.com.au

2.6.10 gfx_RoundRect(x1, y1, x2, y2, rad, colour)

Syntax gfx_RoundRect(x1, y1, x2, y2, rad, colour);

Arguments x1, y1, x2, y2, rad, colour

x1, y1 Specifies the top left corner of the inner rectangle.

x2, y2 Specifies the bottom right corner of the inner rectangle.

rad
Specifies the corner radius.

This is the distance in pixels extending from the corners of the inner rectangle.

colour Specifies the colour of the rectangle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draw a filled rectangle at the given co-ordinates with optional rounded corners.
If x1 = x2 or y1 = y2 no straight line part is drawn.

The actual width of the round-corners rectangle is computed by: 2*rad + x2 – x1.
The actual height of the round-corners rectangle is computed by: 2*rad + y2 – y1.

Rendering can be obtained with gfx_FillPattern(PATTRN); or gfx_FillPattern(OFF); for no fill pattern
determined by ‘radius’.

Example gfx_RoundRect(30, 30, 80, 80, 5, RED);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 131 of 554 www.4dlabs.com.au

2.6.11 gfx_Polyline(n, vx, vy, colour)

Syntax gfx_Polyline(n, vx, vy, colour);

Arguments n, vx, vy, colour

n
Specifies the number of elements in the x and y arrays specifying the vertices for the

polyline.

vx
Specifies the addresses of the storage of the array of elements for the x coordinates of

the vertices.

vy
Specifies the addresses of the storage of the array of elements for the y coordinates of

the vertices.

colour Specifies the colour for the lines

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Plots lines between points specified by a pair of arrays using the specified colour. The lines may be

tessellated with the gfx_LinePattern(...) function. gfx_Polyline can be used to create complex raster

graphics by loading the arrays from serial input or from MEDIA with very little code requirement.

This function is very similar to the Ploygon function

Example #inherit "4DGL_16bitColours.fnc"

var vx[20], vy[20];

func main()

 vx[0] := 36; vy[0] := 110;

 vx[1] := 36; vy[1] := 80;

 vx[2] := 50; vy[2] := 80;

 vx[3] := 50; vy[3] := 110;

 vx[4] := 76; vy[4] := 104;

 vx[5] := 85; vy[5] := 80;

 vx[6] := 94; vy[6] := 104;

 vx[7] := 76; vy[7] := 70;

 vx[8] := 85; vy[8] := 76;

 vx[9] := 94; vy[9] := 70;

 vx[10] := 110; vy[10] := 66;

 vx[11] := 110; vy[11] := 80;

 vx[12] := 100; vy[12] := 90;

 vx[13] := 120; vy[13] := 90;

 vx[14] := 110; vy[14] := 80;

 vx[15] := 101; vy[15] := 70;

 vx[16] := 110; vy[16] := 76;

 vx[17] := 119; vy[17] := 70;

 // house

 gfx_Rectangle(6,50,66,110,RED); // frame

 gfx_Triangle(6,50,36,9,66,50,YELLOW); // roof

 gfx_Polyline(4, vx, vy, CYAN); // door

 // man

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 132 of 554 www.4dlabs.com.au

 gfx_Circle(85, 56, 10, BLUE); // head

 gfx_Line(85, 66, 85, 80, BLUE); // body

 gfx_Polyline(3, vx+4, vy+4, CYAN); // legs

 gfx_Polyline(3, vx+7, vy+7, BLUE); // arms

 // woman

 gfx_Circle(110, 56, 10, PINK); // head

 gfx_Polyline(5, vx+10, vy+10, BROWN); // dress

 gfx_Line(104, 104, 106, 90, PINK); // left arm

 gfx_Line(112, 90, 116, 104, PINK); // right arm

 gfx_Polyline(3, vx+15, vy+15, SALMON); // dress

 repeat forever

endfunc

This example draws a simple scene

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 133 of 554 www.4dlabs.com.au

2.6.12 gfx_Polygon(n, vx, vy, colour)

Syntax gfx_Polygon(n, vx, vy, colour);

Arguments n, vx, vy, colour

n
Specifies the number of elements in the x and y arrays specifying the vertices for the

polygon.

vx
Specifies the addresses of the storage of the array of elements for the x coordinates of

the vertices.

vy
Specifies the addresses of the storage of the array of elements for the y coordinates of

the vertices.

colour Specifies the colour for the polygon

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Plots lines between points specified by a pair of arrays using the specified colour. The last point is

drawn back to the first point, completing the polygon. The lines may be tessellated with the

gfx_LinePattern(...) function. gfx_Polygon can be used to create complex raster graphics by loading

the arrays from serial input or from MEDIA with very little code requirement.

Example var vx[7], vy[7];

func main()

 vx[0] := 10; vy[0] := 10;

 vx[1] := 35; vy[1] := 5;

 vx[2] := 80; vy[2] := 10;

 vx[3] := 60; vy[3] := 25;

 vx[4] := 80; vy[4] := 40;

 vx[5] := 35; vy[5] := 50;

 vx[6] := 10; vy[6] := 40;

 gfx_Polygon(7, vx, vy, RED);

 repeat forever

endfunc

This example draws a simple polygon

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 134 of 554 www.4dlabs.com.au

2.6.13 gfx_Triangle(x1, y1, x2, y2, x3, y3, colour)

Syntax gfx_Triangle(x1, y1, x2, y2, x3, y3, colour);

Arguments x1, y1, x2, y2, x3, y3, colour

x1, y1 Specifies the first vertices of the triangle.

x2, y2 Specifies the second vertices of the triangle.

x3, y3 Specifies the third vertices of the triangle.

colour Specifies the colour for the triangle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a triangle outline between vertices x1,y1 , x2,y2 and x3,y3 using the specified colour. The line

may be tessellated with the gfx_LinePattern(...) function. Vertices must be specified in an anti-

clockwise fashion.

Example gfx_Triangle(10,10,30,10,20,30,CYAN);

This example draws a CYAN triangular outline with vertices at 10,10 30,10 20,30

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 135 of 554 www.4dlabs.com.au

2.6.14 gfx_Dot()

Syntax gfx_Dot();

Arguments none

Returns nothing

Description Draws a pixel at the current origin using the current object colour.

Example gfx_MoveTo(40,50);

gfx_ObjectColour(0xRED);

gfx_Dot();

This example draws a RED pixel at 40,50

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 136 of 554 www.4dlabs.com.au

2.6.15 gfx_Bullet(radius)

Syntax gfx_Bullet(radius);

Arguments radius

rad Specifies the radius of the bullet.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a circle or 'bullet point' with radius r at at the current origin using the current object colour.

Note: The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the circle will be

drawn filled, if PEN_SIZE is set to OUTLINE, the circle will be drawn as an outline. If the circle is drawn

as SOLID, the outline colour can be specified with gfx_OutlineColour(...).

Example gfx_MoveTo(30, 30);

gfx_Bullet(10); // Draw a 10pixel radius Bullet at x=30, y=30.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 137 of 554 www.4dlabs.com.au

2.6.16 gfx_OrbitInit(&x_dest, &y_dest)

Syntax gfx_OrbitInit(&x_dest, &y_dest);

Arguments x_dest, y_dest

x_dest Specifies the addresses of the storage locations for the calculated Orbit X-coordinate.

y_dest Specifies the addresses of the storage locations for the calculated Orbit Y-coordinate.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Sets up the internal pointers for the gfx_Orbit(..) result variables. The &x_orb and &y_orb parameters

are the addresses of the variables or array elements that are used to store the result from the

gfx_Orbit(..) function.

Example var targetX, targetY;

gfx_OrbitInit(&targetX, &targetY);

This example sets the variables that will receive the result from a gfx_Orbit(..) function call

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 138 of 554 www.4dlabs.com.au

2.6.17 gfx_Orbit(angle, distance)

Syntax gfx_Orbit(angle, distance);

Arguments angle, distance

angle Specifies the angle from the origin to the remote point. The angle is specified in degrees.

distance Specifies the distance from the origin to the remote point in pixel units.

The arguments can be a variable, array element, expression or constant

Returns nothing

 Note: result is stored in the variables that were specified with the gfx_OrbitInit(..) function.

Description Sets Prior to using this function, the destination address of variables for the calculated coordinates

must be set using the gfx_OrbitInit(..) function. The gfx_Orbit(..) function calculates the x, y

coordinates of a distant point relative to the current origin, where the only known parameters are the

angle and the distance from the current origin. The new coordinates are calculated and then placed

in the destination variables that have been previously set with the gfx_OrbitInit(..) function.

Example var targetX, targetY;

gfx_OrbitInit(&targetX, &targetY);

gfx_MoveTo(30, 30);

gfx_Bullet(5) // mark the start point with a small WHITE circle

gfx_Orbit(30, 50); // calculate a point 50 pixels away from origin at

 // 30 degrees

gfx_CircleFilled(targetX,targetY,3,0xF800); // mark the target point

 // with a RED circle

See example comments for explanation.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 139 of 554 www.4dlabs.com.au

2.6.18 gfx_PutPixel(x, y, colour)

Syntax gfx_PutPixel(x, y, colour);

Arguments x, y, colour

x, y Specifies the screen coordinates of the pixel.

colour Specifies the colour of the pixel.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a pixel at position x,y using the specified colour.

Example gfx_PutPixel(32, 32, 0xFFFF);

This example draws a WHITE pixel at x=32, y=32

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 140 of 554 www.4dlabs.com.au

2.6.19 gfx_GetPixel(x, y)

Syntax gfx_GetPixel(x, y);

Arguments x, y

x, y Specifies the screen coordinates of the pixel colour to be returned.

The arguments can be a variable, array element, expression or constant

Returns colour

 colour The 8 or 16bit colour of the pixel (default 16bit).

Description Reads the colour value of the pixel at position x,y.

Example gfx_PutPixel(20, 20, 1234);

r := gfx_GetPixel(20, 20);

print(r);

This example print 1234, the colour of the pixel that was previously placed.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 141 of 554 www.4dlabs.com.au

2.6.20 gfx_MoveTo(xpos, ypos)

Syntax gfx_MoveTo(xpos, ypos);

Arguments xpos, ypos

xpos Specifies the horizontal position of the new origin.

ypos Specifies the vertical position of the new origin.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Moves the origin to a new position.

Note: This function sets the TEXT_MARGIN the x value, this is so you can easily left align text using \n.
If you don’t want this, simply set TEXT_MARGIN to 0 using pokeW(TEXT_MARGIN,0).

Example #inherit "4DGL_16bitColours.fnc"

func help()

 var x, y, state;

 print("TOUCHE ME");

 touch_Set(TOUCH_ENABLE); // lets enable the touch screen

 while(touch_Get(TOUCH_STATUS) != TOUCH_PRESSED); //Wait for touch

 // we'll need a place on the screen to start with

 gfx_MoveTo(touch_Get(TOUCH_GETX), touch_Get(TOUCH_GETY));

 gfx_Set(OBJECT_COLOUR, WHITE); // this will be our line colour

 while(1)

 state := touch_Get(TOUCH_STATUS); // Look for touch activity

 x := touch_Get(TOUCH_GETX); // Grab x and the

 y := touch_Get(TOUCH_GETY); // y coordinates of the touch

 if(state == TOUCH_PRESSED) // if there's a press

 gfx_LineTo(x, y); // Draw a line from previous spot

 endif

 if(state == TOUCH_RELEASED) // if there's a release;

 gfx_CircleFilled(x, y, 10, RED);// Draw a solid red circle

 endif

 if(state == TOUCH_MOVING) // if there's movement

 gfx_PutPixel(x, y, LIGHTGREEN); // we'll draw a green pixel

 endif

 wend // Repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 142 of 554 www.4dlabs.com.au

2.6.21 gfx_MoveRel(xoffset, yoffset)

Syntax gfx_MoveRel(xoffset, yoffset);

Arguments xoffset, yoffset

xoffset Specifies the horizontal offset of the new origin.

yoffset Specifies the vertical offset of the new origin.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Moves the origin to a new position relative to the old position.

Example gfx_MoveTo(10, 20);

gfx_MoveRel(-5, -3);

gfx_Dot();

This example draws a pixel using the current object colour at x=5, y=17

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 143 of 554 www.4dlabs.com.au

2.6.22 gfx_IncX()

Syntax gfx_IncX();

Arguments none

Returns old_origin

 old_origin Returns the current X origin before the increment.

Description Increment the current X origin by 1 pixel unit. The original value is returned before incrementing. The

return value can be useful if a function requires the current point before insetting occurs.

Example var n;

gfx_MoveTo(20,20);

n := 96;

while (n--)

 gfx_ObjectColour(n/3);

 gfx_Bullet(2);

 gfx_IncX();

wend

This example draws a simple rounded vertical gradient.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 144 of 554 www.4dlabs.com.au

2.6.23 gfx_IncY()

Syntax gfx_IncY();

Arguments none

Returns old_Yorigin

 old_Yorigin Returns the current Y origin before the increment.

Description Increment the current Y origin by 1 pixel unit. The original value is returned before incrementing. The

return value can be useful if a function requires the current point before insetting occurs.

Example var n;

gfx_MoveTo(20,20);

n := 96;

while (n--)

 gfx_ObjectColour(n/3);

 gfx_LineRel(20, 0);

 gfx_IncY();

wend

This example draws a simple horizontal gradient using lines.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 145 of 554 www.4dlabs.com.au

2.6.24 gfx_LineTo(xpos, ypos)

Syntax gfx_LineTo(xpos, ypos);

Arguments xpos, ypos

xpos Specifies the horizontal position of the line end as well as the new origin.

ypos Specifies the vertical position of the line end as well as the new origin.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a line from the current origin to a new position. The Origin is then set to the new position. The

line is drawn using the current object colour. The line may be tessellated with the gfx_LinePattern(...)

function.

Example gfx_MoveTo(10, 20);

gfx_LineTo(60, 70);

This example draws a line using the current object colour between x1=10,y1=20 and x2=60,y2=70.
The new origin is now set at x=60,y=70.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 146 of 554 www.4dlabs.com.au

2.6.25 gfx_LineRel(xpos, ypos)

Syntax gfx_LineRel(xpos, ypos);

Arguments xpos, ypos

xpos Specifies the horizontal end point of the line.

ypos Specifies the vertical end point of the line.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a line from the current origin to a new position. The line is drawn using the current object

colour. The current origin is not altered. The line may be tessellated with the gfx_LinePattern(...)

function.

Example gfx_LinePattern(0b1100110011001100);

gfx_MoveTo(10, 20);

gfx_LineRel(50, 50);

This example draws a tessellated line using the current object colour between 10,20 and 50,50.
Note: that gfx_LinePattern(0); must be used after this to return line drawing to normal solid lines.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 147 of 554 www.4dlabs.com.au

2.6.26 gfx_BoxTo(x2, y2)

Syntax gfx_BoxTo(x2, y2);

Arguments x2, y2

x2,y2 Specifies the diagonally opposed corner of the rectangle to be drawn, the top left corner

(assumed to be x1, y1) is anchored by the current origin.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a rectangle from the current origin to the new point using the current object colour. The top

left corner is anchored by the current origin (x1, y1), the bottom right corner is specified by x2, y2.

Note: The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the rectangle will

be drawn filled, if PEN_SIZE is set to OUTLINE, the rectangle will be drawn as an outline. If the circle

is drawn as SOLID, the outline colour can be specified with gfx_OutlineColour(...). If

OUTLINE_COLOUR is set to 0, no outline is drawn.

Example gfx_MoveTo(40,40);

n := 10;

while (n--)

 gfx_BoxTo(50,50);

 gfx_BoxTo(30,30);

wend

This example draws 2 boxes, anchored from the current origin.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 148 of 554 www.4dlabs.com.au

2.6.27 gfx_SetClipRegion()

Syntax gfx_SetClipRegion();

Arguments none

Returns nothing

Description Forces the clip region to the extent of the last text that was printed, or the last image that was shown.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 149 of 554 www.4dlabs.com.au

2.6.28 gfx_Ellipse(x, y, xrad, yrad, colour)

Syntax gfx_Ellipse(x, y, xrad, yrad, colour);

Arguments x, y, xrad, yrad, colour

x, y specifies the horizontal and vertical position of the centre of ellipse

xrad, yrad Specifies x-radius and y-radius of the ellipse.

colour Specifies the colour for the lines

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Plots a coloured Ellipse on the screen at centre x,y with xradius = xrad and yradius = yrad.

if PenSize = 0 Ellipse is Solid

if PenSize = 1 Ellipse is Outline

Example gfx_Ellipse(200,80,5,10,YELLOW);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 150 of 554 www.4dlabs.com.au

2.6.29 gfx_EllipseFilled(x, y, xrad, yrad, colour)

Syntax gfx_EllipseFilled(x, y, xrad, yrad, colour);

Arguments x, y, xrad, yrad, colour

x, y specifies the horizontal and vertical position of the centre of ellipse

xrad, yrad Specifies x-radius and y-radius of the ellipse.

colour Specifies the colour for the lines

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Plots a solid coloured Ellipse on the screen at centre x,y with xradius = xrad and yradius = yrad.

Example gfx_EllipseFilled(200,110,10,5,GREEN);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 151 of 554 www.4dlabs.com.au

2.6.30 gfx_Button(state, x, y, buttonColour, txtColour, font, txtWidth txtHeight, text)

Syntax gfx_Button(state, x, y, buttonColour, txtColour, font, txtWidth, txtHeight, text);

Arguments state, x, y, buttonColour, txtColour, font, txtWidth, txtHeight, text

state 0 = Button pressed; 1 = Button raised.

x, y Specifies the top left corner position of the button on the screen.

buttonColour Button colour

txtColour Text Colour

font Specifies the Font ID.

txtWidth Specifies the width of the text. This value is the font width multiplier and minimum

value must be 1.

txtHeight Specifies the height of the text. This value is the font height multiplier and minimum

value must be 1.

text Specifies the text string. The text string must be within the range of printable ascii

character set. The string may have \n characters embedded to create a multiline

button.

Returns nothing

Description Draws a 3 dimensional Text Button at screen location defined by x, y parameters (top left corner). The

size of the button depends on the font, width, height and length of the text. The button can contain

multiple lines of text by having the \n character embedded in the string for the end of line marker. In

this case, the widest text in the string sets the overall width, and the height of the button is set by the

number of text lines. In the case of multiple lines, each line is left justified. If you wish to centre or

right justify the text, you will need to prepare the text string according to your requirements.

Example #constant LEFT 30

#constant TOP 150

#constant TEXTWIDTH 2

#constant TEXTHEIGHT 2

//---

func main()

// Draw a button as a Text Box (indented)

gfx_Button(DOWN, 0, 30, GREEN, WHITE, FONT_4, TEXTWIDTH, TEXTHEIGHT,

"4DGL-Demo");

touch_Set(TOUCH_ENABLE);

repeat

 // Draw the Push Button (raised)

 gfx_Button(UP, LEFT, TOP, BLUE, RED, FONT_4, TEXTWIDTH,

 TEXTHEIGHT, " PRESS ");

 // set touch detect region to that of the push button

 touch_DetectRegion(LEFT, TOP, gfx_Get(RIGHT_POS),

 gfx_Get(BOTTOM_POS));

 // Wait until the button is pressed

 while(touch_Get(TOUCH_STATUS) != TOUCH_PRESSED);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 152 of 554 www.4dlabs.com.au

 // now redraw the Push Button (depressed)

 gfx_Button(DOWN, LEFT, TOP, BLUE, WHITE, FONT_4, TEXTWIDTH,

 TEXTHEIGHT, " PRESS ");

 // Wait until the button is pressed

 while(touch_Get(TOUCH_STATUS) != TOUCH_RELEASED);

forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 153 of 554 www.4dlabs.com.au

2.6.31 gfx_Button2(state, x, y, width, height, buttonColour, txtColour, text)

Syntax gfx_Button2(mode, x, y, width, height, buttoncolour, textcolour, text);

Arguments mode, x, y, width, height, buttoncolour, textcolour, text

mode 0 = Button pressed; 1 = Button raised.

x, y Specifies the top left corner position of the button on the screen.

width Specifies the width of the button.

height Specifies the height of the button.

buttonColour Button colour

txtColour Text Colour

text Specifies the text string. The text string must be within the range of printable ascii

character set. The string may have \n characters embedded to create a multiline

button.

Returns nothing

Description Draws a 3 dimensional Text Button at screen location defined by x, y parameters (top left corner). The

size of the button is defined by the width and height parameters. The text is centred within those

bounds. The button has square corners.

Example #constant LEFT 30

#constant TOP 150

#constant BWIDTH 50

#constant BHEIGHT 50

//---

func main()

touch_Set(TOUCH_ENABLE);

repeat

 // Draw the Push Button (raised)

 gfx_Button2(UP, LEFT, TOP, BWIDTH, BHEIGHT, BLUE, RED,

 " PRESS ");

 // set touch detect region to that of the push button

 touch_DetectRegion(LEFT, TOP, gfx_Get(RIGHT_POS),

 gfx_Get(BOTTOM_POS));

 // Wait until the button is pressed

 while(touch_Get(TOUCH_STATUS) != TOUCH_PRESSED);

 // now redraw the Push Button (depressed)

 gfx_Button2(DOWN, LEFT, TOP, BWIDTH, BHEIGHT, BLUE, RED,

 " PRESS ");

 // Wait until the button is pressed

 while(touch_Get(TOUCH_STATUS) != TOUCH_RELEASED);

forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 154 of 554 www.4dlabs.com.au

2.6.32 gfx_Button3(state, x, y, width, height, buttonColour, txtColour, text)

Syntax gfx_Button3(mode, x, y, width, height, buttoncolour, textcolour, text);

Arguments mode, x, y, width, height, buttoncolour, textcolour, text

mode 0 = Button pressed; 1 = Button raised.

x, y Specifies the top left corner position of the button on the screen.

width Specifies the width of the button.

height Specifies the height of the button.

buttonColour Button colour

txtColour Text Colour

text Specifies the text string. The text string must be within the range of printable ascii

character set. The string may have \n characters embedded to create a multiline

button.

Returns nothing

Description Draws a 3 dimensional Text Button at screen location defined by x, y parameters (top left corner). The

size of the button is defined by the width and height parameters. The text is centred within those

bounds. The button has rounded corners depending gfx_BevelRadius().

Example #constant LEFT 30

#constant TOP 150

#constant BWIDTH 50

#constant BHEIGHT 50

//---

func main()

touch_Set(TOUCH_ENABLE);

repeat

 // Draw the Push Button (raised)

 gfx_Button3(UP, LEFT, TOP, BWIDTH, BHEIGHT, BLUE, RED,

 " PRESS ");

 // set touch detect region to that of the push button

 touch_DetectRegion(LEFT, TOP, gfx_Get(RIGHT_POS),

 gfx_Get(BOTTOM_POS));

 // Wait until the button is pressed

 while(touch_Get(TOUCH_STATUS) != TOUCH_PRESSED);

 // now redraw the Push Button (depressed)

 gfx_Button3(DOWN, LEFT, TOP, BWIDTH, BHEIGHT, BLUE, RED,

 " PRESS ");

 // Wait until the button is pressed

 while(touch_Get(TOUCH_STATUS) != TOUCH_RELEASED);

forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 155 of 554 www.4dlabs.com.au

2.6.33 gfx_Panel(state, x, y, width, height, Colour)

Syntax gfx_Panel(state, x, y, width, height, Colour);

Arguments state, x, y, width, height, colour

state 0 = recessed; 1 = raised.

x, y Specifies the top left corner position of the panel on the screen.

width Specifies the width of the panel.

height Specifies the Height of the panel.

Colour Specifies the colour of the panel.

Returns nothing

Description Draws a 3 dimensional rectangular panel at a screen location defined by x, y parameters (top left

corner). The size of the panel is set with the width and height parameters. The colour is defined by

colour The state parameter determines the appearance of the panel, 0 = recessed, 1 = raised.

Example #constant LEFT 15

#constant TOP 15

#constant WIDTH 100

#constant HEIGHT 100

func main()

 // Draw a panel

 gfx_Panel(RAISED, LEFT, TOP, WIDTH, HEIGHT, GRAY);

 repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 156 of 554 www.4dlabs.com.au

2.6.34 gfx_RoundPanel(state, x, y, width, height, radius, bevelwidth, Colour)

Syntax gfx_Panel(state, x, y, width, height, radius, bevelwidth, Colour);

Arguments state, x, y, width, height, radius, bevelwidth, Colour

state 0 = recessed; 1 = raised; 2 = hide (draw object in background colour)

x, y Specifies the top left corner position of the panel on the screen.

width Specifies the width of the panel.

height Specifies the Height of the panel.

radius Specifies the corner radius.

bevelwidth Set Panel bevel width 0-15 pixels.

Colour Specifies the colour of the panel.

Returns nothing

Description Draws a 3 dimensional rounded rectangular panel at a screen location defined by x, y parameters (top

left corner). Width and height may be zero allowing the function to be used for rounded panels,

rounded buttons, and circular buttons.

Bounding rectangle is x1-radius-bevelwidth, y1-radius-bevelwidth, x2+radius+bevelwidth,

y2+radius+bevelwidth.

Example gfx_RoundPanel(PANEL_RAISED, 100, 100, 30, 20, GRAY);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 157 of 554 www.4dlabs.com.au

2.6.35 gfx_Slider2(mode, x1, y1, width, height, colour, scale, value)

Syntax gfx_Slider(mode, x1, y1, width, height, colour, scale, value);

Arguments mode, x1, y1, x2, y2, colour, scale, value

mode mode = 0 : Slider Indented, mode = 1 : Slider Raised, mode 2, Slider Hidden (background

colour).

x1, y1 Specifies the top left corner position of the slider on the screen.

width Specifies the width of the slider on the screen.

height Specifies the height of the slider on the screen.

colour Specifies the colour of the Slider bar.

scale scale = n : sets the full scale range of the slider for the thumb from 0 to n.

value value = m : sets the relative position of the thumb 0 <= m <= n

Returns

If the value parameter was a positive number (i.e:- value is a proportion of the scale parameter), the
true (implied x or y axis) position of the thumb is returned.
If the value parameter was a negative number (i.e:- thumb is being set to an ABSolute graphics
position), the actual slider value (which is a proportion of the scale parameter) is returned.

Description Draws a vertical or horizontal slider bar on the screen. The gfx_Slider function has several different

modes of operation. In order to minimise the amount of graphics functions we need, all modes of

operation are selected naturally depending on the parameter values.

Selection rules:

1a] if width > height, slider is horizontal

1b] if height <= width, slider is horizontal

2a] If value is positive, thumb is set to the position that is the proportion of value to the scale

parameter.(used to set the control to the actual value of a variable)

2b] If value is negative, thumb is driven to the graphics position set by the ABSolute of value value.

(used to set thumb to its actual graphical position (usually by touch screen)

3] The thumb colour is determine by gfx_Set(OBJECT_COLOUR, value); , however, if the current object

colour is BLACK, a darkened shade of the colour parameter is used for the thumb .

Example func drawRedSlider()

 gfx_Slider(0,rSlider[0],rSlider[1],rSlider[2],rSlider[3],RED,255,

 valR);

 txt_MoveCursor(1,12);

 txt_Set(TEXT_OPACITY, OPAQUE);

 txt_Set(TEXT_COLOUR, RED);

 print (" ");

 txt_MoveCursor(1,12);

 print ([DEC] valR);

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 158 of 554 www.4dlabs.com.au

2.6.36 gfx_ScreenCopyPaste(xs, ys, xd, yd, width, height)

Syntax gfx_ScreenCopyPaste(xs, ys, xd, yd, width, height);

Arguments xs, ys, xd, yd, width, height

xs, ys Specifies the horizontal and vertical position of the top left corner of the area to be copied

(source).

xd, yd Specifies the horizontal and vertical position of the top left corner of where the paste is

to be made (destination).

width Specifies the width of the copied area.

height Specifies the height of the copied area.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Copies an area of a screen from xs, ys of size given by width and height parameters and pastes it to

another location determined by xd, yd.

Example gfx_ScreenCopyPaste(10,10, 100, 100, 40, 40);

// Copies 40x40 pixels originating from point (10,10) to (100,100);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 159 of 554 www.4dlabs.com.au

2.6.37 gfx_Slider(mode, x1, y1, x2, y2, colour, scale, value)

Syntax gfx_Slider(mode, x1, y1, x2, y2, colour, scale, value);

Arguments mode, x1, y1, x2, y2, colour, scale, value

mode mode = 0 : Slider Indented, mode = 1 : Slider Raised, mode 2, Slider Hidden (background

colour).

x1, y1 Specifies the top left corner position of the slider on the screen.

x2, y2 Specifies the bottom right corner position of the slider on the screen.

colour Specifies the colour of the Slider bar.

Scale scale = n : sets the full scale range of the slider for the thumb from 0 to n.

Value if value positive, sets the relative position of the thumb on the slider bar, else set thumb

to ABS position of the negative number.

Returns

If the value parameter was a positive number (i.e:- value is a proportion of the scale parameter), the
true (implied x or y axis) position of the thumb is returned.

If the value parameter was a negative number (i.e:- thumb is being set to an ABSolute graphics
position), the actual slider value (which is a proportion of the scale parameter) is returned.

Description Draws a vertical or horizontal slider bar on the screen. The gfx_Slider function has several different

modes of operation. In order to minimise the amount of graphics functions we need, all modes of

operation are selected naturally depending on the parameter values.

Selection rules:

1a] if x2-x1 > y2-y1 slider is assumed to be horizontal (ie: if width > height, slider is horizontal)

1b] if x2-x1 <= y2-y1 slider is assumed to be vertical (ie: if height <= width, slider is horizontal)

2a] If value is positive, thumb is set to the position that is the proportion of value to the scale

parameter.(used to set the control to the actual value of a variable)

2b] If value is negative, thumb is driven to the graphics position set by the ABSolute of value value.

(used to set thumb to its actual graphical position (usually by touch screen)

3] The thumb colour is determine by gfx_Set(OBJECT_COLOUR, value); , however, if the current object

colour is BLACK, a darkened shade of the colour parameter is used for the thumb .

 func drawRedSlider()

 gfx_Slider(0,rSlider[0],rSlider[1],rSlider[2],rSlider[3],RED,255,

 valR);

 txt_MoveCursor(1,12);

 txt_Set(TEXT_OPACITY, OPAQUE);

 txt_Set(TEXT_COLOUR, RED);

 print (" ");

 txt_MoveCursor(1,12);

 print ([DEC] valR);

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 160 of 554 www.4dlabs.com.au

2.6.38 gfx_RGBto565(RED, GREEN, BLUE)

Syntax gfx_RGBto565(RED, GREEN, BLUE);

Arguments RED, GREEN, BLUE

RED 8bit colour value for RED.

GREEN 8bit colour value for GREEN. .

BLUE 8bit colour value for BLUE.

The arguments can be a variable, array element, expression or constant

Returns Returns the 16bit (RED: 5, GREEN: 6, BLUE: 5 format) colour value.

Description Returns the 16bit (RED: 5, GREEN: 6, BLUE: 5 format) colour value of a 24bit (RED: 8, GREEN: 8, BLUE:

8 format) colour.

Example var colorRGB;

colorRGB := gfx_RGBto565(170, 126, 0);

// convert 8bit Red, Green and Blue color values to 16bit 565 color value

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 161 of 554 www.4dlabs.com.au

2.6.39 gfx_332to565(COLOUR8BIT)

Syntax gfx_332to565(COLOUR8BIT);

Arguments COLOUR8BIT

 COLOUR8BIT 8bit colour value. 3bits for RED, 3bits for GREEN, 2bits for BLUE.

Returns Returns the 16bit (RED: 5, GREEN: 6, BLUE: 5 format) value

Description Returns the 16bit (RED: 5, GREEN: 6, BLUE: 5 format) value of an 8bit (RED: 3, GREEN: 3, BLUE: 2

format) colour

Example var color565;

color565 := gfx_332to565(0b11010100);

// Convert 8bit 332 color value to 16bit 565 color value

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 162 of 554 www.4dlabs.com.au

2.6.40 gfx_565to332(COLOUR)

Syntax gfx_565to332(COLOUR);

Arguments COLOUR16BIT

 COLOUR16BIT 16bit colour value. 5bits for RED, 6bits for GREEN, 5bits for BLUE.

Returns Returns the 8bit (RED: 3, GREEN: 3, BLUE: 2 format) value

Description Returns the 8bit (RED: 3, GREEN: 3, BLUE: 2 format) value of a 16bit (RED: 5, GREEN: 6, BLUE: 5 format)

colour.

 var color332;

color332 := gfx_565to332(0x7F00);

// Convert 16bit 565 color value to 8bit 332 color value

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 163 of 554 www.4dlabs.com.au

2.6.41 gfx_TriangleFilled(x1, y1, x2, y2, x3, y3, colour)

Syntax gfx_TriangleFilled(x1, y1, x2, y2, x3, y3, colour);

Arguments x1, y1, x2, y2, x3, y3, colour

x1, y1 Specifies the first vertices of the triangle.

x2, y2 Specifies the second vertices of the triangle.

x3, y3 Specifies the third vertices of the triangle.

colour Specifies the colour for the triangle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a Solid triangle between vertices x1,y1 , x2,y2 and x3,y3 using the specified colour.

Vertices must be specified in an anti-clockwise fashion.

Example gfx_TriangleFilled(10,10,30,10,20,30,CYAN);

This example draws a CYAN Solid triangle with vertices at 10,10 30,10 20,30

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 164 of 554 www.4dlabs.com.au

2.6.42 gfx_PolygonFilled(n, vx, vy, colour)

Syntax gfx_PolygonFilled(n, vx, vy, colour);

Arguments n, vx, vy, colour

n
Specifies the number of elements in the x and y arrays specifying the vertices for the

polygon.

vx
Specifies the addresses of the storage of the array of elements for the x coordinates of

the vertices.

vy
Specifies the addresses of the storage of the array of elements for the y coordinates of

the vertices.

colour Specifies the colour for the polygon

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a solid Polygon between specified vertices: x1,y1 x2,y2 ... xn,yn using the specified colour. The

last point is drawn back to the first point, completing the polygon. Vertices must be minimum of 3

and can be specified in any fashion.

Example var vx[7], vy[7];

func main()

 vx[0] := 10; vy[0] := 10;

 vx[1] := 35; vy[1] := 5;

 vx[2] := 80; vy[2] := 10;

 vx[3] := 60; vy[3] := 25;

 vx[4] := 80; vy[4] := 40;

 vx[5] := 35; vy[5] := 50;

 vx[6] := 10; vy[6] := 40;

 gfx_PolygonFilled(7, vx, vy, RED);

 repeat forever

endfunc

This example draws a simple filled polygon

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 165 of 554 www.4dlabs.com.au

2.6.43 gfx_Origin(x, y)

Syntax gfx_Origin(x, y);

Arguments x, y

 x, y Specifies the horizontal and vertical position of the top left corner of the clipping window.

Returns nothing

Description Sets relative screen offset for horizontal and vertical for the top left corner for graphics objects.

Example gfx_Origin(10, 20); // Sets origin position at (10,20)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 166 of 554 www.4dlabs.com.au

2.6.44 gfx_Get(mode)

Syntax gfx_Get(mode);

Arguments mode

mode mode = 0 : Current orientations Max X Value (X_MAX)

mode = 1 : Current orientations Max Y Value (Y_MAX)

mode = 2 : Left location of Object

mode = 3 : Top location of Object

mode = 4 : Right location of Object

mode = 5 : Bottom location of Object

mode = 6 : Get current internal X position

mode = 7 : Get current internal Y position

Returns

Mode0
Returns the maximum horizontal value of the display.

Mode1
Returns the maximum vertical value of the display.

Mode2
Returns the left location of the last drawn object such as a slider or button or an image/video.
Mode3
Returns the top location of the last drawn object such as a slider or button or an image/video.
Mode4
Returns the right location of the last drawn object such as a slider or button or an image/video.
Mode5
Returns the bottom location of the last drawn object such as a slider or button or an image/video.
Mode6
Returns the internal X position that was set with MoveTo(x, y); or gfx_Set(X_ORG, pos);
Mode7
Returns the internal Y position that was set with MoveTo(x, y); or gfx_Set(X_ORG, pos);

Description Returns various graphics parameters to caller.

Example var := gfx_Get(X_MAX); //Returns the maximum horizontal resolution of the display

var := gfx_Get(0);
var := gfx_Get(Y_MAX); //Returns the maximum vertical resolution of the display

var := gfx_Get(1);
var := gfx_Get(RIGHT_POS); //Returns the right location of the last drawn object

 //that only has top, left parameters such as a button

 // or an image/video.

var := gfx_Get(2);
var := gfx_Get(BOTTOM_POS); //Returns the bottom location of the last drawn object

 //that only has top, left parameters such as a button

 //or an image/video.

var := gfx_Get(3);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 167 of 554 www.4dlabs.com.au

2.6.45 gfx_ClipWindow(x1, y1, x2, y2)

Syntax gfx_ClipWindow(x1, y1, x2, y2);

Arguments x1, y1, x2, y2

x1, y1 Specifies the horizontal and vertical position of the top left corner of the clipping window.

x2, y2 Specifies the horizontal and vertical position of the bottom right corner of the clipping

window.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Specifies a clipping window region on the screen such that any objects and text placed onto the screen

will be clipped and displayed only within that region. For the clipping window to take effect, "Clipping"

setting must be enabled separately using gfx_Set(CLIPPING, ON) or the shortcut gfx_Clipping(ON).

Example var n;

gfx_ClipWindow(10, 10, 50, 50)

n := 50000;

while(n--)

 gfx_PutPixel(RAND()%100, RAND()%100, RAND());

wend

repeat forever

This example will draw 50000 random colour pixels, only the pixels within the clipping area will be
visible

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 168 of 554 www.4dlabs.com.au

2.6.46 gfx_Set(function, value)

Syntax gfx_Set(function, value);

Arguments function, value

function The function number determines the required action for various graphics control

functions. Usually a constant, but can be a variable, array element, or expression. There

are pre-defined constants for each of the functions.

value A variable, array element, expression or constant holding a value for the selected

function.

Returns nothing

Description Given a function number and a value, set the required graphics control parameter, such as size, colour,

and other parameters. (See the Single parameter short-cuts for the gfx_Set functions below). It is

strongly recommended to use the pre-defined constants rather than the mode numbers.

Note: Although it is often required to be able to set graphics functions with a single function call for

graphics engine related functions, there is a complete set of single parameter shortcut functions that

have exactly the same function as each of the gfx_Set modes and saves 1 parameter, i.e. uses less

memory.

function value

Predefined Name Description

PEN_SIZE Set the draw mode for gfx_LineTo, gfx_LineRel, gfx_Dot,
gfx_Bullet and gfx_BoxTo (default mode is OUTLINE)
nb:- pen size is set to OUTLINE for normal operation

0 or SOLID
1 or OUTLINE

BACKGROUND_COLOUR Set the screen background colour Colour, 0-65535

OBJECT_COLOUR Generic colour for gfx_LineTo(...), gfx_LineRel(...), gfx_Dot(),
gfx_Bullet(...) and gfx_BoxTo(...)

Colour, 0-65535

CLIPPING Turns clipping on/off.
The clipping points are set with gfx_ClipWindow(...) and
must be set first.

1 or 0 (ON or OFF)

TRANSPARENT_COLOUR Colour that needs to be made transparent. Colour, 0-65535

TRANSPARENCY Turn the transparency ON or OFF. Transparency is
automatically turned OFF after the next image or video
command.

1 or 0 (ON or OFF)

FRAME_DELAY Set the inter frame delay for media_Video(...) 0 to 255msec

SCREEN_MODE Set required screen behaviour/orientation.

0 or LANDSCAPE
1 or LANDSCAPE _R
2 or PORTRAIT
3 or PORTRAIT_R

OUTLINE_COLOUR Outline colour for rectangles and circles
(set to 0 for no effect)

Colour, 0-65535

CONTRAST LCD MODULES:
contrast 0 = display OFF, 1-15 = contrast level (Actually
backlight brightness)

0 or OFF
1 to 15 for levels

LINE_PATTERN Sets the line draw pattern for line drawing. If set to zero, lines
are solid, else each '1' bit represents a pixel that is turned off.

0 or OFF
1 to 0xFFFF

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 169 of 554 www.4dlabs.com.au

Example:
gfx_Set(LINE_PATTERN, 0b1111000011110000);
// draw dotted line

0 bits for pixels on
1 bits for pixels off

COLOUR_MODE Sets 8 or 16bit colour mode
Function not available, fixed as 16bit mode.

0 or COLOUR16
1 or COLOUR8

BEVEL_WIDTH Set Button Bevel Width, 0 pixel to 15pixels. 0 None
1 to 15 pixels

BEVEL_SHADOW graphics button bevel shadow depth 0 None
1 to 15 pixels

X_ORIGIN sets the origin of drawn objects to a position other than 0,0

Y_ORIGIN sets the origin of drawn objects to a position other than 0,0

DISPLAY_PAGE Choose Page to be displayed. Applies to 4.3” products with
a Solomon SSD1961 and SSD1961 Driver IC only, with a 4.3”
display only, such as uLCD-43D/DT/DCT series and gen4-
uLCD-43D/DT/DCT series of displays. Please refer to module
datasheets for information on what SSD196x is present on
your module.
Note, SSD1961 has 2 Pages, SSD1963 has 3 pages.

0 or 1 for SSD1961
0, 1 or 2 for SSD1963

READ_PAGE Choose Page to be read. Applies to 4.3” products with a
Solomon SSD1961 and SSD1961 Driver IC only, with a 4.3”
display only, such as uLCD-43D/DT/DCT series and gen4-
uLCD-43D/DT/DCT series of displays. Please refer to module
datasheets for information on what SSD196x is present on
your module.
Note, SSD1961 has 2 Pages, SSD1963 has 3 pages.

0 or 1 for SSD1961
0, 1 or 2 for SSD1963

WRITE_PAGE Choose Page to be written. Applies to 4.3” products with a
Solomon SSD1961 and SSD1961 Driver IC only, with a 4.3”
display only, such as uLCD-43D/DT/DCT series and gen4-
uLCD-43D/DT/DCT series of displays. Please refer to module
datasheets for information on what SSD196x is present on
your module.
Note, SSD1961 has 2 Pages, SSD1963 has 3 pages.

0 or 1 for SSD1961
0, 1 or 2 for SSD1963

Single parameter short-cuts for the gfx_Set(..) functions

Function Syntax Function Action value

gfx_PenSize(mode) Set the draw mode for gfx_LineTo, gfx_LineRel, gfx_Dot,
gfx_Bullet and gfx_BoxTo
Note: pen size is set to OUTLINE for normal operation
(default).

0 or SOLID
1 or OUTLINE

gfx_BGcolour(colour) Set the screen background colour Colour 0-65535

gfx_ObjectColour(colour) Generic colour for gfx_LineTo(...), gfx_LineRel(...),
gfx_Dot(), gfx_Bullet(... and gfx_BoxTo

Colour 0-65535

gfx_Clipping(mode) Turns clipping on/off.
The clipping points are set with gfx_ClipWindow(...)

0 or 1 (ON or OFF)

gfx_TransparentColour(colour) Colour that needs to be made transparent. Colour, 0-65535

gfx_Transparency(mode) Turn the transparency ON or OFF. 1 or 0 (ON or OFF)

gfx_FrameDelay(delay) Set the inter frame delay for media_Video(...) 0 to 255msec

gfx_ScreenMode(mode) Graphics orientation LANDSCAPE, LANDSCAPE_R,
PORTRAIT, PORTRAIT_R

1 or LANDSCAPE
2 or LANDSCAPE _R
3 or PORTRAIT
4 or PORTRAIT_R

gfx_OutlineColour(colour) Outline colour for rectangles and circles. Colour 0-65535

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 170 of 554 www.4dlabs.com.au

(set to 0 for no effect)

gfx_Contrast(value) LCD MODULES:
contrast 0 = display OFF, 1-15 = contrast level (Actually
backlight brightness)

0 or OFF
1 to 15 for levels

gfx_LinePattern(pattern) Sets the line draw pattern for line drawing. If set to zero,
lines are solid, else each '1' bit represents a pixel that is
turned off. See code examples for further reference.
Example:
gfx_Set(LINE_PATTERN, 0b1111000011110000);
// draw dotted line

0 or OFF
1 to 0xFFFF
0 bits for pixels on
1 bits for pixels off

gfx_BevelRadius(radius) graphics button bevel radius 0 None
1 to 15 pixels

gfx_BevelWidth(mode) graphics button bevel width 0 None
1 to 15 pixels

gfx_BevelShadow(value) graphics button bevel shadow depth 0 None
1 to 15 pixels

gfx_Xorigin(offset) graphics X origin

gfx_Yorigin(offset) graphics Y origin

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 171 of 554 www.4dlabs.com.au

2.6.47 gfx_Arc(xc, yc, radius, step, startangle, endangle, mode)

Syntax gfx_Arc(cx, cy, radius, step, startangle, endangle, mode);

Arguments cx, cy, radius, step, startangle, endangle, mode

cx, cy Center of the arc.

radius Radius of the arc.

step Step is the stepping angle increment for the fineness of the arc.

startangle Starting angle of the arc.

endangle Ending angle of the arc.

mode mode = 0, outer circumference line only
mode = 1, outer circumference and lines back to cx:cy

Returns Nothing

Description Draws an arc at "xc":"yc" with radius "radius", starting at "startangle" and ending at "endangle".
Colour is determined by current object colour.

Example gfx_Arc(120, 150, 100, 1, 0, 90, 0);

/*

 * Draws an arc with 100-pixel radius with center at point (120,150)

 * The arc starts from from 0 to 90 degree angle

 * Lines from the ends of the arc to the center are not drawn.

 */

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 172 of 554 www.4dlabs.com.au

2.6.48 gfx_CheckBox(state, x, y, Width, Height, boxColour, textColour, text)

Syntax gfx_CheckBox(state, x, y, Width, Height, boxColour, textColour, text);

Arguments state, x, y, width, height, boxColour, textColour, text

state state = 1 = UNCHECKED : CheckBox Unchecked

state = 0 = CHECKED : Checkbox Checked

x, y Top left corner of the Checkbox.

width Width of the checkbox.

height Height of the checkbox.

boxColour Checkbox colour.

textColour Text colour.

text The text is to the right of the checkbox and truncated if necessary

Returns Nothing

Description Draws a CheckBox at screen location defined by x,y arguments (top left corner).

Example gfx_CheckBox(1, 20, 20, 100, 25, BLUE, LIME, "4D Labs");

/*

 * Draws an UNCHECKED checkbox, top left corner at (20,150)

 * The checkbox has a width of 100 pixels to contain ‘4D Labs’

 */

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 173 of 554 www.4dlabs.com.au

2.6.49 gfx_RadioButton(state, x, y, width, height, boxColour, textColour, text)

Syntax gfx_RadioButton(state, x, y, width, height, boxColour, textColour, text);

Arguments state, x, y, width, height, boxColour, textColour, text

state state = 1 = UNCHECKED : Radio-button Unchecked

state = 0 = CHECKED : Radio-button Checked

x, y Top left corner of the Radio-button.

width Width of the Radio-button.

height Height of the Radio-button.

boxColour Radio-button colour.

textColour Text colour.

text The text is to the right of the Radio-button and truncated if necessary

Returns Nothing

Description Draws a Radio-button at screen location defined by x,y arguments (top left corner).

Example gfx_RadioButton(0, 20, 20, 100, 25, BLUE, LIME, "4D Labs");

/*

 * Draws a CHECKED radio button, top left corner at (20,150)

 * The radio button has a width of 100 pixels to contain ‘4D Labs’

 */

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 174 of 554 www.4dlabs.com.au

2.6.50 gfx_FillPattern(patptr, mode)

Syntax gfx_FillPattern(patptr, mode);

Arguments patptr, mode

patptr 0 = 0ff, 0xFFE0 to 0xFFFF = builtin patterns, else patptr points to a users 8 byte
pattern.

mode TRANSPARENT or OPAQUE (0 or 1)

Returns pointer

 pointer Returns the handle of the previous pattern

Description Selects a tessellating pattern for painting solid objects. ‘patptr’ points to an 8x8 tile for rendering

filled areas.
Rendering is turned off with gfx_FillPattern(0, mode); or gfx_FillPattern(OFF, mode);
‘mode’ maybe TRANSPARENT or OPAQUE (0 or 1), for OPAQUE mode, the current screen colour is
used for the 'off' pixels, for transparent mode, the 'off' pixels are not drawn.
gfx_FillPattern affects all filled object, including polygons. There are 32 builtin patterns; these are
obtained using the pre-defined constants FILLPATTERN_0 to FILLPATTERN_31. Note that the
constants range from 0xFFE0 to 0xFFFF, any other value is assumed to be a pointer to a user’s 8 byte
block pattern.
Predefined constants are used to select the internal patterns, FILLPATTERN_0 through to
FILLPATTERN_31

Example gfx_FillPattern(OFF, TRANSPARENT); // Turns OFF pattern rendering

gfx_FillPattern(FILLPATTERN_31, TRANSPARENT);

// Renders FILLPATTERN_31 in transparent mode for filled objects

gfx_FillPattern(FILLPATTERN_17, OPAQUE);

// Renders FILLPATTERN_17 in OPAQUE mode for filled objects

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 175 of 554 www.4dlabs.com.au

2.6.51 gfx_Gradient(style, x1, y1, x2, y2, color1, color2)

Syntax gfx_Gradient(style, x1, y1, x2, y2, color1, color2);

Arguments style, x1, y1, x2, y2, color1, color2

style Specifies gradient style.

GRAD_DOWN gradient changes in the vertical direction
GRAD_RIGHT gradient change in the horizontal direction
GRAD_UP gradient changes in the vertical direction
GRAD_LEFT gradient change in the horizontal direction
GRAD_WAVE_VER gradient wave in the vertical direction
GRAD_WAVE_HOR gradient wave in the horizontal direction

x1, y1 Specifies top left corner of the rectangle.

x2, y2 Specifies bottom right corner of the rectangle.

color1 Specifies starting colour.

color2 Specifies ending colour.

Returns Nothing

Description Draws a graduated colour rectangle at the specified co-ordinate.

Rendering can be obtained with gfx_FillPattern(PATTRN); or gfx_FillPattern(OFF); for no fill

pattern.

Example //Draw graduated colour rectangle
gfx_Gradient(GRAD_WAVE_HOR, 10, 10, 230, 160, BLACK, WHITE);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 176 of 554 www.4dlabs.com.au

2.6.52 gfx_RoundGradient(style, x1, y1, x2, y2, radius, color1, color2)

Syntax gfx_RoundGradient(style, x1, y1, x2, y2, radius, color1, color2);

Arguments style, x1, y1, x2, y2, radius, color1, color2

style Specifies gradient style.

GRAD_DOWN gradient changes in the vertical direction
GRAD_RIGHT gradient change in the horizontal direction
GRAD_UP gradient changes in the vertical direction
GRAD_LEFT gradient change in the horizontal direction
GRAD_WAVE_VER gradient wave in the vertical direction
GRAD_WAVE_HOR gradient wave in the horizontal direction

x1, y1 Specifies top left corner of the rectangle.

x2, y2 Specifies bottom right corner of the rectangle.

radius Specifies the corner radius.

color1 Specifies starting colour.

color2 Specifies ending colour.

Returns Nothing

Description Draws a graduated colour rounded rectangle at the specified co-ordinate.

X1 may equal X2, and Y1 = Y2 allowing allowing the function to be used for rounded panels, rounded
buttons, circular buttons.

Rendering can be obtained with gfx_FillPattern(PATTRN); or gfx_FillPattern(OFF); for no fill pattern.

Example //Draw graduated colour rounded rectangle
gfx_RoundGradient(GRAD_WAVE_HOR, 10, 10,230, 160, 10, BLACK, WHITE);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 177 of 554 www.4dlabs.com.au

2.6.53 gfx_PieSlice(cx, cy, spread, radius, step, startangle, endangle, mode, colour)

Syntax gfx_PieSlice(cx, cy, spread, radius, step, startangle, endangle, mode, colour);

Arguments cx, cy, radius, step, startangle, endangle, mode

cx, cy Center of the slice.

spread Center offset: it is used to offset the centrepoint of the pieslice to shift a pie chart
piece away from the centrepoint.

radius Radius of the Slice.

step Step is the stepping angle increment for the fineness of the slice.

startangle Starting angle of the slice.

endangle Ending angle of the slice.

mode mode = 0, no outline.
mode = 1, outer circumference line only
mode = 2, outer circumference and slice lines.

colour Specifies colour of the colour of the PieSlice.

Returns Nothing

Description Draws a pie slice (filled arc) at xc:yc with radius radius, starting at startangle and ending at endangle.
Rendering can be obtained with gfx_FillPattern(PATTRN); or gfx_FillPattern(OFF); for no fill pattern.

Example gfx_PieSlice(120, 150, 0, 100, 1, 0, 90, 0, LIME);

/*

 * Draws a filled arc, 100-pixel radius, center at point (120,150)

 * The arc starts from from 0 to 90 degree angle

 * Outlines are not drawn

 */

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 178 of 554 www.4dlabs.com.au

2.6.54 gfx_PointWithinBox(x, y, &rect)

Syntax gfx_PointWithinBox(x, y, &rect);

Arguments x, y, &rect

x, y Coordinates

&rect An array of 4 vars, x1, y1, width, height.

Returns status

 status Returns true if last touch co-ordinates are within the box test area.

Description Returns true if last touch co-ordinates are within the box test area.

Example var x, y;

var rect[4] := [0,0,480,320];

touch_Set(TOUCH_ENABLE);

repeat

 x := touch_Get(TOUCH_GETX);

 y := touch_Get(TOUCH_GETY);

 if (gfx_PointWithinBox(x,y,rect) == 1)

 txt_MoveCursor(0,0);

 print("X: ",[DEC]x, " Y: ", [DEC]y, " \nTOUCHED");

 endif

forever

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 179 of 554 www.4dlabs.com.au

2.6.55 gfx_PointWithinRectangle(x, y, &recta)

Syntax gfx_PointWithinRectangle(x, y, &recta);

Arguments x, y, &recta

x, y Coordinates

&recta An array of 4 vars, x1, y1, x2, y2.

Returns status

 status Returns true if last touch co-ordinates are within the rectangle test area.

Description Returns true if last touch co-ordinates are within the rectangle test area.

Example var x, y;

var rect[4] := [0,0,100,120];

touch_Set(TOUCH_ENABLE);

repeat

 x := touch_Get(TOUCH_GETX);

 y := touch_Get(TOUCH_GETY);

 if (gfx_PointWithinRectangle(x,y,rect) == 1)

 txt_MoveCursor(0,0);

 print("X: ",[DEC]x, " Y: ", [DEC]y, " \nTOUCHED");

 endif

forever

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 180 of 554 www.4dlabs.com.au

2.6.56 gfx_ReadBresLine(x1, y1, x2, y2, ptr)

Syntax gfx_readBresLine(x1, y1, x2, y2, ptr);

Arguments x1, y1, x2, y2, ptr

x1, y1 Line mapping start point.

x2, y2 Line mapping end point.

ptr If zero is passed, an array of the required size to map the line is created. If non zero,
it is expected that this is a pointer to an array large enough to store each pixel that is
read.

Returns value

 value
A pointer to the created array, or the users array. In the case of ptr=0 (creation of
array), if there is insufficient memory to create the array, zero is returned.

Description Due to the fact that most LCD displays are not double buffered, and memory is limited on small
platforms, gfx_ReadBresLine offers a simple but powerful way of manipulating raster lines by storing
all the pixels for an arbitrary line.

Typically, gfx_ReadBresLine is used when ‘rubber banding’ a rectangular area when dragging a
marker rectangle, or drawing a needle on a pre- rendered meter or guage image. The power of this
function is further extended when used with the array math functions.

gfx_ReadBresLine reads an arbitrary line from the display to an array.
If "ptr" is 0, the correctly sized array is created, in which case it is up to the caller to eventually destroy
it when no longer required. Otherwise "ptr" is expected to point to a correctly sized array.

Note: if an array is supplied, its size must be large enough, and may be calculated:-
bytecount := (MAX(ABS(x2-x1), ABS(y2-y1) + 1) * 2;
// calc array size for mem_Alloc (which allocates byte storage)

wordcount := (MAX(ABS(x2-x1), ABS(y2-y1) + 1);
// calc array size for fixed word array (it’s much easier to let the function to do this calculation for you
– if applicable)

Example var array;

array := gfx_ReadBresLine(50,50,250,175,0);

// Copy the pixels of the line with endpoint at (50,50) and (250,175)

// and saves it to the generated array. The address is then returned

// and saved to the variable ‘array’

gfx_BGcolour(LIME);

gfx_Cls(); // Sets the background to a single color

gfx_WriteBresLine(100,100,300,225,array);

// Copies the line to the new coordinates,

// Endpoints are at (100,100) and (300,225)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 181 of 554 www.4dlabs.com.au

2.6.57 gfx_WriteBresLine(x1, y1, x2, y2, ptr)

Syntax gfx_WriteBresLine(x1, y1, x2, y2, ptr);

Arguments x1, y1, x2, y2, ptr

x1, y1 Line mapping start point.

x2, y2 Line mapping end point.

ptr Points to the array to be written

Returns Nothing

Description Cast pixel values from array to arbitrary line.

Example See gfx_ReadBresLine

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 182 of 554 www.4dlabs.com.au

2.6.58 gfx_ReadGRAMarea(x1, y1, x2, y2, ptr)

Syntax gfx_ReadGRAMarea(x1, y1, x2, y2, ptr);

Arguments x1, y1, x2, y2, ptr

x1, y1 Top left corner of the rectangular area.

x2, y2 Bottom right corner of the rectangular area.

ptr If zero is passed, an array of the required size to map the line is created. If non zero,
it is expected that this is a pointer to an array large enough to store each pixel that is
read.

Returns value

 value
A pointer to the created aray, or the users array. In the case of ptr=0, if there is
insufficient memory to create the array, zero is returned.

Description Reads an arbitrary rectangular area from the display to an array. If "ptr" is 0, the correctly sized array
is created, in which case it is up to the caller to eventually destroy it. Otherwise "ptr" is expected to
point to a correctly sized array.

Note: If an array is supplied, its size must be large enough, and may
be calculated:-

bytecount := ((ABS(x2-x1)+1) * (ABS(y2-y1) + 1)) * 2; // calc array size for mem_Alloc (which allocates
byte storage)

wordcount := ((ABS(x2-x1)+1) * ABS(y2-y1); // calc array size for fixed word array

Example var array;

array := gfx_ReadGRAMarea(50,50,250,175,0);

// Copy the pixels of the GRAM area with top left and bottom right

// endpoints at (50,50) and (250,175) and saves it to the generated

// array. The address is then returned and saved to variable ‘array’

gfx_BGcolour(LIME);

gfx_Cls(); // Sets the background to a single color

gfx_WriteGRAMarea(100,100,300,225,array);

// Copies the GRAM area to the new coordinates,

// Top left and bottom right corners are at (100,100) and (300,225)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 183 of 554 www.4dlabs.com.au

2.6.59 gfx_WriteGRAMarea(x1, y1, x2, y2, ptr)

Syntax gfx_WriteGRAMarea(x1, y1, x2, y2, ptr);

Arguments x1, y1, x2, y2, ptr

x1, y1 Top left corner of the rectangular area.

x2, y2 Bottom right corner of the rectangular area.

ptr Points to an array to be written.

Returns Nothing

Description Write an array back to the rectangular area

Example See gfx_ReadGRAMarea

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 184 of 554 www.4dlabs.com.au

2.6.60 gfx_Surround(x1, y1, x2, y2, rad1, rad2, colour)

Syntax gfx_Surround(x1, y1, x2, y2, rad1, rad2, color);

Arguments x1, y1, x2, y2, rad1, rad2, oct, color

x1, y1 Specifies the top left corner position of the surround on the screen.

x2, y2 Specifies the bottom right corner position of the surround on the screen.

rad1 Inner corner radius.

rad2 Outer corner radius.

color The colour of the surround.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws an outline rectangle at the given co-ordinates with optional rounded corners determined by
‘rad1’.
‘rad2’ is added to ‘rad1’ to form the outer rounded rectangle.
If ‘rad1’ is zero, the inner rectangle will have square corners.

Example gfx_Surround(40, 40, 100, 60, 15, 3, YELLOW);

Draw a surround with rounded corners, 3 pixels wide

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 185 of 554 www.4dlabs.com.au

2.6.61 gfx_Scope(Left, Width, Yzero, n, Xstep, Yamp, Colourbg, old_y1, new_y1, Colour1, …
old_y4, new_y4, Colour4)

Syntax
gfx_Scope(left, width, Yzero, N, Xstep, Yamp, colourbg, old_y1, new_y1, colour1, old_y2, new_y2,
colour2, old_y3, new_y3, colour3, old_y4, new_y4, colour4);

Arguments
left, width, Yzero, N, Xstep, Yamp, colourbg, old_y1, new_y1, colour1, old_y2, new_y2, colour2,
old_y3, new_y3, colour3, old_y4, new_y4, colour4

Left The left margin of the Scope.

Width The width of the Scope.

Yzero The y position that corresponds to a y value of zero, normally "Top" + "Height" for a
graph, or "Top" + "Height"/2 for a scope.

N The number of elements in each buffer. This will need to be greater than "width" for
negative "Xstep" values.

Xstep X position is incremented each point by "xstep" pixels.

Yamp Amplification in the Y direction, 100 is unity.

ColourBg The color of the Scope’s Background.

oldy1..4 Buffer containing most recent set of points to be un-drawn.

newy1..4 Buffer containing new points to be drawn.

Colour1..4 Colour of the waveform.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws up to 4 waveforms from table(s) of vertices at the specified origin. Also useful for drawing line
graphs.
X position is incremented each point by "Xstep" pixels, values are skipped for negative values.
Y values are derived from a Y buffer.
After the waveform is drawn, "newy" buffer is automatically copied to "oldy" buffer. Use 0 as the
buffers for any unused waveforms.

Example

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 186 of 554 www.4dlabs.com.au

2.6.62 gfx_RingSegment(x, y, Rad1, Rad2, starta, enda, colour)

Syntax gfx_RingSegment(x, y, Rad1, Rad2, starta, enda, colour)

Arguments x, y, Rad1, Rad2, starta, enda, colour

x, y Center

Rad1 Outer radius

Rad2 Inner radius

starta Start angle

enda End angle

colour Colour

Returns nothing

Description Draw a Segment of a ring at x, y from rad1 to rad2 starting at starta to enda in colour.

Example gfx_RingSegment(100, 100, 50, 25, 90, 180, LIME);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 187 of 554 www.4dlabs.com.au

2.6.63 gfx_AngularMeter(value, &MeterRam, &MeterDef)

Syntax gfx_AngularMeter(value, &MeterRam, &MeterDef)

Arguments value, &MeterRam, &MeterDef

value A value (usually a constant) specifying the current frame of the widget

&MeterRam A pointer to a variable array for widget utilization

&MeterDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format Example

#DATA
word Gauge1Info

 // Scale parameters
90, // Range scale outer edge radius
70, // Range scale inner edge radius
20, // Number of partitions of marker ticks
2, // Number of minor ticks before next major tick (0 to disable)
17, // Length for major ticks radiating from scale outer edge
5, // Length for minor ticks radiating from scale outer edge
10, // Length for major ticks radiating from scale inner edge
2, // Length for minor ticks radiating from scale inner edge
1, // Tick width
0xFFFF, // Tick color
270, // Starting angle for range scale second ring section
337, // Starting angle for range scale third ring section
0xDF, // Range scale first ring section color
0x3BF, // Range scale second ring section color
0xF800, // Range scale third ring section color
0, // Range scale section incremental step size
10, // Total number of marker scale labels
1, // Marker scale label font style
0xFFFF, // Marker scale label text color
15, // Marker scale label offset distance (relative to range scale midpoint)
0, /* Labels */ // Pointer to label strings (Default is numeric is set to zero (0))
(0 + 0 + 0 + 0), // Gauge Options
2, // Caption
0xFFFF, // Caption text color
-26, // Caption horizontal offset from rotation centre
56, // Caption vertical offset from rotation centre
Caption, // Caption text pointer

 // Gauge parameters common to needle
10, // Top-Left X-position
10, // Top-Left Y-position
235, // Width
197, // Height
128, // Rotation centre X-position
125, // Rotation centre Y-position
0x0, // Background color (required for erasing needle path)
135, // Starting angle
405, // Ending angle
0, // Minimum value
100, // Maximum value

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 188 of 554 www.4dlabs.com.au

 // Needle parameters
60, // Needle length
NEEDLE_F_TRIANGLE, // Needle style options
0, // Needle offset distance from center
6, // Needle width (Half value of overall needle thickness)
30, // Needle tail length (Applicable only for double triangle style)
0xFFFF, // Needle color
6, // Needle Hub radius
0xFFFF, // Needle Hub color
2, // Needle Pin radius
0xF800 // Needle Pin color

byte Caption "Caption\0" // Caption string (Use null terminator "\0" to end string)
byte Labels "Text1\0Text2\0Text3\0Text4\0Text5\0" // Label text strings (Use null terminator "\0" as
separators)

#END

Widget Parameter Data Block Option Bits

 ANGULAR_F_LABEL_STRINGS Set bit for swapping gauge direction
 ANGULAR_F_BG_TRANSPARENT Set bit for toggling background transparency
 ANGULAR_F_TICK_PCT_COLOUR Set bit for replacing tick color with range scale section colors
 ANGULAR_F_TEXT_PCT_COLOUR Set bit for replacing marker label color with range scale section colors

Note: The angular meter function will require the gfx_Needle in order to function.

Returns nothing

Description Draw an angular meter as defined by MeterDef (if required), using MeterRam positioning at
position value. See the reference for the MeterDef values

Example var state;

var Gauge1Ram[10];

#DATA

word Gauge1Info 90, 70, 20, 2, 17, 5, 10, 2, 1, 0xFFFF, 270, 337, 0xDF,

0x3BF, 0xF800, 0, 10, FONT1, 0xFFFF, 15, 0, (0 + 0 + 0 + 0), FONT2, 0xFFFF,

-26, 56, Gauge1Caption, 10, 10, 235, 197, 128, 125, 0x0, 135, 405, 0, 100,

60, NEEDLE_F_TRIANGLE, 0, 6, 30, 0xFFFF, 6, 0xFFFF, 2, 0xF800

byte Gauge1Caption "Caption\0"

#END

func main()

 gfx_AngularMeter(state, Gauge1Ram, Gauge1Info); // Gauge

repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 189 of 554 www.4dlabs.com.au

2.6.64 gfx_Panel2(state, x, y, width, height, w1, w2, cl, cr)

Syntax gfx_Panel2(state, x, y, width, height, w1, w2, cl, cr, cf)

Arguments state, x, y, width, height, w1, w2, cl, cr

state Bevel direction (0 – Inwards, 1 – Outwards)

Additional bit for filling panel with fill color (0x8000 - PANEL2_FILLED)

x, y Top-Left X-position, Top-Left Y-position

width Panel width

height Panel height

w1 Outer bevel offset

w2 Inner bevel offset

cl Main bevel color

cr Shadow bevel color

cf Panel fill color

Returns nothing

Description Draws a panel2 (groupbox) at screen location defined by x, y, width and height with left colour "cl"
and right colour "cr"and option fill colour "cf".
w1 and w2 define the width of the outer and inner borders.
state = 0 : recessed
state = 1 : raised
state + PANEL2_FILLED : draws with fill color "cf"

Example func main()

 gfx_Panel2(1, 10, 10, 77, 81, 5, 5, 0xFFFF, 0x528A, 0x8800); // Panel

object

repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 190 of 554 www.4dlabs.com.au

2.6.65 gfx_Needle(value, &NeedleRam, &NeedleDef)

Syntax gfx_Needle(value, &NeedleRam, &NeedleDef)

Arguments value, &NeedleRam, &NeedleDef

value A value (usually a constant) specifying the current frame of the widget

&NeedleRam A pointer to a variable array for widget utilization

&NeedleDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format Example

#DATA
word NeedleInfo 10, // Top-Left X-position

10, // Top-Left Y-position
235, // Width
197, // Height
128, // Rotation centre X-position
125, // Rotation centre Y-position
0x0, // Background color (required for erasing needle path)
135, // Starting angle
405, // Ending angle
0, // Minimum value
100, // Maximum value
60, // Needle length
NEEDLE_F_LINE, // Needle style options
0, // Needle offset distance from center
6, // Needle width (Half value of overall needle thickness)
30, // Needle tail length (Applicable only for DoubleTriangle style)
0xFFFF, // Needle color
6, // Needle Hub radius
0xFFFF, // Needle Hub color
2, // Needle Pin radius
0xF800 // Needle Pin color

#END

Needle Style Options

 NEEDLE_F_LINE Line needle pointer
 NEEDLE_F_RECTANGLE Rectangular needle pointer
 NEEDLE_F_POINTRECTANGLE Pointed rectangular needle pointer
 NEEDLE_F_TRIANGLE Triangular needle pointer
 NEEDLE_F_DOUBLETRIANGLE Double ended triangular needle pointer
 NEEDLE_F_ROUNDEDRECTANGLE Rounded corner rectangular needle pointer

Note: The needle function can be used standalone without the angular meter function, but the angular meter
function will require the needle function.

Returns nothing

Description Draw a Needle as defined by NeedleDef (if required), using NeedleRam positioning at position
value. See the reference for the NeedleDef values

Example var frame;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 191 of 554 www.4dlabs.com.au

var NeedleRam[10];

#DATA

word NeedleInfo 10, 10, 235, 197, 128, 125, 0x0, 135, 405, 0, 100, 60,

NEEDLE_F_TRIANGLE, 0, 6, 30, 0xFFFF, 6, 0xFFFF, 2, 0xF800

#END

func main()

 gfx_Needle(frame, NeedleRam, NeedleInfo); // Rotating Needle

 repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 192 of 554 www.4dlabs.com.au

2.6.66 gfx_Dial(value, &DialRam, &DialDef)

Syntax gfx_Dial(value, &DialRam, &DialDef)

Arguments value, &DialRam, &DialDef

value A value (usually a constant) specifying the current frame of the widget

&DialRam A pointer to a variable array for widget utilization

&DialDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format Example

#DATA

word Knob1Info 10, // Top-Left X-position

10, // Top-Left Y-position
152, // Width
129, // Height
87, // Knob centre X-position
80, // Knob centre Y-position
38, // Knob radius
135, // Rotation starting angle
405, // Rotation ending angle
0, // Minimum value
100, // Maximum value
0x0, // Background color
0x52AA, // Knob color
5, // Bevel thickness
0xB5B6, // Bevel gradient color 1 (Left side)
0x3186, // Bevel gradient color 2 (Right side)
200, // Starting angle for Partition 2
300, // Starting angle for Partition 3
0x280, // Partition 1 low color
0x528A, // Partition 2 low color
0x5800, // Partition 3 low color
0x7E0, // Partition 1 high color
0xFFE0, // Partition 2 low color
0xF800, // Partition 3 low color
12, // Indicator ticks offset distance
3, // Indicator size 1 (Radius/Width of circle, triangle or rectangle)
6, // Indicator size 2 (Length of line, triangle or rectangle)
0xF800, // Knob pointer color
3, // Knob pointer size 1 (Radius/Width of circle, triangle or rectangle)
30, // Knob pointer size 2 (Length of line, triangle or rectangle)
0xFFFF, // Knob indicator label text color
2, // Knob indicator label font style
22, // Knob indicator label offset distance
10, // Number of indicator labels
0, /*Labels*/ // Pointer to string indicator labels (Numeric labels if zero (0))
2, // Caption font style
0xFFFF, // Caption text color
-15, // Caption horizontal offset from knob centre
50, // Caption vertical offset from knob centre
Caption, // Knob Caption text
(0 + 0 + 0) // Option bits (See Widget Parameter Data Block Option Bits)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 193 of 554 www.4dlabs.com.au

byte Caption "KNOB\0" // Caption string (Use null terminator "\0" to end string)
byte Labels "Text1\0Text2\0Text3\0Text4\0Text5\0" // Label text strings (Use null terminator "\0" as separators)

#END

Widget Parameter Data Block Option Bits

 DIAL_F_LABEL_STRINGS Set bit for dial indicator string (default is numeric)
 DIAL_F_BG_TRANSPARENT Set bit for widget transparency

 DIAL_F_HANDLE_CIRCLE Set bit for circular knob pointer style
 DIAL_F_HANDLE_TRIANGLE Set bit for triangular knob pointer style
 DIAL_F_HANDLE_RECTANGLE Set bit for rectangular pointer style
 DIAL_F_HANDLE_LINE Set bit for line pointer style

 DIAL_F_INDICATOR_CIRCLE Set bit for circular dial indicator style
 DIAL_F_INDICATOR_TRIANGLE Set bit for triangular dial indicator style
 DIAL_F_INDICATOR_RECTANGLE Set bit for rectangular dial indicator style
 DIAL_F_INDICATOR_LINE Set bit for line dial indicator style

Returns nothing

Description Draw a Dial as defined by DialDef (if required), using DialRam positioning at position value. See the
reference for the DialDef values

Example var frame;

var Knob1Ram[10];

#DATA

word Knob1Info 10, 10, 152, 129, 87, 80, 38, 135, 405, 0, 100, 0x0,

0x52AA, 5, 0xB5B6, 0x3186, 200, 300, 0x280, 0x528A, 0x5800, 0x7E0, 0xFFE0,

0xF800, 12, 3, 6, 0xF800, 3, 30, 0xFFFF, FONT2, 22, 10, Labels, FONT2,

0xFFFF, -15, 50, Knob1Caption, (0 + DIAL_F_HANDLE_CIRCLE +

DIAL_F_INDICATOR_LINE)

byte Labels "Text1\0Text2\0Text3\0Text4\0Text5\0"

byte Knob1Caption "KNOB\0"

#END

func main()

 gfx_Dial(frame, Knob1Ram, Knob1Info); // Dial Internal Widget

repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 194 of 554 www.4dlabs.com.au

2.6.67 gfx_Gauge(value, &GaugeRam, &GaugeDef)

Syntax gfx_Gauge(value, &GaugeRam, &GaugeDef)

Arguments value, &GaugeRam, &GaugeDef

value A value (usually a constant) specifying the current frame of the widget

&GaugeRam A pointer to a variable array for widget utilization

&GaugeDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format Example

#DATA
word Gauge1Info 10, // Top-Left X-position

10, // Top-Left Y-position
181, // Gauge length
59, // Gauge width
11, // Number of Gauge bars
0, // Minimum gauge value
100, // Maximum gauge value
10, // Bar thickness
5, // Bar spacing
0x18E3, // Inter 'bar' gap color
0x280, // Partition 1 low colour
0x7E0, // Partition 1 active colour
0x5280, // Partition 2 low colour
0xFFE0, // Partition 2 active colour
0xA000, // Partition 3 low colour
0xF800, // Partition 3 active colour
8, // Partition 2 starting bar
5, // Partition 3 starting bar
(0) // Gauge Option bits

#END

Widget Parameter Data Block Option Bits

 GAUGE_F_TOPRIGHT Set bit for swapping gauge direction to start from top or right side
 GAUGE_F_HORZ Horizontal orientation set bit (Default is Vertical)

Note: For optimal appearance, calculate number of bars for given height first using this formula:
 bars = ((gauge height / 2) + (spacing / 2) + 1) / ((bar thickness / 2) + (spacing / 2) + 2)
 then calculate exact height given the calculated ticks:
 height = bars * ((bar thickness / 2) + (spacing / 2) +2) – (spacing / 2) - 1

Returns nothing

Description Draw a Gauge as defined by GaugeDef (if required), using GaugeRam positioning at position value.
See the reference for the GaugeDef values

Example var frame;

var Gauge1Ram[10];

#DATA

word Gauge1Info 10, 10, 181, 59, 11, 0, 100, 10, 5, 0x18E3, 0x280, 0x7E0,

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 195 of 554 www.4dlabs.com.au

0x5280, 0xFFE0, 0xA000, 0xF800, 8, 5, (GAUGE_F_HORZ + GAUGE_F_TOPRIGHT)

#END

func main()

 gfx_Gauge(frame, Gauge1Ram, Gauge1Info); // Gauge Internal Widget

repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 196 of 554 www.4dlabs.com.au

2.6.68 gfx_LedDigits(value, &LedDigitRam, &LedDigitDef)

Syntax gfx_LedDigits(value, &LedDigitRam, &LedDigitDef)

Arguments value, &LedDigitRam, &LedDigitDef

value A value (usually a constant) specifying the current frame of the widget

&LedDigitRam A pointer to a variable array for widget utilization

&LedDigitDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format Example

#DATA
word Digits1Info 10, // Top-Left X-position

10, // Top-Left Y-position
66, // Widget width (Used only for touch region)
106, // Widget height (Used only for touch region)
2, // Number of digits
0, // Separator placement (To disable separator use -1)
0, // Spacing distance between each digits
5, // Digit size
0xFFFF, // LED segment ON color
0x630C, // LED segment OFF color
(0 + 0+ 0) // Option bits (See Widget Parameter Data Block Option Bits)

#END

Widget Parameter Data Block Option Bits

 LEDDIGITS_F_GENERAL Set bit for LED digit general format
 LEDDIGITS_F_FIXED Set bit for LED digit fixed format
 LEDDIGITS_F_SCIENTIFIC Set bit for LED digit scientific format
 LEDDIGITS_F_INT16 Set bit for 16-bit Integer LED digit format
 LEDDIGITS_F_INT32 Set bit for 32-bit Integer LED digit format
 LEDDIGITS_F_FLOAT Set bit for Float LED digit format
 LEDDIGITS_F_UNSIGNED Set bit for unsigned LED digit format
 LEDDIGITS_F_SIGNED Set bit for signed LED digit format
 LEDDIGITS_F_LEADING0 Set bit for setting leading digits as zeroes
 LEDDIGITS_F_LEADINGb Set bit for setting leading digits as blanks
 LEDDIGITS_F_DP_DOT Set bit for using dots as separator
 LEDDIGITS_F_DP_COMMA Set bit for using commas as separator

Returns nothing

Description Draw a series of 7 segment Led Digits as defined by LedDigitDef, using LedDigitRam positioning at
position value. See the reference for LedDigitDef values.

Example var value;

var Digits1RAM [12];

#DATA

word Digits1Info 10, 10, 66, 106, 2, 0, 0, 5, 0xFFFF,

0x630C,(LEDDIGITS_F_LEADING0 | LEDDIGITS_F_UNSIGNED | LEDDIGITS_F_INT16 |

LEDDIGITS_F_DP_DOT)

#END

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 197 of 554 www.4dlabs.com.au

func main()

 gfx_LedDigits (value, Digits1RAM, Digits1Info); // LED digit Widget

repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 198 of 554 www.4dlabs.com.au

2.6.69 gfx_LedDigit(x, y, digitsize, oncolour, offcolour, value)

Syntax gfx_LedDigit(x, y, digitsize, oncolour, offcolour, value);

Arguments x, y, digitsize, oncolour, offcolour, value

 x, y x- and y-coordinates of position

 digitsize Size of digit

 oncolour Color when status is on

 offcolour Color when status is off

 value Value to show

Returns nothing

Description Draws a single 7 segment led Digit at x, y of size digitsize using oncolour and offcolour. The value can
be 0-9 (0-9), A-F (0x0a-0x0f), blank(0x10) and - (0x11). Or value with LEDDIGIT_F_SHOW_DP to show
a decimal point, LEDDIGIT_F_DP_COMMA to make the Decimal point a comma and
LEDDIGIT_F_DP_ON to turn the decimal point on LEDDIGIT_F_SET_SEGMENTS can be used to turn
value into a series of bits to turn on individual segments eg LEDDIGIT_F_SET_SEGMENTS + 9 will turn
on the top and bottom segments. Again LEDDIGIT_F_SHOW_DP and LEDDIGIT_F_DP_COMMA can be
used, but in this case the DP is the 8th segment.

Example gfx_LedDigit(10, 10, 5, YELLOW, LIME, 3);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 199 of 554 www.4dlabs.com.au

2.6.70 gfx_Slider5(value, &SliderRam, &SliderDef)

Syntax gfx_Slider5(value, &SliderRam, &SliderDef)

Arguments value, &SliderRam, &SliderDef

value A value (usually a constant) specifying the current frame of the widget

&SliderRam A pointer to a variable array for widget utilization

&SliderDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format Example

#DATA
word Slider1Info 10, // Top-Left X-position

10, // Top-Left Y-position
250, // Widget length
40, // Widget width
(0 + 0 + 0), // Option bits (See Widget Parameter Data Block Option Bits)
0, // Minimum value
100, // Maximum value
0x1082, // Base color
0x0, // Track fill color (from Right/Top to current position)
0x7E0, // Track fill color (from Left/Bottom to current position)
30, // Total Marker partition for Top/Left Side (0 for no ticks)
30, // Total Marker partition for Bottom/Right Side (0 for no ticks)
2, // Minor ticks between each major ticks T/L Side (0 for small ticks)
2, // Minor ticks between each major ticks B/R Side (0 for small ticks)
10, // Major tick length
0x7E0, // Major tick color
5, // Minor tick length
0x7E0, // Minor tick color
FONT3, // Value indicator font style
0xFFE0, // Value indicator text color
0x1082, // Slider knob bevel gradient color 1
0x9CD3, // Slider knob bevel gradient color 2
GRAD_DOWN, // Slider knob bevel gradient style
0x1082, // Slider knob face gradient color 1
0x9CD3, // Slider knob face gradient color 2
GRAD_UP // Slider knob face gradient style

#END

Widget Parameter Data Block Option Bits

 SLIDER5_F_ORIENT_VERT Set bit for vertical orientation
 SLIDER5_F_TICKS Set bit for enabling marker ticks*/
 SLIDER5_F_VALUE_IND Set bit for Enabling value indicator */
 SLIDER5_F_PROGRESSBAR Set bit for turning the slider into a gauge widget (Removes Knob)

Returns nothing

Description Draw a Slider as defined by SliderDef (if required), using SliderRam positioning at position value. See
the reference for the SliderDef values

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 200 of 554 www.4dlabs.com.au

Example var frame;

var Slider1Ram[10];

var Gauge1Ram[10];

#DATA

word Slider1Info 10, 10, 250, 40, (0 + 0 + 0), 0, 100, 0x1082, 0x0, 0x7E0,

30, 30, 2, 2, 10, 0x7E0, 5, 0x7E0, FONT3, 0xFFE0, 0x1082, 0x9CD3, GRAD_DOWN,

0x1082, 0x9CD3, GRAD_UP

word Gauge1Info 10, 60, 250, 40, (SLIDER5_F_PROGRESSBAR +

SLIDER5_F_ORIENT_VERT + SLIDER5_F_TICKS + SLIDER5_F_VALUE_IND), 0, 100,

0x1082, 0x0, 0x7E0, 30, 30, 2, 2, 10, 0x7E0, 5, 0x7E0, FONT3, 0xFFE0, 0x1082,

0x9CD3, GRAD_DOWN, 0x1082, 0x9CD3, GRAD_UP

#END

func main()

 gfx_Slider5(frame, Slider1Ram, Slider1Info); // Slider Internal Widget

 gfx_Slider5(frame, Gauge1Ram, Gauge1Info); // Gauge Internal Widget

repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 201 of 554 www.4dlabs.com.au

2.6.71 gfx_Switch(state, &SwitchRam, &SwitchDef)

Syntax gfx_Switch(state, &SwitchRam, &SwitchDef)

Arguments state, &SwitchRam, &SwitchDef

state A value (usually a constant) specifying the current frame of the widget

&SwitchRam A pointer to a variable array for widget utilization

&SwitchDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format

#DATA
word Button1Info 10, // Top-Left X-position

10, // Top-Left Y-position
90, // Widget length
49, // Widget height
1, // Option bits (See Widget Parameter Data Block Option Bits)
0x9772, // Container bevel main color
0x8C1, // Container bevel shadow color
4, // Container bevel thickness
3, // Switch bevel thickness
0x1C43, // Switch face color (State 1)
0x32A6, // Switch face color (State 0)
Button1LabelOn, // Container text (State 1)
Button1LabelOff, // Container text (State 0)
3, // Container text font style
1, // Container text size multiplier
0xFFFF, // Container text color (State 1)
0x120 // Container text color (State 0)

byte Button1LabelOn "ON\0" // Button label string (Use null terminator "\0" to end string)
byte Button1LabelOff "OFF\0" // Button label string (Use null terminator "\0" to end string)
#END

Widget Parameter Data Block Option Bits

 SWITCH1_F_ORIENT_VERT Vertical orientation set bit

Returns nothing

Description Draw a Switch as defined by SwitchDef (if required), using SwitchRam positioning at position value.
See the reference for the SwitchDef values

Example var state;

var Button1Ram[10];

#DATA

word Button1Info 10, 10, 90, 49, 1, 0x9772, 0x8C1, 4, 3, 0x1C43, 0x32A6,

Button1LabelOn, Button1LabelOff, FONT3, 1, 0xFFFF, 0x120

byte Button1LabelOn "ON\0"

byte Button1LabelOff "OFF\0"

#END

func main()

 gfx_Switch(state, Button1Ram, Button1Info); // Button Internal Widget

repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 202 of 554 www.4dlabs.com.au

2.6.72 gfx_Button4(state, &gfx_ButtonRam, &gfx_ButtonDef)

Syntax gfx_Button4(state, &gfx_ButtonRam, &gfx_ButtonDef)

Arguments state, &gfx_ButtonRam, &gfx_ButtonDef

state A value (usually a constant) specifying the current frame of the widget

&gfx_ButtonRam A pointer to a variable array for widget utilization

&gfx_ButtonDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format

#DATA

// Circular button with braille grid pattern on button face
word Button1Info 10, // Top-Left X-position

10, // Top-Left Y-position
50, // Radius
0x9CD3, // Outer bevel gradient color 1
0x5ACB, // Outer bevel gradient color 2
GRAD_WAVE_VER, // Outer bevel gradient style
0x8800, // Ring Color (at state 0)
0xF800, // Ring Color (at state 1)
0xDEDB, // Button bevel gradient color 1
0x2104, // Button bevel gradient color 2
GRAD_DOWN, // Button bevel gradient (at state 0)
GRAD_UP, // Button bevel gradient (at state 1)
0x6B6D, // Button face color
0, // Button text (numeric zero (0) for Braille design)
0xBDD7, // Braille grid gradient color 1
0x2965, // Braille grid gradient color 2
GRAD_DOWN // Braille grid gradient style

// Circular button with Text on button face
word Button2Info 120, // Top-Left X-position

10, // Top-Left Y-position
50, // Radius
0x9CD3, // Outer bevel gradient color 1
0x5ACB, // Outer bevel gradient color 2
GRAD_WAVE_VER, // Outer bevel gradient style
0x8800, // Ring color (at state 0)
0xF800, // Ring color (at state 1)
0xDEDB, // Button bevel gradient color 1
0x2104, // Button bevel gradient color 2
GRAD_DOWN, // Button bevel gradient (at state 0)
GRAD_UP, // Button bevel gradient (at state 1)
0x6B6D, // Button face color
ButtonText, // Button text label (Use pointer)
0xFFFF, // Button text font color (at state 0)
0x0, // Button text font color (at state 1)
FONT1, // Button text font style
1 // Button text size multiplier

byte ButtonText "Button\0" // Button label string (Use null terminator "\0" to end string)

#END

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 203 of 554 www.4dlabs.com.au

Returns nothing

Description Draw a Button as defined by ButtonDef (if required), using ButtonRam positioning at position value.
See the reference for the ButtonDef values.

Example var state;

var Button1Ram[10];

var Button2Ram[10];

#DATA

word Button1Info 0, 0, 50, 0x9CD3, 0x5ACB, GRAD_WAVE_VER, 0x8800, 0xF800,

0xDEDB, 0x2104, GRAD_DOWN, GRAD_UP, 0x6B6D, 0, 0xBDD7, 0x2965, GRAD_DOWN

word Button2Info 10, 120, 50, 0x9CD3, 0x5ACB, GRAD_WAVE_VER, 0x8800, 0xF800,

0xDEDB, 0x2104, GRAD_DOWN, GRAD_UP, 0x6B6D, ButtonText, 0xFFFF, 0x0, FONT1,

1

byte ButtonText "Button\0"

#END

func main()

 gfx_Button4(state, Button1Ram, Button1Info); // Button with braille

 gfx_Button4(state, Button2Ram, Button2Info); // Button with text

repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 204 of 554 www.4dlabs.com.au

2.6.73 gfx_Led(state, &LedRam, &LedDef)

Syntax gfx_Led(state, &LedRam, &LedDef)

Arguments state, &LedRam, &LedDef

state A value (usually a constant) specifying the current frame of the widget

&LedRam A pointer to a variable array for widget utilization

&LedDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format

#DATA

word Led1Info 10, // Top-Left X-position

10, // Top-Left Y-position
113, // Widget width
96, // Widget height
0x2965, // Base gradient color 1
0x0, // Base gradient color 2
0xDEFB, // LED shine effect color
0xF800, // LED color (State 1)
0x5800, // LED color (State 0)
35, // Base bevel inner radius
40, // Base bevel outer radius
20, // LED Shine effect radius
30, // Outer LED radius
1 // LED Shine effect (1 - enable, 0 - disable)

#END

Returns nothing

Description Draw a Led as defined by LedDef (if required), using LedRam positioning in state state. See the
reference for the LedDef values.

Example var state;

var Led1Ram[10];

#DATA

word Led1Info 10, 10, 113, 96, 0x2965, 0x0, 0xFFFF, 0xF800, 0x5800, 35,

40, 20, 30, 1

#END

func main()

 gfx_Led(state, Led1Ram, Led1Info); // LED Internal Widget

repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 205 of 554 www.4dlabs.com.au

2.6.74 gfx_Scale(&ScaleRam, &ScaleDef)

Syntax gfx_Scale(&ScaleRam, &ScaleDef)

Arguments &ScaleRam, &ScaleDef

&ScaleRam A pointer to a variable array for widget utilization

&ScaleDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format

#DATA
word Image1Info 36, // Top-Left X-position

10, // Top-Left Y-position
197, // Length
0, // Minimum value
100, // Maximum value
5, // Major tick partitions
10, // Major tick length
2, // Number of minor ticks inside each partition
5, // Minor tick length
0xFFFF, // Tick color
0x0, // Marker text background color
0xFFFF, // Marker text color
3, // Marker text font style
0, // Gap size for centred marker text to ticks
(0 + 0 + 0) // Option bits (See Widget Parameter Data Block Option Bits)

#END

Widget Parameter Data Block Option Bits

 SCALE_TL Set bit to align marker scale position to Top/Left side of the axis
 SCALE_BR Set bit to align marker scale position to Bottom/Right side of the axis
 SCALE_CENTRE Set bit to align marker scale position to Centre of the axis
 SCALE_NONE Set bit to disable marker scale
 SCALE_TICKS_TL Set bit to project marker ticks to Top/Left side of the axis
 SCALE_TICKS_BR Set bit to project marker ticks to Bottom/Right side of the axis
 SCALE_TICKS_BOTH Set bit to project marker ticks on both side of the axis
 SCALE_TICKS_NONE Set bit to disable marker ticks
 SCALE_VERT Set bit for scale vertical orientation
 SCALE_HORZ Set bit for scale horizontal orientation
 SCALE_END_ALIGN Set bit for aligning the end markers to the last marker ticks
 SCALE_NO_END_ALIGN Set bit for removing end alignment
 SCALE_SHOW_ZERO Set bit for showing zero digit in the marker scale
 SCALE_HIDE_ZERO Set bit for hiding zero digit in the marker scale

Returns nothing

Description Draw a Scale as defined by ScaleDef, setting LedRam for use in touch processing. See the reference
for the ScaleDef values. If touch processing is not required 0 may be used as the ScaleRam
parameter.

Example var ImageRAM1[10];

#DATA

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 206 of 554 www.4dlabs.com.au

word Image1Info 36, 10, 197, 0, 100, 5, 10, 2, 5, 0xFFFF, 0x0, 0xFFFF,

FONT3, 0, (SCALE_CENTRE | SCALE_TICKS_BOTH | SCALE_VERT | SCALE_END_ALIGN |

SCALE_SHOW_ZERO)

#END

func main()

 gfx_Scale(ImageRAM1, Image1Info); // Scale object

repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 207 of 554 www.4dlabs.com.au

2.6.75 gfx_RulerGauge(value, &RulerGaugeRam, &RulerGaugeDef)

Syntax gfx_RulerGauge(value, &RulerGaugeRam, &RulerGaugeDef)

Arguments value, &ram, &def

value A value (usually a constant) specifying the current frame of the widget

&RulerGaugeRam A pointer to a variable array for widget utilization

&RulerGaugeDef A pointer to the Data Block holding the widget parameters

Flash Data Block Format

#DATA
word Gauge1Info 10, // Top-Left X-position

10, // Top-Left Y-position
250, // Widget length
52, // Widget width
100, // Widget total frames
6, // Number of partitions between each major ticks
5, // Number of minor tick partitions between each major ticks
10, // Minor tick length
20, // Major tick length
50, // Starting frame for medium range scale
75, // Starting frame for high range scale
0x3A08, // Base color
0x1F, // Low range color
0xFD20, // Medium range color
0xF800, // High range color
0xFFFF, // Marker tick color
RULERGAUGE_TICKS_BOTTOM // Option bits (See Flash Data Block Option Bits)

#END

Flash Data Block Option Bits

 RULERGAUGE_TICKS_TOP Set bit for setting marker tick location at the top of the gauge
 RULERGAUGE_TICKS_BOTTOM Set bit for setting marker tick location at the bottom of the gauge

Returns nothing

Description Draw a RulerGauge as defined by RulerGaugeDef (if required), using RulerGaugeRam positioning at
position value. See the reference for the RulerGaugeDef values.

Example var value;

var Gauge1Ram[10];

#DATA

word Gauge1Info 10, 10, 250, 52, 100, 6, 5, 10, 20, 50, 75, 0x3A08, 0x1F,

0xFD20, 0xF800, 0xFFFF, RULERGAUGE_TICKS_BOTTOM

#END

func main()

 gfx_RulerGauge(value, Gauge1Ram, Gauge1Info); // Gauge Internal

Widget

repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 208 of 554 www.4dlabs.com.au

2.6.76 gfx_GradientShape(GradientRAM, HorzVert, OuterWidth, X, Y, W, H, TLrad, TRrad,
BLrad, BRrad, Darken, OuterColor, OuterType, OuterLevel, InnerColor, InnerType,
InnerLevel, Split)

Syntax
gfx_GradientShape(GradientRAM, HorzVert, OuterWidth, X, Y, W, H, TLrad, TRrad, BLrad, BRrad,
Darken, OuterColor, OuterType, OuterLevel, InnerColor, InnerType, InnerLevel, Split)

Arguments
GradientRAM, HorzVert, OuterWidth, X, Y, W, H, TLrad, TRrad, BLrad, BRrad, Darken, OuterColor,
OuterType, OuterLevel, InnerColor, InnerType, InnerLevel, Split

GradientRAM This Function requires a quantity or RAM to work. It also needs to be initialised

and it's size varies accoring to the largest corner radius. Multiple gradient shape

calls can share the same GradientRAM. eg gradientRAM[29+91*2] := [-1,-1,-

9999,0,0,91] ; Would support a maximum radius of 90 degrees, note the 91 in

two places.

HorzVert Horizontal or Vertical -- 0 or 1

OuterWidth Outer gradient width

X x co-ordinate

Y y co-ordinate

W Width

H Height

TLrad Top left corner radius

TRrad Top right corner radius

BLrad Bottom left radius

BRrad Bottom right radius

Darken Darken both colours by a value. Can be a -ve value to lighten

OuterColor Outer Gradient colour

OuterType Outer Gradient type (0 - 3 horizontal, +4 vertical)

0 - Raised

1 - Sunken

2 - Raised flatter middle

3 - Sunken flatter middle

OuterLevel Outer Gradient level 0 - 63

InnerColor Inner Gradient colour

InnerType Outer Gradient type (0 - 3 horizontal, +4 vertical)

0 - Raised

1 - Sunken

2 - Raised flatter middle

3 - Sunken flatter middle

InnerLevel Inner Gradient level 0 - 63

Split Split gradient

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 209 of 554 www.4dlabs.com.au

0 - no split

1 – top

2 - bottom

Returns nothing

Description Produce a shaped color gradient using the supplied parameters

Example gfx_GradientShape(GradientRAM, HorzVert, OuterWidth, X, Y, W, H, TLrad,

TRrad, BLrad, BRrad, Darken, OuterColor, OuterType, OuterLevel, InnerColor,

InnerType, InnerLevel, Split) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 210 of 554 www.4dlabs.com.au

2.6.77 gfx_GradientColor (Type, Darken, Level, H, Pos, Color)

Syntax gfx_GradientColor(Type, Darken, Level, H, Pos, Color)

Arguments Type, Darken, Level, H, Pos, Color

Type Gradient type (0 - 3 horizontal, +4 vertical)

0 – Raised

1 – Sunken

2 - Raised flatter middle

3 - Sunken flatter middle

Darken Darken colour by a value. Can be a -ve value to lighten

Level Gradient level 0 - 63

H Height of the object that gradient is applied

Pos Position in the height that gradient is calculated

Color Source colour that gradient is applied to

Returns Color after Adjustment.

Description Given the parameters, adjust the input color to produce the output color.

Example gfx_GradientColor(Type, Darken, Level, H, Pos, Color)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 211 of 554 www.4dlabs.com.au

2.6.78 gfx_GradTriangleFilled(X0, Y0, X1, Y1, X2, Y2, SolidCol, GradientCol, GradientHeight,
GradientY, GradientLevel, Type)

Syntax
gfx_GradTriangleFilled(X0, Y0, X1, Y1, X2, Y2, SolidCol, GradientCol, GradientHeight, GradientY,
GradientLevel, Type)

Arguments X0, Y0, X1, Y1, X2, Y2, SolidCol, GradientCol, GradientHeight, GradientY, GradientLevel, Type

X0 First triangle point x coordinate

Y0 First triangle point y coordinate

X1 Second triangle point x coordinate

Y1 Second triangle point y coordinate

X2 Third triangle point x coordinate

Y2 Third triangle point y coordinate

SolidCol Colour that will be used if the Solid or Gradient parameter is set to 0

GradientCol Colour that will be used if the Solid or Gradient parameter is set to 1

GradientHeight Height of the area that the gradient will be calculated. Can be larger than the

triangle

GradientY Position on the Y axis that the gradient will be calculated from with respect to

triangle position

GradientLevel Level of gradient applied

Type Select wether solid triangle or gardient triangle is drawn.

Returns nothing

Description Produce a triangle with or without a gradient.

Example gfx_GradTriangleFilled(10, 10, 10, 100, 100, 100 ,YELLOW, DARKKHAKI, 100,

10, 30, 1);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 212 of 554 www.4dlabs.com.au

2.6.79 gfx_XYrotToVal(x,y,base,mina,maxa,minv,maxv)

Syntax gfx_XYrotToVal(x,y,base,mina,maxa,minv,maxv)

Arguments x,y,base,mina,maxa,minv,maxv

x Relative x-coordinate (x-coordinate – x-center)

y Relative y-coordinate (y-coordinate – y-center)

base Base can be XYROT_EAST, used for internal widgets, or XYROT_SOUTH, used for

GCI widgets.

mina Start angle (Clockwise from 0 angle)

maxa End angle (Clockwise from 0 angle)

minv Minimum value

maxv Maximum value

Returns Returns a value from minv to maxv

Description Convert a rotational angle into a value. Calculates a position for a rotary input starting at mina and
continuing to maxa. both angles must be greater than 0.

Example gfx_XYrotToVal(x,y,XYROT_EAST,starta,enda,minv,maxv)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 213 of 554 www.4dlabs.com.au

2.6.80 gfx_XYlinToVal(x,y,base,minpos,maxpos,minv,maxv)

Syntax gfx_XYlinToVal(x,y,base,minpos,maxpos,minv,maxv)

Arguments x,y,base,minpos,maxpos,minv,maxv

x Relative x-coordinate (x-coordinate – x-center)

y Relative y-coordinate (y-coordinate – y-center)

base Base can be XYLIN_X, to use the x value for calculations, or XYLIN_Y, to use the y

value.

mina Start position

maxa End position

minv Minimum value

maxv Maximum value

Returns Returns a value from minv to maxv

Description Convert a linear position into a value Calculates a position for a linear input starting at minpos and
continuing to maxpos.

Example gfx_XYlinToVal(x,y,XYLIN_X,startp,endp,minv,maxv)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 214 of 554 www.4dlabs.com.au

2.7. Widget Functions

Summary of functions in this section:

• widget_Create(count)

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 215 of 554 www.4dlabs.com.au

2.7.1 widget_Create(count)

Syntax widget_Create(count)

Arguments count

count The number of elements in the widget control

The argument can be a variable, array element, expression or constant.

Returns hndl

 hndl Widget control handle.

Description Creates a widget control capable of holding count elements and returns a handle for the control.

Example var hndl;

hndl := widget_Create(1);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 216 of 554 www.4dlabs.com.au

2.7.2 widget_Add(hndl, index, widget)

Syntax widget_Add(hndl, index, widget)

Arguments hndl, index, widget

hndl Handle of the widget control

index Index of element in the widget control

widget Pointer to RAM allocation of the entry widget

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Add a widget ram entry "widget" into index "index" of the widget control referenced by "hndl".

Example var hndl;

hndl := widget_Create(1);

widget_Add(hndl, 0, ILed1RAM); // Add entry index 0 for Led

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 217 of 554 www.4dlabs.com.au

2.7.3 widget_Delete(hndl, index)

Syntax widget_Delete(hndl, index)

Arguments hndl, index

hndl Handle of the widget control

index Index of element in the widget control

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description Delete widget ram entry "index" from the widget control referenced by "hndl".

Example var hndl;

hndl := widget_Create(1);

widget_Add(hndl, 0, ILed1RAM); // Add entry index 0 for Led1

widget_Delete(hndl, 0); // Remove entry index 0

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 218 of 554 www.4dlabs.com.au

2.7.4 widget_Realloc(handle, n)

Syntax widget_Realloc(handle, n)

Arguments handle, n

handle Handle of the widget control

n New number of entries

The arguments can be a variable, array element, expression or constant.

Returns hndl

 hndl Returns new handle to widget control

Description Resizes a widget control "handle"to contain n entries, allowing it to be expanded or condensed.
Doing this unnecessarily can lead to RAM fragmentation. It is much better to allocate widget controls
once with the desired number of entries.

Example var hndl;

hndl := widget_Create(10);

widget_Add(hndl, 0, ILed1RAM);

widget_Add(hndl, 1, ILed2RAM);

widget_Add(hndl, 2, ILed3RAM);

hndl := widget_Realloc(hndl, 3); // Reallocate widget control

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 219 of 554 www.4dlabs.com.au

2.7.5 widget_GetWord(hndl, index, offset)

Syntax widget_GetWord(hndl, index, offset)

Arguments hndl, index, offset

hndl Handle of the widget control

index Index of element in the widget control

offset Offset of the required word in the widget entry

The arguments can be a variable, array element, expression or constant.

Returns value

 value Returns the specified word (0-14) from a widget entry.

Description Returns specified word (0-14) from a widget entry. Refer to widget control entry offsets. This
function requires that a widget control has been created with the widget_Create() function.

WIDGET_XPOS 0 RAM xpos
WIDGET_YPOS 1 RAM ypos
WIDGET_WIDTH 2 RAM width, needed for touch
WIDGET_HEIGHT 3 RAM height, needed for touch
WIDGET_XOTHER 4 RAM xpos 'other' (Non Flash widgets only)
WIDGET_LO_WORD 4 Flash offset low word (External Flash widgets only)
WIDGET_YOTHER 5 RAM ypos 'other' (Non Flash widgets only)
WIDGET_HI_WORD 5 Flash offset high word (Flash widgets only)
WIDGET_FLAGS 6 RAM flags
WIDGET_TAG 7 RAM tag (user or FORM#)
WIDGET_TAG2 8 RAM tag2 (user or object << 8 | object_id)
WIDGET_VAL1 9 RAM current value
WIDGET_DELAY 10 Inter frame delay (Flash widgets only)
WIDGET_FRAMES 11 Number of frames (Flash widgets only)

Example #DATA

word Led1Info 5, 30, 103, 56, 0x2965, BLACK, 0xDEFB, 0xF800, 0x5800, 20,

30, 10, 20, 1

#END

var Led1Ram[WIDGET_RAM_SPACE];

func main()

 var hndl;

 var width;

 hndl := widget_Create(1);

 widget_Add(hndl, 0, Led1Ram);

 gfx_Led(0, Led1Ram, Led1Info);

 width := widget_GetWord(hndl, 0, WIDGET_WIDTH);

 print(width); // Print widget width from RAM

repeat

forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 220 of 554 www.4dlabs.com.au

2.7.6 widget_Setposition(hndl, index, xpos, ypos)

Syntax widget_Setposition(hndl, index, xpos, ypos)

Arguments hndl, index, xpos, ypos

hndl Handle of the widget control

index Index of element in the widget control

xpos x-coordinate of position

ypos y-coordinate of position

The arguments can be a variable, array element, expression or constant.

Returns status

 status Returns true if index was ok and function was successful.

Description Set the position of an entry in the widget control. This function requires that a widget control has
been created with the widget_Create() function.

Example #DATA

word Led1Info 5, 5 , 103, 56, 0x2965, BLACK, 0xDEFB, 0xF800, 0x5800, 20,

30, 10, 20, 1

#END

var Led1Ram[WIDGET_RAM_SPACE];

func main()

 var hndl;

 hndl := widget_Create(1);

 widget_Add(hndl, 0, Led1Ram);

 gfx_Led(0, Led1Ram, Led1Info);

 pause(2000);

 gfx_Cls();

 widget_Setposition(hndl, 0, 50, 50); // Set new widget position

 gfx_Led(0, Led1Ram, Led1Info);

 repeat

 forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 221 of 554 www.4dlabs.com.au

2.7.7 widget_Enable(hndl, index)

Syntax widget_Enable(hndl, index)

Arguments hndl, index

hndl Handle of the widget control

index Index of element in the widget control

The arguments can be a variable, array element, expression or constant.

Returns status

 status Returns true if index was ok and function was successful.

Description Enable an item in a widget control. This function requires that a widget control has been created
with the widget_Create() function.

Example #DATA

word IILed1 5, 30, 103, 56, 0x2965, BLACK, 0xDEFB, 0xF800, 0x5800, 20,

30, 10, 20, 1

word IILed2 5, 90, 103, 56, 0x2965, BLACK, 0xDEFB, BLUE, 0x000B, 20,

30, 10, 20, 1

#END

var ILed1RAM[WIDGET_RAM_SPACE] ;

var ILed2RAM[WIDGET_RAM_SPACE] ;

func main()

 var hndl, i;

 hndl := widget_Create(2);

 widget_Add(hndl, 0, ILed1RAM);

 widget_Add(hndl, 1, ILed2RAM);

 repeat

 if (i == 0)

 widget_Disable(hndl, 0); // Disable LED 0

 widget_Enable(hndl, 1); // Enable LED 1

 else

 widget_Disable(hndl, 1); // Disable LED 1

 widget_Enable(hndl, 0); // Enable LED 0

 endif

 // Draw LED widgets

 widget_ClearAttributes(hndl, ALL, WIDGET_F_INITIALISED);

 gfx_Led(0, ILed1RAM, IILed1);

 gfx_Led(0, ILed2RAM, IILed2);

 pause(2000);

 gfx_Cls();

 i := !(i);

 forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 222 of 554 www.4dlabs.com.au

2.7.8 widget_Disable(hndl, index)

Syntax widget_Disable(hndl, index)

Arguments hndl, index

hndl Handle of the widget control

index Index of element in the widget control

The arguments can be a variable, array element, expression or constant.

Returns status

 status Returns true if index was ok and function was successful.

Description Disable an item in a widget control. This function requires that a widget control has been created
with the widget_Create() function.

Example See example in section widget_Enable(…).

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 223 of 554 www.4dlabs.com.au

2.7.9 widget_SetWord(hndl, index, offset, value)

Syntax widget_SetWord(hndl, index, offset, value)

Arguments hndl, index, offset, value

hndl Handle of the widget control

index Index of element in the widget control

offset Offset of the required word in the widget entry

value The word to be written to the entry

The arguments can be a variable, array element, expression or constant.

Returns status

 status Returns TRUE if successful, return value usually ignored

Description Set specified word in an image entry. This function requires that a widget control has been created
with the widget_Create() function.

WIDGET_XPOS 0 RAM xpos
WIDGET_YPOS 1 RAM ypos
WIDGET_WIDTH 2 RAM width, needed for touch
WIDGET_HEIGHT 3 RAM height, needed for touch
WIDGET_XOTHER 4 RAM xpos 'other' (Non Flash widgets only)
WIDGET_LO_WORD 4 Flash offset low word (Flash widgets only)
WIDGET_YOTHER 5 RAM ypos 'other' (Non Flash widgets only)
WIDGET_HI_WORD 5 Flash offset high word (Flash widgets only)
WIDGET_FLAGS 6 RAM flags
WIDGET_TAG 7 RAM tag (user or FORM#)
WIDGET_TAG2 8 RAM tag2 (user or object << 8 | object_id)
WIDGET_VAL1 9 RAM current value
WIDGET_DELAY 10 Inter frame delay (Flash widgets only)
WIDGET_FRAMES 11 Number of frames (Flash widgets only)

Example #DATA

word IGauge1 10, 10, 30, 160, 80, 0, 100, 0, 0, 0x18E3, 0x0280, LIME, 0x5280,

YELLOW, 0x5000, RED, 51, 36, 0x0

#END

var IGauge1RAM [WIDGET_RAM_SPACE];

func main()

 var hndl;

 hndl := widget_Create(1);

 widget_Add(hndl, 0, IGauge1RAM);

 gfx_Gauge(50, IGauge1RAM, IGauge1);

 widget_SetWord(hndl, 0, WIDGET_XPOS, 45);

 gfx_Gauge(50, IGauge1RAM, IGauge1);

repeat

forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 224 of 554 www.4dlabs.com.au

2.7.10 widget_SetAttributes(hndl, index, value)

Syntax widget_SetAttributes(hndl, index, value)

Arguments hndl, index, value

hndl Handle of the widget control

index Index of element in the widget control

value The word to be written to the entry

The arguments can be a variable, array element, expression or constant.

Returns status

 status Returns TRUE if successful, return value usually ignored.

Description This function SETS one or more bits in the widget flags field of a widget control entry. "value" refers
to various bits in the widget control entry (see widget attribute flags). A '1' bit in the "value" field
SETS the respective bit in the widget flags field of the widget control entry.

Widget attribute flags to be used and maintained by widgets and touch processing:

WIDGET_F_TOUCH_ENABLE 0x8000 Set to disable touch for this image,
 (default=1 for movie, 0 for image)
WIDGET_F_INTERNAL 0x4000 Internal use only (force redraw on next write)
WIDGET_F_INITIALISED 0x2000 Flag when ‘base gauge needle, etc.’ is done
WIDGET_F_UNDRAW_ONLY 0x1000 Set to prevent draw of new needle
WIDGET_F_INPUT 0x0800 Set if this is an input (Used only with the IDE)
WIDGET_F_FLASH 0x0400 set if this is a flash based widget
WIDGET_F_RESERVED 0x03c0 bits 9-6 reserved

Example #DATA

word Slider1Info 10, 10, 250, 40, 0, 0, 100, 0x1082, 0x0, 0x7E0, 30, 30, 2,

2, 10, 0x7E0, 5, 0x7E0, FONT3, 0xFFE0, 0x1082, 0x9CD3, GRAD_DOWN, 0x1082,

0x9CD3, GRAD_UP

#END

var Slider1Ram[10];

func main()

 var hndl;

 hndl := widget_Create(1);

 widget_Add(hndl, 0, Slider1Ram);

 widget_SetAttributes(hndl, 0, WIDGET_F_TOUCH_ENABLE);

 gfx_Slider5(frame, Slider1Ram, Slider1Info);

 repeat

 // do something here

 forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 225 of 554 www.4dlabs.com.au

2.7.11 widget_ClearAttributes(hndl, index, value)

Syntax widget_ClearAttributes(hndl, index, value)

Arguments hndl, index, value

hndl Handle of the widget control

index Index of element in the widget control

value The word to be written to the entry

The arguments can be a variable, array element, expression or constant.

Returns status

 status Returns TRUE if successful, return value usually ignored.

Description This function CLEARS one or more bits in the widget flags field of an image control entry. "value"
refers to various bits in the widget control entry (see widget attribute flags). A '1' bit in the "value"
field CLEARS the respective bit in the widget flags field of the image control entry.

Widget attributes flags to be used and maintained by widgets and touch processing:

WIDGET_F_TOUCH_ENABLE 0x8000 Set to disable touch for this image,
 (default=1 for movie, 0 for image)
WIDGET_F_INTERNAL 0x4000 Internal use only (force redraw on next write)
WIDGET_F_INITIALISED 0x2000 Flag when ‘base gauge needle, etc.’ is done
WIDGET_F_UNDRAW_ONLY 0x1000 Set to prevent draw of new needle
WIDGET_F_INPUT 0x0800 Set if this is an input (Used only with the IDE)
WIDGET_F_FLASH 0x0400 set if this is a flash based widget
WIDGET_F_RESERVED 0x03c0 bits 9-6 reserved

Example #DATA

word fLed1Info 5, 5 , 103, 56, 0x2965, BLACK, 0xDEFB, 0xF800, 0x5800, 20,

30, 10, 20, 1

#END

var Led1[WIDGET_RAM_SPACE];

func main()

 var hndl;

 hndl := widget_Create(10);

 widget_Add(hndl, 0, Led1);

 gfx_Led(0, Led1, fLed1Info);

 pause(2000);

 gfx_Cls();

 widget_ClearAttributes(hndl, 0, WIDGET_F_INITIALISED);

 gfx_Led(0, Led1, fLed1Info);

 repeat

 // do something here

 forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 226 of 554 www.4dlabs.com.au

2.7.12 widget_Touched(hndl, index)

Syntax widget_Touched(hndl, index)

Arguments hndl, index

hndl Handle of the widget control

index Index of element in the widget control

The arguments can be a variable, array element, expression or constant.

Returns status

 status Returns -1 if image not touched, or returns index

Description This function requires that a widget control has been created with the widget_Create() function.
Returns index of the widget touched or returns -1 if no widget was touched.

If index is passed as -1 or ALL the function tests all widgets.

Example if(state == TOUCH_PRESSED)

 n := widget_Touched(hndl, ALL); //scan widget list, looking for a touch

 if(n != -1)

 print(n);// print index of widget touched

 endif

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 227 of 554 www.4dlabs.com.au

2.8. Display I/O Functions

These functions allow direct display access for fast blitting operations.

Summary of Functions in this section:

• disp_SetReg(register, data)

• disp_setGRAM(x1, y1, x2, y2)

• disp_WrGRAM(colour)

• disp_WriteControl(value)

• disp_WriteWord(value)

• disp_ReadWord()

• disp_Disconnect()

• disp_Init()

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 228 of 554 www.4dlabs.com.au

2.8.1 disp_SetReg(register, data)

Syntax disp_SetReg(register, data);

Arguments register, data

register Refer to the display driver datasheet

data Refer to the display driver datasheet

Returns nothing

Description Sets the Display driver IC register.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 229 of 554 www.4dlabs.com.au

2.8.2 disp_setGRAM(x1, y1, x2, y2)

Syntax disp_setGRAM(x1, y1, x2, y2);

Arguments x1, y1, x2, y2

x1, y1 Top left of the GRAM window.

x2, y2 Bottom right of the GRAM window.

Returns value

 value The LO word of the 32 bit pixel count is returned.

Description
Prepares the GRAM area for user access. The lower 16bits of the pixel count in the selected area is
returned. This is usually all that is needed unless GRAM area exceeds 256^2. A copy of the 32bit value
can be found in GRAM_PIXEL_COUNT_LO and GRAM_PIXEL_COUNT_HI.

Example disp_setGRAM(40, 60, 100, 150);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 230 of 554 www.4dlabs.com.au

2.8.3 disp_WrGRAM(colour)

Syntax disp_WrGRAM(colour);

Arguments colour

 colour Pixel color to be populated.

Returns nothing

Description
Data can be written to the GRAM consecutively using this function once the GRAM access window
has been setup.

Example
disp_WrGRAM(0xFFF0);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 231 of 554 www.4dlabs.com.au

2.8.4 disp_WriteControl(value)

Syntax disp_WriteControl(value);

Arguments value

value Specifies the 16 bit value to be written to the display control register.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description
Sends a 16 bit value to the display bus. Refer to individual data sheets for the display for more
information. This function is used to extend the capabilities of the user code to gain access to the
display hardware.

Example
disp_WriteControl(0x0FFA);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 232 of 554 www.4dlabs.com.au

2.8.5 disp_WriteWord(value)

Syntax disp_WriteWord(value);

Arguments value

value Specifies the value to be written to the display data register.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description
Sends a 16 bit value to the display bus. Refer to individual data sheets for the display for more
information. This function is used to extend the capabilities of the user code to gain access to the the
display hardware.

Example
disp_WriteWord(0x7FF0);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 233 of 554 www.4dlabs.com.au

2.8.6 disp_ReadWord()

Syntax disp_ReadWord();

Arguments nothing

Returns value

 value Returns 16 bit value in the register.

Description Read a word from the display.

Example

var val;

val := disp_ReadWord();

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 234 of 554 www.4dlabs.com.au

2.8.7 disp_Disconnect()

Syntax disp_Disconnect();

Arguments none

Returns nothing

Description

This function disconnects the display driver pins and/or reconfigures it to achieve its lowest possible
power consumption. Use after disabling peripheral power to ensure the minimal power usage by the
display.

Note: disp_Init() should be used to reinitialise the display.

New in v0.7 PmmC

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 235 of 554 www.4dlabs.com.au

2.8.8 disp_Init()

Syntax disp_Init();

Arguments none

Returns nothing

Description

This function is used to initialise the display.

This is useful in a number of situations, however mainly for the uLCD-xx-PTU modules which have the
ability to disable the power supply to the display for low power sleep modes. This function is required
to re-initialise the display once power to the display has been restored, so the display is usable once
again.

New in v0.7 PmmC

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 236 of 554 www.4dlabs.com.au

2.8.9 disp_BlitPixelsFromCOMn()

Syntax

disp_BlitPixelsFromCOM0(); or
disp_BlitPixelsFromCOM1(); or
disp_BlitPixelsFromCOM2(); or
disp_BlitPixelsFromCOM3();

Note: COMn from disp_BlitPixelsFromCOMn is to be replaced by COM0 to COM3.

Arguments None

Returns Nothing

Description

This function writes the number of pixels defined by the last disp_setGRAM() call to the display from
the specified com port. The function returns once all pixels have been written.

New in v1.1 PmmC

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 237 of 554 www.4dlabs.com.au

2.9. Media Functions (SD/SDHC Memory Card or Serial Flash chip)

The media can be SD/SDHC, microSD or serial (NAND) flash device interfaced to the Diablo16 SPI port.

Summary of Functions in this section:

• media_Init()

• media_SetAdd(HIword, LOword)

• media_SetSector(HIword, LOword)

• media_RdSector(Destination_Address)

• media_WrSector(Source_Address)

• media_ReadByte()

• media_ReadWord()

• media_WriteByte(byte_val)

• media_WriteWord(word_val)

• media_Flush()

• media_Image(x, y)

• media_Video(x, y)

• media_VideoFrame(x, y, frameNumber)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 238 of 554 www.4dlabs.com.au

2.9.1 media_Init()

Syntax media_Init();

Arguments none

Returns result

result Returns: 1 if memory card is present and successfully initialised

Returns: 0 if no card is present or not able to initialise

Description Initialise a uSD/SD/SDHC memory card for further operations. The SD card is connected to the SPI

(serial peripheral interface) of the processor.

Example while(!media_Init())

 gfx_Cls();

 pause(300);

 puts(“Please insert SD card”);

 pause(300);

wend

This example waits for SD card to be inserted and initialised, flashing a message if no SD card detected.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 239 of 554 www.4dlabs.com.au

2.9.2 media_SetAdd(HIword, LOword)

Syntax media_SetAdd(HIword, LOword);

Arguments HIword, LOword

HIword
Specifies the high word (upper 2 bytes) of a 4 byte media memory byte address

location.

LOword Specifies the low word (lower 2 bytes) of a 4 byte media memory byte address

location.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Set media memory internal Address pointer for access at a non sector aligned byte address.

Example media_SetAdd(0, 513);

This example sets the media address to byte 513 (which is sector #1, 2nd byte in sector) for subsequent
operations.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 240 of 554 www.4dlabs.com.au

2.9.3 media_SetSector(HIword, LOword)

Syntax media_SetSector(HIword, LOword);

Arguments HIword, LOword

HIword
Specifies the high word (upper 2 bytes) of a 4 byte media memory sector address

location.

LOword Specifies the low word (lower 2 bytes) of a 4 byte media memory sector address

location.

The arguments can be a variable, array element, expression or constant

Returns result

Description Set media memory internal Address pointer for sector access.

Example media_SetSector(0, 10);

This example sets the media address to the 11th sector (which is also byte address 5120) for
subsequent operations

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 241 of 554 www.4dlabs.com.au

2.9.4 media_RdSector(Destination_Address)

Syntax media_RdSector(Destination_Address);

Arguments Destination_Address

Destination_Address Destination block pointed to by the internal Sector pointer.

The argument must be a pointer to an array of size 256 words for the sector data which will be 512
bytes

Returns
Returns TRUE if media response was TRUE.

Returns 512 bytes (256 words) in to a destination block.

Description
Reads and Returns 512 bytes (256 words) into a destination block (eg rdblock[256]) pointed to by the

internal Sector pointer. After the read the Sector pointer is automatically incremented by 1.

Example var rdblock[256];

media_SetSector(0,10)

if (media_RdSector(rdblock));

Print(“Data collected”);

endif

This example sets a 512 bytes block and collects data from the address pointed to by media_SetSector
command.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 242 of 554 www.4dlabs.com.au

2.9.5 media_WrSector(Source_Address)

Syntax media_WrSector(Source_Address);

Arguments Source_Address

Source_Address Source memory block of 512bytes.

The arguments can be a variable, array element, expression or constant

Returns Returns TRUE if media response was TRUE.

Description

Writes 512 bytes (256 words) from a source memory block (eg wrblock[256]) into the uSD card. After

the write the Sect pointer is automatically incremented by 1.

Returns TRUE if uSD response was TRUE

Example var wrblock[256];

func main()

prepare_block();

media_SetSector(0,10)

if (media_WrSector(wrblock));

Print(“Data transferred”);

endif

:

:

This example sets a 512 bytes block and transfers data to the address pointed to by media_SetSector
command.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 243 of 554 www.4dlabs.com.au

2.9.6 media_ReadByte()

Syntax media_ReadByte();

Arguments none

Returns byte value

Description Returns the byte value from the current media address. The internal byte address will then be

internally incremented by one.

Example var LObyte, HIbyte;

if(media_Init())

 media_SetAdd(0, 510);

 LObyte := media_ReadByte();

 HIbyte := media_ReadByte();

 print([HEX2]HIbyte,[HEX2]LObyte);

endif

repeat forever

This example initialises the media, sets the media byte address to 510, and reads the last 2 bytes from
sector 0. If the card happens to be FAT formatted, the result will be “AA55”. The media internal address
is internally incremented for each of the byte operations.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 244 of 554 www.4dlabs.com.au

2.9.7 media_ReadWord()

Syntax media_ReadWord();

Arguments none

Returns word value

Description Returns the word value (2 bytes) from the current media address. The internal byte address will then

be internally incremented by two. If the address is not aligned, the word will still be read correctly.

Example var myword;

if(media_Init())

 media_SetAdd(0, 510);

 myword := media_ReadWord();

 print([HEX4]myword);

endif

repeat forever

This example initialises the media, sets the media byte address to 510 and reads the last word from
sector 0. If the card happens to be formatted, the result will be “AA55”

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 245 of 554 www.4dlabs.com.au

2.9.8 media_WriteByte(byte_val)

Syntax media_WriteByte(byte_val);

Arguments byte_val

byte_val The lower 8 bits specifies the byte to be written at the current media address location.

The arguments can be a variable, array element, expression or constant

Returns success

 success Returns non zero if write was successful.

Description Writes a byte to the current media address that was initially set with media_SetAdd() or
media_SetSector(...); After the write the Address pointer is automatically incremented by 1.

Note: Writing bytes or words to a media sector must start from the beginning of the sector. All writes
will be incremental until the media_Flush() function is executed, or the sector address rolls over to
the next sector. When media_Flush() is called, any remaining bytes in the sector will be padded with
0xFF, destroying the previous contents. An attempt to use the media_SetAdd(..) function will result
in the lower 9 bits being interpreted as zero. If the writing rolls over to the next sector, the
media_Flush() function is issued automatically internally.

Example var n, char;

while (media_Init()==0); // wait if no SD card detected

media_SetSector(0, 2); // at sector 2

//media_SetAdd(0, 1024); // (alternatively, use media_SetAdd(),

 // lower 9 bits ignored)

while (n < 10)

 media_WriteByte(n++ +'0'); // write ASCII '0123456789' to the

wend // first 10 locations.

to(MDA); putstr("Hello World"); // now write a ascii test string

media_WriteByte('A'); // write a further 3 bytes

media_WriteByte('B');

media_WriteByte('C');

media_WriteByte(0); // terminate with zero

media_Flush(); // we're finished, close the sector

media_SetAdd(0, 1024+5); // set the starting byte address

while(char:=media_ReadByte()) putch(char); // print result, starting

 // from '5'

repeat forever

This example initialises the media, writes some bytes to the required sector, then prints the
result from the required location.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 246 of 554 www.4dlabs.com.au

2.9.9 media_WriteWord(word_val)

Syntax media_WriteWord(word_val);

Arguments word_val

word_val The 16 bit word to be written at the current media address location.

The arguments can be a variable, array element, expression or constant

Returns success

 success Returns non zero if write was successful.

Description Writes a word to the current media address that was initially set with media_SetAdd() or
media_SetSector(...); After the write the Address pointer is automatically incremented by 2.

Note: Writing bytes or words to a media sector must start from the beginning of the sector. All writes
will be incremental until the media_Flush() function is executed, or the sector address rolls over to
the next sector. When media_Flush() is called, any remaining bytes in the sector will be padded with
0xFF, destroying the previous contents. An attempt to use the media_SetAdd(..) function will result in
the lower 9 bits being interpreted as zero. If the writing rolls over to the next sector, the media_Flush()
function is issued automatically internally.

Example var n;

while (media_Init()==0); // wait until a good SD card is found

n:=0;

media_SetAdd(0, 1536); // set the starting byte address

while (n++ < 20)

 media_WriteWord(RAND()); // write 20 random words to first 20

wend // word locations.

n:=0;

while (n++ < 20)

 media_WriteWord(n++*1000);// write sequence of 1000*n to next 20

wend // word locations.

media_Flush(); // we're finished, close the sector

media_SetAdd(0, 1536+40); // set the starting byte address

n:=0;

while(n++<8) // print result of fist 8 multiplication calcs

 print([HEX4] media_ReadWord(),"\n");

wend

repeat forever

// This example initialises the media, writes some words to the required sector, then prints
// the result from the required location.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 247 of 554 www.4dlabs.com.au

2.9.10 media_Flush()

Syntax media_Flush();

Arguments none

Returns
returns 0 if Failed
returns non-zero if OK

Description After writing any data to a sector, media_Flush() should be called to ensure that the current sector
that is being written is correctly stored back to the media else write operations may be unpredictable.

Example See the media_WriteByte(..) and media_WriteWord(..) examples.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 248 of 554 www.4dlabs.com.au

2.9.11 media_Image(x, y)

Syntax media_Image(x, y);

Arguments x, y

x, y Specifies the top left position where the image will be displayed.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Displays an image from the media storage at the specified co-ordinates. The image address is
previously specified with the media_SetAdd(..) or media_SetSector(...) function. If the image is
shown partially off screen, it may not be displayed correctly.

Example while(media_Init()==0); // wait if no SD card detected

media_SetAdd(0x0001, 0xDA00); // point to the books04 image

media_Image(10,10);

gfx_Clipping(ON); // turn off clipping to see the difference

media_Image(-12,50); // show image off-screen to the left

media_Image(50,-12); // show image off-screen at the top

repeat forever

This example draws an image at several positions, showing the effects of clipping.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 249 of 554 www.4dlabs.com.au

2.9.12 media_Video(x, y)

Syntax media_Video(x, y);

Arguments x, y

x, y Specifies the top left position where the video clip will be displayed.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Displays a video clip from the media storage device at the specified co-ordinates. The video address
location in the media is previously specified with the media_SetAdd(..) or media_SetSector(...)
function. If the video is shown partially off screen, it may not be displayed correctly. Note that showing
a video blocks all other processes until the video has finished showing. See the
media_VideoFrame(...) functions for alternatives.

Example while(media_Init()==0); // wait if no SD card detected

media_SetAdd(0x0001, 0x3C00); // point to the 10-gear clip

media_Video(10,10);

gfx_Clipping(ON); // turn off clipping to see the difference

media_Video(-12,50); // show video off-screen to the left

media_Video(50,-12); // show video off-screen at the top

repeat forever

This example plays a video clip at several positions, showing the effects of clipping.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 250 of 554 www.4dlabs.com.au

2.9.13 media_VideoFrame(x, y, frameNumber)

Syntax media_VideoFrame(x, y, frameNumber);

Arguments x, y

x, y Specifies the top left position where the video clip will be displayed.

frameNumber Specifies the required frame to be shown.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Displays a video from the media storage device at the specified co-ordinates. The video address is
previously specified with the media_SetAdd(..) or media_SetSector(...) function. If the video is shown
partially off it may not be displayed correctly. The frames can be shown in any order. This function
gives you great flexibility for showing various icons from an image strip, as well as showing videos
while doing other tasks

media_VideoFrame(..) will now show error box for out of range video frames. Also, if frame is set to -
1, just a rectangle will be drawn in background colour to blank an image. It applies to PmmC R29 or
above.

Example var frame;

while (media_Init()==0); // wait if no SD card detected

while (media_Init()==0); // wait if no SD card detected

media_SetAdd(0x0002, 0x3C00); // point to the 10-gear image

repeat

 frame := 0; // start at frame 0

 repeat

 media_VideoFrame(30,30, frame++); // display a frame

 pause(peekB(IMAGE_DELAY)); // pause for the time given in

 // the image header

 until(frame == peekW(IMG_FRAME_COUNT)); // loop until we've

 // shown all the frames

forever // do it forever

This first example shows how to display frames as required while possibly doing other tasks. Note that
the frame timing (although not noticeable in this small example) is not correct as the delay
commences after the image frame is shown, therefore adding the display overheads to the frame
delay. This second example employs a timer for the framing delay, and shows the same movie
simultaneously running forward and backwards with time left for other tasks as well. A number of
videos (or animated icons) can be shown simultaneously using this method.

var framecount, frame, delay, colr;

frame := 0;

// show the first frame so we can get the video header info

// into the system variables, and then to our local variables.

media_VideoFrame(30,30, 0);

framecount := peekW(IMG_FRAME_COUNT); // we can now set some local

 // values.

delay := peekB(IMAGE_DELAY); // get the frame count and delay

repeat

 repeat

 pokeW(TIMER0, delay); // set a timer

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 251 of 554 www.4dlabs.com.au

 media_VideoFrame(30,30, frame++); // show next frame

 gfx_MoveTo(64,35);

 print([DEC2Z] frame); // print the frame number

 media_VideoFrame(30,80, framecount-frame); // show movie

 // backwards.

 gfx_MoveTo(64,85);

 print([DEC2Z] framecount-frame); // print the frame number

 if ((frame & 3) == 0)

 gfx_CircleFilled(80,20,2,colr); // a blinking circle fun

 colr := colr ^ 0xF800; // alternate colour,

 endif // BLACK/RED using XOR

 // do more here if required

 while(peekW(TIMER0)); // wait for timer to expire

 until(frame == peekW(IMG_FRAME_COUNT));

 frame := 0;

forever

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 252 of 554 www.4dlabs.com.au

2.10. Flash Memory Chip Functions

The functions in this section apply to the Flash Memory Banks on the Diablo16.

Summary of Functions in this section:

• flash_Bank()

• flash_Blit1(bank, offset, count, pallete2colour)

• flash_Blit16(bank, offset, count)

• flash_Blit2(bank, offset, count, pallete4colour)

• flash_Blit4(bank, offset, count, pallete16colour)

• flash_Blit8(bank, offset, count)

• flash_Copy(bank, ptr, dest, count)

• flash_EraseBank(bank, confirmation)

• flash_Exec(bank, arglistptr)

• flash_GetByte(bank, ptr)

• flash_GetWord(bank, ptr)

• flash_LoadFile(bank, filename)

• flash_putstr(bank, ptr)

• flash_Run(bank)

• flash_WriteBlock(sourceptr, bank, page)

• flash_FunctionCall(bank, index, &FunctionRam, &FunctionDef, FunctionArgCount,
FuncionArgStringMap)

• flash_LoadSPIflash(bank, hndl, idx)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 253 of 554 www.4dlabs.com.au

2.10.1 flash_Bank()

Syntax flash_Bank();

Arguments none

Returns value

value The FLASH bank that code is currently running from, 0-5.
0: Flashbank 0
1: Flashbank 1
2: Flashbank 2
3: Flashbank 3
4: Flashbank 4
5: Flashbank 5

Description Identifies which flash bank the code is running from.

Example var bank;

bank := flash_Bank();

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 254 of 554 www.4dlabs.com.au

2.10.2 flash_Blit1(bank, offset, count, pallete2colour)

Syntax flash_Blit1(bank, offset, count, pallete2colour)

Arguments bank, offset, count, pallete2colour

 bank

Flash bank to load the image from.
0 or FLASHBANK_0
1 or FLASHBANK_1
2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

 offset Offset in to the Flash bank where image is stored.

 count Total number of pixel in the image.

 pallete2colour An array of 2 elements being the colors for the two possible colour values.

Returns count

 count Actual count (normally same as count, will be lower if bank bounds exceeded)

Description Blit an image to a GRAM window from FLASH storage. Image is stored in a linear fashion to suit the

GRAM mechanism, palette is 2 x 16bit colours

Example var actual_count;

var pixels := 2000;

// pallete should be defined as an array of 2 elements

// of 16bit color values

actual_count := flash_Blit1(FLASHBANK_2, 10, pixels, pallete);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 255 of 554 www.4dlabs.com.au

2.10.3 flash_Blit2(bank, offset, count, pallete4colour)

Syntax flash_Blit2(bank, offset, count, pallete4colour)

Arguments bank, offset, count, pallete4colour

 bank

Flash bank to load the image from.
0 or FLASHBANK_0
1 or FLASHBANK_1
2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

 offset Offset in to the Flash bank where image is stored.

 count Total number of pixel in the image.

 pallete4colour An array of 4 elements being the colors for the four possible colour values.

Returns count

 count Actual count (normally same as count, will be lower if bank bounds exceeded)

Description Blit an image to a GRAM window from FLASH storage. Image is stored in a linear fashion to suit the

GRAM mechanism, palette is 4 x 16bit colours

Example var actual_count;

var pixels := 2000;

// pallete should be defined as an array of 4 elements

// of 16bit color values

actual_count := flash_Blit2(FLASHBANK_2, 10, pixels, pallete);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 256 of 554 www.4dlabs.com.au

2.10.4 flash_Blit4(bank, offset, count, pallete16colour)

Syntax flash_Blit4(bank, offset, count, pallete16colour)

Arguments bank, offset, count, pallete16colour

 bank

Flash bank to load the image from.
0 or FLASHBANK_0
1 or FLASHBANK_1
2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

 offset Offset in to the Flash bank where image is stored.

 count Total number of pixel in the image.

 Pallete16colour An array of 16 elements being the colors for the sixteen possible colour values.

Returns count

 count Actual count (normally same as count, will be lower if bank bounds exceeded)

Description Blit an image to a GRAM window from FLASH storage. Image is stored in a linear fashion to suit the

GRAM mechanism, palette is 16 x 16bit colours

 var actual_count;

var pixels := 2000;

// pallete should be defined as an array of 16 elements

// of 16bit color values

actual_count := flash_Blit4(FLASHBANK_2, 10, pixels, pallete);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 257 of 554 www.4dlabs.com.au

2.10.5 flash_Blit8(bank, offset, count)

Syntax flash_Blit8(bank, offset, count)

Arguments bank, offset, count

bank

Flash bank to load the image from.
0 or FLASHBANK_0
1 or FLASHBANK_1
2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

offset Offset in to the Flash bank where image is stored.

count Total number of pixel in the image.

Returns count

 count Actual count (normally same as count, will be lower if bank bounds exceeded)

Description Blit an image to a GRAM window from FLASH storage. Image is stored 8 bits per pixel (332 format) in

a linear fashion to suit the GRAM mechanism

Example var actual_count;

var pixels := 2000;

actual_count := flash_Blit8(FLASHBANK_2, 10, pixels);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 258 of 554 www.4dlabs.com.au

2.10.6 flash_Blit16(bank, offset, count)

Syntax flash_Blit16(bank, offset, count)

Arguments bank, offset, count

bank

Flash bank to load the image from.
0 or FLASHBANK_0
1 or FLASHBANK_1
2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

offset Offset in to the Flash bank where image is stored.

count Total number of pixel in the image.

Returns count

 count Actual count (normally same as count, will be lower if bank bounds exceeded)

Description Blit an image to a GRAM window from FLASH storage. Image is stored 16bits per pixel (565) in a linear

fashion to suit the GRAM mechanism

Example var actual_count;

var pixels := 2000;

actual_count := flash_Blit16(FLASHBANK_2, 10, pixels);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 259 of 554 www.4dlabs.com.au

2.10.7 flash_Copy(bank, ptr, dest, count)

Syntax flash_Copy(bank, ptr, dest, count)

Arguments bank, ptr, dest, count

bank

Flash bank to copy the data from.
0 or FLASHBANK_0
1 or FLASHBANK_1
2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

ptr Pointer to a location in the selected flash bank.

dest Pointer to the destination. The destination pointer is word aligned.

count Count of bytes to be transferred.

Returns count

 count The count of bytes transferred.

Description Copies bytes from any flash locations to a user buffer. If the bank is read protected, 0 bytes will be

read.

Example var count;

var dest[100];

count := flash_Copy(FLASHBANK_2, 10,str_Ptr(dest), 100);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 260 of 554 www.4dlabs.com.au

2.10.8 flash_EraseBank(bank, confirmation)

Syntax flash_EraseBank(bank, confirmation)

Arguments bank, confirmation

bank

Flash bank to be erased.
0 or FLASHBANK_0
1 or FLASHBANK_1
2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5
-1 or ALL to select all the banks.

confirmation
0xDEAD: The command will erase regardless or FLASH_WRITE_PROTECT status
For any other value, a protected bank will not be erased.

Returns status

 status Returns true if the function succeeded.

Description This function should be used with extreme caution. The selected bank will be completely erased

regardless of FLASH_WRITE_PROTECT status if the confirmation value is set to hex 0xDEAD. If

confirmation is any other value, a protected bank will not be erased, and function will return with 0

If the destination bank is the same as the execution bank, the processor will reset upon completion

of erase. If the "bank" argument is set to ALL (-1) and confirmation is set to 0xDEAD, FLASHBANK_0

thru FLASHBANK_5 are cleared.

Note: Use with caution, this is a good way to 'clean up' the entire flash when starting new projects.

Note: reset processor if program is erasing itself, or the ALL bank option is selected.

 Example if (flash_EraseBank(FLASHBANK_2, 0))

 print("Erased successfully.");

else

 print("Failed");

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 261 of 554 www.4dlabs.com.au

2.10.9 flash_Exec(flashbank, arglistptr)

Syntax flash_Exec(flashbank, arglistptr);

Arguments flashbank, arglistptr

flashbank name of the bank to be executed.

arglistptr pointer to the list of arguments to pass to the selected bank or 0 if no arguments.

Returns Value

 Value Returns the value from main in the called bank.

Description This function calls the main function in another bank. The main program in FLASH retains all memory

allocations (eg file buffers, memory allocated with mem_Alloc etc)

The called bank returns like a function, program in current bank is kept active and control returns to

it. All memory allocated in the called bank should be freed before returning, or it will be lost.

If arglistptr is 0, no arguments are passed, else arglist points to an array, the first element being the

number of elements in the array.

func 'main' in the called bank accepts the arguments.

Example flash_Exec(FLASHBANK_1, 0) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 262 of 554 www.4dlabs.com.au

2.10.10 flash_GetByte(bank, ptr)

Syntax flash_GetByte(bank, ptr)

Arguments bank, ptr

bank

Flash bank to get the byte from.
0 or FLASHBANK_0
1 or FLASHBANK_1
2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

ptr Pointer to a location in the selected flash bank.

Returns byte

 byte The byte value from the location

Description Reads a single byte from any flash location. If the bank is read protected, only the first 2 bytes can be

read.

0x55, 0xAA are the header signature bytes of a valid program.

Example var byte_val;

byte_val := flash_GetByte(FLASHBANK_2,10);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 263 of 554 www.4dlabs.com.au

2.10.11 flash_GetWord(bank, ptr)

Syntax flash_GetWord(bank, ptr)

Arguments bank, ptr

bank

Flash bank to get the word from.
0 or FLASHBANK_0
1 or FLASHBANK_1
2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

ptr Pointer to a location in the selected flash bank.

Returns word

 word The word value from the location

Description Reads a single word from any flash location. If the bank is read protected, only the first word can be

read.

0x55AA is the header signature word of a valid program.

Example var word_val;

word_val := flash_GetWord(FLASHBANK_2, 10);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 264 of 554 www.4dlabs.com.au

2.10.12 flash_LoadFile(bank, filename)

Syntax flash_LoadFile (bank, filename)

Arguments bank, filename

bank

Flash bank to load the file from.
0 or FLASHBANK_0
1 or FLASHBANK_1
2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

filename Name of the file to be copied (passed as a string).

Returns status

 status Returns true if the function succeeded

Description Copies a file from uSD to the required flashbank. The destination bank cannot be the execution bank,

or a bank that is write protected.

Example if (flash_LoadFile(FLASHBANK_2, "FILE.TXT"))

 print("File loaded to bank.");

else

 print("Failed");

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 265 of 554 www.4dlabs.com.au

2.10.13 flash_putstr(bank, ptr)

Syntax flash_putstr(bank, ptr)

Arguments bank, ptr

bank

Flash bank to load the String from.
0 or FLASHBANK_0
1 or FLASHBANK_1
2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

ptr Pointer to a NULL terminated string in the selected flash bank.

Returns status

 status True if function succeeds, usually ignored. 0 if bank is read protected.

Description Prints an ASCIIZ string from the Flash bank. Works the same as putstr, however, the source of the

ASCIIZ string is in FLASH storage. Output may be redirected with the to(..) function. Bit15 of ptr is

assumed 0.

Example if (flash_putstr(FLASHBANK_2, 10))

 print("Success");

else

 print("Failed");

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 266 of 554 www.4dlabs.com.au

2.10.14 flash_Run(bank)

Syntax flash_Run(bank)

Arguments bank

 bank

Flash bank to load the program from.
0 or FLASHBANK_0
1 or FLASHBANK_1
2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

Returns value

value This function should not return as it restarts the processor and jumps to the required
bank.

If it does return,
-1 indicates incorrect/invalid bank number.
-2 indicates no valid program in the selected bank.

Description Restarts the processor, running code from the required flash bank. Bank may be a variable, or one of

the pre-defined constants.

Example var status;

status := flash_Run(FLASHBANK_2, 10);

if (status == -1 || status == -2)

 print("Failed");

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 267 of 554 www.4dlabs.com.au

2.10.15 flash_WriteBlock(sourceptr, bank, page)

Syntax flash_WriteBlock(sourceptr, bank, page)

Arguments sourceptr, bank, page

sourceptr Source buffer to load the 2K bytes of data from.

bank

Flash bank to write the block to.
0 or FLASHBANK_0
1 or FLASHBANK_1
2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

page

Page number 0-15. Each page is 2K.

The address of each block is 0, 2048, 4096 etc, determined by the page number 0-
15.

Returns status

 status Returns true if the function succeeded.

Description Copies a 2kbyte buffer to the required flashbank in block 0-15. The destination bank cannot be an

execution bank, or a program bank that is write-protected.

Example var buffer[100] := "4D Labs Semiconductors";

var status;

if (status := flash_WriteBlock(buffer, FLASHBANK_2, 1))

 print("Successfully written to bank");

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 268 of 554 www.4dlabs.com.au

2.10.16 flash_FunctionCall(bank, index, state, &FunctionRam, &FunctionDef,
FunctionArgCount, FunctionArgStringMap)

Syntax flash_FunctionCall(bank, idx, state, FncRam, FncDef, FncArgCnt, FncStrMap);

Arguments bank, index, state, &FunctionRam, &FunctionDef, FunctionArgCount, FunctionArgStringMap

bank

Flash bank to write the block to.
0 or FLASHBANK_0
1 or FLASHBANK_1
2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

index Index of the entry in the handle

state Value passed to update function state

&FunctionRam Pointer to the function RAM allocation

&FunctionDef Pointer to the function definitions stored in Flash

FunctionArgCount Function argument count

FunctionArgStringMap String address array

Returns status

 status Returns 0 if successful

Description Calls the Flashbank passing index "index" as the first parameter.

Other parameters "State", "&FunctionRam", "&FunctionDef", "&FunctionDef" are passed. The second

two parameters are passed "as is", since the third parameter is normally in flash and one banks flash

is not accessible from another

"FunctionArgCount" constants are copied into a RAM array and passed to the Function.

"FunctionStringMap" is a bit array of the indexes containing single and multiple strings offset by 8. eg

0x0100 means parameter 8 is a single string, 0x0002 means paramter 9 is an array of strings with

parameter 8 containing the count.

Example flash_FunctionCall(bank, idx, state, FncRam, FncDef, FncArgCnt, FncStrMap);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 269 of 554 www.4dlabs.com.au

2.10.17 flash_LoadSPIflash(bank, hndl, idx)

Syntax flash_LoadSPIflash (bank, hndl, idx)

Arguments bank, hndl, idx

bank

Flash bank to load the file from.
0 or FLASHBANK_0
1 or FLASHBANK_1
2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

hndl The handle that references the file.

index Index of the entry in the handle

Returns status

 status Returns true if the function succeeded

Description Copies a file from uSD to the required flashbank. The destination bank cannot be the execution bank,

or a bank that is write protected.

Example result := flash_LoadSPIflash(FLASHBANK_2, "TETRIS10.EXE"); // load the file

from disk into FLASHBANK_2

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 270 of 554 www.4dlabs.com.au

2.11. SPI Control Functions

The SPI functions in this section apply to any general purpose SPI device.

Summary of Functions in this section:

• spi_Init(speed, address_mode)

• spi_Read()

• spi_Write(byte)

• spi_Disable()

• SPI1_Init(speed, mode, enablepin) or SPI2_Init(speed, mode, enablepin) or SPI3_Init(speed, mode,
enablepin)

• SPI1_Read() or SPI2_Read() or SPI3_Read()

• SPI1_Write(byte) or SPI2_Write(byte) or SPI3_Write(byte)

• SPI1_SCK_pin(pin) or SPI2_SCK_pin(pin) or SPI3_SCK_pin(pin)

• SPI1_SDI_pin(pin) or SPI2_SDI_pin(pin) or SPI3_SDI_pin(pin)

• SPI1_SDO_pin(pin) or SPI2_SDO_pin(pin) or SPI3_SDO_pin(pin)

Note: SPI0 is connected internally to the uSD card. spi_Init(), spi_Read(), spi_Write() and spi_Disable() all refer to the
SPI0 to communicate with the uSD card through direct SPI commands. Only adept users should attempt this as it might
damage the uSD card.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 271 of 554 www.4dlabs.com.au

2.11.1 spi_Init(speed, address_mode)

Syntax spi_Init(speed, address_mode);

Arguments speed, address_mode

speed Sets the speed of the SPI port.

SPI_FAST – 16Mhz

SPI_MED – 4Mhz

SPI_SLOW – 650Khz

address_mode Sets the address mode of the SPI port.

0 – Set address_mode to 0 when dealing with 16MB or less

SPI_ADDRESS_MODE4 – Set to this if dealing with Flash larger than 16MB

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Sets up the Diablo16 SPI port to communicate with the uSD card through direct SPI commands. It
should not be used if uSD card is active. See the example in section spi_Read().

Note: address_mode needs to be SPI_ADDRESS_MODE4 for flash devices with more than 16MB of
capacity (to enable 4 byte addressing), else 0 for standard 3 byte addressing.

Examples spi_Init(SPI_FAST,0); // init SPI at maximum speed for 16MB Flash

spi_Init(SPI_SLOW,SPI_ADDRESS_MODE4); // init SPI at Slow speed for 32MB

Note: This is only for the uSD Card, it is not for SPI1, SPI2 or SPI3.

WARNING: This should not be tampered with for normal operation, as the Diablo16 handles the uSD card itself.
Only use if you are an adept user and know what you are doing.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 272 of 554 www.4dlabs.com.au

2.11.2 spi_Read()

Syntax spi_Read();

Arguments none

Returns byte

 byte Returns a single data byte from the uSD card via SPI.

Description This function allows a raw unadorned byte read from the uSD card via SPI.

Note: This is only for the uSD Card, it is not for SPI1, SPI2 or SPI3

Note: The Chip Select line (SDCS) is lowered automatically.

Example var result;

spi_Init(2, 0, 0); // 650 kHZ, RXMODE_0, CKMODE_0

print("Hello World\n") ; // replace with your code

//...

spi_Write(0x40);

result := spi_Read();

print("result: ", result);

Note: This is only for the uSD Card, it is not for SPI1, SPI2 or SPI3.

WARNING: This should not be tampered with for normal operation, as the Diablo16 handles the uSD card itself.
Only use if you are an adept user and know what you are doing.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 273 of 554 www.4dlabs.com.au

2.11.3 spi_Write(byte)

Syntax spi_Write(byte);

Arguments byte

byte Specifies the data byte to be sent to the uSD card via SPI.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description This function allows a raw unadorned byte write to the uSD card via SPI.

Note: This is only for the uSD Card, it is not for SPI1, SPI2 or SPI3

Note: The Chip Select line (SDCS) is lowered automatically.

 See the example in section spi_Read().

Note: This is only for the uSD Card, it is not for SPI1, SPI2 or SPI3.

WARNING: This should not be tampered with for normal operation, as the Diablo16 handles the uSD card itself.
Only use if you are an adept user and know what you are doing.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 274 of 554 www.4dlabs.com.au

2.11.4 spi_Disable()

Syntax spi_Disable();

Arguments none

Returns nothing

Description This function raises the Chip Select (SDCS) line of the uSD card, disabling it from further activity. The

CS line will be automatically lowered next time the SPI functions spi_Read() or spi_Write(...) are used,

and also by action of any of the media_ functions.

Note: This is only for the uSD Card, it is not for SPI1, SPI2 or SPI3

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 275 of 554 www.4dlabs.com.au

2.11.5 SPI1_Init(speed, mode, enablepin) or SPI2_Init(speed, mode, enablepin) or
SPI3_Init(speed, mode, enablepin)

Syntax
SPI1_Init(speed, mode, enablepin); or
SPI2_Init(speed, mode, enablepin); or
SPI3_Init(speed, mode, enablepin);

Arguments speed, mode, enablepin

speed

Specifies the speed of the SPI port. See the details below,

Pre-defined Constant Value Comments

SPI_SPEED0 0 78.125 khz

SPI_SPEED1 1 109.375 khz

SPI_SPEED2 2 273.4375 khz

SPI_SPEED3 3 312.5 khz

SPI_SPEED4 4 437.5 khz

SPI_SPEED5 5 729.166 khz

SPI_SPEED6 6 1.09375 mhz

SPI_SPEED7 7 1.25 mhz

SPI_SPEED8 8 1.75 mhz

SPI_SPEED9 9 2.1875 mhaz

SPI_SPEED10 10 4.375 mhz

SPI_SPEED11 11 5.00 mhz

SPI_SPEED12 12 7.00 mhz

SPI_SPEED13 13 8.75 mhz

SPI_SPEED14 14 11.666 mhz

SPI_SPEED15 15 17.5 mhz

mode

Specifies the mode of SPI operation. See the details below,

Pre-defined Constant Value Comments

8 bit Modes

SPI8_MODE_0 0 SCK idles low, SDO stable for first falling
edge, SDI sampled on first falling edge

SPI8_MODE_1 1 SCK idles low, SDO stable for first rising
edge, SDI sampled on first rising edge

SPI8_MODE_2 2 SCK idles high, SDO stable for first falling
edge, SDI sampled on first falling edge

SPI8_MODE_3 3 SCK idles high, SDO stable for first rising
edge, SDI sampled on first falling edge

SPI8_MODE_4 4 SCK idles low, SDO stable for first falling
edge, SDI sampled on next rising edge

SPI8_MODE_5 5 SCK idles low, SDO stable for first rising
edge, SDI sampled on next falling edge

SPI8_MODE_6 6 SCK idles high, SDO stable for first falling
edge, SDI sampled on next rising edge

SPI8_MODE_7 7 SDO stable for first rising edge, SDI
sampled on next rising edge

16 bit Modes

SPI16_MODE_0 8 SCK idles low, SDO stable for first falling
edge, SDI sampled on first falling edge

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 276 of 554 www.4dlabs.com.au

SPI16_MODE_1 9 SCK idles low, SDO stable for first rising
edge, SDI sampled on first rising edge

SPI16_MODE_2 10 SCK idles high, SDO stable for first falling
edge, SDI sampled on first falling edge

SPI16_MODE_3 11 SCK idles high, SDO stable for first rising
edge, SDI sampled on first falling edge

SPI16_MODE_4 12 SCK idles low, SDO stable for first falling
edge, SDI sampled on next rising edge

SPI16_MODE_5 13 SCK idles low, SDO stable for first rising
edge, SDI sampled on next falling edge

SPI16_MODE_6 14 SCK idles high, SDO stable for first falling
edge, SDI sampled on next rising edge

SPI16_MODE_7 15 SCK idles high, SDO stable for first rising
edge, SDI sampled on next rising edge

Mode can also be “OR’ed” with SPI_ADDRESS_MODE4 when SPI Flash memory is used
which requires 4 byte addressing.
This is only required for Flash chips having a capacity of greater than 16MB, thus
requiring more than he standard 3 byte addressing. Refer to the Datasheet of the Flash
Memory in question.
The syntax would be for example SPI8_MODE_0 | SPI_ADDRESS_MODE4, in place of
the ‘mode’ argument.

 enablepin The Diablo16 pin connected to CS on the relevant chip

Returns status

 status Returns true if the function succeeded.

Description Initialize the SPI port to communicate with the SPI device. There are three peripheral interfacable SPI

ports that can be used to communicate with three different SPI devices with different speeds and

modes at the same time. SPI1, SPI2 and SPI3 need to be initialized separately using SPI1_Init(..),

SPI2_Init(..) or SPI3_Init(..) functions.

Note: This is only for SPI1, SPI2 or SPI3, it is separate from the spi_Init() function used for the uSD

Card

Example if (! SPI1_Init(SPI_SPEED15, SPI8_MODE_5, PA0))

 print("INIT parameter Invalid\n") ;

endif

if (! SPI3_Init(SPI_SPEED12, SPI16_MODE_3 | SPI_ADDRESS_MODE4, PA2))

 print("INIT parameter Invalid\n") ;

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 277 of 554 www.4dlabs.com.au

2.11.6 SPI1_Read() or SPI2_Read() or SPI3_Read()

Syntax
SPI1_Read(); or
SPI2_Read(); or
SPI3_Read();

Arguments none

Returns byte

 byte Returns a single data byte from the SPI device.

Description This function allows a raw unadorned byte read from the SPI device connected to SPI1, SPI2 or SPI3

port. A dummy write using all bits set is automatically written to the SPI port to being the read.

Note: The Chip Select line needs to be manually lowered and raised by the users’ code since this pin

is determined by the user and is not a fixed pin.

Note: This is only for SPI1, SPI2 or SPI3, it is separate from the spi_Read() function used for the uSD

Card

Example #CONST

 EnablePin PA0

 ClockPin PA1

 SDIPin PA2

 SDOPin PA3

#END

func main()

 var result, power, err;

 pin_HI(EnablePin) ;

 pin_Set(PIN_OUT,EnablePin);

 if (! SPI1_SDI_pin(SDIPin))

 print("SDI Pin Invalid\n") ;

 err := 1 ;

 endif

 if (! SPI1_SCK_pin(ClockPin))

 print("SCK Pin Invalid\n") ;

 err := 1 ;

 endif

 if (! SPI1_SDO_pin(SDOPin))

 print("SDO Pin Invalid\n") ;

 err := 1 ;

 endif

 if (! SPI1_Init(SPI_SPEED0, SPI16_MODE_1))

 print("INIT parameter Invalid\n") ;

 err := 1 ;

 endif

 if(err)

 repeat forever

 endif

 pin_LO(EnablePin); //Chip Select

 SPI1_Write(0x0200); // Power supply data read Request

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 278 of 554 www.4dlabs.com.au

 pin_HI(EnablePin);

 pin_LO(EnablePin);

 result:=SPI1_Read();

 power:=result<<8;

 result:=SPI1_Read();

 power:=power+result;

 pin_HI(EnablePin);

 print("power: ", power);

 repeat // maybe replace

 forever // this as well

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 279 of 554 www.4dlabs.com.au

2.11.7 SPI1_Write(byte) or SPI2_Write(byte) or SPI3_Write(byte)

Syntax
SPI1_Write(byte); or
SPI2_Write(byte); or
SPI3_Write(byte);

Arguments byte

byte Specifies the data byte to be sent to the SPI device.

The arguments can be a variable, array element, expression or constant

Returns Data

 Data Returns the data read from the SPI port whilst the write is in progress

Description This function allows a raw unadorned byte write to the SPI device connected to SPI1, SPI2 or SPI3

port.

Note: The Chip Select line needs to be manually lowered and raised by the users’ code since this pin

is determined by the user and is not a fixed pin.

Note: This is only for SPI1, SPI2 or SPI3, it is separate from the spi_Write() function used for the uSD

Card

Example See example in section “SPI1_Read() or SPI2_Read() or SPI3_Read()”

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 280 of 554 www.4dlabs.com.au

2.11.8 SPI1_SCK_pin(pin) or SPI2_SCK_pin(pin) or SPI3_SCK_pin(pin)

Syntax
SPI1_SCK_pin(pin); or
SPI2_SCK_pin(pin); or
SPI3_SCK_pin(pin);

Arguments pin

 pin

Specifies the pin to be set for SCK for SPI1, SPI2 or SPI3 ports.

4D Pin Name
(Predefined)

Diablo16 Pin
Number

H1 Pin
Number

Availability

PA0 61 1 No

PA1 62 3 Yes

PA2 63 5 No

PA3 64 7 Yes

PA4 46 29 Yes

PA5 49 27 Yes

PA6 50 25 Yes

PA7 51 23 Yes

PA8 52 21 Yes

PA9 53 19 Yes

PA10 43 8 No

PA11 44 6 No

PA12 31 28 Yes (See Note 1)

PA13 32 30 Yes (See Note 1)

PA14 37 24 No

PA15 36 26 No

Returns status

 status Returns TRUE if function succeeded (usually ignored)

Description Selects the hardware pin for spi Clock line. SPI1, SPI2 or SPI3’s SCK pin could be assigned to the

available pins. Note that only a single pin should be mapped to spi SCK. If the pin argument is 0 the

previously selected spi SCK pin is disconnected. The pin is automatically set to an output.

Example See example in section “SPI1_Read() or SPI2_Read() or SPI3_Read()”

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 281 of 554 www.4dlabs.com.au

2.11.9 SPI1_SDI_pin(pin) or SPI2_SDI_pin(pin) or SPI3_SDI_pin(pin)

Syntax
SPI1_SDI_pin(pin); or
SPI2_SDI_pin(pin); or
SPI3_SDI_pin(pin);

Arguments pin

 pin

Specifies the pin to be set for SDI for SPI1, SPI2 or SPI3 ports.

4D Pin Name
(Predefined)

Diablo16 Pin
Number

H1 Pin
Number

Availability

PA0 61 1 Yes

PA1 62 3 Yes

PA2 63 5 Yes

PA3 64 7 Yes

PA4 46 29 Yes

PA5 49 27 Yes

PA6 50 25 Yes

PA7 51 23 Yes

PA8 52 21 Yes

PA9 53 19 Yes

PA10 43 8 Yes

PA11 44 6 Yes

PA12 31 28 Yes (See Note 1)

PA13 32 30 Yes (See Note 1)

PA14 37 24 No

PA15 36 26 No

Returns status

 status Returns TRUE if finction succeeded (usually ignored)

Description Selects the hardware pin for SPI Receive line. SPI1, SPI2 or SPI3’s SDI pin could be assigned to the

available pins. Note that only a single pin should be mapped to spi SDI. If the pin argument is 0 the

function has no effect. The pin is automatically set to an output.

Note: If the spi SDI pin is set to same pin as spi SDO pin (eg for a loopback check) it is necessary to

configure the SDI pin first,

SPI2_SDI_pin(PA3); // configure SPI2 SDI to PA3 (this disconnects anything else)

SPI2_SDO_pin(PA3)); // configure SPI2 SDO to PA3

Example See example in section “SPI1_Read() or SPI2_Read() or SPI3_Read()”

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 282 of 554 www.4dlabs.com.au

2.11.10 SPI1_SDO_pin(pin) or SPI2_SDO_pin(pin) or SPI3_SDO_pin(pin)

Syntax
SPI1_SDO_pin(pin); or
SPI2_SDO_pin(pin); or
SPI3_SDO_pin(pin);

Arguments pin

 pin

Specifies the pin to be set for SDO for SPI1, SPI2 or SPI3 ports.

4D Pin Name
(Predefined)

Diablo16 Pin
Number

H1 Pin
Number

Availability

PA0 61 1 No

PA1 62 3 Yes

PA2 63 5 No

PA3 64 7 Yes

PA4 46 29 Yes

PA5 49 27 Yes

PA6 50 25 Yes

PA7 51 23 Yes

PA8 52 21 Yes

PA9 53 19 Yes

PA10 43 8 No

PA11 44 6 No

PA12 31 28 Yes (See Note 1)

PA13 32 30 Yes (See Note 1)

PA14 37 24 No

PA15 36 26 No

Returns status

 status Returns TRUE if finction succeeded (usually ignored)

Description Selects the hardware pin for SPI Transmit line. SPI1, SPI2 or SPI3’s SDO pin could be assigned to the

available pins. Note that only a single pin should be mapped to spi SDO. If the pin argument is 0 the

previously selected spi SDO pin is disconnected. The pin is automatically set to an output.

Example See example in section “SPI1 Read() or SPI2_Read() or SPI3_Read()”

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 283 of 554 www.4dlabs.com.au

2.11.11 spi_ReadBlock() or spi1_ReadBlock() or spi2_ReadBlock() or spi3_ReadBlock()

Syntax

spi_ReadBlock("buf", "bufsize") or
spi1_ReadBlock("buf", "bufsize") or
spi2_ReadBlock("buf", "bufsize") or
spi3_ReadBlock("buf", "bufsize")

Arguments buf, bufsize

 Buf String Pointer address of buffer to receive the data.

 Bufsize The number of characters to receive into the buffer.

Returns Nothing

Description Bufsize bytes are read from the SPI port to the string pointer "buf". This function gives much better

performance than reading individual bytes at a time. Once the data has been read into a buffer it also

makes it easy to perform CRC calculations on the data. The SPI port must be initialised in 8 bit mode.

Example #platform "uLCD-32WDT"

func main()

 var st[20] ;

 // setup of spi3 pins and spi3 init goes here.

 Spi3_RreadBlock(str_Ptr(st), 8) ; // read 8 bytes from spi

 print(">", [STR] st, "<") ; // assumes bytes read are terminated

 repeat // maybe replace

 forever // this as well

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 284 of 554 www.4dlabs.com.au

2.11.12 spi_WriteBlock() or spi1_WriteBlock() or spi2_WriteBlock() or spi3_WriteBlock()

Syntax

spi_WriteBlock("buf", "bufsize") or
spi1_WriteBlock("buf", "bufsize") or
spi2_WriteBlock("buf", "bufsize") or
spi3_WriteBlock("buf", "bufsize")

Arguments buf, bufsize

 Buf String Pointer address of buffer to send the data from.

 Bufsize The number of characters to send.

Returns Nothing

Description Bufsize bytes are written to the SPI port from the string pointer "buf". This function gives much better

performance than writeing individual bytes at a time. Once the data has been read into a buffer it also

makes it easy to perform CRC calculations on the data. The SPI port must be initialised in 8 bit mode.

Example #platform "uLCD-32WDT"

func main()

 var st[20] ;

 to(st) ;

 print("Hello there!") ;

 // setup of spi3 pins and spi3 init goes here.

 spi3_WriteBlock(str_Ptr(st), 12) ;

 repeat // maybe replace

 forever // this as well

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 285 of 554 www.4dlabs.com.au

2.12. Serial (UART) Communications Functions

Summary of Functions in this section:

• COM1_RX_pin(pin) or COM2_RX_pin(pin) or COM3_RX_pin(pin)

• COM1_TX_pin(pin) or COM2_TX_pin(pin) or COM3_TX_pin(pin)

• setbaud(rate)

• com_SetBaud(comport, baudrate/10)

• serin() or serin1() or serin2() or serin3()

•

• serout(char) or serout1(char) or serout2(char) or serout3(char)

• com_Init(buffer, buffsize, qualifier) or com_Init1(buffer, buffsize, qualifier) or com_Init2(buffer,
buffsize, qualifier) or com_Init3(buffer, buffsize, qualifier)

• com_Reset() or com1_Reset() or com2_Reset() or com3_Reset()

• com_Count() or com1_Count() or com2_Count() or com3_Count()

• com_Full() or com1_Full() or com2_Full() or com3_Full()

• com_Error() or com1_Error() or com2_Error() or com3_Error()

• com_Sync() or com1_Sync() or com2_Sync() or com3_Sync()

• com_TXbuffer(buf, bufsize,pin) or com1_TXbuffer(buf, bufsize,pin) or com2_TXbuffer(buf,
bufsize,pin) or com3_TXbuffer(buf, bufsize,pin)

• com_TXbufferHold(state) or com1_TXbufferHold(state) or com2_TXbufferHold(state) or
com3_TXbufferHold(state)

• com_TXcount() or com1_TXcount() or com2_TXcount() or com3_TXcount()

• com_TXemptyEvent(function) or com1_TXemptyEvent(function) or com2_TXemptyEvent(function)
or com3_TXemptyEvent(function)

• com_Mode()

• com_RXblock() or com1_RXblock() or com2_RXblock() or com3_RXblock()

• com_TXblock() or com1_TXblock() or com2_TXblock() or com3_TXblock()

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 286 of 554 www.4dlabs.com.au

2.12.1 COM1_RX_pin(pin) or COM2_RX_pin(pin) or COM3_RX_pin(pin)

Syntax
COM1_RX_pin(pin); or
COM2_RX_pin(pin); or
COM3_RX_pin(pin);

Arguments pin

pin Specifies the GPIO pin to use for the com ports receive line

The arguments can be a variable, array element, expression or constant

Returns Status

 Status Returns True if the function succeeded, usually ignored

Description Use this function to specify which GPIO is going to be assigned to the relative com ports receive line.

Note that only a single pin can be mapped to any given com ports RX.

If the pin argument is 0 the function has no effect.

The pin is automatically set to an input. If the COMx RX pin is set to same pin as COMx TX pin (eg for

a loopback check) it is necessary to configure the input pin first,

For Example:

COM1_RX_pin(PA7); // config COM1 RX to PA7 (disconnects anything else)

COM1_TX_pin(PA7)); // configure COM1 TX to PA7

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 No

PA15 36 No

Example COM1_RX_pin(PA7); // config COM1 RX to PA7

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 287 of 554 www.4dlabs.com.au

2.12.2 COM1_TX_pin(pin) or COM2_TX_pin(pin) or COM3_TX_pin(pin)

Syntax
COM1_TX_pin(pin); or
COM2_TX_pin(pin); or
COM3_TX_pin(pin);

Arguments pin

pin Specifies the GPIO pin to use for the com ports transmit line

The arguments can be a variable, array element, expression or constant

Returns Status

 Status Returns True if the function succeeded, usually ignored

Description Use this function to specify which GPIO is going to be assigned to the relative com ports transmit line.

Note that only a single pin can be mapped to any given com ports TX.

If the pin argument is 0, COMx TX is disconnected from all pins.

The pin is automatically set to an output.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PA0 61 No

PA1 62 Yes

PA2 63 No

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 No

PA11 44 No

PA12 31 Yes (See Note 1)

PA13 32 Yes (See Note 1)

PA14 37 No

PA15 36 No

Example COM1_TX_pin(PA7); // config COM1 RX to PA7

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 288 of 554 www.4dlabs.com.au

2.12.3 setbaud(baudnum)

Syntax setbaud(baudnum);

Arguments baudnum

baudnum Specifies the baud rate of COM0 using the baud number or pre-defined constant

Baud number Pre-defined

Constant

Baud Rate Error

(%)

Actual Baud Rate

0 BAUD_110 0.00% 110

1 BAUD_300 0.00% 300

2 BAUD_600 0.00% 600

3 BAUD_1200 0.00% 1200

4 BAUD_2400 0.04% 2401

5 BAUD_4800 0.04% 4802

6 BAUD_9600 0.16% 9615

7 BAUD_14400 0.27% 14439

8 BAUD_19200 0.38% 19273

9
BAUD_31250
or
MIDI

0.00% 31250

10 BAUD_38400 0.83% 38717

11 BAUD_56000 0.16% 56090

12 BAUD_57600 1.27% 58333

13 BAUD_115200 2.64% 118243

14 BAUD_128000 0.53% 128676

15 BAUD_256000 0.53% 257353

16 BAUD_300000 4.17% 312500

17 BAUD_375000 6.06% 397727

18 BAUD_500000 9.38% 546875

19 BAUD_600000 4.17% 625000

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Use this function to set the required baud rate. The default Baud Rate for COM0 is 115,200 bits per

second or 115,200 baud.

If a value other than 0-19 is used, a run time error (error 25)

Example setbaud(BAUD_19200); // To set Com0 to 19200 BAUD rate.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 289 of 554 www.4dlabs.com.au

2.12.4 com_SetBaud(comport, baudrate/10)

Syntax com_SetBaud(“comport”, “baudrate/10”);

Arguments comport, baudrate/10

comport Specifies the Com port,

COM0:

COM1:

COM2:

COM3:

baudrate/10 Specifies the baud rate.

The arguments can be a variable, array element, expression or constant

Returns Status

 Status Returns True if BAUD rate was acceptable.

Description Use this function to set the required baud rate for the required Com port. Sets to any viable baud rate

from 160 to 655350.

Note: The default Baud Rate for COM0 is 115,200 bits per second or 115,200 baud. The default Baud

Rate for COM1, COM2 and COM3 is 9600 bits per second or 9600 baud.

Note: As of the v1.1 PmmC several ‘low’ values have special meanings

1 : 2187500 baud

2 : 1458333 baud

3 : 1093750 baud

4 : 875000 baud

5 : 729167 baud

Example stat := com_SetBaud(COM2, 960) // To set Com2 to 9600 BAUD rate.

if (stat)

Print(“Com2 set to 9600 BAUD”);

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 290 of 554 www.4dlabs.com.au

2.12.5 serin() or serin1() or serin2() or serin3()

Syntax

serin(); or
serin1(); or
serin2(); or
serin3();

Arguments none

Returns char

char Returns: -1 if no character is available

Returns: -2 if a framing error or over-run has occurred (auto cleared)
Returns: -3 (BREAK) if a break signal is detected
Returns: positive value 0 to 255 for a valid character received

Description serin(): Receives a character from the Serial Port COM0.

serin1(): Receives a character from the Serial Port COM1.

serin2(): Receives a character from the Serial Port COM2.

serin3(): Receives a character from the Serial Port COM3.

serin may be buffered (refer to com_Init(..) functions). If it is desired to be able to receive the BREAK

signal using buffered functions then the com_InitBrk() function must be used instead.

The transmission format is:

No Parity, 1 Stop Bit, 8 Data Bits (N,8,1).

Note: COM0 pins cannot be mapped, and are fixed as pins 42(Rx0) and 33(Tx0) on the Diablo16 chip.

Rx and Tx of COM1, COM2 or COM3 should be defined before using serin1(), serin2() or serin3().

Example var char;

char := serin(); // test the com0 port

if (char >= 0) // if a valid character is received

 process(char); // process the character

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 291 of 554 www.4dlabs.com.au

2.12.6 serout(char) or serout1(char) or serout2(char) or serout3(char)

Syntax

serout(char); or
serout1(char); or
serout2(char); or
serout3(char);

Arguments char

char Specifies the data byte to be sent to the serial port.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description serout(): Transmits a single byte to the Serial Port COM0.

serout1(): Transmits a single byte to the Serial Port COM1.

serout2(): Transmits a single byte to the Serial Port COM2.

serout3(): Transmits a single byte to the Serial Port COM3.

The transmission format is:

No Parity, 1 Stop Bit, 8 Data Bits (N,8,1).

Unless com_Mode() has been used to alter it.

serout may be buffered (refer to com_TXbuffer(..) functions). If it is desired to be able to tramsmit

the BREAK signal using buffered functions then the com_TXbufferBrk() function must be used instead.

Note: COM0 pins cannot be mapped, and are fixed as pins 42(Rx0) and 33(Tx0) on the Diablo16 chip.

Rx and Tx of COM1, COM2 or COM3 should be defined before using serout1(), serout2() or serout3().

Note: The BREAK signal can be transmitted using the predefined constant BREAK as the char to

serout().

Example serout('\n'); \\Send a linefeed to COM0.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 292 of 554 www.4dlabs.com.au

2.12.7 com_Init(buffer, bufsize, qualifier) or com1_Init(buffer, bufsize, qualifier) or
com2_Init(buffer, bufsize, qualifier) or com3_Init(buffer, bufsize, qualifier)

Syntax

com_Init(buffer, bufsize, qualifier); or
com1_Init(buffer, bufsize, qualifier); or
com2_Init(buffer, bufsize, qualifier); or
com3_Init(buffer, bufsize, qualifier);

Arguments buffer, bufsize, qualifier

buffer Specifies the address of a buffer used for the background buffering service.

bufsize Specifies the byte size of the user array provided for the buffer (each array element holds

2 bytes). If the buffer size is zero, a buffer of 128 words (256 bytes) should be provided

for automatic packet length mode (see below).

qualifier Specifies the qualifying character that must be received to initiate serial data reception

and buffer write. A zero (0x00) indicates no qualifier to be used.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description This is the initialisation function for the serial communications buffered service. Once initialised, the
service runs in the background capturing and buffering serial data without the user application having
to constantly poll the serial port. This frees up the application to service other tasks.

MODES OF OPERATION

• No qualifier – simple ring buffer (aka circular queue)

If the qualifier is set to zero, the buffer is continually active as a simple circular queue.
Characters when received from the host are placed in the circular queue (at the 'head' of the
queue) Bytes may be removed from the circular queue (from the 'tail' of the queue) using
the serin() function. If the tail is the same position as the head, there are no bytes in the
queue, therefore serin() will return -1, meaning no character is available, also, the
com_Count() function can be read at any time to determine the number of characters that
are waiting between the tail and head of the queue. If the queue is not read frequently by
the application, and characters are still being sent by the host, the head will eventually catch
up with the tail setting the internal COM_FULL flag (which can be read with the com_Full()
function) . Any further characters from the host are are now discarded, however, all the
characters that were buffered up to this point are readable. This is a good way of reading a
fixed size packet and not necessarily considered to be an error condition. If no characters
are removed from the buffer until the COM_FULL flag (which can be read with the com_Full()
function) becomes set, it is guaranteed that the bytes will be ordered in the buffer from the
start position, therefore, the buffer can be treated as an array and can be read directly
without using serin() at all. In the latter case, the correct action is to process the data from
the buffer, re-initialise the buffer with the com_Init(..) function, or reset the buffered serial
service by issuing the com_Reset() function (which will return serial reception to polled
mode) , and send an acknowledgement to the host (traditionally a ACK or 6) to indicate that
the application is ready to receive more data and the previous 'packet' has been dealt with,
or conversely, the application may send a negative acknowledgement to indicate that some
sort of error occurred, or the action could not be completed (traditionally a NAK or 16) .

If any low level errors occur during the buffering service (such as framing or over-run) the
internal COM_ERROR flag will be set (which can be read with the com_Error() function). Note
that the COM_FULL flag will remain latched to indicate that the buffer did become full, and

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 293 of 554 www.4dlabs.com.au

is not reset (even if all the characters are read) until the com_Init(..) or com_Reset() function
is issued.

• Using a qualifier

If a qualifier character is specified, after the buffer is initialised with com_Init(..) , the service
will ignore all characters until the qualifier is received and only then initiate the buffer write
sequence with incoming data. After that point, the behaviour is the same as above for the
'non qualified' mode.

com_Init(buffer, bufsize, qualifier): Initialize a serial capture buffer for COM0.
com1_Init(buffer, bufsize, qualifier): Initialize a serial capture buffer for COM1.
com2_Init(buffer, bufsize, qualifier): Initialize a serial capture buffer for COM2.
com3_Init(buffer, bufsize, qualifier): Initialize a serial capture buffer for COM3.

Example com_Init(combuf, 20, 0);

//set up a comms ring buffer for COM0, 20 characters before overflow

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 294 of 554 www.4dlabs.com.au

2.12.8 com_Reset() or com1_Reset() or com2_Reset() or com3_Reset()

Syntax

com_Reset(); or
com1_Reset(); or
com2_Reset();or
com3_Reset();

Arguments none

Returns nothing

Description

Resets the serial communications buffered service and returns it to the default polled mode.

com_Reset() Reset COM0
com1_Reset() Reset COM1
com2_Reset() Reset COM2
com3_Reset() Reset COM3

Example com_Reset(); // reset COM0 to polled mode

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 295 of 554 www.4dlabs.com.au

2.12.9 com_Count() or com1_Count() or com2_Count() or com3_Count()

Syntax

com_Count(); or
com1_Count(); or
com2_Count(); or
com3_Count();

Arguments none

Returns count

 count Current count of characters in the communications buffer.

Description Can be read at any time (when in buffered communications is active) to determine the number of

characters that are waiting in the buffer.

com_Count(); Charcters countr in COM0

com1_Count(); Charcters countr in COM1

com2_Count(); Charcters countr in COM2

com3_Count(); Charcters countr in COM3

Example n := com_Count(); // get the number of chars available in the buffer

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 296 of 554 www.4dlabs.com.au

2.12.10 com_Full() or com1_Full() or com2_Full() or com3_Full()

Syntax

com_Full(); or
com1_Full() ; or
com2_Full(); or
com3_Full();

Arguments none

Returns status

 status Returns 1 if buffer or queue has become full, or is overflowed, else returns 0.

Description If the queue is not read frequently by the application, and characters are still being sent by the host,

the head will eventually catch up with the tail setting the COM_FULL flag which is read with this

function. If this flag is set, any further characters from the host are discarded, however, all the

characters that were buffered up to this point are readable.

Example if(com_Full() & (com_Count() == 0))

 com_Init(mybuf, 30, 0); // buffer full, recovery

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 297 of 554 www.4dlabs.com.au

2.12.11 com_Error() or com1_Error() or com2_Error() or com3_Error()

Syntax

com_Error(); or
com1_Error();or
com2_Error();or
com3_Error();

Arguments none

Returns status

 status Returns 1 if any low level communications error occurred, else returns 0.

Description If any low level errors occur during the buffering service (such as framing or over-run) the internal

COM_ERROR flag will be set which can be read with this function.

Example if(com_Error()) // if there were low level comms errors,

 resetMySystem(); // take corrective action

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 298 of 554 www.4dlabs.com.au

2.12.12 com_Sync() or com1_Sync() or com2_Sync() or com3_Sync()

Syntax

com_Sync(); or
com1_Sync(); or
com2_Sync(); or
com3_Sync();

Arguments none

Returns status

 status Returns 1 if the qualifier character has been received, else returns 0.

Description If a qualifier character is specified when using buffered communications, after the buffer is initialized

with com_Init(..), com1_Init(..), com2_Init(..), or com3_Init(..) the service will ignore all characters

until the qualifier is received and only then initiate the buffer write sequence with incoming data.

com_Sync(), com1_Sync(), com2_Sync(), com3_Sync() is called to determine if the qualifier character

has been received yet.

Example stat := com_Sync(); // See if the qualifier is received at COM0

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 299 of 554 www.4dlabs.com.au

2.12.13 com_TXbuffer(buf, bufsize,pin) or com1_TXbuffer(buf, bufsize,pin) or
com2_TXbuffer(buf, bufsize,pin) or com3_TXbuffer(buf, bufsize,pin)

Syntax

com_TXbuffer(buf, bufsize, pin); or
com1_TXbuffer(buf, bufsize, pin); or
com2_TXbuffer(buf, bufsize, pin); or
com3_TXbuffer(buf, bufsize, pin);

Arguments buf, bufsize, pin

buf Specifies the address of a buffer used for the buffering service.

bufsize Specifies the byte size of the user array provided for the buffer (each array element

holds 2 bytes).

pin Specifies the turnaround pin. If not required, just set "pin" to zero.

The arguments can be a variable, array element, expression or constant

Returns None

Description Initialise a serial buffer for the COM0, COM1, COM2 or COM3 output. The program must declare a

var array as a circular buffer. When a TX buffer is declared for comms, the transmission of characters

becomes non-blocking. If the buffer has insufficient space to accept the next character from a

serout(..), serout1(..), serout2(..) or serout3(..) function, the excess characters will be ignored, and

the com_Full(), com1_Full(), com2_Full() or com3_Full() error will be asserted. If the TX buffer is no

longer required, just set the buffer pointer to zero, the size in this case doesnt matter and is ignored.

The function can be resized or reallocated to another buffer at any time. The buffer is flushed before

any changes are made.

"pin" designates an IO pin to control a bi-directional control device for half duplex mode. "pin" will go

HI at the start of a transmission, and will return low after the final byte is transmitted.

Example com_TXbuffer(mybuf, 1024, PA1); // set the TX buffer of COM0

com_TXbuffer(0, 0, 0); // revert COM0 to non buffered service

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 300 of 554 www.4dlabs.com.au

2.12.14 com_TXbufferHold(state) or com1_TXbufferHold(state) or com2_TXbufferHold(state)
or com3_TXbufferHold(state)

Syntax

com_TXbufferHold(state); or
com1_TXbufferHold(state); or
com2_TXbufferHold(state); or
com3_TXbufferHold(state);

Arguments state

state Specifies the state of the buffer used for the buffering service.

The arguments can be a variable, array element, expression or constant

Returns count

 count

Returns -1 if function is called illegally when TX comms is not buffered.
Returns buffer count when called with argument of 1, for example
com_TXbufferHold(ON), com1_TXbufferHold(ON), com2_TXbufferHold(ON) or
com3_TXbufferHold(ON)
Returns 0 when argument is zero, eg com_TXbufferHold(OFF),
com1_TXbufferHold(OFF), com2_TXbufferHold(OFF), com3_TXbufferHold(OFF)

Description This function is used in conjunction with com_TXbuffer(...), com1_TXbuffer(...), com2_TXbuffer(...),
com3_TXbuffer(...), .
It is often necessary to hold off sending serial characters until a complete frame or packet has been
built in the output buffer. com_TXbufferHold(ON), com1_TXbufferHold(ON),
com2_TXbufferHold(ON), com3_TXbufferHold(ON) is used for this, to stop the buffer being sent
while it is being loaded. Normally, when using buffered comms, the transmit process will begin
immediately. This is fine unless you are trying to assemble a packet.

To build a packet and send it later, issue a com_TXbufferHold(ON), com1_TXbufferHold(ON),
com2_TXbufferHold(ON), com3_TXbufferHold(ON) build the packet, when packet is ready, issuing
com_TXbufferHold(OFF), com1_TXbufferHold(OFF), com2_TXbufferHold(OFF),
com3_TXbufferHold(OFF) will release the buffer to the com port.

Also, if using com_TXemptyEvent, com1_TXemptyEvent, com2_TXemptyEvent,
com3_TXemptyEvent, erroneous empty events will occur as the transmit buffer is constantly trying
to empty while you are busy trying to fill it.

Also refer to the pin control for com_TXbuffer(..), com1_TXbuffer(..), com2_TXbuffer(..),
com3_TXbuffer(..) function.

Note: If you fill the buffer whilst it is held comms error 4 will be set and the data written will be lost.

Example Refer to the com_TXemptyEvent(functionAddress) example.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 301 of 554 www.4dlabs.com.au

2.12.15 com_TXcount() or com1_TXcount() or com2_TXcount() or com3_TXcount()

Syntax

com_TXcount(); or
com1_TXcount(); or
com2_TXcount(); or
com3_TXcount();

Arguments None

Returns count

 count Returns count of characters

Description Return count of characters remaining in COM0, COM1 or COM2 or COM3 transmit buffer that was

previously allocated with com_TXbuffer(..), com1_TXbuffer(..), com2_TXbuffer(..),

com3_TXbuffer(..).

Example arg := com1_TXCount(); //return count of characters in COM1 TX buffer

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 302 of 554 www.4dlabs.com.au

2.12.16 com_TXemptyEvent(function) or comn_TXemptyEvent(function)

Syntax

com_TXemptyEvent(functionAddress); or
com1_TXemptyEvent(functionAddress); or
com2_TXemptyEvent(functionAddress); or
com3_TXemptyEvent(functionAddress);

Note: n is from 1 to 3 representing COM1 to COM3.

Arguments functionAddress

functionAddress Address of the event Function to be queued when COM0, COM1, COM2 or COM3

TX buffer empty

Returns Address

 Address Returns any previous event function address or zero if there was no previous function.

Description If a comms TX buffer that was previously allocated with com_TXbuffer(...), com1_TXbuffer(...),

com2_TXbuffer(...) or com3_TXbuffer(...) this function can be used to set up a function to be called

when the COM0, COM1, COM2 or COM3 TX buffer is empty.

This is useful for either reloading the TX buffer, setting or clearing a pin to change the direction of eg

a RS485 line driver, or any other form of traffic control. The event function must not have any

parameters. To disable the event, simply call com_TXemptyEvent(0), com1_TXemptyEvent(0) ,

com2_TXemptyEvent(0) or com3_TXemptyEvent(0).

com_TXbuffer(...), com1_TXbuffer(...), com2_TXbuffer(...) or com3_TXbuffer(...) also resets any

active event.

Example #platform "uLCD-32PT_GFX2"

/***

* Description: buffered TX service

* Use Workshop terminal at 9600 baud to see result

* Example of Buffered TX service vs Non buffered

* Also explains the use of COMMS events

*

* NB Program must be written to flash so

* the Workshop Terminal can be used.

*

**/

var combuf[220]; // buffer for up to 440 bytes

// run a timer event while we are doing comms

func T7Service()

 var private colour := 0xF800;

 colour ^= 0xF800;

 gfx_RectangleFilled(50,200,80,220,colour);

 sys_SetTimer(TIMER7, 200);

endfunc

// event to capture the buffer empty event

func bufEmpty()

 com_TXbuffer(0, 0, IO1_PIN); // done with the buffer, release it

 print("\n\nHELLO WORLD, I'M EMPTY ",com_TXcount(),"\n");

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 303 of 554 www.4dlabs.com.au

func main()

 var n, r, D, fh;

 sys_SetTimerEvent(TIMER7,T7Service); // run a timer event

 sys_SetTimer(TIMER7, 150);

 com_TXemptyEvent(bufEmpty); // set to capture buffer empty event

 setbaud(BAUD_9600);

 txt_Set(TEXT_OPACITY, OPAQUE);

repeat

 gfx_Cls();

 txt_MoveCursor(3,1); // reset cursor to line 3, column 2

 print("Send 440 chars non-buffered\n");

 pokeW(SYSTEM_TIMER_LO, 0); // reset timer

 // note that 440 chars at 9600 baud takes approx 453msec

 for(n:=0; n<10; n++)

 to(COM0); putstr("The quick brown fox jumps over the lazy dog\n");

// 44 chars

 next

 print("took ",peekW(SYSTEM_TIMER_LO),"Msec\n\n");

 // time spent blocking is only approx 1msec

 com_TXbuffer(combuf, 440,IO1_PIN);// set up the TX buffer

 com_TXbufferHold(ON); // hold the TX buffer til ready

 // note that here the time is only approx 1msec overhead due to buffering.

 print("Send 440 chars buffered\n");

 pokeW(SYSTEM_TIMER_LO, 0); // reset timer

 for(n:=0; n<10; n++)

 to(COM0); putstr("THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG\n");

// 44 chars

 next

 print("took ",peekW(SYSTEM_TIMER_LO),"Msec\n\n");

 // time spent blocking is only approx 1msec

 // demonstrate how to modify a prepared comms buffer that is

 still being held

 to(combuf); print("MY CONTENTS HAVE BEEN CHANGED");

 to(combuf+50); print("*** AND CHANGED HERE TOO ***");

 combuf[218] := 'CA'; // the last 'DOG' changed here

 combuf[219] := 'T\n'; // the last 'DOG' changed here

 // now we are ready to send to buffer

 n := com_TXbufferHold(OFF); // release TX buffer

 print("TXBuffer is holding ", n, " chars\n");

 // show how many characters were in the buffer

 // watch the buffer empty

 repeat

 print("TX count = ", [DEC5ZB] n := com_TXcount(),"\r"); // watch

the count as the buffer empties

 until(!n);

 print("\n\nTX Empty");

 com_TXbuffer(0, 0, IO1_PIN); // done with the buffer, release it

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 304 of 554 www.4dlabs.com.au

 sys_SetTimer(TIMER0, 3000); // pause for 3 seconds, non blocking

 while(peekW(TMR0));

forever // do it forever

//com_TXbuffer(0, 0, 0); // if done with the pin, must release it

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 305 of 554 www.4dlabs.com.au

2.12.17 com_Mode("databits", "parity", "Stopbits", "comport")

Syntax com_Mode("databits", "parity", "Stopbits", "comport");

Arguments Databits, parity, Stopbits, comport.

Databits Specifies the number of databits, 8 is the only currently valid value

Parity Specifies the parity bit. Valid values are N(one), E(ven) and O(dd).

Stopbits Specifies the number of stop bits. Valid values are 1 and 2.

Comport Specifies the Com port,

COM0:

COM1:

COM2:

COM3:

The arguments can be a variable, array element, expression or constant

Returns Status

 Status Returns True if the parameters were acceptable.

Description Use this function to set the required serial port parameters to other than 8N1

Example stat := com_Mode(8, ‘E’, 2, COM2) // To set Com2 to 8E2.

if (stat)

 Print(“Com2 set to 8E2”);

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 306 of 554 www.4dlabs.com.au

2.12.18 com_RXblock() or com1_RXblock() or com2_RXblock() or com3_RXblock()

Syntax

com_RXblock("buf", "bufsize") or
com1_RXblock("buf", "bufsize") or
com2_RXblock("buf", "bufsize") or
com3_RXblock("buf", "bufsize")

Arguments buf, bufsize

 Buf String Pointer address of buffer to receive the data.

 Bufsize The number of characters to receive into the buffer.

Returns Nothing

Description Bufsize bytes are received from the serial port to the string pointer "buf". If a receive buffer is active

and bufsize characters are available this function will return almost immediately otherwise it will block

until until the required bytes are received. This function is useful for protocols that require the reading

of a fixed amount of data in one hit. Once the data has been read into a buffer it also makes it easy to

perform CRC calculations on the data.

Example #platform "uLCD-32WDT"

func main()

 var st[20] ;

 com_RXblock(str_Ptr(st), 8) ;

 str_PutByte(str_Ptr(st)+8, 0) ; // terminate

 print(">", [STR] st, "<") ;

 repeat // maybe replace

 forever // this as well

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 307 of 554 www.4dlabs.com.au

2.12.19 com_TXblock() or com1_TXblock() or com2_TXblock() or com3_TXblock()

Syntax

com_TXblock("buf", "bufsize") or
com1_TXblock("buf", "bufsize") or
com2_TXblock("buf", "bufsize") or
com3_TXblock("buf", "bufsize")

Arguments buf, bufsize

 Buf String Pointer address of buffer to send the data from.

 Bufsize The number of characters to send.

Returns Nothing

Description Bufsize bytes are transmitted to the serial port from the string pointer "buf". If a transmit buffer is

active and space is available this function will return almost immediately otherwise it will block until

until the required bytes are sent. This function is useful for protocols that require the reading of a

fixed amount of data in one hit. Once the data has been read into a buffer it also makes it easy to

perform CRC calculations on the data.

Example #platform "uLCD-32WDT"

func main()

 var st[20] ;

 to(st) ;

 print("Hello there!") ;

 com_TXblock(str_Ptr(st), 12) ;

 com_TXblock("\nThis is a Test", 15) ;

 repeat // maybe replace

 forever // this as well

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 308 of 554 www.4dlabs.com.au

2.12.20 com_InitBrk(buffer, bufsize, qualifier) or com1_InitBrk (buffer, bufsize, qualifier) or
com2_InitBrk (buffer, bufsize, qualifier) or com3_InitBrk (buffer, bufsize, qualifier)

Syntax

com_InitBrk(buffer, bufsize, qualifier); or
com1_InitBrk(buffer, bufsize, qualifier); or
com2_InitBrk(buffer, bufsize, qualifier); or
com3_InitBrk(buffer, bufsize, qualifier);

Arguments buffer, bufsize, qualifier

buffer Specifies the address of a buffer used for the background buffering service.

bufsize Specifies the byte size of the user array provided for the buffer (each array element holds

1 byte). If the buffer size is zero, a buffer of 128 words (256 bytes) should be provided for

automatic packet length mode (see below).

qualifier Specifies the qualifying character that must be received to initiate serial data reception

and buffer write. A zero (0x00) indicates no qualifier to be used.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description This is the initialisation function for the serial communications buffered service with the ability to
receive the BREAK signal as though it is a character. The parameters are identical to com_Init() except
that each buffer entry can now only hold one byte. The BREAK ‘character’ is is a predefined constant
call BREAK.

Example com_InitBrk(combuf, 20, 0);

//set up a comms ring buffer for COM0, 10 characters before overflow

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 309 of 554 www.4dlabs.com.au

2.12.21 com_TXbufferBrk(buf, bufsize,pin) or com1_TXbufferBrk(buf, bufsize,pin) or
com2_TXbufferBrk(buf, bufsize,pin) or com3_TXbufferBrk(buf, bufsize,pin)

Syntax

com_TXbufferBrk(buf, bufsize, pin); or
com1_TXbufferBrk(buf, bufsize, pin); or
com2_TXbufferBrk(buf, bufsize, pin); or
com3_TXbufferBrk(buf, bufsize, pin);

Arguments buf, bufsize, pin

buf Specifies the address of a buffer used for the buffering service.

bufsize Specifies the byte size of the user array provided for the buffer (each array element

holds 1 byte).

pin Specifies the turnaround pin. If not required, just set "pin" to zero.

The arguments can be a variable, array element, expression or constant

Returns None

Description This is the initialisation function for the serial communications tramsmit buffered service with the

ability to sent the BREAK signal as though it is a character. The parameters are identical to

com_TXbuffer() except that each buffer entry can now only hold one byte. The BREAK ‘character’ is is

a predefined constant call BREAK.

Example com_TXbufferBrk(mybuf, 1024, PA1); // set the TX buffer of COM0

com_TXbufferBrk(0, 0, 0); // revert COM0 to non buffered service

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 310 of 554 www.4dlabs.com.au

2.13. I2C BUS Master Functions

Summary of Functions in this section:

• I2C1_Open(Speed, SCLpin, SDApin) or I2C2_Open(Speed, SCLpin, SDApin) or I2C3_Open(Speed,
SCLpin, SDApin)

• I2C1_Close() or I2C2_Close() or I2C3_Close()

• I2C1_Start() or I2C2_Start() or I2C3_Start()

• I2C1_Stop() or I2C2_Stop() or I2C3_Stop()

• I2C1_Restart() or I2C2_Restart() or I2C3_Restart()

• I2C1_Read() or I2C2_Read() or I2C3_Read()

• I2C1_Write(byte) or I2C2_Write(byte) or I2C3_Write(byte)

• I2C1_Ack() or I2C2_Ack() or I2C3_Ack()

• I2C1_Nack() or I2C2_Nack() or I2C3_Nack()

• I2C1_AckStatus() or I2C2_AckStatus() or I2C3_AckStatus()

• I2C1_AckPoll(control) or I2C2_AckPoll(control) or I2C3_AckPoll(control)

• I2C1_Idle() or I2C2_Idle() or I2C3_Idle()

• I2C1_Gets(buffer, size) or I2C2_Gets(buffer, size) or I2C3_Gets(buffer, size)

• I2C1_Getn(buffer, size) or I2C2_Getn(buffer, size) or I2C3_Getn(buffer, size)

• I2C1_Puts(buffer) or I2C2_Puts(buffer) or I2C3_Puts(buffer)

• I2C1_Putn(buffer, count) or I2C2_Putn(buffer, count) or I2C3_Putn(buffer, count)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 311 of 554 www.4dlabs.com.au

2.13.1 I2C1_Open(Speed, SCL, SDA) or I2C2_Open(Speed, SCL, SDA) or I2C3_Open(Speed, SCL,
SDA)

Syntax
I2C1_Open(Speed, SCLpin, SDApin); or
I2C2_Open(Speed, SCLpin, SDApin); or
I2C3_Open(Speed, SCLpin, SDApin);

Arguments Speed

Speed Specifies the I2C bus speed (See list in Description box)

SCLpin Specifies the GPIO pin to use for the SCL signal

SDApin Specifies the GPIO pin to use for the SDA signal

The arguments can be a variable, array element, expression or constant

Returns Status

 Status
1 if Successful
0 if Unsuccessful

Description Calling this function configures the I2C module and initialises it to be ready for service. The I2C clock

speed is specified by the Speed parameter. Multiple I2C Speed settings are available to suit various

requirements.

Constant Speed

I2C_SLOW 100KHz

I2C_MED 400KHz

I2C_FAST 1MHz

I2C_10KHZ 10KHz

I2C_20KHZ 20KHz

I2C_50KHZ 50KHz

I2C_250KHZ 250KHz

Note: Normally the I2C pins are PA0 to PA13, use of these pins has a couple of limitations, a) There is

no slew rate control at I2C_MED and b) I2C_FAST is not truly 1MHz. If either of these restrictions need

to be addressed, a special case of SCLpin = PA14 and SDApin = PA15 exists ONLY for speeds I2C_MED

(which uses slew rate control) and I2C_FAST (which is truly 1MHz).

Example I2C1_Open(I2C_MED, PA2, PA3); // Open the I2C port in 400KHz mode.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 312 of 554 www.4dlabs.com.au

2.13.2 I2C1_Close() or I2C2_Close() or I2C3_Close()

Syntax
I2C1_Close(); or
I2C2_Close(); or
I2C3_Close();

Arguments None

Returns None

Description Calling this function closes the I2C port and disables the I2C hardware

Example I2C3_Close(); // Close I2C port and Disable the hardware

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 313 of 554 www.4dlabs.com.au

2.13.3 I2C1_Start() or I2C2_Start() or I2C3_Start()

Syntax
I2C1_Start(); or
I2C2_Start(); or
I2C3_Start();

Arguments None

Returns Status (often ignored)

 Status
1 if Successful
0 if Unsuccessful

Description Calling this function sends an I2C start condition.

The hardware first pulls the SDA (data) line low, and next pulls the SCL (clock) line low.

SCL _____________________

SDA _______________________

Example I2C2_Start(); //Send an I2C start condition.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 314 of 554 www.4dlabs.com.au

2.13.4 I2C1_Stop() or I2C2_Stop() or I2C3_Stop()

Syntax
I2C1_Stop(); or
I2C2_Stop(); or
I2C3_Stop();

Arguments None

Returns Status (often ignored)

 Status
1 if Successful
0 if Unsuccessful

Description Calling this function sends an I2C stop condition. The hardware first releases the SCL to high state,

and then releases the SDA line high.

SCL ____/

SDA ______/

Example I2C1_stop(); // Send I2C Stop Condition

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 315 of 554 www.4dlabs.com.au

2.13.5 I2C1_Restart() or I2C2_Restart() or I2C3_Restart()

Syntax
I2C1_Restart(); or
I2C2_Restart(); or
I2C3_Restart();

Arguments None

Returns Status (often ignored)

 Status
1 if Successful
0 if Unsuccessful

Description Calling this function generates a restart condition.

Example I2C3_Restart() ; //Generates an I2C restart condition

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 316 of 554 www.4dlabs.com.au

2.13.6 I2C1_Read() or I2C2_Read() or I2C3_Read()

Syntax
I2C1_Read(); or
I2C2_Read(); or
I2C3_Read();

Arguments None

Returns Byte

 Byte Byte from the I2C Bus in the lower 8 bits.

Description Calling this function reads a single byte from the I2C bus.
Note: Data can only change when the clock is low.

 __ __ __ __ __ __ __ __
SCL ____/ ___/ ___/ ___/ ___/ ___/ ___/ ___/ _

 __ __ 1__ __ 2__ __ 3__ __ 4__ __ 5__ __6___ __7__ __8__
SDA X_____ X______X______X______X_____X______X_____ X_____X

Example ch := I2C1_Read() ; //Read a single byte from the I2C Bus.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 317 of 554 www.4dlabs.com.au

2.13.7 I2C1_Write(byte) or I2C2_Write(byte) or I2C3_Write(byte)

Syntax
I2C1_Write(byte); or
I2C2_Write(byte); or
I2C3_Write(byte);

Arguments byte

byte The byte to be written to the I2C Bus.

The arguments can be a variable, array element, expression or constant

Returns Status

 Status
Returns 2 if NACK received
Returns 1 if ACK received
Returns 0 if Failed

Description Calling this function sends a single byte to the I2C bus

 __ __ __ __ __ __ __ __
SCL ____/ ___/ ___/ ___/ ___/ ___/ ___/ ___/ _

 __ __ 1__ __ 2__ __ 3__ __ 4__ __ 5__ __6___ __7__ __8__
SDA X_____ X______X______X______X_____X______X_____ X_____X

Example Status := I2C3_Write(bytevalue); // Send a single byte to the I2C

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 318 of 554 www.4dlabs.com.au

2.13.8 I2C1_Ack() or I2C2_Ack() or I2C3_Ack()

Syntax
I2C1_Ack(); or
I2C2_Ack(); or
I2C3_Ack();

Arguments None

Returns None

Description Calling this function sends an I2C acknowledge condition.
The hardware first pulls the SDA line low, and next releases SCL high followed by pulling SCL low
again thus generating a clock pulse, SDA is then released high.

NB:- Data can only change when the clock is low.

 __
SCL _______/ ____________
 ____ Ack ______
SDA ____ X_____/

Example I2C2_Ack(); // Send I2C Acknowledge condition

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 319 of 554 www.4dlabs.com.au

2.13.9 I2C1_Nack() or I2C2_Nack() or I2C3_Nack()

Syntax
I2C1_Nack(); or
I2C2_Nack(); or
I2C3_Nack();

Arguments None

Returns None

Description Calling this function sends an I2C negative acknowledge condition.
The hardware first release the SDA line high, and next releases SCL HI followed by pulling SCL low
thus generating a clock pulse.

NB:- Data can only change when the clock is low.

 __
SCL _______/ ____________
 ____ _________________
SDA ____ X Nack

Example I2C3_Nack(); //Send an I2C Negative acknowledge condition

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 320 of 554 www.4dlabs.com.au

2.13.10 I2C1_AckStatus or I2C2_AckStatus or I2C3_AckStatus

Syntax
I2C1_AckStatus(); or
I2C2_AckStatus(); or
I2C3_AckStatus();

Arguments None

Returns Status

 Status Device Ack status

Description Call this function to get the ACK status from the slave device
The state of SDA is returned.

NB:- returns the state of SDA after the last clock pulse

 __ Previous Clock Pulse
SCL X ______

SDA ____ X ____ Ack Status

Example r := I2C1_AckStatus(); // returns the Ack Status.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 321 of 554 www.4dlabs.com.au

2.13.11 I2C1_AckPoll(control) or I2C2_AckPoll(control) or I2C3_AckPoll(control)

Syntax
I2C1_AckPoll(control); or
I2C2_AckPoll(control); or
I2C3_AckPoll(control);

Arguments control

control The control word to be written to the device.

The arguments can be a variable, array element, expression or constant

Returns Status

 Status Device Ack Status

Description Call this function to wait for a device to return an ACK during ACK polling
The SDA is monitored for an Ack.

NB:- returns the state of SDA after the last clock pulse

 __ Previous Clock Pulse
SCL X ______

SDA ____ X ____ Ack Status

Example r := I2C2_AckPoll(0xA0); //send the control byte the wait for a device

 //to return poll the device until an ACK

 //is received.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 322 of 554 www.4dlabs.com.au

2.13.12 I2C1_Idle() or I2C2_Idle() or I2C3_Idle()

Syntax
I2C1_Idle(); or
I2C2_Idle(); or
I2C3_Idle();

Arguments None

Returns Status

 Status
1 if Successful
0 if Failed (Timed Out)

Description Call this function to wait until the I2C bus is inactive.
NB:- wait for the bus to become idle. Times out if not inactive within 1 second.

 ___ ________
SCL X ___ X /
 ___ ________
SDA X ___ X /

Example r := I2C1_Idle(); //Wait until the I2C Bus is inactive.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 323 of 554 www.4dlabs.com.au

2.13.13 I2C1_Gets(buffer, size) or I2C2_Gets(buffer, size) or I2C3_Gets(buffer, size)

Syntax
I2C1_Gets(buffer, size); or
I2C2_Gets(buffer, size); or
I2C3_Gets(buffer, size);

Arguments buffer, size

buffer Storage for the string being read from the device.

size Maximum size of the string to be read

Returns count

 count Returns the count of bytes actually read.

Description Reads up to size characters into buffer from an ascii string stored in a device. Reads up to the ASCII
NULL terminator and includes the terminator.

Example c := I2C3_Gets(buf, size); //read a string from the I2C Bus to buffer

 //up to size characters.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 324 of 554 www.4dlabs.com.au

2.13.14 I2C1_Getn() or I2C2_Getn() or I2C3_Getn()

Syntax
I2C1_Getn(buffer, count); or
I2C2_Getn(buffer, count); or
I2C3_Getn(buffer, count);

Arguments buffer, count

buffer Storage for the bytes being read from the device.

count Number of bytes to be read

The arguments can be a variable, array element, expression or constant

Returns Status

 Status Returns True if block read ok else returns False.

Description Reads count bytes in to buffer and returns True if function succeeds

Example I2C1_Getn(buffer, count); //read I2C count bytes from the I2C Bus to

 //the buffer

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 325 of 554 www.4dlabs.com.au

2.13.15 I2C1_Puts(buffer) or I2C2_Puts(buffer) or I2C3_Puts(buffer)

Syntax
I2C1_Puts(buffer); or
I2C2_Puts(buffer); or
I2C3_Puts(buffer);

Arguments buffer

buffer Storage for the string being written to the device.

The arguments can be a variable, array element, expression or constant

Returns Count

 Count Returns the count of bytes actually written.

Description Writes an ASII string from buffer to a device. The ASCII NULL terminator is also written.

Example c := I2C3_Puts(mybuf); //write an ASCII string from buffer to the I2C

 //bus

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 326 of 554 www.4dlabs.com.au

2.13.16 I2C1_Putn() or I2C2_Putn() or I2C3_Putn()

Syntax
I2C1_Putn(buffer, count); or
I2C2_Putn(buffer, count); or
I2C3_Putn(buffer, count);

Arguments buffer, count

buffer Storage for the bytes being written to the device.

count Number of bytes to be written

Returns written

 written Returns number of bytes written.

Description Writes count bytes from the buffer to the device, and returns written if function succeeds.

Example b := I2C2_Putn(mybuf, count); // write count bytes from the buffer to

 // the I2C bus.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 327 of 554 www.4dlabs.com.au

2.14. Timer Functions

Summary of Functions in this section:

• sys_T()

• sys_T_HI()

• sys_SetTimer(timernum, value)

• sys_GetTimer(timernum)

• sys_SetTimerEvent("timernum","function")

• sys_EventQueue()

• sys_EventsPostpone()

• sys_EventsResume()

• sys_DeepSleep(units)

• sys_Sleep(units)

• iterator(offset)

• sys_GetDate()

• sys_GetTime()

• sys_SetDate(year, month, day)

• sys_SetTime(hours, mins, secs)

• sys_GetDateVar(&year, &month, &day)

• sys_GetTimeVar(&hour, &minute, &second, &msecs)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 328 of 554 www.4dlabs.com.au

2.14.1 sys_T()

Syntax sys_T();

Arguments None

Returns value

 value Returns the value of system timer. (LO Word)

Description Returns the current value of the rolling 32bit system timer (1mse) LO word.

Example t := sys_T(); // .

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 329 of 554 www.4dlabs.com.au

2.14.2 sys_T_HI()

Syntax sys_T_HI();

Arguments None

Returns value

 value Returns the value of system timer. (HI Word)

Description Returns the current value of the rolling 32bit system timer (1mse) HI word.

Example t := sys_T_HI(); //

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 330 of 554 www.4dlabs.com.au

2.14.3 sys_SetTimer(timernum, value)

Syntax sys_SetTimer(timernum, value);

Arguments timernum, value

timernum One of eight timers TIMER0 to TIMER7.

value Countdown period in milliseconds.

The “value” can be a variable, array element, expression or constant

Returns None

Description Set a countdown on the selected timer or 'top-up' if required. There are 8 timers TIMER0 to TIMER7
which stop at the count of 0. Maximum timeout period is 65, 535 milliseconds or 65.535 seconds.
A timer can be read with the sys_GetTimer("timernum") function.

Example sys_SetTimer(TIMER5, 3600); //Set Timer5 for 3.6 seconds.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 331 of 554 www.4dlabs.com.au

2.14.4 sys_GetTimer(timernum)

Syntax sys_GetTimer(timernum);

Arguments timernum

 timernum One of eight timers TIMER0 to TIMER7.

Returns Value

 Value Returns 0 if timer has expired, or the current countdown value.

Description Returns 0 if timer has expired, or the current countdown value. There are 8 timers TIMER0 to
TIMER7 which stop at the count of 0. Maximum timeout period is 65, 535 milliseconds or 65.535
seconds.
A timer can be set with the sys_SetTimer("timernum", "value") function.

Example t := sys_GetTimer(TIMER2); //

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 332 of 554 www.4dlabs.com.au

2.14.5 sys_SetTimerEvent(timernum, function)

Syntax sys_SetTimerEvent(timernum, function);

Arguments timernum, function

timernum One of eight timers TIMER0 to TIMER7.

function Event Function to be queued

Returns Address

 Address
Returns any previous event function address, or zero if there was no previous
function.

Description Set a function to be called for selected timer. When the timer reaches zero, the function is called. The
called function must not have any parameters, and should not have a return value. This is necessary
because the timer event is invoked asynchronously to the mainline program (i.e, it is not called in the
normal way, so parameters and return values don’t apply).

Note:
When a child process is run using the file_run or file_exec function, or if a file was loaded with
file_Loadfunction and is executed, the loaded process gets its own code and memory space,
therefore, any timer that reaches zero that has a timer event attached in the parent code space, will
fail and cause a crash as an attempt is made to force the program counter to some wild place in the
child process - There are 2 ways to overcome this problem.

1] If a child process will not be requiring the use of any timers or timer events, the parent program
can simply use the eventsPostpone() function before calling or entering the child process. Once the
parent program regains control, the eventsResume() function will allow any events in the queue to
then be processed. The side effect of this method is that several events may bank up, and will execute
immediately once the eventsResume() takes place. This however disallows a child process to use any
timer events in the sub program so method 2 is preferable in this case.

2] The parent program can 'disconnect' the event(s) by setting it/them to zero prior to child process
execution, or setting the associated timer to zero so the event wont fire. In either case, it is necessary
to do the following:-
 while(sys_EventQueue());

to ensure the event queue is empty prior to calling the child process. Note also that if just the timer
is set to zero, the child process cannot use this timer. If the timer was now set to a value and the old
event still existed, when the timer reaches zero the 'bad' parent address event will fire causing a
crash.

The reverse situation also applies of course, the same level of respect is required if a child program
needs to use any timer events. Method [1] (above) will not work as the events have been
postponed, stopping the child process from using any timer events. If the child process did an
eventsResume() in this case, everything would crash miserably. So the same applies, a child that
uses any timer events must respect any timers that may be used by the parent, and a child must
zero the sys_SetTimerEvent before returning to the parent.

sys_SetTimerEvent(timernum, 0) disables the timer event.

Example sys_SetTimerEvent(TIMER5, myfunc);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 333 of 554 www.4dlabs.com.au

2.14.6 sys_EventQueue()

Syntax sys_EventQueue();

Arguments None

Returns Count

 Count Returns number of events .

Description returns the max number of events that were pending in the event queue since the last call to this
function. This can be used to assess event overhead burden, especially after or during a
sys_EventsPostpone action..

Example tasks := sys_EventQueue(); //

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 334 of 554 www.4dlabs.com.au

2.14.7 sys_EventsPostpone()

Syntax sys_EventsPostpone();

Arguments None

Returns None

Description Postpone any events until the sys_EventResume function is executed. The event queue will continue
to queue events, but no action will take place until a sys_EventResume function is encountered.
The queue will continue to receive up to 32 events before discarding any further events. This function
is required to allow a sequence of instructions or functions to occur that would otherwise be
corrupted by an event occurring during the sequence of instructions or functions. A good example of
this is when you set a position to print, if there was no way of locking the current sequence, an event
may occur which does a similar thing, and a contention would occur - printing to the wrong position.
This function should be used wisely, if any action that is required would take considerable time, it is
better to disable any conflicting event functions with a bypass flag, then restart the conflicting event
by re-issuing a timer value.

Example sys_EventsPostpone(); // postpone the event queue

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 335 of 554 www.4dlabs.com.au

2.14.8 sys_EventsResume()

Syntax sys_EventsResume();

Arguments None

Returns None

Description Resume any postponed events. The queue will try to execute any events that were incurred during
the postponed period. Note that queued events are only checked for and executed at the the end of
each 4DGL instruction.

Example sys_EventsResume(); // resume the event queue

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 336 of 554 www.4dlabs.com.au

2.14.9 sys_DeepSleep(units)

Syntax sys_DeepSleep(units);

Arguments units

units Sleep timer units are approx 1 second. When in sleep mode, timing is controlled by an

RC oscillator, therefore, timing is not totally accurate and should not be relied on for

timing purposes

The arguments can be a variable, array element, expression or constant

Returns Status

 Status Remaining time units when touch screen is touched, else returns zero.

Description

Deep Sleep is a sleep state that is ‘deeper’ than the regular Sleep (for most display modules) and
therefore consumes less power. Some displays do not support being powered to a lower state, so
sleep and deepsleep power consumption can sometimes be roughly the same.

Puts the display and processor into lowest power mode for a period of time. If "units" is zero, the
display goes into sleep mode forever and needs power cycling to re-initialize. If "units" is 1 to
65535, the display will sleep for that period of time, or will be woken when touch screen is touched.
The function returns the count of "units" that are remaining when the screen was touced. When
returning from deep sleep mode, some displays might lose their screen and/or need to be
reinitialised with disp_Init()

New in v0.7 PmmC

Example sys_DeepSleep(60); // Sleep for 1 minute.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 337 of 554 www.4dlabs.com.au

2.14.10 sys_Sleep(units)

Syntax sys_Sleep(units);

Arguments units

units Sleep timer units are approx 1 second. When in sleep mode, timing is controlled by an

RC oscillator, therefore, timing is not totally accurate and should not be relied on for

timing purposes

The arguments can be a variable, array element, expression or constant

Returns Status

 Status Remaining time units when touch screen is touched, else returns zero.

Description Regular sleep, which puts the display and processor into low power mode for a period of time. If
"units" is zero, the display goes into sleep mode forever and needs power cycling to re-initialize. If
"units" is 1 to 65535, the display will sleep for that period of time, or will be woken when touch
screen is touched. The function returns the count of "units" that are remaining when the screen
was touced. When returning from sleep mode, the display and processor are restored from low
power mode.

Note: Sys_Sleep() was found to have an issue in PmmC’s prior to R33, the units value was not
always near 1 second. This has been corrected in PmmC R33.

Example sys_Sleep(60); // Sleep for 1 minute.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 338 of 554 www.4dlabs.com.au

2.14.11 iterator(offset)

Syntax iterator_(offset);

Arguments offset

offset Offset size for the next ++ or - - command

The arguments can be a variable, array element, expression or constant

Returns None

Description Sets the iterator size for the next postinc, postdec, preinc or predec by a specified value. The offset
will return to 1 after the next operation.

Example t := iterator(10); // Set the iterator size to be 10

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 339 of 554 www.4dlabs.com.au

2.14.12 sys_GetDate()

Syntax sys_GetDate();

Arguments None

Returns None

Description Print the system date in the format "DD-MM-YYYY"

Can be captured to a buffer using the to() function.

Example Sys_GetDate(); // Print the current Date to the display

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 340 of 554 www.4dlabs.com.au

2.14.13 sys_GetTime()

Syntax sys_GetTime();

Arguments None

Returns None

Description Print the system time in the format "HH:MM:SS"

Can be captured to a buffer using the to() function.

Example var buf[5];

to(buf); Sys_GetTime(); // Print the current Time to the buffer

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 341 of 554 www.4dlabs.com.au

2.14.14 sys_SetDate(year, month, day)

Syntax sys_SetDate(year, month, day);

Arguments year, month, day

year Year argument can be a variable, array element, expression or constant

month Month argument can be a variable, array element, expression or constant

day Day argument can be a variable, array element, expression or constant

Returns Status

 Status TRUE if valid date

Description Used to set clock to correct date after power up or suspension.

If an I2C real time clock is present, this function can be used to synchronize the internal date to the
I2C RTC date.

Returns true if valid date.

Example Sys_SetDate(13, 08, 05);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 342 of 554 www.4dlabs.com.au

2.14.15 sys_SetTime(hour, minute, second)

Syntax sys_SetTime(hour, minute, second);

Arguments hour, minute, second

hour Hour argument can be a variable, array element, expression or constant

minute Minute argument can be a variable, array element, expression or constant

second Second argument can be a variable, array element, expression or constant

Returns Status

 Status TRUE if valid time

Description Used to set clock to correct time after power up or suspension.

If an I2C real time clock is present, this function can be used to synchronize the internal time to the
I2C RTC time.

Returns true if valid time.

Example Sys_SetTime(11, 03, 55);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 343 of 554 www.4dlabs.com.au

2.14.16 sys_GetDateVar(&year, &month, &day)

Syntax sys_GetDateVar(&year, &month, &day);

Arguments year, month, day

year Specifies the address for the storage location of the returned year value

month Specifies the address for the storage location of the returned month value

day Specifies the address for the storage location of the returned day value

Returns None

Description Returns the current year, month and day into variables.

Example Sys_GetDateVar(&year, &month, &day); // Read the current Date inot variables

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 344 of 554 www.4dlabs.com.au

2.14.17 sys_GetTimeVar(&hour, &minute, &second, &msecs)

Syntax sys_GetTimeVar(&hour, &minute, &second, &msecs);

Arguments hour, minute, second, msecs

hour Specifies the address for the storage location of the returned hour value

minute Specifies the address for the storage location of the returned minute value

second Specifies the address for the storage location of the returned second value

msecs Specifies the address for the storage location of the returned milli-second value

Returns None

Description Returns the current hour, minute, second and milli-second into variables.

Example Sys_GetTimeVar(&hour, &minute, &second, &msecs); // Get the current Time into

variables

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 345 of 554 www.4dlabs.com.au

2.15. FAT16 File Functions

Summary of Functions in this section:

• file_Error()

• file_Count(filename)

• file_Dir(filename)

• file_FindFirst(fname)

• file_FindNext()

• file_Exists(fname)

• file_Open(fname, mode)

• file_Close(handle)

• file_Read(destination, size, handle)

• file_Seek(handle, HiWord, LoWord)

• file_Index(handle, Hisize, Losize, recordnum)

• file_Tell(handle, &HiWord, &LoWord)

• file_Write(Source, size, handle)

• file_Size(handle, &HiWord, &LoWord)

• file_Image(x, y, handle)

• file_ScreenCapture(x, y, width, height, handle)

• file_PutC(char, handle)

• file_GetC(handle)

• file_PutW(word, handle)

• file_GetW(handle)

• file_PutS(source, handle)

• file_GetS(*String, size, handle)

• file_Erase(fname)

• file_Rewind(handle)

• file_LoadFunction(fname.4XE)

• file_Run(fname..4XE, arglistptr)

• file_Exec(fname..4XE, arglistptr)

• file_LoadImageControl(fname1, fname2, mode)

• file_Mount()

• file_Unmount()

• file_PlayWAV

• file_Rename(oldname, newname)

• file_SetDate(handle, year, month, day, hour, minute, second)

• file_CheckUpdate(filename, options)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 346 of 554 www.4dlabs.com.au

2.15.1 file_Error()

Syntax file_Error();

Arguments None.

Returns Error Code

ERROR CODE ERROR NO. ERROR DESCRIPTION

FE_OK
FE_IDE_ERROR
FE_NOT_PRESENT
FE_PARTITION_TYPE
FE_INVALID_MBR
FE_INVALID_BR
FE_DISK_NOT_MNTD
FE_FILE_NOT_FOUND
FE_INVALID_FILE
FE_FAT_EOF
FE_EOF
FE_INVALID_CLUSTER
FE_DIR_FULL
FE_DISK_FULL
FE_FILE_OVERWRITE
FE_CANNOT_INIT
FE_CANNOT_READ_MBR
FE_MALLOC_FAILED
FE_INVALID_MODE
FE_FIND_ERROR
FE_INVALID_FNAME
FE_INVALID_MEDIA
FE_SECTOR_READ_FAIL
FE_SECTOR_WRITE_FAIL

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

IDE function succeeded
IDE command execution error
CARD not present
WRONG partition type, not FAT16
MBR sector invalid signature
Boot Record invalid signature
Media not mounted
File not found in open for read
File not open
Fat attempt to read beyond EOF
Reached the end of file
Invalid cluster value > maxcls
All root dir entry are taken
All clusters in partition are taken
A file with same name exist already
Cannot init the CARD
Cannot read the MBR
Malloc could not allocate the FILE struct
Mode was not r.w.
Failure during FILE search
Invalid Filename
bad media
Sector Read fail
Sector write fail

Description Returns the most recent error code.

Example e := file_Error(); // File Error

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 347 of 554 www.4dlabs.com.au

2.15.2 file_Count(filename)

Syntax file_Count(filename);

Arguments filename

 filename Name of the file(s) for the search (passed as a string). 8.3 Format

Returns Count

 Count Number of files that match the criteria.

Description Returns number of files found that match the criteria.
The wild card character '*'matches up with any combination of allowable characters and '?' matches
up with any single allowable character.
Filename must be 8.3 format. Long Filenames are not supported. TESTPR~1.4XE for example.

Example count := file_Count(“*.4XE”); //Returns number of files with “.4XE”.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 348 of 554 www.4dlabs.com.au

2.15.3 file_Dir(filename)

Syntax file_Dir(filename);

Arguments filename

 filename Name of the file(s) for the search (passed as a string). 8.3 Format

Returns Count

 Count Number of files found that match the criteria.

Description Streams a string of file names that agree with the search key. Returns number of files found that
match the criteria. The wild card character '*' matches up with any combination of allowable
characters and '?' matches up with any single allowable character.
Filename must be 8.3 format. Long Filenames are not supported. TESTPR~1.4XE for example.

Example count := file_Dir(“*.4XE”); //Returns number of files with “.4XE”.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 349 of 554 www.4dlabs.com.au

2.15.4 file_FindFirst(fname)

Syntax file_FindFirst(fname);

Arguments fname

 fname Name of the file(s) for the search (passed as a string). 8.3 Format

Returns Status

 Status
1: If at least one file exists that satisfies the criteria.
0: If no file satisfies the criteria.

Description Returns true if at least 1 file exists that satisfies the file argument.

Wildcards are usually used so if file_FindFirst returns true, further tests can be made using

file_FindNext(); to find all the files that match the wildcard class. Note that the stream behaviour is

the same as file_Dir.

Filename must be 8.3 format. Long Filenames are not supported. TESTPR~1.4XE for example.

Example If (file_FindFirst(“*.4XE”))

 Print(“File Found”);

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 350 of 554 www.4dlabs.com.au

2.15.5 file_FindNext()

Syntax file_FindNext();

Arguments None

Returns Status

 Status
1: If more files exist that satisfy the criteria set in the file_FindFirst(fname)
0: If no more files satisfy the criteria set in the file_FindFirst(fname)

Description Returns true if more file exists that satisfies the file argument that was given for file_FindFirst.

Wildcards must be used for file_FindFirst, else this function will always return zero as the only

occurrence will have already been found.

Note that the stream behaviour is the same as file_Dir.

Example while ((file_FindNext())

 filecount++;

wend

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 351 of 554 www.4dlabs.com.au

2.15.6 file_Exists(fname)

Syntax file_Exists(fname);

Arguments fname

 fname Name of the file for the search (passed as a string). 8.3 Format

Returns Status

 Status
1: File found
0: File not found

Description Tests for the existence of the file provided with the search key. Returns TRUE if found.

fname must be 8.3 format, and therefore in capital letters. TESTPR~1.4XE for example.

Example If (file_Exists(“fil1.4XE”))

 Print(“File Found”);

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 352 of 554 www.4dlabs.com.au

2.15.7 file_Open(fname, mode)

Syntax file_Open(fname, mode);

Arguments fname, mode

fname Name of the file to be opened (passed as a string). 8.3 Format

mode FILE_READ: 'r'

FILE_WRITE: 'w'

FILE_APPEND: 'a'

Returns handle

 handle
Returns handle if file exists. Sets internal file error number accordingly (0 if no
errors).

Description Returns handle if file exists. The file "handle" that is created is now used as reference for "filename"
for further file functions such as file_Close(handle), etc. For FILE_WRITE and FILE_APPEND modes ('w'
and 'a') the file is created if it does not exist. If the file is opened for append and it already exists, the
file pointer is set to the end of the file ready for appending, else the file pointer will be set to the start
of the newly created file.
If the file was opened successfully, the internal error number is set to 0 (i.e. no errors) and can be
read with the file_Error() function..
For FILE_READ mode ('r') the file must exist else a null handle (0) is returned and the 'file not found'
error number is set which can be read with the file_Error() function..

fname must be 8.3 format. Long Filenames are not supported. TESTPR~1.4XE for example.

Note: If a file is opened for write mode 'w', and the file already exists, the operation will fail. Unlike C
and some other languages where the file will be erased ready for re-writing when opened for writing,
4DGL offers a simple level of protection that ensures that a file must be purposely erased before being
re-written.

Note: Beginning with the v4.0 PmmC a file opened with FILE_APPEND may be randomly read and or
written. Also any altered file will have the Archive bit set in the directory entry.

Example handle := file_Open("myfile.txt", 'r');

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 353 of 554 www.4dlabs.com.au

2.15.8 file_Close(handle)

Syntax file_Close(handle);

Arguments handle

handle the file handle that was created by file_Open("fname") which is now used as reference

(handle) for "fname" for further file functions such as in this function to close the file.

Returns Status

 Status
1: File Closed.
0: File not closed.

Description Returns TRUE if file closed, FALSE if not.

Example res := file_Close(hndl);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 354 of 554 www.4dlabs.com.au

2.15.9 file_Read(destination, size, handle)

Syntax file_Read(*destination, size, handle);

Arguments destination, size, handle

destination Destination memory buffer. Word Pointer.

size Number of bytes to be read

handle The handle that references the file to be read.

Returns count

 count Returns the number of characters read.

Description Reads the number of bytes specified by "size" from the file referenced by "handle" into a destination
memory buffer. Destination is always a word pointer, as you can only read into RAM which is word
addressable.

If "destination" is zero, data is read direct to GRAM window

Example res := file_Read(memblock, 20, hndl1);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 355 of 554 www.4dlabs.com.au

2.15.10 file_Seek(handle, HiWord, LoWord)

Syntax file_Seek(handle, HiWord, LoWord);

Arguments handle, HiWord, LoWord

handle The handle that references the file

HiWord Contains the upper 16bits of the memory pointer into the file

LoWord Contains the lower 16bits of the memory pointer into the file

Returns Status

 Status Returns TRUE if ok, usually ignored

Description Places the file pointer at the required position in a file that has been opened in 'r' (read) or 'a' (append)

mode. In append mode, file_Seek does not expand a filesize, instead, the file pointer (handle) is set

to the end position of the file, eg:- assuming the file size is 10000 bytes, file_Seek(handle, 0, 0x1234);

will set the file position to 0x00001234 (byte position 4660) for the file handle, so subsequent data

may be read from that position onwards with file_GetC(...), file_GetW(...), file_GetS(...), or an image

can be displayed with file_Image(...). Conversely, file_PutC(...), file_PutW(...) and file_PutS(...) can

write to the file at the position. A FE_EOF (end of file error) will occur if you try to write or read past

the end of the file.

Example res := file_Seek(hSource, 0x0000, 0x1234) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 356 of 554 www.4dlabs.com.au

2.15.11 file_Index(handle, Hisize, LoSize, recordnum)

Syntax file_Index(handle, Hisize, LoSize, recordnum);

Arguments handle, Hisize, LoSize, recordnum

handle The handle that references the file

Hisize Contains the upper 16bits of the size of the file records.

LoSize Contains the lower 16bits of the size of the file records.

recordnum The index of the required record

Returns Status

 Status Returns TRUE if ok, usually ignored

Description Places the file pointer at the position in a file that has been opened in 'r' (read) or 'a' (append) mode.

In append mode, file_Index does not expand a filesize, instead, the file pointer (handle) is set to the

end position of the file, eg:- assuming the record size is 100 bytes, file_Index(handle, 0, 100, 22); will

set the file position to 2200 for the file handle, so subsequent data may be read from that position

onwards with file_GetC(...), file_GetW(...), file_GetS(...), or an image can be displayed with

file_Image(...). Conversely, file_PutC(...), file_PutW(...) and file_PutS(...) can write to the file at the

position. A FE_EOF (end of file error) will occur if you try to write or read past the end of the file.

Example res := file_Index(hSource, 0, 100, 22) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 357 of 554 www.4dlabs.com.au

2.15.12 file_Tell(handle, &HiWord, &LoWord)

Syntax file_Tell(handle, &HiWord, &LoWord);

Arguments handle, &HiWord, &LoWord

handle The handle that references the file

HiWord Contains the upper 16bits of the memory pointer into the file

LoWord Contains the lower 16bits of the memory pointer into the file

Returns Status

 Status Returns TRUE if ok, usually ignored

Description Reads the 32 bit file pointer and stores it into 2 variables, HiWord and LoWord

Example res := file_Tell(hSource, &HIptr, &LOptr) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 358 of 554 www.4dlabs.com.au

2.15.13 file_Write(*source, size, handle)

Syntax file_Write(*source, size, handle);

Arguments source, size, handle

source Source memory buffer. Byte/String Pointer.

size Number of bytes to be written.

handle The handle that references the file to write.

Returns count

 count Returns the number of bytes written.

Description Writes the number of bytes specified by "size" from the source buffer into the file referenced by
"handle". The source buffer is a byte/string pointer, as it can be written from program memory which
is always byte addressable.

Example res := file_Write(memblock, 20, hndl1);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 359 of 554 www.4dlabs.com.au

2.15.14 file_Size(handle, &HiWord, &LoWord)

Syntax file_Size(handle, &HiWord, &LoWord);

Arguments handle, HiWord, LoWord

handle The handle that references the file.

HiWord Contains the upper 16bits of the file size.

LoWord Contains the lower 16bits of the file size.

Returns Status

 Status Returns TRUE if ok, usually ignored.

Description Reads the 32 bit file size and stores it into 2 variables, HiWord and LoWord

Example res := file_Size(hSource, &sizeHi, &sizeLo);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 360 of 554 www.4dlabs.com.au

2.15.15 file_Image(x, y, handle)

Syntax file_Image(x, y, handle);

Arguments x, y, handle

x X-position of the image to be displayed

y Y-position of the image to be displayed

handle The handle that references the file containing the image(s)

Returns Returns a copy of the file_Error() error code

Description Display an image from the file stream at screen location specified by x, y(top left corner). If there is

more than 1 image in the file, it can be accessed with file_Seek(...).

Example file_Image(x, y, handle) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 361 of 554 www.4dlabs.com.au

2.15.16 file_ScreenCapture(x, y, width, height, handle)

Syntax file_ScreenCapture(x, y, width, height, handle);

Arguments x, y, width, height, handle

x X-position of the image to be captured

y Y-position of the image to be captured

width Width of the area to be captured.

height Height of the area to be captured.

handle The handle that references the file to store the image(s)

Returns Status

 Status Returns 0 if function successful.

Description Save an image of the screen shot to file at the current file position.

The image can later be displayed with file_Image(...); The file may be opened in append mode to

accumulate multiple images. Later, the images can be displayed with file_Seek(...).

Note that the image will be sector aligned.

All image headers must start on a sector boundary.

The image is saved from x, y (with respect to top left corner), and the capture area is determined by

"width" and "height".

Example file_Mount();

hFile := file_Open("test.img", 'a'); // open a file to save the image

file_ScreenCapture(20,20,100,100, hFile);// save an area

file_ScreenCapture(0,0,50,50, hFile); // (save another area)

file_Close(hFile); // now close the file

// and to display the saved area(s)

hFile := file_Open("test.img", 'r'); // open the saved file

file_Image(20,180, hFile); // display the image

file_Image(150,180, hFile); // (display the next image)

file_Close(hFile);

file_Unmount(); // finished with file system

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 362 of 554 www.4dlabs.com.au

2.15.17 file_PutC(char, handle)

Syntax file_PutC(char, handle);

Arguments char, handle

char Data byte about to be written.

handle The handle that references the file to be written to.

Returns Status

 Status Returns true if function succeeded

Description This function writes the byte specified by "char" to the file, at the position indicated by the associated
file-position pointer and advances the pointer appropriately (incremented by 1). The file must be
previously opened with 'w' (write) or 'a' (append) modes.

Example file_PutC('A', hndl);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 363 of 554 www.4dlabs.com.au

2.15.18 file_GetC(handle)

Syntax file_GetC(handle);

Arguments handle

 handle The handle that references the file.

Returns byte

 byte Returns the next char from the file

Description This function reads a byte from the file, at the position indicated by the associated file-position pointer

and advances the pointer appropriately (incremented by 1). The file must be previously opened with

'r' (read) mode.

Example mychar := file_GetC(hndl) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 364 of 554 www.4dlabs.com.au

2.15.19 file_PutW(word, handle)

Syntax file_PutW(word, handle);

Arguments word, handle

word Data about to be written

handle The handle that references the file to be written to.

Returns Status

 Status Returns true if function succeeded

Description This function writes word sized (2 bytes) data specified by "word" to the file, at the position indicated

by the associated file-position pointer and advances the pointer appropriately (incremented by 2).

The file must be previously opened with 'w' (write) or 'a' (append) modes.

Example file_PutW(0x1234, hndl);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 365 of 554 www.4dlabs.com.au

2.15.20 file_GetW(handle)

Syntax file_GetW(handle);

Arguments handle

 handle The handle that references the file.

Returns Word

 Word Returns the next word in the file

Description This function reads a word (2 bytes) from the file, at the position indicated by the associated file-
position pointer and advances the pointer appropriately (incremented by 2). The file must be
previously opened with 'r' (read) mode.

Example myword := file_GetW(hndl);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 366 of 554 www.4dlabs.com.au

2.15.21 file_PutS(*source, handle)

Syntax file_PutS(*source, handle);

Arguments source, handle

source A pointer to the string to be written.

handle The handle that references the file to be written to.

Returns count

 count Returns the number of characters written (excluding the null terminator).

Description This function writes an ASCIIZ (null terminated) string from a buffer specified by "*source" to the file,

at the position indicated by the associated file-position pointer and advances the pointer

appropriately. The file must be previously opened with 'w' (write) or 'a' (append) modes.

Example file_PutS(mystring, hndl);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 367 of 554 www.4dlabs.com.au

2.15.22 file_GetS(*string, size, handle)

Syntax file_GetS(*string, size, handle);

Arguments string, size, handle

string Destination buffer

size The maximum number of bytes to be read from the file.

handle The handle that references the file.

Returns Count

 Count Returns the number of characters read from file (excluding the null terminator)

Description This function reads a line of text to a buffer (specified by "*string") from a file at the current file

position indicated by the associated file-position pointer and advances the pointer appropriately. The

file must be previously opened with 'r' (read) mode.

Note: only reads up to "size-1" characters into "string"

file_GetS(...) will stop reading when any of the following conditions are true:

A) It has read n-1 bytes (one character is reserved for the null-terminator)

B) It encounters a newline character (a line-feed in the compilers tested here)

C) It reaches the end of file

D) A read error occurs.

The file must be previously opened with 'r' (read) mode.

Example res := file_GetS(mystring, 80, hndl);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 368 of 554 www.4dlabs.com.au

2.15.23 file_Erase(fname)

Syntax file_Erase(fname);

Arguments fname

 fname Name of the file to be erased

Returns Status

 Status
1: if successful
0: if unsuccessful

Description This function erases a file on the disk.

Note: If the function fails, the appropriate error number is set in file_Error() and will usually be error

19, "failure during FILE search".

Example res := file_Erase("myfile.txt") ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 369 of 554 www.4dlabs.com.au

2.15.24 file_Rewind(handle)

Syntax file_Rewind(handle);

Arguments handle

 handle The handle that references the file

Returns Status

 Status Returns TRUE if ok, usually ignored

Description Resets the file pointer to the beginning of a file that has been opened in 'r' (read), 'w', or 'a' (append)
mode.

Example res := file_Rewind(hSource);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 370 of 554 www.4dlabs.com.au

2.15.25 file_LoadFunction(fname.4XE)

Syntax file_LoadFunction(fname.4XE);

Arguments fname.4XE

 fname.4XE Name of the 4DGL application program that is about to be loaded into RAM.

Returns Pointer

 Pointer
Returns a pointer to the memory allocation where the function has been loaded from
file which can be then used as a function call.

Description Load a function or program from disk and return a function pointer to the allocation.

The function can then be invoked just like any other function would be called via a function pointer.

Parameters may be passed to it in a conventional way. The function may be discarded at any time

when no longer required, thus freeing its memory resources.

The loaded function can be discarded with mem_Free(..) Note that any pointer references passed to

the child function may not include references to the parents DATA statements or any static string

references. Any string or array information must be in the parents global or local memory space. The

reason for this is that DATA statements and static strings are contained in the parents CODE segment,

and cannot be accessed by the child process.

The callers stack is shared by the loaded function, however any global variables in the loaded function

are private to that function.

Example1 var titlestring[20];

var textstring[20];

to(titlestring); putstr(“My Window Title”);

to (textstring); putstr(“My Special Message”);

popupWindow := file_LoadFunction("popupWindow1.4fn");

if(!popupWindow)goto LoadFunctionFailed; //could not load the function

//then elsewhere in your program

res := popupWindow(MYMODE,titlestring,textstring);

if(res == QUIT_APPLICATION) goto exitApp;

//Later in your program, when popupWindow is no longer required

//for the application

res := mem_Free(popupWindow);

if(!res) goto FreeFunctionFailed; //should never happen if memory not

 //corrupted

Example2 var fncHandle; //a var for a handle to sliders2.4dg

var slidervals; //reference var to access global vars in sliders.4dg

fncHandle := file_LoadFunction("sliders2.4xe"); // load the function

slidervals := fncHandle&0x7FFF; // note that memory allocations

for transient programs are biased with 8000h which must be removed.

slidervals++; // note that all globals start at '1'

slidervals[0] := 25; // set sliders to initial positions

slidervals[1] := 20;

slidervals[2] := 30;

slidervals[3] := 15;

slidervals[4] := 35;

slidervals[5] := 20;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 371 of 554 www.4dlabs.com.au

slidervals[6] := 40;

slidervals[7] := 25;

slidervals[8] := 45;

slidervals[9] := 5;

r := fncHandle(); // activate the function

print("Return value = 0x", [HEX] r,"\n");

// print the values, they may have changed

print("Slider 1 ", slidervals[0]," Slider 2 ", slidervals[1],"\n");

print("Slider 3 ", slidervals[2]," Slider 4 ", slidervals[3],"\n");

print("Slider 5 ", slidervals[4]," Slider 6 ", slidervals[5],"\n");

print("Slider 7 ", slidervals[6]," Slider 8 ", slidervals[7],"\n");

print("Slider 9 ", slidervals[8]," Slider 10 ", slidervals[9],"\n");

mem_Free(fncHandle); // done with sliders, release its memory

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 372 of 554 www.4dlabs.com.au

2.15.26 file_Run(fname.4XE, arglistptr)

Syntax file_Run(fname.4XE, arglistptr);

Arguments fname.4XE, arglistptr

fname.4XE name of the 4DGL child program to be loaded into RAM and executed.

arglistptr pointer to the list of arguments to pass to the new program.

Returns Value

 Value Returns the value from main in the called program.

Description Any memory allocations in the main FLASH program are released, however, the stack and globals are

maintained.

If arglistptr is 0, no arguments are passed, else arglistptr points to an array, the first element being

the number of additional elements in the array which contain the arguments.

func 'main' in the called program accepts the arguments, if any.

The arguments can only be passed by value, no pointers or references can be used as all memory is

cleared before the file is loaded. Refer to file_Exec and file_LoadFunction for functions that can pass

by reference.

The disk does not need to be mounted, file_Run automatically mounts the drive.

Example #inherit "4DGL_16bitColours.fnc"

#inherit "FONT4.fnt"

#constant MAXBUTTONS 30 // for now, maximum number of buttons we want

 // (also sets maximum number of files we can exec)

#STACK 500

//stack must be large enough to be shared with called program

#MODE RUNFLASH

// This is a 'top down' main program and must be run from FLASH

//---//

local global variables

//---

// NB:- demo assigns all arrays to MAXBUTTONS.

// The arrays could be dynamically assigned to minimise memory usage.

// There is break even point between extra code and smallish arrays.

var keyval; // 0 if no key pressed else 1-n

var filenames; // pointer to byte array that holds the filenames

var buttontexts[MAXBUTTONS]; // pointers into the filenames array

//holds the filenames we use as button text

var vButtonState[MAXBUTTONS];

//button state flag(bit 0 = up:down state)

var vOldButtonState[MAXBUTTONS];

// OLD button state flags (bit 0 = up:down state)

// (we keep 2 copies so we can test for a state change and only redraw when

a state change occurs)

var touchX1[MAXBUTTONS]; // touch regions for the buttons

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 373 of 554 www.4dlabs.com.au

var touchY1[MAXBUTTONS];

var touchX2[MAXBUTTONS];

var touchY2[MAXBUTTONS];

var btnTextColor; // button text colour

var btnBtnColor; // button background colour

var buttoncount; // actual number of buttons created (set

by number of *.4XE files we find on drive)

var tempstr[20]; // general purpose string, 40 bytes

#DATA

 byte fred 1,2,3,4,5,6,7,8,9,10,11,12

#END

/*===

Redraw the button matrix. Only draw buttons that have changed state.

The top lef corner of the button matrix is set with the xorg and yorg

parameters depending on the font and text string width, the button matrix

dynamically resizes.

Parameters:-

maxwidth = rhs from xorg (in pixels) to cause wrap at rhs

maxwidth = maximum matrix width (in pixel units)

buttoncount = number of buttons to display

font = FONT_1 to FONT_4

xorg:yorg = top left corner of button array

NB:- The touch detect matrix array is updated when any button changes state.

When you need to draw the matrix for the first instance of the matrix, you

must

call with mode = 1 to instantiate the buttons.

call with mode = 0 for normal button action.

===*/

func redraw(var bcount, var font, var xorg, var yorg, var maxwidth, var mode

)

 var xgap, ygap, n, x1, y1, x2, y2;

 xgap := 2;

 ygap := 2;

 x1 := xorg;

 y1 := yorg;

 // if first, set all the buttons to the up state

 if (mode)

 n := 0;

 repeat

 vButtonState[n]:=UP;

// set all the buttons to inverse state

 vOldButtonState[n]:=DOWN;

// so we guarantee they are all drawn in the 'up' state (not pressed)

 until(++n >= buttoncount);

 endif

// check all the button states, if a change occured, draw the new button

state and update the touch detect matrix array

 n := 0;

 repeat

 // if the button state has changed

 if (vButtonState[n] != vOldButtonState[n])

 vOldButtonState[n] := vButtonState[n];

 // if we already have all the co-ordinates, use them

 if (!mode)

 x1 := touchX1[n];

 y1 := touchY1[n];

 x2 := touchX2[n];

 y2 := touchY2[n];

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 374 of 554 www.4dlabs.com.au

 endif

 // draw the button

 gfx_Button(vButtonState[n], x1, y1, btnBtnColor, btnTextColor,

font, 1, 1, buttontexts[n]);

 // update the touch screen regions only during first build

 if (mode)

 x2 := gfx_Get(RIGHT_POS);

 y2 := gfx_Get(BOTTOM_POS);

 touchX1[n] := x1;

 touchY1[n] := y1;

 touchX2[n] := x2;

 touchY2[n] := y2;

 // calculate next button position

 x1 := x2 + xgap;

 if (x1 >= xorg + maxwidth)

 x1 := xorg;

 y1 := y2 + ygap;

 endif

 endif

 endif

 until (++n >= buttoncount);

endfunc

//===

// do something with the key data

// In this example, we reconstitute the button name to a file name

// by appending ".4XE" and then call the file_Run command to

// run an application.

//===

func sendkey()

 var p;

 p := buttontexts[keyval-1];

 to(tempstr); str_Printf(&p, "%s.4XE");

 txt_Set(TEXT_OPACITY, OPAQUE);

 txt_Set(FONT_ID , FONT_4);

 txt_MoveCursor(3, 0);

 print (" ");

 if(file_Exists(str_Ptr(tempstr)))

 touch_Set(TOUCH_DISABLE); // disable the touch screen

 txt_Set(TEXT_COLOUR, ORANGE);

 print ("\rRUN: ", [STR] tempstr);// run the required program

 pause(500);

 gfx_Cls();

 file_Run(str_Ptr(tempstr),0); // just run the prog, no args

 else

 txt_Set(TEXT_COLOUR, RED);

 print ("\rFAULT: ", [STR] tempstr); // run required program

 pause(1000);

 endif

endfunc

//===

// convert the touch co-ordinates to a key value

// returns 0 if no key down else return index 1..n of button

//===

func readKeys(var x, var y)

 var n, x1, y1, x2, y2, r;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 375 of 554 www.4dlabs.com.au

 n := 0;

 r := 0;

 while (n < buttoncount && !r)

 x1 := touchX1[n];

 y1 := touchY1[n];

 x2 := touchX2[n];

 y2 := touchY2[n];

 n++;

 if (x >= x1 && x < x2 && y >= y1 && y < y2) r := n;

 wend

 return r;

endfunc

//==

func main()

 var k, n, state, x, y;

 var p, s, w, f;

redo:

 w := 140;

 f := FONT_4;

 btnTextColor := BLACK;

 btnBtnColor := LIGHTGREY;

 gfx_Cls();

 gfx_Set(BEVEL_WIDTH, 2);

 txt_Set(FONT_ID, FONT_3);

 print("Simple test for file_Run(...);\n");

 print("Memory available = ",mem_Heap(),"\n");

 if(!file_Mount())

 putstr("Disk not mounted");

 while(!file_Mount());

 else

 putstr("Disk mounted\n");

 endif

 buttoncount := file_Count("*.4xe");

// count all the executable files on the drive

 print("4XE File count = ",buttoncount,"\n");

 n := buttoncount; // k holds entry count

 if (!n)

 print("No 4XE executables\n");

// critical error, nothing to run!

 repeat forever

 endif

 filenames := mem_AllocZ(n*13);

// allocate a buffer for the filenames

 if(!filenames)

 print("Out of memory\n");

// critical error, could not allocate buffer

 repeat forever

 endif

 to(filenames); file_Dir("*.4xe");

// load the filenames array

 p := str_Ptr(filenames); // point to the string

//assign array of string pointers and truncate filename extensions

 n := 0;

 while (n < buttoncount)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 376 of 554 www.4dlabs.com.au

 buttontexts[n++] := p; // save pointer to the string

 p:=str_Find (&p , "."); // find end of required string

 str_PutByte(p++,'\0'); // change '.' to \0

 p := p + 4; // skip over "4XE\n"

 wend

 touch_Set(TOUCH_ENABLE); // enable the touch screen

 redraw(buttoncount, f, 10, 80, w, 1);

// draw buttons for the first time

 // now just stay in a loop

 repeat

 state := touch_Get(TOUCH_STATUS); // get touchscreen status

 x := touch_Get(TOUCH_GETX);

 y := touch_Get(TOUCH_GETY);

 if(state == TOUCH_PRESSED) // if there's a press

 if (keyval := readKeys(x, y))

 vButtonState[keyval-1] := DOWN;

// put button in DOWN state

 redraw(buttoncount, f, 10, 80, w, 0);

// draw any button down states

 endif

 endif

 if(state == TOUCH_RELEASED)

// if there's a release

 if (keyval)

 vButtonState[keyval-1] := UP;

// restore the buttons UP state

 redraw(buttoncount, f, 10, 80, w, 0);

// draw any button up states

 sendkey();

// do something with the key data

 keyval := 0;

// because prog(main prog) gave up all its allocations for file_Exec,

// we have lost our file mount info and the directory list so we must

// re-establish these to be able to continue. A better approach to

// ensure total stability for the main program is to reset the system

 // with SystemReset()

 //==================================

 // systemReset() // restart the main program

 // or

 goto redo; // re-mount disk, reload filenames

 //==================================

 endif

 endif

 forever

 // mem_Free(filenames);

 // no need to release buffer, this prog is in flash and never exits.....

 // file_Unmount(); // ditto

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 377 of 554 www.4dlabs.com.au

2.15.27 file_Exec(fname.4XE, arglistptr)

Syntax file_Exec(fname.4XE, arglistptr);

Arguments fname.4XE, arglistptr

fname.4XE name of the 4DGL child program to be loaded into RAM and executed.

arglistptr pointer to the list of arguments to pass to the new program or 0 if no arguments.

Returns Value

 Value Returns the value from main in the called program.

Description This function is similar to file_Run, however, the main program in FLASH retains all memory

allocations (eg file buffers, memory allocated with mem_Alloc etc)

Returns like a function, current program calling program is kept active and control returns to it.

If arglistptr is 0, no arguments are passed, else arglist points to an array, the first element being the

number of elements in the array.

func 'main' in the called program accepts the arguments.

This function is similar to file_LoadFunction(...), however, the function argument list is passed by

pointer, and the memory consumed by the function is released as soon as the function completes.

Example Main Program:

var args[4], l[50] ;

func main()

 var i ;

 putstr("Mounting...\n"); // must mount uSD for file_Exec

 if (!(file_Mount()))

 while(!(file_Mount()))

 putstr("Drive not mounted...");

 pause(200);

 gfx_Cls();

 pause(200);

 wend

 endif

 for (i := 0; i < sizeof(l); i++) // init array that will be passed

 l[i] := i ;

 next

 args[0] := 2 ; // init arg count

 args[1] := 1234 ; // init arg 1, this cannot be changed

 args[2] := l ; // init arg 2 to address of l

 print("main Program\n") ;

 i := file_Exec("uSDProg.4fn", args) ;

 print("Back in main program\n") ;

 print("uSD Program returned ", i, "\n") ; // number from return statement

 for (i := 0; i < sizeof(l); i++) // find what changed in array

 if (l[i] != i) print("l[", i, "] was changed to ", l[i], "\n") ;

 next

 print("Done") ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 378 of 554 www.4dlabs.com.au

 repeat

 forever

endfunc

Function on uSD:

func main(var j, var *l) // parameters appear in the normal way

 // The * shows that l will be indexed. It

 // simply stops the compiler issuing a 'notice'

 txt_FGcolour(WHITE);

 print("In file_Exec's Program\n") ;

 print("Parms=", j, " ", l, "(ptr to l)\n") ; // can't change these

 print("Incrementing l[5] to ", ++l[5], "\n") ; // can change these

 print("Returning 188\n") ; // can return a value

 txt_FGcolour(LIME);

 return 188 ;

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 379 of 554 www.4dlabs.com.au

2.15.28 file_LoadImageControl(fname1, fname2, mode)

Syntax file_LoadImageControl(fname1, fname2, mode);

Arguments fname1, fname2, mode

fname1 the control list filename "*.dat". Created from Graphics Composer.

fname2 the image filename "*.gci". Created from Graphics Composer.

mode mode 0 :

It is assumed that there is a graphics file with the file extension "fname2.gci". In this

case, the images have been stored in a FAT16 file concurrently, and the offsets that

are derived from the "fname1.dat" file are saved in the image control so that the

image control can open the file (*.gci) and use file_Seek(..) to get to the position of

the image which can then automatically be displayed using file_Image(xpos, ypos,

hSource).

Mode 0 builds the image control quickly as it only scans the *.dat file for the file

offsets and saves them in the relevant entries in the image control. The penalty is

that images take longer to find when displayed due to file_Seek(..) overheads.

mode 1 :

It is assumed that there is a graphics file with the file extension "fname2.gci". In this

case, the images have been stored in a FAT16 file concurrently, and the offset of the

images are saved in the image control so that image file (*.gci) can be mapped to

directly. The absolute cluster/sector is mapped so file seek does not need to be called

internally. This means that there is no seek time penalty, however, the image list

takes a lot longer to build, as all the seeking is done at control build time.

Mode 2 :

In this case, the images have been stored in a in a RAW partition of the uSD card, and

the absolute address of the images are saved in the DAT file. This is the fastest

operation of the image control as there is no seeking or other disk activity taking

place.

Returns Status

 Status
Returns a handle (pointer to the memory allocation) to the image control list that
has been created.
Returns NULL if function fails.

Description Reads a control file to create an image list.

When an image control is loaded, an array is built in ram. It consists of a 6 word header with the

following entries as defined by the constants:

IMG_COUNT 0

IMG_ENTRYLEN 1

IMG_MODE 2

IMG_GCI_FILENAME 3

IMG_DAT_FILENAME 4

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 380 of 554 www.4dlabs.com.au

IMG_GCIFILE_HANDLE 5

No images are stored in FLASH or RAM, the image control holds the index values for the absolute

storage positions on the uSD card for RAW mode, or the cluster/sector position for formatted FAT16

mode.

When an image control is no longer required, the memory can be released with:

mem_Free(MyImageControlHandle);

Example #inherit "4DGL_16bitColours.fnc"

#constant OK 1

#constant FAIL 0

 var p; // buffer pointer

 var img; // handle for the image list

 var n, exit, r;

//---

// return true if screen touched, also sets ok flag

func CheckTouchExit()

 return (exit := (touch_Get(TOUCH_STATUS) == TOUCH_PRESSED)); // if

there's a press, exit

endfunc

//---

func main()

 gfx_Cls();

 txt_Set(FONT_ID, FONT_2);

 txt_Set(TEXT_OPACITY, OPAQUE);

 touch_Set(TOUCH_ENABLE); // enable the touch screen

 print("heap=", mem_Heap(), " bytes\n"); // show the heap size

 r := OK; // return value

 exit := 0;

 if (!file_Mount())

 print("File error ", file_Error());

 while(!CheckTouchExit());

// just hang if we didnt get the image list

 r := FAIL;

 goto quit;

 endif

 print ("WAIT...building image list\n");

 // slow build, fast execution, higher memory requirement

 img := file_LoadImageControl("GFX2DEMO.dat", "GFX2DEMO.gci", 1);

 // build image control, returning a pointer to structure allocation

 if (img)

 print("image control=",[HEX] img,"\n");

// show the address of the image control allocation

 else

 putstr("Failed to build image control....\n");

 while(CheckTouchExit() == 0);

// just hang if we didnt get the image list

 r := FAIL;

 goto quit;

 endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 381 of 554 www.4dlabs.com.au

 print ("Loaded ", img[IMG_COUNT], " images\n");

 print ("\nTouch and hold to exit...\n");

 pause(2000);

 pause(3000);

 gfx_Cls();

 repeat

 n := 0;

 while(n < img[IMG_COUNT] && !exit) // go through all images

 CheckTouchExit(); // if there's a press, exit

 img_SetPosition(img, n, (ABS(RAND() % 240)), (ABS(RAND() %

320))); // spread out the images

 n++;

 wend

 img_Show(img, ALL); // update the entire control in 1 hit

 until(exit);

quit:

 mem_Free(img); // release the image control

 file_Unmount(); // (program must release all resources)

 return r;

endfunc

//===

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 382 of 554 www.4dlabs.com.au

2.15.29 file_Mount()

Syntax file_Mount();

Arguments None

Returns Status

 Status Returns true if successful.

Description Starts up the FAT16 disk file services and allocates a small 32 byte control block for subsequent use.

When you open a file using file_Open(..), a further 512 + 44 = 556 bytes are attached to the FAT16 file

control block. When you close a file using file_Close(..), the 556 byte allocation is released leaving the

32 byte file control block. The file_Mount() function must be called before any other FAT16 file related

functions can be used. The control block and all FAT16 file resources are completely released with

file_Unmount().

Example if(!file_Mount())

 repeat

 putstr("Disk not mounted");

 pause(200);

 gfx_Cls();

 pause(200);

 until(file_Mount());

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 383 of 554 www.4dlabs.com.au

2.15.30 file_Unmount()

Syntax file_Unmount();

Arguments None

Returns None

Description Release any buffers for FAT16 and unmount the Disk File System. This function is to be called to close
the FAT16 file system.

Example file_Unmount(); // Unmount file system

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 384 of 554 www.4dlabs.com.au

2.15.31 file_PlayWAV(fname)

Syntax file_PlayWAV(fname);

Arguments fname

 fname Name of the wav file to be opened and played

Returns value

value If there are no errors, returns number of blocks to play (1 to 32767)
If errors occurred, the following is returned
-7 : Insufficient memory available for WAV buffer and file
-6 : cant play this rate
-5 : no data chunk found in first rsector
-4 : no format data
-3 : no wave chunk signature
-2 : bad wave file format
-1 : file not found

Description Open the wav file, decode the header to set the appropriate wave player parameters and set off the

playing of the file as a background process.

This function automatically grabs a chunk of memory for a file buffer, and a wave buffer. The minimum

memory requirement is about 580 bytes for the disk io service and a minimum wave buffer size of

1024. The size of the wave buffer allocation can be increased by the snd_BufSize function.

The default size 1024 bytes.

Note: The memory is only required during the duration of play, and is automatically released while

not in use.

See “Sound Control Functions” for additional play control functions.

Example print("\nding.wav\n");

 for(n:=0; n<45; n++)

 pitch := NOTES[n];

 print([UDEC] pitch,"\r");

 snd_Pitch(pitch);

 file_PlayWAV("ding.wav");

 while(snd_Playing());

 //pause(500);

 next

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 385 of 554 www.4dlabs.com.au

2.15.32 file_Rename(oldname, newname)

Syntax file_Rename(oldname, newname);

Arguments oldname, newname

oldname Name of the file to be renamed

newname Name of the file to be used as the new name

Returns Status

 Status
1: if successful
0: if unsuccessful

Description This function renames a file on the disk.

Note: If the function fails, the appropriate error number is set in file_Error() if an invalid filename is

specified, otherwise the cause will be a missing oldname or a pre-existing newname.

Example res := file_Rename("myfile.txt", "myfile.bak") ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 386 of 554 www.4dlabs.com.au

2.15.33 file_SetDate(handle, year, month, day, hour, minute, second)

Syntax file_SetDate(handle, year, month, day, hour, minute, second) ;

Arguments handle, year, month, day, hour, minute, second

 handle The handle that references the file.

 year The year the file was updated 1980-2099.

 month The month the file was updated 1-12.

 day The day the file was updated 1-31.

 hour The hour the file was updated 0-23.

 minute The minute the file was updated 0-59.

 Second The second the file was updated 0-59.

Returns Status

 Status
1: if successful
0: if unsuccessful (Handle not valid, or Date/Time not valid)

Description This function sets the modified date and time on an open file handle. The file must be closed at some
future time for the date and time to be flushed to disk.

Note that the FAT file system can only store even numbered seconds.

Example ret := file_SetDate(hndl, 2014, 9, 15, 23, 58, 00);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 387 of 554 www.4dlabs.com.au

2.15.34 file_CheckUpdate(filename, options)

Syntax file_CheckUpdate(filename, options)

Arguments filename, options

 filename Name of the 4DGL program on the uSD card

 options

Program update options:

CHECKUPDATE_QUERY 1

Checks the specified file and compares its DateTime to the program running in Flash.

CHECKUPDATE_UPDATENEWER 2

Updates the program in Flash and resets the display if the program on uSD is newer.

CHECKUPDATE_UPDATEALWAYS 3

Always updates the program in Flash and resets the display.

Returns value

 value

If update occurs and the program is running from Flash, as display is reset after update.
Otherwise if a query or an error occurs, the following is returned:

CHECKUPDATE_NEWFILE 1
The specified file is newer than the file running in Flash.

CHECKUPDATE_OLDFILE 2
The specified file is equal to or older than the file running in Flash.

CHECKUPDATE_UPDATEDONE 3
An update was performed and the program is running from RAM.

CHECKUPDATE_NOFILE 4
The specified file does not exist, or uSD not initialised.

CHECKUPDATE_INVALIDFILE 5
The specified file is not a valid .4xe or .4fn

Description Checks and/or updates the program running in Flash using the specified file on uSD.

Example if (!(file_Mount()))

 while(!(file_Mount()))

 putstr("Drive not mounted...");

 pause(200);

 gfx_Cls();

 pause(200);

 wend

endif

if (file_CheckUpdate("Program.4xe",CHECKUPDATE_QUERY)==CHECKUPDATE_NEWFILE)

 putstr("Program will now update") ;

 file_CheckUpdate("Program.4xe", CHECKUPDATE_UPDATENEWER) ;

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 388 of 554 www.4dlabs.com.au

2.16. Sound Control Functions

Summary of Functions in this section:

• snd_Volume(var)

• snd_Pitch(pitch)

• snd_BufSize(var)

• snd_Stop()

• snd_Pause()

• snd_Continue()

• snd_Playing()

• snd_Freq()

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 389 of 554 www.4dlabs.com.au

2.16.1 Snd_Volume(var)

Syntax Snd_Volume(var);

Arguments var

var sound playback volume

The arguments can be a variable, array element, expression or constant

Returns None

Description Set the sound playback volume. Var must be in the range from 8 (min volume) to 127 (max volume).

If var is less than 8, volume is set to 8, and if var > 127 it is set to 127.

Example snd_Volume(127) ; // Set Volume to maximum

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 390 of 554 www.4dlabs.com.au

2.16.2 Snd_Pitch(pitch)

Syntax Snd_Pitch(pitch);

Arguments pitch

pitch Sample's playback rate. Minimum is 4KHz. Range is, 4000 – 65535.

The arguments can be a variable, array element, expression or constant

Returns value

 value Returns sample's original sample rate.

Description Sets the samples playback rate to a different frequency. Setting pitch to zero restores the original

sample rate.

Example snd_Pitch(7000); //Play the wav file with a sample frequency of 7KHz.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 391 of 554 www.4dlabs.com.au

2.16.3 Snd_BufSize(var)

Syntax Snd_BufSize(var);

Arguments var

var Specifies the buffer size.

0 = 1024 bytes (default)

1 = 2048 bytes

2 = 4096 bytes

3 = 8192 bytes

The arguments can be a variable, array element, expression or constant

Returns None.

Description Specify the memory chunk size for the wavefile buffer, default size 1024 bytes. Depending on the
sample size, memory constraints, and the sample quality, it may be beneficial to change the buffer
size from the default size of 1024 bytes.
This function is for control of a wav buffer, see the file_PlayWAV(..) ; function

Example snd_BufSize(1);// allocate a 2048 byte wav buffer

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 392 of 554 www.4dlabs.com.au

2.16.4 snd_Stop()

Syntax snd_Stop();

Arguments None

Returns None

Description Stop any sound that is currently playing, releasing buffers and closing any open wav file.
This function is for control of a wav buffer, see the file_PlayWAV(..) ; function

Example snd_Stop(); // Stop, release buffers and close wav file

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 393 of 554 www.4dlabs.com.au

2.16.5 snd_Pause()

Syntax snd_Pause();

Arguments None

Returns None

Description Pause any sound that is currently playing, does nothing until sound is resumed with snd_Continue().

The sample can be terminated with snd_Stop.

Buffers and closes any open wav file.

This function is for control of a wav buffer, see the file_PlayWAV(..) ; function

Example snd_Pause(); // Pause Sound

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 394 of 554 www.4dlabs.com.au

2.16.6 snd_Continue()

Syntax snd_Continue();

Arguments None

Returns None

Description Resume any sound that is currently paused by snd_Pause.
This function is for control of a wav buffer, see the file_PlayWAV(..) ; function

Example snd_Continue(); // Continue sound

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 395 of 554 www.4dlabs.com.au

2.16.7 snd_Playing()

Syntax snd_Playing();

Arguments None

Returns value

 value Number of 512 byte blocks to go.

Description Returns 0 if sound has finished playing, else return number of 512 byte blocks to go.

This function is for control of a wav buffer, see the file_PlayWAV(..) ; function

Example count := snd_Playing(); // return number of sound blocks remaining

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 396 of 554 www.4dlabs.com.au

2.16.8 snd_Freq(frequency, duration)

Syntax snd_Freq(frequency, duration);

Arguments frequency, duration

frequency The frequency of the sound to produce, 10Hz is the minimum

duration The duration of the sound in milli seconds.

Returns status

 status Returns TRUE if freq >= 10 and a wav file is not currently playing.

Description Produces a pure square wave waveform on the audio output pin. This command is designed to drive

Piezo transducers which require this sort of input. Whilst it also works on displays with a builtin

amplifier the sound produced is extremely annoying.

Example snd_Freq(2731, 100); // produce a 100ms burst at the Piezo’s resonant

frequency.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 397 of 554 www.4dlabs.com.au

2.17. String Class Functions

Summary of Functions in this section:

• str_Ptr(&var)

• str_GetD(&ptr, &var)

• str_GetW(&ptr, &var)

• str_GetHexW(&ptr, &var)

• str_GetC(&ptr, &var)

• str_GetByte(ptr)

• str_GetWord(ptr)

• str_PutByte(ptr, val)

• str_PutWord(ptr, val)

• str_Match(&ptr, *str)

• str_MatchI(&ptr, *str)

• str_Find(&ptr, *str)

• str_FindI(&ptr, *str)

• str_Length(ptr)

• str_Printf(&ptr, *format)

• str_Cat(&destination, &Source)

• str_CatN(&ptr, str, count)

• str_ByteMove(src, dest, count)

• str_Copy(dest, src)

• str_CopyN(dest, src, count)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 398 of 554 www.4dlabs.com.au

2.17.1 str_Ptr(&var)

Syntax str_Ptr(&var);

Arguments var

 var Pointer to string buffer

Returns Pointer

 Pointer Returned value is the byte pointer to string buffer.

Description Return a byte pointer to a word region.

Example var buffer[100]; // 200 character buffer for a source string

var p; // string pointer

var n;

var vars[3]; // for our results

func main()

to(buffer); print("0x1234 0b10011001 12345 abacus");

p := str_Ptr(buffer);//raise string pointer for the string functions

while(str_GetW(&p, &vars[n++]) != 0); // read all the numbers till we

 //get a non number

print(vars[0],"\n", vars[1],"\n", vars[2],"\n"); // print them out

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 399 of 554 www.4dlabs.com.au

2.17.2 str_GetD(&ptr, &var)

Syntax str_GetD(&ptr, &var);

Arguments &ptr, &var

ptr Byte pointer to string.

var Destination for our result.

Returns Status

 Status Returns TRUE if function succeeds, advancing ptr

Description Convert number in a string to DWORD (myvar[2]).
NB:- The address of the pointer must be passed so the function can advance it if required.

Example var buffer[100]; // 200 character buffer for a source string

var p; // string pointer

var n;

var vars[6]; // for our results

func main()

to(buffer); print("100000 200000 98765432 abacus");

p := str_Ptr(buffer); // raise a string pointer so we can use the

 // string functions

while(str_GetD(&p, &vars[n]) != 0) n:=n+2; //read all the numbers

 //till we get a non number

print([HEX4] vars[1], ":" , [HEX4] vars[0], "\n");

// show the longs as hex numbers

print([HEX4] vars[3], ":" , [HEX4] vars[2], "\n");

print([HEX4] vars[5], ":" , [HEX4] vars[4], "\n");

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 400 of 554 www.4dlabs.com.au

2.17.3 str_GetW(&ptr, &var)

Syntax str_GetW(&ptr, &var);

Arguments &ptr, &var

ptr Byte pointer to string.

var Destination for our result.

Returns Status

 Status Returns TRUE if function succeeds, advancing ptr.

Description Convert number in a string to WORD (myvar).

NB:- The address of the pointer must be passed so the function can advance it if required.

Example var buffer[100]; // 200 character buffer for a source string

var p; // string pointer

var n;

var vars[3]; // for our results

func main()

to(buffer); print("0x1234 0b10011001 12345 abacus");

p := str_Ptr(buffer); // raise a string pointer so we can use the

 // string functions

while(str_GetW(&p, &vars[n++]) != 0); // read all the numbers till

 // we get a non number

print(vars[0],"\n", vars[1],"\n", vars[2],"\n"); // print them out

str_Printf (&p, "%s\n"); // numbers extracted, now just print

 // remainder of string

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 401 of 554 www.4dlabs.com.au

2.17.4 str_GetHexW(&ptr, &var)

Syntax str_GetHexW(&ptr, &var);

Arguments &ptr, &var

ptr Byte pointer to string

var Destination for our result.

Returns Status

 Status Returns TRUE if function succeeds, advancing ptr

Description Convert hex number in a string to WORD (myvar).

This function is for extracting 'raw' hex words with no "0x" prefix.

Note: The address of the pointer must be passed so the function can advance it if required.

Example var buffer[100]; // 200 character buffer for a source string

var p; // string pointer

var n;

var vars[4]; // for our results

func main()

to(buffer); print("1234 5678 9 ABCD");

p := str_Ptr(buffer); // raise a string pointer so we can use the

 // string functions

while(str_GetHexW(&p, &vars[n++]) != 0);// read all the hex numbers

 // till we get a non number

print(vars[0],"\n", vars[1],"\n" , vars[2],"\n", vars[3],"\n");

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 402 of 554 www.4dlabs.com.au

2.17.5 str_GetC(&ptr, &var)

Syntax str_GetC(&ptr, &var);

Arguments &ptr, &var

ptr Byte pointer to string.

var Destination for our result.

The arguments can be a variable, array element, expression or constant

Returns Status

 Status Returns TRUE if function succeeds, advancing ptr.

Description Get next valid ascii char in a string to myvar.

NB:- The address of the pointer must be passed so the function can advance it if required.

The function returns 0 if end of string reached. Used for extracting single characters from a string.

Example var p; // string pointer

var n;

var char;

var buffer[100]; // 200 character buffer for a source string

func main()

to(buffer); print("Quick Brown Fox");

p := str_Ptr(buffer); // raise a string pointer so we can use the

 //string functions

while(str_GetC(&p, &char))

 print("p=",p," char is", [CHR] char); // print characters

wend

print("End of string");

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 403 of 554 www.4dlabs.com.au

2.17.6 str_GetByte(ptr)

Syntax str_GetByte(ptr);

Arguments ptr

 ptr Address of byte array or string.

Returns byte

 byte Returns the byte value at pointer location.

Description Get a byte to myvar. Similar to "PEEKB" in basic.

It is not necessary for byte pointer ptr to be word aligned

Example var buffer[100]; // 200 character buffer for a source string

var n, p;

func main()

to(buffer); print("Testing 1 2 3");

p := str_Ptr(buffer); // get a byte pointer from a word region

n := 0;

while (n <= str_Length(buffer))

 print([HEX2] str_GetByte(p + n++)," ");// print all the chars hex

 // values

wend

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 404 of 554 www.4dlabs.com.au

2.17.7 str_GetWord(ptr)

Syntax str_GetWord(ptr);

Arguments ptr

 ptr Byte pointer

Returns Word

 Word Returns the word at pointer location.

Description Get a word to myvar. Similar to PEEKW in basic.

It is not necessary for byte pointer ptr to be word aligned

Example var p; // string pointer

var buffer[10]; // array for 20 bytes

func main()

 p := str_Ptr (buffer); // raise a string pointer

 str_PutWord (p+3, 100); // 'poke' the array

 str_PutWord (p+9, 200);

 str_PutWord (p+12, 400);

 print(str_GetWord(p + 3), "\n"); // 'peek' the array

 print(str_GetWord(p + 9), "\n");

 print(str_GetWord(p + 12), "\n");

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 405 of 554 www.4dlabs.com.au

2.17.8 str_PutByte(ptr, val)

Syntax str_PutByte(ptr, val);

Arguments ptr, val

ptr Byte pointer to string

val Byte value to insert.

Returns None

Description Put a byte value into a string buffer at ptr

Similar to "POKEB" in basic

It is not necessary for byte pointer ptr to be word aligned

Example var buffer[100]; // 200 character buffer for a source string

var p; // string pointer

func main()

p := str_Ptr(buffer); // raise a string pointer so we can use the

 // string functions

str_PutByte(p + 3, 'A'); // store some values

str_PutByte(p + 4, 'B'); // store some values

str_PutByte(p + 5, 'C'); // store some values

str_PutByte(p + 7, 'D'); // store some values

str_PutByte(p + 7, 0); // string terminator

print(vars[0],"\n", vars[1],"\n", vars[2],"\n"); // print them out

p := p + 3; // offset to where we placed the chars

str_Printf(&p, "%s\n"); // print the result

// nb, also, understand that the core print service

// assumes a word aligned address so it starts at pos 4

// print([STR] &buffer[2]);

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 406 of 554 www.4dlabs.com.au

2.17.9 str_PutWord(ptr, val)

Syntax str_PutWord(ptr, val);

Arguments Ptr, val

ptr Byte pointer

val Value to store.

Returns None

Description Put a word value into a byte buffer at ptr, similar to "POKEW" in basic.

It is not necessary for byte pointer ptr to be word aligned

Example var p; // string pointer

var numbers[10]; // array for 20 bytes

func main()

 p := str_Ptr (numbers); // raise a string pointer

 str_PutWord (p+3, 100); // 'poke' the array with some numbers

 str_PutWord (p+9, 200);

 str_PutWord (p+12, 400);

 print(str_GetWord(p + 3), "\n"); // 'peek' the array

 print(str_GetWord(p + 9), "\n");

 print(str_GetWord(p + 12), "\n");

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 407 of 554 www.4dlabs.com.au

2.17.10 str_Match(&ptr, *str)

Syntax str_Match(&ptr, *str);

Arguments ptr, str

ptr Address of byte pointer to string buffer.

str Pointer string to match.

Returns Value

 Value
Returns 0 if no match, else advance ptr to the next position after the match and
returns a pointer to the match position.

Description Case Sensitive match.

Compares the string at position ptr in a string buffer to the string str, skipping over any leading spaces

prior to the test. If a match occurs, ptr is advanced to the first position past the match, else ptr is not

altered.

Note: The address of the pointer must be passed so the function can advance it if required.

Example var buffer[100]; // 200 character buffer for a source string

var p, q; // string pointers

var n;

func main()

 to(buffer); print(" volts 240 "); // string to parse

 p := str_Ptr(buffer); // string pointer to be used

 // with string functions

 q := p;

 // match the start of the string with "volts"

 if (n := str_Match(&p, "volts"))

 str_Printf (&p, "%s\n"); // print remainder of string

 else

 print ("not found\n");

 endif

 print ("startpos=" , q , "\nfindpos=" , n , "\nendpos=" , p);

 repeat

 forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 408 of 554 www.4dlabs.com.au

2.17.11 str_MatchI(&ptr, *str)

Syntax str_MatchI(&ptr, *str);

Arguments ptr, str

ptr Address of byte pointer to string buffer.

str Pointer string to match.

Returns Value

 Value
Returns 0 if no match, else advance ptr to the next position after the match and
returns a pointer to the match position.

Description Case Insensitive match.

Compares the string at position ptr in a string buffer to the string str, skipping over any leading spaces

prior to the test. If a match occurs, ptr is advanced to the first position past the match, else ptr is not

altered.

Note: The address of the pointer must be passed so the function can advance it if required.

Example var buffer[100]; // 200 character buffer for a source string

var p, q; // string pointers

var n;

func main()

 // string to parse

 to(buffer); print("The sun rises in the East");

 p := str_Ptr(buffer); // string pointer to be used

 // with string functions

 q := p;

 // Will match if the string starts with "The", or "the"

 if (n := str_MatchI(&p, "the"))

 str_Printf (&p, "%s\n"); // print remainder of string

 else

 print ("not found\n");

 endif

 print ("startpos=" , q , "\nfindpos=" , n , "\nendpos=" , p);

 repeat

 forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 409 of 554 www.4dlabs.com.au

2.17.12 str_Find(&ptr, *str)

Syntax str_Find(&ptr, *str);

Arguments ptr, str

ptr Byte pointer to string buffer.

str String to find.

Returns Value

 Value
Returns 0 if not found.
Returns the address of the first character of the match if successful.

Description Case Sensitive.

Given the address of a pointer to a source string as the first argument, and a pointer to a test string

as the second argument, attempts to find the position of the matching string in the source string. The

test is performed with case sensitivity.

NB:- The source pointer is not altered.

Example var buffer[100]; // 200 character buffer for a source string

var p; // string pointer

var n;

var strings[4]; // for our test strings

func main()

 txt_Set (FONT_ID, FONT2);

 strings[0] := "useful" ;

 strings[1] := "string" ;

 strings[2] := "way" ;

 strings[3] := "class" ;

 to(buffer); print ("and by the way, the string class is rather

useful ");

 // raise a string pointer so we can use the string functions

 p := str_Ptr(buffer);

 // offset into the buffer a little so we don't see word "way"

 p := p + 13;

 print("p=" , p , "\n\n"); // show the start point of our search

 n := 0;

 while (n < 4)

 print("\"" , [STR] strings[n] , "\" is at pos " , str_Find(&p

, strings[n++]) , "\n");

 wend

 //note that p is unchanged

 print ("\nNOTE: p is unchanged, p=" , p);

 repeat

 forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 410 of 554 www.4dlabs.com.au

2.17.13 str_FindI(&ptr, *str)

Syntax str_FindI(&ptr, *str);

Arguments ptr, str

ptr Byte pointer to string buffer.

str String to find.

Returns Value

 Value
Returns 0 if not found.
Returns the address of the first character of the match if successful.

Description Case Insensitive.

Given the address of a pointer to a source string as the first argument, and a pointer to a test string

as the second argument, attempts to find the position of the matching string in the source string. The

test is performed with case sensitivity, eg upper and lower case chars are accepted.

NB:- The source pointer is not altered.

Example var buffer[100]; // 200 character buffer for a source string

var p; // string pointer

var n;

var strings[4]; // for our test strings

func main()

 txt_Set (FONT_ID, FONT2);

 strings[0] := "USEFUL" ;

 strings[1] := "string" ;

 strings[2] := "way" ;

 strings[3] := "class" ;

 to(buffer); print ("and by the way, the String Class is rather

useful ");

 // raise a string pointer so we can use the string functions

 p := str_Ptr(buffer);

 // offset into the buffer a little so we don't see word "way"

 p := p + 13;

 // show the start point of our search

 print("p=" , p , "\n\n");

 n := 0;

 while (n < 4)

 print("\"" , [STR] strings[n] , "\" is at pos " , str_FindI (

&p , strings[n++]) , "\n");

 wend

 //note that p is unchanged

 print ("\nNOTE: p is unchanged, p=" , p);

 repeat

 forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 411 of 554 www.4dlabs.com.au

2.17.14 str_Length(ptr)

Syntax str_Length(ptr);

Arguments ptr

 ptr Pointer to string buffer.

Returns Value

 Value Returns String length.

Description Returns the length of a byte aligned string excluding terminator.

Example // Dynamic String Example

func main()

 var a;

 var pa ; //This be a String pointer to a

 a := mem_Alloc(200); // allocate a dynamic with undefined data

 mem_Set (a, 'X', 200); // fill it full of 'X's

 pa := str_Ptr(a); // raise a string pointer

 str_PutByte(pa+20,0); // Stick a string terminator in the array

 print ("a length:", str_Length(pa), "\n"); // show length of the

 // dynamic buffer

 // using the required string pointer

 mem_Free (a); // test is over, free up the memory

 repeat

 forever

endfunc

// Constant String Example

func main()

 var b;

 b := "A string constant" ; // b is a pointer to a string constant

 print ("b length:", str_Length(b), "\n"); // show length of the

 // static string

 // a string constant is already a string pointer

 repeat

 forever

endfunc

// Array Example

func main()

 var c[40]; // 80 character buffer for a source string

 var pc; // This will be a String pointer to c[]

 to (c); print ("An 'ASCIIZ' string is terminated with a zero");

 pc := str_Ptr(c); // raise a string pointer so we can use the

 // string functions

 print ("c length:", str_Length(pc), "\n"); // show length of the

 // 're-directed' string

 // using the required string pointer

 repeat

 forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 412 of 554 www.4dlabs.com.au

2.17.15 str_Printf(&ptr, *format)

Syntax str_Printf(&ptr, *format);

Arguments Ptr, format

ptr Byte pointer to the input data (structure).

format Format string.

Note: The address of the pointer must be passed so the function can advance it as

required.

Note: The format specifier string can be a string pointer, allowing dynamic

construction of the printing format.

Format Specifiers:

 %c character

 %s string of characters

 %d signed decimal

 %ld long decimal

 %u unsigned decimal

 %lu long unsigned decimal

 %x hex byte

 %X hex word

 %lX hex long

 %b binary word

 %lb long binary word

 * indirection prefix (placed after '%' to specify indirect addressing)

(number) width description (use between '%' and format specifier to set the field

width).

Note: If (number) is preceded by 0, the result is Left-pads with zeroes (0) instead of

spaces.

Returns Pointer

 Pointer
Returns the position of last extraction point. This is useful for processing by other
string functions.

Description This function prints a formatted string from elements derived from a structured byte region.

There is only one input argument, the byte region pointer ptr which is automatically advanced as the

format specifier string is processed. The format string is similar to the C language, however, there are

a few differences, including the addition of the indirection token * (asterix).

Example var buffer[100]; // 200 character buffer for a source string

var p, q; // string pointers

var n;

var m[20]; // for our structure example

var format; // a pointer to a format string

func main()

var k;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 413 of 554 www.4dlabs.com.au

// string print example

to (buffer); print ("\nHELLO WORLD");

q := str_Ptr (buffer); // raise a string pointer so we can use the

 // string functions

p := q;

str_Printf (&p , "%8s"); // only prints first 8 characters of

 // string

putch ('\n'); // new line

p := q;

k := str_Printf (&p , "%04s"); // prints 4 leading spaces before

 // string

putch ('\n'); // new line

print (k); // if required, the return value points to the last

 // source position and is returned for processing by

 // other string functions

// print structure elements example, make a demo structure

n := 0;

m[n++] := "Mrs Smith" ;

m[n++] := 200 ;

m[n++] := 300 ;

m[n++] := 0xAA55 ;

m[n++] := 500 ;

// make a demo format control string

format := "%*s\n%d\n%d\n%016b\n%04X" ; // format string for printing

 // structure m

// print the structure in the required format

p := str_Ptr (m); // point to structure m

str_Printf (&p, format); // use the format string to print the

 // structure

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 414 of 554 www.4dlabs.com.au

2.17.16 str_Cat(&destination, &source)

Syntax str_Cat(&destination, &source);

Arguments destination, source

destination Destination string address

source Source string address

Returns Pointer

 Pointer Returns pointer to the destination.

Description Appends a copy of the source string to the destination string. The terminating null character in

destination is overwritten by the first character of source, and a new null-character is appended at

the end of the new string formed by the concatenation of both in destination.

Example var buf[100]; // 200 character buffer for a source string

func main()

 var p ;

 to(buf) ;

 print("Hello ") ;

 p := str_Ptr(buf) ;

 str_Cat(p,"There"); // Will append "There" to the end of buf

 print([STR] buf) ;

 repeat

 forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 415 of 554 www.4dlabs.com.au

2.17.17 str_CatN(&ptr, str, count)

Syntax str_CatN(&ptr, str, count);

Arguments ptr, str, count

ptr Destination string address

str Source string address

count Number of characters to be concatenated.

Returns Pointer

 Pointer Returns pointer to the destination.

Description The number of characters copied is limited by "count".

The terminating null character in destination is overwritten by the first character of source, and a new

null-character is appended at the end of the new string formed by the concatenation of both in

destination.

Example var buf[100]; // 200 character buffer for a source string

func main()

 var p ;

 to(buf) ;

 print("Sun ") ;

 p := str_Ptr(buf) ;

 str_CatN(p,"Monday",3); // Concatenate "Mon" to the end of buf

 print([STR] buf) ;

 repeat

 forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 416 of 554 www.4dlabs.com.au

2.17.18 str_ByteMove(src, dest, count)

Syntax str_ByteMove(src, dest, count);

Arguments src, dest, count

src Points to byte aligned source.

dest Points to byte aligned destination.

count Number of bytes to transfer.

Returns Pointer

 Pointer Returns a pointer to the end of the destination (which is "dest" + "count").

Description Copy bytes from "src" to "dest", stopping only when "count" is exhausted. No terminator is appended,
it is purely a byte copy, and any zeroes encountered will also be copied.

Example var src, dest, mybuf1[10], mybuf2[10]; // string pointers and two 20 byte buffers
to(mybuf1); putstr("TESTING 123");

src := strPtr(mybuf1);
dest := str_Ptr(mybuf2);
src += 6; // move src pointer to "G 123"

str_ByteMove(src, dest, 6); // move to second buffer (including the zero terminator)

putstr(mybuf2); // print result

nextpos := str_ByteMove(s, d, 100);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 417 of 554 www.4dlabs.com.au

2.17.19 str_Copy(dest, src)

Syntax str_Copy(dest, src);

Arguments dest, src

dest Points to byte aligned destination.

src Points to byte aligned source.

Returns Pointer

Pointer Returns a pointer to the 0x00 string terminator at the end of "dest" (which is "dest"

+ str_Length(src);).

Description Copy a string from "src" to "dest", stopping only when the end of source string "src" is encountered
(0x00 terminator). The terminator is always appended, even if "src" is an empty string.

Example nextplace := str_Copy(d, s);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 418 of 554 www.4dlabs.com.au

2.17.20 str_CopyN(dest, src, count)

Syntax str_CopyN(dest, src, count);

Arguments dest, src, count

dest Points to byte aligned destination.

src Points to byte aligned source.

count Maximum number of bytes to copy.

Returns Pointer

Pointer Returns a pointer to the 0x00 string terminator at the end of "dest" (which is "dest"

+ str_Length(src);).

Description Copy a string from "src" to "dest", stopping only when "count" is exhausted, or end of source string
"str" is encountered (0x00 string terminator). The terminator is always appended, even if "count" is
zero, or "src" is a null string.

Example nextplace := str_CopyN(d, s, 100);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 419 of 554 www.4dlabs.com.au

2.18. Touch Screen Functions

Summary of Functions in this section:

• touch_DetectRegion(x1, y1, x2, y2)

• touch_Set(mode)

• touch_Get(mode)

• touch_TestArea(&rect)

• touch_TestBox(&rect)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 420 of 554 www.4dlabs.com.au

2.18.1 touch_DetectRegion(x1, y1, x2, y2)

Syntax touch_DetectRegion(x1, y1, x2, y2);

Arguments X1, y1, x2, y2

x1 specifies the horizontal position of the top left corner of the region.

y1 specifies the vertical position of the top left corner of the region.

x2 specifies the horizontal position of the bottom right corner of the region.

y2 specifies the vertical position of the bottom right corner of the region.

Returns None

Description Specifies a new touch detect region on the screen. This setting will filter out any touch activity outside

the region and only touch activity within that region will be reported by the status poll

touch_Get(TOUCH_STATUS) function.

Example gfx_Rectangle(100, 100, 201, 201, YELLOW); // draw a rectangle with

 //a yellow border

touch_DetectRegion(101, 101, 200, 200); // limit touch detect region to

 //within the rectangle

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 421 of 554 www.4dlabs.com.au

2.18.2 touch_Set(mode)

Syntax touch_Set(mode);

Arguments mode

mode mode = TOUCH_ENABLE (Mode 0) Enable Touch Screen

 touch_Set(TOUCH_ENABLE);

 Enables and initialises Touch Screen hardware

mode = TOUCH_DISABLE (Mode 1) Disable Touch Screen

 touch_Set(TOUCH_DISABLE);

 Disables the Touch Screen.

 Note: Touch Screen task runs in the background and disabling it when not in use

will free up extra resources for 4DGL CPU cycles.

mode = TOUCH_REGIONDEFAULT (Mode 2) Default Touch Region

 touch_Set(TOUCH_REGIONDEFAULT);

 This will reset the current active region to default which is the full screen area

Returns None

Description Sets various Sets various Touch Screen related parameters.

Example touch_Set(TOUCH_ENABLE); // .

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 422 of 554 www.4dlabs.com.au

2.18.3 touch_Get(mode)

Syntax touch_Get(mode);

Arguments mode

mode mode = TOUCH_STATUS (Mode 0): Get Status

mode = TOUCH_GETX (Mode 1) : Get X coordinates

mode = TOUCH_GETY (Mode 2) : Get Y coordinates

Returns Value

Value mode = TOUCH_STATUS (Mode 0)
 Returns the various states of the touch screen
 0 = NOTOUCH
 1 = TOUCH_PRESSED
 2 = TOUCH_RELEASED
 3 = TOUCH_MOVING

mode = TOUCH_GETX (Mode 1)
 Returns the X coordinates of the touch reported by mode 0

mode = TOUCH_GETY (Mode 2)
 Returns the Y coordinates of the touch reported by mode 0

Description Returns various Touch Screen parameters to caller.

Sometimes NOTOUCH can be returned when the touchscreen is touched and held (in between

pressed and released). This occurs if the touch points are identical on two successive calls, because it

does not qualify as MOVING, but it has not yet been RELEASED (but has already been PRESSED)

Example state := touch_Get(TOUCH_STATUS); // get touchscreen status

 x := touch_Get(TOUCH_GETX);

 y := touch_Get(TOUCH_GETY);

 if (state == TOUCH_PRESSED) // see if Exit hit

 if (x > 170 && y > 280) // EXIT button

 gfx_Cls();

 exit := -1;

 endif

 if (vertical)

 if (x > 170 && (y > 240 && y < 270))// Horiz button

 vertical := 0;

 exit := 1;

 endif

 else

 if (x > 170 && (y > 200 && y < 230))// Vert button

 vertical := 1;

 exit := 2;

 endif

 endif

 endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 423 of 554 www.4dlabs.com.au

2.18.4 touch_TestArea(&rect)

Syntax touch_TestArea(&rect);

Arguments rect

 rect An array of 4 vars, x1, y1, x2, y2 (using absolute co-ordinates)

Returns Status

 Status Returns TRUE if last touch co-ordinates are within the absolute co-ordinate test area.

Description The touch_TestArea function creates a test area based on the parameters in rect, and returns true if

the last touch resided within the test area.

rect is an array of 4 vars, x1, y1, x2, y2 (using absolute co-ordinates)

Example var x, y, state;

var r[5] := [30, 30, 130, 130];

var curStatus := 0, prevStatus := 0;

gfx_ScreenMode(LANDSCAPE) ; // change manually if orientation change

gfx_Rectangle(r[0], r[1], r[2], r[3], YELLOW); // draw a yellow rectangle

touch_Set(TOUCH_ENABLE); // enable the touch screen

repeat

 state := touch_Get(TOUCH_STATUS);// look for any touch activity

 x := touch_Get(TOUCH_GETX);

 y := touch_Get(TOUCH_GETY);

 gfx_MoveTo(150, 0);

 print("x: ",x," ");

 gfx_MoveTo(150, 15);

 print("y: ",y," ");

 curStatus := touch_TestArea(r);

 if(curStatus != prevStatus)

 gfx_MoveTo(0,0);

 if(curStatus)

 print("touched! ");

 else

 print("no touch!");

 endif

 prevStatus := curStatus;

 endif

forever

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 424 of 554 www.4dlabs.com.au

2.18.5 touch_TestBox(&rect)

Syntax touch_TestBox(&rect);

Arguments rect

 rect An array of 4 vars, x1, y1, width, height

Returns Status

 Status Returns TRUE if last touch co-ordinates are within the boxed test area.

Description The touch_TestArea function creates a test box based on the parameters in rect, and returns true if

the last touch resided within the boxed test area.

rect is an array of 4 vars, x1, y1, width, height (using boxed co-ordinates)

Example var x, y, state;

var r[5] := [30, 30, 100, 50];

var curStatus := 0, prevStatus := 0;

gfx_ScreenMode(LANDSCAPE) ; // change manually if orientation change

gfx_Rectangle(r[0], r[1], r[0]+r[2], r[1]+r[3], YELLOW); // draw a

 //yellow rectangle

touch_Set(TOUCH_ENABLE); // enable the touch screen

repeat

 state := touch_Get(TOUCH_STATUS);// look for any touch activity

 x := touch_Get(TOUCH_GETX);

 y := touch_Get(TOUCH_GETY);

 gfx_MoveTo(150, 0);

 print("x: ",x," ");

 gfx_MoveTo(150, 15);

 print("y: ",y," ");

 curStatus := touch_TestBox(r);

 if(curStatus != prevStatus)

 gfx_MoveTo(0,0);

 if(curStatus)

 print("touched! ");

 else

 print("no touch!");

 endif

 prevStatus := curStatus;

 endif

forever

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 425 of 554 www.4dlabs.com.au

2.19. Image Control Functions

Summary of Functions in this section:

• img_SetPosition(handle, index, xpos, ypos)

• img_Enable(handle, index)

• img_Disable(handle, index)

• img_Darken(handle, index)

• img_Lighten(handle, index)

• img_SetWord(handle, index, offset, word)

• img_GetWord(handle, index, offset)

• img_Show(handle, index)

• img_SetAttributes(handle, index, value)

• img_ClearAttributes(handle, index, value)

• img_Touched(handle, index)

• img_SelectReadPosition(handle, index, frame, x, y)

• img_SequentialRead(count, ptr)

The following functions are Image File System for use with a SPI Flash Memory device, only available for
the Flash-based PmmC.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

• Error! Reference source not found.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 426 of 554 www.4dlabs.com.au

2.19.1 img_SetPosition(handle, index, xpos, ypos)

Syntax img_SetPosition(handle, index, xpos, ypos);

Arguments handle, index, xpos, ypos

handle Pointer to the Image List.

index Index of the images in the list.

xpos Top left horizontal screen position where image is to be displayed.

ypos Top left vertical screen position where image is to be displayed.

Returns Status

 Status Returns TRUE if index OK and function successful

Description This function requires that an image control has been created with the file_LoadImageControl(...);

function.

Sets the position where the image will next be displayed. Returns TRUE if index was ok and function

was successful. (the return value is usually ignored).

You may turn off an image so when img_Show() is called, the image will not be shown.

This function requires that an image control has been created with the file_LoadImageControl(...);

function.

Example // make a simple 'window'

gfx_Panel(PANEL_RAISED, 0, 0, 239, 239, GRAY);

img_SetPosition(Ihndl, BTN_EXIT, 224,2);//set checkout box position

img_Enable(Ihndl, BTN_EXIT); //enable checkout box

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 427 of 554 www.4dlabs.com.au

2.19.2 img_Enable(handle, index)

Syntax img_Enable(handle, index);

Arguments handle, index

handle Pointer to the Image List.

index Index of the images in the list.

Returns Status

 Status Returns TRUE if index OK and function successful

Description This function requires that an image control has been created with the file_LoadImageControl(...);

function.

Enables a selected image in the image list. Returns TRUE if index was ok and function was successful.

This is the default state so when img_Show() is called all the images in the list will be shown.

To enable all of the images in the list at the same time set index to -1.

To enable a selected image, use the image index number.

Example r := img_Enable(hImageList, imagenum);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 428 of 554 www.4dlabs.com.au

2.19.3 img_Disable(handle, index)

Syntax img_Disable(handle, index);

Arguments handle, index

handle Pointer to the Image List.

index Index of the images in the list.

Returns Status

 Status Returns TRUE if index OK and function successful

Description This function requires that an image control has been created with the file_LoadImageControl(...);

function.

Disables an image in the image list. Returns TRUE if index was ok and function was successful. Use

this function to turn off an image so that when img_Show() is called the selected image in the list will

not be shown.

To disable all of the images in the list at the same time set index to -1.

Example r := img_Disable(hImageList, imagenum);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 429 of 554 www.4dlabs.com.au

2.19.4 img_Darken(handle, index)

Syntax img_Darken(handle, index);

Arguments handle, index

handle Pointer to the Image List.

index Index of the images in the list.

Returns Status

 Status Returns TRUE if index OK and function successful

Description This function requires that an image control has been created with the file_LoadImageControl(...);

function.

Darken an image in the image list. Returns TRUE if index was ok and function was successful. Use this

function to darken an image so that when img_Show() is called the control will take effect. To darken

all of the images in the list at the same time set index to -1.

Note: This feature will take effect one time only and when img_Show() is called again the darkened

image will revert back to normal.

Example r := img_Darken(hImageList, imagenum);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 430 of 554 www.4dlabs.com.au

2.19.5 img_Lighten(handle, index)

Syntax img_Lighten(handle, index);

Arguments handle, index

handle Pointer to the Image List.

index Index of the images in the list.

Returns Status

 Status Returns TRUE if index OK and function successful

Description This function requires that an image control has been created with the file_LoadImageControl(...);

function.

Lighten an image in the image list. Returns TRUE if index was ok and function was successful. Use this

function to lighten an image so that when img_Show() is called the control will take effect. To lighten

all of the images in the list at the same time set index to -1.

Note: This feature will take effect one time only and when img_Show() is called again the lightened

image will revert back to normal.

Example r := img_Lighten(hImageList, imagenum);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 431 of 554 www.4dlabs.com.au

2.19.6 img_SetWord(handle, index, offset, word)

Syntax img_SetWord(handle, index, offset, word);

Arguments handle, index

handle Pointer to the Image List.

index Index of the images in the list.

offset Offset of the required word in the image entry

word The word to be written to the entry

Returns Status

 Status TRUE if successful, usually ignored

Description This function requires that an image control has been created with the file_LoadImageControl(...);

function.

Set specified word in an image entry. Returns TRUE if successful, return value usually ignored.

IMAGE_XPOS 2 // WORD image location X

IMAGE_YPOS 3 // WORD image location Y

IMAGE_FLAGS 6 // WORD image flags

IMAGE_DELAY 7 // WORD inter frame delay

IMAGE_INDEX 9 // WORD current frame

IMAGE_TAG 12 // WORD user variable #1

IMAGE_TAG2 13 // WORD user variable #2

Note: Not all Constants are listed as some are Read Only.

img_Show(..) will now show error box for out of range video frames. Also, if frame is set to -1, just a
rectangle will be drawn in background colour to blank an image. It applies to PmmC R29 or above.

Example func cat()

var private frame := 0; // start with frame 0

var private image := SPRITE_CAT; // cat image, can be changed with

 // cat.image := xxx

var private speed := 30;

 img_SetWord(Ihndl, image, IMAGE_INDEX, frame++);

 frame := frame % img_GetWord(Ihndl, image, IMAGE_FRAMES);

 img_Show(Ihndl, image);

 sys_SetTimer(TIMER3,speed); // reset the event timer

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 432 of 554 www.4dlabs.com.au

2.19.7 img_GetWord(handle, index, offset)

Syntax img_GetWord(handle, index, offset);

Arguments handle, index

handle Pointer to the Image List.

index Index of the images in the list.

offset Offset of the required word in the image entry

Returns Value

 value Returns the image entry in the list.

Description This function requires that an image control has been created with the file_LoadImageControl(...);

function.

Returns specified word from an image entry.

IMAGE_LOWORD 0 // WORD image address LO

IMAGE_HIWORD 1 // WORD image address HI

IMAGE_XPOS 2 // WORD image location X

IMAGE_YPOS 3 // WORD image location Y

IMAGE_WIDTH 4 // WORD image width

IMAGE_HEIGHT 5 // WORD image height

IMAGE_FLAGS 6 // WORD image flags

IMAGE_DELAY 7 // WORD inter frame delay

IMAGE_FRAMES 8 // WORD number of frames

IMAGE_INDEX 9 // WORD current frame

IMAGE_CLUSTER 10 // WORD image start cluster pos (for FAT16 only)

IMAGE_SECTOR 11 // WORD image start sector in cluster pos (for FAT16 only)

IMAGE_TAG 12 // WORD user variable #1

IMAGE_TAG2 13 // WORD user variable #2

Example myvar := img_GetWord(hndl, 5, IMAGE_YPOS); //

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 433 of 554 www.4dlabs.com.au

2.19.8 img_Show(handle, index)

Syntax img_Show(handle, index);

Arguments handle, index

handle Pointer to the Image List.

index Index of the images in the list.

Returns Status

 Status Returns TRUE if successful, usually ignored

Description This function requires that an image control has been created with the file_LoadImageControl(...);

function.

Enable the displaying of the image entry in the image control.

Returns TRUE if successful but return value is usually ignored.

Example img_Show(hImageList, imagenum);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 434 of 554 www.4dlabs.com.au

2.19.9 img_SetAttributes(handle, index, value)

Syntax img_SetAttributes(handle, index, value);

Arguments handle, index, value

handle Pointer to the Image List.

index Index of the images in the list.

value Refers to various bits in the image control entry (see image attribute flags)

Returns Status

 Status Returns TRUE if successful, usually ignored

Description This function SETS one or more bits in the IMAGE_FLAGS field of an image control entry. "value"

refers to various bits in the image control entry (see image attribute flags).

A '1' bit in the "value" field SETS the respective bit in the IMAGE_FLAGS field of the image control

entry.

I_ENABLED 0x8000 // bit 15, set for image enabled

I_DARKEN 0x4000 // bit 14, display dimmed

I_LIGHTEN 0x2000 // bit 13, display bright

I_TOUCHED 0x1000 // bit 12, touch test result

I_Y_LOCK 0x0800 // bit 11, stop Y movement

I_X_LOCK 0x0400 // bit 10, stop X movement

I_TOPMOST 0x0200 // bit 9, draw on top of other images next update

I_STAYONTOP 0x0100 // bit 8, draw on top of other images always

I_TOUCH_DISABLE 0x0020 // bit 5, set to disable touch for this image, default=1 for movie, 0

for image

Example :

:

img_Enable(Ihndl, SPRITE_CAT); // we'll also use small cat video

img_SetAttributes(Ihndl, SPRITE_CAT, I_NOGROUP);

img_SetPosition(Ihndl, SPRITE_CAT, 160, 180); // set its position

:

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 435 of 554 www.4dlabs.com.au

2.19.10 img_ClearAttributes(handle, index, value)

Syntax img_ClearAttributes(handle, index, value);

Arguments handle, index, value

handle Pointer to the Image List.

index Index of the images in the list.

value a '1' bit indicates that a bit should be set and a '0' bit indicates that a bit is not

altered.

Note: if index is set to -1, the attribute is altered in ALL of the entries in the image list

.

The constant ALL is set to -1 specifically for this purpose.

Returns Status

 Status Returns TRUE if successful, usually ignored

Description Clear various image attribute flags in a image control entry. (see image attribute flags below)

Image attribute flags may be combined with the + or | operators,

eg:- img_ClearAttributes(hndl, ALL, I_Y_LOCK | I_X_LOCK); // allow all images to move in any

direction

This function requires that an image control has been created with the file_LoadImageControl(...);

function.

Image attribute flags

I_ENABLED 0x8000 // bit 15, set for image enabled

I_DARKEN 0x4000 // bit 14, display dimmed

I_LIGHTEN 0x2000 // bit 13, display bright

I_TOUCHED 0x1000 // bit 12, touch test result

I_Y_LOCK 0x0800 // bit 11, stop Y movement

I_X_LOCK 0x0400 // bit 10, stop X movement

I_TOPMOST 0x0200 // bit 9, draw on top of other images next update

I_STAYONTOP 0x0100 // bit 8, draw on top of other images always

I_TOUCH_DISABLE 0x0020 // bit 5, set to disable touch for this image, default=1 for movie, 0

for image

Example img_ClearAttributes(hndl, 5, value); //

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 436 of 554 www.4dlabs.com.au

2.19.11 img_Touched(handle, index)

Syntax img_Touched(handle, index);

Arguments handle, index

handle Pointer to the Image List.

index Index of the images in the list.

Returns Status

 Status
Returns index if Touched
Returns -1 if not Touched

Description This function requires that an image control has been created with the file_LoadImageControl(...);

function.

Returns index if image touched or returns -1 image not touched. If index is passed as -1 the function

tests all images and returns -1 if image not touched or returns index.

Example if(state == TOUCH_PRESSED)

 n := img_Touched(Ihndl, -1);//scan image list, looking for a touch

 if(n != -1)

 last := n;

 button := n;

 img_Lighten(Ihndl, n);//lighten the button touched

 img_Show(Ihndl, -1); // restore the images

 endif

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 437 of 554 www.4dlabs.com.au

2.19.12 img_SelectReadPosition(handle, index, frame, xpos, ypos)

Syntax img_SelectReadPosition(handle, index, frame, xpos, ypos);

Arguments handle, index, frame, xpos, ypos

handle Pointer to the Image List.

index Index of the images in the list.

frame Frame to read if the ‘image’ is a video, else 0

xpos Image location, x position (top left corner)

ypos Image location, Y position (top left corner)

Returns Status

 Status Returns TRUE if index was ok and function successful

Description This Functions sets a position in an image control for sequential reading of pixels from the uSD card

(fat16 or raw modes supported)

No image window area is set, the image will not be shown

This function provides a means of preparing to load an image, or part of an image, to an array. (see

img_SequentialRead)

Example var subpic[55*60];

func main()

 var i, h, p, w ;

 if (!file_Mount())

 putstr("\nDrive not mounted..."); // simplistic error handling

 repeat forever

 endif

 handle := file_LoadImageControl("Nemo240.dat", "Nemo240.gci", 1);

 h := img_GetWord(handle, 0, IMAGE_HEIGHT);

 w := img_GetWord(handle, 0, IMAGE_WIDTH);

 img_SelectReadPosition(handle, 0, 520, 55, 63);

 p := subpic ;

 for (i := 0; i < 60; i++)

 img_SequentialRead(55, p); // read pixels from selected read

 position of an image

 p += 55 ;

 img_SequentialRead(w-55, 0); // skip to next line

 next

 gfx_WriteGRAMarea(0, 240, 54, 299, subpic);

 img_SetWord(handle, 0, IMAGE_INDEX, 520); // frame is 0 to 604

 img_Show(handle,0);

 repeat forever // intial testing only

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 438 of 554 www.4dlabs.com.au

2.19.13 img_SequentialRead(count, ptr)

Syntax img_SequentialRead(count, ptr);

Arguments count, ptr

count Number of Pixels to read

ptr A pointer to an array to read count pixels into

Returns Status

 Status Returns TRUE if index was ok and function successful

Description Once a position has ben set with the img_SelectReadPosition function, this function can then used

for sequential reading of pixels from image storage.

If "ptr" is 0, "count" pixels from the stream are simply skipped

If "ptr" is 1, "count" pixels are written to the GRAM area

"ptr" must point to a valid array that is at least the size of "count", or part of an image, to an array.

(see img_SelectReadPosition)

Example See img_SelectReadPosition example

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 439 of 554 www.4dlabs.com.au

2.19.14 img_FileRead(*dest, size, handle, index)

Syntax img_FileRead(*dest, size, handle, index);

Arguments *dest, size, handle, index

dest Pointer to a destination memory buffer

size Number of bytes to be read

handle Pointer to the image file control

index Index of the entry in the handle

Returns Count

 Count Returns number of characters read

Description This function requires that an image file control has been created with the file_LoadImageControl(...);

function under Mode 3.

Reads the number of bytes specified by "size" from the file referenced by "handle" into a destination

memory buffer. If "dest" is zero, data is directed to GRAM window.

Note: This function is only available for use on the Flash based PmmC version.

Example res := img_FileRead(memblock, 20, hnd1);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 440 of 554 www.4dlabs.com.au

2.19.15 img_FileSeek(handle, index, HiWord, LoWord)

Syntax img_FileSeek(handle, index, HiWord, LoWord);

Arguments handle, index, HiWord, LoWord

handle Pointer to the image file control

index Index of the entry in the handle

HiWord Contains the upper 16bits of the file position

LoWord Contains the lower 16bits of the file position

Returns Status

 Status Returns true if successful, usually ignored

Description This function requires that an image file control has been created with the file_LoadImageControl(...);

function under Mode 3.

Set file position to specified address for the file handle so subsequent data may be read from that

position onwards with img_FileGetC(...), img_FileGetW(...) or img_FileGetS(...).

Note: This function is only available for use on the Flash based PmmC version.

Example res := img_FileSeek(hSource, 0, 0x1234); // Set file position to 0x00001234

(byte position 4660)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 441 of 554 www.4dlabs.com.au

2.19.16 img_FileIndex(handle, index, HiSize, LoSize, recordnum)

Syntax img_FileIndex(handle, index, HiSize, LoSize, recordnum);

Arguments handle, index, HiWord, LoWord

handle Pointer to the image file control

index Index of the entry in the handle

HiSize Contains the upper 16bits of the size of the file records

LoSize Contains the lower 16bits of the size of the file records

recordnum The index of the required record

Returns Status

 Status Returns true if successful, usually ignored

Description This function requires that an image file control has been created with the file_LoadImageControl(...);

function under Mode 3.

Set file seek position to specified address for the file handle so subsequent data may be read from

that position onwards with img_FileGetC(...), img_FileGetW(...) or img_FileGetS(...).

Note: This function is only available for use on the Flash based PmmC version.

Example res := img_FileIndex(hSource, 0, 1000, 123, 1); // set file seek position

to 123000

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 442 of 554 www.4dlabs.com.au

2.19.17 img_FileTell(handle, index, &HiWord, &LoWord)

Syntax img_FileTell(handle, index, &HiWord, &LoWord);

Arguments *dest, size, handle, index

handle Pointer to the image file control

index Index of the entry in the handle

HiWord Specifies location for the upper 16bits of the file pointer

LoWord Specifies location for the lower 16bits of the file pointer

Returns Status

 Status Returns true if successful

Description This function requires that an image file control has been created with the file_LoadImageControl(...);

function under Mode 3.

Reads the current 32 bit file pointer and stores it into the two variables specified in "HiWord" and

"LoWord".

Note: This function is only available for use on the Flash based PmmC version.

Example img_FileTell(fhndl, &SizeHi, &SizeLo);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 443 of 554 www.4dlabs.com.au

2.19.18 img_ FileSize(handle, index, &HiWord, &LoWord)

Syntax img_FileSize(handle, index, &HiWord, &LoWord);

Arguments *dest, size, handle, index

handle Pointer to the image file control

index Index of the entry in the handle

HiWord Specifies location for the upper 16bits of the file size

LoWord Specifies location for the lower 16bits of the file size

Returns Status

 Status Returns true if successful

Description This function requires that an image file control has been created with the file_LoadImageControl(...);

function under Mode 3.

Reads the 32-bit file size and stores it into the two variables specified in "HiWord" and "LoWord".

Note: This function is only available for use on the Flash based PmmC version.

Example img_FileSize(fhndl, &SizeHi, &SizeLo);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 444 of 554 www.4dlabs.com.au

2.19.19 img_FileGetC(handle, index)

Syntax img_FileGetC(handle, index);

Arguments handle, index

handle Pointer to the image file control

index Index of the entry in the handle

Returns byte

 byte Returns next char from file.

Description This function requires that an image file control has been created with the file_LoadImageControl(...);

function under Mode 3.

This function reads a byte from the file, at the position indicated by the associated file-position pointer

and advances the pointer appropriately (incremented by 1).

Example mychar := img_FileGetC(hndl, index);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 445 of 554 www.4dlabs.com.au

2.19.20 img_FileGetW(handle, index)

Syntax img_FileGetW(handle, index);

Arguments handle, index

handle Pointer to the image file control

index Index of the entry in the handle

Returns byte

 byte Returns the next word read in file.

Description This function requires that an image file control has been created with the file_LoadImageControl(...);

function under Mode 3.

This function reads a word (2 bytes) from the file, at the position indicated by the associated file-

position pointer and advances the pointer appropriately (incremented by 2).

Example mychar := img_FileGetW(hndl, index);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 446 of 554 www.4dlabs.com.au

2.19.21 img_FileGetS(*string, size, handle, index)

Syntax img_FileGetS(*string, size, handle, index);

Arguments *string, size, handle, index

string Destination buffer

size The maximum number of bytes to be read from the file.

handle Pointer to the image file control

index Index of the entry in the handle

Returns result

 result Returns pointer to string or null if failed

Description This function requires that an image file control has been created with the file_LoadImageControl(...);

function under Mode 3.

This function reads a line of text to a buffer (specified by "*string") from a file at the current file

position indicated by the associated file-position pointer and advances the pointer appropriately.

This function reads only reads up to "size - 1" characters into "*string" (one character is reserved for

the null-terminator). Characters are read until either a newline or an EOF is received or until the

number of characters read reaches "size - 1" or a read error is received.

img_FileGetS(...) automatically appends a null-terminator to the data read.

img_FileGetS(...) will stop reading when any of the following conditions are true:

A] It has read n-1 bytes (one character is reserved for the null-terminator)

B] It encounters a newline character (a line-feed in the compilers tested here), or

C] It reaches the end of file

D] A read error occurs.

Example res := img_FileGets(mystr , 81, hnd1); // read up to 80 chars

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 447 of 554 www.4dlabs.com.au

2.19.22 img_FileRewind(handle, index)

Syntax img_FileRewind(handle, index);

Arguments handle, index

handle Pointer to the image file control

index Index of the entry in the handle

Returns byte

 byte Returns true if file rewound successfully, usually ignored

Description This function requires that an image file control has been created with the file_LoadImageControl(...);

function under Mode 3.

Resets the file pointer to the the beginning of the open file.

Example res := img_FileRewind(hnd1, index);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 448 of 554 www.4dlabs.com.au

2.19.23 img_FileLoadFunction(handle, index)

Syntax img_FileLoadFunction(handle, index);

Arguments handle, index

handle Pointer to the image file control

index Index of the entry in the handle

Returns pointer

 pointer
Returns a pointer to the memory allocation where the function has been loaded from
file which can be then used as a function call.

Description This function requires that an image file control has been created with the file_LoadImageControl(...);

function under Mode 3.

Load a function or program from disk and return a function pointer to the allocation.

The function can then be invoked just like any other function would be called via a function pointer.

Parameters may be passed to it in a conventional way. The callers stack is shared by the loaded

function, however any global variables in the loaded function are private to that function.

The function may be discarded at any time when no longer required, freeing its memory resources

through mem_Free(..).

Example Load function from file:

popupWindow := img_FileLoadFunction(hndl, index);

if(!popupWindow) goto LoadFunctionFailed; // Could not load the function

Run the loaded function in program:

res := popupWindow(MYMODE, "My Title", "My Popup Text");

if(res == QUIT_APPLICATION) goto exitApp;

Later in your program, when popupWindow is no longer required for the

application:-

Freeing memory resource:

res := mem_Free(popupWindow);

if(!res) goto FreeFunctionFailed; // should never happen if memory not

corrupted. The callers stack is shared by the loaded function, however any

global variables in the loaded function are private to that function.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 449 of 554 www.4dlabs.com.au

2.19.24 img_FileRun(handle, index, arglistptr)

Syntax img_FileRun(handle, index, arglistptr);

Arguments handle, index, arglistptr

handle Pointer to the image file control

index Index of the entry in the handle

arglistptr Pointer to the list of arguments to pass to the new program

Returns value

 value Returns the value from main in the called program.

Description This function requires that an image file control has been created with the file_LoadImageControl(...);

function under Mode 3.

Load a program from disk where the current program releases any allocated memory but retains the

stack and global memory.

If arglistptr is 0, no arguments are passed, else, arglist points to an array, the first element being the

number of elements in the array.

The func 'main' in the called program accepts the arguments, if any. The arguments can only be passed

by value, no pointers or references can be used as all memory is cleared before the file is loaded.

Refer to img_FileExec(...) and img_FileLoadFunction(…) for functions that can pass by reference.

Example res := img_FileRun(hndl, index, argptr);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 450 of 554 www.4dlabs.com.au

2.19.25 img_FileExec(handle, index, arglistptr)

Syntax img_FileExec(handle, index, arglistptr);

Arguments handle, index, arglistptr

handle Pointer to the image file control

index Index of the entry in the handle

arglistptr Pointer to the list of arguments to pass to the new program

Returns value

 value Returns the value from main in the called program.

Description This function requires that an image file control has been created with the file_LoadImageControl(...);

function under Mode 3.

Load a program from disk and returns like a function, the calling program is kept active and control

returns to it.

The func 'main' in the called program accepts the arguments, if any. If arglistptr is 0, no arguments

are passed, else arglist points to an array, the first element being the number of elements in the array.

This function is similar to img_FileLoadFunction(...), however, the function argument list is passed by

pointer, and the memory consumed by the function is released as soon as the function completes.

Example res := img_FileExec(hndl, index, argptr);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 451 of 554 www.4dlabs.com.au

2.19.26 img_FilePlayWAV(handle, index)

Syntax img_FilePlayWAV(handle, index);

Arguments handle, index

handle Pointer to the image file control

index Index of the entry in the handle

Returns byte

 byte

If there are no errors, returns number of blocks to play (1 to 32767)
If errors occurred, the following is returned:
-7 : Insufficient memory available for WAV buffer and file
-6 : cant play this rate
-5 : no data chunk found in first rsector
-4 : no format data
-3 : no wave chunk signature
-2 : bad wave file format
-1 : file not found

Description This function requires that an image file control has been created with the file_LoadImageControl(...);

function under Mode 3.

Play a wave file at index "index" in the image filesystem "handle". This function automatically grabs

a chunk of memory for a file buffer, and a wave buffer.

The minimum memory requirement is about 580 bytes for the disk I/O service and a minimum wave

buffer size of 1024. The size of the wave buffer allocation can be increased by the snd_BufSize

function. The default size 1024 bytes. The memory is only required during the duration of play, and is

automatically released while not in use.

See Sound Control Functions for additional play control functions.

Example res := img_FileRewind(hnd1, index);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 452 of 554 www.4dlabs.com.au

2.19.27 img_TxtFontID(handle, index)

Syntax img_TxtFontID(handle, index);

Arguments handle, index

handle Pointer to the image file control

index Index of the entry in the handle

Returns none

Description This function requires that an image file control has been created with the file_LoadImageControl(...);

function under Mode 3.

Set the font to a font held in the image file system.

Example img_TxtFontID(hnd1, index);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 453 of 554 www.4dlabs.com.au

2.20. Memory Allocation Functions

Summary of Functions in this section:

• mem_Alloc(size)

• mem_Allocv(size)

• mem_Allocz(size)

• mem_Realloc(ptr, size)

• mem_Free(allocation)

• mem_Heap()

• mem_Set(ptr, char, size)

• mem_Copy(source, destination, count)

• mem_Compare(ptr1, ptr2, count)

• mem_ArrayOp1(memarray, count, op, value)

• mem_ArrayOP2(memarray1, memarray2, count, op, value)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 454 of 554 www.4dlabs.com.au

2.20.1 mem_Alloc(size)

Syntax mem_Alloc(size);

Arguments size (byte)

 size Specifies the number of bytes that's allocated from the heap.

Returns value

 value
Returned value is the pointer (Word) to the allocation if successful.
If function fails returns a null (0).

Description Allocate a block of memory to pointer myvar. The allocated memory contains garbage but is a fast

allocation.

The block must later be released with mem_Free(myvar);

Example myvar := mem_Alloc(100);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 455 of 554 www.4dlabs.com.au

2.20.2 mem_AllocV(size)

Syntax mem_AllocV(size);

Arguments size (Byte)

 size Specifies the number of bytes that's allocated from the heap.

Returns Value

 Value
Returned value is the pointer (Word) to the allocation if successful.
If function fails returns a null (0).

Description Allocate a block of memory to pointer myvar. The block of memory is filled with initial signature

values. The block starts with A5,5A then fills with incrementing number eg:-

A5,5A,00,01,02,03...FF,00,11.... This can be helpful when debugging. The block must later be released

with mem_Free(myvar).

Example myvar := mem_AllocV(100);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 456 of 554 www.4dlabs.com.au

2.20.3 mem_Allocz(size)

Syntax mem_Allocz(size);

Arguments size

 size Specifies the number of bytes that's allocated from the heap.

Returns Value

 Value
Returned value is the pointer to the allocation if successful. If function fails returns a
null (0).

Description Allocate a block of memory to pointer myvar. The block of memory is filled with zeros.

The block must later be released with mem_Free(myvar);

Example myvar := mem_Allocz(100);//

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 457 of 554 www.4dlabs.com.au

2.20.4 mem_Realloc(&ptr, size)

Syntax mem_Realloc(&ptr, size);

Arguments ptr, size

ptr Specifies the new location to reallocate the memory block.

size Specifies the number of bytes of the block.

Returns Status

 Status See the Description.

Description The function may move the memory block to a new location, in which case the new location is

returned. The content of the memory block is preserved up to the lesser of the new and old sizes,

even if the block is moved. If the new size is larger, the value of the newly allocated portion is

indeterminate. In case that ptr is NULL, the function behaves exactly as mem_Alloc(), assigning a new

block of size bytes and returning a pointer to the beginning of it. In case that the size is 0, the memory

previously allocated in ptr is deallocated as if a call to mem_Free(myvar)was made, and a NULL pointer

is returned.

Example myvar := mem_Realloc(myptr, 100); //

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 458 of 554 www.4dlabs.com.au

2.20.5 mem_Free(allocation)

Syntax mem_Free(allocation);

Arguments allocation

 allocation specifies the location of memory block to free up.

Returns Status

 Status
Returns non-zero if function is successful
Returns 0 if the function fails.

Description The function de-allocates a block of memory previously created with mem_Alloc(...), mem_AllocV(...)

or mem_AllocZ(...).

Example test := mem_Free(myvar); //

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 459 of 554 www.4dlabs.com.au

2.20.6 mem_Heap()

Syntax mem_Heap();

Arguments None

Returns Value

 Value Returns the largest available byte memory chunk in the heap.

Description Returns byte size of the largest chunk of memory available in the heap.

Example howmuch := mem_Heap();

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 460 of 554 www.4dlabs.com.au

2.20.7 mem_Set(ptr, char, size)

Syntax mem_Set(ptr, char, size);

Arguments ptr, char, size

ptr Specifies the memory block.

char Specifies the value to fill the block with.

size Specifies the size of the block in Bytes.

Returns Pointer

 Pointer Returns the pointer.

Description Fill a block of memory with a byte value.

Example var mybuf[5];

var i;

func main()

mem_Set(mybuf,0x55,5); //Only fills half of mybuf[]

for(i:=0;i<sizeof(mybuf);i++) //Show what is in the buffer

 print(" 0x",[HEX]mybuf[i]);

next

mem_Set(mybuf,0xAA,sizeof(mybuf)*2); //Fill entire buffer

print("\n"); //New line

for(i:=0;i<sizeof(mybuf);i++)

 print(" 0x",[HEX]mybuf[i]);

next

repeat

forever

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 461 of 554 www.4dlabs.com.au

2.20.8 mem_Copy(source, destination, count)

Syntax mem_Copy(source, destination, count);

Arguments source, destination, count

source Specifies the source memory block.

destination Specifies the destination memory block.

count Specifies the size of the blocks in bytes.

Returns Pointer

 Pointer Returns source.

Description Copy a word aligned block of memory from source to destination.

Note:

Note that count is a byte count, this facilitates comparing word aligned byte arrays when using word

aligned packed strings.

Source can be a string constant e.g. myptr := mem_Copy("TEST STRING", ptr2, 12);

Example myptr := mem_Copy(ptr1, ptr2, 100);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 462 of 554 www.4dlabs.com.au

2.20.9 mem_Compare(ptr1, ptr2, count)

Syntax mem_Compare(ptr1, ptr2, count);

Arguments ptr1, ptr2, count

ptr1 Specifies the 1st memory block.

ptr2 Specifies the 2nd memory block.

count Specifies the number of bytes to compare.

Returns Value

 Value
Returns 0 if we have a match, -1 if ptr1 < ptr2, and +1 if ptr2 > ptr1.
(The comparison is done alphabetically)

Description Compare two blocks of memory ptr1 and ptr2.

Example test := mem_Compare(this_block, that_block, 100);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 463 of 554 www.4dlabs.com.au

2.20.10 mem_ArrayOp1(memarray, count, op, value)

Syntax mem_ArrayOp1(memarray, count, op, value);

Arguments memarray, count, op, value

memarray Pointer to the array to be operated on

count Size of the array

op One of the constants defining the operation to be performed (see below)

value Value that may be required by the selected operation

Returns None

Description This function (and the similar mem_ArrayOp2 function) can be used to perform highly optimised

operation against an array of data. Mem_ArrayOp1 is for Single Arrays.

Single Word Array Operations:

OP1_NOP 0 // no operation

OP1_SET 1 // "set" the entire array with "value"

OP1_AND 2 // "and" the entire array with "value"

OP1_IOR 3 // "inclsuve or" the entire array with "value"

OP1_XOR 4 // "exclusive or" the entire array with "value"

OP1_ADD 5 // signed add each element of entire array with "value"

OP1_SUB 6 // signed subtract "value" from each element of entire array.

OP1_MUL 7 // signed multiply each element of entire array by "value"

OP1_DIV 8 // signed divide each element of entire array by "value"

OP1_REV 9 // reverse the elements of an array (value is ignored)

OP1_SHL 10 // shift an array left by "value" positions

OP1_SHR 11 // shift an array right by "value" positions

OP1_ROL 12 // rotate an array left by "value" positions

OP1_ROR 13 // rotate an array right by "value" positions

Graphics only Operations:

OP1_GRAY 14 // convert an array of RGB565 elements to grayscale, "value" is

 ignored

OP1_WHITEN 15 // saturate an array of RGB565 elements to white, "value"

 determines saturation

OP1_BLACKEN 16 // saturate an array of RGB565 elements to black, "value"

 determines saturation

OP1_LIGHTEN 17 // increase luminance of an array of RGB565 elements, "value"

 determines saturation

OP1_DARKEN 18 // decrease luminance of an array of RGB565 elements, "value"

 determines saturation

Example var a1[20] ;

func dumpA1d(var cnt)

 var i ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 464 of 554 www.4dlabs.com.au

 for (i := 0; i < cnt; i++)

 print([DEC5ZB] a1[i], " ") ;

 next

 print("\n") ;

endfunc

func main()

 var i, j, res[2], v1[2], v2[2] ;

 a1[0] := 100; a1[1] := 1000 ; a1[2] := 10000 ; a1[3] := 40000 ;

 dumpA1d(4) ;

 print("ADD ") ;

 mem_ArrayOp1(a1, 4, OP1_ADD, 10) ;

 dumpA1d(4) ;

 a1[0] := 100; a1[1] := 1000 ; a1[2] := 10000 ; a1[3] := 40000 ;

 print("SUB ") ;

 mem_ArrayOp1(a1, 4, OP1_SUB , 10) ;

 dumpA1d(4) ;

 a1[0] := 100; a1[1] := 1000 ; a1[2] := 10000 ; a1[3] := 40000 ;

 print("MUL ") ;

 mem_ArrayOp1(a1, 4, OP1_MUL, 10) ;

 dumpA1d(4) ;

 a1[0] := 100; a1[1] := 1000 ; a1[2] := 10000 ; a1[3] := 40000 ;

 print("DIV ") ;

 mem_ArrayOp1(a1, 4, OP1_DIV, 10) ;

 dumpA1d(4) ;

 a1[0] := 100; a1[1] := 1000 ; a1[2] := 10000 ; a1[3] := 40000 ;

 print("REV ") ;

 mem_ArrayOp1(a1, 4, OP1_REV, 10) ;

 dumpA1d(4) ;

 repeat

 forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 465 of 554 www.4dlabs.com.au

2.20.11 mem_ArrayOp2(memarray1, memarray2, count, op, value)

Syntax mem_ArrayOp2(memarray1, memarray2, count, op, value);

Arguments memarray1, memarray2, count, op, value

memarray1 Pointer to the 1st array to be operated on

memarray2 Pointer to the 2nd array to be operated on

count Size of the array

op One of the constants defining the operation to be performed (see below)

value Value that may be required by the selected operation

Returns None

Description This function (and the similar mem_ArrayOp1 function) can be used to perform highly optimised

operation against an array of data. Mem_ArrayOp2 is for Dual Arrays.

Boolean and Maths Opeations:

OP2_AND 1 // "and" arrays, result to array1 (value is ignored)

OP2_IOR 2 // "inclusive or" arrays, result to array1 (value is ignored)

OP2_XOR 3 // "exclusive or" arrays, result to array1 (value is ignored)

OP2_ADD 4 // "add" arrays, result to array1, array1 + (array2+value)

OP2_SUB 5 // "subtract" array2 from array1, result to array1, array1-(array2+value)

OP2_MUL 6 // "multiply" arrays, result to array1 (value is ignored)

OP2_DIV 7 // "divide array1 by array2" , result to array1 (value is ignored)

OP2_COPY 8 // "copy" array2 to array1 (value is ignored)

Graphics only Operations:

OP2_BLEND 9 // blend arrays, blend percentage determined by "value", result to

 "array1"

Example var a1[5], a2[5] ;

func main()

 gfx_ScreenMode(LANDSCAPE) ; // change manually if orientation change

 a1[0] := 0xAAAA; a1[1] := 0x0606 ; a1[2] := 0x1234 ; a1[3] := 0xABCD ;

 a2[0] := 0xFFFF; a2[1] := 0x00FF ; a2[2] := 0xFF00 ; a2[3] := 0x0000 ;

 print("a1 ") ;

 dumpArray(a1, 4) ;

 print("a2 ") ;

 dumpArray(a2, 4) ;

 mem_ArrayOp2(a1, a2,4, OP2_AND, 0);

 print("AND ") ;

 dumpArray(a1, 4) ;

 a1[0] := 0xAAAA; a1[1] := 0x0606 ; a1[2] := 0x1234 ; a1[3] := 0xABCD ;

 mem_ArrayOp2(a1, a2,4, OP2_XOR, 0);

 print("XOR ") ;

 dumpArray(a1, 4) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 466 of 554 www.4dlabs.com.au

 mem_ArrayOp2(a1, a2,4, OP2_COPY, 0);

 print("COPY ") ;

 dumpArray(a1, 4) ;

 repeat

 forever

endfunc

func dumpArray(var * array, var cnt)

 var i ;

 for (i := 0; i < cnt; i++)

 print([HEX4] array[i], " ") ;

 next

 print("\n") ;

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 467 of 554 www.4dlabs.com.au

2.21. General Purpose Functions

Summary of Functions in this section:

• pause(time)

• lookup8 (key, byteConstList)

• lookup16 (key, wordConstList)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 468 of 554 www.4dlabs.com.au

2.21.1 pause(time)

Syntax pause(time);

Arguments time

time A value specifying the delay time in milliseconds.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Stop execution of the user program for a predetermined amount of time.

Example if (status) // if fire button pressed

 pause(30) // slow down the loop

else

 ...

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 469 of 554 www.4dlabs.com.au

2.21.2 lookup8(key, byteConstList)

Syntax lookup8(key, byteConstList);

Arguments key, byteConstList

key A byte value to search for in a fixed list of constants. The key argument can be a
variable, array element, expression or constant

byteConstList A comma separated list of constants and strings to be matched against key.
Note: the string of constants may be freely formed, see example.

Returns result

 result See description.

Description Search a list of 8 bit constant values for a match with a search value key. If found, the index of the
matching constant is returned in result, else result is set to zero. Thus, if the value is found first in the
list, result is set to one. If second in the list, result is set to two etc. If not found, result is returned
with zero.

Note: The list of constants cannot be re-directed. The lookup8(...) functions offer a versatile way for
returning an index for a given value. This can be very useful for data entry filtering and parameter
input checking and where ever you need to check the validity of certain inputs. The entire search list
field can be replaced with a single name if you use the $ operator in constant, eg :

#constant HEXVALUES $"0123456789ABCDEF"

Example func main()

 var key, r;

 key := 'a';

 r := lookup8(key, 0x4D, "abcd", 2, 'Z', 5);

 print("\nSearch value 'a' \nfound as index ", r)

 key := 5;

 r := lookup8(key, 0x4D, "abcd", 2, 'Z', 5);

 print("\nSearch value 5 \nfound at index ", r)

 putstr("\nScanning..\n");

 key := -12000; // we will count from -12000 to +12000, only

 // the hex ascii values will give a match value

 while(key <= 12000)

 r := lookup8(key, "0123456789ABCDEF"); // hex lookup

 if(r) print([HEX1] r-1); // only print if we got a match in

 // the table

 key++;

 wend

 repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 470 of 554 www.4dlabs.com.au

2.21.3 lookup16(key, wordConstList)

Syntax lookup16(key, wordConstList);

Arguments key, wordConstList

key A word value to search for in a fixed list of constants. The key argument can be a
variable, array element, expression or constant

wordConstList A comma separated list of constants to be matched against key.

Returns result

 result See description.

Description Search a list of 16 bit constant values for a match with a search value key. If found, the index of the
matching constant is returned in result, else result is set to zero. Thus, if the value is found first in the
list, result is set to one. If second in the list, result is set to two etc. If not found, result is returned
with zero.

Note: The lookup16(...) functions offer a versatile way for returning an index for a given value. This is
very useful for parameter input checking and where ever you need to check the validity of certain
values. The entire search list field can be replaced with a single name by using the $ operator in
constant, eg:

#constant LEGALVALS $5,10,20,50,100,200,500,1000,2000,5000,10000

Example func main()

 var key, r;

 key := 5000;

 r := lookup16(key, 5,10,20,50,100,200,500,1000,2000,5000,10000);

 //r := lookup16(key, LEGALVALS);

 if(r)

 print("\nSearch value 5000 \nfound at index ", r);

 else

 putstr("\nValue not found");

 endif

 print("\nOk"); // all done

 repeat forever

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 471 of 554 www.4dlabs.com.au

2.22. Floating point Functions

Summary of Functions in this section:

• flt_ADD(&result, &floatA, &floatB)

• flt_SUB(&result, &floatA, &floatB)

• flt_MUL(&result, &floatA, &floatB)

• flt_DIV(&result, &floatA, &floatB)

• flt_POW(&result, &floatA, &floatB)

• flt_ABS(&result, &floatval)

• flt_CEIL(&result, &floatval)

• flt_FLOOR(&result, &floatval)

• flt_SIN(&result, &floatval)

• flt_COS(&result, &floatval)

• flt_TAN(&result, &floatval)

• flt_ASIN(&result, &floatval)

• flt_ACOS(&result, &floatval)

• flt_ATN(&result, &floatval)

• flt_EXP(&result, &floatval)

• flt_LOG(&result, &floatval)

• flt_SQR(&result, &floatval)

• flt_LT(&floatA, &floatB)

• flt_EQ(&floatA, &floatB)

• flt_NE(&floatA, &floatB)

• flt_GT(&floatA, &floatB)

• flt_GE(&floatA, &floatB)

• flt_LE(&floatA, &floatB)

• flt_SGN(&floatval)

• flt_FTOI(&floatval)

• flt_ITOF(&fresult, &var16)

• flt_UITOF(&fresult, &uvar16)

• flt_LTOF(&fresult, &var32)

• flt_ULTOF(&fresult, &uvar32)

• flt_VAL(&float1, mystring)

• flt_PRINT(&fvalue, formatstring)

• flt_PRINTxy(x, y, &fvalue, formatstring)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 472 of 554 www.4dlabs.com.au

2.22.1 flt_ADD(&result, &floatA, &floatB)

Syntax flt_ADD(&result, &floatA, &floatB)

Arguments &result, &floatA, &floatB)

&result Points to float result register.

&floatA Points to the float value A.

&floatB Points to the float value B.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Performs floating point addition (A+B) and returns the value in the result register.

Example var floatA[2], floatB[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; // landscape orientation

flt_VAL(floatA, "3.3"); // Convert a string ("3.3") to a floatA

flt_ITOF(floatB, 4);//Convert integer "4" to float

flt_ADD(result, floatA, floatB);

gfx_MoveTo(0,0);

print("add: ");

flt_PRINT(result,"%.6f");

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 473 of 554 www.4dlabs.com.au

2.22.2 flt_SUB(&result, &floatA, &floatB)

Syntax flt_SUB(&result, &floatA, &floatB)

Arguments &result, &floatA, &floatB)

&result Points to float result register.

&floatA Points to the float value A.

&floatB Points to the float value B.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Performs floating point Subtraction (A-B) and returns the value in the result register.

Example var floatA[2], floatB[2], result[2];

gfx_ScreenMode(LANDSCAPE); // landscape orientation

flt_VAL(floatA, "3.3"); // Convert a string ("3.3") to a floatA

flt_ITOF(floatB, 4); //Convert integer "4" to float

flt_SUB(result, floatA, floatB);

print("subtract: ");

flt_PRINT(result,"%.6f");

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 474 of 554 www.4dlabs.com.au

2.22.3 flt_MUL(&result, &floatA, &floatB)

Syntax flt_MUL(&result, &floatA, &floatB)

Arguments &result, &floatA, &floatB)

&result Points to float result register.

&floatA Points to the float value A.

&floatB Points to the float value B.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Performs floating point Multiplication (A * B) and returns the value in the result register.

Example var Voltage[20]; // string to store computed voltage

 // values

func main()

 var Vsteps; // variable to store conversion

 // results

 gfx_ScreenMode(LANDSCAPE) ; // landscape orientation

 pin_Set(PIN_AN, PA0); // set pin PA0 to be used as an

 // analogue input, standard mode

 repeat

 Vsteps := pin_Read(PA0) ; // 12 bit analogue 0 to 4095

 gfx_MoveTo(0, 0) ; // move origin to point 0, 108,

 //printing will start from this point

 print("steps: ", [DEC4Z]Vsteps);// print the number of steps

 getVoltage(Vsteps); // compute the equivalent voltage

 //value of Vsteps

 // result is converted to a string

 //and stored in global variable Voltage

 gfx_MoveTo(0, 15) ;

 print("voltage: ");

 putstr(Voltage); // print the computed equivalent

 // voltage onscreen

 forever

endfunc

func getVoltage(var reading)

 var nsteps[2];

 var Vref[2];

 var Nsteps[2];

 var Factor[2];

 var Result[2];

 flt_VAL(Vref, "3.3"); //Convert a string ("3.3") to a float

 //(Vref)

 flt_ITOF(Nsteps, 4095); //Convert an integer (4095) to a float

 //(Nsteps)

 flt_DIV(Factor, Vref, Nsteps); //Float divistion, Factor = Vref/Nsteps

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 475 of 554 www.4dlabs.com.au

 flt_ITOF(nsteps, reading); //Convert the integer 'reading' to a

 //float 'nsteps'

 flt_MUL(Result, nsteps, Factor);//Float multiplication,

 //Result = nsteps * Factor

 to(Voltage); flt_PRINT(Result, "%.6f");//print formatted Result

 //to the global variable Voltage

endfunc

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 476 of 554 www.4dlabs.com.au

2.22.4 flt_DIV(&result, &floatA, &floatB)

Syntax flt_DIV(&result, &floatA, &floatB)

Arguments &result, &floatA, &floatB)

&result Points to float result register.

&floatA Points to the float value A.

&floatB Points to the float value B.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Performs floating point Division (A/B) and returns the value in the result register.

Example See the example in section "flt_MUL(&result, &floatA, &floatB)".

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 477 of 554 www.4dlabs.com.au

2.22.5 flt_POW(&result, &floatA, &floatB)

Syntax flt_POW(&result, &floatA, &floatB)

Arguments &result, &floatA, &floatB)

&result Points to float result register.

&floatA Points to the float value to raise.

&floatB Points to the float value for power.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Raises A to power B (AB) and returns the result value in the result register.

Example var floatA[2], floatB[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; // landscape orientation

flt_ITOF(floatA, 2); // Convert integer "2" to float

flt_ITOF(floatB, 8); // Convert integer "4" to float

flt_POW(result, floatA, floatB);

print("power: ");

flt_PRINT(result,"%.6f");

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 478 of 554 www.4dlabs.com.au

2.22.6 flt_ABS(&result, &floatval)

Syntax flt_ABS(&result, &floatval)

Arguments &result, &floatval

&result Points to float result register.

& floatval Points to the float value to get the Absolute of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Calculates absolute value of the floating point value.

Example var floatA[2], result[2];

gfx_ScreenMode(LANDSCAPE); //landscape orientation

flt_ITOF(floatA, -124); //Convert integer "-124" to float

flt_ABS(result, floatA);

print("absolute value: ");

flt_PRINT(result,"%.2f");

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 479 of 554 www.4dlabs.com.au

2.22.7 flt_CEIL(&result, &floatval)

Syntax flt_CEIL(&result, &floatval)

Arguments &result, &floatval

&result Points to float result register.

& floatval Points to the float value to integerize up.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Rounds value up to the integer value. Removes fractional part, rounding up correctly.

Example var floatA[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; // landscape orientation

flt_VAL(floatA,"99.678"); //Convert string "99.678" to float

flt_CEIL(result, floatA);

print("result: ");

flt_PRINT(result,"%.5f");

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 480 of 554 www.4dlabs.com.au

2.22.8 flt_FLOOR(&result, &floatval)

Syntax flt_FLOOR(&result, &floatval)

Arguments &result, &floatval

&result Points to float result register.

& floatval Points to the float value to integerize down.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Rounds value down to the integer value. Removes fractional part, rounding down correctly.

Example var floatA[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; // landscape orientation

flt_VAL(floatA,"99.678"); //Convert string "99.678" to float

flt_FLOOR(result, floatA);

print("result: ");

flt_PRINT(result,"%.5f");

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 481 of 554 www.4dlabs.com.au

2.22.9 flt_SIN(&result, &floatval)

Syntax flt_SIN(&result, &floatval)

Arguments &result, &floatval

&result Points to float result register.

& floatval Points to the float value angle (in radians) to get the SINE of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Calculates the SINE of float value in radians and returns the value in the result register.

Example var floatA[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_VAL(floatA,"1.5708"); //Convert string "1.5708" to float

flt_SIN(result, floatA);

print("result: ");

flt_PRINT(result,"%.5f");

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 482 of 554 www.4dlabs.com.au

2.22.10 flt_COS(&result, &floatval)

Syntax flt_COS(&result, &floatval)

Arguments &result, &floatval

&result Points to float result register.

& floatval Points to the float value angle (in radians) to get the COSINE of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Calculates the COSINE of float value in radians and returns the value in the result register.

Example var floatA[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_VAL(floatA,"3.1416"); //Convert string "3.1416" to float

flt_COS(result, floatA);

print("result: ");

flt_PRINT(result,"%.5f");

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 483 of 554 www.4dlabs.com.au

2.22.11 flt_TAN(&result, &floatval)

Syntax flt_TAN(&result, &floatval)

Arguments &result, &floatval

&result Points to float result register.

& floatval Points to the float value angle (in radians) to get the TANGENT of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Calculates the TANGENT of float value in radians and returns the value in the result register.

Example var floatA[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_VAL(floatA,"3.1416"); //Convert string "3.1416" to float

flt_TAN(result, floatA);

print("result: ");

flt_PRINT(result,"%.5f");

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 484 of 554 www.4dlabs.com.au

2.22.12 flt_ASIN(&result, &floatval)

Syntax flt_ASIN(&result, &floatval)

Arguments &result, &floatval

&result Points to float result register. Result is in radians.

& floatval Points to the float value to get the ARCSINE of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Calculates the ARCSINE of float value and returns the angle in radians in the result register.

Example var floatA[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_VAL(floatA,"0.1234"); //Convert string "0.1234" to float

flt_ASIN(result, floatA);

print("result: ");

flt_PRINT(result,"%.5f");

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 485 of 554 www.4dlabs.com.au

2.22.13 flt_ACOS(&result, &floatval)

Syntax flt_ACOS(&result, &floatval)

Arguments &result, &floatval

&result Points to float result register. Result is in radians.

& floatval Points to the float value to get the ARCCOS of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Calculates the ARCCOS of float value and returns the angle in radians in the result register.

Example var floatA[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_VAL(floatA,"0.1234"); //Convert string "0.1234" to float

flt_ACOS(result, floatA);

print("result: ");

flt_PRINT(result,"%.5f");

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 486 of 554 www.4dlabs.com.au

2.22.14 flt_ATAN(&result, &floatval)

Syntax flt_ATAN(&result, &floatval)

Arguments &result, &floatval

&result Points to float result register. Result is in radians.

& floatval Points to the float value to get the ARCTAN of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Calculates the ARCTAN of float value and returns the angle in radians in the result register.

Example var floatA[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_VAL(floatA,"0.1234"); //Convert string "0.1234" to float

flt_ATAN(result, floatA);

print("result: ");

flt_PRINT(result,"%.5f");

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 487 of 554 www.4dlabs.com.au

2.22.15 flt_EXP(&result, &floatval)

Syntax flt_EXP(&result, &floatval)

Arguments &result, &floatval

&result Points to float result register.

& floatval Points to the float value to get the Exponent of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Calculates the Exponent of float value and returns the value in the result register.

Example var floatA[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_ITOF(floatA, 5); //convert integer 5 to float

flt_EXP(result, floatA);//result = e^5

print("result: ");

flt_PRINT(result,"%.4f");

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 488 of 554 www.4dlabs.com.au

2.22.16 flt_LOG(&result, &floatval)

Syntax flt_LOG(&result, &floatval)

Arguments &result, &floatval

&result Points to float result register.

& floatval Points to the float value to get the natural Log of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Calculates the Natural Log of float value and returns the value in the result register.

Example var floatA[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_VAL(floatA,"2.718282"); //Convert string "2.718282" to float

flt_LOG(result, floatA);

print("result: ");

flt_PRINT(result,"%.5f");

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 489 of 554 www.4dlabs.com.au

2.22.17 flt_SQR(&result, &floatval)

Syntax flt_SQR(&result, &floatval)

Arguments &result, &floatval

&result Points to float result register.

& floatval Points to the float value to get the square root of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer
Returns a pointer to the float result register or zero if error occurs. Carry and overflow
are not affected.

Description Calculates the square root of float value and returns the value in the result register.

Example var floatA[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_VAL(floatA,"16.0"); //Convert string "16.0" to float

flt_SQR(result, floatA);

print("result: ");

flt_PRINT(result,"%.5f");

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 490 of 554 www.4dlabs.com.au

2.22.18 flt_LT(&floatA, &floatB)

Syntax flt_LT(&floatA, &floatB)

Arguments & floatA, &floatB

&floatA Points to the float value A.

&floatB Points to the float value B.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns status

 status True if A < B, false otherwise

Description Compare A to B and returns true if A < B

Example var floatA[2], floatB[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_VAL(floatA,"16.0"); //Convert string "16.0" to float

flt_VAL(floatB,"17.5"); //Convert string "17.5" to float

if(flt_LT(floatA, floatB))

 print("floatA is less than floatB\n");

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 491 of 554 www.4dlabs.com.au

2.22.19 flt_EQ(&floatA, &floatB)

Syntax flt_EQ(&floatA, &floatB)

Arguments & floatA, &floatB

&floatA Points to the float value A.

&floatB Points to the float value B.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns status

 status True if A == B, false otherwise

Description Compare A to B and returns true if equal.

Example var floatA[2], floatB[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_VAL(floatA,"16.0"); //Convert string "16.0" to float

flt_VAL(floatB,"16.0"); //Convert string "16.0" to float

if(flt_EQ(floatA, floatB))

 print("floatA is equal to floatB\n");

else

 print("floatA is not equal to floatB\n");

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 492 of 554 www.4dlabs.com.au

2.22.20 flt_NE(&floatA, &floatB)

Syntax flt_NE(&floatA, &floatB)

Arguments & floatA, &floatB

&floatA Points to the float value A.

&floatB Points to the float value B.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns status

 status True if A != B, false otherwise

Description Compare A to B and returns true if A != B

Example var floatA[2], floatB[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_VAL(floatA,"16.0"); //Convert string "16.0" to float

flt_VAL(floatB,"100.0"); //Convert string "100.0" to float

if(flt_NE(floatA, floatB))

 print("floatA is not equal to floatB\n");

else

 print("floatA is equal to floatB\n");

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 493 of 554 www.4dlabs.com.au

2.22.21 flt_GT(&floatA, &floatB)

Syntax flt_GT(&floatA, &floatB)

Arguments & floatA, &floatB

&floatA Points to the float value A.

&floatB Points to the float value B.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns status

 status True if A > B, false otherwise

Description Compare A to B and returns true if A > B

Example var floatA[2], floatB[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_VAL(floatA,"16.0"); //Convert string "16.0" to float

flt_VAL(floatB,"100.0"); //Convert string "100.0" to float

if(flt_GT(floatB, floatA))

 print("floatB is greater than floatA\n");

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 494 of 554 www.4dlabs.com.au

2.22.22 flt_GE(&floatA, &floatB)

Syntax flt_GE(&floatA, &floatB)

Arguments & floatA, &floatB

&floatA Points to the float value A.

&floatB Points to the float value B.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns status

 status True if A >=B, false otherwise

Description Compare A to B and returns true if A >= B.

Example var floatA[2], floatB[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_VAL(floatA,"16.0"); //Convert string "16.0" to float

flt_VAL(floatB,"100.0"); //Convert string "100.0" to float

if(flt_GE(floatB, floatA))

 print("floatB is greater than or equal to floatA\n");

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 495 of 554 www.4dlabs.com.au

2.22.23 flt_LE(&floatA, &floatB)

Syntax flt_LE(&floatA, &floatB)

Arguments & floatA, &floatB

&floatA Points to the float value A.

&floatB Points to the float value B.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns status

 status True if A <= B, false otherwise

Description Compare A to B and returns true if A <= B

Example var floatA[2], floatB[2], result[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_VAL(floatA,"160.0"); //Convert string "160.0" to float

flt_VAL(floatB,"100.0"); //Convert string "100.0" to float

if(flt_LE(floatB, floatA))

 print("floatB is less than or equal to floatA\n");

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 496 of 554 www.4dlabs.com.au

2.22.24 flt_SGN(&floatval)

Syntax flt_SGN(&floatval)

Arguments & floatval

&floatval Points to the float value to examine the sign of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns value

 value Returns 16bit integer -1 if float sign is negative, or zero if positive

Description Examines sign of the float value and returns 0 if sign is positive or value equals zero. Returns 16bit
integer -1 if float sign is negative

Example var floatA[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_VAL(floatA,"-100.0"); //Convert string "-100.0" to float

if(flt_SGN(floatA) == -1)

 print("floatA is a negative value\n");

endif

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 497 of 554 www.4dlabs.com.au

2.22.25 flt_FTOI(&floatval)

Syntax flt_FTOI(&floatval)

Arguments & floatval

&floatval Points to the float value to be converted to integer.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns value

 value The integer value of the float

Description Converts a floating point number to a 16bit integer. The floating point number is rounded up or down
accordingly.

Example var floatA[2], result;

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_VAL(floatA,"-123.4567"); //Convert string "-123.4567" to float

result := flt_FTOI(floatA);

print("result: ", result,"\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 498 of 554 www.4dlabs.com.au

2.22.26 flt_ITOF(&fresult, var16)

Syntax flt_ITOF(&fresult, var16)

Arguments &fresult, var16

&fresult Points to float result variable.

var16 a 16bit signed integer variable

Note: A float variable is a 2 word array, eg var fresult[2]

Returns pointer

 pointer Returns the pointer to the float result, normally ignored

Description Converts a 16bit signed integer value to a signed floating point number.

Example var floatA[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_ITOF(floatA, 100); //convert integer 100 to float

print("float value: ");

flt_PRINT(floatA,"%.6f");//prints "100.000000"

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 499 of 554 www.4dlabs.com.au

2.22.27 flt_UITOF(&fresult, uvar16)

Syntax flt_UITOF(&fresult, uvar16)

Arguments &fresult, uvar16

&fresult Points to float result variable.

uvar16 A 16bit unsigned integer variable

Note: A float variable is a 2 word array, eg var fresult[2]

Returns pointer

 pointer Returns the pointer to the float result.

Description Converts a 16bit unsigned integer value to a positive floating point number.

Example var floatA[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_UITOF(floatA, 50000); //convert integer 50000 to float

print("float value: ");

flt_PRINT(floatA,"%.2f");//prints "50000.00"

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 500 of 554 www.4dlabs.com.au

2.22.28 flt_LTOF(&fresult, var32)

Syntax flt_LTOF(&fresult, var32)

Arguments &fresult, var32

&fresult Points to float result variable.

var32 A 32bit (long) signed variable.

Note: A float variable is a 2 word array, eg var fresult[2]

Returns pointer

 pointer Returns the pointer to the float result.

Description Converts a 32bit signed integer value to a signed floating point number.

Example var floatA[2], longInt[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

umul_1616(longInt, 500, 2000); //multiply 500 by 2,000, store

 //result (1,000,000) in longInt

flt_LTOF(floatA, longInt);//convert 1,000,000 to a float value

print("float value: ");

flt_PRINT(floatA,"%.2f");//prints "1000000.00"

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 501 of 554 www.4dlabs.com.au

2.22.29 flt_ULTOF(&fresult, uvar32)

Syntax flt_ULTOF(&fresult, uvar32)

Arguments &fresult, uvar32

&fresult Points to float result variable.

uvar32 A 32bit (long) unsigned variable.

Note: A float variable is a 2 word array, eg var fresult[2]

Returns pointer

 pointer Returns the pointer to the float result.

Description Converts a 32bit unsigned integer value to a positive floating point number.

Example var floatA[2], longInt[2], ptr;

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

umul_1616(longInt, 50000, 50000); //multiply 50,000 by 50,000

 //store result (2,500,000,000) in longInt

ptr := str_Ptr(longInt); //create a string pointer for longInt

print("unsigned 32bit value: ");

str_Printf(&ptr,"%lu"); //print the value of longInt

print("\n");

flt_ULTOF(floatA, longInt);//convert longInt to a float value

print("float value: ");

flt_PRINT(floatA,"%.2f");//prints "2500000000.00"

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 502 of 554 www.4dlabs.com.au

2.22.30 flt_VAL(&fresult, numstring)

Syntax flt_VAL(&fresult, numstring)

Arguments &fresult, numstring

& fresult Points to float result register.

numstring A string constant or string variable that holds valid floating point number.

The string argument can be a string constant, a pointer to a string variable, or a pointer

to a data statement.

The string may be a float, or a hex or binary integer value (no decimal point allowed). For

hex or binary, the number is preceeded with 0x or 0b

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

 pointer Returns the pointer to the float result.

Description Converts the number string to a valid float value. Carry and overflow are not affected.

Example See the example in section "flt_ADD(&result, &floatA, &floatB)".

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 503 of 554 www.4dlabs.com.au

2.22.31 flt_PRINT (&fvalue, formatstring)

Syntax flt_PRINT(&fvalue, formatstring)

Arguments &fvalue, formatstring

&fvalue Points to float result variable.

formatstring zero, null string, of valid format string

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns status

 status Returns ‘0’ if successfull.

Description
Prints a floating point value in a set string format.

The string argument can be a string constant, a pointer to a string variable, or a pointer to a data
statement. If it is zero or an empty string, the number is automatically formatted for the best
presentation. The format string is similar to the C language, but only a single '%' may be used to print
a single variable.

To format the output, refer to the following syntax:

%<flag><width>.<precision><specifier>

 modifier

flag Meaning

- left justify

+ always display sign

space display space if there is no sign

0 pad with leading zeros

width specifies the number of characters used in total to display the value. Notice that the width
includes the decimal point, and a - sign if there is one.

precision indicates the number of characters used after the decimal point.

specifier Meaning

f float

e or E float exponential format

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 504 of 554 www.4dlabs.com.au

Example var floatA[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_ITOF(floatA, 5000); //convert integer 5000 to float

print("float value: ");

print("\n");

//specify format

print(" %f: ");

flt_PRINT(floatA,"%f");//prints "5000.000000"

 //default precision is six 0's after the decimal point

print("\n");

print(" %e: ");

flt_PRINT(floatA,"%e");//prints "5.000000e+03" (float exponential format)

 //default precision is six 0's after the decimal point

print("\n");

//specify precision

print(" %.2f: ");

flt_PRINT(floatA,"%.2f");//prints "5000.00"

print("\n");

print(" %.1e: ");

flt_PRINT(floatA,"%.1e");//prints "5.0e+03" (float exponential format)

print("\n");

//specify width and precision

print(" %10.2f: ");

flt_PRINT(floatA,"%10.2f");//prints " 5000.00",

 //a total of 10 characters (including the decimal point)

 //left padded with 3 space characters

print("\n");

print(" %10.2e: ");

flt_PRINT(floatA,"%10.2e");//prints " 5.00e+03",

 //a total of 10 characters (including the decimal point)

 //left padded with 2 space characters

print("\n");

//specify flag, width, and precision

print(" %010.2f: ");

flt_PRINT(floatA,"%010.2f");//prints "0005000.00",

 //a total of 10 characters (including the decimal point)

 //left padded with 3 0's

print("\n");

print(" %010.2e: ");

flt_PRINT(floatA,"%010.2e");//prints "005.00e+03",

 //a total of 10 characters (including the decimal point)

 //left padded with 2 0's

print("\n");

print(" %+10.2f: ");

flt_PRINT(floatA,"%+10.2f");//prints " +5000.00",

 //a total of 10 characters (including the decimal point)

 //sign is always displayed

 //left padded with 2 space characters

print("\n");

print("%+010.2f: ");

flt_PRINT(floatA,"%+010.2f");//prints "+005000.00",

 //a total of 10 characters (including the decimal point)

 //left padded with 2 0's

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 505 of 554 www.4dlabs.com.au

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 506 of 554 www.4dlabs.com.au

2.22.32 flt_PRINTxy (x, y, &fvalue, formatstring)

Syntax flt_PRINTxy(x, y, &fvalue, formatstring)

Arguments x, y, &fvalue, formatstring

x The x position to start printing the number in.

y The y position to start printing the number in.

&fvalue Points to float result variable.

formatstring zero, null string, of valid format string

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns Status

 status Returns ‘0’ if successfull.

Description Prints a floating point value in a set string format at the specified position.

The string argument can be a string constant, a pointer to a string variable, or a pointer to a data
statement. If it is zero or an empty string, the number is automatically formatted for the best
presentation. The format string is similar to the C language, but only a single '%' may be used to print
a single variable.

For more information on the syntax of the format string, refer to section “flt_PRINT (&fvalue,
formatstring)”.

Example var floatA[2];

gfx_ScreenMode(LANDSCAPE) ; //landscape orientation

flt_ITOF(floatA, 5000); //convert integer 5000 to float

print("float value: ");

print("\n");

//specify format

gfx_MoveTo(36, 16);//move cursor to 36,16

txt_FGcolour(YELLOW);//set text foreground color to yellow

print("%f: ");

txt_FGcolour(LIME);//set text foreground color to lime

flt_PRINTxy(68,16,floatA,"%f");//prints "5000.000000" at 68,16

print("\n");

gfx_MoveTo(36, 32);//move cursor to 36,32

txt_FGcolour(YELLOW);//set text foreground color to yellow

print("%e: ");

txt_FGcolour(LIME);//set text foreground color to lime

flt_PRINTxy(68,32,floatA,"%e");//prints "5.000000e+03" at 68,32

print("\n");

//specify precision

gfx_MoveTo(20, 52);//move cursor to 20,52

txt_FGcolour(YELLOW);//set text foreground color to yellow

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 507 of 554 www.4dlabs.com.au

print("%.2f: ");

txt_FGcolour(LIME);//set text foreground color to lime

flt_PRINTxy(68, 52, floatA,"%.2f");//prints "5000.00" at 68,52

print("\n");

gfx_MoveTo(20, 72);//move cursor to 20,72

txt_FGcolour(YELLOW);//set text foreground color to yellow

print("%.1e: ");

txt_FGcolour(LIME);//set text foreground color to lime

flt_PRINTxy(68, 72, floatA,"%.1e");//prints "5.0e+03" at 68,72

print("\n");

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 508 of 554 www.4dlabs.com.au

2.23. Misc System Functions

Summary of Functions in this section:

• sys_PmmC()

• sys_Driver()

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 509 of 554 www.4dlabs.com.au

2.23.1 sys_PmmC()

Syntax sys_Pmmc();

Arguments None

Returns None

Description Prints the system PmmC name and revision eg "Diablo16\n1.0"

Can be captured to a buffer using the to() function

Example to(myString); sys_PmmC();// save PmmC name and revision to buffer

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 510 of 554 www.4dlabs.com.au

2.23.2 sys_Driver()

Syntax sys_Driver();

Arguments None

Returns None

Description Prints the system driver name and date string eg "uLCD-32WDTU-A\n130411”

Can be captured to a buffer using the to() function

Example to(mystring); sys_Driver(); // save Driver name and date to buffer

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 511 of 554 www.4dlabs.com.au

2.24. SPI FLASH Functions

Summary of Functions in this section:

• spiflash_BlockErase(spi#, Enablepin, block)

• spiflash_BulkErase(spi#, Enablepin)

• spiflash_Exec(spi#, Enablepin, arglistptr)

• spiflash_GetC(spi#, Enablepin)

• spiflash_GetS(*String, size, spi#, Enablepin)

• spiflash_GetW(spi#, Enablepin)

• spiflash_ID(spi#, Enablepin)

• spiflash_Image(x, y, spi#, Enablepin)

• spiflash_LoadFunction(spi#, Enablepin)

• spiflash_LoadImageControl(spi#, Enablepin)

• spiflash_PlayWAV(spi#, Enablepin)

• spiflash_PutC(char, spi#, Enablepin)

• spiflash_PutS(source, spi#, Enablepin)

• spiflash_PutW(word, spi#, Enablepin)

• spiflash_Read(destination, size, spi#, Enablepin)

• spiflash_Run(spi#, Enablepin, arglistptr)

• spiflash_SetAdd(spi#, HiWord, LoWord)

• spiflash_SIG(spi#, Enablepin)

• spiflash_Write(Source, size, spi#, Enablepin)

• spiflash_Block32Erase(spi#, Enablepin)

• spiflash_Sector4Erase(spi#, Enablepin)

• spiflash_ReadByte(flags, spi#, Enablepin)

• spiflash_WriteByte(reg/value, spi#, enablepin)

• spiflash_SetMode(spi#, mode)

• spiflash_LoadGCFImageControl(spi#, Enablepin)

These functions can be used to access an SPI FLASH storage device connected to the selected SPI port, and correctly
initialised with the spi_Init(...) function, each FLASH device also needs a dedicated enable pin pulled high and set as
output from within the driving program. Devices like the M25Pxx and A25Lxx which has 512Kbit to 128Mbit of Serial
Flash Memory are supported. Other similar devices should work. Additionally, support for more than 16MB of serial
flash is available by using SPI_ADDRESS_MODE4 in the relevant SPI Init function.

Note that when accessing certain file types via spiflash it may be necessary to append an identifiable EOF character
(eg ^Z) to enable your program to properly detect EOF.

Sample initialization code:-
#CONST
 EnablePin PA0
 ClockPin PA6
 SDIPin PA2
 SDOPin PA5
#END

pin_HI(EnablePin) ;
pin_Set(PIN_OUT,EnablePin) ;
SPI1_SDI_pin(SDIPin) ;
SPI1_SCK_pin(ClockPin) ;
SPI1_SDO_pin(SDOPin) ;
SPI1_Init(SPI_SPEED15, SPI8_MODE_5, EnablePin) ;

Note that the Init must be done in 8 bit mode, but the internal functions will automatically flip between 8 and 16 bit
mode to gain optimal performance.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 512 of 554 www.4dlabs.com.au

2.24.1 spiflash_BlockErase(spi#, Enablepin, block)

Syntax spiflash_BlockErase(spi#, Enablepin, block) ;

Arguments spi#, Enablepin, block

 Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

 Enablepin The enable pin assigned to this spiflash device, eg PA0

 Block The block to be erased

Returns Nothing

Description Erases the required block in a FLASH media device. The function returns no value, and the operation
can take up to 3 milliseconds.

Example spiflash_BlockErase(SPI1, PA0, 3) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 513 of 554 www.4dlabs.com.au

2.24.2 spiflash_BulkErase(spi#, Enablepin)

Syntax spiflash_BulkErase(spi#, Enablepin) ;

Arguments spi#, Enablepin

 Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

 Enablepin The enable pin assigned to this spiflash device, eg PA0

Returns Nothing

Description Erases the entire flash media device. The function returns no value, and the operation can take up to
80 seconds depending on the size of the flash device. Note that not all devices support this command.

Example spiflash_BulkErase(SPI1, PA0) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 514 of 554 www.4dlabs.com.au

2.24.3 spiflash_Exec(spi#, Enablepin, arglistptr)

Syntax spiflash_Exec(spi#, Enablepin, arglistptr);

Arguments spi#, Enablepin, arglistptr

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PA0

arglistptr pointer to the list of arguments to pass to the new program or 0 if no arguments.

Returns Value

 Value Returns the value from main in the called program.

Description This function is similar to spiflash_Run, however, the main program in FLASH retains all memory

allocations (eg file buffers, memory allocated with mem_Alloc etc)

Returns like a function, current program calling program is kept active and control returns to it.

If arglistptr is 0, no arguments are passed, else arglist points to an array, the first element being the

number of elements in the array.

func 'main' in the called program accepts the arguments.

This function is similar to spiflash_LoadFunction(...), however, the function argument list is passed by

pointer, and the memory consumed by the function is released as soon as the function completes.

spiflash_SetAdd should have previously been called to identify the address of the program to be

called.

Example spiflash_Exec(SPI1, PA0, 0) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 515 of 554 www.4dlabs.com.au

2.24.4 spiflash_GetC(spi#, Enablepin)

Syntax 1.1.1. spiflash_GetC(spi#, Enablepin);

Arguments spi#, Enablepin

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PA0

Returns byte

 byte Returns the next char from the file

Description Reads a character (or byte) from the SPI FLASH memory device on the specified SPI port and enable

pin. The source is the address set by spiflash_SetAdd(), or incremented by subsequent reads or

writes.

Example mychar := spiflash_GetC(SPI1, PA0) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 516 of 554 www.4dlabs.com.au

2.24.5 spiflash_GetS(*String, size, spi#, Enablepin)

Syntax spiflash_GetS(*String, size, spi#, Enablepin) ;

Arguments string, size, spi#, Enablepin

string Destination buffer

size The maximum number of bytes to be read from the file. (Up to max of 80)

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PA0

Returns Count

 Count Returns the number of characters read from file (excluding the null terminator)

Description This function Reads a line of text to a buffer (specified by "*string") from the FLASH memory device

on the specified SPI port and enable pin into the specified destination. The source is the address set

by spiflash_SetAdd(), or incremented by subsequent reads or writes.

Note: only reads up to "size-1" characters into "string"

file_GetS(...) will stop reading when any of the following conditions are true:

A) It has read n-1 bytes (one character is reserved for the null-terminator)

B) It encounters a newline character (a line-feed in the compilers tested here)

C) It reaches the end of file

D) A read error occurs.

The file must be previously opened with 'r' (read) mode.

Example res := spiflash_GetS(mystring, 80, SPI1, PA0);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 517 of 554 www.4dlabs.com.au

2.24.6 spiflash_GetW(spi#, Enablepin)

Syntax spiflash_GetW(spi#, Enablepin);

Arguments spi#, Enablepin

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PA0

Returns Word

 Word Returns the next word in the file

Description This function reads a word (2 bytes) from the FLASH memory device on the specified SPI port and
enable pin, at the spiflash_SetAdd(), or incremented by subsequent reads or writes and advances the
pointer appropriately (incremented by 2).

Example myword := spiflash_GetW(hndl);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 518 of 554 www.4dlabs.com.au

2.24.7 spiflash_ID(spi#, Enablepin)

Syntax spiflash_ID(spi#, Enablepin) ;

Arguments spi#, Enablepin

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PA0

Returns Nothing

Description Reads the memory type and capacity from the serial FLASH device. Hi byte contains type, and low
byte contains capacity. Refer to the device data sheet for further information.

Example Id := spiflash_ID(SPI1, PA0) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 519 of 554 www.4dlabs.com.au

2.24.8 spiflash_Image(x, y, spi#, Enablepin)

Syntax spiflash_Image(x, y, spi#, Enablepin) ;

Arguments x, y, spi#, Enablepin

x X-position of the image to be displayed

Y Y-position of the image to be displayed

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PA0

Returns Returns a copy of the file_Error() error code

Description Display an image from the SPI FLASH at screen location specified by x, y(top left corner). The image is

displayed from a file at the current FLASH position set by spiflash_SetAdd().

Example spiflash_Image(x, y, SPI1, PA0) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 520 of 554 www.4dlabs.com.au

2.24.9 spiflash_LoadFunction(spi#, Enablepin)

Syntax spiflash_LoadFunction(spi#, Enablepin)

Arguments spi#, Enablepin

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PA0

Returns Pointer

 Pointer
Returns a pointer to the memory allocation where the function has been loaded from
file which can be then used as a function call.

Description Load a function or program from the FLASH memory device on the specified SPI port and enable pin

at the address set by spiflash_SetAdd(), or incremented by subsequent reads or writes and return a

function pointer to the allocation.

The function can then be invoked just like any other function would be called via a function pointer.

Parameters may be passed to it in a conventional way. The function may be discarded at any time

when no longer required, thus freeing its memory resources.

The loaded function can be discarded with mem_Free(..) Note that any pointer references passed to

the child function may not include references to the parents DATA statements or any static string

references. Any string or array information must be in the parents global or local memory space. The

reason for this is that DATA statements and static strings are contained in the parents CODE segment,

and cannot be accessed by the child process.

The callers stack is shared by the loaded function, however any global variables in the loaded function

are private to that function.

Example1 var titlestring[20];

var textstring[20];

to(titlestring); putstr(“My Window Title”);

to (textstring); putstr(“My Special Message”);

popupWindow := spiflash_LoadFunction(SPI1, PA0);

if(!popupWindow)goto LoadFunctionFailed; //could not load the function

//then elsewhere in your program

res := popupWindow(MYMODE,titlestring,textstring);

if(res == QUIT_APPLICATION) goto exitApp;

//Later in your program, when popupWindow is no longer required

//for the application

res := mem_Free(popupWindow);

if(!res) goto FreeFunctionFailed; //should never happen if memory not

 //corrupted

Example2 var fncHandle; //a var for a handle to sliders2.4dg

var slidervals; //reference var to access global vars in sliders.4dg

fncHandle := spiflash_LoadFunction(SPI1, PA0); // load the function

slidervals := fncHandle&0x7FFF; // note that memory allocations

for transient programs are biased with 8000h which must be removed.

slidervals++; // note that all globals start at '1'

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 521 of 554 www.4dlabs.com.au

slidervals[0] := 25; // set sliders to initial positions

slidervals[1] := 20;

slidervals[2] := 30;

slidervals[3] := 15;

slidervals[4] := 35;

slidervals[5] := 20;

slidervals[6] := 40;

slidervals[7] := 25;

slidervals[8] := 45;

slidervals[9] := 5;

r := fncHandle(); // activate the function

print("Return value = 0x", [HEX] r,"\n");

// print the values, they may have changed

print("Slider 1 ", slidervals[0]," Slider 2 ", slidervals[1],"\n");

print("Slider 3 ", slidervals[2]," Slider 4 ", slidervals[3],"\n");

print("Slider 5 ", slidervals[4]," Slider 6 ", slidervals[5],"\n");

print("Slider 7 ", slidervals[6]," Slider 8 ", slidervals[7],"\n");

print("Slider 9 ", slidervals[8]," Slider 10 ", slidervals[9],"\n");

mem_Free(fncHandle); // done with sliders, release its memory

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 522 of 554 www.4dlabs.com.au

2.24.10 spiflash_LoadImageControl(spi#, Enablepin)

Syntax spiflash_LoadImageControl(spi#, Enablepin) ;

Arguments spi#, Enablepin

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PA0

Returns Status

 Status
Returns a handle (pointer to the memory allocation) to the image control list that
has been created.
Returns NULL if function fails.

Description Reads a control file to create an image list from the FLASH memory device on the specified SPI port

and enable pin. The source is the address set by spiflash_SetAdd(), or incremented by subsequent

reads or writes. The ".dat" file is first and is immediately followed by a ^Z and then the ".gci' file.

When an image control is loaded, an array is built in ram. It consists of a 6 word header with the

following entries as defined by the constants:

IMG_COUNT 0

IMG_ENTRYLEN 1

IMG_MODE 2

IMG_GCI_FILENAME 3

IMG_DAT_FILENAME 4

IMG_GCIFILE_HANDLE 5

No images are stored in FLASH or RAM, the image control holds the index values for the absolute

storage positions on the uSD card for RAW mode, or the cluster/sector position for formatted FAT16

mode.

When an image control is no longer required, the memory can be released with:

mem_Free(MyImageControlHandle);

Example #inherit "4DGL_16bitColours.fnc"

#constant OK 1

#constant FAIL 0

 var p; // buffer pointer

 var img; // handle for the image list

 var n, exit, r;

//---

// return true if screen touched, also sets ok flag

func CheckTouchExit()

 return (exit := (touch_Get(TOUCH_STATUS) == TOUCH_PRESSED)); // if

there's a press, exit

endfunc

//---

func main()

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 523 of 554 www.4dlabs.com.au

 gfx_Cls();

 txt_Set(FONT_ID, FONT_2);

 txt_Set(TEXT_OPACITY, OPAQUE);

 touch_Set(TOUCH_ENABLE); // enable the touch screen

 print("heap=", mem_Heap(), " bytes\n"); // show the heap size

 r := OK; // return value

 exit := 0;

 if (!file_Mount())

 print("File error ", file_Error());

 while(!CheckTouchExit());

// just hang if we didnt get the image list

 r := FAIL;

 goto quit;

 endif

 print ("WAIT...building image list\n");

 // slow build, fast execution, higher memory requirement

 img := spiflash_LoadImageControl(SPI1, PA0);

 // build image control, returning a pointer to structure allocation

 if (img)

 print("image control=",[HEX] img,"\n");

// show the address of the image control allocation

 else

 putstr("Failed to build image control....\n");

 while(CheckTouchExit() == 0);

// just hang if we didnt get the image list

 r := FAIL;

 goto quit;

 endif

 print ("Loaded ", img[IMG_COUNT], " images\n");

 print ("\nTouch and hold to exit...\n");

 pause(2000);

 pause(3000);

 gfx_Cls();

 repeat

 n := 0;

 while(n < img[IMG_COUNT] && !exit) // go through all images

 CheckTouchExit(); // if there's a press, exit

 img_SetPosition(img, n, (ABS(RAND() % 240)), (ABS(RAND() %

320))); // spread out the images

 n++;

 wend

 img_Show(img, ALL); // update the entire control in 1 hit

 until(exit);

quit:

 mem_Free(img); // release the image control

 file_Unmount(); // (program must release all resources)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 524 of 554 www.4dlabs.com.au

 return r;

endfunc

//===

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 525 of 554 www.4dlabs.com.au

2.24.11 spiflash_PlayWAV(spi#, Enablepin)

Syntax spiflash_PlayWAV(spi#, Enablepin) ;

Arguments spi#, Enablepin

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PA0

Returns value

value If there are no errors, returns number of blocks to play (1 to 32767)
If errors occurred, the following is returned
-7 : Insufficient memory available for WAV buffer and file
-6 : cant play this rate
-5 : no data chunk found in first rsector
-4 : no format data
-3 : no wave chunk signature
-2 : bad wave file format
-1 : file not found

Description Play a wave file from the FLASH memory device on the specified SPI port and enable pin. The source

is the address set by spiflash_SetAdd(), or incremented by subsequent reads or writes. Opens the wav

file, decode the header to set the appropriate wave player parameters and set off the playing of the

file as a background process.

This function automatically grabs a chunk of memory for a wave buffer. The minimum memory

requirement is the wave buffer size of 1024. The size of the wave buffer allocation can be increased

by the snd_BufSize function.

The default size 1024 bytes.

Note: The memory is only required during the duration of play, and is automatically released while

not in use.

See “Sound Control Functions” for additional play control functions.

Example print("\nding.wav\n");

 for(n:=0; n<45; n++)

 pitch := NOTES[n];

 print([UDEC] pitch,"\r");

 snd_Pitch(pitch);

 spiflash_PlayWAV(SPI1, PA0);

 while(snd_Playing());

 //pause(500);

 next

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 526 of 554 www.4dlabs.com.au

2.24.12 spiflash_PutC(char, spi#, Enablepin)

Syntax spiflash_PutC(char, spi#, Enablepin) ;

Arguments char, spi#, Enablepin

char Data byte about to be written.

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PA0

Returns Nothing

Description This function writes the byte specified by "char" to the FLASH memory device on the specified SPI
port and enable pin, at the position spiflash_SetAdd(), or incremented by subsequent reads or writes
and advances the pointer appropriately (incremented by 1).

Example spiflash_PutC('A', SPI1, PA0);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 527 of 554 www.4dlabs.com.au

2.24.13 spiflash_PutS(source, spi#, Enablepin)

Syntax spiflash_PutS(source, spi#, Enablepin);

Arguments source, spi#, Enablepin

source A pointer to the string to be written.

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PA0

Returns count

 count Returns the number of characters written (excluding the null terminator).

Description This function writes an ASCIIZ (null terminated) string from a buffer specified by "*source" to the

FLASH memory device on the specified SPI port and enable pin, at the position set by

spiflash_SetAdd(), or incremented by subsequent reads or writes and advances the pointer

appropriately.

Example spiflash_PutS(mystring, SPI1, PA0);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 528 of 554 www.4dlabs.com.au

2.24.14 spiflash_PutW(word, spi#, Enablepin)

Syntax spiflash_PutW(word, spi#, Enablepin) ;

Arguments word, spi#, Enablepin

word Data about to be written

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PA0

Returns Nothing

Description This function writes word sized (2 bytes) data specified by "word" to the FLASH memory device on

the specified SPI port and enable pin, at the position indicated by set by spiflash_SetAdd(), or

incremented by subsequent reads or writesand advances the pointer appropriately (incremented by

2).

Example spiflash_PutW(0x1234, SPI1, PA0);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 529 of 554 www.4dlabs.com.au

2.24.15 spiflash_Read(destination, size, spi#, Enablepin)

Syntax spiflash_Read(destination, size, spi#, Enablepin) ;

Arguments destination, size, spi#, Enablepin

destination Destination memory buffer

size Number of bytes to be read

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PA0

Returns count

 count Returns the number of characters read.

Description Reads the number of bytes specified by "size" from the FLASH memory device on the specified SPI
port and enable pin into a destination memory buffer. The source is the address set by
spiflash_SetAdd(), or incremented by subsequent reads or writes.

If "destination" is zero, data is read direct to GRAM window

Example res := spiflash_Read(memblock, 20, SPI1, PA0);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 530 of 554 www.4dlabs.com.au

2.24.16 spiflash_Run(spi#, Enablepin, arglistptr)

Syntax spiflash_Run(spi#, Enablepin, arglistptr) ;

Arguments spi#, Enablepin, arglistptr

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PA0

arglistptr pointer to the list of arguments to pass to the new program.

Returns Value

 Value Returns the value from main in the called program.

Description Any memory allocations in the main FLASH program are released, however, the stack and globals are

maintained.

If arglistptr is 0, no arguments are passed, else arglistptr points to an array, the first element being

the number of additional elements in the array which contain the arguments.

func 'main' in the called program accepts the arguments, if any.

The arguments can only be passed by value, no pointers or references can be used as all memory is

cleared before the file is loaded. Refer to spiflash_Exec and spiflash_LoadFunction for functions that

can pass by reference.

spiflash_SetAdd should have previously been called to identify the address of the program to be

called.

Example Refer to the file_Run example.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 531 of 554 www.4dlabs.com.au

2.24.17 spiflash_SetAdd(spi#, HiWord, LoWord)

Syntax spiflash_SetAdd(spi#, HiWord, LoWord) ;

Arguments spi#, HIword, LOword

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

HIword
Specifies the high word (upper 2 bytes) of a 4 byte SPI FLASH memory byte address

location.

LOword Specifies the low word (lower 2 bytes) of a 4 byte SPI FLASH memory byte address

location.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Set media memory internal Address pointer for to SPI FLASH memory.

Example spiflash_SetAdd(SPI1, 0, 513);

This example sets the SPI FLASH address to byte 513 for subsequent operations.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 532 of 554 www.4dlabs.com.au

2.24.18 spiflash_SIG(spi#, Enablepin)

Syntax spiflash_SIG(spi#, Enablepin) ;

Arguments spi#, Enablepin

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PA0

Returns Signature

 Signature Returns the Electronic Signature of the SPI FLASH device.

Description Returns the Electronic Signature of the SPI FLASH device. Only the low order byte is valid, the upper
byte is ignored.

Example Sig := spiflash_SIG(SPI1, PA0) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 533 of 554 www.4dlabs.com.au

2.24.19 spiflash_Write(Source, size, spi#, Enablepin)

Syntax spiflash_Write(Source, size, spi#, Enablepin) ;

Arguments Source, size, spi#, Enablepin

source Source memory buffer.

size Number of bytes to be written.

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PA0

Returns Status

 Status Returns TRUE if the Source address is valid

Description Writes the number of bytes specified by "size" from the source buffer into the FLASH memory device
on the specified SPI port and enable pin.

Example res := spiflash_Write(memblock, 20, SPI1, PA0);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 534 of 554 www.4dlabs.com.au

2.24.20 spiflash_Block32Erase(spi#, Enablepin)

Syntax spiflash_Block32Erase(spi#, Enablepin) ;

Arguments spi#, Enablepin

Spi# The SPI interface to which the Flash memory chip is located SPI0 for the uSD port, or

SPI1, SPI2 or SPI3.

Enablepin The enable, or CS pin for the Flash memory chip PA0-PA15, or USD_ENABLE for the

uSD's enable pin.

Returns Nothing

Description Erase the 32KB flash block including the currently set address

Example spiflash_Block32Erase(SPI1, PA0) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 535 of 554 www.4dlabs.com.au

2.24.21 spiflash_Sector4Erase(spi#, Enablepin)

Syntax spiflash_Sector4Erase (spi#, Enablepink) ;

Arguments spi#, Enablepin

Spi# The SPI interface to which the Flash memory chip is located SPI0 for the uSD port, or

SPI1, SPI2 or SPI3.

Enablepin The enable, or CS pin for the Flash memory chip PA0-PA15, or USD_ENABLE for the

uSD's enable pin.

Returns Nothing

Description Erase the 4KB flash sector including the currently set address

Example spiflash_Sector4Erase(SPI1, PA0) ;

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 536 of 554 www.4dlabs.com.au

2.24.22 spiflash_ReadByte(flags, spi#, Enablepin)

Syntax spiflash_ReadByte(flag, spi#, Enablepin);

Arguments flag, spi#, Enablepin"

flag

Spi# The SPI interface to which the Flash memory chip is located SPI0 for the uSD port, or

SPI1, SPI2 or SPI3.

Enablepin The enable, or CS pin for the Flash memory chip PA0-PA15, or USD_ENABLE for the

uSD's enable pin.

Returns Returns the character read.

Description Reads a byte from the FLASH memory device on the specified SPI port and enable pin and returns it.
The enable pin is lowered at the start of the operation and raised at the end unless the flag is set to
SPIFLASH_HOLDCS is set, in which case the pin is left low.

Example res := spiflash_ReadByte(0, SPI1, PA0);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 537 of 554 www.4dlabs.com.au

2.24.23 spiflash_WriteByte(reg/value, spi#, Enablepin)

Syntax spiflash_WriteByte(flag, spi#, Enablepin);

Arguments Reg/value, spi#, Enablepin"

reg/value The value may be a command or value depending upon where it is written to relative

to the lowering of CS.

Spi# The SPI interface to which the Flash memory chip is located SPI0 for the uSD port, or

SPI1, SPI2 or SPI3.

Enablepin The enable, or CS pin for the Flash memory chip PA0-PA15, or USD_ENABLE for the

uSD's enable pin.

Returns Returns TRUE if valid

Description Writes the specified byte to the FLASH memory device on the specified SPI port and enable pin. The
enable pin is lowered at the start of the operation and raised at the end unless the reg/value has
SPIFLASH_HOLDCS orred onto it, in which case the pin is left low.

Example res := spiflash_WriteByte(0x80, SPI1, PA0);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 538 of 554 www.4dlabs.com.au

2.24.24 spiflash_SetMode(spi#, mode)

Syntax spiflash_SetMode(spi#, mode)

Arguments spi#, mode

Spi# The SPI interface to which the Flash memory chip is located SPI0 for the uSD port, or

SPI1, SPI2 or SPI3.

Mode

Returns Nothing

Description Sets the address size to be used to access the FLASH memory device on the specified SPI port and
enable pin. The size should be set using the correct command for the SPI FLASH memory device you
are using.Then this function should be called to enable that addresing mode to be used.

Valid options are:
SPIFLASH_ADDRESS3 Address operand is 3 bytes long
SPIFLASH_ADDRESS4 Address operand is 4 bytes long

Example res := spiflash_SetMode(SPI1, SPIMODE_ADDRESS3);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 539 of 554 www.4dlabs.com.au

2.24.25 spiflash_LoadGCFImageControl(spi#, Enablepin)

Syntax spiflash_LoadGCFImageControl(spi#, Enablepin)

Arguments spi#, Enablepin

Spi# The SPI interface to which the Flash memory chip is located SPI0 for the uSD port, or

SPI1, SPI2 or SPI3.

Enablepin The enable, or CS pin for the Flash memory chip PA0-PA15, or USD_ENABLE for the

uSD's enable pin.

Returns
Returns a handle (pointer to the memory allocation) to the image control list that has been created.
Returns NULL if function fails.

Description spiflash_SetAdd() should have previously been called to set the GCIF start location.

Example hImagelist := spiflash_LoadGCFImageControl(SPI0, USD_ENABLE)

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 540 of 554 www.4dlabs.com.au

2.25. CRC Functions

Summary of Functions in this section:

• crc_16(buf, count)

• crc_CCITT(buf, count, seed)

• crc_CSUM_8(buf, count)

• crc_MODBUS(buf, count)

The CRC functions are mainly designed for serial communications, but are implemented in such a way that they can
be used to other things as well.

The com_TXblock and com_RXblock commands can be used to assist with reading and writing comm ports,
generating and checking CRCs with the minimum of user data manipulation.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 541 of 554 www.4dlabs.com.au

2.25.1 crc_16(buf, count)

Syntax crc_16(buf, count) ;

Arguments buf, count

buf Source memory buffer. This is a string pointer.

count Number of bytes to be used to generate the CRC.

Returns CRC

 CRC Returns the generated 16 bit CRC.

Description Calculates the Checksum CRC using the ‘standard’ 16 bit CRC algorithm.

For the standard test string "123456789", crc_16 will return 0xBB3D.

Note if you calculate all of the incoming data INCLUDING the CRC, the result should be 0x00

Example Crc := crc_16(str_Ptr(buf), 10);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 542 of 554 www.4dlabs.com.au

2.25.2 crc_CCITT(buf, count, seed)

Syntax crc_CCITT(buf, count, seed) ;

Arguments buf, count, seed

buf Source memory buffer. This is a string pointer.

count Number of bytes to be used to generate the CRC.

seed The seed for the CRC generation.

Returns CRC

 CRC Returns the generated CCITT CRC.

Description Calculates the Checksum CRC as a ‘standard’ CRCITT checksum.

For the standard test string "123456789", crc_CCITT with seed = 0 (XMODEM protocol) will return =

0x31C3, for seed = 0xFFFF, the result will be 0x29B1 and for seed = 0x1D0F, the result is 0xE5CC.

Example Crc := crc_CCITT(str_Ptr(buf), 10, 0x0000);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 543 of 554 www.4dlabs.com.au

2.25.3 crc_CSUM_8(buf, count)

Syntax crc_CSUM_8(buf, count) ;

Arguments buf, count

buf Source memory buffer. This is a string pointer.

count Number of bytes to be used to generate the CRC.

Returns CRC

 CRC Returns the generated 8 bit checksum CRC.

Description Calculates the Checksum CRC as an 8 bit number. This is equivalent to simple addition of all bytes

and returning the negated sum an 8 bit value.

For the standard test string "123456789", crc_CSUM_8 will return 0x0023.

Note if you calculate all of the incoming data INCLUDING the CRC, the result should be 0x00

Example Crc := crc_CSUM_8(str_Ptr(buf), 10);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 544 of 554 www.4dlabs.com.au

2.25.4 crc_MODBUS(buf, count)

Syntax crc_MODBUS(buf, count) ;

Arguments buf, count

buf Source memory buffer. This is a string pointer.

count Number of bytes to be used to generate the CRC.

Returns CRC

 CRC Returns the generated MODBUS CRC.

Description Calculates the Checksum CRC as per the MODBUS standard.

For the standard test string "123456789", crc_MODBUS will return 0x4B37.

Note if you calculate all of the incoming data INCLUDING the CRC, the result should be 0x00

Example Crc := crc_MODBUS(str_Ptr(buf), 10);

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 545 of 554 www.4dlabs.com.au

3. System Registers Memory Map

The following tables outline in detail the Diablo16 system registers and flags.

LABEL
ADDRESS

USAGE
DEC HEX

RANDOM_LO 32 0x20 random number generator LO word
RANDOM_HI 33 0x21 random number generator HI word
SYSTEM_TIMER_LO 34 0x22 1msec 32 bit free running timer LO word
SYSTEM_TIMER_HI 35 0x23 1msec 32 bit free running timer HI word
TIMER0 36 0x24 1msec user timer 0
TIMER1 37 0x25 1msec user timer 1
TIMER2 38 0x26 1msec user timer 2
TIMER3 39 0x27 1msec user timer 3
TIMER4 40 0x28 1msec user timer 4
TIMER5 41 0x29 1msec user timer 5
TIMER6 42 0x2A 1msec user timer 6
TIMER7 43 0x2B 1msec user timer 7
SYS_X_MAX 44 0x2C display hardware X res-1
SYS_Y_MAX 45 0x2D display hardware Y res-1

GFX_XMAX 46 0x2E
current display width-1 determined by portrait / landscape
swapping

GFX_YMAX 47 0x2F
current display height-1 determined by portrait / landscape
swapping

GFX_LEFT 48 0x30 virtual left point for most recent object
GFX_TOP 49 0x31 virtual top point for most recent object
GFX_RIGHT 50 0x32 virtual right point for most recent object
GFX_BOTTOM 51 0x33 virtual bottom point for most recent object
GFX_X1 52 0x34 clipped left point for current object
GFX_Y1 53 0x35 clipped top point for current object
GFX_X2 54 0x36 clipped right point for current object
GFX_Y2 55 0x37 clipped bottom point for current object
GFX_X_ORG 56 0x38 current X origin
GFX_Y_ORG 57 0x39 current Y origin
GFX_THUMB_PERCENT 75 0x4B size of slider thumb as percentage
GFX_THUMB_BORDER_DARK 76 0x4C darker shadow of thumb
GFX_THUMB_BORDER_LIGHT 77 0x4D lighter shadow of thumb
TOUCH_XMINCAL 78 0x4E touch calibration value
TOUCH_YMINCAL 79 0x4F touch calibration value
TOUCH_XMAXCAL 80 0x50 touch calibration value
TOUCH_YMAXCAL 81 0x51 touch calibration value
IMG_WIDTH 82 0x52 width of currently loaded image
IMG_HEIGHT 83 0x53 height of currently loaded image
IMG_FRAME_DELAY 84 0x54 if image, else inter frame delay for movie
IMG_FLAGS 85 0x55 bit 4 determines colour mode, other bits reserved
IMG_FRAME_COUNT 86 0x56 count of frames in a movie
IMG_PIXEL_COUNT_LO 87 0x57 count of pixels in the current frame
IMG_PIXEL_COUNT_HI 88 0x58 count of pixels in the current frame
IMG_CURRENT_FRAME 89 0x59 last frame shown
MEDIA_ADDRESS_LO 90 0x5A micro-SD byte address LO
MEDIA_ADDRESS_HI 91 0x5B micro-SD byte address HI
MEDIA_SECTOR_LO 92 0x5C micro-SD sector address LO

NOTE: These registers are accessible with peekW and pokeW functions.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 546 of 554 www.4dlabs.com.au

LABEL
ADDRESS

USAGE
DEC HEX

MEDIA_SECTOR_HI 93 0x5D micro-SD sector address HI

MEDIA_SECTOR_COUNT 94 0x5E micro-SD number of bytes remaining in sector

TEXT_XPOS 95 0x5F text current x pixel position

TEXT_YPOS 96 0x60 text current y pixel position

TEXT_MARGIN 97 0x61 text left pixel pos for carriage return

TXT_FONT_ID 98 0x62 font type, 0 = system font, else pointer to user font

TXT_FONT_MAX 99 0x63 max number of chars in font

TXT_FONT_OFFSET 100 0x64 starting offset (normally 0x20)

TXT_FONT_WIDTH 101 0x65 current font width

TXT_FONT_HEIGHT 102 0x66 Current font height

GFX_TOUCH_REGION_X1 103 0x67 touch capture region

GFX_TOUCH_REGION_Y 104 0x68 touch capture region

GFX_TOUCH_REGION_X2 105 0x69 touch capture region

GFX_TOUCH_REGION_Y2 106 0x6A touch capture region

GFX_CLIP_LEFT_VAL 107 0x6B left clipping point (set with gfx_ClipWindow(...)

GFX_CLIP_TOP_VAL 108 0x6C top clipping point (set with gfx_ClipWindow(...)

GFX_CLIP_RIGHT_VAL 109 0x6D right clipping point (set with gfx_ClipWindow(...)

GFX_CLIP_BOTTOM_VAL 110 0x6E bottom clipping point (set with gfx_ClipWindow(...)

GFX_CLIP_LEFT 111 0x6F current clip value (reads full size if clipping turned off)

GFX_CLIP_TOP 112 0x70 current clip value (reads full size if clipping turned off)

GFX_CLIP_RIGHT 113 0x71 current clip value (reads full size if clipping turned off)

GFX_CLIP_BOTTOM 114 0x72 current clip value (reads full size if clipping turned off)

GRAM_PIXEL_COUNT_LO 115 0x73 LO word of count of pixels in the set GRAM area

GRAM_PIXEL_COUNT_HI 116 0x74 HI word of count of pixels in the set GRAM area

TOUCH_RAW_X 117 0x75 12 bit raw A2D X value from touch screen

TOUCH_RAW_Y 118 0x76 12 bit raw A2D Y value from touch screen

GFX_LAST_CHAR_WIDTH 119 0x77 calculated char width from last call to charWidth function

GFX_LAST_CHAR_HEIGHT 120 0x78 calculated height from last call to charHeight function

GFX_LAST_STR_WIDTH 121 0x79 calculated width from last call to strWidth function

GFX_LAST_STR_HEIGHT 122 0x7A calculated height from last call to strHeight function

PIN_COUNTER_PA4 123 0x7B pin counter for PA4

PIN_COUNTER_PA5 124 0x7C pin counter for PA5

PIN_COUNTER_PA6 125 0x7D pin counter for PA6

PIN_COUNTER_PA7 126 0x7E pin counter for PA7

PIN_COUNTER_PA8 127 0x7F pin counter for PA8

PIN_COUNTER_PA9 128 0x80 pin counter for PA9

PIN_EVENT_PA4 129 0x81 pin counter rollover event for PA4

PIN_EVENT_PA5 130 0x82 pin counter rollover event for PA5

PIN_EVENT_PA6 131 0x83 pin counter rollover event for PA6

PIN_EVENT_PA7 132 0x84 pin counter rollover event for PA7

PIN_EVENT_PA8 133 0x85 pin counter rollover event for PA8

PIN_EVENT_PA9 134 0x86 pin counter rollover event for PA9

QEN1_COUNTER_LO 135 0x87 quadrature encoder #1 counter LO

QEN1_COUNTER_HI 136 0x88 quadrature encoder #1 counter HI

QEN1_DELTA 137 0x89 quadrature encoder #1 delta count

QEN2_COUNTER_LO 138 0x8A quadrature encoder #2 counter LO

QEN2_COUNTER_HI 139 0x8B quadrature encoder #2 counter HI

QEN2_DELTA 140 0x8C quadrature encoder #2 delta count

FALSE_REASON 141 0x8D explanation 'false' results, currently only for flash_ functions

NOTE: These registers are accessible with peekW and pokeW functions.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 547 of 554 www.4dlabs.com.au

4. Appendix A : Runtime Error Messages

Error No. Error Meaning Notes

1 Failed to receive 'L' during loading process from Workshop Not in Diablo16

2 Did not receive valid header info from Workshop
Unexpected error during Program
load

3 Header size does not match loader info Not in Diablo16

4 Could not allocate enough memory for program
Unexpected error during Program
load

5 Loader checksum error
Unexpected error during Program
load

6 Did not receive header prior to 'L' command Not in Diablo16

7 Header size entry does not match loader value
Unexpected error during Program
load

8 Failed to load program from FLASH Internal

9 Could not allocate code segment Not in Diablo16

10 Could not load function file from disk File on disk possibly corrupted

11 Bad header in program file File on disk possibly corrupted

12 Header in program file differs from file size File on disk possibly corrupted

13 Could not allocate global memory for program file Program probably too large

14 Program File checksum error File on disk possibly corrupted

15 EVE Stack Overflow
Infinitely recursive program or
insufficient Stack Size

16 Unsupported PmmC function Program error, or .fnc file mismatch

17 Illegal COM0 Event Function address Program error

18 Illegal COM1, COM2, or COM3 Event Function address Program error

19 Bad txt_Set(...) command number Program error

20 Bad gfx_Get(...) command number Program error

21 Bad gfx_Set(...) command number Program error

22 Bad address for peekW or pokeW Program error

23 Bad timer number for Timer function Program error

24 Bad Event for sys_SetTimerEvent(...) Program error

25 Flash Write Verify Failed Internal

26 Bad or missing uSD Card
Program specifies #MODE of 'save
to disk', but no valid disk can be
found

27 Illegal Event Function Address Program error

28 Not a pre-defined baud rate Program error in setbaud()

29 Target of flash_Exec cannot have globals or privates Program error

30
Inherent widgets are used in this program and have not
been loaded into Flash Bank 5. Use the utility in Workshop
to load them.

User error

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 548 of 554 www.4dlabs.com.au

5. Hardware Tools

The following hardware tools are required for full
control of the Diablo16 Processor.

5.1. 4D Programming Tools

The 4D Programming Cable, uUSB-PA5-II and 4D-UPA
Programming Adaptors are essential hardware tools
to program, customise and test the Diablo16
Processor.

Note: Any of the 4D Programming Cable, uUSB-PA5-
II or gen4-PA Programming Adaptor can be used,
along with previous generation 4D programmers
too.

The 4D programming interfaces are used to program a
new Firmware/PmmC, Display Driver and for
downloading compiled 4DGL code into the processor.
They even serve as an interface for communicating
serial data to the PC.

The 4D Programming Cable, uUSB-PA5 and 4D-UPA
Programming Adaptor are available from 4D Systems,
www.4dsystems.com.au

Using a non-4D programming interface could damage
your processor, and void your Warranty.

4D Programming Cable

uUSB-PA5-II Programming Adaptor

4D-UPA Programming Adaptor

5.2. Display Modules

4D Systems has a number of modules available which
can be used for evaluation purposes or equally as final
products, to discover what the Diablo16 processor has
to offer.

gen4-uLCD-70DT – 7.0” Resistive Touch Diablo16
Intelligent Display Module

gen4-uLCD-43DT – 4.3” Resistive Touch Diablo16
Intelligent Display Module

gen4-uLCD-35DT – 3.5” Resistive Touch Diablo16
Intelligent Display Module

Other modules will also be available. Please contact
4D Systems for more information, or visit the 4D
Systems website, www.4dsystems.com.au

http://www.4dsystems.com.au/
http://www.4dsystems.com.au/
http://www.4dsystems.com.au/product/4D-Programming-Cable/
http://www.4dsystems.com.au/product/uUSB-PA5/
http://www.4dsystems.com.au/product/gen4_PA/
http://www.4dsystems.com.au/product/gen4_uLCD_70D/
http://www.4dsystems.com.au/product/gen4_uLCD_43D/
http://www.4dsystems.com.au/product/gen4_uLCD_35D/

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 549 of 554 www.4dlabs.com.au

5.3. Memory Cards - FAT16 Format

The Diablo16 Processor uses off the shelf standard
SDHC/SD/micro-SD memory cards with up to 4GB
capacity usable with FAT16 formatting. For any FAT
file related operations, before the memory card can
be used it must first be
formatted with FAT16
option. The formatting
of the card can be done
on any PC system with a
card reader. Select the
appropriate drive and choose the FAT16 (or just FAT in
some systems) option when formatting. The card is
now ready to be used in the Diablo16 based
application.

The Diablo16 Processor
also supports high capacity
HC memory cards (4GB
and above). The available
capacity of SD-HC cards
varies according to the
way the card is partitioned

and the commands used to access it.

The FAT partition is always first (if it exists) and can be
up to the maximum size permitted by FAT16.
Windows 7 will format FAT16 up to 4GB. Windows XP
will format FAT16 up to 2GB and the Windows XP
command prompt will format FAT16 up to 4GB.

RMPET, a 4D Labs tool found in the Workshop4 IDE, is
capable of repartitioning and formatting microSD
cards to be the appropriate type and format. This
should be used for all cards.

Note: A microSD card capable of SPI is a requirement
for all 4D Systems’ display modules powered by
Goldelox, Picaso, Picaso Lite or Diablo16 Processors.
If a non-SPI compatible card is used, it will simply fail
to mount, or may cause intermittent issues resulting
in lock ups and crashing of the application. Please
refer to the 4D Systems website for microSD cards
offered by 4D Systems.

Note: Read disturb is a well-known issue with flash
memory devices, such as microSD cards, where
reading data from a flash cell can cause the nearby
cells in the same memory block to change over time.
This issue can be prevented by using industrial-grade
microSD cards with read disturb protection.
Industrial-grade microSD cards have a firmware that
actively monitors the read operation and refreshes
areas of memory which have high traffic and even
move data around to prevent read disturb error from

occurring. Furthermore, manufacturers may choose
to implement read disturb protection on a specific
part of the flash memory only, such that the beginning
part of the memory might not be protected. The
RMPET utility in Workshop4 is designed to create the
first partition at an offset from the start of the
microSD card to account for this situation. It is
therefore recommended to always partition and
format an industrial microSD card using the RMPET
utility before using it with 4D Systems processors.

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 550 of 554 www.4dlabs.com.au

6. Workshop4 IDE

Workshop4 is a comprehensive software IDE that
provides an integrated software development
platform for all of the 4D family of processors and
modules. The IDE combines the Editor, Compiler,
Linker and Downloader to develop complete 4DGL
application code. All user application code is
developed within the Workshop4 IDE.

The Workshop4 IDE supports multiple development
environments for the user, to cater for different user
requirements and skill level.

• The Designer environment enables the user to

write 4DGL code in its natural form to program the

4D processor of choice.

• A visual programming experience, suitably called

ViSi, enables drag-and-drop type placement of

objects to assist with 4DGL code generation and

allows the user to visualise how the display will

look while being developed.

• An advanced environment called ViSi-Genie

doesn’t require any 4DGL coding at all, it is all

done automatically for you. Simply lay the display

out with the objects you want, set the events to

drive them and the code is written for you

automatically. ViSi-Genie provides the latest rapid

development experience from 4D Labs.

The Workshop4 IDE is available from the 4D Systems
website. www.4dsystems.com.au

For a comprehensive manual on the Workshop4 IDE
Software along with other documents, refer to the
documentation from the 4D Labs website, on the
Workshop4 product page.

6.1. Designer Environment

Choose the Designer environment to write 4DGL code
in its raw form.

The Designer environment provides the user with a
simple yet effective programming environment where
pure 4DGL code can be written, compiled and
downloaded to the Diablo16.

6.2. ViSi Environment

ViSi was designed to make the creation of graphical
displays a more visual experience. It is a great
software tool that allows the user to see the instant
results of their desired graphical layout.

Additionally, there is a selection of inbuilt dials, gauges
and meters that can simply be placed onto the
simulated module display. From here each object can
have its properties edited, and at the click of a button
all relevant 4DGL code associated with that object is
produced in the user program. The user can then write
4DGL code around these objects to utilise them in the
way they choose.

http://www.4dsystems.com.au/

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 551 of 554 www.4dlabs.com.au

Workshop4 PRO adds a professional set of features to
the ViSi environment, called Smart Widgets. These
smart widgets allow Users to create custom gauges,
sliders, buttons and more, rather than relying on the
built-in ones. This provides an extra level of
customisation available for intelligent products.

6.3. ViSi Genie Environment

ViSi Genie is a breakthrough in the way 4D Labs’
graphic processors are programmed. It is an
environment like no other, a code-less programming
environment that provides the user with a rapid visual
experience, enabling a simple GUI application to be
‘written’ from scratch in literally seconds.

ViSi Genie does all the background coding, no 4DGL to
learn, it does it all for you.

Pick and choose the relevant objects to place on the
display, much like the ViSi Environment, yet without
having to write a single line of code. Each object has
parameters which can be set, and configurable events
to animate and drive other objects or communicate
with external devices.

Simply place an object on the screen, position and size
it to suit, set the parameters such as colour, range,
text, and finally select the event you wish the object
to be associated with, it is that simple.

In seconds you can transform a blank display into a
fully animated GUI with moving sliders, animated
press and release buttons, and much more. All
without writing a single line of code!

ViSi Genie provides the user with a feature rich rapid
development environment, second to none.

ViSi-Genie’s functionality can be extended with the
purchase of a Workshop4 PRO License.

Workshop4 PRO adds a professional set of features to
the Visi-Genie environment called Genie-Magic. The
added features allow the user to add in 4DGL scripts,
which can be activated from the display itself, from an
interfacing Host, or from an external sensor or device.
These PRO set of features of Genie-Magic allow the
User to create an immensely powerful GUI system
with a fraction of the effort required by other systems.

Along with Genie-Magic, ViSi-Genie also benefits from
Smart widgets, as described in the previous ViSi
Environment section.

Refer to the “ViSi Genie User Guide” and “ViSi-Genie
User Reference Manual” from the Workshop 4
product page on the 4D Systems website for
information about the ViSi-Genie Environment and its
Protocol.

6.4. Serial Environment

The Serial environment in the Workshop4 IDE
provides the user the ability to transform the Diablo16
into a slave serial graphics controller.

This enables the user to use their favourite
microcontroller or serial device as the Host, without
having to learn 4DGL or program in a separate IDE.
Once the Diablo16 is configured and downloaded to
from the Serial Environment, simple graphic
commands can be sent from the users host
microcontroller to display primitives, images, sound or
even video.

Refer to the “Diablo16 Serial Command Set Reference
Manual” from the Workshop4 product page on the 4D
Labs website for a complete listing of all the supported
serial commands

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 552 of 554 www.4dlabs.com.au

7. Revision History

Revision History

Revision Revision Content Revision Date

1.0 First Release 22/07/2013

1.1
Added new Functions disp_Disconnect(), disp_Init() and sys_DeepSleep(). Fix spelling
mistake in file_LoadImageControl

22/10/2013

1.2
Fixed gfx_Contrast description as it contained Picaso information, other minor non-
fucntional related fixes.

07/11/2013

1.3

Added com_TXblock, com1_TXblock, com2_TXblock and com3_TXblock, com_RXblock,
com1_RXblock, com2_RXblock and com3_RXblock, com_Mode, crc_CSUM_8, crc_16,
crc_MODBUS and crc_CCITT for support of CRCs, non 8N1 mode and block transmit and
receive

Added spiflash_SIG, spiflash_ID, spiflash_BulkErase, spiflash_BlockErase, spiflash_SetAdd,
spiflash_Read, spiflash_Write spiflash_Image, spiflash_PutC, spiflash_GetC, spiflash_PutW,
spiflash_GetW, spiflash_PutS, spiflash_GetS spiflash_LoadFunction, spiflash_Run,
spiflash_Exec, spiflash_LoadImageControl, spiflash_PlayWAV for support if SPI Flash memory
Fixed error return codes in file_PlayWAV and added missing code.

23/12/2013

1.4 Added bus_Read8 and bus_Write8 06/01/2014

1.5
Added Mode PWM_BINARY and usage notes. Added notes to spiflash initialization. Added
disp_BlitPixelsFromCOMx. Added special baud rates to com_SetBaud(). Added
spix_ReadBlock and spix_Writeblock. All these additions apply to PmmC 1.1 and later.

25/02/2014

1.6 Documented v1.1 PmmC’s changes to files opened in append mode. Added new I2C options. 21/03/2014

1.7
Documented V1.3 PmmC’s new snd_Freq(), sys_GetDateVar(), sys_GetTimeVar() and
pin_PulseoutCount() functions.

07/07/2014

1.8
Added keywords Backlight and Brightness to assist searchers finding the contrast setting.
Fixed format of date in sys_GetDate function.

04/08/2014

1.9
Documented V1.5 PmmC’s new txt_FontBank, putnumXY, flt_PRINTxy, file_Rename,
file_Setdate, NP_Write and OW_* functions. Fixed error in memory size used for file_Mount.
Added detail to set_Clipping().

16/09/2014

1.10

Updated information for file_LoadImageControl mode 2. Updated control block size in
file_Mount. Added information about source of uSD based font in txt_FontID. Added
information about the use of TRANSPARENCY. Fixed spelling of snd_Freq in example. Added
information about the SPIx_Write and SPIx_Read operations. Clarified information about
events.

22/12/2014

1.11
Added more information about interrupts and NP_Write. Added notes to
comx_TXbufferHold. Fixed case of pwm_Init()

11/02/2015

1.12 Modification to Analog Input read rates 06/03/2015

1.13
Fixed I2Cx_Write return code information. Clarified str_Length and bus_SetChangeInterrupt
examples. Fixed syntax example for usub_3232. Added ‘page’ options to gfx_Set for uLCD-
43D* displays.

07/05/2015

1.14

Fixed FontIDs for deja fonts. Updated udiv_3232 sample. Improved return description for
str_Match and str_MatchI. Added str_Printf to ‘to’ function. Added runtime Error 29.
Improved examples for str_Cat, str_CatN, str_Find, str_FindI, str_Match, str_MatchI and
file_Exec.

14/07/2015

1.15
Corrected flt_POW syntax typo. Corrected incurred information relating to PA14 and PA15.
Improvements to a few pin_ and bus_ function examples.

06/10/2015

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 553 of 554 www.4dlabs.com.au

Revision History Continued…

Revision Revision Content Revision Date

1.16

Add information about TXT_MARGIN to txt_MoveCursor() and gfx_MoveTo() functions. Add
I_TOUCH_DISABLE detail to img_SetAttributes() and img_ClearAttributes() functions. Fix
gfx_PieSlice() documentation. Add comx_TXbufferBrk() and comx_InitBrk() functions in
support of sending and receiving BREAK characters. Updated serin() and serout() as
appropriate. Added PA14, PA15 to pins that can be used with various functions. Addded
new options to PWM_Init() function.

08/02/2016

2.0 Updated formatting and contents 06/05/2017

2.1

Updated formatting. Improved touch_Get(). Fixed inverted states relating to BOLD, ITALIC,
TEXT INVERSE, TEXT ITALIC in txt_Set(). Improved explanation of pointers in file_Write and
file_Read. Putnum alignment improved. putstr explanation improved. sys_Sleep() and
sys_DeepSleep() minor description improvements.

21/03/2019

2.2
Added Note1 information regarding PA12/PA13 GPIO, for clarity. No change in original
functionality. Fixed a few historical minor example spelling mistakes/typo’s.

19/08/2019

2.3
Lots of additions for gfx_, widget_, file_, img_, flash_ and spiflash_ functions, relating to
new features such as new widgets and flash memory.
Additional information for spi_Init and SPIx_Init functions added

16/07/2020

2.4 Typo fix on gfx_PointWithinRectangle &recta argument for last 2 components of the array 07/08/2020

2.5
Updated DISPLAY_PAGE, READ_PAGE and WRITE_PAGE information, to reflect differences
between SSD1961 and SSD1963 Driver IC’s on 4.3” products.

08/10/2020

2.6 Removal of incorrect Note from crc_CCITT function 13/10/2020

DIABLO16 GRAPHICS PROCESSOR

DIABLO16 INTERNAL FUNCTIONS Page 554 of 554 www.4dlabs.com.au

8. Legal Notice

Proprietary Information

The information contained in this document is the property of 4D Labs Semiconductors and may be the subject of
patents pending or granted, and must not be copied or disclosed without prior written permission.

4D Labs Semiconductors endeavours to ensure that the information in this document is correct and fairly stated but
does not accept liability for any error or omission. The development of 4D Labs Semiconductors products and services
is continuous and published information may not be up to date. It is important to check the current position with 4D
Labs Semiconductors. 4D Labs Semiconductors reserves the right to modify, update or makes changes to
Specifications or written material without prior notice at any time.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Labs Semiconductors makes no warranty, either expressed or implied with respect to any product, and specifically
disclaims all other warranties, including, without limitation, warranties for merchantability, non-infringement and
fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with
your specifications.

Images and graphics used throughout this document are for illustrative purposes only. All images and graphics used
are possible to be displayed on the 4D Labs Semiconductors range of products, however the quality may vary.

In no event shall 4D Labs Semiconductors be liable to the buyer or to any third party for any indirect, incidental,
special, consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss
of business opportunity) arising out of or relating to any product or service provided or to be provided by 4D Labs
Semiconductors, or the use or inability to use the same, even if 4D Labs Semiconductors has been advised of the
possibility of such damages.

4D Labs Semiconductors products are not fault tolerant nor designed, manufactured or intended for use or resale as
on line control equipment in hazardous environments requiring fail – safe performance, such as in the operation of
nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines or
weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical
or environmental damage (‘High Risk Activities’). 4D Labs Semiconductors and its suppliers specifically disclaim any
expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Labs Semiconductors’ products and devices in 'High Risk Activities' and in any other application is entirely
at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless 4D Labs Semiconductors from any
and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any 4D Labs Semiconductors intellectual property rights.

9. Contact Information

For Technical Support: www.4dlabs.com.au/support
For Sales Support: sales@4dlabs.com.au
Website: www.4dlabs.com.au

Copyright 4D Labs Semiconductors 2000-2020.

	1. 4DGL Introduction
	2. Diablo16 Chip-Resident Functions Summary
	2.1. GPIO Functions
	2.1.1 pin_Set(mode, pin)
	2.1.2 pin_HI(pin)
	2.1.3 pin_LO(pin)
	2.1.4 pin_Val(pin)
	2.1.5 pin_Read(pin)
	2.1.6 bus_Read()
	2.1.7 bus_Read8()
	2.1.8 bus_Write8(value)
	2.1.9 bus_SetPins(value)
	2.1.10 bus_ClearPins(value)
	2.1.11 bus_SetChangeInterrupt (function, portmask)
	2.1.12 Qencoder1(PHApin, PHBpin, mode)
	2.1.13 Qencoder1Reset()
	2.1.14 Qencoder2(PHApin, PHBpin, mode)
	2.1.15 Qencoder2Reset()
	2.1.16 pwm_Init(pin, mode, value)
	2.1.17 pin_Pulseout(pin, value)
	2.1.18 pin_Counter(pin, mode, OVFfunction)
	2.1.19 ana_HS(rate, samples, IO1buf, IO2buf, IO3buf, IO4buf, userFunction)
	2.1.20 pin_PulseoutCount(pin, frequency, count, function)
	2.1.21 OW_Reset(pin)
	2.1.22 OW_Read(pin)
	2.1.23 OW_Read9(pin)
	2.1.24 OW_Write(pin, data)
	2.1.25 NP_Write(pin, data, size, Options, RepeatFirst, Repeat, RepeatLast)

	2.2. System Memory Access Functions
	2.2.1 peekW(address)
	2.2.2 pokeW(address, word_value)

	2.3. Maths Functions
	2.3.1 ABS(value)
	2.3.2 MIN(value1, value2)
	2.3.3 MAX(value1, value2)
	2.3.4 SWAP(&var1, &var2)
	2.3.5 SIN(angle)
	2.3.6 COS(angle)
	2.3.7 RAND()
	2.3.8 RANDVAL(low, high)
	2.3.9 SEED(number)
	2.3.10 SQRT(number)
	2.3.11 OVF()
	2.3.12 CY()
	2.3.13 EVE_SP()
	2.3.14 EVE_SSIZE()
	2.3.15 uadd_3232(&res32, &val1, &val2)
	2.3.16 usub_3232(&res32, &val1, &val2)
	2.3.17 umul_1616(&res32, val1, val2)
	2.3.18 udiv_3232(&res32, val1, val2)
	2.3.19 ucmp_3232(&val1, &val2)

	2.4. Text and String Functions
	2.4.1 txt_MoveCursor(line, column)
	2.4.2 putch(char)
	2.4.3 putchXY(xpos, ypos, char)
	2.4.4 putstr(pointer)
	2.4.5 putstrXY(xpos, ypos, string)
	2.4.6 putstrCentred(xc, yc, string)
	2.4.7 putnum(format, value)
	2.4.8 print(...)
	2.4.9 to(outstream)
	2.4.10 charwidth('char')
	2.4.11 charheight('char')
	2.4.12 strwidth(pointer)
	2.4.13 strheight()
	2.4.14 strlen(pointer)
	2.4.15 unicode_page(charbeg, charend, charoffset)
	2.4.16 txt_Set(function, value)
	2.4.17 txt_FontBank(bank, address)
	2.4.18 PutnumXY(x, y, format, value)

	2.5. Ctype Functions
	2.5.1 isdigit(char)
	2.5.2 isxdigit(char)
	2.5.3 isupper(char)
	2.5.4 islower(char)
	2.5.5 isalpha(char)
	2.5.6 isalnum(char)
	2.5.7 isprint(char)
	2.5.8 isspace(char)
	2.5.9 toupper(char)
	2.5.10 tolower(char)
	2.5.11 LObyte(var)
	2.5.12 HIbyte(var)
	2.5.13 ByteSwap(var)
	2.5.14 NybleSwap(var)

	2.6. Graphics Functions
	2.6.1 gfx_Cls()
	2.6.2 gfx_ChangeColour(oldColour, newColour)
	2.6.3 gfx_Circle(x, y, radius, colour)
	2.6.4 gfx_CircleFilled(x, y, radius, colour)
	2.6.5 gfx_Line(x1, y1, x2, y2, colour)
	2.6.6 gfx_Hline(y, x1, x2, colour)
	2.6.7 gfx_Vline(x, y1, y2, colour)
	2.6.8 gfx_Rectangle(x1, y1, x2, y2, colour)
	2.6.9 gfx_RectangleFilled(x1, y1, x2, y2, colour)
	2.6.10 gfx_RoundRect(x1, y1, x2, y2, rad, colour)
	2.6.11 gfx_Polyline(n, vx, vy, colour)
	2.6.12 gfx_Polygon(n, vx, vy, colour)
	2.6.13 gfx_Triangle(x1, y1, x2, y2, x3, y3, colour)
	2.6.14 gfx_Dot()
	2.6.15 gfx_Bullet(radius)
	2.6.16 gfx_OrbitInit(&x_dest, &y_dest)
	2.6.17 gfx_Orbit(angle, distance)
	2.6.18 gfx_PutPixel(x, y, colour)
	2.6.19 gfx_GetPixel(x, y)
	2.6.20 gfx_MoveTo(xpos, ypos)
	2.6.21 gfx_MoveRel(xoffset, yoffset)
	2.6.22 gfx_IncX()
	2.6.23 gfx_IncY()
	2.6.24 gfx_LineTo(xpos, ypos)
	2.6.25 gfx_LineRel(xpos, ypos)
	2.6.26 gfx_BoxTo(x2, y2)
	2.6.27 gfx_SetClipRegion()
	2.6.28 gfx_Ellipse(x, y, xrad, yrad, colour)
	2.6.29 gfx_EllipseFilled(x, y, xrad, yrad, colour)
	2.6.30 gfx_Button(state, x, y, buttonColour, txtColour, font, txtWidth txtHeight, text)
	2.6.31 gfx_Button2(state, x, y, width, height, buttonColour, txtColour, text)
	2.6.32 gfx_Button3(state, x, y, width, height, buttonColour, txtColour, text)
	2.6.33 gfx_Panel(state, x, y, width, height, Colour)
	2.6.34 gfx_RoundPanel(state, x, y, width, height, radius, bevelwidth, Colour)
	2.6.35 gfx_Slider2(mode, x1, y1, width, height, colour, scale, value)
	2.6.36 gfx_ScreenCopyPaste(xs, ys, xd, yd, width, height)
	2.6.37 gfx_Slider(mode, x1, y1, x2, y2, colour, scale, value)
	2.6.38 gfx_RGBto565(RED, GREEN, BLUE)
	2.6.39 gfx_332to565(COLOUR8BIT)
	2.6.40 gfx_565to332(COLOUR)
	2.6.41 gfx_TriangleFilled(x1, y1, x2, y2, x3, y3, colour)
	2.6.42 gfx_PolygonFilled(n, vx, vy, colour)
	2.6.43 gfx_Origin(x, y)
	2.6.44 gfx_Get(mode)
	2.6.45 gfx_ClipWindow(x1, y1, x2, y2)
	2.6.46 gfx_Set(function, value)
	2.6.47 gfx_Arc(xc, yc, radius, step, startangle, endangle, mode)
	2.6.48 gfx_CheckBox(state, x, y, Width, Height, boxColour, textColour, text)
	2.6.49 gfx_RadioButton(state, x, y, width, height, boxColour, textColour, text)
	2.6.50 gfx_FillPattern(patptr, mode)
	2.6.51 gfx_Gradient(style, x1, y1, x2, y2, color1, color2)
	2.6.52 gfx_RoundGradient(style, x1, y1, x2, y2, radius, color1, color2)
	2.6.53 gfx_PieSlice(cx, cy, spread, radius, step, startangle, endangle, mode, colour)
	2.6.54 gfx_PointWithinBox(x, y, &rect)
	2.6.55 gfx_PointWithinRectangle(x, y, &recta)
	2.6.56 gfx_ReadBresLine(x1, y1, x2, y2, ptr)
	2.6.57 gfx_WriteBresLine(x1, y1, x2, y2, ptr)
	2.6.58 gfx_ReadGRAMarea(x1, y1, x2, y2, ptr)
	2.6.59 gfx_WriteGRAMarea(x1, y1, x2, y2, ptr)
	2.6.60 gfx_Surround(x1, y1, x2, y2, rad1, rad2, colour)
	2.6.61 gfx_Scope(Left, Width, Yzero, n, Xstep, Yamp, Colourbg, old_y1, new_y1, Colour1, … old_y4, new_y4, Colour4)
	2.6.62 gfx_RingSegment(x, y, Rad1, Rad2, starta, enda, colour)
	2.6.63 gfx_AngularMeter(value, &MeterRam, &MeterDef)
	2.6.64 gfx_Panel2(state, x, y, width, height, w1, w2, cl, cr)
	2.6.65 gfx_Needle(value, &NeedleRam, &NeedleDef)
	2.6.66 gfx_Dial(value, &DialRam, &DialDef)
	2.6.67 gfx_Gauge(value, &GaugeRam, &GaugeDef)
	2.6.68 gfx_LedDigits(value, &LedDigitRam, &LedDigitDef)
	2.6.69 gfx_LedDigit(x, y, digitsize, oncolour, offcolour, value)
	2.6.70 gfx_Slider5(value, &SliderRam, &SliderDef)
	2.6.71 gfx_Switch(state, &SwitchRam, &SwitchDef)
	2.6.72 gfx_Button4(state, &gfx_ButtonRam, &gfx_ButtonDef)
	2.6.73 gfx_Led(state, &LedRam, &LedDef)
	2.6.74 gfx_Scale(&ScaleRam, &ScaleDef)
	2.6.75 gfx_RulerGauge(value, &RulerGaugeRam, &RulerGaugeDef)
	2.6.76 gfx_GradientShape(GradientRAM, HorzVert, OuterWidth, X, Y, W, H, TLrad, TRrad, BLrad, BRrad, Darken, OuterColor, OuterType, OuterLevel, InnerColor, InnerType, InnerLevel, Split)
	2.6.77 gfx_GradientColor (Type, Darken, Level, H, Pos, Color)
	2.6.78 gfx_GradTriangleFilled(X0, Y0, X1, Y1, X2, Y2, SolidCol, GradientCol, GradientHeight, GradientY, GradientLevel, Type)
	2.6.79 gfx_XYrotToVal(x,y,base,mina,maxa,minv,maxv)
	2.6.80 gfx_XYlinToVal(x,y,base,minpos,maxpos,minv,maxv)

	2.7. Widget Functions
	2.7.1 widget_Create(count)
	2.7.2 widget_Add(hndl, index, widget)
	2.7.3 widget_Delete(hndl, index)
	2.7.4 widget_Realloc(handle, n)
	2.7.5 widget_GetWord(hndl, index, offset)
	2.7.6 widget_Setposition(hndl, index, xpos, ypos)
	2.7.7 widget_Enable(hndl, index)
	2.7.8 widget_Disable(hndl, index)
	2.7.9 widget_SetWord(hndl, index, offset, value)
	2.7.10 widget_SetAttributes(hndl, index, value)
	2.7.11 widget_ClearAttributes(hndl, index, value)
	2.7.12 widget_Touched(hndl, index)

	2.8. Display I/O Functions
	2.8.1 disp_SetReg(register, data)
	2.8.2 disp_setGRAM(x1, y1, x2, y2)
	2.8.3 disp_WrGRAM(colour)
	2.8.4 disp_WriteControl(value)
	2.8.5 disp_WriteWord(value)
	2.8.6 disp_ReadWord()
	2.8.7 disp_Disconnect()
	2.8.8 disp_Init()
	2.8.9 disp_BlitPixelsFromCOMn()

	2.9. Media Functions (SD/SDHC Memory Card or Serial Flash chip)
	2.9.1 media_Init()
	2.9.2 media_SetAdd(HIword, LOword)
	2.9.3 media_SetSector(HIword, LOword)
	2.9.4 media_RdSector(Destination_Address)
	2.9.5 media_WrSector(Source_Address)
	2.9.6 media_ReadByte()
	2.9.7 media_ReadWord()
	2.9.8 media_WriteByte(byte_val)
	2.9.9 media_WriteWord(word_val)
	2.9.10 media_Flush()
	2.9.11 media_Image(x, y)
	2.9.12 media_Video(x, y)
	2.9.13 media_VideoFrame(x, y, frameNumber)

	2.10. Flash Memory Chip Functions
	2.10.1 flash_Bank()
	2.10.2 flash_Blit1(bank, offset, count, pallete2colour)
	2.10.3 flash_Blit2(bank, offset, count, pallete4colour)
	2.10.4 flash_Blit4(bank, offset, count, pallete16colour)
	2.10.5 flash_Blit8(bank, offset, count)
	2.10.6 flash_Blit16(bank, offset, count)
	2.10.7 flash_Copy(bank, ptr, dest, count)
	2.10.8 flash_EraseBank(bank, confirmation)
	2.10.9 flash_Exec(flashbank, arglistptr)
	2.10.10 flash_GetByte(bank, ptr)
	2.10.11 flash_GetWord(bank, ptr)
	2.10.12 flash_LoadFile(bank, filename)
	2.10.13 flash_putstr(bank, ptr)
	2.10.14 flash_Run(bank)
	2.10.15 flash_WriteBlock(sourceptr, bank, page)
	2.10.16 flash_FunctionCall(bank, index, state, &FunctionRam, &FunctionDef, FunctionArgCount, FunctionArgStringMap)
	2.10.17 flash_LoadSPIflash(bank, hndl, idx)

	2.11. SPI Control Functions
	2.11.1 spi_Init(speed, address_mode)
	2.11.2 spi_Read()
	2.11.3 spi_Write(byte)
	2.11.4 spi_Disable()
	2.11.5 SPI1_Init(speed, mode, enablepin) or SPI2_Init(speed, mode, enablepin) or SPI3_Init(speed, mode, enablepin)
	2.11.6 SPI1_Read() or SPI2_Read() or SPI3_Read()
	2.11.7 SPI1_Write(byte) or SPI2_Write(byte) or SPI3_Write(byte)
	2.11.8 SPI1_SCK_pin(pin) or SPI2_SCK_pin(pin) or SPI3_SCK_pin(pin)
	2.11.9 SPI1_SDI_pin(pin) or SPI2_SDI_pin(pin) or SPI3_SDI_pin(pin)
	2.11.10 SPI1_SDO_pin(pin) or SPI2_SDO_pin(pin) or SPI3_SDO_pin(pin)
	2.11.11 spi_ReadBlock() or spi1_ReadBlock() or spi2_ReadBlock() or spi3_ReadBlock()
	2.11.12 spi_WriteBlock() or spi1_WriteBlock() or spi2_WriteBlock() or spi3_WriteBlock()

	2.12. Serial (UART) Communications Functions
	2.12.1 COM1_RX_pin(pin) or COM2_RX_pin(pin) or COM3_RX_pin(pin)
	2.12.2 COM1_TX_pin(pin) or COM2_TX_pin(pin) or COM3_TX_pin(pin)
	2.12.3 setbaud(baudnum)
	2.12.4 com_SetBaud(comport, baudrate/10)
	2.12.5 serin() or serin1() or serin2() or serin3()
	2.12.6 serout(char) or serout1(char) or serout2(char) or serout3(char)
	2.12.7 com_Init(buffer, bufsize, qualifier) or com1_Init(buffer, bufsize, qualifier) or com2_Init(buffer, bufsize, qualifier) or com3_Init(buffer, bufsize, qualifier)
	2.12.8 com_Reset() or com1_Reset() or com2_Reset() or com3_Reset()
	2.12.9 com_Count() or com1_Count() or com2_Count() or com3_Count()
	2.12.10 com_Full() or com1_Full() or com2_Full() or com3_Full()
	2.12.11 com_Error() or com1_Error() or com2_Error() or com3_Error()
	2.12.12 com_Sync() or com1_Sync() or com2_Sync() or com3_Sync()
	2.12.13 com_TXbuffer(buf, bufsize,pin) or com1_TXbuffer(buf, bufsize,pin) or com2_TXbuffer(buf, bufsize,pin) or com3_TXbuffer(buf, bufsize,pin)
	2.12.14 com_TXbufferHold(state) or com1_TXbufferHold(state) or com2_TXbufferHold(state) or com3_TXbufferHold(state)
	2.12.15 com_TXcount() or com1_TXcount() or com2_TXcount() or com3_TXcount()
	2.12.16 com_TXemptyEvent(function) or comn_TXemptyEvent(function)
	2.12.17 com_Mode("databits", "parity", "Stopbits", "comport")
	2.12.18 com_RXblock() or com1_RXblock() or com2_RXblock() or com3_RXblock()
	2.12.19 com_TXblock() or com1_TXblock() or com2_TXblock() or com3_TXblock()
	2.12.20 com_InitBrk(buffer, bufsize, qualifier) or com1_InitBrk (buffer, bufsize, qualifier) or com2_InitBrk (buffer, bufsize, qualifier) or com3_InitBrk (buffer, bufsize, qualifier)
	2.12.21 com_TXbufferBrk(buf, bufsize,pin) or com1_TXbufferBrk(buf, bufsize,pin) or com2_TXbufferBrk(buf, bufsize,pin) or com3_TXbufferBrk(buf, bufsize,pin)

	2.13. I2C BUS Master Functions
	2.13.1 I2C1_Open(Speed, SCL, SDA) or I2C2_Open(Speed, SCL, SDA) or I2C3_Open(Speed, SCL, SDA)
	2.13.2 I2C1_Close() or I2C2_Close() or I2C3_Close()
	2.13.3 I2C1_Start() or I2C2_Start() or I2C3_Start()
	2.13.4 I2C1_Stop() or I2C2_Stop() or I2C3_Stop()
	2.13.5 I2C1_Restart() or I2C2_Restart() or I2C3_Restart()
	2.13.6 I2C1_Read() or I2C2_Read() or I2C3_Read()
	2.13.7 I2C1_Write(byte) or I2C2_Write(byte) or I2C3_Write(byte)
	2.13.8 I2C1_Ack() or I2C2_Ack() or I2C3_Ack()
	2.13.9 I2C1_Nack() or I2C2_Nack() or I2C3_Nack()
	2.13.10 I2C1_AckStatus or I2C2_AckStatus or I2C3_AckStatus
	2.13.11 I2C1_AckPoll(control) or I2C2_AckPoll(control) or I2C3_AckPoll(control)
	2.13.12 I2C1_Idle() or I2C2_Idle() or I2C3_Idle()
	2.13.13 I2C1_Gets(buffer, size) or I2C2_Gets(buffer, size) or I2C3_Gets(buffer, size)
	2.13.14 I2C1_Getn() or I2C2_Getn() or I2C3_Getn()
	2.13.15 I2C1_Puts(buffer) or I2C2_Puts(buffer) or I2C3_Puts(buffer)
	2.13.16 I2C1_Putn() or I2C2_Putn() or I2C3_Putn()

	2.14. Timer Functions
	2.14.1 sys_T()
	2.14.2 sys_T_HI()
	2.14.3 sys_SetTimer(timernum, value)
	2.14.4 sys_GetTimer(timernum)
	2.14.5 sys_SetTimerEvent(timernum, function)
	2.14.6 sys_EventQueue()
	2.14.7 sys_EventsPostpone()
	2.14.8 sys_EventsResume()
	2.14.9 sys_DeepSleep(units)
	2.14.10 sys_Sleep(units)
	2.14.11 iterator(offset)
	2.14.12 sys_GetDate()
	2.14.13 sys_GetTime()
	2.14.14 sys_SetDate(year, month, day)
	2.14.15 sys_SetTime(hour, minute, second)
	2.14.16 sys_GetDateVar(&year, &month, &day)
	2.14.17 sys_GetTimeVar(&hour, &minute, &second, &msecs)

	2.15. FAT16 File Functions
	2.15.1 file_Error()
	2.15.2 file_Count(filename)
	2.15.3 file_Dir(filename)
	2.15.4 file_FindFirst(fname)
	2.15.5 file_FindNext()
	2.15.6 file_Exists(fname)
	2.15.7 file_Open(fname, mode)
	2.15.8 file_Close(handle)
	2.15.9 file_Read(destination, size, handle)
	2.15.10 file_Seek(handle, HiWord, LoWord)
	2.15.11 file_Index(handle, Hisize, LoSize, recordnum)
	2.15.12 file_Tell(handle, &HiWord, &LoWord)
	2.15.13 file_Write(*source, size, handle)
	2.15.14 file_Size(handle, &HiWord, &LoWord)
	2.15.15 file_Image(x, y, handle)
	2.15.16 file_ScreenCapture(x, y, width, height, handle)
	2.15.17 file_PutC(char, handle)
	2.15.18 file_GetC(handle)
	2.15.19 file_PutW(word, handle)
	2.15.20 file_GetW(handle)
	2.15.21 file_PutS(*source, handle)
	2.15.22 file_GetS(*string, size, handle)
	2.15.23 file_Erase(fname)
	2.15.24 file_Rewind(handle)
	2.15.25 file_LoadFunction(fname.4XE)
	2.15.26 file_Run(fname.4XE, arglistptr)
	2.15.27 file_Exec(fname.4XE, arglistptr)
	2.15.28 file_LoadImageControl(fname1, fname2, mode)
	2.15.29 file_Mount()
	2.15.30 file_Unmount()
	2.15.31 file_PlayWAV(fname)
	2.15.32 file_Rename(oldname, newname)
	2.15.33 file_SetDate(handle, year, month, day, hour, minute, second)
	2.15.34 file_CheckUpdate(filename, options)

	2.16. Sound Control Functions
	2.16.1 Snd_Volume(var)
	2.16.2 Snd_Pitch(pitch)
	2.16.3 Snd_BufSize(var)
	2.16.4 snd_Stop()
	2.16.5 snd_Pause()
	2.16.6 snd_Continue()
	2.16.7 snd_Playing()
	2.16.8 snd_Freq(frequency, duration)

	2.17. String Class Functions
	2.17.1 str_Ptr(&var)
	2.17.2 str_GetD(&ptr, &var)
	2.17.3 str_GetW(&ptr, &var)
	2.17.4 str_GetHexW(&ptr, &var)
	2.17.5 str_GetC(&ptr, &var)
	2.17.6 str_GetByte(ptr)
	2.17.7 str_GetWord(ptr)
	2.17.8 str_PutByte(ptr, val)
	2.17.9 str_PutWord(ptr, val)
	2.17.10 str_Match(&ptr, *str)
	2.17.11 str_MatchI(&ptr, *str)
	2.17.12 str_Find(&ptr, *str)
	2.17.13 str_FindI(&ptr, *str)
	2.17.14 str_Length(ptr)
	2.17.15 str_Printf(&ptr, *format)
	2.17.16 str_Cat(&destination, &source)
	2.17.17 str_CatN(&ptr, str, count)
	2.17.18 str_ByteMove(src, dest, count)
	2.17.19 str_Copy(dest, src)
	2.17.20 str_CopyN(dest, src, count)

	2.18. Touch Screen Functions
	2.18.1 touch_DetectRegion(x1, y1, x2, y2)
	2.18.2 touch_Set(mode)
	2.18.3 touch_Get(mode)
	2.18.4 touch_TestArea(&rect)
	2.18.5 touch_TestBox(&rect)

	2.19. Image Control Functions
	2.19.1 img_SetPosition(handle, index, xpos, ypos)
	2.19.2 img_Enable(handle, index)
	2.19.3 img_Disable(handle, index)
	2.19.4 img_Darken(handle, index)
	2.19.5 img_Lighten(handle, index)
	2.19.6 img_SetWord(handle, index, offset, word)
	2.19.7 img_GetWord(handle, index, offset)
	2.19.8 img_Show(handle, index)
	2.19.9 img_SetAttributes(handle, index, value)
	2.19.10 img_ClearAttributes(handle, index, value)
	2.19.11 img_Touched(handle, index)
	2.19.12 img_SelectReadPosition(handle, index, frame, xpos, ypos)
	2.19.13 img_SequentialRead(count, ptr)
	2.19.14 img_FileRead(*dest, size, handle, index)
	2.19.15 img_FileSeek(handle, index, HiWord, LoWord)
	2.19.16 img_FileIndex(handle, index, HiSize, LoSize, recordnum)
	2.19.17 img_FileTell(handle, index, &HiWord, &LoWord)
	2.19.18 img_ FileSize(handle, index, &HiWord, &LoWord)
	2.19.19 img_FileGetC(handle, index)
	2.19.20 img_FileGetW(handle, index)
	2.19.21 img_FileGetS(*string, size, handle, index)
	2.19.22 img_FileRewind(handle, index)
	2.19.23 img_FileLoadFunction(handle, index)
	2.19.24 img_FileRun(handle, index, arglistptr)
	2.19.25 img_FileExec(handle, index, arglistptr)
	2.19.26 img_FilePlayWAV(handle, index)
	2.19.27 img_TxtFontID(handle, index)

	2.20. Memory Allocation Functions
	2.20.1 mem_Alloc(size)
	2.20.2 mem_AllocV(size)
	2.20.3 mem_Allocz(size)
	2.20.4 mem_Realloc(&ptr, size)
	2.20.5 mem_Free(allocation)
	2.20.6 mem_Heap()
	2.20.7 mem_Set(ptr, char, size)
	2.20.8 mem_Copy(source, destination, count)
	2.20.9 mem_Compare(ptr1, ptr2, count)
	2.20.10 mem_ArrayOp1(memarray, count, op, value)
	2.20.11 mem_ArrayOp2(memarray1, memarray2, count, op, value)

	2.21. General Purpose Functions
	2.21.1 pause(time)
	2.21.2 lookup8(key, byteConstList)
	2.21.3 lookup16(key, wordConstList)

	2.22. Floating point Functions
	2.22.1 flt_ADD(&result, &floatA, &floatB)
	2.22.2 flt_SUB(&result, &floatA, &floatB)
	2.22.3 flt_MUL(&result, &floatA, &floatB)
	2.22.4 flt_DIV(&result, &floatA, &floatB)
	2.22.5 flt_POW(&result, &floatA, &floatB)
	2.22.6 flt_ABS(&result, &floatval)
	2.22.7 flt_CEIL(&result, &floatval)
	2.22.8 flt_FLOOR(&result, &floatval)
	2.22.9 flt_SIN(&result, &floatval)
	2.22.10 flt_COS(&result, &floatval)
	2.22.11 flt_TAN(&result, &floatval)
	2.22.12 flt_ASIN(&result, &floatval)
	2.22.13 flt_ACOS(&result, &floatval)
	2.22.14 flt_ATAN(&result, &floatval)
	2.22.15 flt_EXP(&result, &floatval)
	2.22.16 flt_LOG(&result, &floatval)
	2.22.17 flt_SQR(&result, &floatval)
	2.22.18 flt_LT(&floatA, &floatB)
	2.22.19 flt_EQ(&floatA, &floatB)
	2.22.20 flt_NE(&floatA, &floatB)
	2.22.21 flt_GT(&floatA, &floatB)
	2.22.22 flt_GE(&floatA, &floatB)
	2.22.23 flt_LE(&floatA, &floatB)
	2.22.24 flt_SGN(&floatval)
	2.22.25 flt_FTOI(&floatval)
	2.22.26 flt_ITOF(&fresult, var16)
	2.22.27 flt_UITOF(&fresult, uvar16)
	2.22.28 flt_LTOF(&fresult, var32)
	2.22.29 flt_ULTOF(&fresult, uvar32)
	2.22.30 flt_VAL(&fresult, numstring)
	2.22.31 flt_PRINT (&fvalue, formatstring)
	2.22.32 flt_PRINTxy (x, y, &fvalue, formatstring)

	2.23. Misc System Functions
	2.23.1 sys_PmmC()
	2.23.2 sys_Driver()

	2.24. SPI FLASH Functions
	2.24.1 spiflash_BlockErase(spi#, Enablepin, block)
	2.24.2 spiflash_BulkErase(spi#, Enablepin)
	2.24.3 spiflash_Exec(spi#, Enablepin, arglistptr)
	2.24.4 spiflash_GetC(spi#, Enablepin)
	2.24.5 spiflash_GetS(*String, size, spi#, Enablepin)
	2.24.6 spiflash_GetW(spi#, Enablepin)
	2.24.7 spiflash_ID(spi#, Enablepin)
	2.24.8 spiflash_Image(x, y, spi#, Enablepin)
	2.24.9 spiflash_LoadFunction(spi#, Enablepin)
	2.24.10 spiflash_LoadImageControl(spi#, Enablepin)
	2.24.11 spiflash_PlayWAV(spi#, Enablepin)
	2.24.12 spiflash_PutC(char, spi#, Enablepin)
	2.24.13 spiflash_PutS(source, spi#, Enablepin)
	2.24.14 spiflash_PutW(word, spi#, Enablepin)
	2.24.15 spiflash_Read(destination, size, spi#, Enablepin)
	2.24.16 spiflash_Run(spi#, Enablepin, arglistptr)
	2.24.17 spiflash_SetAdd(spi#, HiWord, LoWord)
	2.24.18 spiflash_SIG(spi#, Enablepin)
	2.24.19 spiflash_Write(Source, size, spi#, Enablepin)
	2.24.20 spiflash_Block32Erase(spi#, Enablepin)
	2.24.21 spiflash_Sector4Erase(spi#, Enablepin)
	2.24.22 spiflash_ReadByte(flags, spi#, Enablepin)
	2.24.23 spiflash_WriteByte(reg/value, spi#, Enablepin)
	2.24.24 spiflash_SetMode(spi#, mode)
	2.24.25 spiflash_LoadGCFImageControl(spi#, Enablepin)

	2.25. CRC Functions
	2.25.1 crc_16(buf, count)
	2.25.2 crc_CCITT(buf, count, seed)
	2.25.3 crc_CSUM_8(buf, count)
	2.25.4 crc_MODBUS(buf, count)

	3. System Registers Memory Map
	4. Appendix A : Runtime Error Messages
	5. Hardware Tools
	5.1. 4D Programming Tools
	5.2. Display Modules
	5.3. Memory Cards - FAT16 Format

	6. Workshop4 IDE
	6.1. Designer Environment
	6.2. ViSi Environment
	6.3. ViSi Genie Environment
	6.4. Serial Environment

	7. Revision History
	8. Legal Notice
	9. Contact Information

