£D4D LNABS

SEMICONDUCTORS

DIABLO 16

Embedded Graphics Processor

INTERNAL
FUNCTIONS

Documen t Revision: 2.6
Documen t Date: 13" October 2020

www.4dlabs.com.au

4‘3 SEMICONDUCTORS Table of Contents

Table of Contents

1. ADGL INtroduCtion......cccuiiiiiiiiiiiiiiiiciiniiiieeieeiiinesereneerensistssssssnsssssssessnsssssnssssansans 15
2. Diablo16 Chip-Resident FUNCtions SUMMary....ccccccoiveeiiiiiinniiiinenniiiiienese. 16

%)
c B T €1 @ 3 = 0 o Tt o [o 3SR 26
o 2.1.1 piN_Set(MOAE, PIN) .cccreiirieieiie ettt et e e eeteeeete e ete e eetbeeebee e taeeeabeeebeeesareeennes 27
'_|: 2.1.2 PIN_HI(PIN) ctettitieecteeeteete ettt ettt ettt ettt ettt aeseene et eneete e ete s ere s ene e 28
(&) 2.1.3 PIN_LO(PIN) evreereeeeesee et eee e s e esee e ses s eeeeeeee s e eeese et seeeseseeseeeseseeseeeeeeans 29
g D T N oY o TV =1 (12 ISR 30
LL P2 03 o[T Y=Y Lo o110) IS 31
D SN oYU Y=Y o | TSR URRR 32
(q0] D A 10 =YY b TSRS 33
E 2.1.8 bUS_ WILEB(VAIUR) ..vveie ettt ettt e e e tte e e e e bte e e e e bte e e e ebaeeaeenns 34
Q 2.1.9 bUS_SEIPINS(VAIUEG) .eecureeetieecieeetee ettt ettt ettt e e ire e et e et e s ate e ebae e snaeeenees 35
o) 2.1.10 bus_ClearPinS(ValUE)ueeeieeiiee ettt eette e et e e e e srte e e s e bte e e e ebaneaeenes 36
E 2.1.11 bus_SetChangelnterrupt (function, portmask)cccceceeevieeeceeenieesiee e 37
I 2.1.12 Qencoder1(PHApIN, PHBPIN, MOAE)......ccciiiiieeeieiecieeciee ettt st 38
- D 0 e B O L=Y g ol Yo L= o (=T =]) I USRS 39
o 2.1.14 Qencoder2(PHApIN, PHBPIN, MOAE)......ccciuiiiieeeieeecieeciee ettt stee st 40
(7)) 2.1.15 QENCOAEI2RESEL() vvveeeecriieeieiiiieeeeitee e ettt e e e et e e eette e e e e tte e e eetteeeeebteeeeebteeeeeaseeeananns 41
8 2.1.16 pwm_Init(pin, Mode, ValUE)cccuiereiieiiecee ettt e 42
Q 2.1.17 pin_PulseoUt(Pin, VAIUE).......cueii ittt ettt e et e e e aae e e 44
o 2.1.18 pin_Counter(pin, mode, OVFfUNCEION)......cc.covevriireereireeeere ettt ene e 45
E 2.1.19 ana_HS(rate, samples, 101buf, 102buf, I03buf, I04buf, userFunction).................. 47
2.1.20 pin_PulseoutCount(pin, frequency, count, function).........cccceeeveevieencieeecieescree e 48
8 2.1.21 OW_RESEE(DIN errreoeooeoeoooeeeeee oo oo oo eeoeeeeeeeeeeeeeeeeeeeeeeeeese oo 49
© = 2.1.22 OW _REAA(PIN) 1eeeietiieeiiciieeeeeitte e e eette e e eette e e e ette e e eebteeeesbteeeeebtseeeeasteeeeeseeeaeanssanananns 50
'g- 2.1.23 OW_REAA(PIN) c.treiitrieerieeeieeeite ettt e ecteeeette e s teeetae e sareesbeeessseesnbaeessaeesssassnsasesasesansns 51
o) 2.1.24 OW_Write(pin, data)...cccueee ettt e e et e e e e erre e e e e bre e e e ebeeeaeeaes 52
- 2.1.25 NP_Write(pin, data, size, Options, RepeatFirst, Repeat, RepeatlLast) 54
LD 2.2. System Memory ACCESS FUNCLIONS.......coccuiiieeie ettt s s e s ee e s e s neee s 56
m 2.2.1 PEEKW(AAAIESS) .oeeeveieeeeiiiee ettt e ettt e ettt e e e et e e e e e bt e e e e etteeeeeabteeeeesseeaeeassaeaeanns 57
i 2.2.2 pokeW(address, Word_ValU@)cceeccueiiiiieiiee ettt et et 58
9 2 TV = d o N LT ot o T3 RR 59
m 2.3.1 ABS(VAIUEB) oottt ettt ettt e e et e e e e bt e e e e ett e e e e e bteeeeebraeaeeaaraeaeaans 60
< 2.3.2 MIN(VAIUEL, VAIUB2) ..eeeeeieeeieeteeee ettt ettt e etve e e e etaee e e sebreeeesbreeeesbaneeennns 61
— 2.3.3 MAX(VAIUEL, VAlUB2) ..ttt ettt ettt e e ettt e e e e eate e e e e bre e e e ebaneaeenes 62
D 2.3.4 SWAP(VAIL, &VAI2) coeeeicuveeiiiirieeeeeeieeeeeeitreeeeeeteeeeeetreeeesetreeeesssreeeesssreeessssreseessssneeesnns 63
2.3.5 SIN(ANEIR) weeieeeeiee ettt et e e e et e e e et e e e e e eare e e e ebreeaeeataaeaeaan 64
2.3.6 COS(ANEIE) ettt et e ettt e e e ettt e e e et e e e e ebbeeeeebteeeesasteeaeestaeaesassanaeanns 65
2.3.7 RAND() cuveeetiieetee ettt ettt e et e et e e e be e e bt e e et e e e bae e s abeeeabae e tseeebee e tbeeanraeebaeenareeenres 66

DIABLO16 INTERNAL FUNCTIONS Page 2 of 554 www.4dlabs.com.au

4‘3 semcc':ﬁ[{L}cEgRSs Table of Contents

2.3.8 RANDVAL(IOW, RGN+t eee e ee e s e e e eee e s s e e see e eseeenans 67

2.3.9 SEED(NUMDEL) ettt ettt e e e et e e e e e e e e easbaaeeeeeeeseeasseseeens 68

D2 B0 0 Y@ 12 I (0 T¥T 0] =T o S 69

20 701 5 T LV RSP 70

v 23112 CY() eorveeeeeeeeee e eeeeeeee e eeeseee e e s e s s sees e 71
g D T80 B AV Y 1 TSR UPRPN 72
= 2.3 14 EVE_SSIZE() evrveeeeeeeeeeeeeeeeeeee e eeeeseeeeseesses e ses s eee s ees s e seeseeeseseessesseseeeseeseseseeenans 73
.ld 2.3.15 uadd_3232(&res32, &vall, &Val2)cccoviiiiiiiiicieee e 74
cC 2.3.16 usub_3232(&res32, &vall, &Val2)ccccviiiiiiiee e 75
-) 2.3.17 umul_1616(&res32, vall, Val2)cceeecuieiiiecee ettt 76
Ll 2.3.18 udiv_3232(&res32, Vall, Val2)ccuuiieeieee ettt et 77
TU 2.3.19 UCMP_3232(&VAI1, &VAI2) ..ottt 78
C 2.4. TeXt and SEHNG FUNCHIONSvvuvveeeeeceeeeieess st sessssssssesssss s sasssssssssssssss s ssssssssseses 79
qh) 2.4.1 txt_MoveCursor(ling, COIUMN)ccccuiiii ettt e e e e raeeeeeaes 80
o) D B o101 o (e o = SRS 81
E 2.4.3 putchXY(XPOS, YPOS, CRAI) ceeiiiiiieccieee ettt e e et e e e e ebre e e s e bre e e e ebaeeeeenes 82
P N U E A (oo T 0] =Y o TSR 83

I 2.4.5 putstrXY(XPos, YPOS, STINE).....uuiii ittt ete e e et e e e e stte e e e e bre e e e ebaeeeeenns 85
B 2.4.6 putstrCentred(XC, YC, STINE) ...ue i eee ettt e e bae e aeeeaes 86
(75 2.4.7 putnUM(FOrmMat, ValUE)ccccueeiiie ettt ettt e s bae e areeenns 87
v 22,8 PIINE(c12)erereeeeeeeeeeeeeeeeeeeeseeeeees s s s e e e s s s e s e s ee s s e 89
8 2.4.9 TO(OULSTIRAMY) evviiiiiieiei ettt e eette e eetre e e eetae e e eetreeeeetreeeeetaeeeesebseeeesesbeeeesnsraeeennns 91
o 2.4.10 charWidth('Char") ..ottt et et et eas 93
2.4.11 charh@ight('Char") .ooue e et e e ba e e s aaeeenees 94
Q. 2.4.12 SErWIAEN(POINTEL) c.eeiiiecieeee ettt e et e e e e tte e e e e ebte e e e ebeeeeeebeneaeanns 95
8 2813 SEREIIE() crrrrr oo eeeeeeeeeeeosese e sesesssssssese e sss s 96
© m— D 0 S (g 1=T oY (o Yo T a1 (=Y ISP 97
L 2.4.15 unicode_page(charbeg, charend, charoffset)ccccecvieiiieeciienieecee e 98
% 2.4.16 txt_Set(function, VAIUE)ccuiii ittt ettt e et e e e e baeeeeeans 99
- 2.4.17 txt_FontBank(bank, address)ccoceeeeiiieiiieeeee et 102
LD 2.4.18 PutnumXY(X, y, format, ValUue)......ccceecueeiiiieiieeeee ettt e 103
(o) 2.5, CLYPE FUNCLIONS ...ttt sttt sttt s st st sa st esssssssasassesesssnas 104
i DT M T =41 (el o =1 o USRI 105
O 2.5. 2 iSXAIZIT(CNAI) coevieeiee ettt e et e et e e bt e e s be e ebeeesabeesbaeesaneeens 106
- 2.5.3 SUPPEI(CNAT) ettt e e ettt e e e e bt e e e e e ba e e e eataee e e nsbeeeeannaaeann 107
m PN T (o XY= d (ol o =T o F R UR R TRR 108
g 2.5.50SAIPNA(CIAT) .. e e e b e e e aaaea s 109
D 2.5.60SAINUM(CRAT) cutiiiiicieee ettt eeabre e et e e e esaaaeeeseabaeeeennsanee s 110
DY AT o Y4 a1 d (el o -1 o SRR 111

P B I o T= Yol =] (] o =1 o PR PSR SUUPPURR 112

PN B (10T o) oY1 (el o -1 o ISR USRI 113

DT (0 o] (o) VY=Y 4 (o] o F-T) [P R 114

DIABLO16 INTERNAL FUNCTIONS Page 3 of 554 www.4dlabs.com.au

4‘3 SEMICONDUCTORS Table of Contents

2.5, 11 LOBYEE(VA) oo seeeeee s seees e seesees s ees e eseesesseseeseesseeseseeeseseeeeeeens 115

DT W o 1 o1V o =T (7 | o SR 116

2.5.13 BYLESWAP(VAI) ceeveieiiieetieeeieeeteeeteesteeestee e st e e stee e saeesataessaeesnseesnsneesnseesnseeennseeans 117

DT i AV o LIV o] (V7 T o R 118

2 B ST €] =T o] aT [0 ST] Tt o o 13 S 119
(@) 2.6, 1 IX_CIS() cvervreeeeeeeeeeeeseeeeeeeee e e e e e s e e e e e seeseee e eeeeee e s s s se s eneeeeeeeeeeeenees 121
'_|: 2.6.2 gfx_ChangeColour(oldColour, NeWCOIOUI) ...cc.eveeeeiiiieeciiee et 122
(&) 2.6.3 gfx_Circle(x, ¥, radius, COIOUT)uiiiiiieiieiiie ettt et e 123
c 2.6.4 gfx_CircleFilled(x, y, radius, COIOUN).....ccccuiiiieiiiieeccieee et 124
|-|=- 2.6.5 gfx_Line(X1, Y1, X2, Y2, COlOUN) w.eiiiiiiiieieiiiie ettt e ettt e e et e e e raee e e anaee s 125
— 2.6.6 gfXx_HIINE(Y, X1, X2, COIOUN) cuuviiiiieiiieecie ettt ettt e tte et e e e ae e ereeesnneeans 126
C 2.6.7 gfX_VIINE(X, Y1, Y2, COIOUI) coiiiiiiieeiiiie ettt ettt e e e satae e e e rae e e enaaeee s 127
C 2.6.8 gfx_Rectangle(x1, Y1, X2, Y2, COlOUN)uiiiiiiiiieeiee ettt ettt eee e te e svee e 128
qh) 2.6.9 gfx_RectangleFilled(x1, y1, X2, Y2, COIOUN) ..ccccuriieeeciieeeeeee et 129
o) 2.6.10 gfx_RoundRect(x1, y1, X2, y2, rad, COIOUT)....uvrririerrieeiieeite e eee et 130
E 2.6.11 gfx_Polyline(n, VX, VY, COIOUN)...ciiiiiiiiiiiie ettt ettt e e 131
I 2.6.12 gfx_Polygon(n, VX, VY, COIOUT) ...eiiiiiiiiieiiie et ectee ettt e tte e tee e tae e e svae e eaaeeens 133
. 2.6.13 gfx_Triangle(x1, y1, X2, y2, X3, Y3, COIOUN) cuuriiiieiiieeeeceeeeeceee et 134
o) 2.6. 14 BFX_DOL()cvrvveeeeeeeeeseeeeeeeeeeeeeeeeeeeeseeeseeseesesseeseseeseeseee e eeeeseeeeesseeseseeeseesesseeseeeerenens 135
(75 2.6.15 gfX_BUIIET(radiUs) .oecveeeiieecieeeiie ettt ettt et e e tr e e s be e e ta e e aae e ebaeeenaeeans 136
v 2.6.16 gfx_OrbitInit(&x_dest, &Y deSt)eeeeeciiieieiieeecceee e 137
8 2.6.17 gfx_Orbit(angle, diStANCE)ccccueeeciieeeiee ettt e re e s bae e 138
o 2.6.18 gfX_PULPIXEI(X, Y, COIOUT) coiuriiirie ettt ettt ettt et et e eas 139
- 2.6.19 GEK_GEEPIXEI(X, Y) evvrrererrrrererereseeseseseesseeesesessssssesessessssessses s sesseesssssssesesaseesesesesens 140
Q. 2.6.20 gfX_IMOVETO(XPOS, YPOS) weeeeerriieeeiirieeeeirieeeeitteeesireeeeesssesesssseeessssseessssssesesanseneens 141
8 2.6.21 gfx_MoveRel(Xoffset, YOTFSEL)cccviiicieiiie e 142
© m— D Y= b 2 Vo) () PSR 143
L PR I =4 o G a1k € | SOOI 144
% 2.6.24 gfX_LINETO(XPOS, YPOS) cvrrreeeiurrreeeiiereeeireeeeeiisteeeesseeeessssesesasssesessssssessssssssessnssseens 145
- 2.6.25 gfX_LINEREI(XPOS, YPOS) vererriririreirieeeieeiiieesteeesteeesseesteessseessssessssesssssessssesesssnesns 146
() 2.6.26 EIX_BOXTO(X2, Y2) ervvvvvveveeeremesresssssssssssseeesseesssssssssssssssssssessssssesesessssssssssssesesssee 147
m 2.6.27 gfX_SEtCIIPREZION() veeeeeriiieeeiiiie ettt e et e et e e e et e e e eeabae e e eeabaeeeennaeeean 148
i 2.6.28 gfx_Ellipse(x, y, Xrad, yrad, COIOUT).....cuiiiiiiiiiieiei ettt 149
O 2.6.29 gfx_EllipseFilled(x, y, xrad, yrad, COlOUr)ccuovieiiiiiiicieee e 150
— 2.6.30 gfx_Button(state, x, y, buttonColour, txtColour, font, txtWidth txtHeight, text) . 151
m 2.6.31 gfx_Button2(state, x, y, width, height, buttonColour, txtColour, text)................. 153
< 2.6.32 gfx_Button3(state, x, y, width, height, buttonColour, txtColour, text)................. 154
5 2.6.33 gfx_Panel(state, x, y, width, height, Colour)cccceiiiiiiiiiiiiieeeeeeecee e, 155
2.6.34 gfx_RoundPanel(state, x, y, width, height, radius, bevelwidth, Colour)............... 156

2.6.35 gfx_Slider2(mode, x1, y1, width, height, colour, scale, value).......c..cccceeecvvrenunenne 157

2.6.36 gfx_ScreenCopyPaste(xs, ys, xd, yd, width, height)ccccoiiiiiiiiiiiiie, 158

2.6.37 gfx_Slider(mode, x1, y1, x2, y2, colour, scale, value).........cccceeeveeevveeiiieeccieeeneens 159

DIABLO16 INTERNAL FUNCTIONS Page 4 of 554 www.4dlabs.com.au

4‘3 SEMICONDUCTORS Table of Contents

2.6.38 gfX_RGBt0565(RED, GREEN, BLUE) w...eoveeveeeeeeeeeeeeeeeeeeeeseeeeeseeeseseessesseseesseseseeeeeens 160
2.6.39 gfX_332t0565(COLOURSBIT) ...eecvvieiieiieieeieeiteesieesteeieeteesteesreesraesssessseeseenseesenas 161
2.6.40 BFX_565t0332(COLOUR) ...eoveeeeeee e eeeeeeseeseseeeee s eseseessesee s sseseeesesesseeens 162
2.6.41 gfx_TriangleFilled(x1, y1, X2, y2, X3, y3, COIOUI).....ovviiiiiiieeeiieeeeceee e 163
v 2.6.42 gfx_PolygonFilled(n, VX, VY, COIOU) ..c.uiiiiiieiiieeee ettt eite e see et see e 164
g P SR =4 o O L4 T={1 o O) P 165
© — 2.6.44 gfX_GEL(MOE) ..viieeieeeiie ettt e e e e st e bt e e s te e e ae e e nteesaseeeenaeeans 166
.ld 2.6.45 gfx_ClipWiIindoW(X1, Y1, X2, Y2) ceeecrieeeeiiieeeeiieeeeecie e e ectre e e esare e e esaae e e sssaeeesenaaee s 167
cC 2.6.46 gfX_Set(FUNCLION, VAIUE) ...cvcveieeeeeceieeeeeeeeee ettt 168
-) 2.6.47 gfx_Arc(xc, yc, radius, step, startangle, endangle, mode)ccccecevvevivercieecneenne 171
Ll 2.6.48 gfx_CheckBox(state, x, y, Width, Height, boxColour, textColour, text) 172
TU 2.6.49 gfx_RadioButton(state, x, y, width, height, boxColour, textColour, text)............. 173
cC 2.6.50 gfx_FillPattern(patptr, MOAE).....cccuiei ettt e e e eaaee e 174
S 2.6.51 gfx_Gradient(style, x1, y1, X2, y2, colorl, color2)ccocvevurerceeevieeiieeeciee e 175
-Ig 2.6.52 gfx_RoundGradient(style, x1, y1, x2, y2, radius, colorl, color2)cccceeeuunnennn. 176
cC 2.6.53 gfx_PieSlice(cx, cy, spread, radius, step, startangle, endangle, mode, colour) 177
I 2.6.54 gfx_PointWithinBOX(X, Y, &FECL) ...c.uiiiiiiiiie ettt e 178
I 2.6.55 gfx_PointWithinRectangle(X, ¥, &recta)......cccoceeeveeciieciie e 179
o~ 2.6.56 gfx_ReadBresLine(X1, Y1, X2, Y2, PLF) cceecceeeiiieecieeecieecteeesiteesveeeieeesaeesvneesaneeens 180
8 2.6.57 gfx_WriteBresLine(X1, Y1, X2, Y2, PLr) cocureeeecieee ettt e e e 181
(7)) 2.6.58 gfx_ReadGRAMarea(X1, Y1, X2, Y2, PIr) cocceeireeeee ettt etee e ste e et eaaee s 182
Q 2.6.59 gfx_WriteGRAMarea(X1, Y1, X2, Y2, PLr) oot ecree et e e e 183
8 2.6.60 gfx_Surround(x1, y1, x2, y2, radl, rad2, coOlOUr)ccceeviievieercreeeriie e eciee e 184
| 2.6.61 gfx_Scope(Left, Width, Yzero, n, Xstep, Yamp, Colourbg, old_y1, new_y1,
(ol Colourl, ... old_y4, NEW_Y4, COIOUIA) ..ueeiiiiieeiee ettt et tee e e ree e e eavae e e e 185
v 2.6.62 gfx_RingSegment(x, y, Radl, Rad2, starta, enda, colour)cccceevreviieercrneennennne 186
.2 2.6.63 gfx_AngularMeter(value, & MeterRam, &MeterDef)ccccvvveeevcieeeecciieeeccnienn, 187
i - 2.6.64 gfx_Panel2(state, x, y, width, height, w1, W2, cl, Cr)..ccccovrriiiiiiicieeeeee e, 189
Q. 2.6.65 gfx_Needle(value, &NeedleRam, &NeedleDef)cceccvevevveeccericie e 190
E 2.6.66 gfx_Dial(value, &DialRam, &DialDef)cccocuiiieeiiiieeeee e 192
LD 2.6.67 gfx_Gauge(value, &GaugeRam, &GaugeDEf).......cccccveevciiiiiieecceeee e, 194
2.6.68 gfx_LedDigits(value, &LedDigitRam, &LedDigitDef).........ccceecuvveeeciieeeciiieeccen, 196
m 2.6.69 gfx_LedDigit(x, y, digitsize, oncolour, offcolour, value)cccceevuveiiieencreeenneenns 198
i 2.6.70 gfx_Slider5(value, &SliderRam, &SIiderDef)cccoeveeciiieeeciiieeeceeee e, 199
9 2.6.71 gfx_Switch(state, &SwitchRam, &SWitchDef)cccveeviiiiiiiicciieee e, 201
m 2.6.72 gfx_Button4(state, &gfx_ButtonRam, &gfx_ButtonDef)ccccecvveeeiiieeeecnneenn. 202
< 2.6.73 gfx_Led(state, &LedRam, &LedDEf)cccceeiiiieeeeeereeteecteeetee et 204
— 2.6.74 gfx_Scale(&ScaleRam, &ScaleDef)ocvviiiieeeieieceecee e 205
D 2.6.75 gfx_RulerGauge(value, &RulerGaugeRam, &RulerGaugeDef)cccceccvveeeeunnennn. 207

2.6.76 gfx_GradientShape(GradientRAM, HorzVert, OuterWidth, X, Y, W, H, TLrad,
TRrad, BLrad, BRrad, Darken, OuterColor, OuterType, OuterLevel, InnerColor,
INNerType, INNEILEVEL, SPIIT) covviieieeeiie et et e e e e eaaeeas 208

2.6.77 gfx_GradientColor (Type, Darken, Level, H, Pos, CoIOr)......cccooeeeeeiiieeecirieeeecieeen, 210

DIABLO16 INTERNAL FUNCTIONS Page 5 of 554 www.4dlabs.com.au

4‘3 SEMICONDUCTORS Table of Contents

2.6.78 gfx_GradTriangleFilled(XO0, YO, X1, Y1, X2, Y2, SolidCol, GradientCol,

GradientHeight, GradientY, GradientLevel, TYPE) ...ccovevceeeiii et 211
2.6.79 gfx_XYrotToVal(x,y,base,mina,maxa,Minv,Maxv)c.cccceeerrirreeeiirreeesiirreeessinneeens 212
2.6.80 gfx_XYlinToVal(x,y,base,minpos,maxpos,Minv,Maxv)ccceeererrrrreriueercrneesirnenns 213
2 2.7, WIAZEE FUNCHONS rvveeereeeeeeeeeeeeeseeeesesseseeeesseseesseeessessesseeessesseseeseeessssseeeeeessssseeee 214
o 2.7.1 widget _Create(CoUNT) .oocciiie ettt et e e et e e e saaae e e s arae e e ennaeee s 215
-.l: 2.7.2 widget_Add(hndl, index, WIidZet)cccueiiriiiiieecee et 216
(&) 2.7.3 widget_Delete(hndl, iNdeX)c..oeiieuiiieieiiee e e 217
[- 2.7.4 widget_Realloc(handle, N)......eeceie ettt e 218
-) 2.7.5 widget_GetWord(hndl, index, OffSet)ccccecveeeceiiiiie e 219
L 2.7.6 widget_Setposition(hndl, index, Xpos, YPOS) ...eeeeeiirreeieiiiiieeciiiee e eaaee e 220
C 2.7.7 widget_Enable(hndl, iNdeX).......cueeiuiieeiieeeie ettt et 221
cC 2.7.8 widget_Disable(hndl, iINAEX)......cccoeciiiiiiiiiie et e 222
qh) 2.7.9 widget_SetWord(hndl, index, offset, value)ccceeeueeeiiiiiieeccee e, 223
2.7.10 widget_SetAttributes(hndl, index, value)cccccuveriiiiiieeciiee e, 224
o
c 2.7.11 widget_ClearAttributes(hndl, index, value)ccccecveeeiiiieiiieceeee e 225
_I 2.7.12 widget_Touched(hndl, INAEX).....cccuiiiieiiiiieeceee e e e 226
. 2.8. DisPlay I/O FUNCLIONScueeveeiieiteesieeeteeetete ettt be e s e sae s enesneneas 227
o .8.1 disp_SetReg(register, data)cccvieiieieeceecie ettt e e re et s
2.8.1 disp_SetReg(register, data) 228
(7)) 2.8.2 disp_SETGRAMI(XL, Y1, X2, ¥2) cureeieeciieeeeiiieeeeireeeeeiteeeeestreeeesaaeeeesasaeeesensaeeesnnnaneens 229
8 2.8.3 ISP WIGRAM(COIOUT) cvvvveveeeeerereeeeeseee oo eeeseeeesesesessssseseessee e eeessssesssseesesesses 230
Q 2.8.4 disp_WriteCoNtrol(VaAlUE)cueeeuieeiieeeiee ettt ettt ettt et eeaae e 231
(@) 2.8.5 disp_WIIEWOIA(VAIUE) ...ttt ettt 232
E 2.8.6 diSP_REAAWOIT()..vvvvvvrrereeeeseeeeeeeeeseeeseeeeeeeesesseeeesseesesseeseeeeessesesseeseseesessseee e 233
.8.7 diSP_DISCONNECE() cvveeurreerierieerieesieisteeteerteesteeseesrteseteeteeteesbaesraessseenseenteessaesseesneeenns
2.8.7 disp_Di () 234
8 2.8.8 GISD_INIL() wrrrrrrreeeeeeeeeooeooses oo oo 235
— 2.8.9 disp_BIitPiXelSFFOMCOMN()....uuviiiieciiiieeeciiee ettt e e et e e esrae e e era e e e e earaeee s 236
Q. 2.9. Media Functions (SD/SDHC Memory Card or Serial Flash chip)cccccecevveveevreeenenes 237
C 2.9. 1 MEIA_INIT() eeereeeiiieeiee ettt e et e e et e e re e st e e e bb e e s e e e aae e raeeebaeeeaaeeaa 238
e 2.9.2 media_SetAdd(HIWOrd, LOWOI)ccouiieiuiieiiieeiee ettt et eveeeetee e et eaveeens 239
LD 2.9.3 media_SetSector(HIWord, LOWOId)cccvueeiieeeiieeeciee e ctee e eeeesreeevee e evee s 240
m 2.9.4 media_RdSector(Destination_Address)ccceeeecieeeeeciiieeeecieee e e e e 241
i 2.9.5 media_WrSector(Source_Address)ccieeeecieeeeeiieeeeecieeeeecieee et e e rre e e aaeee s 242
O 2.9.6 MEAIa_REAUBYLE() ..eeireeereieiieeeitie ettt eeteeeetreeste e e ete e eette e s veeeetaeesbeeeaaeernseeeabesennseenns 243
EI DA I A 41V L= T T2 Lo AV o [I 244
< 2.9.8 media_WriteByte(bDYte_Val)ccceiicieeceecee et 245
f— 2.9.9 media_WriteWord(Word_val)ccceeeriieiecieeee et eee e ee e e 246
D 2.9.10 MEAIA_FIUSI() 1eeeetiiieieeeciie ettt et et e e e be e e tae e aae e sbeeeeaneeens 247
2.9.11 MEAIa_IMAZE(X, Y) crrreeeiriieeiiiieeeeiieeeeecreeeeecteeeeeetteeeeeeabaeeesssseeeesasseeesansseeasansaeeans 248
2.9.12 MEAIa_VIdEO(X, Y)ereerreeeiriieeirieeitie ettt e eteeeetee e ette e e ete e e re e s raeebaeesbeeeaaeesnseesabesesnneeans 249
2.9.13 media_VideoFrame(x, y, frameNumber)ccccoiiiiiiiiiicccie e 250

DIABLO16 INTERNAL FUNCTIONS Page 6 of 554 www.4dlabs.com.au

4‘3 semcc':ﬁ[{L}cEgRSs Table of Contents

2.10. Flash Memory Chip FUNCHIONS.......coerieieirecereseseeiecee s seens 252

D I I 1 T o T = 1= T 1 PR 253

2.10.2 flash_Blit1(bank, offset, count, pallete2colour).......ccccecevevieeecieeiie e 254

2.10.3 flash_Blit2(bank, offset, count, pallete4colour).......ccccoveieeiciieeeiiieeeciieee e, 255

2 2.10.4 flash_Blit4(bank, offset, count, palletel6colour)........ccccvevieeeceriiieeriee e 256

o 2.10.5 flash_Blit8(bank, offset, COUNL)oeeieiiiieiceeeeeee e 257

-.l: 2.10.6 flash_Blit16(bank, offset, COUNT)cccceeiiiiiiiiecee e 258

(&) 2.10.7 flash_Copy(bank, ptr, dest, COUNt)ccccoiiiieiiiieece e 259

[- 2.10.8 flash_EraseBank(bank, confirmation)cccceeceieiiieccin e 260

-) 2.10.9 flash_Exec(flashbank, arglistptr)cccceeeieeiiieecei e 261

L 2.10.10 flash_GetByte(bank, Pr)c..cei i e 262

C 2.10.11 flash_GetWord(bank, PLr)c.cccieeceeccee ettt et e sve e are e e sbae e eaaeeens 263

cC 2.10.12 flash_LoadFile(bank, filename)cccuieiiecieeeeee e 264

qh) 2.10.13 flash_putstr(bank, Ptr) ...cceecee e 265

) 2.10.14 flash_RUN(DANK) ..eveiieiiiie e et e e e e e eanaeee s 266

c 2.10.15 flash_WriteBlock(sourceptr, bank, page)......cccceeeieeeciiiiieeccee e 267
2.10.16 flash_FunctionCall(bank, index, state, & FunctionRam, &FunctionDef,

I FunctionArgCount, FUNCtIONAIEStrNGMaP)ueeiieciiiee ettt e e e 268
S 2.10.17 flash_LoadSPIflash(bank, hndl, idX).......ccccecovieeeiieiiiecie e 269
W 2.10. SPI CONETrOl FUNCLIONS ..oouviiieeieteeeeteeeete ettt et e st eee b enaesesreebesbeeanennesnnenns 270
(Vs 2.11.1 spi_Init(speed, address_MoOde)cceecuieeeeiiiieeeiieee et e 271
8 2 Y o T (=TT [SRS 272
o 2 S B o T ¢ 1 0= ¢ 17) TSRS 273
| 2.11.4 SPI_DISADIE() c.vvveeiieeceeeieeee ettt ettt ettt et neeenas 274

o 2.11.5 SPI1_Init(speed, mode, enablepin) or SPI12_Init(speed, mode, enablepin) or
(p) SPI13_Init(speed, mode, enablepin)ccccvieriieiiie e e 275
,2 2.11.6 SPI1_Read() or SP12_Read() or SPI3_Read()cccceevvvreeeiriereeiiieeeecieeeeecrvee e e 277
N - 2.11.7 SPI1_Write(byte) or SPI2_Write(byte) or SPI3_Write(DYte)oveveeveeeeereerererns 279
Q. 2.11.8 SPI1_SCK_pin(pin) or SPI2_SCK_pin(pin) or SPI3_SCK_pin(pin....eerrrrveeeerrrreen 280
E 2.11.9 SPI1_SDI_pin(pin) or SPI2_SDI_pin(pin) or SPI3_SDI_pin(pin)....ccccceevvueercrererneenns 281
LD 2.11.10 SPI1_SDO_pin(pin) or SPI2_SDO_pin(pin) or SPI3_SDO_pin(pin)cccvreeeureeenn. 282
2.11.11 spi_ReadBlock() or spil_ReadBlock() or spi2_ReadBlock() or spi3_ReadBlock() 283
'c 2.11.12 spi_WriteBlock() or spil_WriteBlock() or spi2_WriteBlock() or
c SPI3_WILEBIOCK() vveevreeiieeeiie ettt ettt ettt et e et e e save e et e e e sabe e sabaeebaeesabeeenaaeas 284
| 2.12. Serial (UART) Communications FUNCLIONS..........ceeeverreereenriereeeenreeeenneereesresreeeenseeseens 285
m 2.12.1 COM1_RX_pin(pin) or COM2_RX_pin(pin) or COM3_RX_pin(pin)ccccevereurennn. 286
< 2.12.2 COM1_TX_pin(pin) or COM2_TX_pin(pin) or COM3_TX_pin(pin)cccceeervrerrueens 287
5 2.12.3 5ethbaud(baudnUmM)ccuiii et et et e e aaaa s 288
2.12.4 com_SetBaud(comport, baudrate/10).......cccceveevereieeiirieirientee e cre et 289
2.12.5 serin() or serin1() or serin2() or SEriN3().....ccccueeeeciieeeeiieeeeeieee e e e e 290
2.12.6 serout(char) or serout1(char) or serout2(char) or serout3(char)ccecvvreeeunnnnen. 291

DIABLO16 INTERNAL FUNCTIONS Page 7 of 554 www.4dlabs.com.au

4‘3 SEMICONDUCTORS Table of Contents

2.12.7 com_Init(buffer, bufsize, qualifier) or com1_lInit(buffer, bufsize, qualifier) or

com2_Init(buffer, bufsize, qualifier) or com3_Init(buffer, bufsize, qualifier).................. 292
2.12.8 com_Reset() or com1_Reset() or com2_Reset() or com3_Reset()ccoveerurnnnn. 294
2.12.9 com_Count() or com1_Count() or com2_Count() or com3_Count()ccceeruvrunve 295
(V)] 2.12.10 com_Full() or com1_Full() or com2_Full() or com3_Full() .ccceevveervreeriirreernnnnn. 296
- 2.12.11 com_Error() or com1_Error() or com2_Error() or com3_Error().....ccccceecvveerunene 297
,9 2.12.12 com_Sync() or com1_Sync() or com2_Sync() or com3_Sync()....cccceevevveeercrnnennn 298
'ld 2.12.13 com_TXbuffer(buf, bufsize,pin) or com1_TXbuffer(buf, bufsize,pin) or
c com2_TXbuffer(buf, bufsize,pin) or com3_TXbuffer(buf, bufsize,pin)ccccccceeuvveennnen. 299
-3 2.12.14 com_TXbufferHold(state) or com1_TXbufferHold(state) or
L com2_TXbufferHold(state) or com3_TXbufferHold(state)ccceeevvvevcieerieeeiiee e, 300
— 2.12.15 com_TXcount() or com1_TXcount() or com2_TXcount() or com3_TXcount().... 301
© 2.12.16 com_TXemptyEvent(function) or comn_TXemptyEvent(function) 302
E 2.12.17 com_Mode("databits", "parity", "Stopbits", "comport").......ccccccveerriiiireriinnnnn. 305
()] 2.12.18 com_RXblock() or com1_RXblock() or com2_RXblock() or com3_RXblock() 306
ot 2.12.19 com_TXblock() or com1_TXblock() or com2_TXblock() or com3_TXblock()....... 307
E 2.12.20 com_lInitBrk(buffer, bufsize, qualifier) or com1_InitBrk (buffer, bufsize,
I qualifier) or com2_InitBrk (buffer, bufsize, qualifier) or com3_InitBrk (buffer, bufsize,
Lo TUE= |11 1= o) ISR 308
b~ 2.12.21 com_TXbufferBrk(buf, bufsize,pin) or com1_TXbufferBrk(buf, bufsize,pin) or
8 com2_TXbufferBrk(buf, bufsize,pin) or com3_TXbufferBrk(buf, bufsize,pin) 309
v 2.13. 12C BUS MaSEEI FUNCLIONSucvcveterereeeeciereteseeeeaete e seses s s s st ss s sesesesss s s sesesanns 310
8 2.13.112C1_Open(Speed, SCL, SDA) or 12C2_Open(Speed, SCL, SDA) or
o 12C3_0OpeNn(SPEEd, SCL, SDA) ..ooeeieee ettt ettt ettt e ettt e e et e e e e bte e e e e bae e e e ebeeeeeeneaeaenans 311
-l 2.13.212C1_Close() or 12C2_Close() or 12C3_ClOSE()...eccvrerrreerrrrreirrrerreeeiieeesveesereeesveenns 312
(o 2.13.312C1_Start() or 12C2_Start() or I2C3_Start()ccceeeerveeeeirieeeeiieee e 313
(7] 2.13.4 12C1_Stop() or 12C2_Stop() or 12C3_StOP() «eceveeeerererireeeirieeireeeireeerireesreesreeeseveens 314
.2 2.13.512C1_Restart() or 12C2_Restart() or I2C3_Restart()......cccceeeeevuvereecirveeeeeieee e, 315
i - 2.13.6 12C1_Read() or 12C2_Read() or 12C3_Read() ...eeevvrerreerrieeireeereeeieeesteeevee e 316
Q. 2.13.7 12C1_Write(byte) or 12C2_Write(byte) or 12C3_Write(byte)ccccovevvveercrveecneens 317
E 2.13.812C1_Ack() or 12C2_Ack() 0r 12C3_ACK() cvveeeeerereeeiiiee ettt 318
LD 2.13.912C1_Nack() or 12C2_Nack() or 12C3_Nack()....ceeevvrerireeerrireiieeeireeerreesieeeeveeesveens 319
2.13.1012C1_AckStatus or 12C2_AckStatus or 12C3_AckStatuscccceeeevveeeeirieeeecnnnnn. 320
3 2.13.11 12C1_AckPoll(control) or 12C2_AckPoll(control) or 12C3_AckPoll(control) 321
O 2.13.1212C1_Idle() or 12C2_Idle() or 12C3_1dIe().eeeeerrreeecriieeeeiiee ettt 322
- 2.13.13 12C1_Gets(buffer, size) or 12C2_Gets(buffer, size) or 12C3_Gets(buffer, size).... 323
m 2.13.14 12C1_Getn() or 12C2_Getn() or 1I2C3_GetN()...ceeecerrereeiireeeecieeeeeeieeeeecvree e e 324
< 2.13.15 12C1_Puts(buffer) or 12C2_Puts(buffer) or 12C3_Puts(buffer)cccceeervreenenns 325
5 2.13.16 12C1_Putn() or 12C2_Putn() or 1I2C3_PUtN() ...eeeeeeirreeeeiiiieeeeiiee et e e 326
2,04, TIMEI FUNCHIONS ... ittt ettt ettt st ettt e sae et et st et s sbesae e 327
2.04.0 SYS_T()ereereerreereeereereeseesseesteesteesssesseeaseesseesseesseesseesssesseesteesseesraesseesnsesnreereeraenrees 328
2.04.2 SYS_T_HI() coveereeereereerieeiteeseeseeseeseesteeseeteesseesseesaeessseesseessessseesssesssesnsesnsesssessnnes 329
2.14.3 sys_SetTimer(timernum, ValUE)ccccuiiiieiiriieeecieee ettt e 330

DIABLO16 INTERNAL FUNCTIONS Page 8 of 554 www.4dlabs.com.au

4‘3 SEMICONDUCTORS Table of Contents

2.14.4 sys_GetTimer(LiMErNUM)ccccuie et et e s e e tre e e te e e ree e aaeeebeeesnnee e 331

2.14.5 sys_SetTimerEvent(timernum, function)cccceceveeiiiiiiie e 332

2.14.6 SYS_EVENTQUEUE().ecureeerieeiiieeiieeciteeeteeeeee e site e s ete e e taeesteeetaeesnteessaeesnaeesnsesennseenns 333

2.14.7 sys_EVeNtSPOSTPONE() cocvvreeeiiiiieieiieee ettt ettt e e et e e e satae e e earbe e e s naaeee s 334

v 2.14.8 SYS_EVENESRESUME() .eeeevrieiiieiiieeiiieeeteeesieeesteesteeesteesteeesaeesnseseneeesnseessesennseenns 335
g 2.14.9 sys_DeepSIEEP(UNITS) cocurrieieciiiieeecieee ettt e e et e e e ae e e e anaee s 336
© — 2.14.10 SYS_SIEEP(UNITS) ..eeiureeetieecieeeiie ettt e eteeesre e rre e e te e e s e e st eetae e steeenneessaeesnseeennseeans 337
.ld A O 1 =] = o 1 (o] A 2T =1 o IR PR 338
cC Py o =1 D1 =] | F OO 339
-) 214,13 SYS_GEETIME()vvrrveerereereeeeseeeeessesessesesesssesesessesesseessseeesseessasessesesseessssesesseseseee 340
LL 2.14.14 sys_SetDate(year, month, day)ccceciiiieiiieeeeee e 341
TU 2.14.15 sys_SetTime(hour, MiNUte, SECONM)......cceeiiieeiiiieiiecie et e 342
cC 2.14.16 sys_GetDateVar(&year, &month, &day).......ccccecerreeiiiiiieeciiee e 343
S 2.14.17 sys_GetTimeVar(&hour, &minute, &second, &MSECS).......ccccvvevrveeriieercreeerneenns 344
3 2.15. FAT16 File FUNCHIONS ..ottt 345
= R)) DO 346
2.15.2 file_Count(filENAME) ..cc.veieiie ettt e e bae e 347

I 2.15.3 file_Dir(fillENaAmME) ...oeei ettt e e e et e e e e e e nraeee s 348
o 2.15.4 file_FindFirst(fName)c.ueecee ettt ettt e ae e s rae e saaeens 349
7, 2.15.5 FIle_FINANEXE() cvrverereeeereeeeeeeeeeeeeeeeeeseeseeessesesssseeseeseeseesesseesessessessessessessessessaeseeneens 350
v 2.15.6 file_EXISTS(fNAME) .uueiiieiiieeiciiie ettt ettt e e e sara e e e b e e e ennaeee s 351
8 2.15.7 file_Open(fname, MOTE)ccccuviiiieeciee ettt ettt e aee e ae e s bae e eaaeeens 352
o 2.15.8 file_CloSE(NANAIR)......eeeeeieeieeeeee ettt ettt et e e etee et eteeeeaaeeens 353
2.15.9 file_Read(destination, size, handle)ccceevveeeiiieriiecie e 354
Q. 2.15.10 file_Seek(handle, HIWord, LOWOrd)........ccccuuieeeiiiieeeciiee et 355
8 2.15.11 file_Index(handle, Hisize, LoSize, recordnum)cccceeevieercreeeiieenieesciee e 356
© m— 2.15.12 file_Tell(handle, &HiWord, &LOWOId).......ccceeeeeiiiieeeiiiee et 357
L 2.15.13 file_Write(*source, size, handle)........cccueeiieeiceieciee e 358
% 2.15.14 file_Size(handle, &HiWord, &LOWOrd)c.cceeeeiiiiiieiiiieeeceee et 359
- 2.15.15 file_Image(X, ¥, NANAIE) ..cueeiiiie et 360
LD 2.15.16 file_ScreenCapture(x, y, width, height, handle)..........ccccoouverieiiiii e 361
m 2.15.17 file_PutC(char, handle).......c..ooi it 362
i 2.15.18 file_GetC(NaNdI@)c.ueeeeieeeiie ettt et e e eeare e 363
O 2.15.19 file_ PUtW(word, handl@)cccueeieeiiiie ettt e 364
— 2.15.20 file_GEEW(NANAIE) ...ttt enee 365
m 2.15.21 file_PutS(*source, handle)ccueeeeeiiieiecieeeecee et 366
< 2.15.22 file_GetS(*string, size, handle)........ccueiieiiiiieecee et 367
5 2.15.23 file_Erase(fName@)cccueee ittt et b e e aaaa s 368
2.15.24 file_ReWind(Nandl@)cceeeuiieiiee ettt ettt e e 369

2.15.25 file_LoadFunction(fname.dXE)ccueeivieiiieeiee ettt et sbee e enee s 370

2.15.26 file_Run(fname.4XE, arglistptr)cooccuieeieciiie ettt 372

2.15.27 file_Exec(fname.4XE, arglistplr)cccveecveiiieeeiee ettt et et evee e 377

DIABLO16 INTERNAL FUNCTIONS Page 9 of 554 www.4dlabs.com.au

4‘3 semcc':ﬁ[{L}cEgRSs Table of Contents

2.15.28 file_LoadlmageControl(fnamel, fname2, mode)........ccccecouverceeecveerieescree e 379

D T I 1 LY Y, (o TU T o R 382

2.15.30 file_UNMOUNT() cvvreirrieeiiieiiiesitieecieectee et e e rre e et e e te e s e e e ta e e snteeenaeesnteeenseeennneenns 383

2.15.31 file_PlayWAV(famE)cceeeieii ettt et e e e stae e e s rae e e s naaee s 384

v 2.15.32 file_Rename(oldname, NEWNAME)ccceeiueeecieeeiiieeieeesiteeeeeeee e steesveeeseaeeens 385
g 2.15.33 file_SetDate(handle, year, month, day, hour, minute, second).........c..cccceuuneeen. 386
-.l: 2.15.34 file_CheckUpdate(filename, 0ptioNns)cccueeecieeeiiieciee et 387
O 2.16. SOUN CONLIOI FUNCLIONSeevveveeecveeeeeesctetseeae st ses et ss st sas s s s ses s sesassesasanes 388
- 2.16.1 SNA_VOIUME(VAI) c.uviiiiieiiiie ettt ettt e e e tr e e e e saa e e e esatae e e snsaeeesnnaeeen 389
|-|=- 2.16.2 SNA_PItCh(PITCN) weecereeiecieeceeseece ettt aeenneas 390
— 2.16.3 SNA_BUFSIZE(VAI).uiiiiiieeie ettt e tae e st e e e ee e sbaeeenaeeans 391
C D S Y Y Vo [o o | PP 392
C 2.16.5 SNA_PAUSE() evvvrrverreveeeseeeeeeseeesessesessesesessesesesseeesseeesseeesseessseesseeesseeesssesesseeeseee 393
qh) 2.16.6 SNA_CONTINUE() weeeeirreieeeiiiie e et e ettt e et e e e et e e ette e e e e earr e e e e sataeeeesasaeeesnsbeeesnnnaneens 394
o) DA N A o B - 1Y V- SRS 395
E 2.16.8 snd_Freq(frequency, duration)cceccuiieieiiiieeeceeee e e 396
I 2.17. String Class FUNCLIONSccveeveeiicecieee ettt sttt st s 397
- D B R 4 a4 V7 o SRS SPSR 398
(@) 2.17.2 Str_GEtD(&PLE, &VAI)...uiuiivieiieiieeieeeteeeeteeeete ettt ettt ettt et st tesaesesaeneeens 399
) 2.17.3 SEr_GEEW(KPEE, &VAI).eeurereeeeeeeeeeeeeeeerseeeeeesseseesesesesseessessessesesesessesesesessesesesesse 400
8 2.17.4 str_GetHEXW (&PLI, &VAI) ...ttt e et e e e e e e e e eaaee s 401
(&) 2.17.5 Str_GetC(&PLr, &VAI) ceicriiieiee ettt ettt e e et e eetee e et e e ebaeeeabeeebeseeaaeeans 402
O 2.17.6 SIT_GEEBYLE(DE) 1rrrreeooeoososeeeeeeeee e eeeeessssssseee e essssssseeee e 403
E D2 A A (G =1 AV T o [] 4 P 404
2.17.8 Str_PULBYLE(PL, VAI) eeeerieeeiie ettt e tte e st aee e ae e ebae e saneeas 405

8 2.17.9 str_ PUTWOIrA(PLr, VAI) ettt e e e e e e e eaaaee s 406
'_E 2.17.10 Str_MAtCh(&PLE, *SEr) ..vvviiieieeeeeeeeieeeeeeeee ettt anens 407
Q. 2 0 T A g\, = 1] 7T o o ok o) P 408
© 2 7 0 S o ST Vo [o o ok o RS SPPRR 409
o D2 00 T B g T o 11 2 o o gk o TR 410
LD 2 7 0 o =T =4 o o o I RS SPPRR 411
(o) 2.17.15 str_Printf(&PLr, ¥fOrmat)......cccueeciieeiie e e 412
i 2.17.16 str_Cat(&destination, &SOUICE)cccuieeeeiriieeeiieeeeecieeeeeeteeeeeetee e e e rre e e e enaeee s 414
O 2.17.17 str_CatN(&PIr, Str, COUNT) .oeiiiiiiiieeciie ettt ettt etee e ere e e tee e sareeebeeeeaaeeens 415
- 2.17.18 str_ByteMove(src, dest, COUNT)ccccciiiiieciiieeeceee ettt e 416
(as] 2.17.19 Str_COPY(AESE, SIC).urreereieiieeeiiieeeiteeeteeeette st e et e e s te e s beeeteeesbeeeaeeesnbeeebesenaneens 417
g 2.17.20 str_CopyN(dest, SIC, COUNT)ciieiuiiiieeciiieeecieee et ectee et e e e etae e e e rae e e e naeeean 418
O 2.18. TOUCh SCreen FUNCLIONS.......c.oiirirerieecteereeesie ettt st st sae b b saens 419
2.18.1 touch_DetectRegion(X1, Y1, X2, Y2) .ccceeeceeecieeeereeecteeereeesieeeereeeraeeesaveesveeesaneeens 420

A R JR o 10Tl o JINT=N A (10 o o 1) FOU PR 421

2.18.3 tOUCh_GEL(MOUE) ..cuieieieeeciee ettt et rte e e s e e e bae e abe e sbeeeeaneeens 422

DIABLO16 INTERNAL FUNCTIONS Page 10 of 554 www.4dlabs.com.au

4‘3 semcc':ﬁ[{L}cEgRSs Table of Contents

2.18.4 toUCh_TEStArA(&IECE)....ciiiieiiieeiieeeee ettt ettt e tae e et e e e srae e s beeenaaeeans 423

2.18.5 toUCh_TEStBOX(&IECL) ...uvvieiiiiiiieciieee ettt ettt e et e e e arae e e e eaaeee s 424

2.19. Image Control FUNCHIONS......c.cciieeieecerecere ettt 425

2.19.1 img_SetPosition(handle, iNdex, XPOS, YPOS).....cccvurerreeririreiieeeieeereeeseeesveeeseneenns 426

2 2.19.2 img_Enable(handle, iNdeX)........ccucuiiiieiiiieeeciiie e e 427
o 2.19.3 img_Disable(handle, iNAEX)cccuieeiieirie et 428
'_|: 2.19.4 img_Darken(handle, INAEX)cccvvveveirieeeneieeeecte ettt ere e 429
(&) 2.19.5 img_Lighten(handle, iNAeX)cccuieecieiiie ettt e 430
c 2.19.6 img_SetWord(handle, index, offset, Word)........cccceeeeiiiiiiiiiieeeeciee e, 431
|-|=- 2.19.7 img_GetWord(handle, index, offSet)cccecuveeieiiiiiicce e 432
— 2.19.8 img_Show(handle, INAEX)........ccueeciieeeiieeiie et e re e e bee e eaae e 433
C 2.19.9 img_SetAttributes(handle, index, Value).......c.cceeecuveeieciiiieecee e 434
C 2.19.10 img_ClearAttributes(handle, index, Value)cccccuveeciiieiieecieeccie e 435
qh) 2.19.11 img_Touched(handle, INAEX)......c.ceeeeiriiiieiiie e e 436
o) 2.19.12 img_SelectReadPosition(handle, index, frame, Xpos, YPOS)cccvvvreeevrrereecnnennn. 437
E 2.19.13 img_SequentialRead(Count, PLr)cccciie i 438
2.19.14 img_FileRead(*dest, size, handle, iNdeX)cccveeviieeiiiieiiee e 439

I 2.19.15 img_FileSeek(handle, index, HIWord, LOWOrd)cccuveeeiiiiieeecieee e, 440
B 2.19.16 img_FileIndex(handle, index, HiSize, LoSize, recordnum).........ccccceevvveercveeenneenns 441
(75 2.19.17 img_FileTell(handle, index, &HiWord, &LOWOrd).........ccccveerereeeiieeiiee e 442
v 2.19.18 img_ FileSize(handle, index, &HiWord, &LoWord)ccccccveeeecrieeeciiiiee e, 443
8 2.19.19 img_FileGetC(handle, iINAEX)cceeeereeiiiieiieeecee ettt e 444
o 2.19.20 img_FileGetW(handle, iINAeX).........ccceieeiieiiieeeeree ettt e 445
2.19.21 img_FileGetS(*string, size, handle, iNdEX)cccoveeriieriiiiieecee e 446
Q. 2.19.22 img_FileRewind(handle, iINdeX)coccuiiiieiiiieeeceee e 447
8 2.19.23 img_FileLoadFunction(handle, iNdeX)ccccueeeeieiiieciie et 448
© m— 2.19.24 img_FileRun(handle, index, arglistptr)ccccceeeciieeeeciiee e 449
L 2.19.25 img_FileExec(handle, index, arglistptr)ccceecveeeieeecie e 450
% 2.19.26 img_FilePlayWAV(handle, iNdeX)ccccueeeeiiiieeeiieeeeeceee et et 451
- 2.19.27 img_TxtFontID(handle, iINAEX)ccceeceriiieiiiiecee et 452
LD 2.20. Memory Allocation FUNCLIONSc.ccvecieieeicce sttt ae et 453
(o) 2.20.1 MEM_AIOC(SIZE) et e ettt s e ees e s st ees e ers e een e eseaeae 454
i 2.20.2 MEM_AIOCV(SIZE) cuvreeeeeuiiee et eecteee ettt e ettt e ettt e e et re e e e e ta e e e eataee e s nsbeeaeannaeeans 455
O 2.20.3 MEM_AIOCZ(SIZE)reeeureeerieeeieeeiee ettt etee et e e ere e e ete e e te e s raeestaeesbeeeaaeesnbeeeabasenaneenns 456
- 2.20.4 mem_RealloC(&PLY, SIZE) .ueiiiuriie ettt e et e e ae e e e aaee s 457
m 2.20.5 Mem_Free(alloCation)ccceeccueeiciieeciee ettt ettt et e e e e e abe e e beeeeareens 458
g 2.20.6 MEM_HEAP() uuveeeeeirieeeeiiiee e ettt e eecte e e e et eeeeeteeeeeetteeeeesasaeeesssaeeeesssaeeasansseeesannsaeens 459
D 2.20.7 mem_Set(ptr, Char, SIZ€) ..ccceeiiuee ettt ettt et 460
2.20.8 mem_Copy(source, destination, COUNT).......cccceeeeiiiieeeciiieee e e 461

2.20.9 mem_Compare(ptrl, PIr2, COUNT)....ccciiiiiieiieeecee ettt eeiee et eetee e te e ebee e eaee e 462

2.20.10 mem_ArrayOpl(memarray, count, 0p, Value)ccccccvuereeiiirereeciieeeecieee e, 463

2.20.11 mem_ArrayOp2(memarrayl, memarray2, count, op, value)ccccccvveeeunnennn. 465

DIABLO16 INTERNAL FUNCTIONS Page 11 of 554 www.4dlabs.com.au

4‘3 SEMICONDUCTORS Table of Contents

2.21. General PUrpoSe FUNCLIONSccevvirieieieieerese ettt st sae e saessesaeneens 467

D A W A o Y- T U =T T2 0 1= PR 468

2.21.2 lookup8(key, byteCONSTLIST)c.veecreeerie ettt 469

2.21.3 lookupl6(key, WOrdCONSLLISt)....cccuiieeeiiieeeeciieee ettt e e aaee e 470

2 2.22. Floating pOiNt FUNCLIONSc.ocuiiiiiieeeieseeeee sttt see st s e st aesne s 471
o 2.22.1 flt_ADD(&result, &floatA, &FlOatB)cccceevuierieiiereeieeeceee ettt 472
) 2.22.2 flt_SUB(&result, &FloatA, &FIOGTB)......coveeeveeeeeeeeeeeeeeeeeeeeeeeee e eeeese e 473
(&) 2.22.3 flt_MUL(&result, &FIOatA, &FIOGEB).........eveeveeeeeeerereeeeeeersseseeeesessesseessesseseeeessee. 474
C 2.22.4 flt_DIV(&result, &floatA, &Fl0atB).......cccveiieiiiiiiciieieeecee e 476
|-|=- 2.22.5 flt_POW/(&result, &floatA, &FlOatB)ccceevvieeiiiieiiecie e 477
—_— 2.22.6 flt_ ABS(&result, &Floatval)cccuieeeeiiiiiieee e 478
(q0] 2.22.7 flt_CEIL(&result, &FIOatVal).......cceeueveeeeiieieieceeceecieeeeeeeeee ettt 479
C 2.22.8 flt_FLOOR(&IESUIL, &FIOALVAI) vevrvvereeereeeeeeeeeeeeeeseeeeseeseeeeeseseeesseeesseessseessseeesee 480
qh) 2.22.9 flt_SIN(&result, &Floatval)........cooeciiiiiiiiie e 481
o) 2.22.10 flt_COS(&result, &Floatval)........ccoeeeiieiiiieceeeee et e 482
E 2.22.11 flt_ TAN(&result, &Floatval)cccuieeiiiiiieieceee e 483
I 2.22.12 flt_ASIN(&result, &Floatval)........ccceecuieiiieiiiieccee e e 484
. 2.22.13 flt_ ACOS(&result, &Floatval)ccueeeeeciiieieeee e 485
o 2.22.14 flt_ATAN(&result, &Floatval)cccccccueeiiieiiieeecee e 486
(7)) 2.22.15 flt_ EXP(&result, &Floatval)cccuveeeeciiiiieee e 487
8 2.22.16 flt_LOG(&result, &floatval)ccceeerieiiie e e 488
Q 2.22.17 flt_SQR(&result, &Floatval).......cccoueeecrieiiiiiiieeeee e et 489
(@) 2.22.18 flt_LT(&Fl0AtA, &FIOALB)......c.eivieeeieiieeeeeeeeeeeeece ettt ettt snenas 490
- 2.22.19 flt_EQ(&FOALA, &FIOAB)...vvvveeereeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeeeeseeeeeseseeseesesesees e 491
o 2.22.20 flt_ NE(&floatA, &FlOAtB)........cooeecuiiiieeiiie ettt e 492
8 2.22.21 flt_GT(&FIOALA, BFIOAB) vvorrosoooeeeoeoesoeees oo eeees oo 493
— 2.22.22 flt_ GE(&FloatA, &FlOatB)........coiiecuiieieeiiie e 494
'g- 2.22.23 flt_LE(&floatA, &FlOatB)......ccccuiieciiieciieeiie ettt e 495
) 2.22.24 flt_ SGN(&FIOQLVAI) .eeeeeeiieeeciiee ettt e e e e e eanaee s 496
- 2.22.25 flt_FTOI&FIOAtVAI) ..ueeereieciieciie ettt ettt et et ae e s bae e eaaeeens 497
LD 2.22.26 flt_ITOF(&Fresult, Varle)cccccuiiieeiiiee et e et e e e srae e e e ebae e e e enaeeean 498
m 2.22.27 flt_UITOF(&Fresult, UVArldt)........ccueeeeciiieeeiiiieeecieee e et e e ecteeeeeetae e e e tree e e enaee e 499
- | 2.22.28 flt_LTOF(&FresuUlt, Var32)......cccueecieeeerieeiee e ettt eeteeeveeestee s e eetee e aveeebaeesaneenns 500
O 2.22.29 flt_ULTOF(&FI@SUIL, UVAF32) cerrvereeeeeeeeeee e eeeeeeeeeeeeeeeeeeeeeseeseeeeeeeesseseseeseenns 501
— 2.22.30 flt_VAL(&FrESUIL, NUMSTFING) +.rveorerrereeereeeseeeseeeeeseeesesesessseeesssesesesesesesseeeseseseseeens 502
m 2.22.31 flt_PRINT (&fvalue, formatsString)ccceeecuiiieeiiiieeecee e e 503
g 2.22.32 flt_PRINTXxy (X, y, &fvalue, formatstring).......ccccoeeeiieeiiieiiiecceeccee e 506
O 25 T\ T ET ol V2] =T 0 T ol U T o |3 508
D 2 T NNV o '] o 1O IR RSP 509

2.23.2 SYS_DIIVEI()eeereeietieeeiee ettt ettt et e e ertee et e e e be e et e e s baeetaeesbeeebae e abeeebaeenareeans 510

2.24, SPIFLASH FUNCHIONS ...eivtiiierieniesie sttt sressae e sse e st e stessressnessbessssesssessnessnesnns 511

DIABLO16 INTERNAL FUNCTIONS Page 12 of 554 www.4dlabs.com.au

4‘3 semcc':ﬁ[{L}cEgRSs Table of Contents

2.24.1 spiflash_BlockErase(spi#, Enablepin, block).......ccceeveeeciiiiiiecciiee e 512

2.24.2 spiflash_BulkErase(spi#, ENablepin)c.ccoociieieciiii e 513

2.24.3 spiflash_Exec(spi#, Enablepin, arglistptr)......ccccocoeeecieicii i 514

2.24.4 spiflash_GetC(spi#, ENAbIEPIN)cueeeieiiiie et 515

2 2.24.5 spiflash_GetS(*String, size, spi#t, Enablepin).......ccccoceeciiiviie e 516
o 2.24.6 spiflash_GetW(spi#, ENAbIEPIN)oeeereiiiieeeieee et e 517
-.l: 2.24.7 spiflash_ID(spi#, ENADIEPIN) ..ccveeeieieeciie ettt ete et 518
Q 2.24.8 spiflash_Image(x, y, spi#f, ENablepin)cccocvvieieiiiie e 519
cC 2.24.9 spiflash_LoadFunction(spi#, ENablepin).......ccccceeeciieeieiiiieieciiee e 520
-) 2.24.10 spiflash_LoadImageControl(spi#, Enablepin).........ccceecevevieeccieeiiie e 522
LL 2.24.11 spiflash_PlayWAV(spi#, Enablepin)ccoocuvieieiiiiiiecee e 525
S 2.24.12 spiflash_PutC(char, spi#f, ENablepin)ccccveeiiieiiiecie et 526
cC 2.24.13 spiflash_PutS(source, spi#, Enablepin)......ccccceeeciiiiiciiiiecceeeee e 527
S 2.24.14 spiflash_PutW(word, spi#, ENablepin)cccceecveeiiieeiie e 528
-Ig 2.24.15 spiflash_Read(destination, size, spi#, Enablepin)cccccoviviieeiiiieecciiieeeiee, 529
cC 2.24.16 spiflash_Run(spi#, Enablepin, arglistptr).......cccceeeiieeiiiiiiee e 530
I 2.24.17 spiflash_SetAdd(spi#, HIWOId, LOWOIT)......v.eveeeeeeereeereeereseeseseereeesseeseeseeenneens 531
I 2.24.18 spiflash_SIG(spi#, ENABIEPIN) ...cccuvieirieeie ettt s 532
o~ 2.24.19 spiflash_Write(Source, size, spi#f, Enablepin)........ccccecveeiiiecceiicie e 533
8 2.24.20 spiflash_Block32Erase(spi#f, ENAblEPin)ccueeeeeiiieeieiieeeccee e 534
(7)) 2.24.21 spiflash_Sector4Erase(spi#, ENAbIePin).......ccceceeeeiiieeciieiiiee e 535
8 2.24.22 spiflash_ReadByte(flags, spi#, Enablepin)........ccccoeeieiiiiiiiiiiie e, 536
o 2.24.23 spiflash_WriteByte(reg/value, spi#t, Enablepin)........cccocvevveviieciieeceececcieeieenen, 537
| 2.24.24 spiflash_SetMode(spi#, MOAE).......ccoucuiiiieiiiie et 538
(o 2.24.25 spiflash_LoadGCFImageControl(spi#, Enablepin)ccccccoveeeceeiiiiciiieeecieecieens 539
8 2.25. CRC FUNCHIONS coosovveeeesevveeeesessnnseseessssssssssesssssssssesssssssssseesssssssssesssssssssseesessssssoee 540
© m— 2.25.1 crc_16(bUf, COUNT) uriiiiiiiieeceee ettt e e e eata e e e b e e e e aaaeee s 541
'g- 2.25.2 crc_CCITT(bUf, COUNT, SEEA) ..cuviieiieeciee ettt ettt ettt e re e s bee e eaaeeeas 542
© 2.25.3 crc_CSUM_8(BUT, COUNL) weeiieiiiiieeiiee ettt et 543
- 2.25.4 crc_MODBUS(BUT, COUNT) c..vviiiiiiciieecee ettt saae e 544
LD 3. System Registers Memory IMapcccieciieiieeiiieiiieicincinciesiesiesiisneissrsssssssssssssnnes 545
3 4. Appendix A : RUNEIME Error IM@SSAZEScvveuereennereennereeneerenncrenneerenserenssesensesssnsesens 547
O 5. Hardware TOOIS........cciiiiiiiiimiiniiiiiiiiiiiirrnnnisisninnessssesssssssnsssssssssssssssssssssssnsssssses 548
— 5.1. 4D Programming TOOIScuveueeieeeeieeeeeseeeseeseeseessesssesssssssssessssesssessssssesssssssssssessssssanns 548
2 5.2. DiSPIay MOQUIEScveeeeriiteeticteceetieteetecte ettt e e s e eeesbeessessesseensesbessnensesnnenns 548
5 5.3. Memory Cards - FATL16 FOIMat.......cccovevveiieeenteieeeenteeeenreeseeeesseessesseeseensessesseessesseenes 549
6. WOIrKSROPA IDEceeuueiieenereenereaneerenierenneeeessereassessassessssessasssssssessnssessnsssssnssssnnnens 550

6.1. DeSIZNer ENVIFONMENTcoiiiiieiieeierecst ettt se sttt ssaessre s sbe e s e e sssessae s neesnas 550

6.2. VIS ENVIFONMENT ...ttt sttt re s b s sbe s ssa e st e ssne s neenns 550

DIABLO16 INTERNAL FUNCTIONS Page 13 of 554 www.4dlabs.com.au

4‘3 semcc':ﬁ[{L}cEgRSs Table of Contents

6.3. ViSi Genie ENVIFONMENT ..ottt e 551
6.4. Serial ENVIFONMENTccuiiiiiiieiteerteeet ettt ettt sneneas 551
7. ReVISION HiStOrY ..ccuuiiiuniiiieiiiiieiiiiiiiiiniiiiiiiiiieiiiisisiisisimmsssrssssisssssrsesssssssrsssssrsnssns 552
8. Legal NOTICE ..cvuuiiieiiiiieiiiiiiiinicitiinre st reeseteneerenssstenssssnsssssnsssssssesensssssnssssnnnans 554
9. Contact INfOrmation.........ccccviii s 554

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 14 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

1. 4DGL Introduction

The 4D-Labs family of embedded graphics processors (Goldelox, Picaso, Diablo16, PIXXI-28 and PIXXI-44) are powered
by a highly optimised soft-core virtual engine, E.V.E. (Extensible Virtual Engine). EVE was designed and created by 4D
Labs in the early 2000’s and should not be confused by FTDI’s solution of EVE, which was developed a decent decade
or so later.

EVE is a proprietary, high performance virtual processor with an extensive byte-code instruction set optimised to
execute compiled 4DGL programs. 4DGL (4D Graphics Language) was specifically developed from ground up for the
EVE engine core. It is a high-level language which is easy to learn and simple to understand yet powerful enough to
tackle many embedded graphics applications.

4DGL is a graphics-oriented language allowing rapid application development. An extensive library of graphics, text
and file system functions and the ease of use of a language that combines the best elements and syntax structure of
languages such as C, Basic, Pascal, etc. Programmers familiar with these languages will feel right at home with 4DGL.
It includes many familiar instructions such as IF..ELSE..ENDIF, WHILE..WEND, REPEAT..UNTIL, GOSUB..ENDSUB, GOTO
as well as a wealth of (chip-resident) internal functions that include SERIN, SEROUT, GFX_LINE, GFX_CIRCLE and many
more.

This document covers the internal (chip-resident) functions available for the Diablo16 Processor. This document
should be used in conjunction with the “4DGL-Programmers-Reference-Manual” document.

Multimedia Services System Fonts FAT16 File Services SD CARD

Graphics Functions System Services SPI1
SPIServices SPI12
TMRO TMR1 TMR2 TMR3 SPI3

TMRS TMR6 TMR7 PmMmC/EVE Loaders cCoOmMo

COMO

TTL Serial COM1

EVE core Communications COM2
Extensible Virtual Engine

Buffered Services
comM3

12C1
12C Services 1°C2

Memory Management 12C3

System SRAM Audio Services AUDIO

12K Bytes Display Drivers DISPLAY
System Processes 6x Flash Banks
32K Bytes each

Touch Drivers TOUCH

User SRAM User Applications
User Storage

ANALOG
32K Bytes

User Variables
User Applications DIGITAL

GP10O Services

Diablo16 internal Block Diagram

DIABLO16 INTERNAL FUNCTIONS Page 15 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

2. Diablo16 Chip-Resident Functions Summary

The following is a summary of chip-resident 4DGL functions within the Diablo16 graphics processor. The document is
made up of the following sections:

2.1 GPIO Functions:
* pin_Set(mode, pin)
e pin_HI(pin)
e pin_LO(pin)
e pin_Val(pin, value)
* pin_Read(pin)
* bus_Read()
* bus_Read8()
* bus_Write8(value)
* bus_SetPins(value)
* bus_ClearPins(value)
* bus_SetChangelnterrupt(function, portmask)
e Qencoderl(PHApin, PHBpin, mode)
¢ QencoderlReset()
e Qencoder2(PHApin, PHBpin, mode)
¢ Qencoder2Reset()
* PWM_lInit(pin, mode, value)
e pin_Pulseout(pin, value) or pin_PulseoutB(pin, value)
e pin_Counter(pin, mode, OVFfunction)
* ana_HS(rate, samples, I01buf, 102buf, I03buf, I04buf, userFunction)
e OW_Reset(pin)
e OW_Read(pin)
¢ OW_Read9(pin)
¢ OW_Write(pin, data)
e NP_Write(pin, data, size, Options, RepeatFirst, Repeat, RepeatLast)

2.2 System Memory Access Functions:
* peekW/(address)
e pokeW(address, wordvalue)

2.3 Maths Functions:
e ABS(value)
¢ MiIN(valuel, value2)
¢ MAX(valuel, value2)
¢ SWAP(&varl, &var2)

¢ SIN(angle)
e COS(angle)
« RAND()

* RANDVAL(low, high)
e SEED(number)
* SQRT(number)

« OVF|()
c CY()
e EVE_SP()

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

e EVE_SSIZE()

e umul_1616(&res32, vall, val2)

* uadd_3232(&res32, &vall, &val2)
e usub_3232(&res32, &vall, &val2)
e udiv_3232(&res32, &varl, &var2)

DIABLO16 INTERNAL FUNCTIONS Page 16 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

e ucmp_3232(&vall, &val2)

2.4 Text and String Functions:
* txt_MoveCursor(line, column)
* putch(char)
* putchXY(xpos, ypos, char)
* putstr(pointer)
* putstrXY(xpos, ypos, string)
* putstrCentred(xc, yc, string)
¢ putnum(format, value)
e print(...)
* to(outstream)
e charwidth(char)
* charheight(char)
e strwidth(pointer)
e strheight()
e strlen(pointer)
* unicode_page(charbeg, charend, charoffset)
e txt_Set(function, value)
txt_Set shortcuts:
* txt_FGcolour(colour)
* txt_BGcolour(colour)
* txt_FontID(id)
* txt_Width(multiplier)
* txt_Height(multiplier)
* txt_Xgap(pixelcount)
* txt_Ygap(pixelcount)
* txt_Delay(millisecs) [deprecated]
* txt_Opacity(mode)
* txt_Bold(mode)
* txt_ltalic(mode)
* txt_Inverse(mode)
* txt_Underline(mode)
* txt_Attributes(value)
* txt_Wrap(value)
* txt_Angle(value)
* txt_FontBank(bank, address)
e PutnumXY(x, y, format, value)

2.5 CType Functions:
¢ isdigit(char)
e isxdigit(char)
e isupper(char)
e islower(char)
e isalpha(char)
e isalnum(char)
* isprint(char)
* isspace(char)
* iswhite(char)
* toupper(char)
* tolower(char)
* LObyte(var)
* Hilbyte(var)
e ByteSwap(var)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 17 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

2.6 Graphics Functions:
o gfx_Cls()
* gfx_ChangeColour(oldColour, newColour)
» gfx_Circle(x, y, radius, colour)
« gfx_CircleFilled(x, y, radius, colour)
* gfx_Line(x1, y1, x2, y2, colour)
* gfx_Hline(y, x1, x2, colour)
e gfx_Vline(x, y1, y2, colour)
* gfx_Rectangle(x1, y1, x2, y2, colour)
» gfx_RectangleFilled(x1, y1, x2, y2, colour)
e gfx_RoundRect(x1, y1, x2, y2, rad, colour)
» gfx_Polyline(n, vx, vy, colour)
» gfx_Polygon(n, vx, vy, colour)
e gfx_Triangle(x1, y1, x2, y2, x3, y3, colour)
e gfx_Dot()
e gfx_Bullet(radius)
e gfx_Orbitlnit(&x_dest, &y_dest)
e gfx_Orbit(angle, distance)
* gfx_PutPixel(x, y, colour)
* gfx_GetPixel(x, y)
e gfx_MoveTo(xpos, ypos)
* gfx_MoveRel(xoffset, yoffset)
o gfx_IncX()
o gfx_IncY()
* gfx_LineTo(xpos, ypos)
* gfx_LineRel(xpos, ypos)
e gfx_BoxTo(x2, y2)
* gfx_SetClipRegion()
« gfx_Ellipse(x, y, xrad, yrad, colour)
o gfx_EllipseFilled(x, y, xrad, yrad, colour)
« gfx_Button(state, x, y, buttonColour, textColour, font, textWidth, textHeight, text)
« gfx_Button2(state, x, y, width, height, buttonColour, txtColour, text)
« gfx_Button3(state, x, y, width, height, buttonColour, txtColour, text)
« gfx_Panel(state, x, y, width, height, colour)
* gfx_RoundPanel(states, x, y, width, height, radius, bevelwidth, colour)
» gfx_Slider(mode, x1, y1, x2, y2, colour, scale, value)
» gfx_Slider2(mode, x1, y1, width, height, colour, scale, value)
* gfx_ScreenCopyPaste(xs, ys, xd, yd, width, height)
e gfx_RGBto565(RED, GREEN, BLUE)
« gfx_332t0565(COLOURSBIT)
« gfx_565t0332(COLOUR)
» gfx_TriangleFilled(x1, y1, x2, y2, x3, y3, colr)
* gfx_PolygonFilled(n, &vx, &vy, colr)
e gfx_Origin(x, y)
* gfx_Get(mode)
e gfx_ClipWindow(x1, y1, x2, y2)
* gfx_Set(function, value)
gfx_Set shortcuts:
* gfx_PenSize(mode)
* gfx_BGcolour(colour)
* gfx_ObjectColour(colour)
» gfx_Clipping(mode)
» gfx_TransparentColour(colour)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 18 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

* gfx_Transparency(mode)
» gfx_FrameDelay(delay)
» gfx_ScreenMode(orientation)
» gfx_OutlineColour(colour)
» gfx_Contrast(value)
» gfx_LinePattern(pattern)
* gfx_BevelRadius (radius)
* gfx_BevelWidth(mode)
* gfx_BevelShadow(value)
» gfx_Xorigin(offset)
» gfx_Yorigin(offset)
e gfx_Arc(xc, radius, step, startangle, endangle, mode)
* gfx_CheckBox(state, x, y, width, height, boxColour, textColour, text)
» gfx_RadioButton(state, x, y, width, height, boxColour, textColour, text)
« gfx_FillPattern(patptr, mode)
* gfx_Gradient(style, x1, y1, x2, y2, colourl, colour2)
* gfx_RoundGradient(style, x1, y1, x2, y2, radius, colourl, colour2)
« gfx_PieSlice(cx, cy, spread, radius, step, startangle, endangle, mode)
e gfx_PointWithinBox(x, y, &rect)
e gfx_PointWithinRectangle(x, y, &recta)
» gfx_ReadBreslLine(x1, y1, x2, y2, ptr)
* gfx_WriteBresLine(x1, y1, x2, y2, ptr)
* gfx_ReadGRAMarea(x1, y1, x1, y2, ptr)
o gfx_WriteGRAMarea(x1, y1, x2, y2, ptr)
e gfx_Surround(x1, y1, x2, y2, rad1, rad2, oct, colour)
* gfx_Scope(Left, Width, Yzero, n, Xstep, Yamp, Colourbg, &old_y1, &new_y1, Colourl, ... &old_y4, &new_y4,
Colour4)
* gfx_RingSegment(x, y, Rad1, Rad2, starta, enda, colour)
* gfx_AngularMeter(value, &MeterRam, & MeterDef)
« gfx_Panel2(state, x, y, width, height, w1, w2, cl, cr, cf)
* gfx_Needle(value, &NeedleRam, &NeedleDef)
» gfx_Dial(value, &DialRam, &DialDef)
e gfx_Gauge(value, &GaugeRam, &GaugeDef)
* gfx_LedDigits(value, &LedDigitRam, &LedDigitDef)
« gfx_LedDigit(x, y, digitsize, oncolour, offcolour, value)
e gfx_Slider5(value, &SliderRam, &SliderDef)
o gfx_Switch(state, &SwitchRam, &SwitchDef)
* gfx_Button4(state, &gfx_ButtonRam, &gfx_ButtonDef)
¢ gfx_Led(state, &LedRam, &LedDef)
* gfx_Scale(&ScaleRam, &ScaleDef)
* gfx_RulerGauge(state, &RRulerGaugeRam, &RulerGaugeDef)
* gfx_GradientShape(GradientRAM, HorzVert, OuterWidth, X, Y, W, H, TLrad, TRrad, BLrad, BRrad, Darken,
OuterColor, OuterType, OuterLevel, InnerColor, InnerType, InnerLevel, Split)
» gfx_GradientColor(Type, Darken, Level, H, Pos, Color)
» gfx_GradTriangleFilled(X0, YO, X1, Y1, X2, Y2, SolidCol, GradientCol, GradientHeight, Gradienty,
GradientLevel, Type)
* gfx_XYrotToVal(x, y, base, mina, maxa, minv, maxv)
e gfx_XYlinToVal(x ,y, base, minpos, maxpos, minv, maxv)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

2.7 Widget Functions:
* widget_Create(count)
e widget_Add(hndl, index, widget)
e widget_Delete(hndl, index)

DIABLO16 INTERNAL FUNCTIONS Page 19 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

* widget_Realloc(handle, n)

* widget_GetWord(hndl, index, offset)

* widget_Setposition(hndl, index, xpos, ypos)
* widget_Enable(hndl, index)

* widget_Disable(hndl, index)

e widget_SetWord(hndl, index, offset, value)
* widget_SetAttributes(hndl, index, value)

e widget_ClearAttributes(hndl, index, value)

* widget_Touched(hndl, index)

2.8 Display /0 Functions:
» disp_SetReg(register, data)
* disp_setGRAM(x1, y1, x2, y2)
e disp_WrGRAM(colour)
e disp_WriteControl(value)
e disp_WriteWord(value)
e disp_ReadWord()
e disp_Sync(line)
e disp_Disconnect()
o disp_lInit()

2.9 Media Functions (SD/SDHC memory Card or Serial Flash chip):
* media_lnit()
* media_SetAdd(HIword, LOword)
* media_SetSector(HIword, LOword)
* media_RdSector(Destination_Address)
¢ media_WrSector(Source_Address)
¢ media_ReadByte()
¢ media_ReadWord()
¢ media_WriteByte(byte_val)
¢ media_WriteWord(word_val)
* media_Flush()
* media_lmage(x, y)
* media_Video(x, y)
* media_VideoFrame(x, y, frameNumber)

2.10 Flash Memory chip Functions:
¢ flash_Bank()
¢ flash_Blit1(bank, offset, count, pallete2colour)
¢ flash_Blit16(bank, offset, count)
e flash_Blit2(bank, offset, count, pallete4colour)
e flash_Blit4(bank, offset, count, palletel6colour)
e flash_Blit8(bank, offset, count)
e flash_Copy(bank, ptr, dest, count)
* flash_EraseBank(bank, confirmation)
* flash_Exec(bank, arglistptr)
* flash_GetByte(bank, ptr)
* flash_GetWord(bank, ptr)
* flash_LoadFile(bank, filename)
e flash_putstr(bank, ptr)
e flash_Run(bank)
e flash_WriteBlock(sourceptr, bank, page)
e flash_FunctionCall(bank, index, state, &FunctionRam, &FunctionDef, FunctionArgCount,
FunctionArgStringMap)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 20 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

e flash_LoadSPIflash(bank, hndl, idx)

2.11 SPI Control Functions:

* spi_Init(speed, input_mode, output_mode)

* spi_Read()

* spi_Write(byte)

* spi_Disable()

e SPI1_Init(speed, mode, enablepin) or SP12_Init(speed, mode, enablepin) or SPI3_Init(speed, mode,
enablepin)

e SPI1_Read() or SPI12_Read() or SPI3_Read()

e SPI1_Write(byte) or SPI2_Write(byte) or SP13_Write(byte)

* SPI1_SCK_pin(pin) or SPI2_SCK_pin(pin) or SPI3_SCK_pin(pin)

* SPI1_SDI_pin(pin) or SPI2_SDI_pin(pin) or SPI3_SDI_pin(pin)

* SPI1_SDO_pin(pin) or SPI12_SDO_pin(pin) or SPI3_SDO_pin(pin)

* spiflash_ReadByte(flags, spi#, enablepin)

e spiflash_WriteByte(reg/value, "spi#, enablepin)

e spiflash_SetMode(spi#, mode)

* spiflash_LoadGCFImageControl(spit, enablepin)

2.12 Serial (UART) Communications Functions:

* COM1_RX_pin(pin) or COM2_RX_pin(pin) or COM3_RX_pin(pin)

* COM1_TX_pin(pin) or COM2_TX_pin(pin) or COM3_TX_pin(pin)

¢ setbaud(rate)

e com_SetBaud(comport, baudrate/10)

e serin() or serini() or serin2() or serin3()

* serout(char) or seroutl(char) or serout2(char) or serout3(char)

e com_Init(buffer, buffsize, qualifier) or com_Init1(buffer, buffsize, qualifier) or com_Init2(buffer, buffsize,
qualifier) or com_Init3(buffer, buffsize, qualifier)

e com_Reset() or com1l_Reset() or com2_Reset() or com3_Reset()

e com_Count() or com1_Count() or com2_Count() or com3_Count()

¢ com_Full() or com1_Full() or com2_Full() or com3_Full()

e com_Error() or com1_Error() or com2_Error() or com3_Error()

¢ com_Sync() or com1_Sync() or com2_Sync() or com3_Sync()

¢ com_TXbuffer(buf, bufsize,pin) or com1_TXbuffer(buf, bufsize,pin) or com2_TXbuffer(buf, bufsize,pin) or
com3_TXbuffer(buf, bufsize,pin)

¢ com_TXbufferHold(state) or com1_TXbufferHold(state) or com2_TXbufferHold(state) or
com3_TXbufferHold(state)

e com_TXcount() or com1_TXcount() or com2_TXcount() or com3_TXcount()

* com_TXemptyEvent(function) or com1_TXemptyEvent(function) or com2_TXemptyEvent(function) or
com3_TXemptyEvent(function)

2.13 12C BUS Master Function
* 12C1_Open(Speed, SCLpin, SDApin) or 12C2_Open(Speed, SCLpin, SDApin) or 12C3_Open(Speed, SCLpin,
SDApin)
e 12C1_Close() or 12C2_Close() or 12C3_Close()
e 12C1_Start() or 12C2_Start() or 12C3_Start()
e 12C1_Stop() or 12C2_Stop() or 12C3_Stop()
* 12C1_Restart() or 12C2_Restart() or 12C3_Restart()
* 12C1_Read() or 12C2_Read() or 12C3_Read()
* 12C1_Write(byte) or 12C2_Write(byte) or 12C3_Write(byte)
e 12C1_Ack() or 12C2_Ack() or 12C3_Ack()
* 12C1_Nack() or 12C2_Nack() or 12C3_Nack()
e 12C1_AckStatus() or 12C2_AckStatus() or 12C3_AckStatus()
e 12C1_AckPoll(control) or 12C2_AckPoll(control) or 12C3_AckPoll(control)
e 12C1_Idle() or 12C2_lIdle() or 12C3_lIdle()

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 21 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

* 12C1_Gets(buffer, size) or 12C2_Gets(buffer, size) or 12C3_Gets(buffer, size)

¢ |12C1_Getn(buffer, size) or 12C2_Getn(buffer, size) or 12C3_Getn(buffer, size)

e |12C1_Puts(buffer) or 12C2_Puts(buffer) or 12C3_Puts(buffer)

e 12C1_Putn(buffer, count) or I12C2_Putn(buffer, count) or 12C3_Putn(buffer, count)

2.14 Timer Functions:
e sys_T()
e sys_T_HI()
e sys_SetTimer(timernum, value)
e sys_GetTimer(timernum)
e sys_SetTimerEvent("timernum","function")
e sys_EventQueue()
* sys_EventsPostpone()
* sys_EventsResume()
e sys_DeepSleep(units)
* sys_Sleep(units)
e iterator(offset)
e sys_GetDate()
e sys_GetTime()
¢ sys_SetDate(year, month, day)
¢ sys_SetTime(hours, mins, secs)
* sys_GetDateVar(&year, &month, &day)
* sys_GetTimeVar(&hour, &minute, &second, &msecs)

2.15 FAT16 File Functions:
e file_Error()
¢ file_Count(filename)
» file_Dir(filename)
¢ file_FindFirst(fname)
e file_FindNext()
* file_Exists(fname)
* file_Open(fname, mode)
* file_Close(handle)
* file_Read(destination, size, handle)
¢ file_Seek(handle, Hiword, LoWord)
« file_Index(handle, Hisize, Losize, recordnum)
e file_Tell(handle, &HiWord, &LoWord)
« file_Write(Source, size, handle)
e file_Size(handle, &HiWord, &LoWord)
* file_Image(x, y, handle)
* file_ScreenCapture(x, y, width, height, handle)
e file_PutC(char, handle)
e file_GetC(handle)
e file_PutW(word, handle)
* file_GetW(handle)
* file_PutS(source, handle)
* file_GetS(*String, size, handle)
* file_Erase(fname)
e file_Rewind(handle)
e file_LoadFunction(fname.4XE)
e file_Run(fname..4XE, arglistptr)
e file_Exec(fname..4XE, arglistptr)
e file_LoadlmageControl(fnamel, fname2, mode)
e file_Mount()

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 22 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

e file_Unmount()

* file_PlayWAV

» file_Rename(oldname, newname)

» file_SetDate(handle, year, month, day, hour, minute, second)
* -file_CheckUpdate("Filename", "Options")

2.16 Sound Control Functions:
¢ snd_Volume(var)
* snd_Pitch(pitch)
e snd_BufSize(var)
* snd_Stop()
* snd_Pause()
e snd_Continue()
* snd_Playing()
* snd_Freq()

2.17 String Class Functions:
e str_Ptr(&var)
e str_GetD(&ptr, &var)
e str_GetW(&ptr, &var)
e str_GetHexW/(&ptr, &var)
e str_GetC(&ptr, &var)
* str_GetByte(ptr)
e str_GetWord(ptr)
e str_PutByte(ptr, val)
e str_PutWord(ptr, val)
e str_Match(&ptr, *str)
e str_Matchl(&ptr, *str)
e str_Find(&ptr, *str)
e str_Findl(&ptr, *str)
e str_Length(ptr)
e str_Printf(&ptr, *format)
e str_Cat(&destination, &Source)
e str_CatN(&ptr, str, count)
* str_ByteMove(src, dest, count)
e str_Copy(dest, src)
e str_CopyN(dest, src, count)

2.18 Touch Screen Functions:
* touch_DetectRegion(x1, y1, x2, y2)
* touch_Set(mode)
e touch_Get(mode)
* touch_TestArea(&rect)
* touch_TestBox(&rect)

2.19 Image Control Functions:
* img_SetPosition(handle, index, xpos, ypos)
* img_Enable(handle, index)
* img_Disable(handle, index)
¢ img_Darken(handle, index)
e img_Lighten(handle, index)
* img_SetWord(handle, index, offset, word)
* img_GetWord(handle, index, offset)
* img_Show(handle, index)
* img_SetAttributes(handle, index, value)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 23 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

* img_ClearAttributes(handle, index, value)

* img_Touched(handle, index)

¢ img_SelectReadPosition(handle, index, frame, x, y)
* img_SequentialRead(count, ptr)

* img_FileRead(*dest, size, handle, index)

* img_FileSeek(handle, index, HiWord, LoWord)

* img_FileIndex(handle, index, HiSize, LoSize,recordnum)
* img_FileTell(handle, index, &HiWord, &LoWord)

e img_FileSize(handle, index, &HiWord, &LoWord)

* img_FileGetC(handle, index)

* img_FileGetW/(handle, index)

* img_FileGetS(*string, size, handle, index)

* img_FileRewind(handle, index)

* img_FileLoadFunction(handle, index)

* img_FileRun(handle, index, arglistptr)

* img_FileExec(handle, index, arglistptr)

* img_FilePlayWAV(handle, index)

* img_TxtFontID(handle, index)

2.20 Memory Allocation Functions:
* mem_Alloc(size)
e mem_Allocv(size)
e mem_Allocz(size)
* mem_Realloc(ptr, size)
* mem_Free(allocation)
* mem_Heap()
* mem_Set(ptr, char, size)
* mem_Copy(source, destination, count)
« mem_Compare(ptrl, ptr2, count)
* mem_ArrayOpl(memarray, count, op, value)
* mem_ArrayOP2(memarrayl, memarray2, count, op, value)

2.21 General Purpose Functions:
e pause(milliseconds)
¢ lookup8 (key, byteConstList)
¢ lookup16 (key, wordConstList)

2.22 Floating Point Functions:
e flt_ADD(&result, &floatA, &floatB)
¢ flt_SUB(&result, &floatA, &floatB)
e flt_MUL(&result, &floatA, &floatB)
* flt_DIV(&result, &floatA, &floatB)
* flt_POW(&result, &floatA, &floatB)
* flt_ABS(&result, &floatval)
e flt_CEIL(&result, &floatval)
e flt_FLOOR(&result, &floatval)
e flt_SIN(&result, &floatval)
e flt_COS(&result, &floatval)
* flt_TAN(&result, &floatval)
* flt_ASIN(&result, &floatval)
* flt_ACOS(&result, &floatval)
* flt_ATN(&result, &floatval)
* flt_EXP(&result, &floatval)
e flt_LOG(&result, &floatval)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 24 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

¢ flt_SQR(&result, &floatval)

e flt_LT(&floatA, &floatB)

e flt_EQ(&floatA, &floatB)

* flt_NE(&floatA, &floatB)

e flt_GT(&floatA, &floatB)

* flt_GE(&floatA, &floatB)

e flt_LE(&floatA, &floatB)

e flt_SGN(&floatval)

e flt_FTOIl(&floatval)

e flt_ITOF(&fresult, &varl6)

e flt_UITOF(&fresult, &uvarl6)

e flt_LTOF(&fresult, &var32)

e flt_ULTOF(&fresult, &uvar32)

e flt_VAL(&floatl, mystring)

e flt_PRINT(&fvalue, formatstring)
e flt_PRINTxy(x, y, &fvalue, formatstring)

2.23 Misc System Functions:
e sys Pmm(()
* sys_Driver()

2.24 SPI Flash Functions:
* spiflash_BlockErase(spi#, Enablepin, block)
* spiflash_BulkErase(spi#, Enablepin)
* spiflash_Exec(spi#, Enablepin, arglistptr)
* spiflash_GetC(spi#, Enablepin)
e spiflash_GetS(*String, size, spi#, Enablepin)
* spiflash_GetW(spi#, Enablepin)
* spiflash_ID(spi#, Enablepin)
* spiflash_Image(x, y, spi#t, Enablepin)
» spiflash_LoadFunction(spi#, Enablepin)
* spiflash_LoadlmageControl(spi#, Enablepin)
e spiflash_PlayWAV(spi#, Enablepin)
* spiflash_PutC(char, spi#, Enablepin)
* spiflash_PutS(source, spit, Enablepin)
e spiflash_PutW(word, spi#, Enablepin)
¢ spiflash_Read(destination, size, spi#, Enablepin)
* spiflash_Run(spit, Enablepin, arglistptr)
» spiflash_SetAdd(spi#, Hiword, LoWord)
» spiflash_SIG(spi#, Enablepin)
e spiflash_Write(Source, size, spitt, Enablepin)
e spiflash_Block32Erase(spi#, enablepin)
e spiflash_Sector4Erase(spi#, enablepin)
e spiflash_ReadByte(flags, spi#, enablepin)
e spiflash_WriteByte(reg/value, spi#, enablepin)
* spiflash_SetMode(spi#, mode)
* spiflash_LoadGCFImageControl(spi#, enablepin)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

2.25 CRC Functions:
e crc_16(buf, count)
e crc_CCITT(buf, count, seed)
e crc_CSUM_8(buf, count)
e crc_MODBUS(buf, count)

DIABLO16 INTERNAL FUNCTIONS Page 25 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
* pin_Set(mode, pin)
e pin_HI(pin)
e pin_LO(pin)
* pin_Val(pin, value)
* pin_Read(pin)
* bus_Read()
* bus_Read§()
* bus_Write(value)
* bus_SetPins(value)
* bus_ClearPins(value)
* bus_SetChangelnterrupt(function, portmask)
¢ Qencoderl(PHApin, PHBpin, mode)
¢ QencoderlReset()
e Qencoder2(PHApin, PHBpin, mode)
e Qencoder2Reset()
e PWM_lInit(pin, mode, value)
e pin_Pulseout(pin, value) or pin_PulseoutB(pin, value)
e pin_Counter(pin, mode, OVFfunction)
e ana_HS(rate, samples, 101buf, 102buf, I03buf, I04buf, userFunction)
¢ OW_Reset(pin)
* OW_Read(pin)
¢ OW_Read9(pin)
e OW_Write(pin, data)
* NP_Write(pin, data, size, Options, RepeatFirst, Repeat, RepeatlLast)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 26 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘pin_Set(mode, pin);

Arguments ‘mode, pin

mode A value (usually a constant) specifying the pin operation.
pin A value (usually a constant) specifying the pin number.

‘The arguments can be a variable, array element, expression or constant.

Returns ‘nothing

Description There are pre-defined constants for mode and pin:

Pin Mode (Predefined) mode# ‘Generic PIN 1/0O Legal Settings

PIN_INP 0 v v v v L v v v v v v v v v v v
PIN_INP_HI 1 v v v v v v v v v v v v v v v v
PIN_INP_LO 2 v v v v L v v v v v v v v v v v
PIN_OUT 3 v v v v v v v v v v v v v v v v
PIN_OUT_OD a4 x * * * L v v v v v v v v v v v
PIN_AN 5 v v v v x x x x x x x x x x x x
PIN_ANAVG [v v v v * x x x x x x 3 * * * *

Note: If using PIN_AN or PIN_ANAVG via the pin_Read() function, then if Touch is enabled this function
should be called no more than once per millsecond, otherwise touch behaviour could be eratic.

Example pin Set (PIN INP, PAO); // set PAO to be an intput

pin Set (PIN AN, PAl); // set PAl to be an Analog input

pin Set (PIN INP HI, PA4); // set PA4 to be an intput with int. pullup
pin Set (PIN _INP _LO, PA5); // set PA5 to be an intput with int. pulldown
pin Set (PIN OUT, PAl0); // set PAlO0 to be used as an output

pin_Set (PIN_OUT OD, PAl4); // set PAl4 to be an Open Drain Output

pin Set (PIN_ANAVG, PAO); // set PAO to be an Averaging Analog Input

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 27 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

Syntax ‘pin_HI(pin);
(7, Arguments pin
C pin A value (usually a constant) specifying the pin number or a predefined pin name.
o The arguments can be a variable, array element, expression or constant.
0 m—
o)
(&) Returns value
cC value Returns a Logic 1 (0x0001) if the pin number is legal.
Ll Description Set any pin to the HI state, pin is automatically made an output. Pullup, Pulldown, and change
— notification will be disabled for the selected pin.
cC 4D Pin Name (Predefined) Diablo16 Pin Number Availability
o PAO 61 Yes
q) PA1 62 Yes
<+ PA2 63 Yes
C PA3 64 Yes
L]
PA4 46 Yes
I PAS 49 Yes
[PA6 50 Yes
o PA7 51 Yes
w PA8 52 Yes
(Vp) PA9 53 Yes
Q PA10 43 Yes
(&) PA11 44 Yes
o PA12 31 Yes (See Note 1)
- PA13 32 Yes (See Note 1)
(a W PA14 37 Yes
PA15 36 Yes
v
O
._E Example pin_HI (PA7); // output a Logic 1 on PA7 pin
-
-
L]

DIABLO16 INTERNAL FUNCTIONS Page 28 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

Syntax ‘pin_LO(pin);
(7, Arguments pin
c pin A value (usually a constant) specifying the pin number or a predefined pin name.
o The arguments can be a variable, array element, expression or constant.
0 m—
afd
(&) Returns value
cC value Returns a Logic 1 (0x0001) if the pin number is legal.
Ll Description Set any pin to the LOW state, pin is automatically made an output. Pullup, Pulldown, and change
— notification will be disabled for the selected pin.
cC 4D Pin Name (Predefined) Diablo16 Pin Number Availability
b PAO 61 Yes
q) PA1 62 Yes
4= PA2 63 Yes
C PA3 64 Yes
L]
PA4 46 Yes
I PA5 49 Yes
[PA6 50 Yes
o PA7 51 Yes
W PA8 52 Yes
(Vp) PA9 53 Yes
Q PA10 43 Yes
(&) PA11 44 Yes
o PA12 31 Yes (See Note 1)
- PA13 32 Yes (See Note 1)
(a W PA14 37 Yes
PA15 36 Yes
v
O
'_E Example pin_LO (PA7) ; // output a Logic 0 on PA7 pin
-
-
L]

DIABLO16 INTERNAL FUNCTIONS Page 29 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘pin_VaI(pin, value);

Arguments pin, value

pin A value (usually a constant) specifying the pin number or a predefined pin name.

value Bit 0 of value

The arguments can be a variable, array element, expression or constant.

Returns value
value Returns a Logic 1 (0x0001) if the pin number is legal.

Description
Outputs a logic state on a pin depending on the value of bit 0 of a variable. The pin is automatically

made an output. Pullup, Pulldown, and change notification will be disabled for the selected pins.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PAO 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PAS5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PAS 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)
PA13 32 Yes (See Note 1)
PA14 37 Yes

PA15 36 Yes

Example temp := 3;
pin Val (PA4, temp); // output a Logic 3 on the PA4 pin

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 INTERNAL FUNCTIONS Page 30 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘pin_Read(pin);
Arguments pin
pin A value (usually a constant) specifying the pin number or a predefined pin name.
The arguments can be a variable, array element, expression or constant.
Returns value
value Returns state of the pin a Logic 0 (0x0001) or 1 (0x0001) if the pin is set to digital
input.
Returns state of the output latch, a Logic 0 (0x0001) or 1 (0x0001) if the pin is set to
digital output.
Returns 12 bit analogue value if the pin is set to an analogue pin.
Description Read a pin in various ways. If the pin is set to an input, read the state of the input pin. If set to an
output, read the state of the output latch. If set to analogue, read the 12 bit analogue value.
4D Pin Name (Predefined) Diablo16 Pin Number Availability
PAO 61 Yes
PA1 62 Yes
PA2 63 Yes
PA3 64 Yes
PA4 46 Yes
PAS 49 Yes
PA6 50 Yes
PA7 51 Yes
PA8 52 Yes
PAS 53 Yes
PA10 43 Yes
PA11 44 Yes
PA12 31 Yes (See Note 1)
PA13 32 Yes (See Note 1)
PA14 37 Yes
PA15 36 Yes
When using PIN_AN or PIN_ANAVG via the pin_Set command, then please note:
If Touch is enabled this function should be called no more than once per millsecond, otherwise touch
behaviour could be eratic.
PIN_AN > 15,000 reads/second
PIN_ANAVG ~3,000 reads/second
Example pin Set (PAl, PIN AN); // set PAl to be used as an Analog input

ANval := pin Read(PAl); // Read the 12bit analog input

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 INTERNAL FUNCTIONS Page 31 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘bus_Read();

Arguments ‘none

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

%)
o Returns value
'.l: value Returns the 16 bit value of the bus.
O
C Description Read the 16 bit port regardless of pin configurations. If a pin is configured as input or analogue, the
: pin is read directly as if it were a digital input. If a pin is configured as an output, the pin is also read
LL. directly, giving the output latch state.
C 4D Pin Name (Predefined) Diablo16 Pin Number Availability
c PAO 61 Yes
| - PA1 62 Yes
m PA2 63 Yes
afd PA3 64 Yes
cC PA4 46 Yes
— PAS 49 Yes
| PA6 50 Yes
PA7 51 Yes
’6 PAS 52 Yes
PA9 53 Yes
& PA10 43 Yes
m PA11 44 Yes
Q PA12 31 Yes (See Note 1)
o PA13 32 Yes (See Note 1)
el PA14 37 Yes
a_ PA15 36 Yes
v , ,
var 5= us ea ; ea @ 1 value O - pins
u Examp'e 1 b _R d() //Read th lobit 1 ff PAO-PA1lS
0 m—
(O
-
-
L]

DIABLO16 INTERNAL FUNCTIONS Page 32 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘bus_ReadS();

Arguments ‘none

Returns value

value Returns the state of the 8 bit bus as an 8bit value.

Description Returns the state of the bus as an 8bit value in to the lower byte of the assigned variable.

The BUS_RD pin set to LO, then, after a settling delay of approx 50nsec, the BUS is read into the lower
8 bits of the assigned variable (the upper 8 bits being set to 0) the BUS_RD pin is then set back to a HI
level.

Note: The BUS_RD pin must be preset to the desired output state must the bus pins to ensure BUS
write integrity.

BUS_RD is PA3

The 8 bit BUS pins 0 to 7 are PA4 to PA11

Example varl := bus Read8();

The lower byte of varl will get loaded with the state of the bus.

tBuskd = 50ns

RD . \ /
2007 NN X Dats L ONNNN

tSEtup =E5lns

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 33 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ bus_Write8(value);
Arguments ‘value
value The lower 8 bits of value are sent to the 8 bit bus.
The argument can be a variable, array element, expression or constant.
Returns ‘nothing
Description The lower 8 bits of argl are placed on the BUS, then, after a settling delay of approx 50nsec, the
BUS_WR pin is strobed LO for approx 50nsec then set back HI.
The upper 8 bits of argl are ignored.
Note: The BUS_WR pin pin must be preset to the desired output state as must the bus pins to ensure
BUS write integrity.
BUS_WR is PA2
The 8 bit BUS pins 0 to 7 are PA4 to PA11
Example var datal ;
datal := 0x05;
bus Write8 (datal);
tgus\wr =50ns
WR AN /

AN G N ONNN

Ustable =25ns

DIABLO16 INTERNAL FUNCTIONS Page 34 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘bus_SetPins(vaIue);

Arguments ‘value

value A value (usually a constant) specifying the pin number. Bit O corresponds to PAO
through to bit9 which corresponds to PA9.

The arguments can be a variable, array element, expression or constant.

Returns Nothing
Description
Any '1' bits in "value" sets the corresponding port pin to an output and forces its state to a '1". The
state of its previous open drain configuration is not altered. Any ‘0’ bits in "value" will not affect the
pin. pullup, pulldown, and change notification will be disable for the selected pins.
4D Pin Name (Predefined) Diablo16 Pin Number Availability
PAO 61 Yes
PA1 62 Yes
PA2 63 Yes
PA3 64 Yes
PA4 46 Yes
PAS 49 Yes
PA6 50 Yes
PA7 51 Yes
PA8 52 Yes
PA9 53 Yes
PA10 43 Yes
PA11 44 Yes
PA12 31 Yes (See Note 1)
PA13 32 Yes (See Note 1)
PA14 37 Yes
PA15 36 Yes
Example var argl;
argl := 0b0011010; // set desired mask
bus_ SetPins(argl); // set PAl, PA3 and PA4 to output, making them HI

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 INTERNAL FUNCTIONS Page 35 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘bus_CIearPins(vaIue);

Arguments ‘value

value A value (usually a constant) specifying the pin number. Bit O corresponds to PAO
through to bit9 which corresponds to PA9.

The arguments can be a variable, array element, expression or constant.

Returns Nothing
Description | Apy '1' bits in "value" sets the corresponding port pin to an output and forces its state to a '0'. The
state of its previous open drain configuration is not altered. Any ‘0’ bits in "value" will not affect the
pin. pullup, pulldown, and change notification will be disable for the selected pins.
4D Pin Name (Predefined) Diablo16 Pin Number Availability
PAO 61 Yes
PA1 62 Yes
PA2 63 Yes
PA3 64 Yes
PA4 46 Yes
PAS5 49 Yes
PA6 50 Yes
PA7 51 Yes
PA8 52 Yes
PA9 53 Yes
PA10 43 Yes
PA11 44 Yes
PA12 31 Yes (See Note 1)
PA13 32 Yes (See Note 1)
PA14 37 Yes
PA15 36 Yes
Example var argl;
argl := M PAl | M PA3 | M PA4 ; // set desired mask (same as 0b0011010)
bus ClearPins(argl); // set PAl, PA3 and PA4 to output, making them LO

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 INTERNAL FUNCTIONS Page 36 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax bus_SetChangelnterrupt(function, portmask);

Arguments function, portmask

function Event Function to be queued when an interrupt occurs.

portmask "portmask" marks that pin to generate an interrupt on change. A value (usually a
constant) specifying the pin number or a predefined pin name.

The arguments can be a variable, array element, expression or constant.

Returns value

value Return the current state of the pins that are selected in "portmask". This can be saved
and later used in "function" to see which pin(s) actually changed

Description
Any '1' bits in "portmask" marks that pin to generate an interrupt on change. A level change on that
pin will cause "function" to be executed. If "function" is zero, the display may be put into sleep mode,
and any change will cause a wakeup reset. Wakeup will always re-start code running in FLASHBANK_0O
Bit O corresponds to PAO through to bit15 which corresponds to PA15

Once armed, "function" will only be executed once, it is necessary to re-arm for any further events.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PAO 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PAS 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)
PA13 32 Yes (See Note 1)
PA14 37 Yes

PA15 36 Yes

Example bus SetChangeInterrupt (scanKeypad, M PA4 | M PA5 | M PA6 | M PAT7);

// set PA4 to PA7 to interrupt on change

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 37 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax Qencoder1(PHApin, PHBpin, mode);
Arguments PHApin, PHBpin, mode
PHApin Phase A input pin, 4D Pin Name reference — see table below
PHBpin Phase B input pin, 4D Pin Name reference — see table below
mode ‘Not currently used, set to 0 only.
The arguments can be a variable, array element, expression or constant.
Returns Nothing
Description |Connect a quadrature encoder to a pair of pins, using the predefined 4D Pin Names in the table below,
and the PHApin and PHBpin arguments in this function.
It is necessary to configure the pins first, depending on your requirements, e.g.
pin_Set (PIN_INP HI, PA4); // PA4 as input, with pullup to Vcc
or maybe
pin_Set (PIN_INP, PA4); // PA4 as input, no pullup or pulldown
The position counter and delta can be read or written to at any time with peekW and pokeW using
the following constants:
QEN1_COUNTER_LO
QEN1_COUNTER_HI
QEN1_DELTA
QEN1_DELTA is reset to 0 once it has been read
4D Pin Name (Predefined) Diablo16 Pin Number Availability
PAO 61 Yes
PA1 62 Yes
PA2 63 Yes
PA3 64 Yes
PA4 46 Yes
PA5 49 Yes
PA6 50 Yes
PA7 51 Yes
PA8 52 Yes
PA9 53 Yes
PA10 43 Yes
PA11 44 Yes
PA12 31 Yes (See Note 1)
PA13 32 Yes (See Note 1)
PA14 37 No
PA15 36 No
Example var genlDelta;

pin_Set (PIN_INP_HI, PA4); // Set PA4 to be Input with Pullup

pin_Set (PIN_INP_HI, PAS5); // Set PA5 to be Input with Pullup

Qencoderl (PA4, PA5, 0); // connect PA4 and PA5 pins to quadrature
encoder module #1

genlDelta := peekW(QEN1 DELTA) ;

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 INTERNAL FUNCTIONS Page 38 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘QencoderlReset();

Arguments ‘None

Returns ‘Nothing

Description Resets the Counters and Delta values for Encoder #1

QEN1_COUNTER_LO is reset to zero
QEN1_COUNTER_HI is reset to zero
QEN1_DELTA is reset to zero

Example QencoderlReset (); // Reset the Counter and Delta values

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 39 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax Qencoder2(PHApin, PHBpin, mode);
Arguments PHApin, PHBpin, mode
PHApin Phase A input pin, 4D Pin Name reference — see table below
PHBpin Phase B input pin, 4D Pin Name reference — see table below
mode ‘Not currently used, set to 0 only.
The arguments can be a variable, array element, expression or constant.
Returns Nothing
Description Connect a quadrature encoder to a pair of pins, using the predefined 4D Pin Names in the table below,
and the PHApin and PHBpin arguments in this function.
It is necessary to configure the pins first, depending on your requirements, e.g.
pin_Set (PIN_INP HI, PA8); // PA8 as input, with pullup to Vcc
or maybe
pin_Set (PIN_INP, PA9); // PA9 as input, no pullup or pulldown
The position counter and delta can be read or written to at any time with peekW and pokeW using
the following constants:
QEN2_COUNTER_LO
QEN2_COUNTER_HI
QEN2_DELTA
QEN2_DELTA is reset to 0 once it has been read
4D Pin Name (Predefined) Diablo16 Pin Number Availability
PAO 61 Yes
PA1 62 Yes
PA2 63 Yes
PA3 64 Yes
PA4 46 Yes
PAS 49 Yes
PA6 50 Yes
PA7 51 Yes
PA8 52 Yes
PA9S 53 Yes
PA10 43 Yes
PA11 44 Yes
PA12 31 Yes (See Note 1)
PA13 32 Yes (See Note 1)
PA14 37 No
PA15 36 No
Example var genzDelta;

pin Set (PIN INP, PAS
pin Set (PIN _INP, PA9

) // Set PA8 to be Input
)
Qencoder?2 (PA8, PA9, 0

; // Set PA9 to be Input

); // connect PA8 and PA9 pins to quadrature
encoder module #2

pokeW (QEN2 COUNTER HI) := 12; // some ‘preset value’

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 INTERNAL FUNCTIONS Page 40 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘QencoderZReset();

Arguments ‘None

Returns ‘Nothing

Description Resets the Counters and Delta values for Encoder #2

QEN2_COUNTER_LO is reset to zero
QEN2_COUNTER_HI is reset to zero
QEN2_DELTA is reset to zero

Example Qencoder2Reset (); // Reset the Counter and Delta values

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 41 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax pwm_Init(pin, mode, value);
Arguments pin, mode, value
Pin ‘4D Pin Name to enable the PWM on
mode ‘Modes for the PWM, see description below
value ‘Value determines Duty Cycle/Time Base depending on Mode, see below

The arguments can be a variable, array element, expression or constant.

Returns Status ‘Returns TRUE if the pin number is legal, usually ignored

Description | This PWM function enables a PWM output on the desired pin, based on the availability set out by
the table below.

Set the pin using the predefined 4D Pin Name into the pin argument, and select its mode and value,
which are determined by:

PWM Mode Description
PWM_OFF (0) Turn off the PWM (pin is left as Output)
PWM_PLAIN (1) Plan PWM which value is a number between 0 and 1000.

This corresponds to a 0.0 to 100.0% duty cycle.

Raw Frequency is ~70kHz. A value of 1 is not valid.
Servo PWM has a value which is between 100 and 200.
This corresponds to 1.00 to 2.00ms. Please note values
from 0 to 600 are valid (0-6ms), but should be used with
caution.

Repitition Rate is ~“50Hz or 20ms

PWM_SERVO (2)

PWM_BINARY (3) Binary PWM which value is a number between 0 and
1024. This corresponds to a 0.0 to 100.0% duty cycle.

Raw Frequency is ~68kHz. A value of 1 is not valid.

PWM_625HZ (4)
PWM_5KHZ (5)
PWM_10KHZ (6)

Plan PWM which value is a number between 0 and 1000.
This corresponds to a 0.0 to 100.0% duty cycle.
Raw Frequency is as specified.

PWM_15KHZ (7)
PWM_20KHZ (8)
PWM_25KHZ (9)
PWM_30KHZ (10)
PWM_35KHZ (11)

The pwm_Init is non-blocking and the pwm continues until turned off

4D Pin Name (Predefined) Diablo16 Pin Number Availability
PAO 61 No
PA1 62 No
PA2 63 No
PA3 64 No
PA4 46 Yes
PAS5 49 Yes
PA6 50 Yes
PA7 51 Yes
PA8 52 Yes
PA9 53 Yes

DIABLO16 INTERNAL FUNCTIONS Page 42 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR
PA10 43 No
PA11 44 No
PA12 31 No
PA13 32 No
PA14 37 No
PA15 36 No
Example pwm Init (PA4, PWM PLAIN, 676); //Sets Plain PWM of 67.7% on PA4

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 43 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

pin_Pulseout(pin, value); or

Syntax
v pin_PulseoutB(pin, value)
Arguments pin, value
Pin 4D predefined Pin Name to enable Pulseout on
value Length of pulse in milliseconds
The arguments can be a variable, array element, expression or constant.
Returns Returns TRUE if the pin number is legal (usually ignored)
Description 1,5 function will invert the state of an output for "value" milliseconds.
pin_Pulseout is a non-Blocking function, that is, code execution may continue while a pulse is
occuring, and pulses can occur on multiple pins simultaneously.
pin_PulseoutB is a Blocking function, where program execution is suspended during pulse.
If not already an output, pin is automatically made a push/pull output, and the last state of its output
latch will determine pulse polarity.
Its open drain state is not altered if the pin was already an output.
If pulseout is called while pulseout is still active, the pulse timer will simply be updated with the new
"value" and the pulse will continue with the extended value.
4D Pin Name (Predefined) Diablo16 Pin Number Availability
PAO 61 Yes
PA1 62 Yes
PA2 63 Yes
PA3 64 Yes
PA4 46 Yes
PAS5 49 Yes
PA6 50 Yes
PA7 51 Yes
PA8 52 Yes
PAS 53 Yes
PA10 43 No
PA11 44 No
PA12 31 No
PA13 32 No
PA14 37 No
PA15 36 No
Example pin Pulseout (PA3, 105); // create a Hi Pulse of 105ms on PA3

pin_set (PIN_OUT, PAl); // set PAl as an Output
pin HI (PAl); // set PAl to output HI
pin Pulseout (PAl, 50); // create a Lo pulse of 50ms on PAl

DIABLO16 INTERNAL FUNCTIONS Page 44 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax pin_Counter(pin, mode, OVFfunction);

Arguments pin, mode, OVFfunction

pin 4D predefined Pin Name to enable pin counter on, see table below
mode Counter mode, see table below

OVFfunction ‘Event function to be queued on overflow of counter

The arguments can be a variable, array element, expression or constant.

Returns Nothing

Description | Connect a counter to a pin to count transistions, and optionally call an event function when the 16bit
counter wraps from OxFFFF to zero.

The counter can be read or written to at any time with peekW and pokeW, therefore, the count may
be set to OxFFFO for example, so that user function "OVFfuction" will be called after 16 pulses.

If "OVFfunction" is set to zero, only the counter will increment, and simply wrap back to zero from
OxFFFF. If "OVFfunction" points to a user function, wnen the event fires, pin_Counter will be disabled,
and will need to be re-armed (ie '1shot' operation)

4D Pin Name (Predefined) Diablo16 Pin Number Availability
PAO 61 No
PA1 62 No
PA2 63 No
PA3 64 No
PA4 46 Yes
PAS 49 Yes
PA6 50 Yes
PA7 51 Yes
PA8 52 Yes
PA9 53 Yes
PA10 43 No
PA11 44 No
PA12 31 No
PA13 32 No
PA14 37 No
PA15 36 No

The pin may be configured as an input or output, the function behaves the same.

All six pin counters may be active simultaneously, and the maximum frequency of pin transistions
should not exceed a few Khz in mode 1 and 2 and are usually used for simple process control counting.

Pin Counter MODE Description
COUNT_OFF (0) Disconnect the counter from the pin, "OVFfunction" is
therefore ignored, and counting is inhibited.
COUNT_RISE (2) increment counter on every rising edge
COUNT_FALL (2) increment on every falling edge
COUNT_EDGE (3) increment on every rising and falling edge

DIABLO16 INTERNAL FUNCTIONS Page 45 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Example func main ()
pin_ Set (PIN_INP, PA4); // external start event
repeat // main loop

if (pin_Read(PA4))
pin Counter (PA2, COUNT RISE, userFunc):;
endif
// user code here
forever
endfunc

func userFunc ()
print ("Hello World");
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 46 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ana_HS(rate, samples, 101buf, 102buf, 103buf, I04buf, userFunction);
Arguments rate, samples, 101buf, 102buf, 103buf, 104buf, userFunction

rate Number of samples per second, see rate commend below

samples Number of samples to collect per analog channel

101buf Buffer Address for first Analog Channel

102buf Buffer Address for second Analog Channel

103buf Buffer Address for third Analog Channel

104buf Buffer Address for forth Analog Channel

userFunction |Function to call once all samples have been collected

The arguments can be a variable, array element, expression or constant.

Returns Nothing

Description |Collects "samples" samples at "rate" frequency for 0 to 4 analogue pins and calls "userFunction" when
done.

"rate" is samples represented as 1/100 samples per second, up to 250,000 reads/second across 1-4
channels. For example if you wish to sample at 5000 samples per second, you would set rate to be 50
as 5000 * 1/100 = 50.

Any unused IOx pins should have their buffer addresses (i.e. 104buf) set to 0

For performance reasons samples are taken in chunks of 32, thus if you request 33 samples there will
be a delay of 31 samples before "userFunction" is called

Note: If Touch is enabled this function should be called no more than once per millsecond, otherwise
touch behaviour could be eratic.

Example var x[100]; // Buffer for IOlbuf
var b[100]; // Buffer for IO2buf
var c[100]; // Buffer for IO3buf

// 1000 samples a second, 10000 samples to be collected from 3 channels
ana HS (1000, 10, a, b, ¢, 0, myFunc);

func myFunc ()
//do something once samples collected
Endfunc

DIABLO16 INTERNAL FUNCTIONS Page 47 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax pin_PulseoutCount(pin, frequency, count, function);
Arguments pin, frequency, count, function
pin 4D predefined Pin Name to enable PulseoutCount on
frequency The frequency to pulse the pin at (minimum 10Hz)
count The number of times to pulse the specified pin
function Address of a function to be called at completion
The arguments can be a variable, array element, expression or constant.
Returns Returns TRUE if the pin number is legal and the frequency is at least 10Hz and the maximum number
of 3 simlutaneous pulseoutCount pins is not exceeded
Description
This function will invert the state of an output at a "freq" freuency "count" times. This is a non-
Blocking function, that is, code execution may continue while a pulse is occuring, and pulses can occur
on multiple pins simultaneously. A function can be specified that will be called when all the pulses
have been output. A maximum of 3 pulseoutCount activities can be active at any one point.
If not already an output, pin is automatically made a push/pull output, and the last state of its output
latch will determine pulse polarity.
Its open drain state is not altered if the pin was already an output.
If pulseoutCount is called while pulseoutCount is active, the pulse counter will simply have the new
count value added to it.
4D Pin Name (Predefined) Diablo16 Pin Number Availability
PAO 61 No
PA1 62 No
PA2 63 No
PA3 64 No
PA4 46 Yes
PA5 49 Yes
PA6 50 Yes
PA7 51 Yes
PA8 52 Yes
PA9 53 Yes
PA10 43 No
PA11 44 No
PA12 31 No
PA13 32 No
PA14 37 No
PA15 36 No
Example pin Pulseout (PA3, 105); // create a Hi Pulse of 105ms on PA3
pin_set (PIN_OUT, PAl); // set PAl as an Output
pin HI (PAl); // set PAl to output HI
pin Pulseout (PAl, 50); // create a Lo pulse of 50ms on PAl

DIABLO16 INTERNAL FUNCTIONS Page 48 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax OW_Reset(pin);

Arguments pin

pin 4D predefined Pin Name, see table below.
The arguments can be a variable, array element, expression or constant.

Returns result
result Reset, and returns the status of the ONEWIRE device
0=ACK
1 = No Activity

(refer to Dallas 1wired documentation for further information)

Description Resets a ONEWIRE device and returns the status.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PAO 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PAS5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)
PA13 32 Yes (See Note 1)
PA14 37 Yes

PA15 36 Yes

Example print ("result=", OW Reset (PAO));

This example will print a 0 if the device initialised successfully.

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 49 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

Syntax ‘OW_Read(pin);
Arguments in
n : o -
c Pin 4D predefined Pin Name, see table below.
o The arguments can be a variable, array element, expression or constant.
o
o)
(&) Returns value
cC value A word holding the lower 8 bits contain data bits received from the 1-Wire device.
L. Description Reads the 8 bit value from a 1-Wire devices register.
— (refer to Dallas 1wired documentation for further information)
(¢v] 4D Pin Name (Predefined) Diablo16 Pin Number Availability
C PAO 61 Yes
b PAL 62 Yes
q) PA2 63 Yes
E PA3 64 Yes
PA4 46 Yes
PAS5 49 Yes
I PA6 50 Yes
[- PA7 51 Yes
o PAS 52 Yes
(Vp) PA9 53 Yes
(¥p) PA10 43 Yes
Q PA11 44 Yes
(&) PA12 31 Yes (See Note 1)
o PA13 32 Yes (See Note 1)
| - PA14 37 No
(a1 PAL5 36 No
v
(&) Example // read temperature from DS1821 device
© m—— var temp buf;
_C OW_Reset (PAOQ) ; // reset the device
Q_ OW_Write (PAO, OxAA) ; // send the read command
m temp buf := OW_Read (PAO); // read the device register
-
A
L]

DIABLO16 INTERNAL FUNCTIONS Page 50 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax OW_Read9(pin);
Arguments pin
Pin 4D predefined Pin Name, see table below.
The arguments can be a variable, array element, expression or constant.
Returns value
value A word holding 9 or more data bits received from the 1-Wire device.
Description Reads the 9 or more bit value from a 1-Wire devices register.
(refer to Dallas 1wired documentation for further information)
4D Pin Name (Predefined) Diablo16 Pin Number Availability
PAO 61 Yes
PA1 62 Yes
PA2 63 Yes
PA3 64 Yes
PA4 46 Yes
PAS5 49 Yes
PA6 50 Yes
PA7 51 Yes
PA8 52 Yes
PAS 53 Yes
PA10 43 Yes
PA11 44 Yes
PA12 31 Yes (See Note 1)
PA13 32 Yes (See Note 1)
PA14 37 No
PA15 36 No
Example // read temperature from DS1821 device
var temp buf;
OW_Reset (PAO) ; // reset the device
OW_Write (PAO, OxAA) ; // send the read command
temp buf := OW_Read9 (PAO) ; // read the device register

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 INTERNAL FUNCTIONS Page 51 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘OW_Write(pin, data);

Arguments ‘pin, data

Pin 4D predefined Pin Name, see table below.
Data The lower 8 bits of data are sent to the 1-Wire device.

‘The argument can be a variable, array element, expression or constant.

Returns ‘Nothing

Description Writes the 8 bit data to 1-Wire devices register.
(refer to Dallas 1wired documentation for further information)

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PAO 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PAS5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)
PA13 32 Yes (See Note 1)
PA14 37 No

PA15 36 No

Example //

// For this demo to work, a Dallas DS18B20 must be connected to
// PAO AND POWERED FROM 3.3 to 5V.

// DS18B20 pinl = Gnd / pin2 = data in/out / pin 3 = +3.3v

// Refer to the Dallas DS18B20 for further information

func main ()

var temp buf ;

pause (1000) ;

txt MoveCursor (0,0);

if (OW_Reset (PAOQ)) // initialise and test
print ("No device detected");
while (1) ;

endif

repeat
txt MoveCursor (0, 0);
print ("result=", OW Reset (PA0)):;

OW_Write (PAO, Oxcc); // skip ROM

OW Write (PAO, 0x44); // start conversion
OW_Reset (PAOQ) ; // reset

OW Write (PAO, Oxcc); // skip ROM
OW_Write (PAO, OxBE); // get temperature
temp buf := OW Read(PAO);

temp buf += (OW_Read (PAO) << 8);

DIABLO16 INTERNAL FUNCTIONS Page 52 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

txt MoveCursor (1, 0);
print ("temp buf=0x", [HEX4] temp buf);
forever
endfunc

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 53 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘NP_Write(pin, data, size, Options, RepeatFirst, Repeat, RepeatLast) ;

Arguments pin, data, size, Options, RepeatFirst, Repeat, RepeatLast

Pin 4D predefined Pin Name, see table below.

data The address of the data to be sent

size The size of the data to be sent, in Pixels

Options The format of the data pixels, NP_565, NP_RGB or NP_XRGB

RepeatFirst Number of times to repeat the first colour (0 means first colour is not considered
'special')

Repeat Number of times to repeat the colours between first and last

RepeatLast Number of times to repeat the last colour (0 means last colour is not considered
'special’)

The arguments can be a variable, array element, expression or constant.

Returns value

value Returns TRUE if the pin number is legal (usually ignored)

Description Writes a string of pixels to the NeoPixel array connected to the specified 1/0 Pin.

Due to the critical timing requirements of the NeoPixel, any interrupts should be stopped, or
otherwise ‘circumvented’ before this command is issued. Internally, the system Timer is disabled
during this command.

Comms Interrupts should also be disabled by the user, otherwise errors may occur. A suitable
workaround is to repeat the NP_Write until ‘com_Count’ does not change during its execution.

Comms TX Buffers, if used, should be held.

Audio should be stopped or paused.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PAO 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)
PA13 32 Yes (See Note 1)
PA14 37 Yes

PA15 36 Yes

Example var data[4] := [RED, LIME, BLUE, WHITE] ;

// send Red, Lime Blue, and white to the NeoPixel strip twice

DIABLO16 INTERNAL FUNCTIONS Page 54 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

NP Write (PAO, data, 4, 0, 2, 0);
// send 2 x Red, Lime, Blue and 2 x White to the NeoPixel strip
NP Write (PAO, data, 4, 2, 1, 2);

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 55 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
e peekW(address)
e pokeW(address, word_value)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 56 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘peekw(address);
Arguments address
address The address of a memory word. The address is usually a pre-defined system register
address constant, (see the address constants for all the system word sized registers
in section 3).
The arguments can be a variable, array element, expression or constant.
Returns word_value
word_value The 16 bit value stored at address.
Description Read a word from system memory.
Note: that the txt_Set variables (0-15) and gfx_set variables (16-31) can also be accessed with peekW
and pokeW.
Examp'e var myvar;

myvar := peekW(SYSTEM TIMER LO);

This example places the low word of the 32 bit system timer in myvar.

DIABLO16 INTERNAL FUNCTIONS Page 57 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘pokew(address, word_value);
Arguments address, word_value
address The address of a memory word. The address is usually a pre-defined system register
address constant, (see the address constants for all the system word sized registers
in section 3).
word_value The 16 bit word_value will be stored at address.
The arguments can be a variable, array element, expression or constant.
Returns None
Description This function writes a 16 bit value to a location specified by address.
Note: that the txt_Set variables (0-15) and gfx_set variables (16-31) can also be accessed with peekW
and pokeW.
Examp'e pokeW(TIMER2, 5000) ;

This example sets TIMER2 to 5 seconds.

DIABLO16 INTERNAL FUNCTIONS Page 58 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
e ABS(value)
e MIN(valuel, value2)
e MAX(valuel, value2)
e SWAP(&varl, &var2)

o SIN(angle)
e COS(angle)
e RAND()

e RANDVAL(low, high)
e SEED(number)
e SQRT(number)

e OVF()
e CY()
e EVE_SP()

e EVE_SSIZE()

e umul_1616(&res32, vall, val2)

e uadd_3232(&res32, &vall, &val2)
e usub_3232(&res32, &vall, &val2)
e udiv_3232(&res32, &varl, &var2)
e ucmp_3232(&vall, &val2)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 59 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ABS(vaIue);

Arguments value

value A variable, array element, expression or constant.
The arguments can be a variable, array element, expression or constant.

Returns value

value Returns the absolute value.

Description This function returns the absolute value of value.

Example var myvar, number;
number := -100;
myvar := ABS (number * 5);

This example returns 500 in variable myvar.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 60 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘MIN(vaIuel, value2);

Arguments valuel, value2

valuel A variable, array element, expression or constant.
value2 A variable, array element, expression or constant.

The arguments can be a variable, array element, expression or constant.

Returns value

value The smaller of the two values.

Description This function returns the the smaller of valuel and value2.

Example var myvar, numberl, number2;
numberl := 33;
number?2 := 66;
myvar := MIN(numberl, number?2);

This example returns 33 in variable myvar.

DIABLO16 INTERNAL FUNCTIONS Page 61 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘MAX(vaIuel, value2);

Arguments valuel, value2

valuel A variable, array element, expression or constant.

value2 A variable, array element, expression or constant.

The arguments can be a variable, array element, expression or constant.

Returns value

value The larger of the two values.

Description This function returns the larger of valuel and value2.

Example var myvar, numberl, number2;
numberl := 33;
number?2 := 66;
myvar := MAX (numberl, number?2);

This example returns 66 in variable myvar.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 62 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘SWAP(&valuel, &value2);

Arguments ‘&varl, &var2
&varl The address of the first variable.
&var2 The address of the second variable.

‘The arguments can only be a variable or an array element.

Returns ‘nothing

Description ‘Given the addresses of two variables (varl and var2), the values at these addresses are swapped.

Example var numberl, number2;
numberl := 33;
number2 := 66;

SWAP (&numberl, &number?2);

This example swaps the values in numberl and number2. After the function is executed, numberl
will hold 66, and number2 will hold 33.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 63 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘s|N(angIe);

Arguments angle

angle The angle in degrees. (Note: The input value is automatically shifted to lie within O-
359 degrees)

The arguments can be a variable, array element, expression or constant.

Returns result

result The sine in radians of an argument specified in degrees. The returned value range is
from 127 to -127 which is a more useful representation for graphics work. The real
sine values vary from 1.0 to -1.0 so appropriate scaling must be done in user code as
required.

Description |This function returns the SIN of an angle

Example var myvar, angle;
angle := 133;
myvar := SIN(angle);

This example returns 92 in variable myvar.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 64 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘COS(angk’-);

Arguments angle

angle The angle in degrees. (Note: The input value is automatically shifted to lie within O-
359 degrees)

The arguments can be a variable, array element, expression or constant.

Returns result

result The cosine in radians of an argument specified in degrees. The returned value range
is from 127 to -127 which is a more useful representation for graphics work. The real
sine values vary from 1.0 to -1.0 so appropriate scaling must be done in user code as
required.

Description |This function returns the COSINE of an angle

Example var myvar, angle;
angle := 133;
myvar := COS (angle);

This example returns -86 in variable myvar.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 65 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘RAN D();

Arguments ‘none

Returns value

value Returns a pseudo random signed number ranging from -32768 to +32767 each time the
function is called. The random number generator may first be seeded by using the
SEED(number) function. The seed will generate a pseudo random sequence that is
repeatable. You can use the modulo operator (%) to return a number within a certain
range, eg n := RAND() % 100; will return a random number between -99 and +99. If you
are using random number generation for random graphics points, or only require a
positive number set, you will need to use the ABS function so only a positive number is
returned, eg: X1 := ABS(RAND() % 100); will set co-ordinate X1 between 0 and 99.

Note that if the random number generator is not seeded, the first number returned after
reset or power up will be zero. This is normal behavior.

Description This function returns a pseudo random signed number ranging from -32768 to +32767

Example SEED (1234) ;
print (RAND(),", ",RAND());

This example will print 3558, 1960 to the display.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 66 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax RANDVAL(low, high);
Arguments low, high
low Low limit for the random numbers
high High limit for the random numbers
Returns value
value A random number between low and high limits.
The arguments can be a variable, array element, expression or constant.
Description Returns a random number between low and high limits such that low <= N < high The random number
generator may first be seeded by using the SEED(number) function.
RANDVAL is the equivalent of aggregate functions:-
myvar = ABS((RAND()%(high-low)+low));
Note: The lower limit is inclusive, but the upper limit is exclusive.
Note: If the random number generator is not seeded, the first number returned after reset or power
up will be the low number in the range. This is normal behaviour.
Example SEED (1234) ;

print (RAND(),", ",RAND());

This example will print 3558, 1960 to the display.

DIABLO16 INTERNAL FUNCTIONS Page 67 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘SEED(number);

Arguments ‘number

number Specifies the seed value for the pseudo random number generator.
The arguments can be a variable, array element, expression or constant.

Returns ‘nothing

Description This function seeds the pseudo random number generator so it will generate a new repeatable
sequence. The seed value can be a positive or negative number.

Example SEED (-50) ;
print (RAND(),", ",RAND());

This example will print 30129, 27266 to the display.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 68 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘SQRT(number);

Arguments number

number Specifies the positive number for the SQRT function.
The arguments can be a variable, array element, expression or constant.

Returns value

value This function returns the integer square root which is the greatest integer less than or
equal to the square root of number.

Description This function returns the integer square root of a number.

Example var myvar;
myvar := SQRT(26000) ;

This example returns 161 in variable myvar which is the integer square root of 26000.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 69 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘OVF();
Arguments ‘none
Returns value
value The high order 16 bits from certain math and shift functions.
Description This function returns the high order 16 bits from certain math and shift functions. It is extremely
useful for calculating 32 bit address offsets for MEDIA access.
It can be used with the shift operations, addition, subtraction, multiplication and modulus operations.
Example var loWord, hiWord;
loWord := 0x2710 * 0x2710; // (10000 * 10000 in hex format)
hiWord := OVE () ;

print ("Ox", [HEX] hiWord, [HEX] loWord);

This example will print 0x05F5E100 to the display , which is 100,000,000 in hexadecimal

DIABLO16 INTERNAL FUNCTIONS Page 70 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘CY() ;

Arguments ‘none

Returns Status

Status Returns Status of carry, 0 or 1.

Description This function returns the carry status of an unsigned overflow from any 16 or 32bit additions or
subtractions.

Example var myvar;
myvar := OxFFF8 + 9; // result =1

print (“myvar ”, myvar,"\nCarry ", CY(),"\n"); // carry = 1

This example will print
myvar 1
Carry 1

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 71 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ EVE_SP();

Arguments ‘None

Returns ‘value

‘value Returns the current stack level.

Description ‘Used for debugging to assess the current stack level, mainly for checking stack leaks.

var val;
val := EVE SP();

Example

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 72 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax EVE_SSIZE();

Arguments ‘None

Returns ‘value

‘value Returns the stack size.

Description ‘Used to get the current stack size. Mainly for debugging purposes.

print (EVE SSIZE());
Prints stack size on the screen.

Example

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 73 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax uadd_3232(&res32, &vall, &val2);
Arguments &res32, &vall, &val2)
&res32 Points to 32bit result register.
&vall points to 32bit augend
&val2 points to 32bit addend
Returns value
value Returns 1 on 32bit unsigned overflow (carry). Carry flag is also set on 32bit unsigned
overflow and can be read with the CY() function.

Description Performs an unsigned addition of 2 x 32bit values placing the 32bit result in a 2 word array.

Example var carry, valA[2], valB[2], Result[2];
var p;
valA[0]
valA[l]
valB[0]
valB[1]

carry := uadd 3232 (Result, valA, valB);

p := str Ptr (Result);

print ("0x") ;

str Printf (&p, "%1X"); //prints the value at pointer in Hex long format.

This example will print 0x20000

DIABLO16 INTERNAL FUNCTIONS Page 74 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax usub_3232(&res32, &vall, &val2);
Arguments &res32, &vall, &val2
&res32 Points to 32bit result register.
&vall points to 32bit minuend
&val2 points to 32bit subtrahend
Returns Value
Value Returns 1 on 32bit unsigned overflow (carry). Carry flag is also set on 32bit unsigned
overflow and can be read with the CY() function.

Description Performs an unsigned subtraction of 2 x 32bit values placing the 32bit result in a 2 word array.

Example var carry, valA[2], valB[2], Result[2];
var p;
valA[0] := 0;
valA[l] = OxFFFF;
valB[0] := 0;
valB[1l] := OxXEFFF;
carry := usub 3232 (Result, valA, valB);
p := str Ptr (Result);

print ("0x") ;
str Printf (&p, "31X");
repeat forever

This example will print 0x10000000

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 75 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax umul_1616(&res32, vall, val2);
Arguments &res32, vall, val2
&res32 Points to 32bit result register.
vall 16bit register or constant
val2 16bit register or constant
Returns Pointer
Pointer Returns a pointer to the 32bit result. Carry and overflow are not affected.

Description Performs an unsigned multiply of 2 x 16bit values placing the 32bit result in a 2 word array.

Example var val32[2];

var p;

umul 1616 (val32, 500, 2000);
p := str Ptr(val32);

str Printf (&p, "%1d");

This example prints 1000000

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 76 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax udiv_3232(&res32, vall, val2);

Arguments &res32, vall, val2

&res32 Points to 32bit result register.
vall 32bit register or dividend
val2 32bit register or divisor
Returns Pointer
Pointer Returns a pointer to the 32bit result. Carry and overflow are not affected.

Description Performs an unsigned division of 2 x 32bit values placing the 32bit result in a 2 word array.
Note: A division by zero will result is OxFFFFFFFF

Example var val32[2], dividend[2], divisor([2] ;
var p;
dividend[0] := 0x5c21 ; // part of 1661985
dividend[1l] := 0x19 ; // part of 1661985
divisor[0] := 13 ;
divisor[1l] := 0 ;
udiv 3232 (val32, dividend, divisor);
p := str Ptr(val32);
str Printf (&p, "%1d"); // 1661985 / 13 = 127845

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 77 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ucmp_3232(&vall, &val2);
Arguments &vall, &val2
&vall points to 32bit constant
&val2 points to 32bit constant
Returns value
value 0 if equal
1 if vall > val2
-1lifvall <val2
This function does not affect the carry flag.

Description Performs an unsigned comparison of 2 x 32bit values.

Example var carry, valA[2], valB[2], Result;
valA[0] := 0;
valA[l] := OXFFFF;
valB[0] := 0;
valB[1] = OxEFFF;
Result := cmp 3232 (vald, valB); //vall > val2
print (Result) ;
repeat forever
This example will print 1.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 78 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
e txt_MoveCursor(line, column)
e putch(char)
e putchXY(xpos, ypos, char)
e putstr(pointer)
e putstrXY(xpos, ypos, string)
e putstrCentred(xc, yc, string)
e putnum(format, value)
e print(...)
e to(outstream)
e charwidth(char)
e charheight(char)
e strwidth(pointer)
e strheight()
e strlen(pointer)txt_Set(function, value)
e unicode_page(charbeg, charend, charoffset)
e txt_Set(function, value)
txt_Set shortcuts:

e txt FGcolour(colour)

e txt BGcolour(colour)

e txt_FontlID(id)

o txt_Width(multiplier)
e txt_Height(multiplier)
e txt_Xgap(pixelcount)

e txt_Ygap(pixelcount)

e txt Delay(millisecs)

e txt Opacity(mode)

e txt Bold(mode)

e txt_ltalic(mode)

e txt_Inverse(mode)

e txt_Underline(mode)
e txt_Attributes(value)

e txt_Wrap (value)

e txt_Angle(value)
e txt_FontBank(bank, address)
e PutnumXY(x, y, format, value)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 79 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax txt_MoveCursor(line, column);
Arguments line, column
line Holds a positive value for the required line position.
column Holds a positive value for the required column position.
The arguments can be a variable, array element, expression or constant
Returns nothing
Moves the text cursor to a screen position set by line and column parameters. The line and column
position is calculated, based on the size and scaling factor for the currently selected font. When text
is outputted to screen it will be displayed from this position. The text position could also be set with
gfx_MoveTo(...); if required to set the text position to an exact pixel location. Note that lines and
Description columns start from 0. So, line 0, column 0 is the top left corner of the display.
Note: This function sets the TEXT_MARGIN the x value, this is so you can easily left align text using
\n. If you don’t want this, simply set TEXT_MARGIN to 0 using pokeW(TEXT_MARGIN,0).
Example txt MoveCursor (4, 9);

This example moves the text origin to the 5% line and the 10" column.

DIABLO16 INTERNAL FUNCTIONS Page 80 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘putch(char);

Arguments char

char Holds a positive value for the required character.

The arguments can be a variable, array element, expression or constant

Returns ‘nothing

Description ‘putch prints single characters to the current output stream, usually the display.

Example var vj
v = 0x39;

putch (v) ; // print the number 9 to the current display location
putch('\n'); // newline

DIABLO16 INTERNAL FUNCTIONS Page 81 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘putchXY(xpos, ypos, char);

Arguments | xpos, ypos, char

Xpos Specifies the horizontal position of the character.
ypos Specifies the vertical position of the character.
char Holds a positive value for the required character.

The arguments can be a variable, array element, expression or constant

Returns nothing

putchXY prints a single character at position x, y.

Description
Note: This function will also update the origin.
Example var vj
v := 0x39;
putchXY (10, 20, v); // print the number 9 to x,y (10,20)

putch('\n"); // newline

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 82 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘putstr(string);

Arguments string

string A string constant, a word pointer to a string, a pointer to an array, or a pointer to a
data statement. Note that for a byte aligned RAM string you need to use str_Printf

Returns source

source ‘Returns the pointer to the item that was printed.

Description putstr and, similarly print([STR] x); operate on constant strings in Flash, or word aligned strings in
RAM.
putstr prints a string to the current output stream, usually the display.

Note: The string constants and data statement pointers are byte aligned.

Note: putstr is more efficient than print for printing single strings.

Note: The output of putstr can be redirected to the communications port, the media, or memory
using the to(...); function.

A string constant is automatically terminated with a zero.
A string in a data statement is not automatically terminated with a zero.

All variables in 4DGL are 16bit, if an array is used for holding 8 bit characters; each array element
packs 1 or 2 characters.

Example //
// Example #1 - print a string constant

//

putstr ("HELLO\n"); //simply print a string constant at current origin

//

// Example #2 - print string via pointer

//

var p; // a var for use as a pointer

p := "String Constant\n"; // assign a string constant to pointer s
putstr (p) ; // print the string using the pointer
putstr (p+8) ; // print, offsetting into the string
//

// Example #3 - printing strings from data table

//

#DATA

byte message "Week",O0
word days sun,mon, tue,wed, thu, fri,sat // pointers to data items
byte sun "Sunday\n\0"
byte mon "Monday\n\0"
byte tue "Tuesday\n\0"
byte wed "Wednesday\n\0"
byte thu "Thursday\n\0"
byte fri "Friday\n\0"
byte sat "Saturday\n\0"
#END

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

var n;

DIABLO16 INTERNAL FUNCTIONS Page 83 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

putstr
n:=0;
while(n < 7)
putstr (days[n++]); // print the days
wend

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 84 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘putstrXY(xpos, ypos, string);

Arguments |Xpos, ypos, string

Xpos Specifies the horizontal position of the string.
ypos Specifies the vertical position of the string.
string A string constant, a word pointer to a string, a pointer to an array, or a pointer to a

data statement. Note that for a byte aligned RAM string you need to use str_Printf in
conjunction with gfx_MoveTo(x,y) command

Returns nothing

Description putstrXY prints a string at position x, y on the display.
Note: The string constants and data statement pointers are byte aligned.

A string constant is automatically terminated with a zero.
A string in a data statement is not automatically terminated with a zero.

All variables in 4DGL are 16bit, if an array is used for holding 8 bit characters; each array element
packs 1 or 2 characters.

Example /7
// Example #1 - print a string constant

//

putstrXy (5,10, "HELLO\n"); //Print ‘Hello’ at 5,10

//

// Example #2 - print string via pointer

//

var p; // a var for use as a pointer

p := "String Constant\n"; // assign a string constant to pointer s
putstr (p) ; // print the string using the pointer
putstr (5, 10, p+8); // print at 5,10, offsetting into the string
//

// Example #3 - printing strings from data table

//

#DATA

byte message "Week",O0
word days sun,mon, tue,wed, thu, fri,sat // pointers to data items
byte sun "Sunday\0"
byte mon "Monday\0"
byte tue "Tuesday\0"
byte wed "Wednesday\0"
byte thu "Thursday\0"
byte fri "Friday\0"
byte sat "Saturday\0"
#END

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

var n; n:=0;
while(n < 7)

putstrXY (0, n+10, days([n++]); // print the days
wend

DIABLO16 INTERNAL FUNCTIONS Page 85 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘putstr(xc, yc, string);
Arguments XC, Y¢, string
Xc Specifies the horizontal position of the string.
yc Specifies the vertical position of the string.
string A string constant, a pointer to a string, a pointer to an array, or a pointer to a data
statement.
Returns nothing

Description putstrCentred prints a string centered at position x, y on the display.

Note: The string constants and data statement pointers are byte aligned.

A string constant is automatically terminated with a zero.
A string in a data statement is not automatically terminated with a zero.

All variables in 4DGL are 16bit, if an array is used for holding 8 bit characters; each array element
packs 1 or 2 characters.

Example putstrCentred (120, 0, "4D Labs\n"); //Print ‘4D Labs’centered at 120,0

Assuming X-resolution = 240, this command will print ‘4D Labs’ in the top-middle of the screen.

DIABLO16 INTERNAL FUNCTIONS Page 86 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘putnum(format, value);

Argume |

format, value
nts

format ‘A constant that specifies the number format.

‘value ‘The number to be printed.

Number formatting bits supplied by format

bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
_

I I I /N \ /

| | | | Vv v Y

[N | | |

| | | | | | \

[1 | | (nb 0 = 16) | | BASE (usually 2, 10 or 16)

[I B displayed \

[digit gty \

[B | reserved

| | | |

[N

| | | | 1 = leading zeros included

| | | 0 = leading zeros suppressed

| | |

| | | 1 = leading zero blanking

| | 0 = Show Zeros

[

| | sign bit (0 = signed, 1 = unsigned)

|

| 1 = space before unsigned number

0 = no space
Pre-Defined format constants quick reference

DECIMAL UNSIGNED DECIMAL HEX BINARY
DEC DECZ DECZB UDEC UDECZ | UDECZB HEX HEXZ HEXZB BIN BINZ BINZB
DEC1 DEC1Z | DEC1ZB | UDEC1 | UDEC1Z UDEC1ZB HEX1 HEX1Z | HEX1ZB BIN1 BIN1Z | BIN1ZB
DEC2 DEC2Z | DEC2ZB | UDEC2 | UDEC2Z UDEC2ZB HEX2 HEX2Z | HEX1ZB BIN2 BIN2Z | BIN2ZB

DEC3 DEC3Z DEC37ZB UDEC3 UDEC3Z | UDEC3ZB HEX3 HEX37Z HEX1ZB BIN3 BIN3Z BIN3ZB

DEC4 DEC47Z DEC47ZB UDEC4 UDEC47Z | UDEC4ZB HEX4 HEX47Z HEX1ZB BIN4 BIN4Z BIN4ZB

DEC5 DEC5Z DEC5ZB UDECS UDEC5Z | UDEC5ZB BINS BIN5Z BIN5ZB

BING6 BING6Z BIN6ZB

BIN7 BIN7Z BIN7ZB

BINS BIN8Z BIN8ZB

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

BIN9 BIN9Z BIN9ZB

BIN1O BIN10Z BIN10ZB

BIN11 BIN11Z BIN11ZB

DIABLO16 INTERNAL FUNCTIONS Page 87 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

BIN12 BIN12Z BIN12ZB

BIN13 BIN13Z BIN13ZB

BIN14 BIN14Z BIN147ZB

BIN1S BIN15Z |BIN15ZB

BIN16 BIN16Z BIN16ZB

Returns (field
field Returns the the default width of the numeric field (digit count), usually ignored.

Descript

ion putnum prints a 16bit number in various formats to the current output stream, usually the display.

Example var v;
v := 05678;

putnum (HEX, v); // print the number as hex 4 digits
putnum (BIN, Vv); // print the number as binary 16 digits

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 88 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax print(...);

Arguments ‘See Description

Returns ‘nothing

Description 4pGL has a versatile print(...) statement for formatting numbers and strings. In it's simplest form,
print will simply print a number as can be seen below:

myvar := 100;
print(myvar);
This will print 100 to the current output device (usually the display in TEXT mode). Note that if you

wish to add a string anywhere within a print(...) statement, just place a quoted string expression and
you will be able to mix strings and numbers in a variety of formats. See the following example.

print("the value of myvaris :- ", myvar, "and its 8bit binary representation is:-", [BIN8]myvar);
* Refer the the table in putnum(..) for all the numeric representations available.

The print(...) statement will accept directives passed in square brackets to make it print in various
ways, for instance, if you wish to print a number in 4 digit hex, use the [HEX4] directive placed in front
of the variable to be displayed within the print statement. See the following example.

print("myvar as a 4 digit HEX number is :- ", [HEX4]myvar);

Note that there are 2 print directives that are not part of the numeric set and will be explained
separately. these are the [STR] and [CHR] directives.

The [STR] directive expects a string pointer to follow:

s := "Hello World"; // assign a string constant to s
print("Var 's' points to a string constant at address", s ," which is", [STR] s);

The [CHR] directive prints the character value of a variable.

print("The third character of the string is ", [CHR] *(s+2));
also
print("The value of 'myvar' as an ASCII charater is ", [CHR] myvar);

Note that you can freely mix string pointers, strings, variables and expressions within a print
statement. print(...) can also use the to(...) function to redirect it's output to a different output device
other than the screen using the function (refer to the to(...) statement for further examples).

Examp'e #platform "uLCD-70DT"
/17717771777 777777777
// DATA STATEMENT //
/17717771777 777777777

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

#DATA

word myData

myStringl, Bert, Fred, main, myString2, baud, barney,
0x1111,0x2222,0x3333,0x4444

byte myStringl "Data String OK\n\n",O0

DIABLO16 INTERNAL FUNCTIONS Page 89 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

byte myString2 "\" (and forward referenced!)\"\n\n", 0
word baud 150,300,600,1200,2400, 9600
#END

// this constant is a forward reference
#constant barney 9876

func Fred(var str)
print ("string = ", [STR] str);
endfunc

func Bert (var pl, var p2, var p3)
print ("hello from Bert\npl=",pl, "\np2=",p2, "\np3=",p3,"\n");
return "Bert was here\n";

endfunc

func main ()
var fn; // a variable for a handle for the function

txt Set (FONT ID, FONT 1);
fn := myData[l]; //Get function pointer from data statement index
print([STR] £fn(100,200,300));

// use it in a statement to prove engine ok

fn := myData[2]; //Get function pointer from data statement index
fn ("ABC\n") ; // execute the function

// just shows where main lives

print ("\naddress of main = code[", myData[3],"]\n\n");
// remember - a var can be a handle, variable, pointer or vector
print ([STR] myDatal[0]); // pointer table data reference

print ([STR] myDatal[4]);

repeat forever

endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 90 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘to(outstream);

Arguments outstream

outstream A variable or constant specifying the destination for the putch, putstr, putnum,
print and str_Printf functions.

Predefined Name Constant putch(), putstr(), putnum(), print(), str_Printf() redirection

DSK 0xF802 Output is directed to the most recently open file that has
been opened in write mode.

CcoMO 0xF804 Output is redirected to the COMO (default serial) port.

comi O0xFFO5 Output is redirected to the COM1 (default serial) port.

com2 O0xFF06 Output is redirected to the COM2 (default serial) port.

coms3 OxFFO7 Output is redirected to the COM3 (default serial) port.

12C1 0xF820 Output is directed to the 12C1 port.

12C2 0xF821 Output is directed to the 12C2 port.

12C3 0xF822 Output is directed to the 12C3 port.

Output is directed to the SD/SDHC or FLASH media.
Warning — be careful writing to a FAT16 formatted card

MDA OxF840 without checking legal partitioned are else the disk
formatting will be destroyed.
APPEND 0x0000 Output is appended to user array if previous redirection was

to an array.

(memory pointer) Array address Output is redirect to the memory pointer argument.

Returns ‘nothing

Description to() sends the printed output to destinations other than the screen. Normally, print just sends its
output to the display in TEXT mode which is the default, however, the output from print can be sent
to 'streams', eg — COMO0, COM1, COM2, or COMS3, an open FAT16 file with DSK, to raw media with
MDA (media), or to the 12C ports with 12C1, 12C2 or 12C3.

The to(...) function can also stream to a memory array . Note that once the to(...) function has taken
effect, the stream reverts back to the default stream which is TEXT as soon as putch, putstr, putnum,
print, or str_Printf has completed its action.

The APPEND argument is used to append the printed output to the same place as the previous
redirection. This is most useful for building string arrays, or adding sequential data to a media stream.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

Example //
// Example #1 - putstr redirection
//
var buf[10]; // a buffer that will hold up to 20 bytes/chars
var s; // a var for use as a pointer
to (buf); putstr ("ONE ") ; // redirect putstr to the buffer

DIABLO16 INTERNAL FUNCTIONS Page 91 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

to (MDA) ; putstr (buf); //

write the buffer we prepared earlier

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR
to (APPEND) ; putstr ("TWO ") ; // and add a couple more items
to (APPEND) ; putstr ("THREE\n") ;
putstr (buf) ; // print the result to the display
while (media Init ()==0); // wait if no SD/SDHC card detected
media SetSector (0, 2); // at sector 2
//media_ SetAdd (0, 1024); // (alternatively, use media SetAdd(),
// lower 9 bits ignored).
to (MDA); putstr("Hello World") ; // now write a ascii test string
media WriteByte ('A'); // write a further 3 bytes
media WriteByte('B');
media WriteByte('C');
()
(

media WriteByte (0);
media Flush();

media SetAdd (0, 1024);
while (char:=media ReadByte())

wend
repeat forever

// terminate with ASCII zero
// reset the media address

to (COMO0); putch(char); // print the stored string to the COM port

DIABLO16 INTERNAL FUNCTIONS

Page 92 of 554

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘charwidth('char');
(7, Arguments 'char’
g ‘char’ ‘The ascii character for the width calculation.
0 m—
I Returns width
c width ‘Returns the width of a single character in pixel units.
L Description |charwidth is used to calculate the width in pixel units for a character, based on the currently selected
font.
L]
cC Example /7
[// Example
v =
str := "HELLO\nTHERE"; // note that this string spans 2 lines due
=
// to the \n.
C width := strwidth(str); // get the width of the string, this will
— // also capture the height.
I height := strheight(); // note, invoking strwidth also calcs height
// which we can now read.
| // The string above spans 2 lines, strheight(.) will calculate height
o // correctly for multiple lines.
len := strlen(str); // the strlen() function returns the number
(72 // of characters in a string.
m print ("\nLength=",len); // NB:- the \n in "HELLO\nTHERE" is counted
m // as a character.
(&) txt FontID(MS_SanSerif8x12); // select this font
o w := charwidth('W'); // get a characters width
b h := charheight ('W"); // and height
txt FontID(0) ; // back to default font
a_ print ("\n'W' is " ,w, " pixels wide"); // show width of a character
// 'W' in pixel units.
(Vy) print ("\n'W' is " ,h, " pixels high"); // show height of a character
U // 'W' in pixel units.
0 m—
-
L]

DIABLO16 INTERNAL FUNCTIONS

Page 93 of 554

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax charheight('char’);

Arguments 'char’

‘char’ ‘The ascii character for the height calculation.
Returns width
width ‘Returns the height of a single character in pixel units.

Description charheight is used to calculate the height in pixel units for a character, based on the currently selected
font.

Example See example in charwidth ()

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 94 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘strwidth(pointer);

Arguments pointer

pointer The pointer to a zero (0x00) terminated string.

'pointer' may be a constant or pointer to word aligned variable.

Returns width
width Returns the width of a string in pixel units, can be multi line.

Description strwidth returns the width of a zero terminated string in pixel units. Note that any string constants
declared in your program are automatically terminated with a zero as an end marker by the compiler.
Any string that you create in the DATA section or MEM section must have a zero added as a terminator
for this function to work correctly.

Example See example in charwidth ()

DIABLO16 INTERNAL FUNCTIONS Page 95 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘strheight();

Arguments none

Returns height

height Returns the height of a string in pixel units, can be multi line.

Description strheight returns the height of a zero terminated string in pixel units. The strwidth function must be
called first which makes available width and height. Note that any string constants declared in your
program are automatically terminated with a zero as an end marker by the compiler. Any string that
you create in the DATA section or MEM section must have a zero added as a terminator for this
function to work correctly.

Example See example in charwidth ()

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 96 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘strlen(pointer);

Arguments pointer
pointer ‘The pointer to a zero (0x00) terminated string.

Returns length
length ‘Returns the length of a string in character units.

Description strlen returns the length of a zero terminated string in character units. Note that any string constants
declared in your program are automatically terminated with a zero as an end marker by the compiler.
Any string that you create in the DATA section or MEM section must have a zero added as a terminator
for this function to work correctly.

Example See example in charwidth ()

DIABLO16 INTERNAL FUNCTIONS Page 97 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax

unicode_page(charbeg, charend, charoffset);

Arguments

charbeg, charend, charoffset
charbeg Offset of first character in Unicode set.
charend Offset of ending character in Unicode Set.

charoffset Offset of first ASCII character in Unicode Set.

Returns

count
count Returns count of characters in the set.

Description

After selecting a Unicode image control with txt_FontID, this function is called to set the required
font within the Unicode set. The file "Unicode.inc" contains wrappers for this function, and it is not
normally called directly.

Refer to Unicode documentation 4DGL-Unicode-REVx.pdf’ and ‘Unicode.inc’ for further information.

Example

See Unicode.inc

DIABLO16 INTERNAL FUNCTIONS Page 98 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘txt_Set(function, value);

Arguments function, value

function | The function number determines the required action for various text control functions.
Usually a constant, but can be a variable, array element, or expression. There are pre-
defined constants for each of the functions.

value A variable, array element, expression or constant holding a value for the selected
function.

Returns nothing

Description Given a function number and a value, set the required text control parameter, such as size, colour,
and other formatting controls. This function is extremely useful in a loop to select multiple parameters
from a data statement or a control array. Note also that each function available for txt_Set has a single
parameter 'shortcut' function that has the same effect.

(see the Single parameter short-cuts for the txt_Set functions next page)

function value
Predefined Name Description
0 TEXT_COLOUR Set the text foreground colour Colour 0-65535
Default = LIME
1 TEXT_HIGHLIGHT Set the text background colour Colour 0-65535
Default = BLACK
2 [FONT_ID Set the required font.
System_5x7 1or FONT_1
System_8x8 2 or FONT_2
System_8x12 3 0or FONT_3
System_12x16 4 or FONT_4
MS_SanSerif8x12 5or FONT_5
dejaVuSans9pt 6 or FONT_6
dejaVuSansBold9pt 7 or FONT_7
dejaVuSansCondensed9pt 8 or FONT_8
System_3x6 9 or FONT_9
plotted 10 or FONT_10
EGA 8x12 font 11 or FONT_11

Note: The value could be the name of a custom font included Default = FONT_3
in a users program in a data statement.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

3 TEXT_WIDTH Set the text width multiplier. Text will be printed magnified|1 to 16
horizontally by this factor Default=1
4 |TEXT_HEIGHT Set the text height multiplier. Text will be printed magnified|1 to 16
vertically by this factor. Default =1
5 |TEXT_XGAP Set the pixel gap between characters. The gap is in pixel units 0 to 32
Default =0
6 | TEXT_YGAP Set the pixel gap between lines. The gap is in pixel units. 0to 32
Default = 0
7 TEXT_PRINTDELAY Set the delay between character printing to give a 'teletype' 0 to 255
like effect. Default = Omsec

DIABLO16 INTERNAL FUNCTIONS Page 99 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

8 |TEXT_OPACITY

9 |TEXT_BOLD

10 TEXT_ITALIC

Selects whether or not the 'background' pixels are drawn
(default mode is OPAQUE)

Sets Bold Text mode for the next string or char. The feature
automatically resets after printing using putstr or print has
completed.
Sets Italic Text mode for the next string or char. The feature
automatically resets after printing using putstr or print has
completed.

0 or TRANSPARENT
1 or OPAQUE
Default=0

0 or 1 (OFF or ON)

0 or 1 (OFF or ON)

11 TEXT_INVERSE

Sets Inverse Text mode for the next string or char. The feature
automatically resets after printing using putstr or print has
completed.

0 or 1 (OFF or ON)

12 TEXT_UNDERLINED

13 |TEXT_ATTRIBUTES

Sets Underlined Text mode for the next string or char. The
feature automatically resets after printing using putstr or print
has completed.

Allows a combination of text attributes to be defined together
by 'or'ing the bits together. The feature automatically resets
after printing using putstr or print has completed.

Example:
txt_Set(TEXT_ATTRIBUTES, BOLD | INVERSE); // bold + inverse

Note: bits 0-3 and 8-15 are reserved

0 or 1 (OFF or ON)

16 or BOLD

32 orITALIC

64 or INVERSE

128 or UNDERLINED

14 TEXT_WRAP

15 TEXT_ANGLE

Sets the pixel position where text wrap will occur at RHS

The feature automatically resets when screen mode is
changed. If the value is set to 0, text wrap is turned off of the
current screen.

Note:

The value is in pixel units.

Sets the text angle, only for plotted fonts. The feature
automatically resets when screen mode is changed.

0 to n (OFF or Value)
Default =0

0 to 359 degrees

Single parameter short-cuts for the txt_Set(..) functions

Function Syntax

txt_FGcolour(colour)

txt_BGcolour(colour)

Function Action

Set the text foreground colour

Set the text background colour

value
Colour 0-65535
Default = LIME

Colour 0-65535
Default = BLACK

txt_FontID(id)

Set the required font.
System_5x7
System_8x8
System_8x12
System_12x16
MS_SanSerif8x12
dejaVuSans9pt
dejaVuSansBold9pt
dejaVuSansCondensed9pt
System_3x6

plotted

EGA 8x12 font

Note: The value could also be the name of a custom font
included in a users program in a data statement, or the handle

1or FONT_1
2 or FONT_2
3 0or FONT_3
4 or FONT_4
5o0r FONT_5
6 or FONT_6
7 or FONT_7
8 or FONT_8
9 or FONT_9
10 or FONT_10
11 or FONT_11

Default = FONT_3

DIABLO16 INTERNAL FUNCTIONS

Page 100 of 554

www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

returned from file_LoadlmageControl() for a uSD based font.

txt_Width(multiplier) Set the text width multiplier. Text will be printed magnified|1 to 16
horizontally by this factor Default =1
txt_Height(multiplier) Set the text height multiplier. Text will be printed magnified|1 to 16
vertically by this factor. Default =1
txt_Xgap(pixelcount) Set the pixel gap between characters. The gap is in pixel units |0 to 32
Default = 0
txt_Ygap(pixelcount) Set the pixel gap between lines. The gap is in pixel units. 0to32
Default =0
txt_Delay(millisecs) Set the delay between character printing to give a 'teletype' 0 to 255
like effect. Default = Omsec
txt_Opacity(mode) Selects whether or not the 'background' pixels are drawn 0 or TRANSPARENT
(default mode is OPAQUE) 1 or OPAQUE
Default = 0

txt_Bold(mode)

Sets Bold Text mode for the next string or char. The feature
automatically resets after printing using putstr or print has
completed.

0 or 1 (OFF or ON)

txt_Italic(mode)

txt_Inverse(mode)

txt_Underline(mode)

Sets Italic Text mode for the next string or char. The feature
automatically resets after printing using putstr or print has
completed.

Sets Inverse Text mode for the next string or char. The feature
automatically resets after printing using putstr or print has
completed.

Sets Underline Text mode for the next string or char. The
feature automatically resets after printing using putstr or print
has completed.

0 or 1 (OFF or ON)

0 or 1 (OFF or ON)

0 or 1 (OFF or ON)

txt_Attributes(value)

txt_Wrap(value)

Allows a combination of text attributes to be defined together
by 'or'ing the bits together. The feature automatically resets
after printing using putstr or print has completed.

Example:
txt_Set(TEXT_ATTRIBUTES, BOLD | INVERSE); // bold + inverse

Note: bits 0-3 and 8-15 are reserved

Sets the pixel position where text wrap will occur at RHS

The feature automatically resets when screen mode is
changed. If the value is set to 0, text wrap is turned off of the
current screen.

Note:

The value is in pixel units.

16 or BOLD

32 orlITALIC

64 or INVERSE
128 or UNDERLINED

0 to n (OFF or Value)
Default=0

txt_Angle(value)

Sets the text angle, only for plotted fonts. The feature
automatically resets when screen mode is changed.

0 to 359 degrees

DIABLO16 INTERNAL FUNCTIONS

Page 101 of 554

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax txt_FontBank(bank, address);

Arguments bank, address

bank The bank that the font is stored in

address The address of the font within the bank
Returns font

font Returns the current font before the change.

Description | Enables the usage of fonts stored in banks. See the FontinBankTest and
BookAntiqua2032FontsinBankl1 samples. If a single font is the only thing in a bank its address will be
7, otherwise look in the .Ist file from the compile to find the address of the font. Assuming there is
space available multiple fonts can be stored in the same bank.

Example txt FontBank (FONTBANK 1, 7) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 102 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax putnumXY(x, y, format, value);

Arguments X, y, format, value
X The x position to start printing the number in.
y The y position to start printing the number in.

format A constant that specifies the number format.

value The number to be printed.

Returns field
field Returns the the default width of the numeric field (digit count), usually ignored.

Description putnumXY prints a 16bit number in various formats to the current output stream, usually the display
at the specified position. The Formats are the same as for the putnum command

Example var v;
v := 05678;
putnumXY (0, 0, HEX, V); // print the number as hex 4 digits
putnumXY (0, 20, BIN, v); // print the number as binary 16 digits

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 103 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
e isdigit(char)
isxdigit(char)
isupper(char)
islower(char)
isalpha(char)
isalnum(char)
isprint(char)
isspace(char)
iswhite(char)
toupper(char)
tolower(char)
LObyte(var)
Hibyte(var)
ByteSwap(var)
NybleSwap(var)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 104 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘isdigit(char);

Arguments char

char Specifies the ASCII character for the test.

Returns Status

0: Character is not as ASCII digit

Status 1: Character is an ASCII digit.

Description Tests the character parameter and returns a 1 if the character is an ASCII digit else returns a 0.
Valid range: "0123456789".

Example func main ()

var ch;

var stat;

gfx Cls();

txt Set (FONT ID, FONT 2);

print ("Serial Input Test\n")

print ("Download prog to flash\n");
print ("Then use debug terminall\n");

to (COMO); print("serial input test:\n");

// now just stay in a loop

repeat
ch := serin();
if (ch != -1)

print ([CHR] ch); // if a key was received from PC,
// print its ascii value
print (“Character is an ASCII digit”);
) print (“Character is ASCII Hexadecimal”);

if (isdigit(ch))
)
) print (“Character is ASCII uppercase letter”);
)
)

(
if (isxdigit (ch
if (isupper (c
if (islower (
if (isalpha (

print (“Character is ASCII uppercase letter”);

)
h)
ch)
ch)) print (“Character is an ASCII uppercase oOr

lowercase”) ;
if (isalnum(ch)) print(“Character is an ASCII Alphanumeric”);
if (isprint(ch)) print(“Character is a printable ASCII”);

if (isspace(ch)) print (“Character is a space type character”);
endif

forever

endfunc;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 105 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ isxdigit(char);

Arguments char

char Specifies the ASCII character for the test.

Returns Status

0: Character is not as ASCIl hexadecimal digit

Status 1: Character is an ASCIl hexadecimal digit.

Description Tests the character parameter and returns a 1 if the character is an ASCII hexadecimal digit else returns
a0.
Valid range: "0123456789ABCDEF".

Example Refer to Sec 2.5.1

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 106 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘isupper(char);

Arguments char

char Specifies the ASCII character for the test.

Returns Status

0: Character is not an ASCII upper case letter.

Status .
1: Character is an ASCIl upper case letter.

Description Tests the character parameter and returns a 1 if the character is an ASCIl upper case letter else returns
a0.
Valid range: "ABCDEF....WXYZ".

Example Refer to Sec 2.5.1

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 107 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘islower(char);

Arguments char

char Specifies the ASCII character for the test.

Returns Status

0: Character is not an ASCII lower case letter

Status .
1: Character is an ASCII lower case letter.

Description Tests the character parameter and returns a 1 if the character is an ASCIl lower case letter else returns
a0.
Valid range: "abcd....wxyz".

Example Refer to Sec 2.5.1

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 108 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘isalpha(char);

Arguments char

char Specifies the ASCII character for the test.

Returns Status

0: Character is not as ASCII lower or upper case letter.

Status .
1: Character is an ASCII lower or upper case letter..

Description Tests the character parameter and returns a 1 if the character is an ASCII lower or upper case letter
else returns a 0.
Valid range : "abcd....wxyz", “ABCD....WXYZ"

Example Refer to Sec 2.5.1

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 109 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘isalnum(char);

Arguments char

char Specifies the ASCII character for the test.

Returns Status

0: Character is not as ASCII Alphanumeric character.

Stat . .
atus 1: Character is an ASCII Alphanumeric character.

Description Tests the character parameter and returns a 1 if the character is an ASCII Alphanumeric else returns a
0.
Valid range : "abcd....wxyz", “ABCD....WXYZ"”, “0123456789”

Example Refer to Sec 2.5.1

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 110 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘isprint(char);

Arguments char

char Specifies the ASCII character for the test.

Returns Status

0: Character is not a printable ASCII character.

Stat . .
atus 1: Character is a printable ASCII character.

Description Tests the character parameter and returns a 1 if the character is a printable ASCII character else
returns a 0.
Valid range : 0x20... 0x7F

Example Refer to Sec 2.5.1

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 111 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘isspace(char);

Arguments char

char Specifies the ASCII character for the test.

Returns Status

0: Character is not a space type character.

Status .
1: Character is a space type character.

Description Tests the character parameter and returns a 1 if the character is any one of the space type character
else returns a 0.
Valid range : space, formfeed, newline, carriage return, tab, vertical tab.

Example Refer to Sec 2.5.1

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 112 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘toupper(char);
Arguments char
char Specifies the ASCII character for the test.
Returns char
char “ABCD...WXYZ”: If character is lower case letter.
char: If character is not a lower case letter.
Description Tests the character parameter and if the character is a lower cases letter, it returns the upper case
equivalent else returns the passed char.
Valid range: "abcd ... wxyz".
Example func main ()

var ch, Upconvch, Loconvch;

var stat;

gfx Cls();

tXt_Set(FONT_ID, FONT2) ;

print ("Serial Input Test\n");

print ("Download prog to flash\n");
print ("Then use debug terminall\n");

to (COM0); print("serial input test:\n");

// now just stay in a loop

repeat
ch := serin();
if (ch != -1)

print ([CHR] ch); // if a key was received from PC,
// print its ascii value

if (isupper (ch))
print (“Uppercase ASCII found. Converting to lowercase”);

Loconvch := tolower (ch);

endif

if (islower (ch))
print (“Lowercase ASCII found. Converting to Uppercase”);
Upconvch := toupper (ch);

endif

endif

forever

endfunc;

DIABLO16 INTERNAL FUNCTIONS Page 113 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘tolower(char);

Arguments char

char Specifies the ASCII character for the test.

Returns Status

“abced...wxyz”: If character is upper case letter.

Status .
char: If character is not a upper case letter...

Description Tests the character parameter and if the character is a lower case letter it returns the upper case
equivalent else returns the passed char.
Valid range: "ABCD ... WXYZ".

Example Refer to Sec 2.5.9

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 114 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ LObyte(var);

Arguments var

var User variable.

Returns byte

byte ‘Returns the lower byte (lower 8 bit) of a 16 bit variable.

Description ‘Returns the lower byte (lower 8 bit) of a 16 bit variable.

Example ‘myvar := LObyte (myvar2) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 115 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ Hibyte(var);

Arguments var

var User variable.

Returns byte

byte ‘Returns the upper byte (upper 8 bits) of a 16 bit variable.

Description ‘Returns the upper byte (upper 8 bits) of a 16 bit variable.

Example ‘myvar := HIbyte (myvar2) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 116 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ ByteSwap(var);
Arguments var
var User variable.
Returns value
value ‘Returns the endian swapped value of a 16 bit variable.

Description ‘Returns the swapped upper and lower bytes of a 16 bit variable.

Example ‘myvar := ByteSwap (myvar?2) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 117 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax NybleSwap(var);

Arguments var

var User variable.

Returns value

value ‘Returns the 16 bit variable with swapped lower nybles

Description ‘Returns the swapped lower bytes nybles, upper byte retained

Example ‘myvar := ByteSwap (myvar?2) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 118 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
o gfx_Cls()
e gfx_ChangeColour(oldColour, newColour)
o gfx_Circle(x, y, radius, colour)
o gfx_CircleFilled(x, y, radius, colour)
e gfx_Line(x1, y1, x2, y2, colour)
o gfx_Hline(y, x1, x2, colour)
e gfx_Vline(x, y1, y2, colour)
e gfx_Rectangle(x1, y1, x2, y2, colour)
o gfx_RectangleFilled(x1, y1, x2, y2, colour)
e gfx_RoundRect(x1, y1, x2, y2, rad, colour)
e gfx_Polyline(n, vx, vy, colour)
e gfx_Polygon(n, vx, vy, colour)
e gfx_Triangle(x1, y1, x2, y2, x3, y3, colour)
e gfx_Dot()
e gfx_Bullet(radius)
o gfx_Orbitlnit(&x_dest, &y_dest)
o gfx_Orbit(angle, distance)
e gfx_PutPixel(x, y, colour)
o gfx_GetPixel(x, y)
e gfx_MoveTo(xpos, ypos)
e gfx_MoveRel(xoffset, yoffset)
o gfx_IncX()
o gfx_IncY()
e gfx_LineTo(xpos, ypos)
e gfx_LineRel(xpos, ypos)
e gfx_BoxTo(x2, y2)
e gfx_SetClipRegion()
e gfx_Ellipse(x, y, xrad, yrad, colour)
e gfx_EllipseFilled(x, y, xrad, yrad, colour)
e gfx_Button(state, x, y, buttonColour, textColour, font, textWidth, textHeight, text)
o gfx_Button2(state, x, y, width, height, buttonColour, txtColour, text)
o gfx_Button3(state, x, y, width, height, buttonColour, txtColour, text)
e gfx_Panel(state, x, y, width, height, colour)
e gfx_RoundPanel(states, x, y, width, height, radius, bevelwidth, colour)
o gfx_Slider(mode, x1, y1, x2, y2, colour, scale, value)
o gfx_Slider2(mode, x1, y1, width, height, colour, scale, value)
e gfx_ScreenCopyPaste(xs, ys, xd, yd, width, height)
e gfx_RGBto565(RED, GREEN, BLUE)
e gfx_332to565(COLOURSBIT)
e gfx_565t0332(COLOUR)
o gfx_TriangleFilled(x1, y1, x2, y2, x3, y3, colr)
e gfx_PolygonFilled(n, &vx, &vy, colr)
e gfx_Origin(x, y)
e gfx_Get(mode)
o gfx ClipWindow(x1, y1, x2, y2)
e gfx_Set(function, value)
gfx_Set shortcuts:
e gfx_PenSize(mode)
e gfx_BGcolour(colour)
e gfx_ObjectColour(colour)
e gfx_Clipping(mode)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 119 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

e gfx_TransparentColour(colour)
e gfx_Transparency(mode)
e gfx_FrameDelay(delay)
e gfx_ScreenMode(orientation)
e gfx_OutlineColour(colour)
e gfx_Contrast(value)
o gfx_LinePattern(pattern)
o gfx_BevelRadius(radius)
o gfx_BevelWidth(mode)
o gfx_BevelShadow(value)
o gfx_Xorigin(offset)
o gfx_Yorigin(offset)
o gfx_Arc(xc, radius, step, startangle, endangle, mode)
o gfx_CheckBox(state, x, y, width, height, boxColour, textColour, text)
o gfx_RadioButton(state, x, y, width, height, boxColour, textColour, text)
e gfx_FillPattern(patptr, mode)
o gfx_Gradient(style, x1, y1, x2, y2, colourl, colour2)
e gfx_RoundGradient(style, x1, y1, x2, y2, radius, colourl, colour2)
o gfx_PieSlice(cx, cy, spread, radius, step, startangle, endangle, mode)
o gfx_PointWithinBox(x, y, &rect)
e gfx_PointWithinRectangle(x, y, &recta)
e gfx_ReadBresline(x1, y1, x2, y2, ptr)
e gfx_WriteBresLine(x1, y1, x2, y2, ptr)
e gfx_ReadGRAMarea(x1, y1, x1, y2, ptr)
o gfx_WriteGRAMarea(x1, y1, x2, y2, ptr)
o gfx_Surround(x1, y1, x2, y2, radl, rad2, oct, colour)
o gfx_Scope(Left, Width, Yzero, n, Xstep, Yamp, Colourbg, &old_y1, &new_y1, Colourl, ... &old_y4,
&new_y4, Colour4)
e gfx_RingSegment(x, y, Radl, Rad2, starta, enda, colour)
o gfx_AngularMeter(value, &MeterRam, &MeterDef)
o gfx_Panel2(state, x, y, width, height, wil, w2, cl, cr)
o gfx_Needle(value, &NeedleRam, &NeedleDef)
e gfx_Dial(value, &DialRam, &DialDef)
e gfx_Gauge(value, &GaugeRam, &GaugeDef)
o gfx_LedDigits(value, &LedDigitRam, &LedDigitDef)
o gfx_LedDigit(x, y, digitsize, oncolour, offcolour, value)
o gfx_Slider5(value, &SliderRam, &SliderDef)
e gfx_Switch(state, &SwitchRam, &SwitchDef)
o gfx_Button4(state, &gfx_ButtonRam, &gfx_ButtonDef)
o gfx_Led(state, &LedRam, &LedDef)
e gfx_Scale(&ScaleRam, &ScaleDef)
e gfx_RulerGauge(value, &RulerGaugeRam, &RulerGaugeDef)
e gfx_GradientShape(GradientRAM, HorzVert, OuterWidth, X, Y, W, H, TLrad, TRrad, BLrad, BRrad,
Darken, OuterColor, OuterType, OuterLevel, InnerColor, InnerType, InnerLevel, Split)
e gfx_GradientColor(Type, Darken, Level, H, Pos, Color)
e gfx_GradTriangleFilled(XO0, YO, X1, Y1, X2, Y2, SolidCol, GradientCol, GradientHeight, GradientY,
GradientLevel, Type)
e gfx_XYrotToVal(x, y, XYROT_EAST, starta, enda, minv, maxv)
o gfx_XYlinToVal(x, y, base, minpos, maxpos, minv, maxv)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 120 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ gfx_Cls();

Arguments ‘none

Returns ‘nothing

Clear the screen using the current background colour. gfx_Cls() command brings some of the settings
back to default; such as,

e Transparency turned OFF

e Outline colour set to BLACK

e Opacity set to OPAQUE

e Pensetto OUTLINE

e Line patterns set to OFF

e Right text margin set to full width

e Text magnifications set to 1

e All origins set to 0:0

Description

The alternative to maintain settings and clear screen is to draw a filled rectangle with the required
background colour.

Example gfx BGcolour (DARKGRAY) ;
gfx Cls();

This example clears the entire display using colour DARKGRAY

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 121 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_ChangeColour(oldColour, newColour);

Arguments oldColour, newColour

oldColour Specifies the sample colour to be changed within the clipping window.

Specifies the new colour to change all occurrences of old colour within the clipping

newColour .
window.

The arguments can be a variable, array element, expression or constant

Returns ‘nothing

Description ‘Changes all oldColour pixels to newColour within the clipping area.

Example func main ()

txt Width(3);

txt Height (5);

gfx MoveTo (8,20) ;

print ("TEST") ; // print the string

gfx SetClipRegion(); // force clipping area to extents of text
// just printed.

gfx ChangeColour (BLACK, RED); // test change of background colour

repeat forever
endfunc

This example prints a test string, forces the clipping area to the extent of the text that was printed
then changes the background colour.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 122 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ gfx_Circle(x, y, rad, colour);

Arguments X, Y, rad, colour

X,y Specifies the centre of the circle.
rad Specifies the radius of the circle.
colour Specifies the colour of the circle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a circle with centre point x1, y1 with radius r using the specified colour.

NB: The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the circle will be
drawn filled, if PEN_SIZE is set to OUTLINE, the circle will be drawn as an outline. If the circle is drawn
as SOLID, the outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set
to 0, no outline is drawn.

Example // assuming PEN SIZE is OUTLINE
gfx Circle(50,50,30, RED);

This example draws a BLUE circle outline centred at x=50, y=50 with a radius of 30 pixel units.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 123 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_CircleFilled(x, y, rad, colour);

Arguments X, Y, rad, colour

X,y Specifies the centre of the circle.
rad Specifies the radius of the circle.
colour Specifies the fill colour of the circle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a SOLID circle with centre point x1, y1 with radius using the specified colour.

The outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set to 0, no
outline is drawn.
NB:- The PEN_SIZE is ignored, the circle is always drawn SOLID.

Example if (state == TOUCH RELEASED) // 1f there's a release;
gfx CircleFilled(x, y, 10, RED); // we'll draw a solid red circle
// of radius=10 on touch release

endif

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 124 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ gfx_Line(x1, y1, x2, y2, colour);

Arguments x1,y1, x2, y2, colour

x1,y1l Specifies the starting coordinates of the line.
X2,y2 Specifies the ending coordinates of the line.
colour Specifies the colour of the line.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a line from x1, y1 to x2, y2 using the specified colour. The line is drawn using the current object
colour. The current origin is not altered. The line may be tessellated with the gfx_LinePattern(...)
function.

Example gfx Line (100, 100, 10, 10, RED);

This example draws a RED line from x1=10, y1=10 to x2=100, y2=100

DIABLO16 INTERNAL FUNCTIONS Page 125 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ gfx_Hline(y, x1, x2, colour);

Arguments y, X1, x2, colour

v Specifies the vertical position of the horizontal line.
x1, x2 Specifies the horizontal end points of the line.
colour Specifies the colour of the horizontal line.

The arguments can be a variable, array element, expression or constant

Returns ‘nothing

Description ‘Draws a fast horizontal line from x1 to x2 at vertical co-ordinate y using colour.

Example ng_HllI’le(50, 10, 80, RED);

This example draws a fast RED horizontal line at y=50, from x1=10 to x2=80

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 126 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ gfx_Vline(x, y1, y2, colour);

Arguments X, y1, y2, colour

X Specifies the horizontal position of the vertical line.
vl,y2 Specifies the vertical end points of the line.
colour Specifies the colour of the vertical line.

The arguments can be a variable, array element, expression or constant

Returns ‘nothing

Description ‘Draws a fast vertical line from y1 to y2 at horizontal co-ordinate x using colour.

Example ng_VllI’le(20, 30, 70, RED);

This example draws a fast RED vertical line at x=20, from y1=30 to y2=70

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 127 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_Rectangle(x1, y1, x2, y2, colour);

Arguments x1,y1, x2, y2, colour

x1,y1l Specifies the top left corner of the rectangle.
X2,y2 Specifies the bottom right corner of the rectangle.
colour Specifies the colour of the rectangle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a rectangle from x1, y1 to x2, y2 using the specified colour. The line may be tessellated with
the gfx_LinePattern(...) function.

NB: The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the rectangle will
be drawn filled, if PEN_SIZE is set to OUTLINE, the rectangle will be drawn as an outline. If the
rectangle is drawn as SOLID, the outline colour can be specified with gfx_OutlineColour(...). If
OUTLINE_COLOUR is set to 0, no outline is drawn. The outline may be tessellated with the
gfx_LinePattern(...) function.

Example gfx Rectangle (10, 10, 30, 30, GREEN);

This example draws a GREEN rectangle from x1=10, y1=10 to x2=30, y2=30

DIABLO16 INTERNAL FUNCTIONS Page 128 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_RectangleFilled(x1, y1, x2, y2, colour);

Arguments x1,y1, x2, y2, colour

x1,y1l Specifies the top left corner of the rectangle.
X2,y2 Specifies the bottom right corner of the rectangle.
colour Specifies the colour of the rectangle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a SOLID rectangle from x1, y1 to x2, y2 using the specified colour. The line may be tessellated
with the gfx_LinePattern(...) function.

The outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set to 0, no
outline is drawn. The outline may be tessellated with the gfx_LinePattern(...) function.

NB:- The PEN_SIZE is ignored, the rectangle is always drawn SOLID.

Example gfx RectangleFilled(30,30,80,80, RED);

This example draws a filled RED rectangle from x1=30,y1=30 to x2=80,y2=80

DIABLO16 INTERNAL FUNCTIONS Page 129 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_RoundRect(x1, y1, x2, y2, rad, colour);

Arguments x1, y1, x2, y2, rad, colour
x1,y1l Specifies the top left corner of the inner rectangle.

X2,y2 Specifies the bottom right corner of the inner rectangle.

Specifies the corner radius.

rad . . S . .
This is the distance in pixels extending from the corners of the inner rectangle.

colour Specifies the colour of the rectangle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draw a filled rectangle at the given co-ordinates with optional rounded corners.
If x1 =x2 or yl =y2 no straight line part is drawn.

The actual width of the round-corners rectangle is computed by: 2*rad + x2 — x1.
The actual height of the round-corners rectangle is computed by: 2*rad + y2 —y1.

Rendering can be obtained with gfx_FillPattern(PATTRN); or gfx_FillPattern(OFF); for no fill pattern
determined by ‘radius’.

Example gfx RoundRect (30, 30, 80, 80, 5, RED);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 130 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_Polyline(n, vx, vy, colour);
Arguments n, vx, vy, colour
Specifies the number of elements in the x and y arrays specifying the vertices for the
n .
polyline.
Specifies the addresses of the storage of the array of elements for the x coordinates of
VX .
the vertices.
Specifies the addresses of the storage of the array of elements for the y coordinates of
v .
v the vertices.
colour Specifies the colour for the lines
The arguments can be a variable, array element, expression or constant

%)

O

O

LL

-

m Returns nothing

afd

C Description Plots lines between points specified by a pair of arrays using the specified colour. The lines may be

tessellated with the gfx_LinePattern(...) function. gfx_Polyline can be used to create complex raster

I graphics by loading the arrays from serial input or from MEDIA with very little code requirement.

-

o This function is very similar to the Ploygon function

V)

m Example #inherit "4DGL 1l6bitColours.fnc"

8 var vx[20], vy[20];

func main ()

a_ vx[0] := 36; vy[0] := 110;
vx[1l] := 36; vy[l] := 80;

m vx[2] := 50; vy[2] := 80;

U vx[3] := 50; vy[3] := 110;

0 m—

: vx[4] := 76; vyl[4] := 104;
vx[5] := 85; vy[5] := 80;

Q vx[6] := 94; vy[6] := 104;

| vx[7] := 76; vyl[7] := 70;

LD vx[8] := 85; vyl[8] := 76;
vx[9] := 94; wvy[9] := 70;

m vx[10] := 110; vy[1l0] := 66;

H vx[11l] := 110; vy[ll] := 80;
vx[12] := 100; wvy[l2] := 90;

O vx[13] := 120; wvy[1l3] := 90;

A vx[14] := 110; wvy[l4] := 80;

m vx[15] := 101; wvy[l5] := 70;

< vx[16] := 110; vy[l6] := 76;

— vx[17] := 119; vy[l1l7] := 70;

D // house
gfx Rectangle(6,50,66,110,RED) ; // frame
gfx Triangle(6,50,36,9,66,50, YELLOW) ; // roof
gfx Polyline (4, vx, vy, CYAN); // door
// man

DIABLO16 INTERNAL FUNCTIONS Page 131 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

gfx Circle(85, 56, 10, BLUE); // head
gfx Line (85, 66, 85, 80, BLUE); // body
gfx Polyline (3, vx+4, vy+4, CYAN); // legs
gfx Polyline(3, vx+7, vy+7, BLUE); // arms

// woman

gfx Circle (110, 56, 10, PINK); // head
gfx Polyline (5, vx+10, vy+10, BROWN) ; // dress
gfx _Line (104, 104, 106, 90, PINK); // left arm
gfx Line (112, 90, 116, 104, PINK); // right arm
gfx Polyline (3, vx+15, vy+l15, SALMON); // dress

repeat forever

endfunc

This example draws a simple scene

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 132 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_Polygon(n, vx, vy, colour);
Arguments n, vx, vy, colour
Specifies the number of elements in the x and y arrays specifying the vertices for the
n
polygon.
Specifies the addresses of the storage of the array of elements for the x coordinates of
VX
the vertices.
Specifies the addresses of the storage of the array of elements for the y coordinates of
v .
v the vertices.
colour Specifies the colour for the polygon
The arguments can be a variable, array element, expression or constant

Returns nothing

Description Plots lines between points specified by a pair of arrays using the specified colour. The last point is
drawn back to the first point, completing the polygon. The lines may be tessellated with the
gfx_LinePattern(...) function. gfx_Polygon can be used to create complex raster graphics by loading
the arrays from serial input or from MEDIA with very little code requirement.

Example var vx[7], vyl[7];

func main ()

vx[0] = 10; vyl[O0] = 10;
vx[1l] := 35; vy[l] := 5;

vx[2] := 80; vy[2] := 10;
vx[3] := 60; vyl[3] = 25;
vx[4] := 80; vyl[4] := 40;
vx[5] := 35; vy[5] := 50;
vx[6] := 10; vy[6] := 40;

gfx Polygon (7, vx, vy, RED);

repeat forever
endfunc

This example draws a simple polygon

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 133 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_Triangle(x1, y1, x2, y2, x3, y3, colour);

Arguments x1,y1, x2, y2, x3, y3, colour

x1,yl Specifies the first vertices of the triangle.
X2, y2 Specifies the second vertices of the triangle.
x3,vy3 Specifies the third vertices of the triangle.
colour Specifies the colour for the triangle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a triangle outline between vertices x1,y1, x2,y2 and x3,y3 using the specified colour. The line
may be tessellated with the gfx_LinePattern(...) function. Vertices must be specified in an anti-
clockwise fashion.

Example gfx Triangle(10,10,30,10,20,30,CYAN) ;

This example draws a CYAN triangular outline with vertices at 10,10 30,10 20,30

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 134 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ gfx_Dot();
Arguments none
Returns ‘nothing

Description ‘Draws a pixel at the current origin using the current object colour.

Examp'e ng_MOVGTO (40,50) ;
gfx ObjectColour (0xRED) ;
gfx Dot ();

This example draws a RED pixel at 40,50

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 135 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ gfx_Bullet(radius);

Arguments radius
rad Specifies the radius of the bullet.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a circle or 'bullet point' with radius r at at the current origin using the current object colour.
Note: The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the circle will be
drawn filled, if PEN_SIZE is set to OUTLINE, the circle will be drawn as an outline. If the circle is drawn
as SOLID, the outline colour can be specified with gfx_OutlineColour(...).

Example ng_MOVGTO(30, 30),‘
gfx Bullet(10); // Draw a 1l0Opixel radius Bullet at x=30, y=30.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 136 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_OrbitInit(&x_dest, &y_dest);

Arguments x_dest, y_dest
x dest Specifies the addresses of the storage locations for the calculated Orbit X-coordinate.
y_dest Specifies the addresses of the storage locations for the calculated Orbit Y-coordinate.
The arguments can be a variable, array element, expression or constant

Returns nothing

Description Sets up the internal pointers for the gfx_Orbit(..) result variables. The &x_orb and &y_orb parameters
are the addresses of the variables or array elements that are used to store the result from the
gfx_Orbit(..) function.

Example var targetX, targetY;

gfx OrbitInit (&targetX, &targetY);

This example sets the variables that will receive the result from a gfx_Orbit(..) function call

DIABLO16 INTERNAL FUNCTIONS Page 137 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax

‘ gfx_Orbit(angle, distance);

Arguments

angle, distance

angle Specifies the angle from the origin to the remote point. The angle is specified in degrees.

distance Specifies the distance from the origin to the remote point in pixel units.

The arguments can be a variable, array element, expression or constant

Returns

nothing
Note: result is stored in the variables that were specified with the gfx_Orbitlnit(..) function.

Description

Sets Prior to using this function, the destination address of variables for the calculated coordinates
must be set using the gfx_Orbitlnit(..) function. The gfx_Orbit(..) function calculates the x, y
coordinates of a distant point relative to the current origin, where the only known parameters are the
angle and the distance from the current origin. The new coordinates are calculated and then placed
in the destination variables that have been previously set with the gfx_Orbitlnit(..) function.

Example

var targetX, targetyY;

gfx OrbitInit (&targetX, &targetY);

gfx MoveTo (30, 30);

gfx Bullet (5) // mark the start point with a small WHITE circle

gfx Orbit (30, 50); // calculate a point 50 pixels away from origin at
// 30 degrees

gfx CircleFilled(targetX, targetY,3,0xF800); // mark the target point

// with a RED circle

See example comments for explanation.

DIABLO16 INTERNAL FUNCTIONS Page 138 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_PutPixel(x, y, colour);
Arguments x, Yy, colour
X,y Specifies the screen coordinates of the pixel.
colour Specifies the colour of the pixel.
The arguments can be a variable, array element, expression or constant
Returns ‘nothing
Description ‘Draws a pixel at position x,y using the specified colour.
Example gfx PutPixel (32, 32, OxFFFF);

This example draws a WHITE pixel at x=32, y=32

DIABLO16 INTERNAL FUNCTIONS Page 139 of 554

www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_GetPixel(x, y);

Arguments X,y

X,y Specifies the screen coordinates of the pixel colour to be returned.

The arguments can be a variable, array element, expression or constant

Returns colour
colour The 8 or 16bit colour of the pixel (default 16bit).

Description Reads the colour value of the pixel at position x,y.

Example gfx PutPixel (20, 20, 1234);
r := gfx GetPixel (20, 20);
print(r);

This example print 1234, the colour of the pixel that was previously placed.

DIABLO16 INTERNAL FUNCTIONS Page 140 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_MoveTo(xpos, ypos);

Arguments Xxpos, ypos

Xpos Specifies the horizontal position of the new origin.

ypos Specifies the vertical position of the new origin.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Moves the origin to a new position.

Note: This function sets the TEXT_MARGIN the x value, this is so you can easily left align text using \n.
If you don’t want this, simply set TEXT_MARGIN to 0 using pokeW(TEXT_MARGIN,0).

Example #inherit "4DGL l6bitColours.fnc"

func help ()
var x, y, state;

print ("TOUCHE ME") ;

touch Set (TOUCH ENABLE) ; // lets enable the touch screen
while (touch Get (TOUCH STATUS) != TOUCH PRESSED); //Wait for touch

// we'll need a place on the screen to start with
gfx_MoveTo (touch Get (TOUCH GETX), touch Get (TOUCH GETY));

gfx Set (OBJECT COLOUR, WHITE); // this will be our line colour

while (1)
state := touch Get (TOUCH STATUS); // Look for touch activity
x := touch Get (TOUCH GETX); // Grab x and the
y := touch Get (TOUCH GETY); // y coordinates of the touch
if (state == TOUCH PRESSED) // if there's a press
gfx LineTo(x, y); // Draw a line from previous spot
endif
if (state == TOUCH RELEASED) // if there's a release;
gfx CircleFilled(x, y, 10, RED);// Draw a solid red circle
endif
if (state == TOUCH MOVING) // if there's movement
gfx PutPixel (x, y, LIGHTGREEN); // we'll draw a green pixel
endif
wend // Repeat forever
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 141 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_MoveRel(xoffset, yoffset);

Arguments xoffset, yoffset

xoffset Specifies the horizontal offset of the new origin.

yoffset Specifies the vertical offset of the new origin.

The arguments can be a variable, array element, expression or constant

Returns ‘nothing

Description ‘Moves the origin to a new position relative to the old position.

Examp'e ng_MOVGTO (10, 20);
gfx MoveRel (-5, -3);
gfx Dot ();

This example draws a pixel using the current object colour at x=5, y=17

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 142 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘gfx_lncX();

Arguments none

Returns old_origin
old_origin Returns the current X origin before the increment.

Description Increment the current X origin by 1 pixel unit. The original value is returned before incrementing. The
return value can be useful if a function requires the current point before insetting occurs.

Example WVELL 0l
gfx MoveTo (20, 20) ;

n := 96;

while (n--)
gfx ObjectColour (n/3);
gfx Bullet (2);
gfx IncX();

wend

This example draws a simple rounded vertical gradient.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 143 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ gfx_IncY();
Arguments none
Returns old_Yorigin
old_Yorigin Returns the current Y origin before the increment.
Description Increment the current Y origin by 1 pixel unit. The original value is returned before incrementing. The
return value can be useful if a function requires the current point before insetting occurs.
Example var n;
gfx MoveTo (20, 20) ;
n := 96;

while (n--)
gfx ObjectColour (n/3);
gfx LineRel (20, 0);
gfx IncY();

wend

This example draws a simple horizontal gradient using lines.

DIABLO16 INTERNAL FUNCTIONS Page 144 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_LineTo(xpos, ypos);

Arguments xpos, ypos
Xpos Specifies the horizontal position of the line end as well as the new origin.
ypos Specifies the vertical position of the line end as well as the new origin.
The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a line from the current origin to a new position. The Origin is then set to the new position. The
line is drawn using the current object colour. The line may be tessellated with the gfx_LinePattern(...)
function.

Examp'e ng_MOVGTO (10, 20);

gfx LineTo (60, 70);

This example draws a line using the current object colour between x1=10,y1=20 and x2=60,y2=70.
The new origin is now set at x=60,y=70.

DIABLO16 INTERNAL FUNCTIONS Page 145 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_LineRel(xpos, ypos);

Arguments xpos, ypos
Xpos Specifies the horizontal end point of the line.
ypos Specifies the vertical end point of the line.
The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a line from the current origin to a new position. The line is drawn using the current object
colour. The current origin is not altered. The line may be tessellated with the gfx_LinePattern(...)
function.

Example gfx LinePattern(0b1100110011001100)

gfx MoveTo (10, 20);
gfx LineRel (50, 50);

This example draws a tessellated line using the current object colour between 10,20 and 50,50.
Note: that gfx_LinePattern(0); must be used after this to return line drawing to normal solid lines.

DIABLO16 INTERNAL FUNCTIONS Page 146 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘gfx_BoxTo(xZ, y2);

Arguments x2,y2

x2,y2 Specifies the diagonally opposed corner of the rectangle to be drawn, the top left corner
(assumed to be x1, y1) is anchored by the current origin.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a rectangle from the current origin to the new point using the current object colour. The top
left corner is anchored by the current origin (x1, y1), the bottom right corner is specified by x2, y2.

Note: The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the rectangle will
be drawn filled, if PEN_SIZE is set to OUTLINE, the rectangle will be drawn as an outline. If the circle
is drawn as SOLID, the outline colour can be specified with gfx_OutlineColour(...). If
OUTLINE_COLOUR is set to 0, no outline is drawn.

Example gfx MoveTo (40,40);
n := 10;
while (n--)
gfx BoxTo (50,50) ;
gfx BoxTo (30,30) ;
wend

This example draws 2 boxes, anchored from the current origin.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 147 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR
Syntax ‘ gfx_SetClipRegion();
Arguments none
Returns ‘nothing

Description ‘Forces the clip region to the extent of the last text that was printed, or the last image that was shown.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 148 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_Ellipse(x, y, xrad, yrad, colour);

Arguments X, Y, xrad, yrad, colour
X, ¥ specifies the horizontal and vertical position of the centre of ellipse
xrad, yrad specifies x-radius and y-radius of the ellipse.

colour Specifies the colour for the lines

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Plots a coloured Ellipse on the screen at centre x,y with xradius = xrad and yradius = yrad.
if PenSize = 0 Ellipse is Solid
if PenSize = 1 Ellipse is Outline

Example gfx Ellipse(200,80,5,10,YELLOW) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 149 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_EllipseFilled(x, y, xrad, yrad, colour);

Arguments X, Y, xrad, yrad, colour
X, ¥ specifies the horizontal and vertical position of the centre of ellipse
xrad, yrad specifies x-radius and y-radius of the ellipse.

colour Specifies the colour for the lines

The arguments can be a variable, array element, expression or constant

Returns ‘nothing

Description ‘Plots a solid coloured Ellipse on the screen at centre x,y with xradius = xrad and yradius = yrad.

Example ‘ gfx EllipseFilled(200,110,10,5,GREEN);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 150 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_Button(state, x, y, buttonColour, txtColour, font, txtWidth, txtHeight, text);

Arguments state, X, y, buttonColour, txtColour, font, txtWidth, txtHeight, text
state 0 = Button pressed; 1 = Button raised.

X,y Specifies the top left corner position of the button on the screen.

buttonColour Button colour

txtColour Text Colour
font Specifies the Font ID.
txtWidth Specifies the width of the text. This value is the font width multiplier and minimum

value must be 1.

txtHeight Specifies the height of the text. This value is the font height multiplier and minimum
value must be 1.

text Specifies the text string. The text string must be within the range of printable ascii
character set. The string may have \n characters embedded to create a multiline
button.

Returns nothing

Description Draws a 3 dimensional Text Button at screen location defined by x, y parameters (top left corner). The
size of the button depends on the font, width, height and length of the text. The button can contain
multiple lines of text by having the \n character embedded in the string for the end of line marker. In
this case, the widest text in the string sets the overall width, and the height of the button is set by the
number of text lines. In the case of multiple lines, each line is left justified. If you wish to centre or
right justify the text, you will need to prepare the text string according to your requirements.

Example #constant LEFT 30
#constant TOP 150
#constant TEXTWIDTH 2
#constant TEXTHEIGHT 2

func main ()

// Draw a button as a Text Box (indented)
gfx Button (DOWN, 0, 30, GREEN, WHITE, FONT 4, TEXTWIDTH, TEXTHEIGHT,
"4DGL-Demo") ;

touch Set (TOUCH ENABLE) ;

repeat
// Draw the Push Button (raised)
gfx Button (UP, LEFT, TOP, BLUE, RED, FONT 4, TEXTWIDTH,
TEXTHEIGHT, " PRESS ");
// set touch detect region to that of the push button
touch DetectRegion (LEFT, TOP, gfx Get (RIGHT POS),
gfx_Get (BOTTOM POS)) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

// Wait until the button is pressed
while (touch Get (TOUCH STATUS) != TOUCH PRESSED) ;

DIABLO16 INTERNAL FUNCTIONS Page 151 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

// now redraw the Push Button (depressed)
gfx Button (DOWN, LEFT, TOP, BLUE, WHITE, FONT 4, TEXTWIDTH,
TEXTHEIGHT, " PRESS ");

// Wait until the button is pressed
while (touch Get (TOUCH STATUS) != TOUCH RELEASED) ;
forever

endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 152 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_Button2(mode, x, y, width, height, buttoncolour, textcolour, text);

Arguments mode, X, y, width, height, buttoncolour, textcolour, text

mode 0 = Button pressed; 1 = Button raised.

XY Specifies the top left corner position of the button on the screen.
width Specifies the width of the button.

height Specifies the height of the button.

buttonColour Button colour

txtColour Text Colour

text Specifies the text string. The text string must be within the range of printable ascii
character set. The string may have \n characters embedded to create a multiline
button.

Returns nothing

Description |Draws a 3 dimensional Text Button at screen location defined by x, y parameters (top left corner). The
size of the button is defined by the width and height parameters. The text is centred within those
bounds. The button has square corners.

Example #constant LEFT 30
#constant TOP 150
#constant BWIDTH 50
#constant BHEIGHT 50

func main ()
touch Set (TOUCH ENABLE) ;

repeat
// Draw the Push Button (raised)
gfx Button2 (UP, LEFT, TOP, BWIDTH, BHEIGHT, BLUE, RED,
" PRESS ");
// set touch detect region to that of the push button
touch DetectRegion (LEFT, TOP, gfx Get (RIGHT POS),
gfx Get (BOTTOM POS)) ;

// Wait until the button is pressed
while (touch Get (TOUCH STATUS) != TOUCH PRESSED) ;

// now redraw the Push Button (depressed)
gfx_Button2 (DOWN, LEFT, TOP, BWIDTH, BHEIGHT, BLUE, RED,
" PRESS ");

// Wait until the button is pressed
while (touch Get (TOUCH STATUS) != TOUCH RELEASED) ;
forever

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

endfunc

DIABLO16 INTERNAL FUNCTIONS Page 153 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_Button3(mode, x, y, width, height, buttoncolour, textcolour, text);

Arguments mode, X, y, width, height, buttoncolour, textcolour, text

mode 0 = Button pressed; 1 = Button raised.

XY Specifies the top left corner position of the button on the screen.
width Specifies the width of the button.

height Specifies the height of the button.

buttonColour Button colour

txtColour Text Colour

text Specifies the text string. The text string must be within the range of printable ascii
character set. The string may have \n characters embedded to create a multiline
button.

Returns nothing

Description |Draws a 3 dimensional Text Button at screen location defined by x, y parameters (top left corner). The
size of the button is defined by the width and height parameters. The text is centred within those
bounds. The button has rounded corners depending gfx_BevelRadius().

Example #constant LEFT 30
#constant TOP 150
#constant BWIDTH 50
#constant BHEIGHT 50

func main ()
touch Set (TOUCH ENABLE) ;

repeat
// Draw the Push Button (raised)
gfx Button3 (UP, LEFT, TOP, BWIDTH, BHEIGHT, BLUE, RED,
" PRESS ");
// set touch detect region to that of the push button
touch DetectRegion (LEFT, TOP, gfx Get (RIGHT POS),
gfx_Get (BOTTOM POS)) ;

// Wait until the button is pressed
while (touch Get (TOUCH STATUS) != TOUCH PRESSED) ;

// now redraw the Push Button (depressed)
gfxiButton3(DOWN, LEFT, TOP, BWIDTH, BHEIGHT, BLUE, RED,
" PRESS ") ;

// Wait until the button is pressed
while (touch Get (TOUCH STATUS) != TOUCH RELEASED) ;
forever

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

endfunc

DIABLO16 INTERNAL FUNCTIONS Page 154 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘gfx_Panel(state, X, Yy, width, height, Colour);
Arguments state, x, y, width, height, colour
state 0 = recessed; 1 = raised.
X,y Specifies the top left corner position of the panel on the screen.
width Specifies the width of the panel.
height Specifies the Height of the panel.
Colour Specifies the colour of the panel.
Returns ‘nothing

Description Draws a 3 dimensional rectangular panel at a screen location defined by x, y parameters (top left
corner). The size of the panel is set with the width and height parameters. The colour is defined by
colour The state parameter determines the appearance of the panel, 0 = recessed, 1 = raised.

Examp|e #constant LEFT 15
#constant TOP 15
#constant WIDTH 100
#constant HEIGHT 100

func main ()

// Draw a panel
gfx Panel (RAISED, LEFT, TOP, WIDTH, HEIGHT, GRAY);

repeat forever

endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 155 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘gfx_Panel(state, X, ¥, width, height, radius, bevelwidth, Colour);
Arguments state, x, y, width, height, radius, bevelwidth, Colour
state 0 = recessed; 1 = raised; 2 = hide (draw object in background colour)
X,y Specifies the top left corner position of the panel on the screen.
width Specifies the width of the panel.
height Specifies the Height of the panel.
radius Specifies the corner radius.
bevelwidth Set Panel bevel width 0-15 pixels.
Colour Specifies the colour of the panel.
Returns nothing
Description Draws a 3 dimensional rounded rectangular panel at a screen location defined by x, y parameters (top
left corner). Width and height may be zero allowing the function to be used for rounded panels,
rounded buttons, and circular buttons.
Bounding rectangle is x1-radius-bevelwidth, yl-radius-bevelwidth, x2+radius+bevelwidth,
y2+radius+bevelwidth.
Example gfx_RoundPanel (PANEL_RAISED, 100, 100, 30, 20, GRAY);

DIABLO16 INTERNAL FUNCTIONS Page 156 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax

‘gfx_SIider(mode, x1, y1, width, height, colour, scale, value);

Arguments

Returns

mode, x1, y1, x2, y2, colour, scale, value

mode mode = 0 : Slider Indented, mode =1 : Slider Raised, mode 2, Slider Hidden (background
colour).

x1,y1 Specifies the top left corner position of the slider on the screen.

width Specifies the width of the slider on the screen.

height Specifies the height of the slider on the screen.

colour Specifies the colour of the Slider bar.

scale scale = n : sets the full scale range of the slider for the thumb from 0 to n.

value value = m : sets the relative position of the thumb 0 <=m<=n

If the value parameter was a positive number (i.e:- value is a proportion of the scale parameter), the
true (implied x or y axis) position of the thumb is returned.

If the value parameter was a negative number (i.e:- thumb is being set to an ABSolute graphics
position), the actual slider value (which is a proportion of the scale parameter) is returned.

Description

Draws a vertical or horizontal slider bar on the screen. The gfx_Slider function has several different
modes of operation. In order to minimise the amount of graphics functions we need, all modes of
operation are selected naturally depending on the parameter values.

Selection rules:
1a] if width > height, slider is horizontal

1b] if height <= width, slider is horizontal

2a] If value is positive, thumb is set to the position that is the proportion of value to the scale
parameter.(used to set the control to the actual value of a variable)

2b] If value is negative, thumb is driven to the graphics position set by the ABSolute of value value.
(used to set thumb to its actual graphical position (usually by touch screen)

3] The thumb colour is determine by gfx_Set(OBJECT_COLOUR, value); , however, if the current object
colour is BLACK, a darkened shade of the colour parameter is used for the thumb .

Example

func drawRedSlider ()
gfx Slider(0,rSlider([0],rSlider[1],rSlider[2],rSlider[3],RED, 255,
valR) ;
txt_MoveCursor(1,12);
txt Set (TEXT OPACITY, OPAQUE) ;
txt_Set(TEXT_COLOUR, RED) ;
print (" ") ;
txt_MoveCursor(1,12);
print ([DEC] wvalR);
endfunc

DIABLO16 INTERNAL FUNCTIONS Page 157 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_ScreenCopyPaste(xs, ys, xd, yd, width, height);

Arguments xs, ys, xd, yd, width, height

XS, yS Specifies the horizontal and vertical position of the top left corner of the area to be copied
(source).
xd, yd Specifies the horizontal and vertical position of the top left corner of where the paste is

to be made (destination).

width Specifies the width of the copied area.

height Specifies the height of the copied area.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Copies an area of a screen from xs, ys of size given by width and height parameters and pastes it to
another location determined by xd, yd.

Example gfx ScreenCopyPaste (10,10, 100, 100, 40, 40);
// Copies 40x40 pixels originating from point (10,10) to (100,100);

DIABLO16 INTERNAL FUNCTIONS Page 158 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘gfx_SIider(mode, x1, y1, x2, y2, colour, scale, value);
Arguments mode, x1, y1, x2, y2, colour, scale, value
mode mode = 0 : Slider Indented, mode =1 : Slider Raised, mode 2, Slider Hidden (background
colour).
x1,y1 Specifies the top left corner position of the slider on the screen.
x2,y2 Specifies the bottom right corner position of the slider on the screen.
colour Specifies the colour of the Slider bar.
Scale scale = n : sets the full scale range of the slider for the thumb from 0 to n.
Value if value positive, sets the relative position of the thumb on the slider bar, else set thumb
to ABS position of the negative number.
If the value parameter was a positive number (i.e:- value is a proportion of the scale parameter), the
true (implied x or y axis) position of the thumb is returned.
Returns
If the value parameter was a negative number (i.e:- thumb is being set to an ABSolute graphics
position), the actual slider value (which is a proportion of the scale parameter) is returned.
Description Draws a vertical or horizontal slider bar on the screen. The gfx_Slider function has several different

modes of operation. In order to minimise the amount of graphics functions we need, all modes of
operation are selected naturally depending on the parameter values.

Selection rules:
1a] if x2-x1 > y2-y1 slider is assumed to be horizontal (ie: if width > height, slider is horizontal)

1b] if x2-x1 <= y2-y1 slider is assumed to be vertical (ie: if height <= width, slider is horizontal)

2a] If value is positive, thumb is set to the position that is the proportion of value to the scale
parameter.(used to set the control to the actual value of a variable)

2b] If value is negative, thumb is driven to the graphics position set by the ABSolute of value value.
(used to set thumb to its actual graphical position (usually by touch screen)

3] The thumb colour is determine by gfx_Set(OBJECT_COLOUR, value); , however, if the current object
colour is BLACK, a darkened shade of the colour parameter is used for the thumb .

func drawRedSlider ()
gfx Slider(0,rSlider([0],rSlider[1],rSlider[2],rSlider[3],RED, 255,
valR) ;
txt_MoveCursor(1,12);
txt Set (TEXT OPACITY, OPAQUE) ;
txt Set (TEXT COLOUR, RED);
print (" ")
txt MoveCursor(1l,12);
print ([DEC] wvalR);
endfunc

DIABLO16 INTERNAL FUNCTIONS Page 159 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_RGBto565(RED, GREEN, BLUE);
Arguments RED, GREEN, BLUE
RED 8bit colour value for RED.
GREEN 8bit colour value for GREEN. .
BLUE 8bit colour value for BLUE.
The arguments can be a variable, array element, expression or constant
Returns Returns the 16bit (RED: 5, GREEN: 6, BLUE: 5 format) colour value.
Description Returns the 16bit (RED: 5, GREEN: 6, BLUE: 5 format) colour value of a 24bit (RED: 8, GREEN: 8, BLUE:
8 format) colour.
Example var colorRGB;

colorRGB := gfx RGBto565(170, 126, 0);
// convert 8bit Red, Green and Blue color values to 1l6ébit 565 color value

DIABLO16 INTERNAL FUNCTIONS Page 160 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_332to565(COLOURSBIT);

Arguments COLOURSBIT

COLOURSBIT |gpit colour value. 3bits for RED, 3bits for GREEN, 2bits for BLUE.

Returns lReturns the 16bit (RED: 5, GREEN: 6, BLUE: 5 format) value

Description |Returns the 16bit (RED: 5, GREEN: 6, BLUE: 5 format) value of an 8bit (RED: 3, GREEN: 3, BLUE: 2
format) colour

Example var color565;
color565 := gfx 332to565(0b11010100);
// Convert 8bit 332 color value to 16bit 565 color value

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 161 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_565t0332(COLOUR);

Arguments COLOUR16BIT

COLOUR16BIT 16hit colour value. Sbits for RED, 6bits for GREEN, 5bits for BLUE.

Returns Returns the 8bit (RED: 3, GREEN: 3, BLUE: 2 format) value

Description Returnsthe 8bit (RED: 3, GREEN: 3, BLUE: 2 format) value of a 16bit (RED: 5, GREEN: 6, BLUE: 5 format)
colour.

var color332;
color332 := gfx 565to332 (0x7F00) ;
// Convert 16bit 565 color value to 8bit 332 color value

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 162 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_TriangleFilled(x1, y1, x2, y2, x3, y3, colour);

Arguments x1,y1, x2, y2, x3, y3, colour

x1,y1 Specifies the first vertices of the triangle.
x2,y2 Specifies the second vertices of the triangle.
x3,y3 Specifies the third vertices of the triangle.
colour Specifies the colour for the triangle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a Solid triangle between vertices x1,yl, x2,y2 and x3,y3 using the specified colour.
Vertices must be specified in an anti-clockwise fashion.

Example gfx TriangleFilled(10,10,30,10,20,30,CYAN);

This example draws a CYAN Solid triangle with vertices at 10,10 30,10 20,30

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 163 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_PolygonFilled(n, vx, vy, colour);
Arguments n, vx, vy, colour
Specifies the number of elements in the x and y arrays specifying the vertices for the
n
polygon.
Specifies the addresses of the storage of the array of elements for the x coordinates of
VX
the vertices.
Specifies the addresses of the storage of the array of elements for the y coordinates of
v .
v the vertices.
colour Specifies the colour for the polygon
The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a solid Polygon between specified vertices: x1,y1 x2,y2 ... xn,yn using the specified colour. The
last point is drawn back to the first point, completing the polygon. Vertices must be minimum of 3
and can be specified in any fashion.

Example var vx[7], vyl7];

func main ()

vx[0] := 10; vy[0] := 10;
vx[1l] := 35; vyl[l] = 5;

vx[2] := 80; vyl[2] := 10;
vx[3] := 60; vy[3] := 25;
vx[4] := 80; vy[4] := 40;
vx[5] := 35; wvy[5] := 50;
vx[6] := 10; vyl[6] = 40;

gfx PolygonFilled(7, vx, vy, RED);

repeat forever
endfunc

This example draws a simple filled polygon

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 164 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘gfx_Origin(x, y);

Arguments X,y

X,y ‘Specifies the horizontal and vertical position of the top left corner of the clipping window.

Returns ‘nothing

Description ‘Sets relative screen offset for horizontal and vertical for the top left corner for graphics objects.

Example ‘gfx_Origin(lO, 20); // Sets origin position at (10,20)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 165 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ gfx_Get(mode);

Arguments mode

mode mode = 0 : Current orientations Max X Value (X_MAX)
mode =1 : Current orientations Max Y Value (Y_MAX)
mode = 2 : Left location of Object
mode = 3 : Top location of Object
mode = 4 : Right location of Object
mode =5 : Bottom location of Object
mode = 6 : Get current internal X position
mode = 7 : Get current internal Y position

ModeO

Returns the maximum horizontal value of the display.

Model

Returns the maximum vertical value of the display.

Mode2

Returns the left location of the last drawn object such as a slider or button or an image/video.

Mode3

Returns the top location of the last drawn object such as a slider or button or an image/video.
Returns Mode4d

Returns the right location of the last drawn object such as a slider or button or an image/video.

Mode5

Returns the bottom location of the last drawn object such as a slider or button or an image/video.

Mode6

Returns the internal X position that was set with MoveTo(x, y); or gfx_Set(X_ORG, pos);

Mode?7

Returns the internal Y position that was set with MoveTo(x, y); or gfx_Set(X_ORG, pos);

Description Returns various graphics parameters to caller.

Example var := gfx_Get(X_MAX); //Returns the maximum horizontal resolution of the display
var := gfx_Get(0);
var := gfx_Get(Y_MAX); //Returns the maximum vertical resolution of the display

var := gfx_Get(1);

var := gfx_Get(RIGHT_POS); //Returns the right location of the last drawn object
//that only has top, left parameters such as a button
// or an image/video.

var := gfx_Get(2);

var := gfx_Get(BOTTOM_POS); //Returns the bottom location of the last drawn object
//that only has top, left parameters such as a button
//or an image/video.

var := gfx_Get(3);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 166 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_ClipWindow(x1, y1, x2, y2);
Arguments x1,y1,x2,y2
x1,y1 Specifies the horizontal and vertical position of the top left corner of the clipping window.
x2,y2 Specifies the horizontal and vertical position of the bottom right corner of the clipping
window.
The arguments can be a variable, array element, expression or constant
Returns nothing
Description Specifies a clipping window region on the screen such that any objects and text placed onto the screen
will be clipped and displayed only within that region. For the clipping window to take effect, "Clipping"
setting must be enabled separately using gfx_Set(CLIPPING, ON) or the shortcut gfx_Clipping(ON).
Example var n;
gfx ClipWindow (10, 10, 50, 50)
n := 50000;
while (n--)
gfx PutPixel (RAND() %100, RAND()%100, RAND());
wend

repeat forever

This example will draw 50000 random colour pixels, only the pixels within the clipping area will be
visible

DIABLO16 INTERNAL FUNCTIONS Page 167 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

Syntax ‘gfx_Set(function, value);
Arguments function, value
function | The function number determines the required action for various graphics control
functions. Usually a constant, but can be a variable, array element, or expression. There
are pre-defined constants for each of the functions.
value A variable, array element, expression or constant holding a value for the selected
function.
Returns nothing
Description Given a function number and a value, set the required graphics control parameter, such as size, colour,

memory.

function

Predefined Name
PEN_SIZE

BACKGROUND_COLOUR

Description

Set the draw mode for gfx_LineTo, gfx_LineRel, gfx_Dot,
gfx_Bullet and gfx_BoxTo (default mode is OUTLINE)
nb:- pen size is set to OUTLINE for normal operation

Set the screen background colour

and other parameters. (See the Single parameter short-cuts for the gfx_Set functions below). It is
strongly recommended to use the pre-defined constants rather than the mode numbers.

Note: Although it is often required to be able to set graphics functions with a single function call for
graphics engine related functions, there is a complete set of single parameter shortcut functions that
have exactly the same function as each of the gfx_Set modes and saves 1 parameter, i.e. uses less

value

0 or SOLID
1 or OUTLINE

Colour, 0-65535

OBJECT_COLOUR

CLIPPING

Generic colour for gfx_LineTo(...), gfx_LineRel(...), gfx_Dot(),
gfx_Bullet(...) and gfx_BoxTo(...)

Turns clipping on/off.

The clipping points are set with gfx_ClipWindow(...) and
must be set first.

Colour, 0-65535

1 or 0 (ON or OFF)

TRANSPARENT_COLOUR
TRANSPARENCY

FRAME_DELAY

Colour that needs to be made transparent.

Turn the transparency ON or OFF. Transparency is
automatically turned OFF after the next image or video
command.

Set the inter frame delay for media_Video(...)

Colour, 0-65535
1 or 0 (ON or OFF)

0 to 255msec

SCREEN_MODE

Set required screen behaviour/orientation.

0 or LANDSCAPE

1 or LANDSCAPE _R
2 or PORTRAIT

3 or PORTRAIT_R

OUTLINE_COLOUR

Outline colour for rectangles and circles
(set to O for no effect)

Colour, 0-65535

CONTRAST LCD MODULES: 0 or OFF
contrast 0 = display OFF, 1-15 = contrast level (Actually 1 to 15 for levels
backlight brightness)

LINE_PATTERN Sets the line draw pattern for line drawing. If set to zero, lines 0 or OFF
are solid, else each '1' bit represents a pixel that is turned off. 1 to OXFFFF

DIABLO16 INTERNAL FUNCTIONS

Page 168 of 554

www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

Example:
gfx_Set(LINE_PATTERN, 0b1111000011110000);
// draw dotted line

0 bits for pixels on
1 bits for pixels off

COLOUR_MODE Sets 8 or 16bit colour mode 0 or COLOUR16
Function not available, fixed as 16bit mode. 1 or COLOURS

BEVEL_WIDTH Set Button Bevel Width, 0 pixel to 15pixels. 0 None

1 to 15 pixels
BEVEL_SHADOW graphics button bevel shadow depth 0 None

1 to 15 pixels
X_ORIGIN sets the origin of drawn objects to a position other than 0,0
Y_ORIGIN sets the origin of drawn objects to a position other than 0,0
DISPLAY_PAGE Choose Page to be displayed. Applies to 4.3” products with 0 or 1 for SSD1961

a Solomon SSD1961 and SSD1961 Driver IC only, with a 4.3”
display only, such as uLCD-43D/DT/DCT series and gen4-
uLCD-43D/DT/DCT series of displays. Please refer to module
datasheets for information on what SSD196x is present on
your module.

Note, SSD1961 has 2 Pages, SSD1963 has 3 pages.

0, 1 or 2 for SSD1963

READ_PAGE

Choose Page to be read. Applies to 4.3” products with a
Solomon SSD1961 and SSD1961 Driver IC only, with a 4.3”
display only, such as uLCD-43D/DT/DCT series and gen4-
uLCD-43D/DT/DCT series of displays. Please refer to module
datasheets for information on what SSD196x is present on
your module.

Note, SSD1961 has 2 Pages, SSD1963 has 3 pages.

0 or 1 for SSD1961
0, 1 or 2 for SSD1963

WRITE_PAGE

Choose Page to be written. Applies to 4.3” products with a
Solomon SSD1961 and SSD1961 Driver IC only, with a 4.3”
display only, such as uLCD-43D/DT/DCT series and gen4-
uLCD-43D/DT/DCT series of displays. Please refer to module
datasheets for information on what SSD196x is present on
your module.

Note, SSD1961 has 2 Pages, SSD1963 has 3 pages.

Single parameter short-cuts for the gfx_Set(..) functions

0 or 1for SSD1961
0, 1 or 2 for SSD1963

Function Syntax Function Action value
gfx_PenSize(mode) Set the draw mode for gfx_LineTo, gfx_LineRel, gfx_Dot, 0 or SOLID
gfx_Bullet and gfx_BoxTo 1 or OUTLINE

Note: pen size is set to OUTLINE for normal operation
(default).

gfx_BGcolour(colour)
gfx_ObjectColour(colour)

Set the screen background colour

Generic colour for gfx_LineTo(...), gfx_LineRel(...),

gfx_Dot(), gfx_Bullet(... and gfx_BoxTo

Colour 0-65535
Colour 0-65535

gfx_Clipping(mode)

gfx_TransparentColour(colour)

Turns clipping on/off.
The clipping points are set with gfx_ClipWindow(...)

Colour that needs to be made transparent.

0 or 1 (ON or OFF)

Colour, 0-65535

gfx_Transparency(mode)
gfx_FrameDelay(delay)

Turn the transparency ON or OFF.
Set the inter frame delay for media_Video(...)

1 or 0 (ON or OFF)
0 to 255msec

gfx_ScreenMode(mode)

Graphics orientation
PORTRAIT, PORTRAIT_R

LANDSCAPE, LANDSCAPE_R,

1 or LANDSCAPE

2 or LANDSCAPE _R
3 or PORTRAIT

4 or PORTRAIT_R

gfx_OutlineColour(colour)

Outline colour for rectangles and circles.

Colour 0-65535

DIABLO16 INTERNAL FUNCTIONS

Page 169 of 554

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

(set to O for no effect)

gfx_Contrast(value) LCD MODULES: 0 or OFF
contrast 0 = display OFF, 1-15 = contrast level (Actually 1 to 15 for levels
backlight brightness)

gfx_LinePattern(pattern) Sets the line draw pattern for line drawing. If set to zero, 0 or OFF

lines are solid, else each '1' bit represents a pixel that is|1 to OxFFFF
turned off. See code examples for further reference. 0 bits for pixels on
Example: 1 bits for pixels off
gfx_Set(LINE_PATTERN, Ob1111000011110000);
// draw dotted line

gfx_BevelRadius(radius) graphics button bevel radius 0 None

1 to 15 pixels
gfx_BevelWidth(mode) graphics button bevel width 0 None

1 to 15 pixels
gfx_BevelShadow(value) graphics button bevel shadow depth 0 None

1 to 15 pixels
gfx_Xorigin(offset) graphics X origin
gfx_Yorigin(offset) graphics Y origin

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 170 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ gfx_Arc(cx, cy, radius, step, startangle, endangle, mode);
Arguments cx, cy, radius, step, startangle, endangle, mode
cx, ¢y Center of the arc.
radius Radius of the arc.
step Step is the stepping angle increment for the fineness of the arc.
startangle Starting angle of the arc.
endangle Ending angle of the arc.
mode mode = 0, outer circumference line only
mode = 1, outer circumference and lines back to cx:cy
Returns Nothing
Description Draws an arc at "xc":"yc" with radius "radius", starting at "startangle" and ending at "endangle".
Colour is determined by current object colour.
Example gfx_Arc(lZO, 150, lOO, l, O, 90, 0);

/*
* Draws an arc with 100-pixel radius with center at point (120,150)
* The arc starts from from 0 to 90 degree angle

* Lines from the ends of the arc to the center are not drawn.

*/

DIABLO16 INTERNAL FUNCTIONS Page 171 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_CheckBox(state, x, y, Width, Height, boxColour, textColour, text);

Arguments state, x, y, width, height, boxColour, textColour, text

state state =1 = UNCHECKED : CheckBox Unchecked
state = 0 = CHECKED : Checkbox Checked

Xy Top left corner of the Checkbox.
width Width of the checkbox.

height Height of the checkbox.
boxColour Checkbox colour.

textColour Text colour.

text The text is to the right of the checkbox and truncated if necessary

Returns ‘Nothing

Description ‘Draws a CheckBox at screen location defined by x,y arguments (top left corner).

Exan"ﬂe gfx CheckBox (1, 20, 20, 100, 25, BLUE, LIME, "4D Labs");
*

* Draws an UNCHECKED checkbox, top left corner at (20,150)
* The checkbox has a width of 100 pixels to contain ‘4D Labs’
*/

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 172 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_RadioButton(state, x, y, width, height, boxColour, textColour, text);

Arguments state, x, y, width, height, boxColour, textColour, text

state state = 1 = UNCHECKED : Radio-button Unchecked
state = 0 = CHECKED : Radio-button Checked

Xy Top left corner of the Radio-button.
width Width of the Radio-button.

height Height of the Radio-button.
boxColour Radio-button colour.

textColour Text colour.

text The text is to the right of the Radio-button and truncated if necessary

Returns ‘Nothing

Description ‘Draws a Radio-button at screen location defined by x,y arguments (top left corner).

Example gfx RadioButton(0, 20, 20, 100, 25, BLUE, LIME, "4D Labs");
*

* Draws a CHECKED radio button, top left corner at (20,150)
* The radio button has a width of 100 pixels to contain ‘4D Labs’
=)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 173 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_FillPattern(patptr, mode);

Arguments |patptr, mode

patptr 0 = Off, OXFFEO to OxFFFF = builtin patterns, else patptr points to a users 8 byte
pattern.
mode TRANSPARENT or OPAQUE (0 or 1)
Returns pointer
pointer Returns the handle of the previous pattern

Description Selects a tessellating pattern for painting solid objects. ‘patptr’ points to an 8x8 tile for rendering
filled areas.

Rendering is turned off with gfx_FillPattern(0, mode); or gfx_FillPattern(OFF, mode);

‘mode’ maybe TRANSPARENT or OPAQUE (0 or 1), for OPAQUE mode, the current screen colour is
used for the 'off' pixels, for transparent mode, the 'off' pixels are not drawn.

gfx_FillPattern affects all filled object, including polygons. There are 32 builtin patterns; these are
obtained using the pre-defined constants FILLPATTERN_O to FILLPATTERN_31. Note that the
constants range from OxFFEO to OxFFFF, any other value is assumed to be a pointer to a user’s 8 byte
block pattern.

Predefined constants are used to select the internal patterns, FILLPATTERN_O through to
FILLPATTERN_31

Example gfx_FillPattern (OFF, TRANSPARENT); // Turns OFF pattern rendering

gfx FillPattern (FILLPATTERN 31, TRANSPARENT) ;
// Renders FILLPATTERN 31 in transparent mode for filled objects

ng_FillPattern(FILLPATTERN_17, OPAQUE) ;
// Renders FILLPATTERN 17 in OPAQUE mode for filled objects

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 174 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_Gradient(style, x1, y1, x2, y2, colorl, color2);

Arguments style, x1, y1, x2, y2, colorl, color2

style Specifies gradient style.

GRAD_DOWN gradient changes in the vertical direction
GRAD_RIGHT gradient change in the horizontal direction
GRAD_UP gradient changes in the vertical direction
GRAD_LEFT gradient change in the horizontal direction
GRAD_WAVE_VER gradient wave in the vertical direction
GRAD_WAVE_HOR gradient wave in the horizontal direction

x1,y1 Specifies top left corner of the rectangle.
X2,y2 Specifies bottom right corner of the rectangle.
colorl Specifies starting colour.
color2 Specifies ending colour.

Returns Nothing

Description Draws a graduated colour rectangle at the specified co-ordinate.
Rendering can be obtained with gfx_FillPattern(PATTRN); or gfx_FillPattern(OFF); for no fill
pattern.

Example //Draw graduated colour rectangle
gfx Gradient (GRAD WAVE HOR, 10, 10, 230, 160, BLACK, WHITE);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 175 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_RoundGradient(style, x1, y1, x2, y2, radius, colorl, color2);
Arguments style, x1, y1, x2, y2, radius, colorl, color2
style Specifies gradient style.
GRAD_DOWN gradient changes in the vertical direction
GRAD_RIGHT gradient change in the horizontal direction
GRAD_UP gradient changes in the vertical direction
GRAD_LEFT gradient change in the horizontal direction
GRAD_WAVE_VER gradient wave in the vertical direction
GRAD_WAVE_HOR gradient wave in the horizontal direction
x1,y1 Specifies top left corner of the rectangle.
X2,y2 Specifies bottom right corner of the rectangle.
radius Specifies the corner radius.
colorl Specifies starting colour.
color2 Specifies ending colour.
Returns Nothing
Description Draws a graduated colour rounded rectangle at the specified co-ordinate.
X1 may equal X2, and Y1 = Y2 allowing allowing the function to be used for rounded panels, rounded
buttons, circular buttons.
Rendering can be obtained with gfx_FillPattern(PATTRN); or gfx_FillPattern(OFF); for no fill pattern.
Example //Draw graduated colour rounded rectangle

gfx RoundGradient (GRAD WAVE HOR, 10, 10,230, 160, 10, BLACK, WHITE);

DIABLO16 INTERNAL FUNCTIONS Page 176 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_PieSlice(cx, cy, spread, radius, step, startangle, endangle, mode, colour);
Arguments cx, cy, radius, step, startangle, endangle, mode
cx, cy Center of the slice.
spread Center offset: it is used to offset the centrepoint of the pieslice to shift a pie chart
piece away from the centrepoint.
radius Radius of the Slice.
step Step is the stepping angle increment for the fineness of the slice.
startangle Starting angle of the slice.
endangle Ending angle of the slice.
mode mode =0, no outline.
mode = 1, outer circumference line only
mode = 2, outer circumference and slice lines.
colour Specifies colour of the colour of the PieSlice.
Returns Nothing

Description Draws a pie slice (filled arc) at xc:yc with radius radius, starting at startangle and ending at endangle.
Rendering can be obtained with gfx_FillPattern(PATTRN); or gfx_FillPattern(OFF); for no fill pattern.

Example gfx_PleSllce(lZO, 150, 0, 100, 1, O, 90, O, LIME):;
/*
* Draws a filled arc, 100-pixel radius, center at point (120,150)
* The arc starts from from 0 to 90 degree angle
* Outlines are not drawn

*/

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 177 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_PointWithinBox(x, y, &rect);
Arguments X, y, &rect
X,y Coordinates
&rect An array of 4 vars, x1, y1, width, height.
Returns status
status Returns true if last touch co-ordinates are within the box test area.

Description Returns true if last touch co-ordinates are within the box test area.

Example var x, y;
var rect[4] := [0,0,480,320];
touch Set (TOUCH ENABLE) ;
repeat
x := touch Get (TOUCH GETX) ;
y := touch Get (TOUCH GETY) ;
if (gfx PointWithinBox (x,y,rect) == 1)
txt MoveCursor (0,0);
print ("X: ", [DEC]x, " Y: ", [DECly, " \nTOUCHED") ;
endif
forever

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 178 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_PointWithinRectangle(x, y, &recta);
Arguments x,y, &recta
X,y Coordinates
&recta An array of 4 vars, x1, y1, x2, y2.
Returns status
status Returns true if last touch co-ordinates are within the rectangle test area.

Description Returns true if last touch co-ordinates are within the rectangle test area.

Example var X, yji
var rect[4] := [0,0,100,120];
touch Set (TOUCH ENABLE) ;

repeat
b4

Yy :

touch Get (TOUCH GETX) ;
touch Get (TOUCH GETY) ;

if (gfx PointWithinRectangle (x,y,rect) == 1)
txt MoveCursor (0,0);
print ("X: ", [DEC]x, " Y: ", [DECly, " \nTOUCHED") ;
endif
forever

DIABLO16 INTERNAL FUNCTIONS Page 179 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_readBresLine(x1, y1, x2, y2, ptr);
Arguments x1, y1, x2, y2, ptr
x1,y1 Line mapping start point.
X2,y2 Line mapping end point.
ptr If zero is passed, an array of the required size to map the line is created. If non zero,
it is expected that this is a pointer to an array large enough to store each pixel that is
read.
Returns value
value A pointer to the created array, or the users array. In the case of ptr=0 (creation of
array), if there is insufficient memory to create the array, zero is returned.
Description Due to the fact that most LCD displays are not double buffered, and memory is limited on small
platforms, gfx_ReadBresLine offers a simple but powerful way of manipulating raster lines by storing
all the pixels for an arbitrary line.
Typically, gfx_ReadBresLine is used when ‘rubber banding’ a rectangular area when dragging a
marker rectangle, or drawing a needle on a pre- rendered meter or guage image. The power of this
function is further extended when used with the array math functions.
gfx_ReadBresLine reads an arbitrary line from the display to an array.
If "ptr" is 0, the correctly sized array is created, in which case it is up to the caller to eventually destroy
it when no longer required. Otherwise "ptr" is expected to point to a correctly sized array.
Note: if an array is supplied, its size must be large enough, and may be calculated:-
bytecount := (MAX(ABS(x2-x1), ABS(y2-y1) + 1) * 2;
// calc array size for mem_Alloc (which allocates byte storage)
wordcount := (MAX(ABS(x2-x1), ABS(y2-y1) + 1);
// calc array size for fixed word array (it’s much easier to let the function to do this calculation for you
—if applicable)
Example var array;

array := gfx ReadBresLine (50,50,250,175,0);

// Copy the pixels of the line with endpoint at (50,50) and (250,175)
// and saves it to the generated array. The address is then returned
// and saved to the variable ‘array’

gfx BGcolour (LIME) ;
gfx Cls(); // Sets the background to a single color

gfx WriteBresLine (100,100,300,225,array);
// Copies the line to the new coordinates,

// Endpoints are at (100,100) and (300,225)

DIABLO16 INTERNAL FUNCTIONS Page 180 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_WriteBreslLine(x1, y1, x2, y2, ptr);
Arguments x1, y1, x2, y2, ptr

x1,y1 Line mapping start point.

X2,y2 Line mapping end point.

ptr Points to the array to be written
Returns ‘Nothing

Description ‘Cast pixel values from array to arbitrary line.

Example ‘ See gfx ReadBresLine

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 181 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_ReadGRAMarea(x1, y1, x2, y2, ptr);

Arguments x1, y1, x2, y2, ptr
x1,y1 Top left corner of the rectangular area.

X2,y2 Bottom right corner of the rectangular area.

ptr If zero is passed, an array of the required size to map the line is created. If non zero,
it is expected that this is a pointer to an array large enough to store each pixel that is
read.

Returns value
value A pointer to the created aray, or the users array. In the case of ptr=0, if there is

insufficient memory to create the array, zero is returned.

Description Reads an arbitrary rectangular area from the display to an array. If "ptr" is 0, the correctly sized array
is created, in which case it is up to the caller to eventually destroy it. Otherwise "ptr" is expected to
point to a correctly sized array.

Note: If an array is supplied, its size must be large enough, and may
be calculated:-
bytecount := ((ABS(x2-x1)+1) * (ABS(y2-y1) + 1)) * 2; // calc array size for mem_Alloc (which allocates
byte storage)
wordcount := ((ABS(x2-x1)+1) * ABS(y2-y1); // calc array size for fixed word array
Example var array;

array := gfx ReadGRAMarea (50,50,250,175,0);

// Copy the pixels of the GRAM area with top left and bottom right
// endpoints at (50,50) and (250,175) and saves it to the generated
// array. The address is then returned and saved to variable ‘array’

gfx BGcolour (LIME) ;
gfx Cls(); // Sets the background to a single color

gfx WriteGRAMarea (100,100,300,225,array);
// Copies the GRAM area to the new coordinates,
// Top left and bottom right corners are at (100,100) and (300,225)

DIABLO16 INTERNAL FUNCTIONS Page 182 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_WriteGRAMarea(x1, y1, x2, y2, ptr);

Arguments x1, y1, x2,y2, ptr
x1,y1 Top left corner of the rectangular area.
X2,y2 Bottom right corner of the rectangular area.
ptr Points to an array to be written.

Returns ‘Nothing

Description ‘Write an array back to the rectangular area

Example ‘ See gfx ReadGRAMarea

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 183 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_Surround(x1, y1, x2, y2, rad1, rad2, color);

Arguments x1,y1, x2, y2, rad1, rad2, oct, color
x1,yl Specifies the top left corner position of the surround on the screen.
X2,y2 Specifies the bottom right corner position of the surround on the screen.
radl Inner corner radius.
rad2 Outer corner radius.
color The colour of the surround.
The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws an outline rectangle at the given co-ordinates with optional rounded corners determined by
‘radl’.
‘rad2’ is added to ‘radl’ to form the outer rounded rectangle.
If ‘radl’ is zero, the inner rectangle will have square corners.

Example gfx Surround (40, 40, 100, 60, 15, 3, YELLOW);

Draw a surround with rounded corners, 3 pixels wide

DIABLO16 INTERNAL FUNCTIONS Page 184 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Svntax gfx_Scope(left, width, Yzero, N, Xstep, Yamp, colourbg, old_y1, new_y1, colourl, old_y2, new_y2,
v colour2, old_y3, new_y3, colour3, old_y4, new_y4, colour4);
left, width, Yzero, N, Xstep, Yamp, colourbg, old_y1, new_y1, colourl, old_y2, new_y2, colour2,
Arguments
old_y3, new_y3, colour3, old_y4, new_y4, colourd
Left The left margin of the Scope.
Width The width of the Scope.
Yzero The y position that corresponds to a y value of zero, normally "Top" + "Height" for a
graph, or "Top" + "Height"/2 for a scope.
N The number of elements in each buffer. This will need to be greater than "width" for
negative "Xstep" values.
Xstep X position is incremented each point by "xstep" pixels.
Yamp Amplification in the Y direction, 100 is unity.
ColourBg The color of the Scope’s Background.
oldyl..4 Buffer containing most recent set of points to be un-drawn.
newyl..4 Buffer containing new points to be drawn.
Colourl..4 Colour of the waveform.
The arguments can be a variable, array element, expression or constant
Returns nothing

Description Draws up to 4 waveforms from table(s) of vertices at the specified origin. Also useful for drawing line
graphs.

X position is incremented each point by "Xstep" pixels, values are skipped for negative values.

Y values are derived from a Y buffer.

After the waveform is drawn, "newy" buffer is automatically copied to "oldy" buffer. Use 0 as the
buffers for any unused waveforms.

Example

DIABLO16 INTERNAL FUNCTIONS Page 185 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_RingSegment(x, y, Rad1, Rad2, starta, enda, colour)
Arguments X, ¥, Rad1, Rad2, starta, enda, colour

X, Y Center

Rad1l Outer radius

Rad2 Inner radius

starta Start angle

enda End angle

colour Colour
Returns ‘nothing

Description ‘Draw a Segment of a ring at x, y from rad1 to rad2 starting at starta to enda in colour.

Example ‘gfx_RingSegment(lOO, 100, 50, 25, 90, 180, LIME);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 186 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_AngularMeter(value, &MeterRam, & MeterDef)

Arguments value, &MeterRam, &MeterDef

value A value (usually a constant) specifying the current frame of the widget

&MeterRam A pointer to a variable array for widget utilization

&MeterDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format Example
#DATA
word Gaugelinfo

// Scale parameters

90, // Range scale outer edge radius

70, // Range scale inner edge radius

20, // Number of partitions of marker ticks

2, // Number of minor ticks before next major tick (0 to disable)
17, // Length for major ticks radiating from scale outer edge

5, // Length for minor ticks radiating from scale outer edge

10, // Length for major ticks radiating from scale inner edge

2, // Length for minor ticks radiating from scale inner edge

1, // Tick width

OXFFFF, // Tick color

270, // Starting angle for range scale second ring section

337, // Starting angle for range scale third ring section

OxDF, // Range scale first ring section color

0x3BF, // Range scale second ring section color

0xF800, // Range scale third ring section color

0, // Range scale section incremental step size

10, // Total number of marker scale labels

1, // Marker scale label font style

OxFFFF, // Marker scale label text color

15, // Marker scale label offset distance (relative to range scale midpoint)
0, /* Labels */ // Pointer to label strings (Default is numeric is set to zero (0))
(0+0+0+0), // Gauge Options

2, // Caption

OXFFFF, // Caption text color

-26, // Caption horizontal offset from rotation centre

56, // Caption vertical offset from rotation centre

Caption, // Caption text pointer

// Gauge parameters common to needle

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

10, // Top-Left X-position

10, // Top-Left Y-position

235, // Width

197, // Height

128, // Rotation centre X-position
125, // Rotation centre Y-position
0x0, // Background color (required for erasing needle path)
135, // Starting angle

405, // Ending angle

0, // Minimum value

100, // Maximum value

DIABLO16 INTERNAL FUNCTIONS Page 187 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

// Needle parameters

60, // Needle length
NEEDLE_F_TRIANGLE, // Needle style options
0, // Needle offset distance from center
6, // Needle width (Half value of overall needle thickness)
30, // Needle tail length (Applicable only for double triangle style)
OXFFFF, // Needle color
6, // Needle Hub radius
OXFFFF, // Needle Hub color
2, // Needle Pin radius
0xF800 // Needle Pin color

byte Caption "Caption\0" // Caption string (Use null terminator "\0" to end string)

byte Labels "Text1\OText2\OText3\0Text4\0Text5\0" // Label text strings (Use null terminator "\0" as
separators)

#END

Widget Parameter Data Block Option Bits

ANGULAR_F_LABEL_STRINGS Set bit for swapping gauge direction

ANGULAR_F_BG_TRANSPARENT Set bit for toggling background transparency
ANGULAR_F_TICK_PCT_COLOUR Set bit for replacing tick color with range scale section colors
ANGULAR_F_TEXT_PCT_COLOUR Set bit for replacing marker label color with range scale section colors

Note: The angular meter function will require the gfx_Needle in order to function.

Returns nothing

Description Draw an angular meter as defined by MeterDef (if required), using MeterRam positioning at
position value. See the reference for the MeterDef values

Example var state;
var GaugelRam[10];

#DATA

word GaugelInfo %0, 70, 20, 2, 17, 5, 10, 2, 1, OxFFFF, 270, 337, OxDF,
0x3BF, 0xF800, 0, 10, FONT1, OxFFFF, 15, 0, (0O + O + O + 0), FONT2, OXFFFF,
-26, 56, GaugelCaption, 10, 10, 235, 197, 128, 125, 0x0, 135, 405, 0, 100,
60, NEEDLE F TRIANGLE, 0, 6, 30, OxFFFF, 6, OxFFFF, 2, 0xF800

byte GaugelCaption "Caption\0"

#END

func main ()

gfx AngularMeter (state, GaugelRam, GaugelInfo); // Gauge
repeat forever
endfunc

DIABLO16 INTERNAL FUNCTIONS Page 188 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_Panel2(state, x, y, width, height, w1, w2, cl, cr, cf)
Arguments state, x, y, width, height, w1, w2, cl, cr
state Bevel direction (0 — Inwards, 1 — Qutwards)
Additional bit for filling panel with fill color (0x8000 - PANEL2_FILLED)
X,y Top-Left X-position, Top-Left Y-position
width Panel width
height Panel height
wil Outer bevel offset
w2 Inner bevel offset
cl Main bevel color
cr Shadow bevel color
cf Panel fill color
Returns nothing

Description | Draws a panel2 (groupbox) at screen location defined by x, y, width and height with left colour "cl"
and right colour "cr"and option fill colour "cf".

w1 and w2 define the width of the outer and inner borders.

state = 0 : recessed

state =1 : raised

state + PANEL2_FILLED : draws with fill color "cf"

Example func main ()
gfx Panel2(1, 10, 10, 77, 81, 5, 5, OxFFFF, 0x528A, 0x8800); // Panel
object
repeat forever
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 189 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_Needle(value, &NeedleRam, &NeedleDef)

(7, Arguments value, &NeedleRam, &NeedleDef

C value A value (usually a constant) specifying the current frame of the widget
-.l% &NeedleRam A pointer to a variable array for widget utilization

g &NeedleDef A pointer to the Data Block holding the widget parameters

: Widget Parameter Data Block Format Example
L. H#DATA
— word Needlelnfo 10, // Top-Left X-position

(U 10, // Top-Left Y-position

C 235, // Width

[197, // Height

m 128, // Rotation centre X-position

) 125, // Rotation centre Y-position

C 0x0, // Background color (required for erasing needle path)
— 135, // Starting angle

I 405, // Ending angle

0, // Minimum value

5 100, // Maximum value

o 60, // Needle length

) NEEDLE_F_LINE, // Needle style options

(72 0, // Needle offset distance from center

G) 6, // Needle width (Half value of overall needle thickness)
O 30, // Needle tail length (Applicable only for DoubleTriangle style)
o OXFFFF, // Needle color

- 6, // Needle Hub radius
a_ OxFFFF, // Needle Hub color

7, 2, // Needle Pin radius

O 0xF800 // Needle Pin color
® — HEND
L

Q_ Needle Style Options

m NEEDLE_F_LINE Line needle pointer

S NEEDLE_F_RECTANGLE Rectangular needle pointer
() NEEDLE_F_POINTRECTANGLE Pointed rectangular needle pointer

NEEDLE_F_TRIANGLE Triangular needle pointer

KD NEEDLE_F_DOUBLETRIANGLE Double ended triangular needle pointer
\—l NEEDLE_F_ROUNDEDRECTANGLE Rounded corner rectangular needle pointer
9 Note: The needle function can be used standalone without the angular meter function, but the angular meter
m function will require the needle function.
g Returns ‘nothing

Description Draw a Needle as defined by NeedleDef (if required), using NeedleRam positioning at position
value. See the reference for the NeedleDef values

Example ‘var frame;

DIABLO16 INTERNAL FUNCTIONS Page 190 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

var NeedleRam[10];

#DATA

word NeedleInfo 10, 10, 235, 197, 128, 125, 0x0, 135, 405, 0, 100, 60,

NEEDLE F TRIANGLE, 0, 6, 30, OxXFFFF, 6, OXFFFF, 2, 0xF800

#END

func main ()
gfx Needle (frame, NeedleRam, NeedleInfo); // Rotating Needle
repeat forever

endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 191 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

Syntax ‘gfx_DiaI(vaIue, &DialRam, &DialDef)

Arguments value, &DialRam, &DialDef
value A value (usually a constant) specifying the current frame of the widget
&DialRam A pointer to a variable array for widget utilization
&DialDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format Example

#DATA

word Knob1llnfo

10,

10,

152,
129,

87,

80,

38,

135,
405,

0,

100,
0x0,
0x52AA,
5,
0xB5B6,
0x3186,
200,
300,
0x280,
0x528A,
0x5800,
0x7EO,
OxFFEO,
0xF800,
12,

3,

6,
0xF800,
3,

30,
OxFFFF,
2,

22,

10,

0, /*Labels*/
2,
OxFFFF,
-15,

50,
Caption,
(0+0+0)

// Top-Left X-position

// Top-Left Y-position

// Width

// Height

// Knob centre X-position

// Knob centre Y-position

// Knob radius

// Rotation starting angle

// Rotation ending angle

// Minimum value

// Maximum value

// Background color

// Knob color

// Bevel thickness

// Bevel gradient color 1 (Left side)

// Bevel gradient color 2 (Right side)

// Starting angle for Partition 2

// Starting angle for Partition 3

// Partition 1 low color

// Partition 2 low color

// Partition 3 low color

// Partition 1 high color

// Partition 2 low color

// Partition 3 low color

// Indicator ticks offset distance

// Indicator size 1 (Radius/Width of circle, triangle or rectangle)
// Indicator size 2 (Length of line, triangle or rectangle)

// Knob pointer color

// Knob pointer size 1 (Radius/Width of circle, triangle or rectangle)
// Knob pointer size 2 (Length of line, triangle or rectangle)
// Knob indicator label text color

// Knob indicator label font style

// Knob indicator label offset distance

// Number of indicator labels

// Pointer to string indicator labels (Numeric labels if zero (0))
// Caption font style

// Caption text color

// Caption horizontal offset from knob centre

// Caption vertical offset from knob centre

// Knob Caption text

// Option bits (See Widget Parameter Data Block Option Bits)

DIABLO16 INTERNAL FUNCTIONS

Page 192 of 554

www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

byte Caption "KNOB\0" // Caption string (Use null terminator "\0" to end string)
byte Labels "Text1\OText2\0Text3\0Text4\0Text5\0" // Label text strings (Use null terminator "\0" as separators)

H#END

Widget Parameter Data Block Option Bits

DIAL_F_LABEL_STRINGS Set bit for dial indicator string (default is numeric)
DIAL_F_BG_TRANSPARENT Set bit for widget transparency
DIAL_F_HANDLE_CIRCLE Set bit for circular knob pointer style
DIAL_F_HANDLE_TRIANGLE Set bit for triangular knob pointer style
DIAL_F_HANDLE_RECTANGLE Set bit for rectangular pointer style
DIAL_F_HANDLE_LINE Set bit for line pointer style
DIAL_F_INDICATOR_CIRCLE Set bit for circular dial indicator style
DIAL_F_INDICATOR_TRIANGLE Set bit for triangular dial indicator style
DIAL_F_INDICATOR_RECTANGLE Set bit for rectangular dial indicator style
DIAL_F_INDICATOR_LINE Set bit for line dial indicator style
Returns nothing

Description |Draw a Dial as defined by DialDef (if required), using DialRam positioning at position value. See the
reference for the DialDef values

Example var frame;
var KnoblRam[1O0];

#DATA

word KnoblInfo 10, 10, 152, 129, 87, 80, 38, 135, 405, 0, 100, 0xO,
0x52AA, 5, O0xB5B6, 0x3186, 200, 300, 0x280, 0x528A, 0x5800, 0x7EO0, OxXFFEO,
OxF800, 12, 3, 6, OxF800, 3, 30, OxXFFFF, FONTZ2, 22, 10, Labels, FONT2,
OxFFFF, -15, 50, KnoblCaption, (0 + DIAL F_HANDLE CIRCLE +

DIAL F INDICATOR LINE)

byte Labels "Text1\0Text2\0Text3\0Text4\0Text5\0"
byte KnoblCaption "KNOB\QO"
#END

func main ()

gfx Dial (frame, KnoblRam, KnoblInfo); // Dial Internal Widget
repeat forever
endfunc

DIABLO16 INTERNAL FUNCTIONS Page 193 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_Gauge(value, &GaugeRam, &GaugeDef)

Arguments value, &GaugeRam, &GaugeDef

value A value (usually a constant) specifying the current frame of the widget

&GaugeRam A pointer to a variable array for widget utilization

&GaugeDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format Example

#DATA

word Gaugelinfo 10, // Top-Left X-position
10, // Top-Left Y-position
181, // Gauge length
59, // Gauge width
11, // Number of Gauge bars
0, // Minimum gauge value
100, // Maximum gauge value
10, // Bar thickness
5, // Bar spacing
0x18E3, // Inter 'bar' gap color
0x280, // Partition 1 low colour
Ox7EOQ, // Partition 1 active colour
0x5280, // Partition 2 low colour
OxFFEO, // Partition 2 active colour
0xA000, // Partition 3 low colour
0xF800, // Partition 3 active colour
8, // Partition 2 starting bar
5, // Partition 3 starting bar
(0) // Gauge Option bits

H#END

Widget Parameter Data Block Option Bits

GAUGE_F_TOPRIGHT Set bit for swapping gauge direction to start from top or right side
GAUGE_F_HORZ Horizontal orientation set bit (Default is Vertical)

Note: For optimal appearance, calculate number of bars for given height first using this formula:
bars = ((gauge height / 2) + (spacing / 2) + 1) / ((bar thickness / 2) + (spacing / 2) + 2)
then calculate exact height given the calculated ticks:
height = bars * ((bar thickness / 2) + (spacing / 2) +2) — (spacing / 2) - 1

Returns nothing

Description Draw a Gauge as defined by GaugeDef (if required), using GaugeRam positioning at position value.
See the reference for the GaugeDef values

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

Example var frame;
var GaugelRam[10];

#DATA
word GaugelInfo 10, 10, 181, 59, 11, O, 100, 10, 5, Ox18E3, 0x280, 0x7EOQ,

DIABLO16 INTERNAL FUNCTIONS Page 194 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

0x5280, O0xFFEO, 0xA000, O0xF800, 8, 5, (GAUGE F HORZ + GAUGE F TOPRIGHT)
#END

func main ()

gfx Gauge (frame, GaugelRam, GaugellInfo); // Gauge Internal Widget
repeat forever
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 195 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax

gfx_LedDigits(value, &LedDigitRam, &LedDigitDef)

Arguments

value, &LedDigitRam, &LedDigitDef

value A value (usually a constant) specifying the current frame of the widget

&LedDigitRam A pointer to a variable array for widget utilization

&LedDigitDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format Example

#DATA
word Digitslinfo 10, // Top-Left X-position
10, // Top-Left Y-position
66, // Widget width (Used only for touch region)
106, // Widget height (Used only for touch region)
2, // Number of digits
0, // Separator placement (To disable separator use -1)
0, // Spacing distance between each digits
5, // Digit size
OXFFFF, // LED segment ON color
0x630C, // LED segment OFF color
(0+0+0) // Option bits (See Widget Parameter Data Block Option Bits)
H#HEND

Widget Parameter Data Block Option Bits

LEDDIGITS_F_GENERAL Set bit for LED digit general format
LEDDIGITS_F_FIXED Set bit for LED digit fixed format
LEDDIGITS_F_SCIENTIFIC Set bit for LED digit scientific format
LEDDIGITS_F_INT16 Set bit for 16-bit Integer LED digit format
LEDDIGITS_F_INT32 Set bit for 32-bit Integer LED digit format
LEDDIGITS_F_FLOAT Set bit for Float LED digit format
LEDDIGITS_F_UNSIGNED Set bit for unsigned LED digit format
LEDDIGITS_F_SIGNED Set bit for signed LED digit format
LEDDIGITS_F_LEADINGO Set bit for setting leading digits as zeroes
LEDDIGITS_F_LEADINGb Set bit for setting leading digits as blanks
LEDDIGITS_F_DP_DOT Set bit for using dots as separator
LEDDIGITS_F_DP_COMMA Set bit for using commas as separator

Returns nothing

Description | Draw a series of 7 segment Led Digits as defined by LedDigitDef, using LedDigitRam positioning at

position value. See the reference for LedDigitDef values.

Example

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

var value;
var DigitslRAM [12];

#DATA

word DigitslInfo 10, 10, 66, 106, 2, 0, 0, 5, OxFFFF,

0x630C, (LEDDIGITS F LEADINGO | LEDDIGITS F UNSIGNED | LEDDIGITS F INT16 |
LEDDIGITS F_DP_DOT)

#END

DIABLO16 INTERNAL FUNCTIONS Page 196 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

func main ()

gfx LedDigits (value, DigitslRAM, DigitslInfo); // LED digit Widget
repeat forever
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 197 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_LedDigit(x, y, digitsize, oncolour, offcolour, value);
Arguments X, y, digitsize, oncolour, offcolour, value
X, Y x- and y-coordinates of position
digitsize Size of digit
oncolour Color when status is on
offcolour Color when status is off
value Value to show
Returns ‘nothing

Description Draws a single 7 segment led Digit at x, y of size digitsize using oncolour and offcolour. The value can
be 0-9 (0-9), A-F (0x0a-0x0f), blank(0x10) and - (0x11). Or value with LEDDIGIT_F_SHOW_DP to show
a decimal point, LEDDIGIT_F_DP_COMMA to make the Decimal point a comma and
LEDDIGIT_F_DP_ON to turn the decimal point on LEDDIGIT_F_SET_SEGMENTS can be used to turn
value into a series of bits to turn on individual segments eg LEDDIGIT_F_SET_SEGMENTS + 9 will turn
on the top and bottom segments. Again LEDDIGIT_F_SHOW_DP and LEDDIGIT_F_DP_COMMA can be
used, but in this case the DP is the 8th segment.

Example gfx LedDigit (10, 10, 5, YELLOW, LIME, 3);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 198 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_Slider5(value, &SliderRam, &SliderDef)

Arguments value, &SliderRam, &SliderDef

value A value (usually a constant) specifying the current frame of the widget

&SliderRam A pointer to a variable array for widget utilization

&SliderDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format Example

#DATA
word Sliderlinfo 10, // Top-Left X-position
10, // Top-Left Y-position
250, // Widget length
40, // Widget width
(0+0+0), // Option bits (See Widget Parameter Data Block Option Bits)
0, // Minimum value
100, // Maximum value
0x1082, // Base color
0x0, // Track fill color (from Right/Top to current position)
0x7EO, // Track fill color (from Left/Bottom to current position)
30, // Total Marker partition for Top/Left Side (O for no ticks)
30, // Total Marker partition for Bottom/Right Side (O for no ticks)
2, // Minor ticks between each major ticks T/L Side (0 for small ticks)
2, // Minor ticks between each major ticks B/R Side (0 for small ticks)
10, // Major tick length
0x7EO, // Major tick color
5, // Minor tick length
OXx7EO, // Minor tick color
FONT3, // Value indicator font style
OxFFEO, // Value indicator text color
0x1082, // Slider knob bevel gradient color 1
0x9CD3, // Slider knob bevel gradient color 2
GRAD_DOWN, // Slider knob bevel gradient style
0x1082, // Slider knob face gradient color 1
0x9CD3, // Slider knob face gradient color 2
GRAD_UP // Slider knob face gradient style
H#END

Widget Parameter Data Block Option Bits

SLIDERS5_F_ORIENT_VERT Set bit for vertical orientation

SLIDER5_F_TICKS Set bit for enabling marker ticks*/

SLIDERS5_F_VALUE_IND Set bit for Enabling value indicator */

SLIDER5_F_PROGRESSBAR Set bit for turning the slider into a gauge widget (Removes Knob)
Returns ‘nothing

Description Draw a Slider as defined by SliderDef (if required), using SliderRam positioning at position value. See
the reference for the SliderDef values

DIABLO16 INTERNAL FUNCTIONS Page 199 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Example var frame;
var SliderlRam[10];

var GaugelRam[10];

#DATA

word SliderlInfo 10, 10, 250, 40, (0 + 0 + 0), O, 100, Ox1082, 0x0, O0x7EQ,
30, 30, 2, 2, 10, 0x7EQ, 5, O0x7EO, FONT3, OxFFEO, 0x1082, 0x9CD3, GRAD DOWN,
0x1082, 0x9CD3, GRAD UP

word GaugelInfo 10, 60, 250, 40, (SLIDERS5 F PROGRESSBAR +
SLIDER5 F ORIENT VERT + SLIDER5 F TICKS + SLIDER5 F VALUE IND), 0, 100,
0x1082, 0Ox0, Ox7E0, 30, 30, 2, 2, 10, 0x7EQ, 5, Ox7E0, FONT3, OxFFEO, 0x1082,
0x9CD3, GRAD DOWN, 0x1082, 0x9CD3, GRAD UP

#END

func main ()
gfx Slider5(frame, SliderlRam, SliderlInfo); // Slider Internal Widget
gfx Slider5 (frame, GaugelRam, GaugellInfo); // Gauge Internal Widget
repeat forever
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 200 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_Switch(state, &SwitchRam, &SwitchDef)

Arguments state, &SwitchRam, &SwitchDef

state A value (usually a constant) specifying the current frame of the widget

&SwitchRam A pointer to a variable array for widget utilization

&SwitchDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format

#DATA
word Buttonlinfo 10, // Top-Left X-position
10, // Top-Left Y-position
90, // Widget length
49, // Widget height
1, // Option bits (See Widget Parameter Data Block Option Bits)
0x9772, // Container bevel main color
0x8C1, // Container bevel shadow color
4, // Container bevel thickness
3, // Switch bevel thickness
0x1C43, // Switch face color (State 1)
0x32A6, // Switch face color (State 0)
ButtonllabelOn, // Container text (State 1)
Button1labelOff, // Container text (State 0)
3, // Container text font style
1, // Container text size multiplier
OXFFFF, // Container text color (State 1)
0x120 // Container text color (State 0)
byte ButtonllLabelOn "ON\0" // Button label string (Use null terminator "\0" to end string)

byte ButtonlLabelOff "OFF\0" // Button label string (Use null terminator "\0" to end string)
#END

Widget Parameter Data Block Option Bits
SWITCH1_F_ORIENT_VERT Vertical orientation set bit

Returns nothing

Description Draw a Switch as defined by SwitchDef (if required), using SwitchRam positioning at position value.
See the reference for the SwitchDef values

Example var state;
var ButtonlRam[10];
#DATA
word ButtonlInfo 10, 10, %0, 49, 1, 0x9772, 0x8Cl, 4, 3, 0x1C43, 0x32A0,
ButtonlLabelOn, ButtonlLabelOff, FONT3, 1, OXFFFF, 0x120
byte ButtonlLabelOn "ON\O"
byte ButtonlLabelOff "OFF\0"
#END
func main ()
gfx Switch(state, ButtonlRam, ButtonlInfo); // Button Internal Widget
repeat forever
endfunc

DIABLO16 INTERNAL FUNCTIONS Page 201 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_Button4(state, &gfx_ButtonRam, &gfx_ButtonDef)

Arguments state, &gfx_ButtonRam, &gfx_ButtonDef

state A value (usually a constant) specifying the current frame of the widget

&gfx_ButtonRam A pointer to a variable array for widget utilization

&gfx_ButtonDef A pointer to the Data Block holding the widget parameters

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

Widget Parameter Data Block Format

#DATA

// Circular button with braille grid pattern on button face

word Buttonlinfo 10, // Top-Left X-position
10, // Top-Left Y-position
50, // Radius
0x9CD3, // Outer bevel gradient color 1
O0x5ACB, // Outer bevel gradient color 2
GRAD_WAVE_VER, // Outer bevel gradient style
0x8800, // Ring Color (at state 0)
0xF800, // Ring Color (at state 1)
O0xDEDB, // Button bevel gradient color 1
0x2104, // Button bevel gradient color 2
GRAD_DOWN, // Button bevel gradient (at state 0)
GRAD_UP, // Button bevel gradient (at state 1)
0x6B6D, // Button face color
0, // Button text (numeric zero (0) for Braille design)
0xBDD7, // Braille grid gradient color 1
0x2965, // Braille grid gradient color 2
GRAD_DOWN // Braille grid gradient style

// Circular button with Text on button face

word Button2Info 120, // Top-Left X-position
10, // Top-Left Y-position
50, // Radius
0x9CD3, // Outer bevel gradient color 1
O0x5ACB, // Outer bevel gradient color 2
GRAD_WAVE_VER, // Outer bevel gradient style
0x8800, // Ring color (at state 0)
0xF800, // Ring color (at state 1)
O0xDEDB, // Button bevel gradient color 1
0x2104, // Button bevel gradient color 2
GRAD_DOWN, // Button bevel gradient (at state 0)
GRAD_UP, // Button bevel gradient (at state 1)
0x6B6D, // Button face color
ButtonText, // Button text label (Use pointer)
OxFFFF, // Button text font color (at state 0)
0x0, // Button text font color (at state 1)
FONT1, // Button text font style
1 // Button text size multiplier

byte ButtonText "Button\0" // Button label string (Use null terminator "\0" to end string)

#END

DIABLO16 INTERNAL FUNCTIONS

Page 202 of 554

www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Returns nothing

Description Draw a Button as defined by ButtonDef (if required), using ButtonRam positioning at position value.
See the reference for the ButtonDef values.

Examp'e var state;

var ButtonlRam[10];
var Button2Ram[10];

#DATA
word ButtonlInfo 0, 0, 50, 0x9CD3, O0x5ACB, GRAD WAVE VER, 0x8800, O0xF800,
OxDEDB, 0x2104, GRAD DOWN, GRAD UP, 0x6B6D, 0, 0xBDD7, 0x2965, GRAD DOWN

word Button2Info 10, 120, 50, 0x9CD3, O0x5ACB, GRAD WAVE VER, 0x8800, 0xF800,
OxDEDB, 0x2104, GRAD DOWN, GRAD UP, Ox6B6D, ButtonText, OxFFFF, 0x0, FONTI1,
1

byte ButtonText "Button\0"
#END

func main ()
gfx Button4 (state, ButtonlRam, ButtonlInfo); // Button with braille
gfx Button4 (state, Button2Ram, Button2Info); // Button with text
repeat forever
endfunc

DIABLO16 INTERNAL FUNCTIONS Page 203 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ gfx_Led(state, &LedRam, &LedDef)

Arguments state, &LedRam, &LedDef

state A value (usually a constant) specifying the current frame of the widget
&LedRam A pointer to a variable array for widget utilization
&LedDef A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format

#DATA
word Ledlinfo 10, // Top-Left X-position
10, // Top-Left Y-position
113, // Widget width
96, // Widget height
0x2965, // Base gradient color 1
0x0, // Base gradient color 2
O0xDEFB, // LED shine effect color
0xF800, // LED color (State 1)
0x5800, // LED color (State 0)
35, // Base bevel inner radius
40, // Base bevel outer radius
20, // LED Shine effect radius
30, // Outer LED radius
1 // LED Shine effect (1 - enable, O - disable)
HEND
Returns nothing

Description Draw a Led as defined by LedDef (if required), using LedRam positioning in state state. See the
reference for the LedDef values.

Example var state;
var LedlRam[10];

#DATA

word LedlInfo 10, 10, 113, 96, 0x2965, 0x0, OxFFFF, O0xF800, 0x5800, 35,
40, 20, 30, 1

#END

func main ()

gfx Led(state, LedlRam, LedlInfo); // LED Internal Widget
repeat forever
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 204 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ gfx_Scale(&ScaleRam, &ScaleDef)

Arguments &ScaleRam, &ScaleDef

&ScaleRam ‘A pointer to a variable array for widget utilization

&ScaleDef ‘A pointer to the Data Block holding the widget parameters

Widget Parameter Data Block Format

#DATA
word Imagelinfo 36, // Top-Left X-position
10, // Top-Left Y-position
197, // Length
0, // Minimum value
100, // Maximum value
5, // Major tick partitions
10, // Major tick length
2, // Number of minor ticks inside each partition
5, // Minor tick length
OxFFFF, // Tick color
0x0, // Marker text background color
OXFFFF, // Marker text color
3, // Marker text font style
0, // Gap size for centred marker text to ticks
(0+0+0) // Option bits (See Widget Parameter Data Block Option Bits)
H#HEND

Widget Parameter Data Block Option Bits

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

SCALE_TL Set bit to align marker scale position to Top/Left side of the axis
SCALE_BR Set bit to align marker scale position to Bottom/Right side of the axis
SCALE_CENTRE Set bit to align marker scale position to Centre of the axis
SCALE_NONE Set bit to disable marker scale
SCALE_TICKS_TL Set bit to project marker ticks to Top/Left side of the axis
SCALE_TICKS_BR Set bit to project marker ticks to Bottom/Right side of the axis
SCALE_TICKS_BOTH Set bit to project marker ticks on both side of the axis
SCALE_TICKS_NONE Set bit to disable marker ticks
SCALE_VERT Set bit for scale vertical orientation
SCALE_HORZ Set bit for scale horizontal orientation
SCALE_END_ALIGN Set bit for aligning the end markers to the last marker ticks
SCALE_NO_END_ALIGN Set bit for removing end alignment
SCALE_SHOW_ZERO Set bit for showing zero digit in the marker scale
SCALE_HIDE_ZERO Set bit for hiding zero digit in the marker scale
Returns nothing
Description Draw a Scale as defined by ScaleDef, setting LedRam for use in touch processing. See the reference
for the ScaleDef values. If touch processing is not required 0 may be used as the ScaleRam
parameter.
Example var ImageRAM1[10];
#DATA

DIABLO16 INTERNAL FUNCTIONS Page 205 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

word ImagellInfo 36, 10, 197, 0, 100, 5, 10, 2, 5, OxXFFFF, 0x0, OxXFFFF,
FONT3, O, (SCALELCENTRE | SCALE TICKS BOTH | SCALE VERT | SCALE END ALIGN |
SCALE SHOW_ ZERO)

#END

func main ()

gfx Scale(ImageRAM1l, ImagellInfo); // Scale object
repeat forever
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 206 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_RulerGauge(value, &RulerGaugeRam, &RulerGaugeDef)

Arguments value, &ram, &def

value A value (usually a constant) specifying the current frame of the widget

&RulerGaugeRam A pointer to a variable array for widget utilization

&RulerGaugeDef A pointer to the Data Block holding the widget parameters

Flash Data Block Format

#DATA
word Gaugelinfo 10, // Top-Left X-position
10, // Top-Left Y-position
250, // Widget length
52, // Widget width
100, // Widget total frames
6, // Number of partitions between each major ticks
5, // Number of minor tick partitions between each major ticks
10, // Minor tick length
20, // Major tick length
50, // Starting frame for medium range scale
75, // Starting frame for high range scale
0x3A08, // Base color
Ox1F, // Low range color
0xFD20, // Medium range color
0xF800, // High range color
OXFFFF, // Marker tick color
RULERGAUGE_TICKS_BOTTOM // Option bits (See Flash Data Block Option Bits)
H#END

Flash Data Block Option Bits

RULERGAUGE_TICKS_TOP Set bit for setting marker tick location at the top of the gauge
RULERGAUGE_TICKS_BOTTOM Set bit for setting marker tick location at the bottom of the gauge
Returns nothing

Description Draw a RulerGauge as defined by RulerGaugeDef (if required), using RulerGaugeRam positioning at
position value. See the reference for the RulerGaugeDef values.

Example var value;
var GaugelRam[10];

#DATA

word GaugelInfo 10, 10, 250, 52, 100, 6, 5, 10, 20, 50, 75, 0x3A08, Ox1F,
0xFD20, 0xF800, OxXFFFF, RULERGAUGE TICKS BOTTOM

#END

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

func main ()
gfx RulerGauge (value, GaugelRam, GaugelInfo); // Gauge Internal
Widget
repeat forever
endfunc

DIABLO16 INTERNAL FUNCTIONS Page 207 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

Svntax gfx_GradientShape(GradientRAM, HorzVert, OuterWidth, X, Y, W, H, TLrad, TRrad, BLrad, BRrad,
v Darken, OuterColor, OuterType, OuterLevel, InnerColor, InnerType, InnerLevel, Split)
GradientRAM, HorzVert, OuterWidth, X, Y, W, H, TLrad, TRrad, BLrad, BRrad, Darken, OuterColor,
Arguments .

OuterType, OuterlLevel, InnerColor, InnerType, InnerLevel, Split

GradientRAM This Function requires a quantity or RAM to work. It also needs to be initialised
and it's size varies accoring to the largest corner radius. Multiple gradient shape
calls can share the same GradientRAM. eg gradientRAM[29+91%*2] := [-1,-1,-
9999,0,0,91] ; Would support a maximum radius of 90 degrees, note the 91 in
two places.

HorzVert Horizontal or Vertical --0or 1

OuterWidth Outer gradient width

X x co-ordinate

Y y co-ordinate

w Width

H Height

TLrad Top left corner radius

TRrad Top right corner radius

BLrad Bottom left radius

BRrad Bottom right radius

Darken Darken both colours by a value. Can be a -ve value to lighten

OuterColor Outer Gradient colour

OuterType Outer Gradient type (0 - 3 horizontal, +4 vertical)
0 - Raised
1 - Sunken
2 - Raised flatter middle
3 - Sunken flatter middle

OuterLevel Outer Gradient level 0 - 63

InnerColor Inner Gradient colour

InnerType Outer Gradient type (0 - 3 horizontal, +4 vertical)
0 - Raised
1 - Sunken
2 - Raised flatter middle
3 - Sunken flatter middle

InnerLevel Inner Gradient level 0 - 63

Split Split gradient

DIABLO16 INTERNAL FUNCTIONS Page 208 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

0 - no split
1-top
2 - bottom

Returns ‘nothing

Description ‘Produce a shaped color gradient using the supplied parameters

Example gfx GradientShape (GradientRAM, HorzVert, OuterWidth, X, Y, W, H, TLrad,
TRrad, BLrad, BRrad, Darken, OuterColor, OuterType, Outerlevel, InnerColor,
InnerType, Innerlevel, Split) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 209 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_GradientColor(Type, Darken, Level, H, Pos, Color)

Arguments Type, Darken, Level, H, Pos, Color

Type Gradient type (0 - 3 horizontal, +4 vertical)
0 — Raised

1—Sunken

2 - Raised flatter middle

3 - Sunken flatter middle

Darken Darken colour by a value. Can be a -ve value to lighten
Level Gradient level 0 - 63
H Height of the object that gradient is applied
Pos Position in the height that gradient is calculated
Color Source colour that gradient is applied to
Returns ‘Color after Adjustment.

Description ‘Given the parameters, adjust the input color to produce the output color.

Example ‘gfx_GradientColor(Type, Darken, Level, H, Pos, Color)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 210 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

gfx_GradTriangleFilled(XO0, YO, X1, Y1, X2, Y2, SolidCol, GradientCol, GradientHeight, Gradienty,

Synt
yntax GradientLevel, Type)

Arguments X0, YO0, X1, Y1, X2, Y2, SolidCol, GradientCol, GradientHeight, GradientY, GradientLevel, Type

X0 First triangle point x coordinate

YO First triangle point y coordinate

X1 Second triangle point x coordinate

Y1 Second triangle point y coordinate

X2 Third triangle point x coordinate

Y2 Third triangle point y coordinate

SolidCol Colour that will be used if the Solid or Gradient parameter is set to 0
GradientCol Colour that will be used if the Solid or Gradient parameter is set to 1

GradientHeight Height of the area that the gradient will be calculated. Can be larger than the
triangle

GradientY Position on the Y axis that the gradient will be calculated from with respect to
triangle position

GradientLevel Level of gradient applied
Type Select wether solid triangle or gardient triangle is drawn.
Returns ‘nothing

Description ‘Produce a triangle with or without a gradient.

gfx GradTriangleFilled(10, 10, 10, 100, 100, 100 ,YELLOW, DARKKHAKI, 100,
10, 30, 1);

Example

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 211 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_XYrotToVal(x,y,base,mina,maxa,minv,maxv)
Arguments |x,y,base,mina,maxa,minv,maxv
X Relative x-coordinate (x-coordinate — x-center)
y Relative y-coordinate (y-coordinate — y-center)
base Base can be XYROT_EAST, used for internal widgets, or XYROT_SOUTH, used for
GCl widgets.
mina Start angle (Clockwise from 0 angle)
maxa End angle (Clockwise from 0 angle)
minv Minimum value
maxv Maximum value
Returns ‘Returns a value from minv to maxv

Description Convert a rotational angle into a value. Calculates a position for a rotary input starting at mina and
continuing to maxa. both angles must be greater than 0.

Example ‘ gfx XYrotToVal (x,y,XYROT EAST,starta,enda,minv,maxv)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 212 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax gfx_XYlinToVal(x,y,base,minpos,maxpos,minv,maxv)
Arguments x,y,base,minpos,maxpos,minv,maxv
X Relative x-coordinate (x-coordinate — x-center)
y Relative y-coordinate (y-coordinate — y-center)
base Base can be XYLIN_X, to use the x value for calculations, or XYLIN_Y, to use the y
value.
mina Start position
maxa End position
minv Minimum value
maxv Maximum value
Returns ‘Returns a value from minv to maxv

Description Convert a linear position into a value Calculates a position for a linear input starting at minpos and
continuing to maxpos.

Example ‘ gfx XY1linToVal (x,y,XYLIN X, startp,endp,minv,maxv)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 213 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of functions in this section:

e widget_Create(count)

e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 214 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘widget_Create(count)

Arguments count

count The number of elements in the widget control

The argument can be a variable, array element, expression or constant.

Returns hndl
hndl ‘Widget control handle.

Description ‘Creates a widget control capable of holding count elements and returns a handle for the control.

var hndl;
hndl := widget Create(1l);

Example

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 215 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax widget_Add(hndl, index, widget)

Arguments hndl, index, widget

hndl Handle of the widget control

index | Index of element in the widget control

widget Pointer to RAM allocation of the entry widget

The arguments can be a variable, array element, expression or constant

Returns ‘nothing

Description ‘Add a widget ram entry "widget" into index "index" of the widget control referenced by "hndlI".

Example var hndl;
hndl := widget Create(1l);
widget Add(hndl, 0, ILedlRAM); // Add entry index 0 for Led

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 216 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘widget_DeIete(hndI, index)

Arguments hndl, index

hndl Handle of the widget control

index Indexof element in the widget control

The arguments can be a variable, array element, expression or constant.

Returns ‘nothing

Description ‘Delete widget ram entry "index" from the widget control referenced by "hndl".

Example var hndl;
hndl := widget Create(1l);
widget Add(hndl, 0, ILedlRAM); // Add entry index 0 for Ledl
widget Delete (hndl, 0); // Remove entry index O

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 217 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax

‘widget_ReaIIoc(handIe, n)

Arguments

handle, n

handle |Handle of the widget control

n New number of entries

The arguments can be a variable, array element, expression or constant.

Returns

hndl

hndl Returns new handle to widget control

Description

Resizes a widget control "handle"to contain n entries, allowing it to be expanded or condensed.
Doing this unnecessarily can lead to RAM fragmentation. It is much better to allocate widget controls
once with the desired number of entries.

Example

var hndl;

hndl := widget Create (10);

widget Add(hndl, 0, ILedlRAM);

widget Add(hndl, 1, ILed2RAM);

widget Add(hndl, 2, ILed3RAM);

hndl := widget Realloc(hndl, 3); // Reallocate widget control

DIABLO16 INTERNAL FUNCTIONS Page 218 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax widget_GetWord(hndl, index, offset)

Arguments hndl, index, offset

hndl Handle of the widget control

index |Index of element in the widget control

offset Offset of the required word in the widget entry

The arguments can be a variable, array element, expression or constant.

Returns value

value Returns the specified word (0-14) from a widget entry.

Returns specified word (0-14) from a widget entry. Refer to widget control entry offsets. This
function requires that a widget control has been created with the widget Create() function.

Description

WIDGET_XPOS 0 RAM xpos

WIDGET_YPOS 1 RAM ypos

WIDGET_WIDTH 2 RAM width, needed for touch

WIDGET_HEIGHT 3 RAM height, needed for touch

WIDGET_XOTHER 4 RAM xpos 'other' (Non Flash widgets only)

WIDGET_LO_WORD 4 Flash offset low word (External Flash widgets only)

WIDGET_YOTHER 5 RAM ypos 'other' (Non Flash widgets only)

WIDGET_HI_WORD 5 Flash offset high word (Flash widgets only)

WIDGET_FLAGS 6 RAM flags

WIDGET_TAG 7 RAM tag (user or FORM#)

WIDGET_TAG2 8 RAM tag2 (user or object << 8 | object_id)

WIDGET_VAL1 9 RAM current value

WIDGET_DELAY 10 Inter frame delay (Flash widgets only)

WIDGET_FRAMES 11 Number of frames (Flash widgets only)
Example #DATA

word LedlInfo 5, 30, 103, 56, 0x2965, BLACK, O0xDEFB, 0xF800, 0x5800, 20,
30, 10, 20, 1
#END

var LedlRam[WIDGET RAM SPACE];

func main ()
var hndl;
var width;
hndl := widget Create(1l);
widget Add(hndl, 0, LedlRam);
gfx Led(0, LedlRam, LedlInfo);

width := widget GetWord (hndl, 0, WIDGET WIDTH) ;
print (width); // Print widget width from RAM
repeat
forever
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 219 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax widget_Setposition(hndl, index, xpos, ypos)

Arguments hndl, index, xpos, ypos

hndl Handle of the widget control

index Index of element in the widget control

Xpos x-coordinate of position

ypos |y-coordinate of position

The arguments can be a variable, array element, expression or constant.

Returns status

status | Returns true if index was ok and function was successful.

Description Set the position of an entry in the widget control. This function requires that a widget control has
been created with the widget Create() function.

Example #DATA
word LedlInfo 5, 5, 103, 56, 0x2965, BLACK, OxDEFB, 0xF800, 0x5800, 20,

30, 10, 20, 1
#END

var LedlRam[WIDGET RAM SPACE];

func main ()
var hndl;
hndl := widget Create(1);
widget Add(hndl, 0, LedlRam);
gfx Led (0, LedlRam, LedlInfo);
pause (2000) ;
gfx Cls();
widget Setposition(hndl, 0, 50, 50); // Set new widget position
gfx Led (0, LedlRam, LedlInfo);
repeat

forever
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 220 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘widget_Enable(hndl, index)

Arguments hndl, index

hndl ‘Handle of the widget control

index |Index of element in the widget control

The arguments can be a variable, array element, expression or constant.

Returns status

status ‘Returns true if index was ok and function was successful.

Description |Enable an item in a widget control. This function requires that a widget control has been created

with the widget_Create() function.

Example #DATA
word IILedl 5, 30, 103, 56, 0x2965, BLACK, OxDEFB, 0xF800, 0x5800, 20,

30, 10, 20, 1

word IILed2 5, 90, 103, 56, 0x2965, BLACK, OxDEFB, BLUE, 0x000B, 20,
30, 10, 20, 1

#END

var ILedlRAM[WIDGET RAM SPACE] ;
var ILed2RAM[WIDGET RAM SPACE] ;

func main ()
var hndl, 1i;
hndl := widget Create(2);
widget Add(hndl, 0, ILedlRAM);
widget Add(hndl, 1, ILed2RAM);

repeat
if (1 == 0)
widget Disable (hndl, 0); // Disable LED 0
widget Enable(hndl, 1); // Enable LED 1
else
widget Disable(hndl, 1); // Disable LED 1
widget Enable (hndl, 0); // Enable LED 0
endif
// Draw LED widgets
widget_ClearAttributes(hndl, ALL, WIDGET_F_INITIALISED);
gfx Led (0, ILedlRAM, IILedl);
gfx Led (0, ILed2RAM, IILed2);
pause (2000) ;

gfx Cls();
i = 1 (1i);
forever

endfunc

DIABLO16 INTERNAL FUNCTIONS Page 221 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘widget_Disable(hndl, index)

Arguments hndl, index

hndl

Handle of the widget control

index |Index of element in the widget control

The arguments can be a variable, array element, expression or constant.

Returns status

status ‘Returns true if index was ok and function was successful.

Description Disable an item in a widget control. This function requires that a widget control has been created

with the widget_Create() function.

Example ‘See example in section widget Enable(..).

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 222 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax widget_SetWord(hndl, index, offset, value)
(7, Arguments hndl, index, offset, value
g hndl Handle of the widget control
© m— index |Index of element in the widget control
g offset Offset of the required word in the widget entry
: value The word to be written to the entry
Ll The arguments can be a variable, array element, expression or constant.
g Returns status
[status ‘Returns TRUE if successful, return value usually ignored
" Description Set specified word in an image entry. This function requires that a widget control has been created
C with the widget Create() function.
| WIDGET_XPOS 0 RAM xpos
w WIDGET_YPOS 1 RAM ypos
o WIDGET_WIDTH 2 RAM width, needed for touch
N WIDGET_HEIGHT 3 RAM height, needed for touch
7, WIDGET_XOTHER 4 RAM xpos 'other' (Non Flash widgets only)
q) WIDGET_LO_WORD 4 Flash offset low word (Flash widgets only)
O WIDGET_YOTHER 5 RAM ypos 'other' (Non Flash widgets only)
o WIDGET_HI_WORD 5 Flash offset high word (Flash widgets only)
ad WIDGET_FLAGS 6 RAM flags
a- WIDGET_TAG 7 RAM tag (user or FORM#)
WIDGET_TAG2 8 RAM tag2 (user or object << 8 | object_id)
(7)) WIDGET_VAL1 9 RAM current value
(&) WIDGET_DELAY 10 Inter frame delay (Flash widgets only)
'-E WIDGET_FRAMES 11 Number of frames (Flash widgets only)
Q Example #DATA
© word IGaugel 10, 10, 30, 160, 80, 0, 100, 0, 0, Ox18E3, 0x0280, LIME, 0x5280,
. YELLOW, 0x5000, RED, 51, 36, 0x0
LD #END
o var IGaugelRAM [WIDGET RAM SPACE];
H func main ()
O var hndl;
hndl := widget Create(1l);
— widget Add(hndl, 0, IGaugelRAM);
m gfx Gauge (50, IGaugelRAM, IGaugel);
< widget SetWord(hndl, 0, WIDGET XPOS, 45);
— gfx Gauge (50, IGaugelRAM, IGaugel);
D repeat
forever
endfunc

DIABLO16 INTERNAL FUNCTIONS

Page 223 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax widget_SetAttributes(hndl, index, value)

Arguments hndl, index, value

hndl Handle of the widget control

index |Index of element in the widget control

value The word to be written to the entry

The arguments can be a variable, array element, expression or constant.

Returns status

status Returns TRUE if successful, return value usually ignored.

Description This function SETS one or more bits in the widget flags field of a widget control entry. "value" refers
to various bits in the widget control entry (see widget attribute flags). A '1' bit in the "value" field
SETS the respective bit in the widget flags field of the widget control entry.

Widget attribute flags to be used and maintained by widgets and touch processing:

WIDGET_F_TOUCH_ENABLE 0x8000 Set to disable touch for this image,
(default=1 for movie, 0 for image)

WIDGET_F_INTERNAL 0x4000 Internal use only (force redraw on next write)
WIDGET_F_INITIALISED 0x2000 Flag when ‘base gauge needle, etc.” is done
WIDGET_F_UNDRAW_ONLY 0x1000 Set to prevent draw of new needle
WIDGET_F_INPUT 0x0800 Set if this is an input (Used only with the IDE)
WIDGET_F_FLASH 0x0400 set if this is a flash based widget
WIDGET_F_RESERVED 0x03c0 bits 9-6 reserved

Example #DATA

word SliderlInfo 10, 10, 250, 40, O, O, 100, 0x1082, 0x0, Ox7EO0, 30, 30, 2,
2, 10, 0x7E0, 5, Ox7E0, FONT3, OxFFEO, 0x1082, 0x9CD3, GRAD DOWN, 0x1082,
0x9CD3, GRAD UP

#END

var SliderlRam[10];

func main ()
var hndl;
hndl := widget Create(1l);
widget Add(hndl, 0, SliderlRam);
widgetisetAttributes(hndl, 0, WIDGET F TOUCH ENABLE) ;
gfx Slider5 (frame, SliderlRam, SliderlInfo);
repeat
// do something here
forever
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 224 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax widget_ClearAttributes(hndl, index, value)

Arguments hndl, index, value

hndl Handle of the widget control

index |Index of element in the widget control

value The word to be written to the entry

The arguments can be a variable, array element, expression or constant.

Returns status

status Returns TRUE if successful, return value usually ignored.

Description This function CLEARS one or more bits in the widget flags field of an image control entry. "value'
refers to various bits in the widget control entry (see widget attribute flags). A '1' bit in the "value"
field CLEARS the respective bit in the widget flags field of the image control entry.

Widget attributes flags to be used and maintained by widgets and touch processing:

WIDGET_F_TOUCH_ENABLE 0x8000 Set to disable touch for this image,
(default=1 for movie, 0 for image)

WIDGET_F_INTERNAL 0x4000 Internal use only (force redraw on next write)
WIDGET_F_INITIALISED 0x2000 Flag when ‘base gauge needle, etc.” is done
WIDGET_F_UNDRAW_ONLY 0x1000 Set to prevent draw of new needle
WIDGET_F_INPUT 0x0800 Set if this is an input (Used only with the IDE)
WIDGET_F_FLASH 0x0400 set if this is a flash based widget
WIDGET_F_RESERVED 0x03c0 bits 9-6 reserved

Example #DATA

word fLedlInfo 5, 5 , 103, 56, 0x2965, BLACK, OxDEFB, 0xF800, 0x5800, 20,
30, 10, 20, 1
#END
var Ledl [WIDGET RAM SPACE];
func main ()
var hndl;
hndl := widget Create (10);
widget Add(hndl, 0, Ledl);
gfx Led (0, Ledl, fLedlInfo);
pause (2000) ;
gfx Cls ()
widgetiClearAttributes(hndl, 0, WIDGET F INITIALISED) ;
gfx Led (0, Ledl, fLedlInfo);
repeat
// do something here
forever
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 225 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax

‘widget_Touched(hndI, index)

Arguments

hndl, index

hndl Handle of the widget control

index |Index of element in the widget control

The arguments can be a variable, array element, expression or constant.

Returns

status

status Returns -1 if image not touched, or returns index

Description

This function requires that a widget control has been created with the widget_Create() function.
Returns index of the widget touched or returns -1 if no widget was touched.

If index is passed as -1 or ALL the function tests all widgets.

Example

if (state == TOUCH PRESSED)
n := widget Touched(hndl, ALL); //scan widget list, looking for a touch
if(n !'= -1)
print(n);// print index of widget touched
endif
endif

DIABLO16 INTERNAL FUNCTIONS Page 226 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
o disp_SetReg(register, data)
e disp_setGRAM(x1, y1, x2, y2)
e disp_WrGRAM(colour)
e disp_WriteControl(value)
e disp_WriteWord(value)
e disp_ReadWord()
e disp_Disconnect()
o disp_Init()

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

These functions allow direct display access for fast blitting operations.

DIABLO16 INTERNAL FUNCTIONS Page 227 of 554

www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

Syntax disp_SetReg(register, data);

Arguments register, data

register Refer to the display driver datasheet
data Refer to the display driver datasheet
Returns ‘nothing

Description ‘Sets the Display driver IC register.

DIABLO16 INTERNAL FUNCTIONS Page 228 of 554

www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

Syntax disp_setGRAM(x1, y1, x2, y2);
Arguments x1,y1,x2,y2
x1,y1 Top left of the GRAM window.
x2,y2 Bottom right of the GRAM window.
Returns value
value The LO word of the 32 bit pixel count is returned.
Prepares the GRAM area for user access. The lower 16bits of the pixel count in the selected area is
Description |returned. This is usually all that is needed unless GRAM area exceeds 256”2. A copy of the 32bit value
can be found in GRAM_PIXEL_COUNT_LO and GRAM_PIXEL_COUNT_HI.
Example disp setGRAM (40, 60, 100, 150);

DIABLO16 INTERNAL FUNCTIONS Page 229 of 554

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax disp_WrGRAM(colour);

Arguments colour

colour Pixel color to be populated.
Returns nothing
i Data can be written to the GRAM consecutively using this function once the GRAM access window
Description
has been setup.
disp WrGRAM (0xXFFFO) ;
Example -

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 230 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax disp_WriteControl(value);

Arguments value

value Specifies the 16 bit value to be written to the display control register.

The arguments can be a variable, array element, expression or constant

Returns nothing

Sends a 16 bit value to the display bus. Refer to individual data sheets for the display for more
Description |information. This function is used to extend the capabilities of the user code to gain access to the
display hardware.

disp WriteControl (OxOFFA) ;
Example -

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 231 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax disp_WriteWord(value);

Arguments value

value Specifies the value to be written to the display data register.

The arguments can be a variable, array element, expression or constant

Returns nothing

Sends a 16 bit value to the display bus. Refer to individual data sheets for the display for more
Description |information. This function is used to extend the capabilities of the user code to gain access to the the
display hardware.

disp WriteWord (0x7FFO0) ;
Example -

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 232 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax disp_ReadWord();

Arguments nothing

Returns value

value Returns 16 bit value in the register.

Description |Read a word from the display.

var val;

Exa"““e val := disp ReadWord();

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 233 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax disp_Disconnect();

Arguments none

Returns nothing

This function disconnects the display driver pins and/or reconfigures it to achieve its lowest possible
power consumption. Use after disabling peripheral power to ensure the minimal power usage by the

display.
Description
Note: disp_Init() should be used to reinitialise the display.

New in v0.7 PmmC

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 234 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘disp_lnit();
Arguments none
Returns ‘nothing

This function is used to initialise the display.

This is useful in a number of situations, however mainly for the uLCD-xx-PTU modules which have the
o ability to disable the power supply to the display for low power sleep modes. This function is required
Description {4 re-initialise the display once power to the display has been restored, so the display is usable once
again.

New in v0.7 PmmC

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 235 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

disp_BlitPixelsFromCOMO(); or
disp_BlitPixelsFromCOM1(); or
Syntax disp_BlitPixelsFromCOMZ2(); or

disp_BlitPixelsFromCOM3();

Note: COMn from disp_BlitPixelsFromCOMn is to be replaced by COMO to COMS3.

Arguments None

Returns Nothing

This function writes the number of pixels defined by the last disp_setGRAM() call to the display from

L. the specified com port. The function returns once all pixels have been written.
Description

New in v1.1 PmmC

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 236 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

The media can be SD/SDHC, microSD or serial (NAND) flash device interfaced to the Diablo16 SPI port.

Summary of Functions in this section:
e media_lnit()
e media_SetAdd(HIword, LOword)
e media_SetSector(HIword, LOword)
e media_RdSector(Destination_Address)
e media_WrSector(Source_Address)
e media_ReadByte()
e media_ReadWord()
e media_WriteByte(byte_val)
e media_WriteWord(word_val)
e media_Flush()
e media_lmage(x, y)
e media_Video(x, y)
e media_VideoFrame(x, y, frameNumber)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 237 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax media_lnit();
Arguments none
Returns result
result Returns: 1 if memory card is present and successfully initialised
Returns: 0if no card is present or not able to initialise
Description Initialise a uSD/SD/SDHC memory card for further operations. The SD card is connected to the SPI
(serial peripheral interface) of the processor.
Example while (!media Init())

gfx Cls();
pause (300) ;
puts (“Please insert SD card”);
pause (300) ;
wend

This example waits for SD card to be inserted and initialised, flashing a message if no SD card detected.

DIABLO16 INTERNAL FUNCTIONS Page 238 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax media_SetAdd(HIword, LOword);

Arguments Hlword, LOword

Hiword Specifies the high word (upper 2 bytes) of a 4 byte media memory byte address
wor location.
LOword Specifies the low word (lower 2 bytes) of a 4 byte media memory byte address

location.

The arguments can be a variable, array element, expression or constant

Returns ‘nothing

Description ‘Set media memory internal Address pointer for access at a non sector aligned byte address.

Examp'e media_SetAdd (0, 513);

This example sets the media address to byte 513 (which is sector #1, 2" byte in sector) for subsequent
operations.

DIABLO16 INTERNAL FUNCTIONS Page 239 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax media_SetSector(HIword, LOword);

Arguments Hlword, LOword

Specifies the high word (upper 2 bytes) of a 4 byte media memory sector address

Hiword .
location.

LOword Specifies the low word (lower 2 bytes) of a 4 byte media memory sector address
location.

The arguments can be a variable, array element, expression or constant

Returns result

Description |Set media memory internal Address pointer for sector access.

Example media SetSector (0, 10);

This example sets the media address to the 11™ sector (which is also byte address 5120) for
subsequent operations

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 240 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax media_RdSector(Destination_Address);
Arguments Destination_Address
Destination_Address Destination block pointed to by the internal Sector pointer.
The argument must be a pointer to an array of size 256 words for the sector data which will be 512
bytes
Returns TRUE if media response was TRUE.
Returns . —
Returns 512 bytes (256 words) in to a destination block.
L. Reads and Returns 512 bytes (256 words) into a destination block (eg rdblock[256]) pointed to by the
Description
internal Sector pointer. After the read the Sector pointer is automatically incremented by 1.
Example var rdblock([256];

media SetSector (0,10)

if (media RdSector (rdblock));
Print (“Data collected”);

endif

This example sets a 512 bytes block and collects data from the address pointed to by media_SetSector
command.

DIABLO16 INTERNAL FUNCTIONS Page 241 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax media_WrSector(Source_Address);
Arguments Source_Address
Source_Address Source memory block of 512bytes.
The arguments can be a variable, array element, expression or constant
Returns Returns TRUE if media response was TRUE.
Writes 512 bytes (256 words) from a source memory block (eg wrblock[256]) into the uSD card. After
Description |the write the Sect pointer is automatically incremented by 1.
Returns TRUE if uSD response was TRUE
Example var wrblock[256] ;

func main ()
prepare block();

media SetSector (0,10)

if (media WrSector (wrblock));
Print (“Data transferred”);

endif

This example sets a 512 bytes block and transfers data to the address pointed to by media_SetSector
command.

DIABLO16 INTERNAL FUNCTIONS Page 242 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘ media_ReadByte();

Arguments none

Returns ‘byte value

Description Returns the byte value from the current media address. The internal byte address will then be
internally incremented by one.

Example var LObyte, HIbyte;

if (media Init())
media SetAdd (0, 510);

LObyte := media ReadByte();

HIbyte := media ReadByte();

print ([HEX2]HIbyte, [HEX2]LObyte) ;
endif

repeat forever

This example initialises the media, sets the media byte address to 510, and reads the last 2 bytes from
sector 0. If the card happens to be FAT formatted, the result will be “AA55”. The media internal address
is internally incremented for each of the byte operations.

DIABLO16 INTERNAL FUNCTIONS Page 243 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘media_ReadWord();

Arguments none

Returns ‘word value

Description Returns the word value (2 bytes) from the current media address. The internal byte address will then
be internally incremented by two. If the address is not aligned, the word will still be read correctly.

Example var myword;

if (media Init())
media SetAdd (0, 510);

myword := media ReadWord() ;
print ([HEX4]myword) ;
endif

repeat forever

This example initialises the media, sets the media byte address to 510 and reads the last word from
sector 0. If the card happens to be formatted, the result will be “AA55”

DIABLO16 INTERNAL FUNCTIONS Page 244 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax media_WriteByte(byte_val);

Arguments byte_val
byte_val ‘The lower 8 bits specifies the byte to be written at the current media address location.

The arguments can be a variable, array element, expression or constant

Returns success

success ‘Returns non zero if write was successful.

Description Writes a byte to the current media address that was initially set with media_SetAdd() or
media_SetSector(...); After the write the Address pointer is automatically incremented by 1.

Note: Writing bytes or words to a media sector must start from the beginning of the sector. All writes
will be incremental until the media_Flush() function is executed, or the sector address rolls over to
the next sector. When media_Flush() is called, any remaining bytes in the sector will be padded with
OxFF, destroying the previous contents. An attempt to use the media_SetAdd(..) function will result
in the lower 9 bits being interpreted as zero. If the writing rolls over to the next sector, the
media_Flush() function is issued automatically internally.

Example var n, char;
while (media Init ()==0); // wait if no SD card detected
media SetSector (0, 2); // at sector 2

//medIa_SetAdd(O, 1024); // (alternatively, use media SetAdd(),
// lower 9 bits ignored)
while (n < 10)

media WriteByte(n++ +'0'); // write ASCII '0123456789' to the
wend // first 10 locations.

to (MDA); putstr("Hello World"); // now write a ascii test string
media WriteByte('A'"); // write a further 3 bytes

media WriteByte('B');
("ev) g
(0)

media WriteByte('C')

media WriteByte (0); // terminate with zero

media Flush(); // we're finished, close the sector

media SetAdd (0, 1024+5); // set the starting byte address

while (char:=media ReadByte ()) putch(char); // print result, starting
// from '5'

repeat forever

This example initialises the media, writes some bytes to the required sector, then prints the
result from the required location.

DIABLO16 INTERNAL FUNCTIONS Page 245 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax media_WriteWord(word_val);

Arguments word_val
word_val ‘The 16 bit word to be written at the current media address location.

The arguments can be a variable, array element, expression or constant

Returns success

success ‘Returns non zero if write was successful.

Description Writes a word to the current media address that was initially set with media_SetAdd() or
media_SetSector(...); After the write the Address pointer is automatically incremented by 2.

Note: Writing bytes or words to a media sector must start from the beginning of the sector. All writes
will be incremental until the media_Flush() function is executed, or the sector address rolls over to
the next sector. When media_Flush() is called, any remaining bytes in the sector will be padded with
OxFF, destroying the previous contents. An attempt to use the media_SetAdd(..) function will result in
the lower 9 bits being interpreted as zero. If the writing rolls over to the next sector, the media_Flush()
function is issued automatically internally.

Example var n;
while (media Init ()==0); // wait until a good SD card is found
n:=0;
media SetAdd (0, 1536); // set the starting byte address

while (n++ < 20)
media WriteWord(RAND()); // write 20 random words to first 20
wend // word locations.
n:=0;
while (n++ < 20)
media WriteWord(n++*1000);// write sequence of 1000*n to next 20

wend // word locations.

media Flush(); // we're finished, close the sector

media SetAdd (0, 1536+40); // set the starting byte address

n:=0;

while (n++<8) // print result of fist 8 multiplication calcs
print ([HEX4] media ReadWord(),"\n");

wend

repeat forever

// This example initialises the media, writes some words to the required sector, then prints
// the result from the required location.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 246 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘media_Flush();

Arguments ‘none

returns O if Failed
Returns .
returns non-zero if OK
Description After writing any data to a sector, media_Flush() should be called to ensure that the current sector
that is being written is correctly stored back to the media else write operations may be unpredictable.
Example ‘ See the media_WriteByte(..) and media_WriteWord(..) examples.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 247 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax media_lmage(x, y);

Arguments X,y

X,y Specifies the top left position where the image will be displayed.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Displays an image from the media storage at the specified co-ordinates. The image address is
previously specified with the media_SetAdd(..) or media_SetSector(...) function. If the image is
shown partially off screen, it may not be displayed correctly.

Example while (media Init ()==0); // wait if no SD card detected

media SetAdd(0x0001, O0xDA0O) ; // point to the books04 image
media Image (10,10);

gfx Clipping (ON) ; // turn off clipping to see the difference
media Image (-12,50); // show image off-screen to the left
media Image (50,-12); // show image off-screen at the top

repeat forever

This example draws an image at several positions, showing the effects of clipping.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 248 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax media_Video(x, y);

Arguments X,y
X,y Specifies the top left position where the video clip will be displayed.
The arguments can be a variable, array element, expression or constant

Returns nothing

Description Displays a video clip from the media storage device at the specified co-ordinates. The video address
location in the media is previously specified with the media_SetAdd(..) or media_SetSector(...)
function. If the video is shown partially off screen, it may not be displayed correctly. Note that showing
a video blocks all other processes until the video has finished showing. See the
media_VideoFrame(...) functions for alternatives.

Example while (media Init ()==0); // wait if no SD card detected

media SetAdd (0x0001, 0x3C00); // point to the 10-gear clip
media Video(10,10);

gfx Clipping (ON) ; // turn off clipping to see the difference
media Video(-12,50); // show video off-screen to the left

media Video (50,-12); // show video off-screen at the top

repeat forever

This example plays a video clip at several positions, showing the effects of clipping.

DIABLO16 INTERNAL FUNCTIONS Page 249 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax media_VideoFrame(x, y, frameNumber);

Arguments X,y

X,y ‘Specifies the top left position where the video clip will be displayed.

frameNumber ‘Specifies the required frame to be shown.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Displays a video from the media storage device at the specified co-ordinates. The video address is
previously specified with the media_SetAdd(..) or media_SetSector(...) function. If the video is shown
partially off it may not be displayed correctly. The frames can be shown in any order. This function
gives you great flexibility for showing various icons from an image strip, as well as showing videos
while doing other tasks

media_VideoFrame(..) will now show error box for out of range video frames. Also, if frame is set to -
1, just a rectangle will be drawn in background colour to blank an image. It applies to PmmC R29 or

above.
Example var frame;
while (media Init()==0); // wait if no SD card detected
while (media Init()==0); // wait if no SD card detected
media SetAdd(0x0002, 0x3CO00); // point to the 10-gear image
repeat
frame := 0; // start at frame O
repeat

media VideoFrame (30,30, frame++); // display a frame
pause (peekB (IMAGE DELAY)); // pause for the time given in
// the image header
until (frame == peekW (IMG_FRAME COUNT)); // loop until we've
// shown all the frames

forever // do it forever

This first example shows how to display frames as required while possibly doing other tasks. Note that
the frame timing (although not noticeable in this small example) is not correct as the delay
commences after the image frame is shown, therefore adding the display overheads to the frame
delay. This second example employs a timer for the framing delay, and shows the same movie
simultaneously running forward and backwards with time left for other tasks as well. A number of
videos (or animated icons) can be shown simultaneously using this method.

var framecount, frame, delay, colr;

frame := 0;

// show the first frame so we can get the video header info

// into the system variables, and then to our local variables.
media VideoFrame (30,30, 0);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

framecount := peekW(IMG FRAME COUNT); // we can now set some local
// values.
delay := peekB(IMAGE DELAY); // get the frame count and delay
repeat
repeat
pokeW (TIMERQO, delay); // set a timer

DIABLO16 INTERNAL FUNCTIONS Page 250 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

media VideoFrame (30,30, frame++); // show next frame

gfx MoveTo (64,35);

print ([DEC2Z] frame) ; // print the frame number
media VideoFrame (30,80, framecount-frame); // show movie

// backwards.
gfx MoveTo (64, 85) ;

print ([DEC2Z] framecount-frame) ; // print the frame number
if ((frame & 3) == 0)
gfx CircleFilled(80,20,2,colr); // a blinking circle fun
colr := colr ~ 0xF800; // alternate colour,
endif // BLACK/RED using XOR
// do more here if required
while (peekW (TIMERO)) ; // wait for timer to expire
until (frame == peekW (IMG FRAME COUNT)) ;
frame := 0;

forever

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 251 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

The functions in this section apply to the Flash Memory Banks on the Diablo16.

Summary of Functions in this section:

e flash_Bank()

o flash_Blitl(bank, offset, count, pallete2colour)

e flash_Blit16(bank, offset, count)

o flash_Blit2(bank, offset, count, pallete4colour)

e flash_Blit4(bank, offset, count, palletel6colour)

o flash_Blit8(bank, offset, count)

e flash_Copy(bank, ptr, dest, count)

e flash_EraseBank(bank, confirmation)

o flash_Exec(bank, arglistptr)

o flash_GetByte(bank, ptr)

o flash_GetWord(bank, ptr)

e flash_LoadFile(bank, filename)

e flash_putstr(bank, ptr)

e flash_Run(bank)

o flash_WriteBlock(sourceptr, bank, page)

e flash_FunctionCall(bank, index, & FunctionRam, &FunctionDef, FunctionArgCount,
FuncionArgStringMap)

e flash_LoadSPIflash(bank, hndl, idx)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 252 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

Syntax flash_Bank();
Arguments none
Returns value
value The FLASH bank that code is currently running from, 0-5.
0: Flashbank O
1: Flashbank 1
2: Flashbank 2
3: Flashbank 3
4: Flashbank 4
5: Flashbank 5
Description |ldentifies which flash bank the code is running from.
Example var bank;

bank := flash Bank();

DIABLO16 INTERNAL FUNCTIONS Page 253 of 554

www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flash_Blit1(bank, offset, count, pallete2colour)
Arguments bank, offset, count, pallete2colour
Flash bank to load the image from.
0 or FLASHBANK_O
1 or FLASHBANK_1
bank 2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5
offset Offset in to the Flash bank where image is stored.
count Total number of pixel in the image.
pallete2colour An array of 2 elements being the colors for the two possible colour values.
Returns count
count Actual count (normally same as count, will be lower if bank bounds exceeded)
Description Blit an image to a GRAM window from FLASH storage. Image is stored in a linear fashion to suit the
GRAM mechanism, palette is 2 x 16bit colours
Example var actual count;

var pixels := 2000;

// pallete should be defined as an array of 2 elements

// of 1l6bit color values

actual count := flash Blitl (FLASHBANK 2, 10, pixels, pallete);

DIABLO16 INTERNAL FUNCTIONS Page 254 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flash_Blit2(bank, offset, count, pallete4colour)

Arguments bank, offset, count, pallete4colour

Flash bank to load the image from.
0 or FLASHBANK_O
1 or FLASHBANK_1
bank 2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

offset Offset in to the Flash bank where image is stored.

count Total number of pixel in the image.

palletedcolour An array of 4 elements being the colors for the four possible colour values.

Returns count

count Actual count (normally same as count, will be lower if bank bounds exceeded)

Description Blit an image to a GRAM window from FLASH storage. Image is stored in a linear fashion to suit the
GRAM mechanism, palette is 4 x 16bit colours

Example var actual count;

var pixels := 2000;

// pallete should be defined as an array of 4 elements

// of 1lébit color values

actual count := flash Bl1it2 (FLASHBANK 2, 10, pixels, pallete);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 255 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flash_Blit4(bank, offset, count, palletel6colour)

Arguments bank, offset, count, palletel6colour

Flash bank to load the image from.
0 or FLASHBANK_O
1 or FLASHBANK_1
bank 2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

offset Offset in to the Flash bank where image is stored.

count Total number of pixel in the image.

Palletel6colour An array of 16 elements being the colors for the sixteen possible colour values.

Returns count

count Actual count (normally same as count, will be lower if bank bounds exceeded)

Description Blit an image to a GRAM window from FLASH storage. Image is stored in a linear fashion to suit the
GRAM mechanism, palette is 16 x 16bit colours

var actual count;

var pixels := 2000;

// pallete should be defined as an array of 16 elements

// of 1l6bit color values

actual count := flash Blit4 (FLASHBANK 2, 10, pixels, pallete);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 256 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flash_Blit8(bank, offset, count)
Arguments bank, offset, count
Flash bank to load the image from.
0 or FLASHBANK_O
1 or FLASHBANK_1
bank 2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5
offset Offset in to the Flash bank where image is stored.
count Total number of pixel in the image.
Returns count
count Actual count (normally same as count, will be lower if bank bounds exceeded)
Description Blit an image to a GRAM window from FLASH storage. Image is stored 8 bits per pixel (332 format) in
a linear fashion to suit the GRAM mechanism
Example var actual count;

var pixels := 2000;
actual count := flash Blit8 (FLASHBANK 2, 10, pixels);

DIABLO16 INTERNAL FUNCTIONS Page 257 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flash_Blit16(bank, offset, count)
Arguments bank, offset, count
Flash bank to load the image from.
0 or FLASHBANK_O
1 or FLASHBANK_1
bank 2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5
offset Offset in to the Flash bank where image is stored.
count Total number of pixel in the image.
Returns count
count Actual count (normally same as count, will be lower if bank bounds exceeded)
Description Blit an image to a GRAM window from FLASH storage. Image is stored 16bits per pixel (565) in a linear
fashion to suit the GRAM mechanism
Example var actual count;

var pixels := 2000;
actual count := flash B1litl6 (FLASHBANK 2, 10, pixels);

DIABLO16 INTERNAL FUNCTIONS Page 258 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flash_Copy(bank, ptr, dest, count)

Arguments bank, ptr, dest, count

Flash bank to copy the data from.
0 or FLASHBANK_O
1 or FLASHBANK_1
bank 2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

ptr Pointer to a location in the selected flash bank.
dest Pointer to the destination. The destination pointer is word aligned.
count Count of bytes to be transferred.
Returns count
count The count of bytes transferred.

Description Copies bytes from any flash locations to a user buffer. If the bank is read protected, 0 bytes will be
read.

Example var count;
var dest[100];

count := flash Copy (FLASHBANK 2, 10,str Ptr(dest), 100);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 259 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flash_EraseBank(bank, confirmation)

Arguments bank, confirmation

Flash bank to be erased.

0 or FLASHBANK_O

1 or FLASHBANK_1

2 or FLASHBANK_2

3 or FLASHBANK_3

4 or FLASHBANK_4

5 or FLASHBANK_5

-1 or ALL to select all the banks.

OxDEAD: The command will erase regardless or FLASH_WRITE_PROTECT status
For any other value, a protected bank will not be erased.

bank

confirmation

Returns status

status Returns true if the function succeeded.

Description This function should be used with extreme caution. The selected bank will be completely erased
regardless of FLASH_WRITE_PROTECT status if the confirmation value is set to hex OxDEAD. If
confirmation is any other value, a protected bank will not be erased, and function will return with 0
If the destination bank is the same as the execution bank, the processor will reset upon completion
of erase. If the "bank" argument is set to ALL (-1) and confirmation is set to OXDEAD, FLASHBANK_0O
thru FLASHBANK_5 are cleared.

Note: Use with caution, this is a good way to 'clean up' the entire flash when starting new projects.

Note: reset processor if program is erasing itself, or the ALL bank option is selected.

Example if (flash EraseBank (FLASHBANK 2, 0))
print ("Erased successfully.");
ellse
print ("Failed") ;
endif

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 260 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flash_Exec(flashbank, arglistptr);

Arguments flashbank, arglistptr

flashbank name of the bank to be executed.

arglistptr pointer to the list of arguments to pass to the selected bank or 0 if no arguments.
Returns Value

Value ‘Returns the value from main in the called bank.

Description This function calls the main function in another bank. The main program in FLASH retains all memory
allocations (eg file buffers, memory allocated with mem_Alloc etc)

The called bank returns like a function, program in current bank is kept active and control returns to
it. All memory allocated in the called bank should be freed before returning, or it will be lost.

If arglistptr is 0, no arguments are passed, else arglist points to an array, the first element being the
number of elements in the array.

func 'main’ in the called bank accepts the arguments.

Example flash Exec (FLASHBANK 1, 0) ;

DIABLO16 INTERNAL FUNCTIONS Page 261 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flash_GetByte(bank, ptr)

Arguments bank, ptr

Flash bank to get the byte from.
0 or FLASHBANK_O
1 or FLASHBANK_1
bank 2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

ptr Pointer to a location in the selected flash bank.
Returns byte
byte The byte value from the location

Description Reads a single byte from any flash location. If the bank is read protected, only the first 2 bytes can be
read.

0x55, OxAA are the header signature bytes of a valid program.

Example var byte val;
byte val := flash GetByte (FLASHBANK 2,10);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 262 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flash_GetWord(bank, ptr)

Arguments bank, ptr

Flash bank to get the word from.
0 or FLASHBANK_O
1 or FLASHBANK_1
bank 2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

ptr Pointer to a location in the selected flash bank.
Returns word
word The word value from the location

Description Reads a single word from any flash location. If the bank is read protected, only the first word can be
read.

O0x55AA is the header signature word of a valid program.

Example var word val;
word val := flash GetWord(FLASHBANK 2, 10);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 263 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flash_LoadFile (bank, filename)

Arguments bank, filename

Flash bank to load the file from.
0 or FLASHBANK_O
1 or FLASHBANK_1
bank 2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

filename Name of the file to be copied (passed as a string).
Returns status
status Returns true if the function succeeded

Description Copies a file from uSD to the required flashbank. The destination bank cannot be the execution bank,
or a bank that is write protected.

Example if (flash LoadFile (FLASHBANK 2, "FILE.TXT"))
print ("File loaded to bank.");
else
print ("Failed");
endif

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 264 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flash_putstr(bank, ptr)

Arguments bank, ptr

Flash bank to load the String from.
0 or FLASHBANK_O
1 or FLASHBANK_1
bank 2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

ptr Pointer to a NULL terminated string in the selected flash bank.
Returns status
status True if function succeeds, usually ignored. 0 if bank is read protected.

Description Prints an ASCIIZ string from the Flash bank. Works the same as putstr, however, the source of the
ASCIIZ string is in FLASH storage. Output may be redirected with the to(..) function. Bit15 of ptr is

assumed 0.
Example if (flash_putstr (FLASHBANK_Z, 10))
print ("Success");
else
print ("Failed") ;
endif

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 265 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flash_Run(bank)

Arguments bank

Flash bank to load the program from.
0 or FLASHBANK_O
1 or FLASHBANK_1
bank 2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

Returns value

value This function should not return as it restarts the processor and jumps to the required
bank.

If it does return,
-1 indicates incorrect/invalid bank number.
-2 indicates no valid program in the selected bank.

Description Restarts the processor, running code from the required flash bank. Bank may be a variable, or one of
the pre-defined constants.

Example var status;
status := flash Run (FLASHBANK 2, 10);
if (status == -1 || status == -2)
print ("Failed");
endif

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 266 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flash_WriteBlock(sourceptr, bank, page)
Arguments sourceptr, bank, page
sourceptr Source buffer to load the 2K bytes of data from.
Flash bank to write the block to.
0 or FLASHBANK_O
1 or FLASHBANK_1
bank 2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5
Page number 0-15. Each page is 2K.
page . .
The address of each block is 0, 2048, 4096 etc, determined by the page number 0-
15.
Returns status
status Returns true if the function succeeded.
Description Copies a 2kbyte buffer to the required flashbank in block 0-15. The destination bank cannot be an
execution bank, or a program bank that is write-protected.
Example var buffer[100] := "4D Labs Semiconductors";

var status;

if (status := flash WriteBlock(buffer, FLASHBANK 2, 1))
print ("Successfully written to bank");
endif

DIABLO16 INTERNAL FUNCTIONS Page 267 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flash_FunctionCall(bank, idx, state, FncRam, FncDef, FncArgCnt, FncStrMap);
Arguments bank, index, state, &FunctionRam, &FunctionDef, FunctionArgCount, FunctionArgStringMap
Flash bank to write the block to.
0 or FLASHBANK_O
1 or FLASHBANK_1
bank 2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5
index Index of the entry in the handle
state Value passed to update function state
&FunctionRam Pointer to the function RAM allocation
&FunctionDef Pointer to the function definitions stored in Flash
FunctionArgCount Function argument count
FunctionArgStringMap String address array
Returns status
status Returns 0 if successful
Description Calls the Flashbank passing index "index" as the first parameter.
Other parameters "State", "&FunctionRam", "&FunctionDef", "& FunctionDef" are passed. The second
two parameters are passed "as is", since the third parameter is normally in flash and one banks flash
is not accessible from another
"FunctionArgCount" constants are copied into a RAM array and passed to the Function.
"FunctionStringMap" is a bit array of the indexes containing single and multiple strings offset by 8. eg
0x0100 means parameter 8 is a single string, 0x0002 means paramter 9 is an array of strings with
parameter 8 containing the count.
Example flash_FunctionCall (bank, idx, state, FncRam, FncDef, FncArgCnt, FncStrMap):;

DIABLO16 INTERNAL FUNCTIONS Page 268 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flash_LoadSPIflash (bank, hndl, idx)

Arguments bank, hndl, idx

Flash bank to load the file from.
0 or FLASHBANK_O
1 or FLASHBANK_1
bank 2 or FLASHBANK_2
3 or FLASHBANK_3
4 or FLASHBANK_4
5 or FLASHBANK_5

hndl The handle that references the file.

index Index of the entry in the handle
Returns status

status Returns true if the function succeeded

Description Copies a file from uSD to the required flashbank. The destination bank cannot be the execution bank,
or a bank that is write protected.

Example result := flash LoadSPIflash (FLASHBANK 2, "TETRIS10.EXE"); // load the file
from disk into FLASHBANK 2

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 269 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

The SPI functions in this section apply to any general purpose SPI device.

Summary of Functions in this section:

e spi_Init(speed, address_mode)

e spi_Read()

e spi_Write(byte)

e spi_Disable()

e SPI1_Init(speed, mode, enablepin) or SPI2_Init(speed, mode, enablepin) or SPI3_Init(speed, mode,
enablepin)

e SPI1_Read() or SPI2_Read() or SPI3_Read()

e SPI1_Write(byte) or SPI2_Write(byte) or SP13_Write(byte)

e SPI1_SCK_pin(pin) or SP12_SCK_pin(pin) or SPI3_SCK_pin(pin)

e SPI1_SDI_pin(pin) or SPI12_SDI_pin(pin) or SPI3_SDI_pin(pin)

e SPI1_SDO_pin(pin) or SPI2_SDO_pin(pin) or SPI3_SDO_pin(pin)

Note: SPIO is connected internally to the uSD card. spi_Init(), spi_Read(), spi_Write() and spi_Disable() all refer to the
SPI0 to communicate with the uSD card through direct SPI commands. Only adept users should attempt this as it might
damage the uSD card.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 270 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘spi_lnit(speed, address_mode);

Arguments speed, address_mode

speed Sets the speed of the SPI port.
SPI_FAST — 16Mhz
SPI_MED - 4Mhz
SPI_SLOW - 650Khz

address_mode |Sets the address mode of the SPI port.
0 — Set address_mode to 0 when dealing with 16MB or less
SPI_ADDRESS_MODE4 — Set to this if dealing with Flash larger than 16 MB

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Sets up the Diablo16 SPI port to communicate with the uSD card through direct SPI commands. It
should not be used if uSD card is active. See the example in section spi_Read().

Note: address_mode needs to be SPI_ADDRESS_MODE4 for flash devices with more than 16MB of
capacity (to enable 4 byte addressing), else 0 for standard 3 byte addressing.

Examples spi Init (SPI_FAST,0); // init SPI at maximum speed for 16MB Flash

spi_Init (SPI_SLOW,SPI_ADDRESS_MODE4); // init SPI at Slow speed for 32MB

Note: This is only for the uSD Card, it is not for SPI11, SPI2 or SPI3.

WARNING: This should not be tampered with for normal operation, as the Diablo16 handles the uSD card itself.
Only use if you are an adept user and know what you are doing.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 271 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

Syntax ‘spi_Read();
Arguments none
Returns byte
byte Returns a single data byte from the uSD card via SPI.
Description This function allows a raw unadorned byte read from the uSD card via SPI.
Note: This is only for the uSD Card, it is not for SPI1, SPI2 or SPI3
Note: The Chip Select line (SDCS) is lowered automatically.
Example var result;

spi_Init(2, 0, 0); // 650 kHZ, RXMODE 0, CKMODE 0
print ("Hello World\n") ; // replace with your code

/oo

spi Write (0x40);
result := spi Read();
print ("result: ", result);

Note: This is only for the uSD Card, it is not for SPI1, SPI2 or SPI3.

WARNING: This should not be tampered with for normal operation, as the Diablo16 handles the uSD card itself.
Only use if you are an adept user and know what you are doing.

DIABLO16 INTERNAL FUNCTIONS Page 272 of 554

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘spi_Write(byte) ;

Arguments byte
byte Specifies the data byte to be sent to the uSD card via SPI.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description This function allows a raw unadorned byte write to the uSD card via SPI.

Note: This is only for the uSD Card, it is not for SPI1, SPI2 or SPI3

Note: The Chip Select line (SDCS) is lowered automatically.

See the example in section spi_Read().

Note: This is only for the uSD Card, it is not for SPI1, SPI2 or SPI3.

WARNING: This should not be tampered with for normal operation, as the Diablo16 handles the uSD card itself.
Only use if you are an adept user and know what you are doing.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 273 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘spi_DisabIe();
Arguments none
Returns ‘nothing

Description This function raises the Chip Select (SDCS) line of the uSD card, disabling it from further activity. The
CS line will be automatically lowered next time the SPI functions spi_Read() or spi_Write(...) are used,
and also by action of any of the media_ functions.

Note: This is only for the uSD Card, it is not for SPI1, SP12 or SPI3

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 274 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

SPI1_Init(speed, mode, enablepin); or

Syntax SPI2_Init(speed, mode, enablepin); or

SPI3_lInit(speed, mode, enablepin);

Arguments speed, mode, enablepin

speed

Specifies the speed of the SPI port. See the details below,

Pre-defined Constant | Value Comments
SPI_SPEEDO 0 78.125 khz
SPI_SPEED1 1 109.375 khz
SPI_SPEED2 2 273.4375 khz
SPI_SPEED3 3 312.5 khz
SPI_SPEED4 4 437.5 khz
SPI_SPEED5 5 729.166 khz
SPI_SPEED6 6 1.09375 mhz
SPI_SPEED7 7 1.25 mhz
SPI_SPEEDS8 8 1.75 mhz
SPI_SPEED9 9 2.1875 mhaz
SPI_SPEED10 10 4.375 mhz
SPI_SPEED11 11 5.00 mhz
SPI_SPEED12 12 7.00 mhz
SPI_SPEED13 13 8.75 mhz
SPI_SPEED14 14 11.666 mhz
SPI_SPEED15 15 17.5 mhz

mode

Specifies the mode of SPI operation. See the details below,

Pre-defined Constant | Value | Comments
8 bit Modes
SPI8_MODE_O 0 SCK idles low, SDO stable for first falling
edge, SDI sampled on first falling edge
SPI8_MODE_1 1 SCK idles low, SDO stable for first rising
edge, SDI sampled on first rising edge
SPI8_MODE_2 2 SCKidles high, SDO stable for first falling
edge, SDI sampled on first falling edge
SPI8_MODE_3 3 SCK idles high, SDO stable for first rising
edge, SDI sampled on first falling edge
SPI8_MODE_4 4 SCK idles low, SDO stable for first falling
edge, SDI sampled on next rising edge
SPI8_MODE_5 5 SCK idles low, SDO stable for first rising
edge, SDI sampled on next falling edge
SPI8_MODE_6 6 SCKidles high, SDO stable for first falling
edge, SDI sampled on next rising edge
SPI8_MODE_7 7 SDO stable for first rising edge, SDI
sampled on next rising edge
16 bit Modes
SPI16_MODE_O 8 SCK idles low, SDO stable for first falling
edge, SDI sampled on first falling edge

DIABLO16 INTERNAL FUNCTIONS

Page 275 of 554

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR
SPI16_MODE_1 9 SCK idles low, SDO stable for first rising
edge, SDI sampled on first rising edge
SPI16_MODE_2 10 SCK idles high, SDO stable for first falling
edge, SDI sampled on first falling edge
SPI16_MODE_3 11 SCK idles high, SDO stable for first rising
edge, SDI sampled on first falling edge
SPI16_MODE_4 12 SCK idles low, SDO stable for first falling
edge, SDI sampled on next rising edge
SPI16_MODE_5 13 SCK idles low, SDO stable for first rising
edge, SDI sampled on next falling edge
SPI16_MODE_6 14 SCK idles high, SDO stable for first falling
edge, SDI sampled on next rising edge
SPI16_MODE_7 15 SCK idles high, SDO stable for first rising
edge, SDI sampled on next rising edge

Mode can also be “OR’ed” with SPI_ADDRESS_MODE4 when SPI Flash memory is used
which requires 4 byte addressing.

This is only required for Flash chips having a capacity of greater than 16MB, thus
requiring more than he standard 3 byte addressing. Refer to the Datasheet of the Flash
Memory in question.

The syntax would be for example SPI8_MODE_0 | SPI_ADDRESS_MODE4, in place of
the ‘mode’ argument.

enablepin The Diablo16 pin connected to CS on the relevant chip

Returns status

status Returns true if the function succeeded.

Description Initialize the SPI port to communicate with the SPI device. There are three peripheral interfacable SPI
ports that can be used to communicate with three different SPI devices with different speeds and
modes at the same time. SPI1, SPI2 and SPI3 need to be initialized separately using SPI1_lInit(..),
SPI2_lInit(..) or SPI3_Init(..) functions.

Note: This is only for SPI1, SPI2 or SPI3, it is separate from the spi_Init() function used for the uSD

Card
Example if (! SPI1 Init (SPI_SPEED15, SPI8 MODE 5, PAO))
print ("INIT parameter Invalid\n")
endif
if (! SPI3 Init(SPI_SPEED12, SPI16 MODE 3 | SPI_ADDRESS MODE4, PA2))
print ("INIT parameter Invalid\n")
endif

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 276 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

SPI1_Read(); or
Syntax SPI2_Read(); or
SPI3_Read();

Arguments none

Returns byte

byte Returns a single data byte from the SPI device.

Description This function allows a raw unadorned byte read from the SPI device connected to SPI1, SPI2 or SPI3
port. A dummy write using all bits set is automatically written to the SPI port to being the read.

Note: The Chip Select line needs to be manually lowered and raised by the users’ code since this pin
is determined by the user and is not a fixed pin.

Note: This is only for SPI1, SPI2 or SPI3, it is separate from the spi_Read() function used for the uSD

Card
Example #CONST
EnablePin PAO
ClockPin PA1l
SDIPin PA2
SDOPin PA3
#END

func main ()
var result, power, err;

pin HI (EnablePin) ;
pin_ Set (PIN _OUT,EnablePin);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

if (! SPI1 SDI pin(SDIPin))
print ("SDI Pin Invalid\n")
err := 1 ;
endif
if (! SPI1 SCK pin(ClockPin))
print ("SCK Pin Invalid\n")
err := 1 ;
endif
if (! SPI1 SDO pin (SDOPin))
print ("SDO Pin Invalid\n")
err := 1 ;
endif
if (! SPI1 Init(SPI_SPEEDO, SPI16 MODE 1))
print ("INIT parameter Invalid\n")
err := 1 ;
endif
if (err)

repeat forever
endif
pin LO(EnablePin); //Chip Select
SPI1 Write (0x0200); // Power supply data read Request

DIABLO16 INTERNAL FUNCTIONS Page 277 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

pin HI (EnablePin);

pin LO (EnablePin) ;
result:=SPI1 Read();
power:=result<<8;
result:=SPI1 Read();
power:=power+result;
pin HI (EnablePin);

print ("power: ", power);
repeat // maybe replace
forever // this as well

endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 278 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

SPI1_Write(byte); or
Syntax SPI2_Write(byte); or
SPI3_Write(byte);

Arguments byte

byte Specifies the data byte to be sent to the SPI device.

The arguments can be a variable, array element, expression or constant

Returns Data
Data Returns the data read from the SPI port whilst the write is in progress

Description This function allows a raw unadorned byte write to the SPI device connected to SPI1, SPI2 or SPI3
port.

Note: The Chip Select line needs to be manually lowered and raised by the users’ code since this pin
is determined by the user and is not a fixed pin.

Note: This is only for SPI1, SPI12 or SPI3, it is separate from the spi_Write() function used for the uSD
Card

Example See example in section “SPI1 Read() or SPI12_Read() or SPI3_Read()”

DIABLO16 INTERNAL FUNCTIONS Page 279 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

|

Example ‘See example in section “SPI1_Read() or SPI12_Read() or SPI3_Read()”

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

SPI1_SCK_pin(pin); or
Syntax SPI2_SCK_pin(pin); or
SPI3_SCK_pin(pin);
%)
o Arguments pin
|' Specifies the pin to be set for SCK for SPI1, SPI2 or SPI3 ports.
C 4D Pin Name | Diablo16 Pin | H1 Pin | Availability
: (Predefined) | Number Number
Ll PAO 61 1 No
e PA1 62 3 Yes
g PA2 63 5 No
PA3 64 7 Yes
qh) PA4 46 29 Yes
PAS5 49 27 Yes
o i
C pin PAG6 50 25 Yes
[— PA7 51 23 Yes
I PA8 52 21 Yes
PAS 53 19 Yes
o PA10 43 8 No
(@) PALL 44 6 No
) PA12 31 28 Yes (See Note 1)
v PA13 32 30 Yes (See Note 1)
0) PA14 37 24 No
8 PA15 36 26 No
| -
%) Returns status
.g status Returns TRUE if function succeeded (usually ignored)
Q- Description Selects the hardware pin for spi Clock line. SPI1, SPI2 or SPI3’s SCK pin could be assigned to the
(C available pins. Note that only a single pin should be mapped to spi SCK. If the pin argument is 0 the
6 previously selected spi SCK pin is disconnected. The pin is automatically set to an output.
-
L]

DIABLO16 INTERNAL FUNCTIONS Page 280 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

SPI1_SDI_pin(pin); or
Syntax SPI2_SDI_pin(pin); or
SPI3_SDI_pin(pin);

Arguments pin

Description Selects the hardware pin for SPI Receive line. SPI1, SPI2 or SPI3’s SDI pin could be assigned to the
available pins. Note that only a single pin should be mapped to spi SDI. If the pin argument is 0 the
function has no effect. The pin is automatically set to an output.

Note: If the spi SDI pin is set to same pin as spi SDO pin (eg for a loopback check) it is necessary to
configure the SDI pin first,

SP12_SDI_pin(PA3); // configure SPI2 SDI to PA3 (this disconnects anything else)
SP12_SDO_pin(PA3)); // configure SP12 SDO to PA3

Example See example in section “SPI1 Read() or SPI12_Read() or SPI3_Read()”

7))
|' Specifies the pin to be set for SDI for SPI1, SPI2 or SPI3 ports.
C 4D Pin Name | Diablo16 Pin | H1 Pin | Availability
: (Predefined) | Number Number
PAO 61 1 Yes
e PA1 62 3 Yes
g PA2 63 5 Yes
PA3 64 7 Yes
qh) PA4 46 29 Yes
PAS5 49 27 Yes
o= i
C pin PAG6 50 25 Yes
[— PA7 51 23 Yes
I PA8 52 21 Yes
PAS 53 19 Yes
o PA10 43 8 Yes
(@) PALL 44 6 Yes
) PA12 31 28 Yes (See Note 1)
) PA13 32 30 Yes (See Note 1)
0) PA14 37 24 No
8 PA15 36 26 No
-
%) Returns status
.g status Returns TRUE if finction succeeded (usually ignored)
(O
-
—
L]

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 INTERNAL FUNCTIONS Page 281 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

|

Example ‘See example in section “SPI1 Read() or SP12_Read() or SPI3_Read()”

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

SPI1_SDO_pin(pin); or
Syntax SPI2_SDO_pin(pin); or
SPI3_SDO_pin(pin);
%)
o Arguments pin
|' Specifies the pin to be set for SDO for SPI1, SPI2 or SPI3 ports.
c 4D Pin Name | Diablo16 Pin | H1 Pin | Availability
: (Predefined) | Number Number
Ll PAO 61 1 No
e PA1 62 3 Yes
g PA2 63 5 No
PA3 64 7 Yes
qh) PA4 46 29 Yes
PAS5 49 27 Yes
o i
C pin PA6 50 25 Yes
[— PA7 51 23 Yes
I PA8 52 21 Yes
PAS 53 19 Yes
o PA10 43 8 No
(@) PALL 44 6 No
) PA12 31 28 Yes (See Note 1)
) PA13 32 30 Yes (See Note 1)
QJ PA14 37 24 No
8 PA15 36 26 No
| -
%) Returns status
.g status Returns TRUE if finction succeeded (usually ignored)
Q- Description Selects the hardware pin for SPI Transmit line. SPI1, SPI2 or SPI3’s SDO pin could be assigned to the
(C available pins. Note that only a single pin should be mapped to spi SDO. If the pin argument is 0 the
6 previously selected spi SDO pin is disconnected. The pin is automatically set to an output.
-
L]

DIABLO16 INTERNAL FUNCTIONS Page 282 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

spi_ReadBlock("buf", "bufsize") or

Syntax

spil_ReadBlock("buf", "bufsize") or
spi2_ReadBlock("buf", "bufsize") or

spi3_ReadBlock("buf", "bufsize")

Arguments buf, bufsize

Buf String Pointer address of buffer to receive the data.
Bufsize The number of characters to receive into the buffer.
Returns Nothing

Description Bufsize bytes are read from the SPI port to the string pointer "buf". This function gives much better

performance than reading individual bytes at a time. Once the data has been read into a buffer it also
makes it easy to perform CRC calculations on the data. The SPI port must be initialised in 8 bit mode.

Example #platform "uLCD-32WDT"

func main ()

var st[20] ;
// setup of spi3 pins and spi3 init goes here.

Spi3 RreadBlock (str Ptr(st), 8) ; // read 8 bytes from spi

print (">", [STR] st, "<") ; // assumes bytes read are terminated
repeat // maybe replace
forever // this as well

endfunc

DIABLO16 INTERNAL FUNCTIONS Page 283 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

spi_WriteBlock("buf", "bufsize") or
spil_WriteBlock("buf", "bufsize") or
spi2_WriteBlock("buf", "bufsize") or
spi3_WriteBlock("buf", "bufsize")

Syntax

Arguments buf, bufsize

Buf String Pointer address of buffer to send the data from.
Bufsize The number of characters to send.
Returns Nothing

Description Bufsize bytes are written to the SPI port from the string pointer "buf". This function gives much better
performance than writeing individual bytes at a time. Once the data has been read into a buffer it also
makes it easy to perform CRC calculations on the data. The SPI port must be initialised in 8 bit mode.

Example #platform "uLCD-32WDT"
func main ()
var st[20] ;
to(st) ;
print ("Hello there!")
// setup of spi3 pins and spi3 init goes here.

spi3 WriteBlock(str Ptr(st), 12) ;

repeat // maybe replace
forever // this as well
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 284 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
e COM1_RX_pin(pin) or COM2_RX_pin(pin) or COM3_RX_pin(pin)
e COM1_TX_pin(pin) or COM2_TX_pin(pin) or COM3_TX_pin(pin)
e setbaud(rate)
e com_SetBaud(comport, baudrate/10)
e serin() or serinl() or serin2() or serin3()

e serout(char) or seroutl(char) or serout2(char) or serout3(char)

e com_lInit(buffer, buffsize, qualifier) or com_Init1(buffer, buffsize, qualifier) or com_Init2(buffer,
buffsize, qualifier) or com_Init3(buffer, buffsize, qualifier)

e com_Reset() or com1_Reset() or com2_Reset() or com3_Reset()

e com_Count() or com1_Count() or com2_Count() or com3_Count()

e com_Full() or com1_Full() or com2_Full() or com3_Full()

e com_Error() or com1_Error() or com2_Error() or com3_Error()

e com_Sync() or coml_Sync() or com2_Sync() or com3_Sync()

o com_TXbuffer(buf, bufsize,pin) or com1_TXbuffer(buf, bufsize,pin) or com2_TXbuffer(buf,
bufsize,pin) or com3_TXbuffer(buf, bufsize,pin)

e com_TXbufferHold(state) or com1_TXbufferHold(state) or com2_TXbufferHold(state) or
com3_TXbufferHold(state)

e com_TXcount() or com1_TXcount() or com2_TXcount() or com3_TXcount()

e com_TXemptyEvent(function) or com1_TXemptyEvent(function) or com2_TXemptyEvent(function)
or com3_TXemptyEvent(function)

e com_Mode()

e com_RXblock() or com1_RXblock() or com2_RXblock() or com3_RXblock()

e com_TXblock() or com1_TXblock() or com2_TXblock() or com3_TXblock()

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 285 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

COM1_RX_pin(pin); or
Syntax COM2_RX_pin(pin); or
COM3_RX_pin(pin);

Arguments pin

pin Specifies the GPIO pin to use for the com ports receive line

The arguments can be a variable, array element, expression or constant

Returns Status
Status Returns True if the function succeeded, usually ignored

Description | Use this function to specify which GPIO is going to be assigned to the relative com ports receive line.
Note that only a single pin can be mapped to any given com ports RX.

If the pin argument is 0 the function has no effect.

The pin is automatically set to an input. If the COMx RX pin is set to same pin as COMx TX pin (eg for
a loopback check) it is necessary to configure the input pin first,

For Example:

COM1 RX pin(PA7); // config COM1 RX to PA7 (disconnects anything else)
COM1 TX pin(PA7)); // configure COM1l TX to PA7

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PAO 61 Yes

PA1 62 Yes

PA2 63 Yes

PA3 64 Yes

PA4 46 Yes

PAS5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9 53 Yes

PA10 43 Yes

PA11 44 Yes

PA12 31 Yes (See Note 1)
PA13 32 Yes (See Note 1)
PA14 37 No

PA15 36 No

Example COM1 RX pin(PA7); // config COM1 RX to PA7

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

DIABLO16 INTERNAL FUNCTIONS Page 286 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

COM1_TX_pin(pin); or
Syntax COM2_TX_pin(pin); or
COM3_TX_pin(pin);

Arguments pin

pin Specifies the GPIO pin to use for the com ports transmit line

The arguments can be a variable, array element, expression or constant

Returns Status
Status Returns True if the function succeeded, usually ignored

Description | Use this function to specify which GPIO is going to be assigned to the relative com ports transmit line.
Note that only a single pin can be mapped to any given com ports TX.

If the pin argument is 0, COMx TX is disconnected from all pins.

The pin is automatically set to an output.

4D Pin Name (Predefined) Diablo16 Pin Number Availability

PAO 61 No

PA1 62 Yes

PA2 63 No

PA3 64 Yes

PA4 46 Yes

PA5 49 Yes

PA6 50 Yes

PA7 51 Yes

PA8 52 Yes

PA9S 53 Yes

PA10 43 No

PA11 44 No

PA12 31 Yes (See Note 1)
PA13 32 Yes (See Note 1)
PA14 37 No

PA15 36 No

Example COM1 TX pin(PA7); // config COM1 RX to PA7

Note 1: Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive
Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 287 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Returns nothing

Description Use this function to set the required baud rate. The default Baud Rate for COMO is 115,200 bits per
second or 115,200 baud.

If a value other than 0-19 is used, a run time error (error 25)

Example setbaud (BAUD 19200) ; // To set Com0O to 19200 BAUD rate.

Syntax ‘setbaud(baudnum);
(7, Arguments baudnum
g baudnum Specifies the baud rate of COMO using the baud number or pre-defined constant
..|: Baud number Pre-defined Baud Rate Error | Actual Baud Rate
U Constant (%)
C 0 | BAUD_110 0.00% 110
-) 1| BAUD_300 0.00% 300
L. 2 | BAUD_600 0.00% 600
— 3 | BAUD_1200 0.00% 1200
(O 4 | BAUD_2400 0.04% 2401
E 5 | BAUD_4800 0.04% 4802
m 6 | BAUD_9600 0.16% 9615
o 7 | BAUD_14400 0.27% 14439
[- 8 | BAUD_19200 0.38% 19273
— BAUD_31250
I 9| or 0.00% 31250
MIDI
’6 10 | BAUD_38400 0.83% 38717
N 11 | BAUD_56000 0.16% 56090
W) 12 | BAUD_57600 1.27% 58333
m 13 | BAUD_115200 2.64% 118243
(&) 14 | BAUD_128000 0.53% 128676
(@) 15 | BAUD_256000 0.53% 257353
| = 16 | BAUD_300000 4.17% 312500
(ol 17 | BAUD_375000 6.06% 397727
(75 18 | BAUD_500000 9.38% 546875
(& 19 | BAUD_600000 4.17% 625000
_C The arguments can be a variable, array element, expression or constant
(O
-
i
—

DIABLO16 INTERNAL FUNCTIONS Page 288 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax com_SetBaud(“comport”, “baudrate/10”);

Arguments comport, baudrate/10

comport Specifies the Com port,
CcOoMO:
COM1:
com2:
COM3:

baudrate/10 specifies the baud rate.

The arguments can be a variable, array element, expression or constant

Returns Status

Status Returns True if BAUD rate was acceptable.

Description | Use this function to set the required baud rate for the required Com port. Sets to any viable baud rate
from 160 to 655350.

Note: The default Baud Rate for COMO is 115,200 bits per second or 115,200 baud. The default Baud
Rate for COM1, COM2 and COM3 is 9600 bits per second or 9600 baud.

Note: As of the v1.1 PmmC several ‘low’ values have special meanings
1:2187500 baud

2 :1458333 baud
3:1093750 baud
4 : 875000 baud

5:729167 baud

Example stat := com_SetBaud(COM2, 960) // To set Com2 to 9600 BAUD rate.
if (stat)
Print (“Com2 set to 9600 BAUD”) ;
endif

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 289 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax

serin(); or
serinl(); or
serin2(); or
serin3();

Arguments

none

Returns

char

char Returns: -1 if no character is available

Returns: -2 if a framing error or over-run has occurred (auto cleared)
Returns: -3 (BREAK) if a break signal is detected
Returns: positive value 0 to 255 for a valid character received

Description

serin(): Receives a character from the Serial Port COMO.

serin1(): Receives a character from the Serial Port COM1.
serin2(): Receives a character from the Serial Port COM2.
serin3(): Receives a character from the Serial Port COM3.

serin may be buffered (refer to com_lInit(..) functions). If it is desired to be able to receive the BREAK
signal using buffered functions then the com_InitBrk() function must be used instead.

The transmission format is:
No Parity, 1 Stop Bit, 8 Data Bits (N,8,1).

Note: COMO pins cannot be mapped, and are fixed as pins 42(Rx0) and 33(Tx0) on the Diablo16 chip.
Rx and Tx of COM1, COM2 or COM3 should be defined before using serin1(), serin2() or serin3().

Example

var char;

char := serin(); // test the com0 port

if (char >= 0) // if a valid character is received
process (char) ; // process the character

endif

DIABLO16 INTERNAL FUNCTIONS Page 290 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax

serout(char); or
seroutl(char); or
serout2(char); or
serout3(char);

Arguments

char

char Specifies the data byte to be sent to the serial port.

The arguments can be a variable, array element, expression or constant

Returns

‘nothing

Description

serout(): Transmits a single byte to the Serial Port COMO.

seroutl(): Transmits a single byte to the Serial Port COM1.
serout2(): Transmits a single byte to the Serial Port COM2.
serout3(): Transmits a single byte to the Serial Port COM3.

The transmission format is:
No Parity, 1 Stop Bit, 8 Data Bits (N,8,1).
Unless com_Mode() has been used to alter it.

serout may be buffered (refer to com_TXbuffer(..) functions). If it is desired to be able to tramsmit
the BREAK signal using buffered functions then the com_TXbufferBrk() function must be used instead.

Note: COMO pins cannot be mapped, and are fixed as pins 42(Rx0) and 33(Tx0) on the Diablo16 chip.
Rx and Tx of COM1, COM2 or COM3 should be defined before using seroutl(), serout2() or serout3().

Note: The BREAK signal can be transmitted using the predefined constant BREAK as the char to
serout().

Example

‘ serout ("\n') ; \\Send a linefeed to COMO.

DIABLO16 INTERNAL FUNCTIONS Page 291 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

com_lInit(buffer, bufsize, qualifier); or
com1_Init(buffer, bufsize, qualifier); or
com2_Init(buffer, bufsize, qualifier); or
com3_lInit(buffer, bufsize, qualifier);

Syntax

Arguments buffer, bufsize, qualifier

buffer Specifies the address of a buffer used for the background buffering service.

bufsize Specifies the byte size of the user array provided for the buffer (each array element holds
2 bytes). If the buffer size is zero, a buffer of 128 words (256 bytes) should be provided
for automatic packet length mode (see below).

qualifier Specifies the qualifying character that must be received to initiate serial data reception
and buffer write. A zero (0x00) indicates no qualifier to be used.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description This is the initialisation function for the serial communications buffered service. Once initialised, the
service runs in the background capturing and buffering serial data without the user application having
to constantly poll the serial port. This frees up the application to service other tasks.

MODES OF OPERATION

e No qualifier — simple ring buffer (aka circular queue)

If the qualifier is set to zero, the buffer is continually active as a simple circular queue.
Characters when received from the host are placed in the circular queue (at the 'head' of the
queue) Bytes may be removed from the circular queue (from the 'tail' of the queue) using
the serin() function. If the tail is the same position as the head, there are no bytes in the
queue, therefore serin() will return -1, meaning no character is available, also, the
com_Count() function can be read at any time to determine the number of characters that
are waiting between the tail and head of the queue. If the queue is not read frequently by
the application, and characters are still being sent by the host, the head will eventually catch
up with the tail setting the internal COM_FULL flag (which can be read with the com_Full()
function) . Any further characters from the host are are now discarded, however, all the
characters that were buffered up to this point are readable. This is a good way of reading a
fixed size packet and not necessarily considered to be an error condition. If no characters
are removed from the buffer until the COM_FULL flag (which can be read with the com_Full()
function) becomes set, it is guaranteed that the bytes will be ordered in the buffer from the
start position, therefore, the buffer can be treated as an array and can be read directly
without using serin() at all. In the latter case, the correct action is to process the data from
the buffer, re-initialise the buffer with the com_lInit(..) function, or reset the buffered serial
service by issuing the com_Reset() function (which will return serial reception to polled
mode) , and send an acknowledgement to the host (traditionally a ACK or 6) to indicate that
the application is ready to receive more data and the previous 'packet' has been dealt with,
or conversely, the application may send a negative acknowledgement to indicate that some
sort of error occurred, or the action could not be completed (traditionally a NAK or 16) .

If any low level errors occur during the buffering service (such as framing or over-run) the
internal COM_ERROR flag will be set (which can be read with the com_Error() function). Note
that the COM_FULL flag will remain latched to indicate that the buffer did become full, and

DIABLO16 INTERNAL FUNCTIONS Page 292 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

is not reset (even if all the characters are read) until the com_Init(..) or com_Reset() function
is issued.

e Using a qualifier

If a qualifier character is specified, after the buffer is initialised with com_Init(..) , the service
will ignore all characters until the qualifier is received and only then initiate the buffer write
sequence with incoming data. After that point, the behaviour is the same as above for the
'non qualified' mode.

com_lInit(buffer, bufsize, qualifier): Initialize a serial capture buffer for COMO.

com1_Init(buffer, bufsize, qualifier): Initialize a serial capture buffer for COM1.
com2_Init(buffer, bufsize, qualifier): Initialize a serial capture buffer for COM2.
com3_lInit(buffer, bufsize, qualifier): Initialize a serial capture buffer for COM3.

Example com Init (combuf, 20, 0);
//set up a comms ring buffer for COMO, 20 characters before overflow

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 293 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

com_Reset(); or
coml_Reset(); or
com2_Reset();or
com3_Reset();

Syntax

Arguments ‘none

Returns ‘nothing

Resets the serial communications buffered service and returns it to the default polled mode.

com_Reset() Reset COMO

Description com1_Reset() Reset COM1
com2_Reset() Reset COM?2
com3_Reset() Reset COM3

Example com Reset (); // reset COMO to polled mode

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 294 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

com_Count(); or
coml_Count(); or
com2_Count(); or
com3_Count();

Syntax

Arguments none

Returns count

count Current count of characters in the communications buffer.

Description Can be read at any time (when in buffered communications is active) to determine the number of
characters that are waiting in the buffer.

com_Count(); Charcters countr in COMO

com1_Count(); Charcters countr in COM1
com2_Count(); Charcters countr in COM2
com3_Count(); Charcters countr in COM3

Example n := com Count(); // get the number of chars available in the buffer

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 295 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

com_Full(); or
com1_Full() ; or

Syntax
v com2_Full(); or

com3_Full();

Arguments none

Returns status
status Returns 1 if buffer or queue has become full, or is overflowed, else returns 0.

Description If the queue is not read frequently by the application, and characters are still being sent by the host,
the head will eventually catch up with the tail setting the COM_FULL flag which is read with this
function. If this flag is set, any further characters from the host are discarded, however, all the
characters that were buffered up to this point are readable.

Example if (com Full() & (com Count() == 0))

com_Init (mybuf, 30, 0); // buffer full, recovery

endif

DIABLO16 INTERNAL FUNCTIONS Page 296 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

com_Error(); or
com1_Error();or
com2_Error();or
com3_Error();

Syntax

Arguments none

Returns status

status Returns 1 if any low level communications error occurred, else returns 0.

Description |If any low level errors occur during the buffering service (such as framing or over-run) the internal
COM_ERROR flag will be set which can be read with this function.

Example if (com Error()) // if there were low level comms errors,
resetMySystem(); // take corrective action
endif

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 297 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

com_Sync(); or
com1_Sync(); or
com2_Sync(); or
com3_Sync();

Syntax

Arguments none

Returns status

status Returns 1 if the qualifier character has been received, else returns 0.

Description |If a qualifier character is specified when using buffered communications, after the buffer is initialized
with com_Init(..), com1_lInit(..), com2_Init(..), or com3_Init(..) the service will ignore all characters
until the qualifier is received and only then initiate the buffer write sequence with incoming data.
com_Sync(), com1_Sync(), com2_Sync(), com3_Sync() is called to determine if the qualifier character

has been received yet.

Example ‘stat := com_Sync(); // See if the qualifier is received at COMO

DIABLO16 INTERNAL FUNCTIONS Page 298 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

com_TXbuffer(buf, bufsize, pin); or
com1_TXbuffer(buf, bufsize, pin); or
com2_TXbuffer(buf, bufsize, pin); or
com3_TXbuffer(buf, bufsize, pin);

Syntax

Arguments buf, bufsize, pin

buf Specifies the address of a buffer used for the buffering service.

bufsize Specifies the byte size of the user array provided for the buffer (each array element
holds 2 bytes).

pin Specifies the turnaround pin. If not required, just set "pin" to zero.

The arguments can be a variable, array element, expression or constant

Returns None

Description | Initialise a serial buffer for the COMO0, COM1, COM2 or COM3 output. The program must declare a
var array as a circular buffer. When a TX buffer is declared for comms, the transmission of characters
becomes non-blocking. If the buffer has insufficient space to accept the next character from a
serout(..), seroutl(..), serout2(..) or serout3(..) function, the excess characters will be ignored, and
the com_Full(), com1_Full(), com2_Full() or com3_Full() error will be asserted. If the TX buffer is no
longer required, just set the buffer pointer to zero, the size in this case doesnt matter and is ignored.
The function can be resized or reallocated to another buffer at any time. The buffer is flushed before
any changes are made.

"pin" designates an 10 pin to control a bi-directional control device for half duplex mode. "pin" will go
HI at the start of a transmission, and will return low after the final byte is transmitted.

Example com_TXbuffer (mybuf, 1024, PAl); // set the TX buffer of COMO
com_TXbuffer (0, 0, 0); // revert COMO to non buffered service

DIABLO16 INTERNAL FUNCTIONS Page 299 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax

com_TXbufferHold(state); or
coml_TXbufferHold(state); or
com2_TXbufferHold(state); or
com3_TXbufferHold(state);

Arguments

state

state Specifies the state of the buffer used for the buffering service.

The arguments can be a variable, array element, expression or constant

Returns

count

Returns -1 if function is called illegally when TX comms is not buffered.

Returns buffer count when called with argument of 1, for example
com_TXbufferHold(ON), com1_TXbufferHold(ON), com2_TXbufferHold(ON) or
com3_TXbufferHold(ON)

Returns 0 when argument is zero, eg com_TXbufferHold(OFF),
com1_TXbufferHold(OFF), com2_TXbufferHold(OFF), com3_TXbufferHold(OFF)

count

Description

This function is used in conjunction with com_TXbuffer(...), com1_TXbuffer(...), com2_TXbuffer(...),
com3_TXbuffer(...), .

It is often necessary to hold off sending serial characters until a complete frame or packet has been
built in the output buffer. com_TXbufferHold(ON), com1_TXbufferHold(ON),
com2_TXbufferHold(ON), com3_TXbufferHold(ON) is used for this, to stop the buffer being sent
while it is being loaded. Normally, when using buffered comms, the transmit process will begin
immediately. This is fine unless you are trying to assemble a packet.

To build a packet and send it later, issue a com_TXbufferHold(ON), com1_TXbufferHold(ON),
com2_TXbufferHold(ON), com3_TXbufferHold(ON) build the packet, when packet is ready, issuing
com_TXbufferHold(OFF), com1_TXbufferHold(OFF), com2_TXbufferHold(OFF),
com3_TXbufferHold(OFF) will release the buffer to the com port.

Also, if using com_TXemptyEvent, coml_TXemptyEvent, com2_TXemptyEvent,
com3_TXemptyEvent, erroneous empty events will occur as the transmit buffer is constantly trying

to empty while you are busy trying to fill it.

Also refer to the pin control for com_TXbuffer(..), comil_TXbuffer(..), com2_TXbuffer(..),
com3_TXbuffer(..) function.

Note: If you fill the buffer whilst it is held comms error 4 will be set and the data written will be lost.

Example

Refer to the com_TXemptyEvent(functionAddress) example.

DIABLO16 INTERNAL FUNCTIONS Page 300 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

com_TXcount(); or
coml_TXcount(); or
com2_TXcount(); or
com3_TXcount();

Syntax

Arguments None

Returns count

count Returns count of characters

Description Return count of characters remaining in COM0, COM1 or COM2 or COM3 transmit buffer that was
previously allocated with com_TXbuffer(..), com1_TXbuffer(..), com2_TXbuffer(..),
com3_TXbuffer(..).

Example arg := coml TXCount(); //return count of characters in COMl TX buffer

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 301 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

com_TXemptyEvent(functionAddress); or
coml_TXemptyEvent(functionAddress); or
com2_TXemptyEvent(functionAddress); or
Syntax .
com3_TXemptyEvent(functionAddress);

Note: n is from 1 to 3 representing COM1 to COM3.

Arguments functionAddress

functionAddress‘Address of the event Function to be queued when COMO0, COM1, COM2 or COM3
TX buffer empty

Returns Address

Address ‘Returns any previous event function address or zero if there was no previous function.

Description |If a comms TX buffer that was previously allocated with com_TXbuffer(...), com1_TXbuffer(...),
com2_TXbuffer(...) or com3_TXbuffer(...) this function can be used to set up a function to be called
when the COMO, COM1, COM2 or COM3 TX buffer is empty.

This is useful for either reloading the TX buffer, setting or clearing a pin to change the direction of eg
a RS485 line driver, or any other form of traffic control. The event function must not have any
parameters. To disable the event, simply call com_TXemptyEvent(0), com1_TXemptyEvent(0) ,
com2_TXemptyEvent(0) or com3_TXemptyEvent(0).

com_TXbuffer(...), com1_TXbuffer(...), com2_TXbuffer(...) or com3_TXbuffer(...) also resets any
active event.

Example #platform "uLCD-32PT GFX2"

/***

Description: buffered TX service

Use Workshop terminal at 9600 baud to see result
Example of Buffered TX service vs Non buffered
Also explains the use of COMMS events

*
*
*
*
*
* NB Program must be written to flash so
* the Workshop Terminal can be used.

*
*

***/

var combuf[220]; // buffer for up to 440 bytes

// run a timer event while we are doing comms
func T7Service ()
var private colour := 0xF800;
colour "= 0xF800;
gfx RectangleFilled(50,200,80,220,colour);
sys SetTimer (TIMER7, 200);
endfunc

// event to capture the buffer empty event

func bufEmpty ()
com TXbuffer (0, 0, IOl PIN); // done with the buffer, release it
print ("\n\nHELLO WORLD, I'M EMPTY ",com TXcount(),"\n");

endfunc

DIABLO16 INTERNAL FUNCTIONS Page 302 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

func main ()
var n, r, D, fh;

sys SetTimerEvent (TIMER7,T7Service) ; // run a timer event
sys_SetTimer (TIMER7, 150);

com TXemptyEvent (bufEmpty); // set to capture buffer empty event
setbaud (BAUD 9600) ;

txt Set (TEXT OPACITY, OPAQUE);

repeat
gfx Cls();
txt MoveCursor(3,1); // reset cursor to line 3, column 2
print ("Send 440 chars non-buffered\n");
pokeW (SYSTEM TIMER LO, 0); // reset timer

// note that 440 chars at 9600 baud takes approx 453msec
for(n:=0; n<10; n++)
to(COMO); putstr("The quick brown fox jumps over the lazy dog\n");
// 44 chars
next

print ("took ",peekW(SYSTEM TIMER LO), "Msec\n\n");
// time spent blocking is only approx lmsec

com TXbuffer (combuf, 440,I01_PIN);// set up the TX buffer
com_TXbufferHold (ON) ; // hold the TX buffer til ready

// note that here the time is only approx lmsec overhead due to buffering.
print ("Send 440 chars buffered\n");
pokeW (SYSTEM TIMER LO, 0); // reset timer

for(n:=0; n<10; n++)
to (COM0); putstr ("THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG\n");
// 44 chars
next

print ("took ",peekW(SYSTEM TIMER LO),"Msec\n\n");
// time spent blocking is only approx lmsec

// demonstrate how to modify a prepared comms buffer that is
still being held

to (combuf); print ("MY CONTENTS HAVE BEEN CHANGED") ;

to (combuf+50) print ("*** AND CHANGED HERE TOQOO ***");

combuf [218] 'CA'; // the last 'DOG' changed here
combuf [219] '"T\n'; // the last 'DOG' changed here

|~

// now we are ready to send to buffer

n := com TXbufferHold (OFF) ; // release TX buffer
print ("TXBuffer is holding ", n, " chars\n");

// show how many characters were in the buffer

// watch the buffer empty
repeat
print ("TX count = ", [DEC5ZB] n := com TXcount(),"\r"); // watch
the count as the buffer empties
until (!n);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

print ("\n\nTX Empty") ;

com TXbuffer (0, 0, IOl PIN); // done with the buffer, release it

DIABLO16 INTERNAL FUNCTIONS Page 303 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

sys_ SetTimer (TIMERO, 3000); // pause for 3 seconds, non blocking
while (peekW (TMRO)) ;

forever // do it forever
//com_TXbuffer (0, 0, 0); // if done with the pin, must release it

endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 304 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax com_Mode("databits", "parity", "Stopbits", "comport");
Arguments Databits, parity, Stopbits, comport.
Databits Specifies the number of databits, 8 is the only currently valid value
Parity Specifies the parity bit. Valid values are N(one), E(ven) and O(dd).
Stopbits Specifies the number of stop bits. Valid values are 1 and 2.
Comport Specifies the Com port,
como:
coMm1:
coma:
COM3:
The arguments can be a variable, array element, expression or constant
Returns Status
Status Returns True if the parameters were acceptable.
Description | Use this function to set the required serial port parameters to other than 8N1
Example stat := com Mode (8, ‘E’, 2, COM2) // To set Com2 to 8E2.
if (stat)
Print (“Com2 set to 8E2”);
endif

DIABLO16 INTERNAL FUNCTIONS Page 305 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

com_RXblock("buf", "bufsize") or
com1_RXblock("buf", "bufsize") or
com2_RXblock("buf", "bufsize") or
com3_RXblock("buf", "bufsize")

Syntax

Arguments buf, bufsize

Buf String Pointer address of buffer to receive the data.
Bufsize The number of characters to receive into the buffer.
Returns Nothing

Description Bufsize bytes are received from the serial port to the string pointer "buf". If a receive buffer is active
and bufsize characters are available this function will return almost immediately otherwise it will block
until until the required bytes are received. This function is useful for protocols that require the reading
of a fixed amount of data in one hit. Once the data has been read into a buffer it also makes it easy to
perform CRC calculations on the data.

Example #platform "uLCD-32WDT"
func main ()
var st[20] ;
com RXblock(str Ptr(st), 8) ;
str PutByte(str Ptr(st)+8, 0) ; // terminate

print (">", [STR] st, "<") ;

repeat // maybe replace
forever // this as well
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 306 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

com_TXblock("buf", "bufsize") or
com1_TXblock("buf", "bufsize") or
com2_TXblock("buf", "bufsize") or
com3_TXblock("buf", "bufsize")

Syntax

Arguments buf, bufsize

Buf String Pointer address of buffer to send the data from.
Bufsize The number of characters to send.
Returns Nothing

Description Bufsize bytes are transmitted to the serial port from the string pointer "buf". If a transmit buffer is
active and space is available this function will return almost immediately otherwise it will block until
until the required bytes are sent. This function is useful for protocols that require the reading of a
fixed amount of data in one hit. Once the data has been read into a buffer it also makes it easy to
perform CRC calculations on the data.

Example #platform "uLCD-32WDT"
func main ()
var st[20] ;
to(st) ;
print ("Hello there!")
com TXblock(str Ptr(st), 12) ;

com TXblock ("\nThis is a Test", 15) ;

repeat // maybe replace
forever // this as well
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 307 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

com_lInitBrk(buffer, bufsize, qualifier); or
com1_InitBrk(buffer, bufsize, qualifier); or
com2_InitBrk(buffer, bufsize, qualifier); or
com3_InitBrk(buffer, bufsize, qualifier);

Syntax

Arguments buffer, bufsize, qualifier

buffer Specifies the address of a buffer used for the background buffering service.

bufsize Specifies the byte size of the user array provided for the buffer (each array element holds
1 byte). If the buffer size is zero, a buffer of 128 words (256 bytes) should be provided for
automatic packet length mode (see below).

qualifier Specifies the qualifying character that must be received to initiate serial data reception
and buffer write. A zero (0x00) indicates no qualifier to be used.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description This is the initialisation function for the serial communications buffered service with the ability to
receive the BREAK signal as though it is a character. The parameters are identical to com_Init() except
that each buffer entry can now only hold one byte. The BREAK ‘character’ is is a predefined constant
call BREAK.

Example com InitBrk (combuf, 20, 0);
//set up a comms ring buffer for COMO, 10 characters before overflow

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 308 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax

com_TXbufferBrk(buf, bufsize, pin); or
com1_TXbufferBrk(buf, bufsize, pin); or
com2_TXbufferBrk(buf, bufsize, pin); or
com3_TXbufferBrk(buf, bufsize, pin);

Arguments

buf, bufsize, pin

buf Specifies the address of a buffer used for the buffering service.

bufsize Specifies the byte size of the user array provided for the buffer (each array element
holds 1 byte).

pin Specifies the turnaround pin. If not required, just set "pin" to zero.

The arguments can be a variable, array element, expression or constant

Returns

None

Description

This is the initialisation function for the serial communications tramsmit buffered service with the
ability to sent the BREAK signal as though it is a character. The parameters are identical to
com_TXbuffer() except that each buffer entry can now only hold one byte. The BREAK ‘character’ is is
a predefined constant call BREAK.

Example

com_TXbufferBrk (mybuf, 1024, PAl); // set the TX buffer of COMO
com_TXbufferBrk (0, 0, 0); // revert COMO to non buffered service

DIABLO16 INTERNAL FUNCTIONS Page 309 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:

e 12C1_Open(Speed, SCLpin, SDApin) or 12C2_Open(Speed, SCLpin, SDApin) or 12C3_Open(Speed,
SCLpin, SDApin)

e |2C1_Close() or 12C2_Close() or 12C3_Close()

e 12C1_Start() or 12C2_Start() or 12C3_Start()

e 12C1_Stop() or 12C2_Stop() or 12C3_Stop()

e 12C1_Restart() or 12C2_Restart() or 12C3_Restart()

e 12C1_Read() or 12C2_Read() or I12C3_Read()

e 12C1_Write(byte) or 12C2_Write(byte) or 12C3_Write(byte)

e 12C1_Ack() or 12C2_Ack() or 12C3_Ack()

e |2C1_Nack() or 12C2_Nack() or 12C3_Nack()

e |2C1_AckStatus() or 12C2_AckStatus() or 12C3_AckStatus()

e 12C1_AckPoll(control) or 12C2_AckPoll(control) or 12C3_AckPoll(control)

e 12C1_lIdle() or12C2_Idle() or 12C3_lIdle()

o |2C1_Gets(buffer, size) or 12C2_Gets(buffer, size) or 12C3_Gets(buffer, size)

e |2C1_Getn(buffer, size) or 12C2_Getn(buffer, size) or 12C3_Getn(buffer, size)

e 12C1_Puts(buffer) or 12C2_Puts(buffer) or 12C3_Puts(buffer)

e 12C1_Putn(buffer, count) or 12C2_Putn(buffer, count) or 12C3_Putn(buffer, count)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 310 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

12C1_Open(Speed, SCLpin, SDApin); or
Syntax 12C2_Open(Speed, SCLpin, SDApin); or
12C3_Open(Speed, SCLpin, SDApin);

Arguments |Speed

Speed Specifies the 12C bus speed (See list in Description box)
SCLpin Specifies the GPIO pin to use for the SCL signal
SDApin Specifies the GPIO pin to use for the SDA signal

The arguments can be a variable, array element, expression or constant

Returns Status

1 if Successful

Status 0 if Unsuccessful

Description Calling this function configures the 1°C module and initialises it to be ready for service. The I12C clock
speed is specified by the Speed parameter. Multiple 1>C Speed settings are available to suit various
requirements.

Constant Speed
12C_SLOW 100KHz
I2C_MED 400KHz
12C_FAST 1MHz
12C_10KHZ 10KHz
12C_20KHZ 20KHz
12C_50KHZ 50KHz

12C_250KHZ 250KHz

Note: Normally the 12C pins are PAO to PA13, use of these pins has a couple of limitations, a) There is
no slew rate control at I2C_MED and b) 12C_FAST is not truly 1MHz. If either of these restrictions need
to be addressed, a special case of SCLpin = PA14 and SDApin = PA15 exists ONLY for speeds 12C_MED
(which uses slew rate control) and 12C_FAST (which is truly 1MHz).

Example I2C1 Open (I2C_MED, PA2, PA3); // Open the I2C port in 400KHz mode.

DIABLO16 INTERNAL FUNCTIONS Page 311 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

12C1_Close(); or
Syntax 12C2_Close(); or
12C3_Close();

Arguments None

Returns None

Description Calling this function closes the I12C port and disables the 12C hardware

Example I2C3 Close(); // Close I?C port and Disable the hardware

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 312 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

12C1_Start(); or
Syntax 12C2_Start(); or
12C3_Start();

Arguments None

Returns Status (often ignored)

1 if Successful

Status 0 if Unsuccessful

Description Calling this function sends an I1C start condition.
The hardware first pulls the SDA (data) line low, and next pulls the SCL (clock) line low.

SCL \
SDA \
Example I2C2_Start(); //Send an I?C start condition.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 313 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

12C1_Stop(); or
Syntax 12C2_Stop(); or
12C3_Stop();

Arguments None

Returns Status (often ignored)

1 if Successful

Status 0 if Unsuccessful

Description Calling this function sends an I12C stop condition. The hardware first releases the SCL to high state,
and then releases the SDA line high.

SCL /

SDA /

Example I2Cl _stop(); // Send I?C Stop Condition

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 314 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

12C1_Restart(); or
Syntax 12C2_Restart(); or
12C3_Restart();

Arguments None

Returns Status (often ignored)

1 if Successful

Status 0 if Unsuccessful

Description Calling this function generates a restart condition.

Example I2C3 Restart() ; //Generates an I?C restart condition

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 315 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

12C1_Read(); or

Syntax 12C2_Read(); or
12C3_Read();
Arguments None
Returns Byte
Byte Byte from the I2C Bus in the lower 8 bits.
Description Calling this function reads a single byte from the I2C bus.
Note: Data can only change when the clock is low.
sCL___ / ./ ./ _J _/J _/J _J _J |
1 2 3 4 5 6 _7 _8_
SDA X X X X X X X X X
Example ch := I2Cl1 Read() ; //Read a single byte from the I2C Bus.

DIABLO16 INTERNAL FUNCTIONS Page 316 of 554

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

12C1_Write(byte); or
Syntax 12C2_Write(byte); or
12C3_Write(byte);

Arguments byte

byte The byte to be written to the IC Bus.

The arguments can be a variable, array element, expression or constant

Returns Status
Returns 2 if NACK received
Status Returns 1 if ACK received
Returns 0 if Failed

Description Calling this function sends a single byte to the 12C bus
scL__/ _/ _/ _/J _/J _/J _/J /|

Example Status := I2C3 Write (bytevalue); // Send a single byte to the I2%C

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 317 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

12C1_Ack(); or
Syntax 12C2_Ack(); or
12C3_Ack();

Arguments None

Returns None

Description Calling this function sends an I12C acknowledge condition.
The hardware first pulls the SDA line low, and next releases SCL high followed by pulling SCL low
again thus generating a clock pulse, SDA is then released high.

NB:- Data can only change when the clock is low.

SCL / \
Ack
SDA X /
Example I2C2_Ack(); // Send I?C Acknowledge condition

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 318 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

12C1_Nack(); or
Syntax 12C2_Nack(); or
12C3_Nack();

Arguments None

Returns None

Description Calling this function sends an I12C negative acknowledge condition.
The hardware first release the SDA line high, and next releases SCL HI followed by pulling SCL low
thus generating a clock pulse.

NB:- Data can only change when the clock is low.

SCL / \
SDA X Nack
Example I2C3 Nack(); //Send an I?C Negative acknowledge condition

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 319 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

12C1_AckStatus(); or
Syntax 12C2_AckStatus(); or
12C3_AckStatus();

Arguments None

Returns Status

Status Device Ack status

Description | Call this function to get the ACK status from the slave device
The state of SDA is returned.

NB:- returns the state of SDA after the last clock pulse

Previous Clock Pulse

scL X\
SDA X Ack Status
Example r := I2Cl AckStatus(); // returns the Ack Status.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 320 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

12C1_AckPoll(control); or
Syntax 12C2_AckPoll(control); or
12C3_AckPoll(control);

Arguments control

control The control word to be written to the device.

The arguments can be a variable, array element, expression or constant

Returns Status
Status Device Ack Status

Description | Call this function to wait for a device to return an ACK during ACK polling
The SDA is monitored for an Ack.

NB:- returns the state of SDA after the last clock pulse

Previous Clock Pulse

SCL X ___
SDA X Ack Status
Example r := I2C2 AckPoll (0xAQ); //send the control byte the wait for a device

//to return poll the device until an ACK
//is received.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 321 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

12C1_Idle(); or
Syntax 12C2_lIdle(); or
12C3_lIdle();

Arguments None

Returns Status

1 if Successful

Status 0 if Failed (Timed Out)

Description Call this function to wait until the 12C bus is inactive.
NB:- wait for the bus to become idle. Times out if not inactive within 1 second.

SCL X X/
SDA X___X/
Example r := I2Cl Idle(); //Wait until the I%C Bus is inactive.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 322 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

12C1_Gets(buffer, size); or
Syntax 12C2_Gets(buffer, size); or
12C3_Gets(buffer, size);

Arguments buffer, size

buffer Storage for the string being read from the device.
size Maximum size of the string to be read

Returns count
count Returns the count of bytes actually read.

Description | Reads up to size characters into buffer from an ascii string stored in a device. Reads up to the ASCII
NULL terminator and includes the terminator.

Example c := I2C3 Gets(buf, size); //read a string from the I2C Bus to buffer
//up to size characters.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 323 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

12C1_Getn(buffer, count); or
Syntax 12C2_Getn(buffer, count); or
12C3_Getn(buffer, count);

Arguments buffer, count

buffer Storage for the bytes being read from the device.

count Number of bytes to be read

The arguments can be a variable, array element, expression or constant

Returns Status

Status Returns True if block read ok else returns False.

Description Reads count bytes in to buffer and returns True if function succeeds

Example I2C1 _Getn(buffer, count); //read I?C count bytes from the I2C Bus to
//the buffer

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 324 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

12C1_Puts(buffer); or
Syntax 12C2_Puts(buffer); or
12C3_Puts(buffer);

Arguments buffer

buffer Storage for the string being written to the device.

The arguments can be a variable, array element, expression or constant

Returns Count
Count Returns the count of bytes actually written.

Description Writes an ASlI string from buffer to a device. The ASCII NULL terminator is also written.

Example c := I2C3 Puts (mybuf); //write an ASCII string from buffer to the IZC
//bus

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 325 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

12C1_Putn(buffer, count); or
Syntax 12C2_Putn(buffer, count); or
12C3_Putn(buffer, count);

Arguments buffer, count

buffer Storage for the bytes being written to the device.
count Number of bytes to be written

Returns written
written Returns number of bytes written.

Description | Writes count bytes from the buffer to the device, and returns written if function succeeds.

Example b := I2C2 Putn(mybuf, count); // write count bytes from the buffer to
// the I2C bus.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 326 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
* sys_T()
o sys_T_HI)
e sys_SetTimer(timernum, value)
e sys_GetTimer(timernum)
e sys_SetTimerEvent("timernum","function")
e sys_EventQueue()
e sys_EventsPostpone()
e sys EventsResume()
e sys_DeepSleep(units)
e sys_Sleep(units)
e iterator(offset)
e sys_GetDate()
e sys_GetTime()
e sys_SetDate(year, month, day)
e sys_SetTime(hours, mins, secs)
e sys_GetDateVar(&year, &month, &day)
e sys_GetTimeVar(&hour, &minute, &second, &msecs)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 327 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_T();

Arguments None

Returns value

value Returns the value of system timer. (LO Word)

Description | Returns the current value of the rolling 32bit system timer (1mse) LO word.

Example t :=sys_ TO; // .

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 328 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_T_HI();

Arguments None

Returns value

value Returns the value of system timer. (HI Word)

Description | Returns the current value of the rolling 32bit system timer (1mse) HI word.

Example t := sys T HI(); //

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 329 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_SetTimer(timernum, value);
Arguments timernum, value
timernum One of eight timers TIMERO to TIMER7.
value Countdown period in milliseconds.
The “value” can be a variable, array element, expression or constant
Returns None
Description |Set a countdown on the selected timer or 'top-up' if required. There are 8 timers TIMERO to TIMER7
which stop at the count of 0. Maximum timeout period is 65, 535 milliseconds or 65.535 seconds.
A timer can be read with the sys_GetTimer("timernum") function.
Example sys_SetTimer (TIMER5, 3600); //Set Timer5 for 3.6 seconds.

DIABLO16 INTERNAL FUNCTIONS Page 330 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_GetTimer(timernum);

Arguments timernum
timernum ‘One of eight timers TIMERO to TIMER7.

Returns Value
Value ‘Returns 0 if timer has expired, or the current countdown value.

Description Returns 0 if timer has expired, or the current countdown value. There are 8 timers TIMERO to
TIMER7 which stop at the count of 0. Maximum timeout period is 65, 535 milliseconds or 65.535
seconds.

A timer can be set with the sys_SetTimer("timernum", "value") function.

Example t := sys GetTimer (TIMER2); //

DIABLO16 INTERNAL FUNCTIONS Page 331 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_SetTimerEvent(timernum, function);

Arguments timernum, function

timernum One of eight timers TIMERO to TIMER7.

function Event Function to be queued

Returns Address

Returns any previous event function address, or zero if there was no previous

Address .
function.

Description |Set a function to be called for selected timer. When the timer reaches zero, the function is called. The
called function must not have any parameters, and should not have a return value. This is necessary
because the timer event is invoked asynchronously to the mainline program (i.e, it is not called in the
normal way, so parameters and return values don’t apply).

Note:

When a child process is run using the file_run or file_exec function, or if a file was loaded with
file_Loadfunction and is executed, the loaded process gets its own code and memory space,
therefore, any timer that reaches zero that has a timer event attached in the parent code space, will
fail and cause a crash as an attempt is made to force the program counter to some wild place in the
child process - There are 2 ways to overcome this problem.

1] If a child process will not be requiring the use of any timers or timer events, the parent program
can simply use the eventsPostpone() function before calling or entering the child process. Once the
parent program regains control, the eventsResume() function will allow any events in the queue to
then be processed. The side effect of this method is that several events may bank up, and will execute
immediately once the eventsResume() takes place. This however disallows a child process to use any
timer events in the sub program so method 2 is preferable in this case.

2] The parent program can 'disconnect' the event(s) by setting it/them to zero prior to child process
execution, or setting the associated timer to zero so the event wont fire. In either case, it is necessary
to do the following:-

while(sys_EventQueue());

to ensure the event queue is empty prior to calling the child process. Note also that if just the timer
is set to zero, the child process cannot use this timer. If the timer was now set to a value and the old
event still existed, when the timer reaches zero the 'bad' parent address event will fire causing a
crash.

The reverse situation also applies of course, the same level of respect is required if a child program
needs to use any timer events. Method [1] (above) will not work as the events have been
postponed, stopping the child process from using any timer events. If the child process did an
eventsResume() in this case, everything would crash miserably. So the same applies, a child that
uses any timer events must respect any timers that may be used by the parent, and a child must
zero the sys_SetTimerEvent before returning to the parent.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

sys_SetTimerEvent(timernum, 0) disables the timer event.

Example sys_SetTimerEvent (TIMER5, myfunc);

DIABLO16 INTERNAL FUNCTIONS Page 332 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_EventQueue();

Arguments None

Returns Count

Count Returns number of events .

Description returns the max number of events that were pending in the event queue since the last call to this
function. This can be used to assess event overhead burden, especially after or during a
sys_EventsPostpone action..

Example tasks := sys EventQueue(); //

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 333 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_EventsPostpone();

Arguments None

Returns None

Description | Postpone any events until the sys_EventResume function is executed. The event queue will continue
to queue events, but no action will take place until a sys_EventResume function is encountered.
The queue will continue to receive up to 32 events before discarding any further events. This function
is required to allow a sequence of instructions or functions to occur that would otherwise be
corrupted by an event occurring during the sequence of instructions or functions. A good example of
this is when you set a position to print, if there was no way of locking the current sequence, an event
may occur which does a similar thing, and a contention would occur - printing to the wrong position.
This function should be used wisely, if any action that is required would take considerable time, it is
better to disable any conflicting event functions with a bypass flag, then restart the conflicting event
by re-issuing a timer value.

Example sys EventsPostpone() ; // postpone the event queue

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 334 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_EventsResume();

Arguments None

Returns None

Description | Resume any postponed events. The queue will try to execute any events that were incurred during
the postponed period. Note that queued events are only checked for and executed at the the end of
each 4DGL instruction.

Example sys_EventsResume () ; // resume the event queue

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 335 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_DeepSleep(units);

Arguments units

units Sleep timer units are approx 1 second. When in sleep mode, timing is controlled by an
RC oscillator, therefore, timing is not totally accurate and should not be relied on for
timing purposes

The arguments can be a variable, array element, expression or constant

Returns Status

Status Remaining time units when touch screen is touched, else returns zero.

Deep Sleep is a sleep state that is ‘deeper’ than the regular Sleep (for most display modules) and
therefore consumes less power. Some displays do not support being powered to a lower state, so
sleep and deepsleep power consumption can sometimes be roughly the same.

Puts the display and processor into lowest power mode for a period of time. If "units" is zero, the
display goes into sleep mode forever and needs power cycling to re-initialize. If "units" is 1 to

Description
P 65535, the display will sleep for that period of time, or will be woken when touch screen is touched.
The function returns the count of "units" that are remaining when the screen was touced. When
returning from deep sleep mode, some displays might lose their screen and/or need to be
reinitialised with disp_Init()
New in v0.7 PmmC
Example sys_DeepSleep (60); // Sleep for 1 minute.

DIABLO16 INTERNAL FUNCTIONS Page 336 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_Sleep(units);

Arguments units

units Sleep timer units are approx 1 second. When in sleep mode, timing is controlled by an
RC oscillator, therefore, timing is not totally accurate and should not be relied on for
timing purposes

The arguments can be a variable, array element, expression or constant

Returns Status

Status Remaining time units when touch screen is touched, else returns zero.

Description Regular sleep, which puts the display and processor into low power mode for a period of time. If
"units" is zero, the display goes into sleep mode forever and needs power cycling to re-initialize. If
"units" is 1 to 65535, the display will sleep for that period of time, or will be woken when touch
screen is touched. The function returns the count of "units" that are remaining when the screen
was touced. When returning from sleep mode, the display and processor are restored from low
power mode.

Note: Sys_Sleep() was found to have an issue in PmmC’s prior to R33, the units value was not
always near 1 second. This has been corrected in PmmC R33.

Example sys_Sleep(60); // Sleep for 1 minute.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 337 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax iterator_(offset);

Arguments offset
offset Offset size for the next ++ or - - command

The arguments can be a variable, array element, expression or constant

Returns None

Description |Sets the iterator size for the next postinc, postdec, preinc or predec by a specified value. The offset
will return to 1 after the next operation.

Example t := iterator(10); // Set the iterator size to be 10

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 338 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_GetDate();

Arguments None

Returns None

Description Print the system date in the format "DD-MM-YYYY"

Can be captured to a buffer using the to() function.

Example Sys_GetDate(); // Print the current Date to the display

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 339 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_GetTime();

Arguments None

Returns None

Description Print the system time in the format "HH:MM:SS"

Can be captured to a buffer using the to() function.

Example var buf[5];
to(buf); Sys GetTime(); // Print the current Time to the buffer

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 340 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax

sys_SetDate(year, month, day);

Arguments

year, month, day
year Year argument can be a variable, array element, expression or constant
month Month argument can be a variable, array element, expression or constant

day Day argument can be a variable, array element, expression or constant

Returns

Status
Status TRUE if valid date

Description

Used to set clock to correct date after power up or suspension.

If an 12C real time clock is present, this function can be used to synchronize the internal date to the
I2C RTC date.

Returns true if valid date.

Example

Sys_SetbDate (13, 08, 05);

DIABLO16 INTERNAL FUNCTIONS Page 341 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_SetTime(hour, minute, second);

Arguments hour, minute, second

hour Hour argument can be a variable, array element, expression or constant

minute Minute argument can be a variable, array element, expression or constant

second Second argument can be a variable, array element, expression or constant
Returns Status

Status TRUE if valid time

Description | Used to set clock to correct time after power up or suspension.

If an 12C real time clock is present, this function can be used to synchronize the internal time to the
I2C RTC time.

Returns true if valid time.

Example Sys_SetTime (11, 03, 55);

DIABLO16 INTERNAL FUNCTIONS Page 342 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_GetDateVar(&year, &month, &day);

Arguments year, month, day

year Specifies the address for the storage location of the returned year value

month Specifies the address for the storage location of the returned month value

day Specifies the address for the storage location of the returned day value
Returns None

Description Returns the current year, month and day into variables.

Example Sys_GetDateVar (&year, &month, &day); // Read the current Date inot variables

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 343 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_GetTimeVar(&hour, &minute, &second, &msecs);

Arguments hour, minute, second, msecs
hour Specifies the address for the storage location of the returned hour value
minute Specifies the address for the storage location of the returned minute value

second Specifies the address for the storage location of the returned second value

msecs Specifies the address for the storage location of the returned milli-second value

Returns None

Description Returns the current hour, minute, second and milli-second into variables.

Example Sys_GetTimeVar (&hour, &minute, &second, &msecs); // Get the current Time into
variables

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 344 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
o file_Error()
o file_Count(filename)
e file_Dir(filename)
o file_FindFirst(fname)
o file_FindNext()
o file_Exists(fname)
e file_Open(fname, mode)
o file_Close(handle)
o file_Read(destination, size, handle)
o file_Seek(handle, HiwWord, LoWord)
e file_Index(handle, Hisize, Losize, recordnum)
o file_Tell(handle, &HiWord, &LoWord)
o file_Write(Source, size, handle)
o file_Size(handle, &HiWord, &LoWord)
o file_Image(x, y, handle)
o file_ScreenCapture(x, y, width, height, handle)
o file_PutC(char, handle)
o file_GetC(handle)
o file_PutW(word, handle)
o file_GetW(handle)
o file_PutS(source, handle)
o file_GetS(*String, size, handle)
o file_Erase(fname)
o file_Rewind(handle)
e file_LoadFunction(fname.4XE)
e file_Run(fname..4XE, arglistptr)
o file_Exec(fname..4XE, arglistptr)
e file_LoadlmageControl(fnamel, fname2, mode)
o file_Mount()
e file_Unmount()
o file_PlayWAV
o file_Rename(oldname, newname)
o file_SetDate(handle, year, month, day, hour, minute, second)
o file_CheckUpdate(filename, options)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 345 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

Syntax file_Error();

Arguments None.

Returns Error Code
ERROR CODE ERROR NO. ERROR DESCRIPTION
FE_OK 0 IDE function succeeded
FE_IDE_ERROR 1 IDE command execution error
FE_NOT_PRESENT 2 CARD not present
FE_PARTITION_TYPE 3 WRONG partition type, not FAT16
FE_INVALID_MBR 4 MBR sector invalid signature
FE_INVALID_BR 5 Boot Record invalid signature
FE_DISK_NOT_MNTD 6 Media not mounted
FE_FILE_NOT_FOUND 7 File not found in open for read
FE_INVALID_FILE 8 File not open
FE_FAT_EOF 9 Fat attempt to read beyond EOF
FE_EOF 10 Reached the end of file
FE_INVALID_CLUSTER 11 Invalid cluster value > maxcls
FE_DIR_FULL 12 All root dir entry are taken
FE_DISK_FULL 13 All clusters in partition are taken
FE_FILE_OVERWRITE 14 A file with same name exist already
FE_CANNOT_INIT 15 Cannot init the CARD
FE_CANNOT_READ_MBR 16 Cannot read the MBR
FE_MALLOC_FAILED 17 Malloc could not allocate the FILE struct
FE_INVALID_MODE 18 Mode was not r.w.
FE_FIND_ERROR 19 Failure during FILE search
FE_INVALID_FNAME 20 Invalid Filename
FE_INVALID_MEDIA 21 bad media
FE_SECTOR_READ_FAIL 22 Sector Read fail
FE_SECTOR_WRITE_FAIL 23 Sector write fail

Description Returns the most recent error code.

Example e := file Error(); // File Error

DIABLO16 INTERNAL FUNCTIONS

Page 346 of 554

www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Count(filename);
Arguments filename
filename Name of the file(s) for the search (passed as a string). 8.3 Format
Returns Count
Count ‘Number of files that match the criteria.
Description Returns number of files found that match the criteria.
The wild card character '*'matches up with any combination of allowable characters and '?' matches
up with any single allowable character.
Filename must be 8.3 format. Long Filenames are not supported. TESTPR~1.4XE for example.
Example count := file Count (“*.4XE”); //Returns number of files with “.4XE”.

DIABLO16 INTERNAL FUNCTIONS Page 347 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Dir(filename);

Arguments filename
filename Name of the file(s) for the search (passed as a string). 8.3 Format

Returns Count
Count ‘Number of files found that match the criteria.

Description Streams a string of file names that agree with the search key. Returns number of files found that
match the criteria. The wild card character '*' matches up with any combination of allowable
characters and '?' matches up with any single allowable character.

Filename must be 8.3 format. Long Filenames are not supported. TESTPR~1.4XE for example.

Example count := file Dir (“*.4XE”); //Returns number of files with “.4XE”.

DIABLO16 INTERNAL FUNCTIONS Page 348 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_FindFirst(fname);

Arguments fname

fname Name of the file(s) for the search (passed as a string). 8.3 Format

Returns Status

1: If at least one file exists that satisfies the criteria.

Status § . L
0: If no file satisfies the criteria.

Description Returns true if at least 1 file exists that satisfies the file argument.
Wildcards are usually used so if file_FindFirst returns true, further tests can be made using
file_FindNext(); to find all the files that match the wildcard class. Note that the stream behaviour is
the same as file_Dir.
Filename must be 8.3 format. Long Filenames are not supported. TESTPR~1.4XE for example.

Example If (file FindFirst (“*.4XE"))

Print (“File Found”);
endif

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 349 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_FindNext();

Arguments None

Returns Status

1: If more files exist that satisfy the criteria set in the file_FindFirst(fname)

Status 0: If no more files satisfy the criteria set in the file_FindFirst(fname)

Description | Returns true if more file exists that satisfies the file argument that was given for file_FindFirst.
Wildcards must be used for file_FindFirst, else this function will always return zero as the only
occurrence will have already been found.

Note that the stream behaviour is the same as file_Dir.

Example while ((flle_FlndNext ())
filecount++;
wend

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 350 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Exists(fname);

Arguments fname

fname Name of the file for the search (passed as a string). 8.3 Format
Returns Status
1: File found
Status 0: File not found

Description [Tests for the existence of the file provided with the search key. Returns TRUE if found.
fname must be 8.3 format, and therefore in capital letters. TESTPR™~1.4XE for example.

Example If (file Exists (“fill.4XE"))
Print (“File Found”);
endif

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 351 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Open(fname, mode);

Arguments fname, mode

fname Name of the file to be opened (passed as a string). 8.3 Format
mode FILE_READ: 'r'
FILE_WRITE: 'w'

FILE_APPEND: 'a'

Returns handle

Returns handle if file exists. Sets internal file error number accordingly (0 if no

handle
errors).

Description Returns handle if file exists. The file "handle" that is created is now used as reference for "filename"
for further file functions such as file_Close(handle), etc. For FILE_WRITE and FILE_APPEND modes ('w'
and 'a') the file is created if it does not exist. If the file is opened for append and it already exists, the
file pointer is set to the end of the file ready for appending, else the file pointer will be set to the start
of the newly created file.

If the file was opened successfully, the internal error number is set to O (i.e. no errors) and can be
read with the file_Error() function..

For FILE_READ mode ('r') the file must exist else a null handle (0) is returned and the 'file not found'
error number is set which can be read with the file_Error() function..

fname must be 8.3 format. Long Filenames are not supported. TESTPR~1.4XE for example.

Note: If a file is opened for write mode 'w', and the file already exists, the operation will fail. Unlike C
and some other languages where the file will be erased ready for re-writing when opened for writing,
4DGL offers a simple level of protection that ensures that a file must be purposely erased before being
re-written.

Note: Beginning with the v4.0 PmmC a file opened with FILE_APPEND may be randomly read and or
written. Also any altered file will have the Archive bit set in the directory entry.

Example handle := file Open("myfile.txt", 'r');

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 352 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Close(handle);

Arguments handle

handle the file handle that was created by file_Open("fname") which is now used as reference
(handle) for "fname" for further file functions such as in this function to close the file.
Returns Status
Status 1: File Closed.
0: File not closed.

Description Returns TRUE if file closed, FALSE if not.

Example res := file Close (hndl);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 353 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Read(*destination, size, handle);

Arguments destination, size, handle

destination pestination memory buffer. Word Pointer.

size Number of bytes to be read

handle The handle that references the file to be read.
Returns count

count Returns the number of characters read.

Description |Reads the number of bytes specified by "size" from the file referenced by "handle" into a destination
memory buffer. Destination is always a word pointer, as you can only read into RAM which is word
addressable.

If "destination" is zero, data is read direct to GRAM window

Example res := file Read(memblock, 20, hndll);

DIABLO16 INTERNAL FUNCTIONS Page 354 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Seek(handle, HiWord, LoWord);

Arguments handle, HiWord, LoWord

handle The handle that references the file

Hiword Contains the upper 16bits of the memory pointer into the file

LoWord Contains the lower 16bits of the memory pointer into the file
Returns Status

Status Returns TRUE if ok, usually ignored

Description Places the file pointer at the required position in a file that has been opened in 'r' (read) or 'a' (append)
mode. In append mode, file_Seek does not expand a filesize, instead, the file pointer (handle) is set
to the end position of the file, eg:- assuming the file size is 10000 bytes, file_Seek(handle, 0, 0x1234);
will set the file position to 0x00001234 (byte position 4660) for the file handle, so subsequent data
may be read from that position onwards with file_GetC(...), file_GetW(...), file_GetS(...), or an image
can be displayed with file_Image(...). Conversely, file_PutC(...), file_PutW(...) and file_PutS(...) can
write to the file at the position. A FE_EOF (end of file error) will occur if you try to write or read past
the end of the file.

Example res := file Seek (hSource, 0x0000, 0x1234) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 355 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Index(handle, Hisize, LoSize, recordnum);

Arguments handle, Hisize, LoSize, recordnum

handle The handle that references the file

Hisize Contains the upper 16bits of the size of the file records.
LoSize Contains the lower 16bits of the size of the file records.
recordnum The index of the required record

Returns Status
Status Returns TRUE if ok, usually ignored

Description | Places the file pointer at the position in a file that has been opened in 'r' (read) or 'a' (append) mode.
In append mode, file_Index does not expand a filesize, instead, the file pointer (handle) is set to the
end position of the file, eg:- assuming the record size is 100 bytes, file_Index(handle, 0, 100, 22); will
set the file position to 2200 for the file handle, so subsequent data may be read from that position
onwards with file_GetC(...), file_GetW(...), file_GetS(...), or an image can be displayed with
file_Ilmage(...). Conversely, file_PutC(...), file_PutW(...) and file_PutS(...) can write to the file at the
position. A FE_EOF (end of file error) will occur if you try to write or read past the end of the file.

Example res := file Index(hSource, 0, 100, 22) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 356 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Tell(handle, &HiWord, &LoWord);
Arguments handle, &HiWord, &LoWord
handle The handle that references the file
HiWord Contains the upper 16bits of the memory pointer into the file
LoWord Contains the lower 16bits of the memory pointer into the file
Returns Status
Status Returns TRUE if ok, usually ignored
Description Reads the 32 bit file pointer and stores it into 2 variables, HiWord and LoWord
Example res := file Tell (hSource, &HIptr, &LOptr) ;

DIABLO16 INTERNAL FUNCTIONS Page 357 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Write(*source, size, handle);

Arguments source, size, handle

source Source memory buffer. Byte/String Pointer.

size Number of bytes to be written.

handle The handle that references the file to write.
Returns count

count Returns the number of bytes written.

Description | Writes the number of bytes specified by "size" from the source buffer into the file referenced by
"handle". The source buffer is a byte/string pointer, as it can be written from program memory which
is always byte addressable.

Example res := file Write (memblock, 20, hndll);

DIABLO16 INTERNAL FUNCTIONS Page 358 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

Syntax file_Size(handle, &HiWord, &LoWord);
Arguments handle, HiWord, LoWord
handle The handle that references the file.
HiWord Contains the upper 16bits of the file size.
LoWord Contains the lower 16bits of the file size.
Returns Status
Status Returns TRUE if ok, usually ignored.
Description Reads the 32 bit file size and stores it into 2 variables, HiWord and LoWord
Example res := file Size (hSource, &sizeHi, &sizelo);

DIABLO16 INTERNAL FUNCTIONS Page 359 of 554

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Image(x, y, handle);

Arguments X, Yy, handle

X X-position of the image to be displayed

y Y-position of the image to be displayed

handle The handle that references the file containing the image(s)
Returns Returns a copy of the file_Error() error code

Description | Display an image from the file stream at screen location specified by x, y(top left corner). If there is
more than 1 image in the file, it can be accessed with file_Seek(...).

Example file Image(x, y, handle) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 360 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_ScreenCapture(x, y, width, height, handle);

Arguments X, ¥, width, height, handle

X X-position of the image to be captured

y Y-position of the image to be captured

width Width of the area to be captured.

height Height of the area to be captured.

handle The handle that references the file to store the image(s)
Returns Status

Status Returns 0 if function successful.

Description Save an image of the screen shot to file at the current file position.
The image can later be displayed with file_Image(...); The file may be opened in append mode to
accumulate multiple images. Later, the images can be displayed with file_Seek(...).

Note that the image will be sector aligned.

All image headers must start on a sector boundary.

The image is saved from x, y (with respect to top left corner), and the capture area is determined by
"width" and "height".

Examp'e file_Mount (),
hFile := file Open("test.img", 'a'); // open a file to save the image
file ScreenCapture (20,20,100,100, hFile);// save an area
file ScreenCapture(0,0,50,50, hFile); // (save another area)
file Close (hFile); // now close the file

// and to display the saved area (s)

hFile := file Open("test.img", 'r'); // open the saved file

file Image (20,180, hFile); // display the image

file Image (150,180, hFile); // (display the next image)
file Close (hFile);

file Unmount () ; // finished with file system

DIABLO16 INTERNAL FUNCTIONS Page 361 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_PutC(char, handle);

Arguments char, handle
char Data byte about to be written.
handle The handle that references the file to be written to.

Returns Status
Status Returns true if function succeeded

Description This function writes the byte specified by "char" to the file, at the position indicated by the associated
file-position pointer and advances the pointer appropriately (incremented by 1). The file must be
previously opened with 'w' (write) or 'a' (append) modes.

Example file PutC('A', hndl);

DIABLO16 INTERNAL FUNCTIONS Page 362 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_GetC(handle);

Arguments handle

handle ‘The handle that references the file.
Returns byte
byte ‘Returns the next char from the file

Description | This function reads a byte from the file, at the position indicated by the associated file-position pointer
and advances the pointer appropriately (incremented by 1). The file must be previously opened with
'r' (read) mode.

Example mychar := file GetC(hndl) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 363 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_PutW(word, handle);

Arguments word, handle
word Data about to be written
handle The handle that references the file to be written to.

Returns Status
Status Returns true if function succeeded

Description | This function writes word sized (2 bytes) data specified by "word" to the file, at the position indicated
by the associated file-position pointer and advances the pointer appropriately (incremented by 2).
The file must be previously opened with 'w' (write) or 'a' (append) modes.

Example file PutW(0x1234, hndl);

DIABLO16 INTERNAL FUNCTIONS Page 364 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_GetW(handle);

Arguments handle

handle ‘The handle that references the file.
Returns Word
Word ‘Returns the next word in the file

Description | This function reads a word (2 bytes) from the file, at the position indicated by the associated file-
position pointer and advances the pointer appropriately (incremented by 2). The file must be
previously opened with 'r' (read) mode.

Example myword := file GetW(hndl);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 365 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_PutS(*source, handle);
Arguments source, handle
source A pointer to the string to be written.
handle The handle that references the file to be written to.
Returns count
count Returns the number of characters written (excluding the null terminator).
Description This function writes an ASCIZ (null terminated) string from a buffer specified by "*source" to the file,
at the position indicated by the associated file-position pointer and advances the pointer
appropriately. The file must be previously opened with 'w' (write) or 'a' (append) modes.
Example file PutS(mystring, hndl);

DIABLO16 INTERNAL FUNCTIONS Page 366 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_GetS(*string, size, handle);

Arguments string, size, handle

string Destination buffer
size The maximum number of bytes to be read from the file.
handle The handle that references the file.
Returns Count
Count Returns the number of characters read from file (excluding the null terminator)

Description | This function reads a line of text to a buffer (specified by "*string") from a file at the current file
position indicated by the associated file-position pointer and advances the pointer appropriately. The
file must be previously opened with 'r' (read) mode.

Note: only reads up to "size-1" characters into "string"

file_GetS(...) will stop reading when any of the following conditions are true:
A) It has read n-1 bytes (one character is reserved for the null-terminator)

B) It encounters a newline character (a line-feed in the compilers tested here)
C) It reaches the end of file

D) A read error occurs.

The file must be previously opened with 'r' (read) mode.

Example res := file GetS(mystring, 80, hndl);

DIABLO16 INTERNAL FUNCTIONS Page 367 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Erase(fname);

Arguments fname

fname Name of the file to be erased

Returns Status

1: if successful

Status .
0: if unsuccessful

Description This function erases a file on the disk.
Note: If the function fails, the appropriate error number is set in file_Error() and will usually be error
19, "failure during FILE search".

Example res := file Erase("myfile.txt") ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 368 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Rewind(handle);

Arguments handle

handle ‘The handle that references the file
Returns Status
Status ‘Returns TRUE if ok, usually ignored

Description | Resets the file pointer to the beginning of a file that has been opened in 'r' (read), 'w', or 'a' (append)
mode.

Example res := file Rewind (hSource) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 369 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_LoadFunction(fname.4XE);

Arguments fname.4XE

fname.dXE Name of the 4DGL application program that is about to be loaded into RAM.

Returns Pointer

Returns a pointer to the memory allocation where the function has been loaded from

Pointer ' . .
file which can be then used as a function call.

Description |Load a function or program from disk and return a function pointer to the allocation.

The function can then be invoked just like any other function would be called via a function pointer.
Parameters may be passed to it in a conventional way. The function may be discarded at any time
when no longer required, thus freeing its memory resources.

The loaded function can be discarded with mem_Free(..) Note that any pointer references passed to
the child function may not include references to the parents DATA statements or any static string
references. Any string or array information must be in the parents global or local memory space. The
reason for this is that DATA statements and static strings are contained in the parents CODE segment,
and cannot be accessed by the child process.

The callers stack is shared by the loaded function, however any global variables in the loaded function
are private to that function.

Examplel var titlestring[20];
var textstring([20];
to(titlestring); putstr (“My Window Title”);
to (textstring); putstr (“My Special Message”);
popupWindow := file LoadFunction ("popupWindowl.4fn");
if (!popupWindow) goto LoadFunctionFailed; //could not load the function

//then elsewhere in your program
res := popupWindow (MYMODE,titlestring,textstring);
if (res == QUIT APPLICATION) goto exitApp;

//Later in your program, when popupWindow is no longer required
//for the application

res := mem Free (popupWindow) ;
if (!res) goto FreeFunctionFailed; //should never happen if memory not
//corrupted
Example2 var fncHandle; //a var for a handle to sliders2.4dg

var slidervals; //reference var to access global vars in sliders.4dg

fncHandle := file LoadFunction("sliders2.4xe"); // load the function
slidervals := fncHandle&Ox7FFF; // note that memory allocations
for transient programs are biased with 8000h which must be removed.
slidervals++; // note that all globals start at '1'

slidervals[0] := 25; // set sliders to initial positions
slidervals([1l := 20;
slidervals[2] := 30;

slidervals([4 = 35;

]

1
slidervals[3] := 15;
1
slidervals[5] := 20;

DIABLO16 INTERNAL FUNCTIONS Page 370 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

slidervals[6] := 40;

slidervals[7] := 25;

slidervals[8] := 45;

slidervals[9] := 5;

r := fncHandle(); // activate the function
print ("Return value = 0x", [HEX] r,"\n");

// print the wvalues, they may have changed

print ("Slider 1 ", slidervals[0]," Slider 2 ", slidervals[1l],"\n");
print ("Slider 3 ", slidervals([2]," Slider 4 ", slidervals[3],"\n");
print ("Slider 5 ", slidervals[4]," Slider 6 ", slidervals[5],"\n");
print ("Slider 7 ", slidervals[6]," Slider 8 ", slidervals[7],"\n");
print ("Slider 9 ", slidervals([8]," Slider 10 ", slidervals[9],"\n");

mem Free (fncHandle); // done with sliders, release its memory

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 371 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Run(fname.4XE, arglistptr);

Arguments fname.4XE, arglistptr

fname.dXE name of the 4DGL child program to be loaded into RAM and executed.
arglistptr ‘pointer to the list of arguments to pass to the new program.

Returns Value
Value ‘Returns the value from main in the called program.

Description |Any memory allocations in the main FLASH program are released, however, the stack and globals are
maintained.
If arglistptr is 0, no arguments are passed, else arglistptr points to an array, the first element being
the number of additional elements in the array which contain the arguments.

func 'main’ in the called program accepts the arguments, if any.

The arguments can only be passed by value, no pointers or references can be used as all memory is
cleared before the file is loaded. Refer to file_Exec and file_LoadFunction for functions that can pass
by reference.

The disk does not need to be mounted, file_Run automatically mounts the drive.

Example #inherit "4DGL l6bitColours.fnc"
#inherit "FONTA4.fnt"

#constant MAXBUTTONS 30 // for now, maximum number of buttons we want
// (also sets maximum number of files we can exec)

#STACK 500

//stack must be large enough to be shared with called program
#MODE RUNFLASH

// This is a 'top down' main program and must be run from FLASH

// NB:- demo assigns all arrays to MAXBUTTONS.

// The arrays could be dynamically assigned to minimise memory usage.
// There is break even point between extra code and smallish arrays.
var keyval; // 0 if no key pressed else 1-n

var filenames; // pointer to byte array that holds the filenames

var buttontexts[MAXBUTTONS]; // pointers into the filenames array
//holds the filenames we use as button text

var vButtonState [MAXBUTTONS] ;

//button state flag(bit 0 = up:down state)

var vOldButtonState [MAXBUTTONS] ;

// OLD button state flags (bit 0 = up:down state)

// (we keep 2 copies so we can test for a state change and only redraw when
a state change occurs)

var touchX1l[MAXBUTTONS] ; // touch regions for the buttons

DIABLO16 INTERNAL FUNCTIONS Page 372 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

var touchYl [MAXBUTTONS] ;
var touchX2[MAXBUTTONS] ;
var touch¥Y2 [MAXBUTTONS] ;

var btnTextColor; // button text colour
var btnBtnColor; // button background colour
var buttoncount; // actual number of buttons created (set

by number of *.4XE files we find on drive)

var tempstr[20]; // general purpose string, 40 bytes
#DATA

byte fred 1,2,3,4,5,6,7,8,9,10,11,12

#END

/*

Redraw the button matrix. Only draw buttons that have changed state.

The top lef corner of the button matrix is set with the xorg and yorg
parameters depending on the font and text string width, the button matrix
dynamically resizes.

Parameters: -

maxwidth = rhs from xorg (in pixels) to cause wrap at rhs
maxwidth = maximum matrix width (in pixel units)
buttoncount = number of buttons to display

font = FONT 1 to FONT 4

X0rg:yorg = top left corner of button array

NB:- The touch detect matrix array is updated when any button changes state.
When you need to draw the matrix for the first instance of the matrix, you

must
call with mode = 1 to instantiate the buttons.
call with mode = 0 for normal button action.

*/

func redraw (var bcount, var font, var xorg, var yorg, var maxwidth, var mode

var xgap, ygap, n, x1, yl, x2, y2;

xgap := 2;
ygap := 2;
x1l := xorg;
yl := yorg;

// if first, set all the buttons to the up state
if (mode)
n := 0;
repeat
vButtonState[n] :=UP;
// set all the buttons to inverse state
vOldButtonState [n] :=DOWN;
// so we guarantee they are all drawn in the 'up' state (not pressed)
until (++n >= buttoncount) ;
endif

// check all the button states, if a change occured, draw the new button
state and update the touch detect matrix array

n := 0;
repeat
// if the button state has changed
if (vButtonState[n] != vOldButtonState[n])

vOldButtonState[n] := vButtonState[n];

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

// 1f we already have all the co-ordinates, use them
if (!mode)

x1 := touchXl[n];
yl := touchY¥Yl[n];
x2 := touchX2[n];
y2 := touchY¥Y2[n];

DIABLO16 INTERNAL FUNCTIONS Page 373 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

endif

// draw the button

gfx Button(vButtonState[n], x1, yl, btnBtnColor, btnTextColor,
font, 1, 1, buttontexts[n]):;

// update the touch screen regions only during first build

if (mode)
x2 := gfx_Get (RIGHT POS);
y2 := gfx Get (BOTTOM POS) ;
touchX1l [n] := x1;
touch¥l[n] := yl;
touchX2 [n] := x2;
touch¥2[n] := y2;

// calculate next button position

x1l := x2 + xgap;
if (x1 >= xorg + maxwidth)
x1l := xorg;
yl := y2 + ygap;
endif
endif
endif
until (++n >= buttoncount) ;
endfunc
//

// do something with the key data

// In this example, we reconstitute the button name to a file name
// by appending ".4XE" and then call the file Run command to

// run an application.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

//
func sendkey ()
var p;
p := buttontexts|[keyval-1];
to(tempstr); str Printf (&p, "%s.4XE");
tXt_Set (TEXT_OPACITY, OPAQUE) ;
txt Set (FONT ID , FONT 4);
txt MoveCursor (3, 0);
print (n n) ;
if (file Exists(str Ptr (tempstr)))
touch Set (TOUCH DISABLE) ; // disable the touch screen
txt Set (TEXT COLOUR, ORANGE) ;
print ("\rRUN: ", [STR] tempstr);// run the required program
pause (500) ;
gfx Cls();
file Run(str_ Ptr (tempstr),0); // just run the prog, no args
else
txt Set (TEXT COLOUR, RED);
print ("\rFAULT: ", [STR] tempstr); // run required program
pause (1000) ;
endif
endfunc
//

// convert the touch co-ordinates to a key value
// returns 0 if no key down else return index 1..n of button
//

func readKeys (var x, var V)

var n, x1, vl, x2, y2, r;

DIABLO16 INTERNAL FUNCTIONS Page 374 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

n := 0;
0

r := 0;

while (n < buttoncount && !r)

x1 := touchXl[n];

yl := touchY¥Yl[n];

x2 := touchX2[n];

y2 := touch¥2[n];

n++;

if (x >= x1 && x < X2 && v >= yl && yv < y2) r := n;
wend

return r;
endfunc

//

func main ()

var k, n, state, x, y;
var p, s, w, f;

redo:
w := 140;
f := FONT 4;
btnTextColor := BLACK;
btnBtnColor := LIGHTGREY;
gfx Cls();

gfx_Set (BEVEL WIDTH, 2);

txt Set (FONT ID, FONT 3);
print ("Simple test for file_Run(...);\n");
print ("Memory available = ",mem Heap(),"\n");

if (!file Mount ())
putstr ("Disk not mounted");
while (!file Mount());

else
putstr ("Disk mounted\n") ;
endif
buttoncount := file Count ("*.4xe");
// count all the executable files on the drive
print ("4XE File count = ",buttoncount,"\n");
n := buttoncount; // k holds entry count
if (!'n)

print ("No 4XE executables\n");
// critical error, nothing to run!
repeat forever
endif

filenames := mem AllocZ(n*13);
// allocate a buffer for the filenames
if (!filenames)
print ("Out of memory\n") ;
// critical error, could not allocate buffer
repeat forever
endif

to(filenames); file Dir ("*.4xe");
// load the filenames array

p := str Ptr(filenames); // point to the string
//assign array of string pointers and truncate filename extensions

n := 0;
while (n < buttoncount)

DIABLO16 INTERNAL FUNCTIONS Page 375 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

buttontexts[n++] := p; // save pointer to the string
p:=str Find (&p , "."); // find end of required string
str PutByte (p++, '\0'"); // change '.' to \O
p :=p + 4; // skip over "4XE\n"

wend

touch Set (TOUCH_ENABLE) ; // enable the touch screen

redraw (buttoncount, £, 10, 80, w, 1);
// draw buttons for the first time

// now just stay in a loop

repeat
state := touch Get (TOUCH STATUS); // get touchscreen status
x := touch Get (TOUCH GETX) ;
y := touch Get (TOUCH GETY) ;
if (state == TOUCH PRESSED) // if there's a press
if (keyval := readKeys(x, V))
vButtonState[keyval-1] := DOWN;

// put button in DOWN state
redraw (buttoncount, £, 10, 80, w, 0);
// draw any button down states
endif
endif

if (state == TOUCH_ RELEASED)
// 1if there's a release
if (keyval)
vButtonStatel[keyval-1] := UP;
// restore the buttons UP state
redraw (buttoncount, £, 10, 80, w, 0);
// draw any button up states

sendkey () ;
// do something with the key data
keyval := 0;

// because prog(main prog) gave up all its allocations for file Exec,
// we have lost our file mount info and the directory list so we must
// re—-establish these to be able to continue. A better approach to
// ensure total stability for the main program is to reset the system
// with SystemReset ()
//
// systemReset () // restart the main program
// or
goto redo; // re-mount disk, reload filenames

//

endif
endif

forever

// mem Free (filenames) ;
// no need to release buffer, this prog is in flash and never exits.....
// file Unmount () ; // ditto

endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 376 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Exec(fname.4XE, arglistptr);
Arguments fname.4XE, arglistptr
fname.dXE name of the 4DGL child program to be loaded into RAM and executed.
arglistptr ‘pointer to the list of arguments to pass to the new program or 0 if no arguments.
Returns Value
Value ‘Returns the value from main in the called program.
Description | This function is similar to file_Run, however, the main program in FLASH retains all memory
allocations (eg file buffers, memory allocated with mem_Alloc etc)
Returns like a function, current program calling program is kept active and control returns to it.
If arglistptr is 0, no arguments are passed, else arglist points to an array, the first element being the
number of elements in the array.
func 'main’ in the called program accepts the arguments.
This function is similar to file_LoadFunction(...), however, the function argument list is passed by
pointer, and the memory consumed by the function is released as soon as the function completes.
Example Main Program:

var args[4], 1[50] ;

func main ()

var 1 ;
putstr ("Mounting...\n"); // must mount uSD for file Exec
if (! (file Mount()))
while (! (file Mount()))
putstr ("Drive not mounted...");
pause (200) ;
gfx Cls();
pause (200) ;
wend
endif
for (i := 0; 1 < sizeof(l); i++) // init array that will be passed
1[4i] = 1i;
next
args[0] := 2 ; // init arg count
args[l] := 1234 ; // init arg 1, this cannot be changed
args[2] :=1 ; // init arg 2 to address of 1
print ("main Program\n") ;
i := file Exec("uSDProg.4fn", args) ;
print ("Back in main program\n") ;

print ("uSD Program returned ", i, "\n") ; // number from return statement

for (i := 0; 1 < sizeof(l); i++) // find what changed in array
if (1[i] != i) print("1[", i, "] was changed to ", 1[i], "\n") ;

next

print ("Done")

DIABLO16 INTERNAL FUNCTIONS Page 377 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

repeat
forever

endfunc

Function on uSD:
func main(var j, var *1) // parameters appear in the normal way
// The * shows that 1 will be indexed. It
// simply stops the compiler issuing a 'notice'
txt FGcolour (WHITE) ;
print ("In file Exec's Program\n") ;

print ("Parms=", j, " ", 1, "(ptr to 1)\n") ; // can't change these
print ("Incrementing 1[5] to ", ++1[5], "\n") ; // can change these
print ("Returning 188\n") ; // can return a value

txt FGcolour (LIME) ;
return 188 ;
endfunc

DIABLO16 INTERNAL FUNCTIONS Page 378 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_LoadlmageControl(fnamel, fname2, mode);

Arguments fnamel, fname2, mode

fnamel the control list filename "*.dat". Created from Graphics Composer.
fname2 the image filename "*.gci". Created from Graphics Composer.
mode mode 0 :

It is assumed that there is a graphics file with the file extension "fname2.gci". In this
case, the images have been stored in a FAT16 file concurrently, and the offsets that
are derived from the "fnamel.dat" file are saved in the image control so that the
image control can open the file (*.gci) and use file_Seek(..) to get to the position of
the image which can then automatically be displayed using file_Image(xpos, ypos,
hSource).

Mode 0 builds the image control quickly as it only scans the *.dat file for the file
offsets and saves them in the relevant entries in the image control. The penalty is
that images take longer to find when displayed due to file_Seek(..) overheads.

mode 1:

It is assumed that there is a graphics file with the file extension "fname2.gci". In this
case, the images have been stored in a FAT16 file concurrently, and the offset of the
images are saved in the image control so that image file (*.gci) can be mapped to
directly. The absolute cluster/sector is mapped so file seek does not need to be called
internally. This means that there is no seek time penalty, however, the image list
takes a lot longer to build, as all the seeking is done at control build time.

Mode 2 :

In this case, the images have been stored in a in a RAW partition of the uSD card, and
the absolute address of the images are saved in the DAT file. This is the fastest
operation of the image control as there is no seeking or other disk activity taking
place.

Returns Status

Returns a handle (pointer to the memory allocation) to the image control list that
Status has been created.
Returns NULL if function fails.

Description Reads a control file to create an image list.

When an image control is loaded, an array is built in ram. It consists of a 6 word header with the
following entries as defined by the constants:

IMG_COUNT
IMG_ENTRYLEN
IMG_MODE
IMG_GCI_FILENAME
IMG_DAT_FILENAME

A W NN R O

DIABLO16 INTERNAL FUNCTIONS Page 379 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

IMG_GCIFILE_HANDLE 5

No images are stored in FLASH or RAM, the image control holds the index values for the absolute
storage positions on the uSD card for RAW mode, or the cluster/sector position for formatted FAT16
mode.

When an image control is no longer required, the memory can be released with:

mem_Free(MylmageControlHandle);

Example #inherit "4DGL_1l6bitColours.fnc"

#constant OK 1
#constant FAIL 0

var p; // buffer pointer
var img; // handle for the image list
var n, exit, r;

s et
// return true if screen touched, also sets ok flag
func CheckTouchExit ()
return (exit := (touch Get (TOUCH STATUS) == TOUCH PRESSED)) ; // if
there's a press, exit
endfunc

func main ()

gfx Cls();
txt Set (FONT ID, FONT 2);
txt Set (TEXT OPACITY, OPAQUE);

touch Set (TOUCH_ENABLE) ; // enable the touch screen
print ("heap=", mem Heap(), " bytes\n"); // show the heap size

r := OK; // return value
exit := 0;

if (!file Mount ())
print ("File error ", file Error());
while (!CheckTouchExit ()) ;
// just hang if we didnt get the image list

r := FAIL;
goto quit;
endif

print ("WAIT...building image list\n");

// slow build, fast execution, higher memory requirement
img := file LoadImageControl ("GFX2DEMO.dat", "GFX2DEMO.gci", 1);
// build image control, returning a pointer to structure allocation

if (img)
print ("image control=", [HEX] img,"\n");
// show the address of the image control allocation

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

else
putstr ("Failed to build image control....\n");
while (CheckTouchExit () == 0);
// just hang if we didnt get the image list
r := FAIL;
goto quit;
endif

DIABLO16 INTERNAL FUNCTIONS Page 380 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

print ("Loaded ", img[IMG COUNT], " images\n") ;
print ("\nTouch and hold to exit...\n");
pause (2000) ;
pause (3000) ;
gfx Cls();
repeat
n := 0;

while(n < img[IMG COUNT] && l!exit) // go through all images

CheckTouchExit () ; // 1f there's a press, exit
img SetPosition(img, n, (ABS (RAND() % 240)), (ABS(RAND() %
320))); // spread out the images
n++;
wend
img Show(img, ALL); // update the entire control in 1 hit

until (exit) ;
quit:
mem_Free (img) ; // release the image control
file Unmount () ; // (program must release all resources)
return r;

endfunc

//

DIABLO16 INTERNAL FUNCTIONS Page 381 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Mount();

Arguments None

Returns Status

Status Returns true if successful.

Description |Starts up the FAT16 disk file services and allocates a small 32 byte control block for subsequent use.
When you open a file using file_Open(..), a further 512 + 44 = 556 bytes are attached to the FAT16 file
control block. When you close a file using file_Close(..), the 556 byte allocation is released leaving the
32 byte file control block. The file_Mount() function must be called before any other FAT16 file related
functions can be used. The control block and all FAT16 file resources are completely released with
file_Unmount().

Example if (!file_Mount ())

repeat
putstr ("Disk not mounted") ;
pause (200) ;
gfx Cls();
pause (200) ;

until (file Mount ());

endif

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 382 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Unmount();

Arguments None

Returns None

Description | Release any buffers for FAT16 and unmount the Disk File System. This function is to be called to close
the FAT16 file system.

Example file Unmount (); // Unmount file system

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 383 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_PlayWAV(fname);

Arguments fname

fname Name of the wav file to be opened and played
Returns value
value If there are no errors, returns number of blocks to play (1 to 32767)

If errors occurred, the following is returned

-7 : Insufficient memory available for WAV buffer and file
-6 : cant play this rate

-5 : no data chunk found in first rsector

-4 : no format data

-3 : no wave chunk signature

-2 : bad wave file format

-1: file not found

Description | Open the wav file, decode the header to set the appropriate wave player parameters and set off the
playing of the file as a background process.

This function automatically grabs a chunk of memory for a file buffer, and a wave buffer. The minimum
memory requirement is about 580 bytes for the disk io service and a minimum wave buffer size of
1024. The size of the wave buffer allocation can be increased by the snd_BufSize function.

The default size 1024 bytes.

Note: The memory is only required during the duration of play, and is automatically released while
not in use.

See “Sound Control Functions” for additional play control functions.

Example print ("\nding.wav\n") ;
for(n:=0; n<45; n++)
pitch := NOTES[n];

print ([UDEC] pitch,"\zx");
snd_Pitch (pitch);
file PlayWAV ("ding.wav");
while (snd Playing()) ;
//pause (500) ;

next

DIABLO16 INTERNAL FUNCTIONS Page 384 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_Rename(oldname, newname);

Arguments oldname, newname
oldname Name of the file to be renamed

newname Name of the file to be used as the new name

Returns Status

1: if successful

Status .
0: if unsuccessful

Description This function renames a file on the disk.
Note: If the function fails, the appropriate error number is set in file_Error() if an invalid filename is
specified, otherwise the cause will be a missing oldname or a pre-existing newname.

Example res := file Rename ("myfile.txt", "myfile.bak")

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 385 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_SetDate(handle, year, month, day, hour, minute, second) ;

Arguments handle, year, month, day, hour, minute, second

handle The handle that references the file.
year The year the file was updated 1980-2099.
month The month the file was updated 1-12.
day The day the file was updated 1-31.
hour The hour the file was updated 0-23.
minute The minute the file was updated 0-59.
Second The second the file was updated 0-59.
Returns Status
Status 1: if successful
0: if unsuccessful (Handle not valid, or Date/Time not valid)

Description This function sets the modified date and time on an open file handle. The file must be closed at some
future time for the date and time to be flushed to disk.

Note that the FAT file system can only store even numbered seconds.

Example ret := file SetDate (hndl, 2014, 9, 15, 23, 58, 00);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 386 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax file_CheckUpdate(filename, options)
Arguments filename, options
filename Name of the 4DGL program on the uSD card
Program update options:
CHECKUPDATE_QUERY 1
Checks the specified file and compares its DateTime to the program running in Flash.
options CHECKUPDATE_UPDATENEWER 2
Updates the program in Flash and resets the display if the program on uSD is newer.
CHECKUPDATE_UPDATEALWAYS 3
Always updates the program in Flash and resets the display.
Returns value
If update occurs and the program is running from Flash, as display is reset after update.
Otherwise if a query or an error occurs, the following is returned:
CHECKUPDATE_NEWFILE 1
The specified file is newer than the file running in Flash.
CHECKUPDATE_OLDFILE 2
The specified file is equal to or older than the file running in Flash.
value CHECKUPDATE_UPDATEDONE 3
An update was performed and the program is running from RAM.
CHECKUPDATE_NOFILE 4
The specified file does not exist, or uSD not initialised.
CHECKUPDATE_INVALIDFILE 5
The specified file is not a valid .4xe or .4fn
Description | Checks and/or updates the program running in Flash using the specified file on uSD.
Example if (! (file_Mount 0)))
while (! (file Mount()))
putstr ("Drive not mounted...");
pause (200) ;
gfx Cls();
pause (200) ;
wend
endif

if (file_CheckUpdate ("Program.4xe", CHECKUPDZ—\TE_QUERY) ::CHECKUPDZ—\TE_NEWFILE)
putstr ("Program will now update") ;
file_CheckUpdate ("Program.4xe", CHECKUPDATE_UPDZ—\TENEWER) ;

endif

DIABLO16 INTERNAL FUNCTIONS Page 387 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:

snd_Volume(var)
snd_Pitch(pitch)
snd_BufSize(var)
snd_Stop()
snd_Pause()
snd_Continue()
snd_Playing()
snd_Freq()

DIABLO16 INTERNAL FUNCTIONS

Page 388 of 554

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax Snd_Volume(var);

Arguments var
var sound playback volume

The arguments can be a variable, array element, expression or constant

Returns None

Description | Set the sound playback volume. Var must be in the range from 8 (min volume) to 127 (max volume).
If var is less than 8, volume is set to 8, and if var > 127 it is set to 127.

Example snd_Volume (127) ; // Set Volume to maximum

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 389 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax Snd_Pitch(pitch);
Arguments pitch
pitch Sample's playback rate. Minimum is 4KHz. Range is, 4000 — 65535.
The arguments can be a variable, array element, expression or constant
Returns value
value Returns sample's original sample rate.
Description Sets the samples playback rate to a different frequency. Setting pitch to zero restores the original
sample rate.
Example snd Pitch (7000); //Play the wav file with a sample frequency of 7KHz.

DIABLO16 INTERNAL FUNCTIONS Page 390 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax Snd_BufSize(var);

Arguments var

var Specifies the buffer size.
0 = 1024 bytes (default)
1=2048 bytes
2 = 4096 bytes
3 =8192 bytes

The arguments can be a variable, array element, expression or constant

Returns None.

Description | Specify the memory chunk size for the wavefile buffer, default size 1024 bytes. Depending on the
sample size, memory constraints, and the sample quality, it may be beneficial to change the buffer
size from the default size of 1024 bytes.

This function is for control of a wav buffer, see the file_PlayWAV(..) ; function

Example snd BufSize(l);// allocate a 2048 byte wav buffer

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 391 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax snd_Stop();

Arguments None

Returns None

Description |Stop any sound that is currently playing, releasing buffers and closing any open wav file.
This function is for control of a wav buffer, see the file_PlayWAV(..) ; function

Example snd_Stop(); // Stop, release buffers and close wav file

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 392 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax snd_Pause();

Arguments None

Returns None

Description Pause any sound that is currently playing, does nothing until sound is resumed with snd_Continue().
The sample can be terminated with snd_Stop.

Buffers and closes any open wav file.

This function is for control of a wav buffer, see the file_PlayWAV(..) ; function

Example snd_Pause(); // Pause Sound

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 393 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax snd_Continue();

Arguments None

Returns None

Description |Resume any sound that is currently paused by snd_Pause.
This function is for control of a wav buffer, see the file_PlayWAV(..) ; function

Example snd Continue(); // Continue sound

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 394 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax snd_Playing();

Arguments None

Returns value
value Number of 512 byte blocks to go.

Description Returns 0 if sound has finished playing, else return number of 512 byte blocks to go.
This function is for control of a wav buffer, see the file_PlayWAV(..) ; function

Example count := snd Playing(); // return number of sound blocks remaining

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 395 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax snd_Freq(frequency, duration);

Arguments frequency, duration

frequency The frequency of the sound to produce, 10Hz is the minimum
duration The duration of the sound in milli seconds.

Returns status
status Returns TRUE if freq >= 10 and a wav file is not currently playing.

Description |Produces a pure square wave waveform on the audio output pin. This command is designed to drive
Piezo transducers which require this sort of input. Whilst it also works on displays with a builtin
amplifier the sound produced is extremely annoying.

Example snd Freq(2731, 100); // produce a 100ms burst at the Piezo’s resonant
frequency.

DIABLO16 INTERNAL FUNCTIONS Page 396 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
e str_Ptr(&var)
e str_GetD(&ptr, &var)
e str_GetW(&ptr, &var)
e str_GetHexW(&ptr, &var)
o str_GetC(&ptr, &var)
e str_GetByte(ptr)
e str_GetWord(ptr)
e str_PutByte(ptr, val)
e str_PutWord(ptr, val)
e str_Match(&ptr, *str)
e str_Matchl(&ptr, *str)
e str_Find(&ptr, *str)
e str_Findl(&ptr, *str)
e str_Length(ptr)
e str_Printf(&ptr, *format)
e str_Cat(&destination, &Source)
e str_CatN(&ptr, str, count)
e str_ByteMove(src, dest, count)
e str_Copy(dest, src)
e str_CopyN(dest, src, count)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 397 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_Ptr(&var);

Arguments var

var Pointer to string buffer
Returns Pointer
Pointer ‘Returned value is the byte pointer to string buffer.

Description Return a byte pointer to a word region.

Example var buffer[100]; // 200 character buffer for a source string
var p; // string pointer
var n;
var vars[3]; // for our results

func main ()
to(buffer); print ("0x1234 0b10011001 12345 abacus");

p := str Ptr(buffer);//raise string pointer for the string functions

while (str GetW(&p, &vars([n++]) != 0); // read all the numbers till we
//get a non number

print (vars[0],"\n", vars[1l],"\n", vars[2],"\n"); // print them out

endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 398 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_GetD(&ptr, &var);
Arguments &ptr, &var
ptr Byte pointer to string.
var Destination for our result.
Returns Status
Status Returns TRUE if function succeeds, advancing ptr
Description Convert number in a string to DWORD (myvar|[2]).
NB:- The address of the pointer must be passed so the function can advance it if required.
Example var buffer[100]; // 200 character buffer for a source string
var p; // string pointer
var nj;
var vars([6]; // for our results

func main ()
to(buffer); print ("100000 200000 98765432 abacus");

p := str Ptr(buffer); // raise a string pointer so we can use the
// string functions
while (str GetD(&p, &vars([n]) != 0) n:=n+2; //read all the numbers
//till we get a non number

print ([HEX4] vars[l], ":" , [HEX4] vars[0], "\n");

// show the longs as hex numbers

print ([HEX4] vars([3], ":" , [HEX4] vars[2], "\n");

print ([HEX4] vars([5], ":" , [HEX4] vars[4], "\n");

endfunc

DIABLO16 INTERNAL FUNCTIONS Page 399 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_GetW(&ptr, &var);

Arguments &ptr, &var

ptr Byte pointer to string.
var Destination for our result.
Returns Status
Status Returns TRUE if function succeeds, advancing ptr.

Description | Convert number in a string to WORD (myvar).
NB:- The address of the pointer must be passed so the function can advance it if required.

Example var buffer[100]; // 200 character buffer for a source string
var p; // string pointer
var n;
var vars([3]; // for our results

func main ()

to (buffer); print ("0x1234 0b10011001 12345 abacus");

p := str Ptr(buffer); // raise a string pointer so we can use the
// string functions

while (str GetW(&p, &vars[n++]) != 0); // read all the numbers till
// we get a non number
print (vars[0],"\n", vars[1l],"\n", vars[2],"\n"); // print them out
str Printf (&p, "%s\n"); // numbers extracted, now just print
// remainder of string
endfunc

DIABLO16 INTERNAL FUNCTIONS Page 400 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_GetHexW/(&ptr, &var);
Arguments &ptr, &var
ptr Byte pointer to string
var Destination for our result.
Returns Status
Status Returns TRUE if function succeeds, advancing ptr
Description |Convert hex number in a string to WORD (myvar).
This function is for extracting 'raw' hex words with no "0x" prefix.
Note: The address of the pointer must be passed so the function can advance it if required.
Example var buffer[100]; // 200 character buffer for a source string
var p; // string pointer
var n;
var vars([4]; // for our results

func main ()

to(buffer); print("1234 5678 9 ABCD");
p := str Ptr(buffer); // raise a string pointer so we can use the
// string functions

while (str_ GetHexW(&p, &vars[n++]) != 0);// read all the hex numbers
// till we get a non number

print (vars[0],"\n", vars[1l],"\n" , vars[2],"\n", vars[3],"\n");
endfunc

DIABLO16 INTERNAL FUNCTIONS Page 401 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_GetC(&ptr, &var);

Arguments &ptr, &var
ptr Byte pointer to string.
var Destination for our result.

The arguments can be a variable, array element, expression or constant

Returns Status

Status Returns TRUE if function succeeds, advancing ptr.

Description | Get next valid ascii char in a string to myvar.
NB:- The address of the pointer must be passed so the function can advance it if required.
The function returns 0 if end of string reached. Used for extracting single characters from a string.

Example var p; // string pointer
var n;
var char;
var buffer[100]; // 200 character buffer for a source string

func main ()

to(buffer); print ("Quick Brown Fox");
p := str Ptr(buffer); // raise a string pointer so we can use the
//string functions
while (str GetC(&p, &char))
print ("p=",p," char is", [CHR] char); // print characters
wend
print ("End of string");

endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 402 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_GetByte(ptr);
Arguments ptr
ptr ‘ Address of byte array or string.
Returns byte
byte ‘Returns the byte value at pointer location.
Description | Get a byte to myvar. Similar to "PEEKB" in basic.
It is not necessary for byte pointer ptr to be word aligned
Example var buffer[100]; // 200 character buffer for a source string

var n, p;

func main ()

to (buffer); print ("Testing 1 2 3");

p := str Ptr (buffer); // get a byte pointer from a word region
n := 0;

while (n <= str Length (buffer))
print ([HEX2] str GetByte(p + n++)," ");// print all the chars hex
// values
wend

endfunc

DIABLO16 INTERNAL FUNCTIONS Page 403 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_GetWord(ptr);

Arguments ptr

ptr ‘Byte pointer
Returns Word
Word ‘Returns the word at pointer location.

Description | Get a word to myvar. Similar to PEEKW in basic.
It is not necessary for byte pointer ptr to be word aligned

Example var p; // string pointer
var buffer[10]; // array for 20 bytes

func main ()
p := str Ptr (buffer); // raise a string pointer
str PutWord (p+3, 100)

str PutWord (p+9, 200);
str PutWord (p+12, 400)

// 'poke' the array

’

print (str_ GetWord(p + 3), "\n"); // 'peek' the array
print (str GetWord(p + 9), "\n");
print (str GetWord(p + 12), "\n");

endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 404 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_PutByte(ptr, val);

Arguments ptr, val

ptr Byte pointer to string
val Byte value to insert.
Returns None

Description Put a byte value into a string buffer at ptr
Similar to "POKEB" in basic
It is not necessary for byte pointer ptr to be word aligned

Example var buffer[100]; // 200 character buffer for a source string
var p; // string pointer

func main ()

p := str Ptr (buffer); // raise a string pointer so we can use the
// string functions

A'); // store some values

B'); // store some values

C'); // store some values

D'); // store some values

0); // string terminator

,"\n", vars[1l],"\n", vars[2],"\n"); // print them out

str PutByte (p
str PutByte (p
str PutByte (p
str PutByte (p
str PutByte (p
print (vars[0]

+ o+ o+ o+ o+
N J O W

~ N SN S~ 0~

p :=p + 3; // offset to where we placed the chars
str Printf (&p, "%s\n"); // print the result

// nb, also, understand that the core print service
// assumes a word aligned address so it starts at pos 4

// print([STR] &buffer[2]);

endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 405 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_PutWord(ptr, val);

Arguments Ptr, val

ptr Byte pointer
val Value to store.
Returns None

Description Put a word value into a byte buffer at ptr, similar to "POKEW" in basic.
It is not necessary for byte pointer ptr to be word aligned

Example var p; // string pointer
var numbers[10]; // array for 20 bytes
func main ()

p := str Ptr (numbers); // raise a string pointer
str PutWord (p+3, 100)

str PutWord (p+9, 200);
str PutWord (p+12, 400)

// 'poke' the array with some numbers

’

print (str_ GetWord(p + 3), "\n"); // 'peek' the array
print (str GetWord(p + 9), "\n");
print (str GetWord(p + 12), "\n");

endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 406 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_Match(&ptr, *str);

Arguments ptr, str

ptr Address of byte pointer to string buffer.
str Pointer string to match.
Returns Value
Value Returns 0 if no match, else advance ptr to the next position after the match and
returns a pointer to the match position.

Description | Case Sensitive match.
Compares the string at position ptr in a string buffer to the string str, skipping over any leading spaces
prior to the test. If a match occurs, ptr is advanced to the first position past the match, else ptris not
altered.

Note: The address of the pointer must be passed so the function can advance it if required.

Example var buffer[100]; // 200 character buffer for a source string
var p, 9; // string pointers
var n;

func main ()

to (buffer); print(" volts 240 "); // string to parse
p := str Ptr(buffer); // string pointer to be used
// with string functions

q = p;
// match the start of the string with "volts"
if (n := str Match(&p, "volts"))

str Printf (&p, "%$s\n"); // print remainder of string
else

print ("not found\n");
endif
print ("startpos=" , q , "\nfindpos=" , n , "\nendpos=" , p);
repeat
forever

endfunc

DIABLO16 INTERNAL FUNCTIONS Page 407 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax

str_Matchl(&ptr, *str);

Arguments

ptr, str
ptr Address of byte pointer to string buffer.

str Pointer string to match.

Returns

Value

Returns 0 if no match, else advance ptr to the next position after the match and

Value . L.
returns a pointer to the match position.

Description

Case Insensitive match.

Compares the string at position ptr in a string buffer to the string str, skipping over any leading spaces
prior to the test. If a match occurs, ptr is advanced to the first position past the match, else ptris not
altered.

Note: The address of the pointer must be passed so the function can advance it if required.

Example

var buffer[100]; // 200 character buffer for a source string
var p, 9; // string pointers
var n;

func main ()
// string to parse

to(buffer); print("The sun rises in the East");
p := str Ptr(buffer); // string pointer to be used
// with string functions
q = p;
// Will match if the string starts with "The", or "the"
if (n := str MatchI(&p, "the"))
str Printf (&p, "%$s\n"); // print remainder of string
else
print ("not found\n");
endif
print ("startpos=" , q , "\nfindpos=" , n , "\nendpos=" , p);
repeat
forever
endfunc

DIABLO16 INTERNAL FUNCTIONS Page 408 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_Find(&ptr, *str);

Arguments ptr, str

ptr Byte pointer to string buffer.
str String to find.
Returns Value
Value Returns 0 if not found.
Returns the address of the first character of the match if successful.

Description Case Sensitive.
Given the address of a pointer to a source string as the first argument, and a pointer to a test string
as the second argument, attempts to find the position of the matching string in the source string. The
test is performed with case sensitivity.

NB:- The source pointer is not altered.

Example var buffer([100]; // 200 character buffer for a source string
var p; // string pointer
var n;
var strings[4]; // for our test strings

func main ()

txt Set (FONT ID, FONTZ);

strings[0] := "useful" ;

strings[l] := "string"

strings[2] := "way" ;

strings[3] := "class"

to(buffer); print ("and by the way, the string class is rather
useful ");

// raise a string pointer so we can use the string functions

p := str Ptr (buffer);

// offset into the buffer a little so we don't see word "way"

p :=p + 13;

print("p=" , p , "\n\n"); // show the start point of our search

n := 0;

while (n < 4)

print ("\"" , [STR] strings[n] , "\" is at pos " , str Find(&p

, strings[n++]) , "\n");

wend

//note that p is unchanged

print ("\nNOTE: p is unchanged, p=" , p);

repeat

forever
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 409 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_FindI(&ptr, *str);

Arguments ptr, str

ptr Byte pointer to string buffer.
str String to find.
Returns Value
Value Returns 0 if not found.
Returns the address of the first character of the match if successful.

Description Case Insensitive.
Given the address of a pointer to a source string as the first argument, and a pointer to a test string
as the second argument, attempts to find the position of the matching string in the source string. The
test is performed with case sensitivity, eg upper and lower case chars are accepted.

NB:- The source pointer is not altered.

Example var buffer[100]; // 200 character buffer for a source string
var p; // string pointer
var n;
var strings[4]; // for our test strings

func main ()

txt Set (FONT ID, FONTZ);

strings[0] := "USEFUL" ;

strings[l] := "string"

strings[2] := "way" ;

strings[3] := "class"

to(buffer); print ("and by the way, the String Class is rather
useful ");

// raise a string pointer so we can use the string functions

p := str Ptr (buffer);

// offset into the buffer a little so we don't see word "way"

p :=p + 13;

// show the start point of our search

print ("p=" , p , "\n\n");

n := 0;

while (n < 4)

print ("\"" , [STR] strings[n] , "\" is at pos " , str FindI (

&p , strings[n++]) , "\n");

wend

//note that p is unchanged

print ("\nNOTE: p is unchanged, p=" , p);

repeat

forever
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 410 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_Length(ptr);
Arguments ptr

ptr Pointer to string buffer.
Returns Value

Value Returns String length.

Description | Returns the length of a byte aligned string excluding terminator.

Example // Dynamic String Example

func main ()
var a;
var pa ; //This be a String pointer to a
a := mem Alloc(200); // allocate a dynamic with undefined data
mem Set (a, 'X', 200); // fill it full of 'X's
pa := str Ptr(a); // raise a string pointer
str PutByte (pa+20,0); // Stick a string terminator in the array

print ("a length:", str Length(pa), "\n"); // show length of the
// dynamic buffer
// using the required string pointer
mem Free (a); // test is over, free up the memory
repeat
forever
endfunc

// Constant String Example
func main ()
var b;
b := "A string constant™ ; // b is a pointer to a string constant

print ("b length:", str Length(b), "\n"); // show length of the
// static string
// a string constant is already a string pointer
repeat
forever
endfunc

// Array Example
func main ()

var c[40]; // 80 character buffer for a source string

var pc; // This will be a String pointer to c[]

to (c); print ("An 'ASCIIZ' string is terminated with a zero");
Rels SEERREE(C) // raise a string pointer so we can use the

// string functions
print ("c length:", str Length(pc), "\n"); // show length of the
// 're-directed' string
// using the required string pointer
repeat
forever
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 411 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_Printf(&ptr, *format);

Arguments Ptr, format

ptr Byte pointer to the input data (structure).

format Format string.

Note: The address of the pointer must be passed so the function can advance it as
required.

Note: The format specifier string can be a string pointer, allowing dynamic
construction of the printing format.

Format Specifiers:

%cC character

%s string of characters
%d signed decimal

%ld long decimal

%u unsigned decimal

%lu long unsigned decimal
%x hex byte

%X hex word

%IX hex long
%b binary word
%lb long binary word

* indirection prefix (placed after '%' to specify indirect addressing)

(number) width description (use between '%' and format specifier to set the field
width).

Note: If (number) is preceded by 0, the result is Left-pads with zeroes (0) instead of
spaces.

Returns Pointer

Returns the position of last extraction point. This is useful for processing by other

Pointer . .
string functions.

Description [This function prints a formatted string from elements derived from a structured byte region.
There is only one input argument, the byte region pointer ptr which is automatically advanced as the
format specifier string is processed. The format string is similar to the C language, however, there are
a few differences, including the addition of the indirection token * (asterix).

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

Example var buffer[100]; // 200 character buffer for a source string
var p, g; // string pointers
var n;
var m[20]; // for our structure example
var format; // a pointer to a format string

func main ()

var k;

DIABLO16 INTERNAL FUNCTIONS Page 412 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

// string print example

to (buffer); print ("\nHELLO WORLD");
g := str Ptr (buffer); // raise a string pointer so we can use the
// string functions
p = q;
str Printf (&p , "%8s"); // only prints first 8 characters of
// string
putch ('\n'); // new line
p = q;
k := str Printf (&p , "%04s"); // prints 4 leading spaces before
// string
putch ('\n'); // new line
print (k); // 1f required, the return value points to the last

// source position and is returned for processing by
// other string functions

// print structure elements example, make a demo structure

n := 0;

m[n++] := "Mrs Smith"
m[n++] := 200 ;
m[n++] := 300 ;
m[n++] := 0xAA55 ;
m[n++] := 500 ;

// make a demo format control string

format := "%*s\n%d\n%d\n%016b\n%04X" ; // format string for printing
// structure m

// print the structure in the required format
p := str Ptr (m); // point to structure m
str Printf (&p, format); // use the format string to print the

// structure

endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 413 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_Cat(&destination, &source);

Arguments destination, source

destination | pestination string address

source Source string address
Returns Pointer
Pointer Returns pointer to the destination.

Description |Appends a copy of the source string to the destination string. The terminating null character in
destination is overwritten by the first character of source, and a new null-character is appended at
the end of the new string formed by the concatenation of both in destination.

Example var buf[100]; // 200 character buffer for a source string

func main ()
var p ;
to (buf) ;
print ("Hello ") ;
p := str Ptr(buf) ;
str_Cat(p,"There"); // Will append "There" to the end of buf
print ([STR] buf) ;
repeat
forever
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 414 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_CatN(&ptr, str, count);

Arguments ptr, str, count

ptr Destination string address

str Source string address

count Number of characters to be concatenated.
Returns Pointer

Pointer Returns pointer to the destination.

Description | The number of characters copied is limited by "count".
The terminating null character in destination is overwritten by the first character of source, and a new
null-character is appended at the end of the new string formed by the concatenation of both in
destination.

Example var buf[100]; // 200 character buffer for a source string

func main ()

var p ;
to (buf) ;

print ("Sun ") ;

p := str Ptr (buf) ;

str CatN(p, "Monday",3); // Concatenate "Mon" to the end of buf
print ([STR] buf) ;
repeat
forever
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 415 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_ByteMove(src, dest, count);
Arguments src, dest, count
src Points to byte aligned source.
dest Points to byte aligned destination.
count Number of bytes to transfer.
Returns Pointer
Pointer Returns a pointer to the end of the destination (which is "dest" + "count").
Description Copy bytes from "src" to "dest", stopping only when "count" is exhausted. No terminator is appended,
it is purely a byte copy, and any zeroes encountered will also be copied.
Example var src, dest, mybuf1[10], mybuf2[10]; // string pointers and two 20 byte buffers

to(mybuf1); putstr("TESTING 123");

src := strPtr(mybufl);

dest := str_Ptr(mybuf2);

src += 6; // move src pointer to "G 123"

str_ByteMove(src, dest, 6); // move to second buffer (including the zero terminator)

putstr(mybuf2); // print result

nextpos := str_ByteMove(s, d, 100);

DIABLO16 INTERNAL FUNCTIONS Page 416 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘str_Copy(dest, src);

Arguments dest, src

dest Points to byte aligned destination.
src Points to byte aligned source.
Returns Pointer
Pointer Returns a pointer to the 0x00 string terminator at the end of "dest" (which is "dest"

+ str_Length(src);).

Description Copy a string from "src" to "dest", stopping only when the end of source string "src" is encountered
(0x00 terminator). The terminator is always appended, even if "src" is an empty string.

Example nextplace := str Copy(d, s);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 417 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax str_CopyN(dest, src, count);

Arguments dest, src, count

dest Points to byte aligned destination.
src Points to byte aligned source.
count Maximum number of bytes to copy.
Returns Pointer
Pointer Returns a pointer to the 0x00 string terminator at the end of "dest" (which is "dest"

+ str_Length(src);).

Description Copy a string from "src" to "dest", stopping only when "count" is exhausted, or end of source string
"str" is encountered (0x00 string terminator). The terminator is always appended, even if "count" is
zero, or "src" is a null string.

Example nextplace := str CopyN(d, s, 100);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 418 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:

e touch_DetectRegion(x1, y1, x2, y2)
touch_Set(mode)
touch_Get(mode)
touch_TestArea(&rect)
touch_TestBox(&rect)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 419 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax touch_DetectRegion(x1, y1, x2, y2);

Arguments X1,y1,x2,y2
x1 specifies the horizontal position of the top left corner of the region.
vyl specifies the vertical position of the top left corner of the region.
x2 specifies the horizontal position of the bottom right corner of the region.
y2 specifies the vertical position of the bottom right corner of the region.

Returns None

Description | Specifies a new touch detect region on the screen. This setting will filter out any touch activity outside
the region and only touch activity within that region will be reported by the status poll
touch_Get(TOUCH_STATUS) function.

Example gfx Rectangle (100, 100, 201, 201, YELLOW); // draw a rectangle with

//a yellow border
touch DetectRegion (101, 101, 200, 200); // limit touch detect region to

//within the rectangle

DIABLO16 INTERNAL FUNCTIONS Page 420 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax touch_Set(mode);

Arguments mode

mode mode = TOUCH_ENABLE (Mode 0) Enable Touch Screen

touch_Set(TOUCH_ENABLE);
Enables and initialises Touch Screen hardware

mode = TOUCH_DISABLE (Mode 1) Disable Touch Screen
touch_Set(TOUCH_DISABLE);
Disables the Touch Screen.
Note: Touch Screen task runs in the background and disabling it when not in use
will free up extra resources for 4DGL CPU cycles.

mode = TOUCH_REGIONDEFAULT (Mode 2) Default Touch Region

touch_Set(TOUCH_REGIONDEFAULT);
This will reset the current active region to default which is the full screen area

Returns None

Description Sets various Sets various Touch Screen related parameters.

Example touch Set (TOUCH ENABLE); // .

DIABLO16 INTERNAL FUNCTIONS Page 421 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax touch_Get(mode);

Arguments mode

mode mode = TOUCH_STATUS (Mode 0): Get Status
mode = TOUCH_GETX (Mode 1) : Get X coordinates
mode = TOUCH_GETY (Mode 2) : Get Y coordinates

Returns Value
Value mode = TOUCH_STATUS (Mode 0)
Returns the various states of the touch screen
0=NOTOUCH

1=TOUCH_PRESSED
2 =TOUCH_RELEASED
3 =TOUCH_MOVING

mode = TOUCH_GETX (Mode 1)
Returns the X coordinates of the touch reported by mode 0

mode = TOUCH_GETY (Mode 2)
Returns the Y coordinates of the touch reported by mode 0

Description Returns various Touch Screen parameters to caller.
Sometimes NOTOUCH can be returned when the touchscreen is touched and held (in between
pressed and released). This occurs if the touch points are identical on two successive calls, because it
does not qualify as MOVING, but it has not yet been RELEASED (but has already been PRESSED)

Example state := touch Get (TOUCH STATUS); // get touchscreen status
x := touch Get (TOUCH GETX) ;
y := touch Get (TOUCH GETY) ;

if (state == TOUCH PRESSED) // see if Exit hit
if (x> 170 && y > 280) // EXIT button
gfx Cls();
exit := -1;
endif

if (vertical)
if (x > 170 &&

(y > 240 && y < 270))// Horiz button
vertical := 0;

exit := 1;
endif
else
if ((x > 170 && (y > 200 && y < 230))// Vert button
vertical := 1;
exit := 2;
endif
endif
endif

DIABLO16 INTERNAL FUNCTIONS Page 422 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax touch_TestArea(&rect);

Arguments rect

rect An array of 4 vars, x1, y1, x2, y2 (using absolute co-ordinates)
Returns Status
Status Returns TRUE if last touch co-ordinates are within the absolute co-ordinate test area.

Description | The touch_TestArea function creates a test area based on the parameters in rect, and returns true if
the last touch resided within the test area.

rect is an array of 4 vars, x1, y1, x2, y2 (using absolute co-ordinates)

Example var X, Yy state;
var r[5] := [30, 30, 130, 130];
var curStatus := 0, prevStatus := 0;

gfx_ScreenMode (LANDSCAPE) ; // change manually if orientation change
gfx Rectangle(r[0], r[l1l], r[2], r[3], YELLOW); // draw a yellow rectangle

touch Set (TOUCH_ENABLE) ; // enable the touch screen

repeat
state := touch_Get(TOUCH_STATUS);// look for any touch activity
x := touch Get (TOUCH GETX) ;
y := touch Get (TOUCH GETY) ;

gfx MoveTo (150, 0);
print(llx: ",X, " "),.
gfx MoveTo (150, 15);
print("y: ",y, " ") ,.

curStatus := touch TestArea(r);
if (curStatus != prevStatus)
gfx MoveTo (0,0);
if (curStatus)
print ("touched! ");

else
print ("no touch!");
endif
prevStatus := curStatus;
endif

forever

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 423 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax touch_TestBox(&rect);

Arguments rect

rect An array of 4 vars, x1, y1, width, height
Returns Status
Status Returns TRUE if last touch co-ordinates are within the boxed test area.

Description | The touch_TestArea function creates a test box based on the parameters in rect, and returns true if
the last touch resided within the boxed test area.

rect is an array of 4 vars, x1, y1, width, height (using boxed co-ordinates)

Example var X, Yy state;
var r[5] := [30, 30, 100, 50];
var curStatus := 0, prevStatus := 0;

gfx_ScreenMode (LANDSCAPE) ; // change manually if orientation change
gfx Rectangle(r[0], r[l], r[0]+r[2], r[l]l+4r[3], YELLOW); // draw a
//yellow rectangle

touch Set (TOUCH ENABLE) ; // enable the touch screen

repeat
state := touch Get (TOUCH STATUS);// look for any touch activity
x := touch Get (TOUCH GETX) ;
y := touch Get (TOUCH GETY) ;

gfx MoveTo (150, 0);
print(llx: ",X, " ");
gfx MoveTo (150, 15);
print("y: ",y, " ") ;

curStatus := touch TestBox(r);
if (curStatus != prevStatus)
gfx MoveTo (0,0);
if (curStatus)

print ("touched! ");
else
print ("no touch!");
endif
prevStatus := curStatus;
endif
forever

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 424 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
e img_SetPosition(handle, index, xpos, ypos)
e img_Enable(handle, index)
e img_Disable(handle, index)
e img_Darken(handle, index)
e img_Lighten(handle, index)
e img_SetWord(handle, index, offset, word)
e img_GetWord(handle, index, offset)
e img_Show(handle, index)
e img_SetAttributes(handle, index, value)
e img_ClearAttributes(handle, index, value)
e img_Touched(handle, index)
e img_SelectReadPosition(handle, index, frame, x, y)
e img_SequentialRead(count, ptr)

The following functions are Image File System for use with a SPI Flash Memory device, only available for
the Flash-based PmmC.

e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.
e Error! Reference source not found.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 425 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_SetPosition(handle, index, xpos, ypos);
Arguments handle, index, xpos, ypos
handle Pointer to the Image List.
index Index of the images in the list.
Xpos Top left horizontal screen position where image is to be displayed.
ypos Top left vertical screen position where image is to be displayed.
Returns Status
Status Returns TRUE if index OK and function successful
Description This function requires that an image control has been created with the file_LoadlmageControl(...);
function.
Sets the position where the image will next be displayed. Returns TRUE if index was ok and function
was successful. (the return value is usually ignored).
You may turn off an image so when img_Show() is called, the image will not be shown.
This function requires that an image control has been created with the file_LoadImageControl(...);
function.
Example // make a simple 'window'

gfx Panel (PANEL RAISED, 0, 0, 239, 239, GRAY);
img SetPosition (Ihndl, BTN EXIT, 224,2);//set checkout box position
img Enable (Ihndl, BTN EXIT); //enable checkout box

DIABLO16 INTERNAL FUNCTIONS Page 426 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_Enable(handle, index);

Arguments handle, index

handle Pointer to the Image List.
index Index of the images in the list.
Returns Status
Status Returns TRUE if index OK and function successful

Description This function requires that an image control has been created with the file_LoadlmageControl(...);
function.

Enables a selected image in the image list. Returns TRUE if index was ok and function was successful.
This is the default state so when img_Show() is called all the images in the list will be shown.

To enable all of the images in the list at the same time set index to -1.

To enable a selected image, use the image index number.

Example r := img Enable (hImageList, imagenum) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 427 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_Disable(handle, index);

Arguments handle, index

handle Pointer to the Image List.
index Index of the images in the list.
Returns Status
Status Returns TRUE if index OK and function successful

Description This function requires that an image control has been created with the file_LoadlmageControl(...);
function.

Disables an image in the image list. Returns TRUE if index was ok and function was successful. Use
this function to turn off an image so that when img_Show() is called the selected image in the list will
not be shown.

To disable all of the images in the list at the same time set index to -1.

Example r := img Disable (hImageList, imagenum);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 428 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_Darken(handle, index);

Arguments handle, index

handle Pointer to the Image List.
index Index of the images in the list.
Returns Status
Status Returns TRUE if index OK and function successful

Description This function requires that an image control has been created with the file_LoadlmageControl(...);
function.

Darken an image in the image list. Returns TRUE if index was ok and function was successful. Use this
function to darken an image so that when img_Show() is called the control will take effect. To darken
all of the images in the list at the same time set index to -1.

Note: This feature will take effect one time only and when img_Show() is called again the darkened
image will revert back to normal.

Example r := img Darken(hImageList, imagenum) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 429 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_Lighten(handle, index);

Arguments handle, index

handle Pointer to the Image List.
index Index of the images in the list.
Returns Status
Status Returns TRUE if index OK and function successful

Description | This function requires that an image control has been created with the file_LoadlmageControl(...);
function.

Lighten an image in the image list. Returns TRUE if index was ok and function was successful. Use this
function to lighten an image so that when img_Show() is called the control will take effect. To lighten
all of the images in the list at the same time set index to -1.

Note: This feature will take effect one time only and when img_Show() is called again the lightened
image will revert back to normal.

Example r := img Lighten (hImagelList, imagenum);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 430 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_SetWord(handle, index, offset, word);

Arguments handle, index

handle Pointer to the Image List.
index Index of the images in the list.
offset Offset of the required word in the image entry
word The word to be written to the entry
Returns Status
Status TRUE if successful, usually ignored

Description | This function requires that an image control has been created with the file_LoadlmageControl(...);
function.

Set specified word in an image entry. Returns TRUE if successful, return value usually ignored.

IMAGE_XPOS 2 // WORD image location X
IMAGE_YPOS 3 // WORD image location Y
IMAGE_FLAGS 6 // WORD image flags
IMAGE_DELAY 7 // WORD inter frame delay
IMAGE_INDEX 9 // WORD current frame
IMAGE_TAG 12 // WORD user variable #1
IMAGE_TAG2 13 // WORD user variable #2

Note: Not all Constants are listed as some are Read Only.

img_Show(..) will now show error box for out of range video frames. Also, if frame is set to -1, just a
rectangle will be drawn in background colour to blank an image. It applies to PmmC R29 or above.

Example func cat ()
var private frame := 0; // start with frame 0
var private image := SPRITE CAT; // cat image, can be changed with
// cat.image := xxx
var private speed := 30;
img SetWord(Ihndl, image, IMAGE INDEX, frame++);
frame := frame % img GetWord(Ihndl, image, IMAGE FRAMES) ;

img Show (Thndl, image);
sys_SetTimer (TIMER3, speed); // reset the event timer
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 431 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_GetWord(handle, index, offset);

Arguments handle, index

handle Pointer to the Image List.

index Index of the images in the list.

offset Offset of the required word in the image entry
Returns Value

value Returns the image entry in the list.

Description | This function requires that an image control has been created with the file_LoadlmageControl(...);
function.

Returns specified word from an image entry.

IMAGE_LOWORD 0 // WORD image address LO
IMAGE_HIWORD 1 // WORD image address HI
IMAGE_XPOS 2 // WORD image location X
IMAGE_YPOS 3 // WORD image location Y
IMAGE_WIDTH 4 // WORD image width
IMAGE_HEIGHT 5 // WORD image height
IMAGE_FLAGS 6 // WORD image flags
IMAGE_DELAY 7 // WORD inter frame delay
IMAGE_FRAMES 8 // WORD number of frames
IMAGE_INDEX 9 // WORD current frame
IMAGE_CLUSTER 10 // WORD image start cluster pos (for FAT16 only)
IMAGE_SECTOR 11 // WORD image start sector in cluster pos (for FAT16 only)
IMAGE_TAG 12 // WORD user variable #1
IMAGE_TAG2 13 // WORD user variable #2
Example myvar := img GetWord(hndl, 5, IMAGE YPOS); //

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 432 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_Show(handle, index);

Arguments handle, index

handle Pointer to the Image List.
index Index of the images in the list.
Returns Status
Status Returns TRUE if successful, usually ignored

Description This function requires that an image control has been created with the file_LoadlmageControl(...);
function.

Enable the displaying of the image entry in the image control.
Returns TRUE if successful but return value is usually ignored.

Example img Show (hImageList, imagenum);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 433 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_SetAttributes(handle, index, value);
Arguments handle, index, value
handle Pointer to the Image List.
index Index of the images in the list.
value Refers to various bits in the image control entry (see image attribute flags)
Returns Status
Status Returns TRUE if successful, usually ignored
Description This function SETS one or more bits in the IMAGE_FLAGS field of an image control entry. "value"
refers to various bits in the image control entry (see image attribute flags).
A '1' bit in the "value" field SETS the respective bit in the IMAGE_FLAGS field of the image control
entry.
|_ENABLED 0x8000 // bit 15, set for image enabled
|_DARKEN 0x4000 // bit 14, display dimmed
|_LIGHTEN 0x2000 // bit 13, display bright
|_TOUCHED 0x1000 // bit 12, touch test result
I_Y_LOCK 0x0800 // bit 11, stop Y movement
|_X_LOCK 0x0400 // bit 10, stop X movement
|_TOPMOST 0x0200 // bit9, draw on top of other images next update
I|_STAYONTOP 0x0100 // bit 8, draw on top of other images always
|_TOUCH_DISABLE 0x0020 // bit 5, set to disable touch for this image, default=1 for movie, 0
for image
Example

img Enable (Ihndl, SPRITE CAT); // we'll also use small cat video
img_SetAttributeS (Ihndl, SPRITE CAT, I NOGROUP) ;
img SetPosition (Ihndl, SPRITE CAT, 160, 180); // set its position

DIABLO16 INTERNAL FUNCTIONS Page 434 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_ClearAttributes(handle, index, value);
Arguments handle, index, value
handle Pointer to the Image List.
index Index of the images in the list.
value a 'l' bit indicates that a bit should be set and a '0' bit indicates that a bit is not
altered.
Note: if index is set to -1, the attribute is altered in ALL of the entries in the image list
The constant ALL is set to -1 specifically for this purpose.
Returns Status
Status Returns TRUE if successful, usually ignored
Description | Clear various image attribute flags in a image control entry. (see image attribute flags below)
Image attribute flags may be combined with the + or | operators,
eg:- img_ClearAttributes(hndl, ALL, I_Y_LOCK | I_X_LOCK); // allow all images to move in any
direction
This function requires that an image control has been created with the file_LoadlmageControl(...);
function.
Image attribute flags
|_ENABLED 0x8000 // bit 15, set for image enabled
|_DARKEN 0x4000 // bit 14, display dimmed
|_LIGHTEN 0x2000 // bit 13, display bright
|_TOUCHED 0x1000 //bit 12, touch test result
|_Y_LOCK 0x0800 // bit 11, stop Y movement
|_X_LOCK 0x0400 // bit 10, stop X movement
|_TOPMOST 0x0200 //bit9, draw on top of other images next update
|_STAYONTOP 0x0100 //bit8, draw on top of other images always
|_TOUCH_DISABLE 0x0020 // bit 5, set to disable touch for this image, default=1 for movie, 0
for image
Example img ClearAttributes (hndl, 5, value); //

DIABLO16 INTERNAL FUNCTIONS Page 435 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax

img_Touched(handle, index);

Arguments

handle, index

handle Pointer to the Image List.

index Index of the images in the list.

Returns

Status

Returns index if Touched

Status
Returns -1 if not Touched

Description

This function requires that an image control has been created with the file_LoadlmageControl(...);
function.

Returns index if image touched or returns -1 image not touched. If index is passed as -1 the function
tests all images and returns -1 if image not touched or returns index.

Example

if (state == TOUCH PRESSED)
n := img Touched(Ihndl, -1);//scan image list, looking for a touch
if(n !'= -1)
last := n;
button := n;
img Lighten(Ihndl, n);//lighten the button touched
img Show (Ihndl, -1); // restore the images
endif
endif

DIABLO16 INTERNAL FUNCTIONS Page 436 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_SelectReadPosition(handle, index, frame, xpos, ypos);

Arguments handle, index, frame, xpos, ypos

handle Pointer to the Image List.
index Index of the images in the list.
frame Frame to read if the ‘image’ is a video, else 0
Xpos Image location, x position (top left corner)
ypos Image location, Y position (top left corner)
Returns Status
Status Returns TRUE if index was ok and function successful

Description | This Functions sets a position in an image control for sequential reading of pixels from the uSD card
(fat16 or raw modes supported)

No image window area is set, the image will not be shown

This function provides a means of preparing to load an image, or part of an image, to an array. (see
img_SequentialRead)

Example var subpic[55*%60];
func main ()
var i, h, p, w ;
if (!file Mount())

putstr ("\nDrive not mounted..."); // simplistic error handling
repeat forever

endif

handle := file LoadImageControl ("Nemo240.dat", "Nemo240.gci", 1);

h := img GetWord (handle, 0, IMAGE HEIGHT) ;

w := img GetWord (handle, 0, IMAGE WIDTH) ;

img SelectReadPosition (handle, 0, 520, 55, 63);
p := subpic ;
for (1 := 0; 1 < 60; 1i++)
img SequentialRead (55, p); // read pixels from selected read
position of an image
p +t= 55 ;
img_ SequentialRead (w-55, 0); // skip to next line
next
gfx WriteGRAMarea (0, 240, 54, 299, subpic);

img_SetWord (handle, 0, IMAGE INDEX, 520); // frame is 0 to 604
img Show (handle, 0) ;

repeat forever // intial testing only
endfunc

DIABLO16 INTERNAL FUNCTIONS Page 437 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_SequentialRead(count, ptr);

Arguments count, ptr

count Number of Pixels to read
ptr A pointer to an array to read count pixels into
Returns Status
Status Returns TRUE if index was ok and function successful

Description | Once a position has ben set with the img_SelectReadPosition function, this function can then used
for sequential reading of pixels from image storage.

If "ptr" is 0, "count" pixels from the stream are simply skipped
If "ptr" is 1, "count" pixels are written to the GRAM area

"ptr" must point to a valid array that is at least the size of "count", or part of an image, to an array.
(see img_SelectReadPosition)

Example See img SelectReadPosition example

DIABLO16 INTERNAL FUNCTIONS Page 438 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_FileRead(*dest, size, handle, index);

Arguments *dest, size, handle, index

dest Pointer to a destination memory buffer

size Number of bytes to be read

handle Pointer to the image file control

index Index of the entry in the handle
Returns Count

Count Returns number of characters read

Description | This function requires that an image file control has been created with the file_LoadlmageControl(...);
function under Mode 3.

Reads the number of bytes specified by "size" from the file referenced by "handle" into a destination
memory buffer. If "dest" is zero, data is directed to GRAM window.

Note: This function is only available for use on the Flash based PmmC version.

Example res := img FileRead (memblock, 20, hndl);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 439 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_FileSeek(handle, index, HiWord, LoWord);
Arguments handle, index, HiWord, LoWord
handle Pointer to the image file control
index Index of the entry in the handle
HiWord Contains the upper 16bits of the file position
LoWord Contains the lower 16bits of the file position
Returns Status
Status Returns true if successful, usually ignored
Description | This function requires that an image file control has been created with the file_LoadlmageControl(...);
function under Mode 3.
Set file position to specified address for the file handle so subsequent data may be read from that
position onwards with img_FileGetC(...), img_FileGetW(...) or img_FileGetS(...).
Note: This function is only available for use on the Flash based PmmC version.
Example res := img FileSeek (hSource, 0, 0x1234); // Set file position to 0x00001234

(byte posiEion 4660)

DIABLO16 INTERNAL FUNCTIONS Page 440 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_FileIndex(handle, index, HiSize, LoSize, recordnum);

Arguments handle, index, HiWord, LoWord

handle Pointer to the image file control
index Index of the entry in the handle
HiSize Contains the upper 16bits of the size of the file records
LoSize Contains the lower 16bits of the size of the file records
recordnum The index of the required record

Returns Status
Status Returns true if successful, usually ignored

Description | This function requires that an image file control has been created with the file_LoadlmageControl(...);

function under Mode 3.

Set file seek position to specified address for the file handle so subsequent data may be read from
that position onwards with img_FileGet((...), img_FileGetW(...) or img_FileGetS(...).

Note: This function is only available for use on the Flash based PmmC version.

Example res := img FileIndex (hSource, 0, 1000, 123, 1); // set file seek position
to 123000

DIABLO16 INTERNAL FUNCTIONS Page 441 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_FileTell(handle, index, &HiWord, &LoWord);

Arguments *dest, size, handle, index

handle Pointer to the image file control

index Index of the entry in the handle

HiWord Specifies location for the upper 16bits of the file pointer

LoWord Specifies location for the lower 16bits of the file pointer
Returns Status

Status Returns true if successful

Description | This function requires that an image file control has been created with the file_LoadlmageControl(...);
function under Mode 3.

Reads the current 32 bit file pointer and stores it into the two variables specified in "HiWord" and
"LoWord".

Note: This function is only available for use on the Flash based PmmC version.

Example img FileTell (fhndl, &SizeHi, &Sizelo);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 442 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_FileSize(handle, index, &HiWord, &LoWord);

Arguments *dest, size, handle, index

handle Pointer to the image file control

index Index of the entry in the handle

HiWord Specifies location for the upper 16bits of the file size

LoWord Specifies location for the lower 16bits of the file size
Returns Status

Status Returns true if successful

Description | This function requires that an image file control has been created with the file_LoadlmageControl(...);
function under Mode 3.

Reads the 32-bit file size and stores it into the two variables specified in "HiWord" and "LoWord".

Note: This function is only available for use on the Flash based PmmC version.

Example img FileSize (fhndl, &SizeHi, &Sizelo);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 443 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_FileGetC(handle, index);

Arguments handle, index

handle Pointer to the image file control

index Index of the entry in the handle
Returns byte

byte Returns next char from file.

Description | This function requires that an image file control has been created with the file_LoadlmageControl(...);
function under Mode 3.

This function reads a byte from the file, at the position indicated by the associated file-position pointer
and advances the pointer appropriately (incremented by 1).

Example mychar := img FileGetC (hndl, index);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 444 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_FileGetW(handle, index);

Arguments handle, index

handle Pointer to the image file control

index Index of the entry in the handle
Returns byte

byte Returns the next word read in file.

Description | This function requires that an image file control has been created with the file_LoadlmageControl(...);
function under Mode 3.

This function reads a word (2 bytes) from the file, at the position indicated by the associated file-
position pointer and advances the pointer appropriately (incremented by 2).

Example mychar := img FileGetW (hndl, index);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 445 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_FileGetS(*string, size, handle, index);

Arguments *string, size, handle, index

string Destination buffer
size The maximum number of bytes to be read from the file.
handle Pointer to the image file control
index Index of the entry in the handle
Returns result
result Returns pointer to string or null if failed

Description | This function requires that an image file control has been created with the file_LoadlmageControl(...);
function under Mode 3.

This function reads a line of text to a buffer (specified by "*string") from a file at the current file
position indicated by the associated file-position pointer and advances the pointer appropriately.

This function reads only reads up to "size - 1" characters into "*string" (one character is reserved for
the null-terminator). Characters are read until either a newline or an EOF is received or until the
number of characters read reaches "size - 1" or a read error is received.

img_FileGetS(...) automatically appends a null-terminator to the data read.

img_FileGetS(...) will stop reading when any of the following conditions are true:
A] It has read n-1 bytes (one character is reserved for the null-terminator)

B] It encounters a newline character (a line-feed in the compilers tested here), or
C] It reaches the end of file

D] A read error occurs.

Example res := img FileGets (mystr , 81, hndl); // read up to 80 chars

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 446 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_FileRewind(handle, index);

Arguments handle, index

handle Pointer to the image file control
index Index of the entry in the handle
Returns byte
byte Returns true if file rewound successfully, usually ignored

Description | This function requires that an image file control has been created with the file_LoadlmageControl(...);
function under Mode 3.

Resets the file pointer to the the beginning of the open file.

Example res := img FileRewind (hndl, index);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 447 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_FileLoadFunction(handle, index);
Arguments handle, index
handle Pointer to the image file control
index Index of the entry in the handle
Returns pointer
. Returns a pointer to the memory allocation where the function has been loaded from
pointer . . .
file which can be then used as a function call.
Description | This function requires that an image file control has been created with the file_LoadlmageControl(...);
function under Mode 3.
Load a function or program from disk and return a function pointer to the allocation.
The function can then be invoked just like any other function would be called via a function pointer.
Parameters may be passed to it in a conventional way. The callers stack is shared by the loaded
function, however any global variables in the loaded function are private to that function.
The function may be discarded at any time when no longer required, freeing its memory resources
through mem_Free(..).
Example Load function from file:

popupWindow := img FileLoadFunction (hndl, index);
if (!popupWindow) goto LoadFunctionFailed; // Could not load the function

Run the loaded function in program:

res := popupWindow (MYMODE, "My Title", "My Popup Text");
if (res == QUIT APPLICATION) goto exitApp;

Later in your program, when popupWindow is no longer required for the
application: -

Freeing memory resource:

res := mem Free (popupWindow) ;

if(!res) goto FreeFunctionFailed; // should never happen if memory not
corrupted. The callers stack is shared by the loaded function, however any
global variables in the loaded function are private to that function.

DIABLO16 INTERNAL FUNCTIONS Page 448 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_FileRun(handle, index, arglistptr);
Arguments handle, index, arglistptr
handle Pointer to the image file control
index Index of the entry in the handle
arglistptr Pointer to the list of arguments to pass to the new program
Returns value
value Returns the value from main in the called program.
Description | This function requires that an image file control has been created with the file_LoadlmageControl(...);
function under Mode 3.
Load a program from disk where the current program releases any allocated memory but retains the
stack and global memory.
If arglistptr is 0, no arguments are passed, else, arglist points to an array, the first element being the
number of elements in the array.
The func 'main' in the called program accepts the arguments, if any. The arguments can only be passed
by value, no pointers or references can be used as all memory is cleared before the file is loaded.
Refer to img_FileExec(...) and img_FileLoadFunction(...) for functions that can pass by reference.
Example res := img FileRun (hndl, index, argptr);

DIABLO16 INTERNAL FUNCTIONS Page 449 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_FileExec(handle, index, arglistptr);
Arguments handle, index, arglistptr
handle Pointer to the image file control
index Index of the entry in the handle
arglistptr Pointer to the list of arguments to pass to the new program
Returns value
value Returns the value from main in the called program.
Description | This function requires that an image file control has been created with the file_LoadlmageControl(...);
function under Mode 3.
Load a program from disk and returns like a function, the calling program is kept active and control
returns to it.
The func 'main’' in the called program accepts the arguments, if any. If arglistptr is 0, no arguments
are passed, else arglist points to an array, the first element being the number of elements in the array.
This function is similar to img_FileLoadFunction(...), however, the function argument list is passed by
pointer, and the memory consumed by the function is released as soon as the function completes.
Example res := img FileExec(hndl, index, argptr);

DIABLO16 INTERNAL FUNCTIONS Page 450 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_FilePlayWAV(handle, index);

Arguments handle, index

handle Pointer to the image file control
index Index of the entry in the handle
Returns byte

If there are no errors, returns number of blocks to play (1 to 32767)
If errors occurred, the following is returned:

-7 : Insufficient memory available for WAV buffer and file

-6 : cant play this rate

byte -5 : no data chunk found in first rsector

-4 : no format data

-3 : no wave chunk signature

-2 : bad wave file format

-1: file not found

Description | This function requires that an image file control has been created with the file_LoadlmageControl(...);
function under Mode 3.

Play a wave file at index "index" in the image filesystem "handle". This function automatically grabs
a chunk of memory for a file buffer, and a wave buffer.

The minimum memory requirement is about 580 bytes for the disk /O service and a minimum wave
buffer size of 1024. The size of the wave buffer allocation can be increased by the snd_BufSize
function. The default size 1024 bytes. The memory is only required during the duration of play, and is
automatically released while not in use.

See Sound Control Functions for additional play control functions.

Example res := img FileRewind (hndl, index);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 451 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax img_TxtFontID(handle, index);

Arguments handle, index

handle Pointer to the image file control
index Index of the entry in the handle
Returns none

Description | This function requires that an image file control has been created with the file_LoadlmageControl(...);
function under Mode 3.

Set the font to a font held in the image file system.

Example img TxtFontID (hndl, index);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 452 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
e mem_Alloc(size)
e mem_Allocv(size)
e mem_Allocz(size)
e mem_Realloc(ptr, size)
e mem_Free(allocation)
e mem_Heap()
e mem_Set(ptr, char, size)
e mem_Copy(source, destination, count)
e mem_Compare(ptrl, ptr2, count)
e mem_ArrayOpl(memarray, count, op, value)
e mem_ArrayOP2(memarrayl, memarray2, count, op, value)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 453 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax mem_Alloc(size);

Arguments size (byte)

size Specifies the number of bytes that's allocated from the heap.

Returns value

Returned value is the pointer (Word) to the allocation if successful.

value
If function fails returns a null (0).

Description Allocate a block of memory to pointer myvar. The allocated memory contains garbage but is a fast
allocation.
The block must later be released with mem_Free(myvar);

Example myvar := mem Alloc(100);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 454 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax mem_AllocV(size);

Arguments size (Byte)
size Specifies the number of bytes that's allocated from the heap.

Returns Value

Returned value is the pointer (Word) to the allocation if successful.
Value . .
If function fails returns a null (0).

Description |Allocate a block of memory to pointer myvar. The block of memory is filled with initial signature
values. The block starts with A55A then fills with incrementing number eg:-
A5,5A,00,01,02,03...FF,00,11.... This can be helpful when debugging. The block must later be released
with mem_Free(myvar).

Example myvar := mem AllocV(100);

DIABLO16 INTERNAL FUNCTIONS Page 455 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax mem_Allocz(size);

Arguments size

size Specifies the number of bytes that's allocated from the heap.

Returns Value

Returned value is the pointer to the allocation if successful. If function fails returns a

Value null (0).

Description | Allocate a block of memory to pointer myvar. The block of memory is filled with zeros.
The block must later be released with mem_Free(myvar);

Example myvar := mem Allocz (100);//

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 456 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax mem_Realloc(&ptr, size);

Arguments ptr, size

ptr Specifies the new location to reallocate the memory block.
size Specifies the number of bytes of the block.

Returns Status
Status See the Description.

Description The function may move the memory block to a new location, in which case the new location is
returned. The content of the memory block is preserved up to the lesser of the new and old sizes,
even if the block is moved. If the new size is larger, the value of the newly allocated portion is
indeterminate. In case that ptr is NULL, the function behaves exactly as mem_Alloc(), assigning a new
block of size bytes and returning a pointer to the beginning of it. In case that the size is 0, the memory
previously allocated in ptr is deallocated as if a call to mem_Free(myvar)was made, and a NULL pointer
is returned.

Example myvar := mem Realloc (myptr, 100); //

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 457 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax mem_Free(allocation);

Arguments allocation

allocation specifies the location of memory block to free up.

Returns Status

Returns non-zero if function is successful

Stat
atus Returns 0 if the function fails.

Description | The function de-allocates a block of memory previously created with mem_Alloc(...), mem_AllocV(...)
or mem_AllocZ(...).

Example test := mem Free (myvar); //

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 458 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax mem_Heap();

Arguments None

Returns Value

Value Returns the largest available byte memory chunk in the heap.

Description | Returns byte size of the largest chunk of memory available in the heap.

Example howmuch := mem Heap () ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 459 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

Syntax mem_Set(ptr, char, size);
Arguments ptr, char, size
ptr Specifies the memory block.
char Specifies the value to fill the block with.
size Specifies the size of the block in Bytes.
Returns Pointer
Pointer Returns the pointer.
Description Fill a block of memory with a byte value.
Example var mybuf[5];

var 1i;

func main ()

mem Set (mybuf,0x55,5); //Only fills half of mybuf[]

for (i:=0;i<sizeof (mybuf) ;i++)
print (" Ox", [HEX]mybuf[i]);
next

//Show what is in the buffer

mem Set (mybuf, 0xAA, sizeof (mybuf)*2); //Fill entire buffer

print ("\n"); //New line

for(i:=0;i<sizeof (mybuf) ;i++)
print (" 0x", [HEX]mybuf[i]) ;

next

repeat

forever

DIABLO16 INTERNAL FUNCTIONS

Page 460 of 554

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax mem_Copy(source, destination, count);

Arguments source, destination, count
source Specifies the source memory block.

destination | specifies the destination memory block.

count Specifies the size of the blocks in bytes.
Returns Pointer
Pointer Returns source.

Description | Copy a word aligned block of memory from source to destination.

Note:
Note that count is a byte count, this facilitates comparing word aligned byte arrays when using word
aligned packed strings.

Source can be a string constant e.g. myptr := mem_Copy("TEST STRING", ptr2, 12);

Example myptr := mem Copy(ptrl, ptr2, 100);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 461 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax mem_Compare(ptrl, ptr2, count);

Arguments ptrl, ptr2, count

ptrl Specifies the 1st memory block.

ptr2 Specifies the 2nd memory block.

count Specifies the number of bytes to compare.
Returns Value

Returns 0 if we have a match, -1 if ptrl < ptr2, and +1 if ptr2 > ptrl.

Value (The comparison is done alphabetically)

Description | Compare two blocks of memory ptrl and ptr2.

Example test := mem Compare (this block, that block, 100);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 462 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax mem_ArrayOp1l(memarray, count, op, value);

Arguments memarray, count, op, value

memarray Pointer to the array to be operated on
count Size of the array
op One of the constants defining the operation to be performed (see below)
value Value that may be required by the selected operation
Returns None

Description This function (and the similar mem_ArrayOp2 function) can be used to perform highly optimised
operation against an array of data. Mem_ArrayOp1 is for Single Arrays.

Single Word Array Operations:

OP1_NOP 0 // no operation

OP1_SET 1 // "set" the entire array with "value"

OP1_AND 2 // "and" the entire array with "value"

OP1_IOR 3 // "inclsuve or" the entire array with "value"

OP1_XOR 4 // "exclusive or" the entire array with "value"

OP1_ADD 5 // signed add each element of entire array with "value"
OP1_SuB 6 // signed subtract "value" from each element of entire array.
OP1_MUL 7 // signed multiply each element of entire array by "value"
OP1_DIV 8 // signed divide each element of entire array by "value"
OP1_REV 9 // reverse the elements of an array (value is ignored)
OP1_SHL 10 // shift an array left by "value" positions

OP1_SHR 11 // shift an array right by "value" positions

OP1_ROL 12 // rotate an array left by "value" positions

OP1_ROR 13 // rotate an array right by "value" positions

Graphics only Operations:

OP1_GRAY 14 // convert an array of RGB565 elements to grayscale, "value" is
ignored

OP1_WHITEN 15 // saturate an array of RGB565 elements to white, "value"
determines saturation

OP1 BLACKEN 16 // saturate an array of RGB565 elements to black, "value"

determines saturation

OP1_LIGHTEN 17 // increase luminance of an array of RGB565 elements, "value"
determines saturation

OP1_DARKEN 18 // decrease luminance of an array of RGB565 elements, "value"
determines saturation

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

Example var al[20] ;

func dumpAld(var cnt)
var i ;

DIABLO16 INTERNAL FUNCTIONS Page 463 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

al[l], " n)

for (i := 0; 1 < cnt; i++)
print ([DEC5ZB]
next
print ("\n") ;
endfunc

func main ()

var i, j, resl[2], v1[2], v2[2] ;

al[0] := 100; al[l]
dumpAld (4)
print ("ADD ")
mem ArrayOpl (al, 4,
dumpAld(4) ;
al[0] := 100; al[1l]
print ("SUB ")
mem ArrayOpl (al, 4,
dumpAld(4) ;
al[0] := 100; al[1l]
print ("MUL ")
mem ArrayOpl (al, 4,
dumpAld(4) ;
al[0] := 100; al[1l]
print ("DIV ")
mem ArrayOpl (al, 4,
dumpAld(4) ;
al[0] := 100; al[1l]
print ("REV ")
mem ArrayOpl (al, 4,
dumpAld (4) ;

repeat
forever
endfunc

:= 1000 ; al[Z2]

OP1_ADD, 10) ;
:= 1000 ; al[2]
OP1_SUB , 10) ;
:= 1000 ; al[2]
OP1_MUL, 10) ;
:= 1000 ; al[2]
OP1 DIV, 10) ;
:= 1000 ; al[2]

OP1 REV, 10) ;

10000 ; al[3] := 40000 ;
10000 ; al[3] := 40000 ;
10000 ; al[3] := 40000 ;
10000 ; al[3] := 40000 ;
10000 ; al[3] := 40000 ;

DIABLO16 INTERNAL FUNCTIONS

Page 464 of 554

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax mem_ArrayOp2(memarrayl, memarray2, count, op, value);

Arguments memarrayl, memarray2, count, op, value
memarrayl |Pointer to the 1* array to be operated on

memarray2 | Pointer to the 2" array to be operated on

count Size of the array
op One of the constants defining the operation to be performed (see below)
value Value that may be required by the selected operation

Returns None

Description This function (and the similar mem_ArrayOp1 function) can be used to perform highly optimised
operation against an array of data. Mem_ArrayOp2 is for Dual Arrays.

Boolean and Maths Opeations:

OP2_AND 1 // "and" arrays, result to array1 (value is ignored)

OP2_IOR 2 // "inclusive or" arrays, result to arrayl (value is ignored)

OP2_XOR 3 // "exclusive or" arrays, result to array1 (value is ignored)

OP2_ADD 4 // "add" arrays, result to arrayl, arrayl + (array2+value)

OP2_SuUB 5 // "subtract" array2 from array1, result to array1, arrayl-(array2+value)
OP2_MUL 6 // "multiply" arrays, result to arrayl (value is ignored)

OP2_DIV 7 // "divide array1 by array2", result to array1 (value is ignored)
OP2_COPY 8 // "copy" array2 to array1l (value is ignored)

Graphics only Operations:
OP2_BLEND 9 // blend arrays, blend percentage determined by "value", result to
"arrayl"

Example var al[5], a2[5] ;
func main ()

gfx_ScreenMode (LANDSCAPE) ; // change manually if orientation change

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

al[0] := OxAAAA; al[l] := 0x0606 ; al[2] := 0x1234 ; al[3] := OxABCD ;
a2[0] := OxXFFFF; a2[1l] := 0x00FF ; a2[2] := O0xFFO00 ; a2[3] := 0x0000 ;
print ("al WY g

dumpArray (al, 4) ;

print ("a2 Wy g

dumpArray (a2, 4) ;

mem ArrayOp2(al, a2,4, OP2 AND, 0);

print ("AND ")

dumpArray (al, 4) ;

al[0] := OxAAAA; al[l] := 0x0606 ; al[2] := 0x1234 ; al[3] := 0xABCD ;
mem ArrayOp2(al, a2,4, OP2 XOR, O0);

print ("XOR ")

dumpArray (al, 4) ;

DIABLO16 INTERNAL FUNCTIONS Page 465 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

mem ArrayOp2(al, a2,4, OP2 COPY, 0);
print ("COPY ") ;
dumpArray (al, 4) ;

repeat

forever
endfunc

func dumpArray(var * array, var cnt)

var i ;
for (1 := 0; 1 < cnt; 1i++)
print ([HEX4] array[i], " ") ;
next
print ("\n") ;
endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 466 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
e pause(time)
e lookup8 (key, byteConstList)
e lookupl6 (key, wordConstList)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 467 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘pause(time);

Arguments time
time A value specifying the delay time in milliseconds.

The arguments can be a variable, array element, expression or constant

Returns ‘nothing

Description ‘Stop execution of the user program for a predetermined amount of time.

Example if (status) // if fire button pressed
pause (30) // slow down the loop
else

DIABLO16 INTERNAL FUNCTIONS Page 468 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘Iookups(key, byteConstlList);

Arguments key, byteConstList

key A byte value to search for in a fixed list of constants. The key argument can be a
variable, array element, expression or constant

byteConstList A comma separated list of constants and strings to be matched against key.
Note: the string of constants may be freely formed, see example.

Returns result
result See description.

Description Search a list of 8 bit constant values for a match with a search value key. If found, the index of the
matching constant is returned in result, else result is set to zero. Thus, if the value is found first in the
list, result is set to one. If second in the list, result is set to two etc. If not found, result is returned
with zero.

Note: The list of constants cannot be re-directed. The lookup8(...) functions offer a versatile way for
returning an index for a given value. This can be very useful for data entry filtering and parameter
input checking and where ever you need to check the validity of certain inputs. The entire search list
field can be replaced with a single name if you use the S operator in constant, eg :

#constant HEXVALUES $"0123456789ABCDEE"

Example func main ()
var key, r;

key := 'a';
r := lookup8(key, 0x4D, "abcd", 2, 'Z', 5);
print ("\nSearch value 'a' \nfound as index ", r)

key := 5;

r := lookup8 (key, 0x4D, "abcd", 2, 'Z', 5);
print ("\nSearch value 5 \nfound at index ", r)
putstr ("\nScanning..\n") ;

key := -12000; // we will count from -12000 to +12000, only
// the hex ascii values will give a match value

while (key <= 12000)
r := lookup8(key, "0123456789ABCDEF"); // hex lookup
if(r) print([HEX1] r-1); // only print if we got a match in
// the table
key++;
wend

repeat forever
endfunc

DIABLO16 INTERNAL FUNCTIONS Page 469 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax lookup16(key, wordConstList);

Arguments key, wordConstList

key A word value to search for in a fixed list of constants. The key argument can be a
variable, array element, expression or constant

wordConstList A comma separated list of constants to be matched against key.

Returns result

result See description.

Description Search a list of 16 bit constant values for a match with a search value key. If found, the index of the
matching constant is returned in result, else result is set to zero. Thus, if the value is found first in the
list, result is set to one. If second in the list, result is set to two etc. If not found, result is returned
with zero.

Note: The lookup16(...) functions offer a versatile way for returning an index for a given value. This is
very useful for parameter input checking and where ever you need to check the validity of certain
values. The entire search list field can be replaced with a single name by using the $ operator in
constant, eg:

#constant LEGALVALS $5,10,20,50,100,200,500,1000,2000,5000,10000

Example func main ()
var key, r;

key := 5000;
r := lookupl6 (key, 5,10,20,50,100,200,500,1000,2000,5000,10000) ;
//r := lookupl6 (key, LEGALVALS) ;

if (r)

print ("\nSearch value 5000 \nfound at index ", r);
else

putstr ("\nValue not found");
endif

print ("\nOk"); // all done

repeat forever
endfunc

DIABLO16 INTERNAL FUNCTIONS Page 470 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
o flt_ADD(&result, &floatA, &floatB)
o flt_SUB(&result, &floatA, &floatB)
o flt_MUL(&result, &floatA, &floatB)
o flt_DIV(&result, &floatA, &floatB)
o flt_POW/(&result, &floatA, &floatB)
o flt_ABS(&result, &floatval)
o flt_CEIL(&result, &floatval)
o flt_FLOOR(&result, &floatval)
o flt_SIN(&result, &floatval)
o flt_COS(&result, &floatval)
o flt_TAN(&result, &floatval)
o flt_ASIN(&result, &floatval)
o flt_ACOS(&result, &floatval)
o flt_ATN(&result, &floatval)
o flt_EXP(&result, &floatval)
o flt_LOG(&result, &floatval)
o flt_SQR(&result, &floatval)
o flt_LT(&floatA, &floatB)
o flt_EQ(&floatA, &floatB
o flt_NE(&floatA, &floatB
o flt_GT(&floatA, &floatB
o flt_GE(&floatA, &floatB
o flt_LE(&floatA, &floatB)
o flt_SGN(&floatval)
o flt_FTOI(&floatval)
o flt_ITOF(&fresult, &varlb)
o flt_UITOF(&fresult, &uvarle)
o flt_LTOF(&fresult, &var32)
o flt_ULTOF(&fresult, &uvar32)
o flt_VAL(&floatl, mystring)
e flt_PRINT(&fvalue, formatstring)
o flt_PRINTxy(x, y, &fvalue, formatstring)

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 471 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flt_ADD(&result, &floatA, &floatB)

Arguments &result, &floatA, &floatB)
&result Points to float result register.
&floatA points to the float value A.

&floatB points to the float value B.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

Returns a pointer to the float result register or zero if error occurs. Carry and overflow

ointer
P are not affected.

Description Performs floating point addition (A+B) and returns the value in the result register.

Example var floatA[2], floatB[2], result[2];

gfx ScreenMode (LANDSCAPE) ; // landscape orientation

flt VAL (floatA, "3.3"); // Convert a string ("3.3") to a floatA
flt ITOF (floatB, 4);//Convert integer "4" to float

flt ADD(result, floatA, floatB);
gfx MoveTo (0,0) ;

print ("add: ");

flt PRINT (result,"%.6f");

print ("\n");

DIABLO16 INTERNAL FUNCTIONS Page 472 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_SUB(&result, &floatA, &floatB)

Arguments &result, &floatA, &floatB)
&result Points to float result register.
&floatA points to the float value A.

&floatB points to the float value B.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

Returns a pointer to the float result register or zero if error occurs. Carry and overflow

ointer
P are not affected.

Description Performs floating point Subtraction (A-B) and returns the value in the result register.

Example var floatA[2], floatB[2], result[2];

gfx ScreenMode (LANDSCAPE) ; // landscape orientation

flt VAL (floatA, "3.3"); // Convert a string ("3.3") to a floatA
flt ITOF (floatB, 4); //Convert integer "4" to float

flt SUB(result, floatA, floatB);
print ("subtract: ");

flt PRINT (result,"%.6f");

print ("\n");

DIABLO16 INTERNAL FUNCTIONS Page 473 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

Syntax

‘flt_MUL(&resuIt, &floatA, &floatB)

Arguments &result, &floatA, &floatB)
&result Points to float result register.
&floatA points to the float value A.
&floatB points to the float value B.
Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.
Note: A float variable is a 2 word array, eg var myfloat[2]
Returns pointer
. Returns a pointer to the float result register or zero if error occurs. Carry and overflow
pointer
are not affected.
Description Performs floating point Multiplication (A * B) and returns the value in the result register.
Example var Voltage[20]; // string to store computed voltage

func main ()
var Vsteps;

gfx ScreenMode (LANDSCAPE) ;
pin Set (PIN AN, PAO);

repeat
Vsteps := pin Read(PAO) ;
gfx MoveTo (0, 0) ;

// values

// variable to store conversion
// results

// landscape orientation

// set pin PAO to be used as an
// analogue input, standard mode

// 12 bit analogue 0 to 4095
// move origin to point 0, 108,
//printing will start from this point

print ("steps: ", [DEC4Z]Vsteps);// print the number of steps

getVoltage (Vsteps) ;

gfx MoveTo (0, 15) ;
print ("voltage: ");
putstr (Voltage) ;

forever
endfunc

func getVoltage (var reading)
var nsteps[2];
var Vref[2];
var Nsteps[2];
var Factor[2];
var Result[2];

flt VAL (Vref, "3.3");
flt ITOF (Nsteps, 4095);

flt DIV (Factor, Vref, Nsteps);

// compute the equivalent voltage
//value of Vsteps
// result is converted to a string

//and stored in global variable Voltage

// print the computed equivalent
// voltage onscreen

//Convert a string ("3.3") to a float
// (Vref)

//Convert an integer (4095) to a float
// (Nsteps)

//Float divistion, Factor = Vref/Nsteps

DIABLO16 INTERNAL FUNCTIONS

Page 474 of 554

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

flt ITOF (nsteps, reading); //Convert the integer 'reading' to a
//float 'nsteps'

flt MUL(Result, nsteps, Factor);//Float multiplication,
//Result = nsteps * Factor

to(Voltage); flt PRINT (Result, "$.6f");//print formatted Result
//to the global variable Voltage

endfunc

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 475 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flt_DIV(&result, &floatA, &floatB)

Arguments &result, &floatA, &floatB)
&result Points to float result register.
&floatA points to the float value A.

&floatB points to the float value B.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

Returns a pointer to the float result register or zero if error occurs. Carry and overflow

ointer
P are not affected.

Description ‘Performs floating point Division (A/B) and returns the value in the result register.

Example ‘See the example in section "flt_MUL(&result, &floatA, &floatB)".

DIABLO16 INTERNAL FUNCTIONS Page 476 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_POW(&result, &floatA, &floatB)

Arguments &result, &floatA, &floatB)
&result Points to float result register.
&floatA Points to the float value to raise.

&floatB Points to the float value for power.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

Returns a pointer to the float result register or zero if error occurs. Carry and overflow

ointer
P are not affected.

Description |Raises A to power B (A8) and returns the result value in the result register.

Exanuﬂe var floatA[2], floatB[2], result[2];
gfx ScreenMode (LANDSCAPE) ; // landscape orientation

flt ITOF(floatdA, 2); // Convert integer "2" to float
flt ITOF (floatB, 8); // Convert integer "4" to float

flt POW(result, floatA, floatB);
print ("power: ");

flt PRINT (result,"%.6f");

print ("\n");

DIABLO16 INTERNAL FUNCTIONS Page 477 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_ABS(&resuIt, &floatval)

Arguments &result, &floatval
&result Points to float result register.

& floatval points to the float value to get the Absolute of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

Returns a pointer to the float result register or zero if error occurs. Carry and overflow

ointer
P are not affected.

Description Calculates absolute value of the floating point value.

Exanuﬂe var floatA[2], result[2];
gfx ScreenMode (LANDSCAPE) ; //landscape orientation

flt ITOF (floatA, -124); //Convert integer "-124" to float
flt ABS(result, floath);

print ("absolute value: ");
fl1t PRINT (result, "$.2f") ;
print ("\n");

DIABLO16 INTERNAL FUNCTIONS Page 478 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_CEIL(&resuIt, &floatval)

Arguments &result, &floatval
&result Points to float result register.

& floatval points to the float value to integerize up.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

Returns a pointer to the float result register or zero if error occurs. Carry and overflow

ointer
P are not affected.

Description |Rounds value up to the integer value. Removes fractional part, rounding up correctly.

Exanuﬂe var floatA[2], result[2];
gfx ScreenMode (LANDSCAPE) ; // landscape orientation

flt VAL (floatA,"99.678"); //Convert string "99.678" to float
flt CEIL(result, floata);

print ("result: ");
flt PRINT (result,"%.5f");
print ("\n");

DIABLO16 INTERNAL FUNCTIONS Page 479 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_FLOOR(&resuIt, &floatval)

Arguments &result, &floatval
&result Points to float result register.

& floatval points to the float value to integerize down.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

Returns a pointer to the float result register or zero if error occurs. Carry and overflow

ointer
P are not affected.

Description Rounds value down to the integer value. Removes fractional part, rounding down correctly.

Exanuﬂe var floatA[2], result[2];
gfx ScreenMode (LANDSCAPE) ; // landscape orientation

flt VAL (floatA,"99.678"); //Convert string "99.678" to float
flt FLOOR (result, floatA);

print ("result: ");

flt PRINT (result,"%.5f");

print ("\n");

DIABLO16 INTERNAL FUNCTIONS Page 480 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_SIN(&result, &floatval)

Arguments &result, &floatval
&result Points to float result register.

& floatval pyints to the float value angle (in radians) to get the SINE of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

Returns a pointer to the float result register or zero if error occurs. Carry and overflow

ointer
P are not affected.

Description Calculates the SINE of float value in radians and returns the value in the result register.

Exanuﬂe var floatA[2], result[2];
gfx ScreenMode (LANDSCAPE) ; //landscape orientation

flt VAL (floatA,"1.5708"); //Convert string "1.5708" to float
flt SIN(result, floath);

print ("result: ");

flt PRINT (result,"%.5f");

print ("\n");

DIABLO16 INTERNAL FUNCTIONS Page 481 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_COS(&result, &floatval)

Arguments &result, &floatval
&result Points to float result register.

& floatval points to the float value angle (in radians) to get the COSINE of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

Returns a pointer to the float result register or zero if error occurs. Carry and overflow

ointer
P are not affected.

Description Calculates the COSINE of float value in radians and returns the value in the result register.

Exanuﬂe var floatA[2], result[2];
gfx ScreenMode (LANDSCAPE) ; //landscape orientation

flt VAL (floatA,"3.1416"); //Convert string "3.1416" to float
flt COS (result, floath);

print ("result: ");

flt PRINT (result,"%.5f");

print ("\n");

DIABLO16 INTERNAL FUNCTIONS Page 482 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_TAN(&resuIt, &floatval)

Arguments &result, &floatval
&result Points to float result register.

& floatval pyints to the float value angle (in radians) to get the TANGENT of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

Returns a pointer to the float result register or zero if error occurs. Carry and overflow

ointer
P are not affected.

Description Calculates the TANGENT of float value in radians and returns the value in the result register.

Exanuﬂe var floatA[2], result[2];
gfx ScreenMode (LANDSCAPE) ; //landscape orientation

flt VAL (floatA,"3.1416"); //Convert string "3.1416" to float
flt TAN (result, floath);

print ("result: ");

flt PRINT (result,"%.5f");

print ("\n");

DIABLO16 INTERNAL FUNCTIONS Page 483 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_ASIN(&result, &floatval)

Arguments &result, &floatval
&result Points to float result register. Result is in radians.

& floatval points to the float value to get the ARCSINE of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

Returns a pointer to the float result register or zero if error occurs. Carry and overflow

ointer
P are not affected.

Description Calculates the ARCSINE of float value and returns the angle in radians in the result register.

Exanuﬂe var floatA[2], result[2];
gfx ScreenMode (LANDSCAPE) ; //landscape orientation

flt VAL (floatA,"0.1234"); //Convert string "0.1234" to float
flt ASIN(result, floata);

print ("result: ");

flt PRINT (result,"%.5f");

print ("\n");

DIABLO16 INTERNAL FUNCTIONS Page 484 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_ACOS(&result, &floatval)

Arguments &result, &floatval
&result Points to float result register. Result is in radians.

& floatval points to the float value to get the ARCCOS of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

Returns a pointer to the float result register or zero if error occurs. Carry and overflow

ointer
P are not affected.

Description Calculates the ARCCOS of float value and returns the angle in radians in the result register.

Exanuﬂe var floatA[2], result[2];
gfx ScreenMode (LANDSCAPE) ; //landscape orientation

flt VAL (floatA,"0.1234"); //Convert string "0.1234" to float
flt ACOS (result, floata);

print ("result: ");

flt PRINT (result,"%.5f");

print ("\n");

DIABLO16 INTERNAL FUNCTIONS Page 485 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_ATAN(&resuIt, &floatval)

Arguments &result, &floatval
&result Points to float result register. Result is in radians.

& floatval points to the float value to get the ARCTAN of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

Returns a pointer to the float result register or zero if error occurs. Carry and overflow

ointer
P are not affected.

Description Calculates the ARCTAN of float value and returns the angle in radians in the result register.

Exanuﬂe var floatA[2], result[2];
gfx ScreenMode (LANDSCAPE) ; //landscape orientation

flt VAL (floatA,"0.1234"); //Convert string "0.1234" to float
flt ATAN (result, floata);

print ("result: ");

flt PRINT (result,"%.5f");

print ("\n");

DIABLO16 INTERNAL FUNCTIONS Page 486 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_EXP(&result, &floatval)

Arguments &result, &floatval
&result Points to float result register.

& floatval points to the float value to get the Exponent of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

Returns a pointer to the float result register or zero if error occurs. Carry and overflow

ointer
P are not affected.

Description Calculates the Exponent of float value and returns the value in the result register.

Example var floatA[2], result[2];

gfx ScreenMode (LANDSCAPE) ; //landscape orientation
flt ITOF (floatA, 5); //convert integer 5 to float
flt EXP(result, floatd);//result = e"5

print ("result: ");

flt PRINT (result,"%.4f");

print ("\n");

DIABLO16 INTERNAL FUNCTIONS Page 487 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_LOG(&result, &floatval)

Arguments &result, &floatval
&result Points to float result register.

& floatval points to the float value to get the natural Log of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

Returns a pointer to the float result register or zero if error occurs. Carry and overflow

ointer
P are not affected.

Description Calculates the Natural Log of float value and returns the value in the result register.

Exmnpb var floatA[2], result[2];
gfx ScreenMode (LANDSCAPE) ; //landscape orientation

flt VAL(floathA,"2.718282"); //Convert string "2.718282" to float
flt LOG(result, floath);

print ("result: ");

flt PRINT (result,"%.5f");

print ("\n");

DIABLO16 INTERNAL FUNCTIONS Page 488 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_SQR(&result, &floatval)

Arguments &result, &floatval
&result Points to float result register.

& floatval pyints to the float value to get the square root of.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

Returns a pointer to the float result register or zero if error occurs. Carry and overflow

ointer
P are not affected.

Description Calculates the square root of float value and returns the value in the result register.

Exanuﬂe var floatA[2], result[2];
gfx ScreenMode (LANDSCAPE) ; //landscape orientation

flt VAL (floatA,"16.0"); //Convert string "16.0" to float
flt SQOR(result, floath);

print ("result: ");

flt PRINT (result,"%.5f");

print ("\n");

DIABLO16 INTERNAL FUNCTIONS Page 489 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flt_LT(&floatA, &floatB)

Arguments & floatA, &floatB
&floatA points to the float value A.

&floatB points to the float value B.

at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted

Returns status

status True if A < B, false otherwise

Description Compare A to B and returns true if A< B

Example var floatA[2], floatB[2], result[2];

gfx ScreenMode (LANDSCAPE) ; //landscape orientation

flt VAL (floatA,"16.0"); //Convert string "16.0" to float
flt VAL (floatB,"17.5"); //Convert string "17.5" to float

if(flt_LT(floatA, floatB))
print ("floatA is less than floatB\n");
endif

DIABLO16 INTERNAL FUNCTIONS Page 490 of 554

www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_EQ(&roatA, &floatB)

Arguments & floatA, &floatB
&floatA points to the float value A.

&floatB points to the float value B.

at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted

Returns status

status True if A == B, false otherwise

Description Compare A to B and returns true if equal.

Example var floatA[2], floatB[2], result[2];

gfx ScreenMode (LANDSCAPE) ; //landscape orientation

flt VAL (floatA,"16.0"); //Convert string "16.0" to float
flt VAL (floatB,"16.0"); //Convert string "16.0" to float

if(flt_EQ(floatA, floatB))

print ("floatA is equal to floatB\n");
else

print ("floatA is not equal to floatB\n");

endif

DIABLO16 INTERNAL FUNCTIONS Page 491 of 554

www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flt_NE(&floatA, &floatB)

Arguments & floatA, &floatB
&floatA points to the float value A.

&floatB points to the float value B.

at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted

Returns status

status True if A != B, false otherwise

Description Compare A to B and returns true if A 1=B

Example var floatA[2], floatB[2], result[2];

gfx ScreenMode (LANDSCAPE) ; //landscape orientation

flt VAL (floatA,"16.0"); //Convert string "16.0" to float
flt VAL (floatB,"100.0"); //Convert string "100.0" to float

if(flt_NE(floatA, floatB))

print ("floatA is not equal to floatB\n");
else

print ("floatA is equal to floatB\n");
endif

DIABLO16 INTERNAL FUNCTIONS Page 492 of 554

www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_GT(&roatA, &floatB)

Arguments & floatA, &floatB
&floatA points to the float value A.

&floatB points to the float value B.

at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted

Returns status

status True if A > B, false otherwise

Description Compare A to B and returns true if A>B

Example var floatA[2], floatB[2], result[2];

gfx ScreenMode (LANDSCAPE) ; //landscape orientation

flt VAL (floatA,"16.0"); //Convert string "16.0" to float
flt VAL (floatB,"100.0"); //Convert string "100.0" to float

if(flt_GT(floatB, floatAh))
print ("floatB is greater than floatA\n");
endif

DIABLO16 INTERNAL FUNCTIONS Page 493 of 554

www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_G E(&floatA, &floatB)

Arguments & floatA, &floatB
&floatA pgints to the float value A.

&floatB points to the float value B.

at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted

Returns status

status True if A >=B, false otherwise

Description Compare A to B and returns true if A >=B.

Example var floatA[2], floatB[2], result[2];

gfx ScreenMode (LANDSCAPE) ; //landscape orientation

flt VAL (floatA,"16.0"); //Convert string "16.0" to float
flt VAL (floatB,"100.0"); //Convert string "100.0" to float

if (f1t GE(floatB, floatd))

endif

print ("floatB is greater than or equal to floatA\n");

DIABLO16 INTERNAL FUNCTIONS Page 494 of 554

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flt_LE(&floatA, &floatB)

Arguments & floatA, &floatB
&floatA points to the float value A.

&floatB points to the float value B.

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns status

status True if A <= B, false otherwise

Description Compare A to B and returns true if A <= B

Example var floatA[2], floatB[2], result[2];

gfx ScreenMode (LANDSCAPE) ; //landscape orientation

flt VAL (floatA,"160.0"); //Convert string "160.0" to float
flt VAL (floatB,"100.0"); //Convert string "100.0" to float

if (f1t LE(floatB, floatd))
print ("floatB is less than or equal to floatA\n");
endif

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 495 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_SGN(&roatvaI)

Arguments & floatval
&floatval points to the float value to examine the sign of.
Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.
Note: A float variable is a 2 word array, eg var myfloat[2]

Returns value
value Returns 16bit integer -1 if float sign is negative, or zero if positive

Description Examines sign of the float value and returns O if sign is positive or value equals zero. Returns 16bit
integer -1 if float sign is negative

Examp'e var floatA[2];

gfx ScreenMode (LANDSCAPE) ; //landscape orientation
flt VAL (floatA,"-100.0"); //Convert string "-100.0" to float

if (f1t SGN(floatA) == -1)
print ("floatA is a negative value\n");

endif

DIABLO16 INTERNAL FUNCTIONS Page 496 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax flt_FTOI(&floatval)

Arguments & floatval
&floatval points to the float value to be converted to integer.
Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.
Note: A float variable is a 2 word array, eg var myfloat[2]

Returns value
value The integer value of the float

Description Converts a floating point number to a 16bit integer. The floating point number is rounded up or down
accordingly.

Example var floatA[2], result;

gfx ScreenMode (LANDSCAPE) ; //landscape orientation
flt VAL (floathA,"-123.4567"); //Convert string "-123.4567" to float

result := flt FTOI (floata);
print ("result: ", result,"\n");

DIABLO16 INTERNAL FUNCTIONS Page 497 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_lTOF(&fresuIt, varle)
Arguments &fresult, varl6

&fresult Points to float result variable.

varlé a 16bit signed integer variable

Note: A float variable is a 2 word array, eg var fresult[2]
Returns pointer

pointer Returns the pointer to the float result, normally ignored
Description Converts a 16bit signed integer value to a signed floating point number.
Example var floatA[2];

gfx ScreenMode (LANDSCAPE) ; //landscape orientation
flt ITOF (floatA, 100); //convert integer 100 to float

print ("float value: ");
flt PRINT (floathA,"%.6f");//prints "100.000000"
print ("\n") ;

DIABLO16 INTERNAL FUNCTIONS Page 498 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_UITOF(&fresuIt, uvarle)
Arguments &fresult, uvarl6é
&fresult points to float result variable.
uvarl6 A 16bit unsigned integer variable
Note: A float variable is a 2 word array, eg var fresult[2]
Returns pointer
pointer Returns the pointer to the float result.
Description Converts a 16bit unsigned integer value to a positive floating point number.
Example var floatA[2];

gfx ScreenMode (LANDSCAPE) ; //landscape orientation
flt UITOF (floathA, 50000); //convert integer 50000 to float

print ("float value: ");
flt PRINT (floatA,"$.2f");//prints "50000.00"
print ("\n");

DIABLO16 INTERNAL FUNCTIONS Page 499 of 554

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_LTOF(&fresult, var32)

Arguments &fresult, var32
&fresult Points to float result variable.

var32 A 32bit (long) signed variable.

Note: A float variable is a 2 word array, eg var fresult[2]

Returns pointer

pointer Returns the pointer to the float result.

Description Converts a 32bit signed integer value to a signed floating point number.

Example var floatA[2], longInt[2];

gfx ScreenMode (LANDSCAPE) ; //landscape orientation

umul 1616 (longInt, 500, 2000); //multiply 500 by 2,000, store
//result (1,000,000) in longInt

flt LTOF (floatAi, longInt);//convert 1,000,000 to a float value

print ("float value: ");

flt PRINT (floathA,"%.2f");//prints "1000000.00"

print ("\n");

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 500 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_U LTOF(&fresult, uvar32)

Arguments &fresult, uvar32
&fresult points to float result variable.

uvar32 A 32bit (long) unsigned variable.

Note: A float variable is a 2 word array, eg var fresult[2]

Returns pointer

pointer Returns the pointer to the float result.

Description Converts a 32bit unsigned integer value to a positive floating point number.

Example var floatA[2], longInt[2], ptr;

gfx ScreenMode (LANDSCAPE) ; //landscape orientation

umul 1616 (longInt, 50000, 50000); //multiply 50,000 by 50,000
//store result (2,500,000,000) in longInt

ptr := str Ptr(longInt); //create a string pointer for longInt
print ("unsigned 32bit value: ");

str Printf (&ptr,"%1u"); //print the value of longInt

print ("\n") ;

fl1t ULTOF (floatA, longInt);//convert longInt to a float value
print ("float value: ");

flt PRINT (floath,"%.2f");//prints "2500000000.00"

print ("\n");

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 501 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_VAL(&fresuIt, numstring)

Arguments &fresult, numstring
& fresult points to float result register.

numstring A string constant or string variable that holds valid floating point number.
The string argument can be a string constant, a pointer to a string variable, or a pointer
to a data statement.
The string may be a float, or a hex or binary integer value (no decimal point allowed). For
hex or binary, the number is preceeded with Ox or Ob

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns pointer

pointer Returns the pointer to the float result.

Description ‘Converts the number string to a valid float value. Carry and overflow are not affected.

Example ‘See the example in section "flt_ADD(&result, &floatA, &floatB)".

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 502 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax ‘flt_PRINT(&fvaIue, formatstring)
Arguments &fvalue, formatstring
&fvalue Points to float result variable.
formatstring zero, null string, of valid format string
Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.
Note: A float variable is a 2 word array, eg var myfloat[2]
Returns status
status Returns ‘0’ if successfull.
Description

Prints a floating point value in a set string format.

The string argument can be a string constant, a pointer to a string variable, or a pointer to a data
statement. If it is zero or an empty string, the number is automatically formatted for the best
presentation. The format string is similar to the C language, but only a single '%' may be used to print
a single variable.

To format the output, refer to the following syntax:

%<flag><width>.<precision><specifier>

|

|
modifier
flag Meaning
- left justify
+ always display sign
space display space if there is no sign
0 pad with leading zeros

width specifies the number of characters used in total to display the value. Notice that the width
includes the decimal point, and a - sign if there is one.

precision indicates the number of characters used after the decimal point.

specifier Meaning
f float
eorkE float exponential format

DIABLO16 INTERNAL FUNCTIONS Page 503 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Example var floatA[2];
gfx_ScreenMode (LANDSCAPE) ; //landscape orientation
flt ITOF (floathA, 5000); //convert integer 5000 to float

print ("float value: ");
print ("\n");

//specify format
print (" Sf: "),
flt PRINT (floatA,"$f");//prints "5000.000000"
//default precision is six 0's after the decimal point
print ("\n");

print (" Se: ") ;
flt PRINT (floathA,"%e");//prints "5.000000e+03" (float exponential format)
//default precision is six 0's after the decimal point

print ("\n") ;

//specify precision

print (" $.2f: ")

flt PRINT (floatA,"$.2f") ;//prints "5000.00"
print ("\n");

print (" $.1le: ™),
flt PRINT (floatA,"%.le");//prints "5.0e+03" (float exponential format)
print ("\n");

//specify width and precision
print (" $10.2f: ");
flt PRINT (floatA,"%10.2f");//prints " 5000.00",
//a total of 10 characters (including the decimal point)
//left padded with 3 space characters
print ("\n");

print (" %10.2e: ");
flt PRINT (floatA,"%10.2e");//prints " 5.00e+03",
//a total of 10 characters (including the decimal point)
//left padded with 2 space characters
print ("\n");

//specify flag, width, and precision
print (" %010.2f: ");
flt PRINT (floatA,"%010.2f");//prints "0005000.00",
//a total of 10 characters (including the decimal point)
//left padded with 3 0's
print ("\n");

print (" %010.2e: ");
flt PRINT (floatA,"%010.2e");//prints "005.00e+03",
//a total of 10 characters (including the decimal point)
//left padded with 2 0's
print ("\n") ;

print (" %+10.2f: ");
flt_PRINT (floatd,"$+10.2£f");//prints " +5000.00",
//a total of 10 characters (including the decimal point)
//sign is always displayed
//left padded with 2 space characters

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

print ("\n");

print ("$+010.2f: ");
flt_PRINT (floatA,"$+010.2f");//prints "+005000.00",
//a total of 10 characters (including the decimal point)
//left padded with 2 0's

DIABLO16 INTERNAL FUNCTIONS Page 504 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

print ("\n");

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 505 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax

flt_PRINTxy(x, y, &fvalue, formatstring)

Arguments

X, ¥, &fvalue, formatstring
X The x position to start printing the number in.
y The y position to start printing the number in.

&fvalue Points to float result variable.

formatstring zero, null string, of valid format string

Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted
at run-time by calling flt_Val for a string argument.

Note: A float variable is a 2 word array, eg var myfloat[2]

Returns

Status

status Returns ‘0’ if successfull.

Description

Prints a floating point value in a set string format at the specified position.

The string argument can be a string constant, a pointer to a string variable, or a pointer to a data
statement. If it is zero or an empty string, the number is automatically formatted for the best
presentation. The format string is similar to the C language, but only a single '%' may be used to print
a single variable.

For more information on the syntax of the format string, refer to section “flt PRINT (&fvalue,

formatstring)”.

Example

var floatA[2];
gfx ScreenMode (LANDSCAPE) ; //landscape orientation
flt ITOF (floatA, 5000); //convert integer 5000 to float

print ("float value: ");
print ("\n");

//specify format

gfx MoveTo (36, 16);//move cursor to 36,16
txt_FGcolour(YELLOW);//Set text foreground color to yellow
print ("$f: ");

txt FGcolour (LIME);//set text foreground color to lime

flt PRINTxy (68,16, floatA,"%f");//prints "5000.000000" at 68,16
print ("\n");

gfx_MoveTo (36, 32);//move cursor to 36,32

txt FGcolour (YELLOW) ;//set text foreground color to yellow
print ("%e: ");

txt_FGcolour(LIME);//set text foreground color to lime

flt PRINTxy(68,32,floatA,"%e");//prints "5.000000e+03" at 68,32
print ("\n") ;

//specify precision
gfx MoveTo (20, 52);//move cursor to 20,52
txt_ FGcolour (YELLOW) ;//set text foreground color to yellow

DIABLO16 INTERNAL FUNCTIONS Page 506 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

print ("$.2f: ");

txt_FGcolour(LIME);//set text foreground color to lime

flt PRINTxy (68, 52, floathA,"$.2f");//prints "5000.00" at 68,52
print ("\n");

gfx MoveTo (20, 72);//move cursor to 20,72
txt_FGcolour(YELLOW);//set text foreground color to yellow
print ("$.le: ");

txt_FGcolour(LIME);//set text foreground color to lime

flt PRINTxy (68, 72, floathA,"%.le");//prints "5.0e+03" at 68,72
print ("\n") ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 507 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
e sys PmmC()
e sys_Driver()

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 508 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_Pmmc();

Arguments None

Returns None

Description Prints the system PmmC name and revision eg "Diablo16\n1.0"

Can be captured to a buffer using the to() function

Example to (myString) ; sys_PmmC();// save PmmC name and revision to buffer

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 509 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax sys_Driver();

Arguments None

Returns None

Description Prints the system driver name and date string eg "uLCD-32WDTU-A\n130411"

Can be captured to a buffer using the to() function

Example to(mystring); sys Driver(); // save Driver name and date to buffer

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 510 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
spiflash_BlockErase(spi#, Enablepin, block)

e spiflash_BulkErase(spi#, Enablepin)

e spiflash_Exec(spi#, Enablepin, arglistptr)

e spiflash_GetC(spi#, Enablepin)

o spiflash_GetS(*String, size, spi#, Enablepin)

e spiflash_GetW(spi#, Enablepin)

e spiflash_ID(spi#, Enablepin)

e spiflash_Image(x, y, spi#, Enablepin)

e spiflash_LoadFunction(spi#, Enablepin)

e spiflash_LoadlmageControl(spi#, Enablepin)

e spiflash_PlayWAV(spi#, Enablepin)

e spiflash_PutC(char, spi#, Enablepin)

e spiflash_PutS(source, spit, Enablepin)

e spiflash_PutW(word, spi#, Enablepin)

e spiflash_Read(destination, size, spi#, Enablepin)
o spiflash_Run(spi#, Enablepin, arglistptr)

e spiflash_SetAdd(spi#, HiwWord, LoWord)

e spiflash_SIG(spi#, Enablepin)

e spiflash_Write(Source, size, spi#, Enablepin)

e spiflash_Block32Erase(spit, Enablepin)

e spiflash_Sector4Erase(spit, Enablepin)

e spiflash_ReadByte(flags, spi#, Enablepin)

e spiflash_WriteByte(reg/value, spi#, enablepin)
e spiflash_SetMode(spi#, mode)

e spiflash_LoadGCFImageControl(spi#, Enablepin)

These functions can be used to access an SPI FLASH storage device connected to the selected SPI port, and correctly
initialised with the spi_Init(...) function, each FLASH device also needs a dedicated enable pin pulled high and set as
output from within the driving program. Devices like the M25Pxx and A25Lxx which has 512Kbit to 128Mbit of Serial
Flash Memory are supported. Other similar devices should work. Additionally, support for more than 16MB of serial
flash is available by using SPI_ADDRESS_MODEA4 in the relevant SPI Init function.

Note that when accessing certain file types via spiflash it may be necessary to append an identifiable EOF character
(eg ~Z) to enable your program to properly detect EOF.

Sample initialization code:-

#CONST
EnablePin PAO
ClockPin PA6
SDIPin PA2
SDOPin PA5

H#END

pin_HI(EnablePin) ;

pin_Set(PIN_OUT,EnablePin) ;
SPI1_SDI_pin(SDIPin) ;

SPI1_SCK_pin(ClockPin) ;

SPI1_SDO_pin(SDOPin) ;

SPI1_Init(SPI_SPEED15, SPI8_MODE_5, EnablePin) ;

Note that the Init must be done in 8 bit mode, but the internal functions will automatically flip between 8 and 16 bit
mode to gain optimal performance.

DIABLO16 INTERNAL FUNCTIONS Page 511 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_BlockErase(spi#, Enablepin, block) ;

Arguments spi#, Enablepin, block
Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.
Enablepin The enable pin assigned to this spiflash device, eg PAO

Block The block to be erased

Returns Nothing

Description Erases the required block in a FLASH media device. The function returns no value, and the operation
can take up to 3 milliseconds.

Example spiflash BlockErase (SPI1, PAQO, 3) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 512 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_BulkErase(spi#, Enablepin) ;

Arguments spi#, Enablepin

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PAO

Returns Nothing

Description Erases the entire flash media device. The function returns no value, and the operation can take up to
80 seconds depending on the size of the flash device. Note that not all devices support this command.

Example spiflash BulkErase (SPI1, PAO) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 513 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_Exec(spi#, Enablepin, arglistptr);

Arguments spi#, Enablepin, arglistptr
Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PAO

arglistptr pointer to the list of arguments to pass to the new program or 0 if no arguments.
Returns Value
Value ‘Returns the value from main in the called program.

Description | This function is similar to spiflash_Run, however, the main program in FLASH retains all memory
allocations (eg file buffers, memory allocated with mem_Alloc etc)

Returns like a function, current program calling program is kept active and control returns to it.

If arglistptr is 0, no arguments are passed, else arglist points to an array, the first element being the
number of elements in the array.

func 'main’ in the called program accepts the arguments.

This function is similar to spiflash_LoadFunction(...), however, the function argument list is passed by
pointer, and the memory consumed by the function is released as soon as the function completes.

spiflash_SetAdd should have previously been called to identify the address of the program to be
called.

Example spiflash Exec(SPI1, PAO, 0) ;

DIABLO16 INTERNAL FUNCTIONS Page 514 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax 1.1.1. spiflash_GetC(spi#, Enablepin);

Arguments spi#, Enablepin
Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.
Enablepin The enable pin assigned to this spiflash device, eg PAO

Returns byte
byte ‘Returns the next char from the file

Description |Reads a character (or byte) from the SPI FLASH memory device on the specified SPI port and enable
pin. The source is the address set by spiflash_SetAdd(), or incremented by subsequent reads or
writes.

Example mychar := spiflash GetC(SPI1l, PAO) ;

DIABLO16 INTERNAL FUNCTIONS Page 515 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_GetS(*String, size, spi#, Enablepin) ;

Arguments string, size, spi#, Enablepin

string Destination buffer

size The maximum number of bytes to be read from the file. (Up to max of 80)
Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PAO

Returns Count

Count Returns the number of characters read from file (excluding the null terminator)

Description | This function Reads a line of text to a buffer (specified by "*string") from the FLASH memory device
on the specified SPI port and enable pin into the specified destination. The source is the address set
by spiflash_SetAdd(), or incremented by subsequent reads or writes.

Note: only reads up to "size-1" characters into "string"

file_GetS(...) will stop reading when any of the following conditions are true:
A) It has read n-1 bytes (one character is reserved for the null-terminator)

B) It encounters a newline character (a line-feed in the compilers tested here)
C) It reaches the end of file

D) A read error occurs.

The file must be previously opened with 'r' (read) mode.

Example res := spiflash GetS (mystring, 80, SPI1, PAO);

DIABLO16 INTERNAL FUNCTIONS Page 516 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_GetW(spi#, Enablepin);

Arguments spi#, Enablepin
Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.
Enablepin The enable pin assigned to this spiflash device, eg PAO

Returns Word
Word ‘Returns the next word in the file

Description This function reads a word (2 bytes) from the FLASH memory device on the specified SPI port and
enable pin, at the spiflash_SetAdd(), or incremented by subsequent reads or writes and advances the
pointer appropriately (incremented by 2).

Example myword := spiflash GetW(hndl);

DIABLO16 INTERNAL FUNCTIONS Page 517 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_ID(spi#, Enablepin) ;

Arguments spi#, Enablepin

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PAO

Returns Nothing

Description | Reads the memory type and capacity from the serial FLASH device. Hi byte contains type, and low
byte contains capacity. Refer to the device data sheet for further information.

Example Id := spiflash ID(SPI1, PAO) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 518 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_Image(x, y, spi#, Enablepin) ;

Arguments X, Y, spi#, Enablepin

X X-position of the image to be displayed

A\ Y-position of the image to be displayed

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.
Enablepin The enable pin assigned to this spiflash device, eg PAO

Returns Returns a copy of the file_Error() error code

Description Display an image from the SPI FLASH at screen location specified by x, y(top left corner). The image is
displayed from a file at the current FLASH position set by spiflash_SetAdd().

Example spiflash Image(x, y, SPI1, PAQ) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 519 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_LoadFunction(spi#, Enablepin)

Arguments spi#, Enablepin
Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PAO

Returns Pointer

Returns a pointer to the memory allocation where the function has been loaded from

Pointer ' . .
file which can be then used as a function call.

Description |Load a function or program from the FLASH memory device on the specified SPI port and enable pin
at the address set by spiflash_SetAdd(), or incremented by subsequent reads or writes and return a
function pointer to the allocation.

The function can then be invoked just like any other function would be called via a function pointer.
Parameters may be passed to it in a conventional way. The function may be discarded at any time
when no longer required, thus freeing its memory resources.

The loaded function can be discarded with mem_Free(..) Note that any pointer references passed to
the child function may not include references to the parents DATA statements or any static string
references. Any string or array information must be in the parents global or local memory space. The
reason for this is that DATA statements and static strings are contained in the parents CODE segment,
and cannot be accessed by the child process.

The callers stack is shared by the loaded function, however any global variables in the loaded function
are private to that function.

Examplel var titlestring[20];
var textstring([20];
to(titlestring); putstr (“My Window Title”);
to (textstring); putstr (“My Special Message”);
popupWindow := spiflash LoadFunction (SPI1, PAO);
if (!popupWindow)goto LoadFunctionFailed; //could not load the function

//then elsewhere in your program
res := popupWindow (MYMODE, titlestring, textstring);
if (res == QUIT APPLICATION) goto exitApp;

//Later in your program, when popupWindow is no longer required
//for the application

res := mem Free (popupWindow) ;
if (!res) goto FreeFunctionFailed; //should never happen if memory not
//corrupted

Example2 var fncHandle; //a var for a handle to sliders2.4dg
var slidervals; //reference var to access global vars in sliders.4dg

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

fncHandle := spiflash LoadFunction (SPI1, PAO); // load the function
slidervals := fncHandle&Ox7FFF; // note that memory allocations

for transient programs are biased with 8000h which must be removed.
slidervals++; // note that all globals start at '1'

DIABLO16 INTERNAL FUNCTIONS Page 520 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

slidervals[0] := 25; // set sliders to initial positions
slidervals[1l] := 20;

slidervals[2] := 30;

slidervals[3] := 15;

slidervals[4] := 35;

slidervals[5] := 20;

slidervals|[6] = 40;

slidervals([7] := 25;

slidervals([8] = 45;

slidervals[9] := 5;

r := fncHandle(); // activate the function
print ("Return value = 0x", [HEX] r,"\n");

// print the wvalues, they may have changed

print ("Slider 1 ", slidervals[0]," Slider 2 ", slidervals[1l],"\n");
print ("Slider 3 ", slidervals([2]," Slider 4 ", slidervals[3],"\n");
print ("Slider 5 ", slidervals[4]," Slider 6 ", slidervals[5],"\n");
print ("Slider 7 ", slidervals[6]," Slider 8 ", slidervals[7],"\n");
print ("Slider 9 ", slidervals([8]," Slider 10 ", slidervals[9],"\n");

mem Free (fncHandle); // done with sliders, release its memory

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 521 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_LoadimageControl(spi#, Enablepin) ;

Arguments spi#, Enablepin
Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PAO

Returns Status

Returns a handle (pointer to the memory allocation) to the image control list that
Status has been created.
Returns NULL if function fails.

Description |Reads a control file to create an image list from the FLASH memory device on the specified SPI port
and enable pin. The source is the address set by spiflash_SetAdd(), or incremented by subsequent
reads or writes. The ".dat" file is first and is immediately followed by a ~Z and then the ".gci' file.

When an image control is loaded, an array is built in ram. It consists of a 6 word header with the
following entries as defined by the constants:

IMG_COUNT 0
IMG_ENTRYLEN 1
IMG_MODE 2
IMG_GCI_FILENAME 3
IMG_DAT_FILENAME 4
IMG_GCIFILE_HANDLE 5

No images are stored in FLASH or RAM, the image control holds the index values for the absolute
storage positions on the uSD card for RAW mode, or the cluster/sector position for formatted FAT16
mode.

When an image control is no longer required, the memory can be released with:

mem_Free(MylmageControlHandle);

Example #inherit "4DGL 16bitColours.fnc"

#constant OK 1
#constant FAIL O

var p; // buffer pointer
var img; // handle for the image list
var n, exit, r;

// return true if screen touched, also sets ok flag
func CheckTouchExit ()

return (exit := (touch Get (TOUCH_STATUS) == TOUCH PRESSED)) ; // if
there's a press, exit
endfunc

func main ()

DIABLO16 INTERNAL FUNCTIONS Page 522 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

gfx Cls();
txt Set (FONT_ ID, FONT 2);
txt Set (TEXT OPACITY, OPAQUE);

touch Set (TOUCH ENABLE) ; // enable the touch screen
print ("heap=", mem Heap(), " bytes\n"); // show the heap size

r := OK; // return value

exit := 0;

if (!file Mount())
print ("File error ", file Error());
while (!CheckTouchExit ());
// just hang if we didnt get the image list

r := FAIL;
goto quit;
endif

print ("WAIT...building image list\n");

// slow build, fast execution, higher memory requirement
img := spiflash LoadImageControl (SPI1, PAO);
// build image control, returning a pointer to structure allocation

if (img)
print ("image control=", [HEX] img,"\n");
// show the address of the image control allocation
else
putstr ("Failed to build image control....\n");

while (CheckTouchExit () == 0);
// just hang if we didnt get the image list

r := FAIL;
goto quit;
endif
print ("Loaded ", img[IMG_COUNT], " images\n");
print ("\nTouch and hold to exit...\n");
pause (2000) ;
pause (3000) ;
gfx Cls();
repeat
n := 0;

while (n < img[IMG_COUNT] && !exit) // go through all images

CheckTouchExit () ; // if there's a press, exit
img SetPosition(img, n, (ABS(RAND() % 240)), (ABS(RAND() %
320))); // spread out the images
n++;
wend
img_Show (img, ALL); // update the entire control in 1 hit

until (exit);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

quit:
mem Free (img) ; // release the image control

file Unmount () ; // (program must release all resources)

DIABLO16 INTERNAL FUNCTIONS Page 523 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

return r;

endfunc

//

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 524 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_PlayWAV(spi#, Enablepin) ;

Arguments spi#, Enablepin
Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PAO

Returns value

value If there are no errors, returns number of blocks to play (1 to 32767)
If errors occurred, the following is returned

-7 : Insufficient memory available for WAV buffer and file

-6 : cant play this rate

-5 : no data chunk found in first rsector

-4 : no format data

-3 : no wave chunk signature

-2 : bad wave file format

-1: file not found

Description | Play a wave file from the FLASH memory device on the specified SPI port and enable pin. The source
is the address set by spiflash_SetAdd(), or incremented by subsequent reads or writes. Opens the wav
file, decode the header to set the appropriate wave player parameters and set off the playing of the
file as a background process.

This function automatically grabs a chunk of memory for a wave buffer. The minimum memory
requirement is the wave buffer size of 1024. The size of the wave buffer allocation can be increased
by the snd_BufSize function.

The default size 1024 bytes.

Note: The memory is only required during the duration of play, and is automatically released while
not in use.

See “Sound Control Functions” for additional play control functions.

Example print ("\nding.wav\n") ;
for (n:=0; n<45; n++)
pitch := NOTES[n];

print ([UDEC] pitch,"\xr");
snd Pitch (pitch);
spiflash PlayWAV (SPI1, PAQ);
while (snd Playing()) ;
//pause (500) ;

next

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 525 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_PutC(char, spi#, Enablepin) ;

Arguments char, spi#, Enablepin
char Data byte about to be written.
Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PAO

Returns Nothing

Description This function writes the byte specified by "char" to the FLASH memory device on the specified SPI
port and enable pin, at the position spiflash_SetAdd(), or incremented by subsequent reads or writes
and advances the pointer appropriately (incremented by 1).

Example spiflash PutC('A', SPI1, PAO);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 526 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_PutS(source, spi#, Enablepin);
Arguments source, spi#, Enablepin
source A pointer to the string to be written.
Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.
Enablepin The enable pin assigned to this spiflash device, eg PAO
Returns count
count Returns the number of characters written (excluding the null terminator).
Description | This function writes an ASCIIZ (null terminated) string from a buffer specified by "*source" to the
FLASH memory device on the specified SPI port and enable pin, at the position set by
spiflash_SetAdd(), or incremented by subsequent reads or writes and advances the pointer
appropriately.
Example spiflash PutS (mystring, SPI1, PAO);

DIABLO16 INTERNAL FUNCTIONS Page 527 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_PutW(word, spi#, Enablepin) ;

Arguments word, spi#, Enablepin
word Data about to be written
Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PAO

Returns Nothing

Description | This function writes word sized (2 bytes) data specified by "word" to the FLASH memory device on
the specified SPI port and enable pin, at the position indicated by set by spiflash_SetAdd(), or
incremented by subsequent reads or writesand advances the pointer appropriately (incremented by
2).

Example spiflash PutW(0x1234, SPI1l, PAO);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 528 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_Read(destination, size, spi#, Enablepin) ;

Arguments destination, size, spi#, Enablepin
destination pestination memory buffer

size Number of bytes to be read

Spi# The SPI port to use, eg SPIO, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PAO

Returns count
count ‘Returns the number of characters read.

Description | Reads the number of bytes specified by "size" from the FLASH memory device on the specified SPI
port and enable pin into a destination memory buffer. The source is the address set by
spiflash_SetAdd(), or incremented by subsequent reads or writes.

If "destination" is zero, data is read direct to GRAM window

Example res := spiflash Read(memblock, 20, SPI1, PAOQ);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 529 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_Run(spi#, Enablepin, arglistptr) ;

Arguments spi#, Enablepin, arglistptr
Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PAO

arglistptr pointer to the list of arguments to pass to the new program.
Returns Value
Value Returns the value from main in the called program.

Description |Any memory allocations in the main FLASH program are released, however, the stack and globals are
maintained.
If arglistptr is 0, no arguments are passed, else arglistptr points to an array, the first element being
the number of additional elements in the array which contain the arguments.

func 'main’ in the called program accepts the arguments, if any.

The arguments can only be passed by value, no pointers or references can be used as all memory is
cleared before the file is loaded. Refer to spiflash_Exec and spiflash_LoadFunction for functions that
can pass by reference.

spiflash_SetAdd should have previously been called to identify the address of the program to be
called.

Example Refer to the file Run example.

DIABLO16 INTERNAL FUNCTIONS Page 530 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_SetAdd(spi#, HiWord, LoWord) ;

Arguments spi#, Hiword, LOword

Spi# The SPI port to use, eg SPIO, SPI1, SPI2 or SPI3.
Hiword Specifies the high word (upper 2 bytes) of a 4 byte SPI FLASH memory byte address
wor location.
LOword Specifies the low word (lower 2 bytes) of a 4 byte SPI FLASH memory byte address
location.

The arguments can be a variable, array element, expression or constant

Returns ‘nothing

Description ‘Set media memory internal Address pointer for to SPI FLASH memory.

Example spiflash SetAdd(spIl, 0, 513);

This example sets the SPI FLASH address to byte 513 for subsequent operations.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 531 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_SIG(spi#, Enablepin) ;

Arguments spi#, Enablepin

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.

Enablepin The enable pin assigned to this spiflash device, eg PAO

Returns Signature
Signature Returns the Electronic Signature of the SPI FLASH device.

Description Returns the Electronic Signature of the SPI FLASH device. Only the low order byte is valid, the upper
byte is ignored.

Example Sig := spiflash SIG(SPI1, PAO) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 532 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_Write(Source, size, spi#, Enablepin) ;

Arguments Source, size, spi#, Enablepin

source Source memory buffer.

size Number of bytes to be written.

Spi# The SPI port to use, eg SPI0, SPI1, SPI2 or SPI3.
Enablepin The enable pin assigned to this spiflash device, eg PAO

Returns Status
Status Returns TRUE if the Source address is valid

Description | Writes the number of bytes specified by "size" from the source buffer into the FLASH memory device
on the specified SPI port and enable pin.

Example res := spiflash Write (memblock, 20, SPI1, PAO);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 533 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_Block32Erase(spi#, Enablepin) ;

Arguments spi#, Enablepin

Spi# The SPI interface to which the Flash memory chip is located SPIO for the uSD port, or
SPI1, SPI2 or SPI3.
Enablepin The enable, or CS pin for the Flash memory chip PAO-PA15, or USD_ENABLE for the
uSD's enable pin.
Returns Nothing

Description | Erase the 32KB flash block including the currently set address

Example spiflash Block32Erase (SPI1, PAO) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 534 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_Sector4Erase (spi#, Enablepink) ;

Arguments spi#, Enablepin

Spi# The SPI interface to which the Flash memory chip is located SPIO for the uSD port, or
SPI1, SPI2 or SPI3.
Enablepin The enable, or CS pin for the Flash memory chip PAO-PA15, or USD_ENABLE for the
uSD's enable pin.
Returns Nothing

Description Erase the 4KB flash sector including the currently set address

Example spiflash Sector4Erase (SPI1l, PAOQ) ;

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 535 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_ReadByte(flag, spi#, Enablepin);

Arguments flag, spi#, Enablepin"
flag
Spi# The SPI interface to which the Flash memory chip is located SPIO for the uSD port, or
SPI1, SPI2 or SPI3.

Enablepin The enable, or CS pin for the Flash memory chip PAO-PA15, or USD_ENABLE for the
uSD's enable pin.

Returns Returns the character read.

Description Reads a byte from the FLASH memory device on the specified SPI port and enable pin and returns it.
The enable pin is lowered at the start of the operation and raised at the end unless the flag is set to
SPIFLASH_HOLDCS is set, in which case the pin is left low.

Example res := spiflash ReadByte (0, SPI1, PAO);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 536 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_WriteByte(flag, spi#, Enablepin);

Arguments Reg/value, spi#, Enablepin"

reg/value The value may be a command or value depending upon where it is written to relative
to the lowering of CS.

Spi# The SPI interface to which the Flash memory chip is located SPIO for the uSD port, or
SPI1, SPI2 or SPI3.

Enablepin The enable, or CS pin for the Flash memory chip PA0-PA15, or USD_ENABLE for the
uSD's enable pin.

Returns Returns TRUE if valid

Description | Writes the specified byte to the FLASH memory device on the specified SPI port and enable pin. The
enable pin is lowered at the start of the operation and raised at the end unless the reg/value has
SPIFLASH_HOLDCS orred onto it, in which case the pin is left low.

Example res := spiflash WriteByte (0x80, SPI1, PAO);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 537 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax

spiflash_SetMode(spi#, mode)

Arguments

spi#, mode

Spi# The SPI interface to which the Flash memory chip is located SPIO for the uSD port, or
SPI1, SPI2 or SPI3.

Mode

Returns

Nothing

Description

Sets the address size to be used to access the FLASH memory device on the specified SPI port and
enable pin. The size should be set using the correct command for the SPI FLASH memory device you
are using.Then this function should be called to enable that addresing mode to be used.

Valid options are:
SPIFLASH_ADDRESS3 Address operand is 3 bytes long
SPIFLASH_ADDRESS4 Address operand is 4 bytes long

Example

res := spiflash SetMode (SPI1, SPIMODE ADDRESS3) ;

DIABLO16 INTERNAL FUNCTIONS Page 538 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax spiflash_LoadGCFImageControl(spit, Enablepin)
Arguments spi#, Enablepin
Spi# The SPI interface to which the Flash memory chip is located SPIO for the uSD port, or
SPI1, SPI2 or SPI3.
Enablepin The enable, or CS pin for the Flash memory chip PAO-PA15, or USD_ENABLE for the
uSD's enable pin.
Returns a handle (pointer to the memory allocation) to the image control list that has been created.
Returns . . .
Returns NULL if function fails.
Description |spiflash_SetAdd() should have previously been called to set the GCIF start location.
Example hImagelist := spiflash LoadGCFImageControl (SPI0O, USD ENABLE)

DIABLO16 INTERNAL FUNCTIONS Page 539 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Summary of Functions in this section:
e crc_16(buf, count)
e crc_CCITT(buf, count, seed)
e crc_CSUM_8(buf, count)
e crc_MODBUS(buf, count)

The CRC functions are mainly designed for serial communications, but are implemented in such a way that they can
be used to other things as well.

The com_TXblock and com_RXblock commands can be used to assist with reading and writing comm ports,
generating and checking CRCs with the minimum of user data manipulation.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 540 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax crc_16(buf, count) ;

Arguments buf, count

buf Source memory buffer. This is a string pointer.

count Number of bytes to be used to generate the CRC.
Returns CRC

CRC Returns the generated 16 bit CRC.

Description | Calculates the Checksum CRC using the ‘standard’ 16 bit CRC algorithm.
For the standard test string "123456789", crc_16 will return 0xBB3D.

Note if you calculate all of the incoming data INCLUDING the CRC, the result should be 0x00

Example Crc := crc 1l6(str Ptr(buf), 10);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 541 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax crc_CCITT(buf, count, seed) ;

Arguments buf, count, seed

buf Source memory buffer. This is a string pointer.
count Number of bytes to be used to generate the CRC.
seed The seed for the CRC generation.

Returns CRC
CRC Returns the generated CCITT CRC.

Description | Calculates the Checksum CRC as a ‘standard’ CRCITT checksum.

For the standard test string "123456789", crc_CCITT with seed = 0 (XMODEM protocol) will return =
0x31C3, for seed = OxFFFF, the result will be 0x29B1 and for seed = Ox1DOF, the result is OXE5CC.

Example Crc := crc CCITT(str_ Ptr(buf), 10, 0x0000);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 542 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax crc_CSUM_8(buf, count) ;

Arguments buf, count

buf Source memory buffer. This is a string pointer.

count Number of bytes to be used to generate the CRC.
Returns CRC

CRC Returns the generated 8 bit checksum CRC.

Description | Calculates the Checksum CRC as an 8 bit number. This is equivalent to simple addition of all bytes
and returning the negated sum an 8 bit value.

For the standard test string "123456789", crc_CSUM_8 will return 0x0023.

Note if you calculate all of the incoming data INCLUDING the CRC, the result should be 0x00

Example Crc := crc CSUM 8 (str Ptr(buf), 10);

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 543 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Syntax crc_MODBUS(buf, count) ;

Arguments buf, count

buf Source memory buffer. This is a string pointer.

count Number of bytes to be used to generate the CRC.
Returns CRC

CRC Returns the generated MODBUS CRC.

Description Calculates the Checksum CRC as per the MODBUS standard.
For the standard test string "123456789", crc_MODBUS will return 0x4B37.

Note if you calculate all of the incoming data INCLUDING the CRC, the result should be 0x00

Example Crc := crc MODBUS (str Ptr(buf), 10);

DIABLO16 INTERNAL FUNCTIONS Page 544 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

3. System Registers Memory Map

The following tables outline in detail the Diablo16 system registers and flags.

LABEL ADDRESS ‘ USAGE
DEC HEX
) RANDOM_LO 32 0x20 | random number generator LO word
C RANDOM_HI 33 0x21 | random number generator HI word
.9 SYSTEM_TIMER_LO 34 0x22 | 1msec 32 bit free running timer LO word
o) SYSTEM_TIMER_HI 35 0x23 | 1msec 32 bit free running timer HI word
U TIMERO 36 0x24 | 1msec usertimer O
cC TIMER1 37 | 0x25 | 1msec user timer 1
: TIMER2 38 0x26 | 1msec user timer 2
LL TIMER3 39 0x27 | 1msec user timer 3
TIMER4 40 0x28 | 1msec usertimer 4
TU TIMERS 41 0x29 | 1msec user timer 5
C TIMER6 42 0x2A | 1msec user timer 6
- TIMER7 43 0x2B | 1msec user timer 7
q) SYS_X_MAX 44 0x2C | display hardware X res-1
) SYS_Y_MAX 45 0x2D | display hardware Y res-1
C GFX_XMAX 6 0x2E curren.t display width-1 determined by portrait / landscape
— swapping
I GFX_YMAX 47 O0x2F currenfc display height-1 determined by portrait / landscape
swapping
b GFX_LEFT 48 0x30 | virtual left point for most recent object
O GFX_TOP 49 0x31 | virtual top point for most recent object
) GFX_RIGHT 50 0x32 | virtual right point for most recent object
) GFX_BOTTOM 51 0x33 | virtual bottom point for most recent object
q) GFX_X1 52 0x34 | clipped left point for current object
O GFX_Y1 53 0x35 | clipped top point for current object
o GFX_X2 54 0x36 | clipped right point for current object
- GFX_Y2 55 0x37 | clipped bottom point for current object
Q— GFX_X_ORG 56 0x38 | current X origin
(Vp) GFX_Y_ORG 57 0x39 | current Y origin
&) GFX_THUMB_PERCENT 75 0x4B | size of slider thumb as percentage
S — GFX_THUMB_BORDER_DARK 76 0x4C | darker shadow of thumb
-C GFX_THUMB_BORDER_LIGHT 77 0x4D | lighter shadow of thumb
Q— TOUCH_XMINCAL 78 Ox4E | touch calibration value
© TOUCH_YMINCAL 79 O0x4F | touch calibration value
o TOUCH_XMAXCAL 80 0x50 | touch calibration value
LD TOUCH_YMAXCAL 81 0x51 | touch calibration value
m IMG_WIDTH 82 0x52 | width of currently loaded image
IMG_HEIGHT 83 0x53 | height of currently loaded image
‘_I IMG_FRAME_DELAY 84 0x54 | if image, else inter frame delay for movie
O IMG_FLAGS 85 0x55 | bit 4 determines colour mode, other bits reserved
— IMG_FRAME_COUNT 86 0x56 | count of frames in a movie
m IMG_PIXEL_COUNT_LO 87 0x57 | count of pixels in the current frame
< IMG_PIXEL_COUNT_HI 88 0x58 | count of pixels in the current frame
— IMG_CURRENT_FRAME 89 0x59 | last frame shown
D MEDIA_ADDRESS_LO 90 | Ox5A | micro-SD byte address LO
MEDIA_ADDRESS_HI 91 0x5B | micro-SD byte address Hl
MEDIA_SECTOR_LO 92 0x5C | micro-SD sector address LO
NOTE: These registers are accessible with peekW and pokeW functions.

DIABLO16 INTERNAL FUNCTIONS Page 545 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

ADDRESS

W:\:]38 DEC HEX ‘ USAGE
MEDIA_SECTOR_HI 93 0x5D | micro-SD sector address Hl
MEDIA_SECTOR_COUNT 94 Ox5E | micro-SD number of bytes remaining in sector
TEXT_XPOS 95 Ox5F text current x pixel position
TEXT_YPOS 96 0x60 | text currenty pixel position
TEXT_MARGIN 97 0x61 | text left pixel pos for carriage return
TXT_FONT_ID 98 0x62 | font type, O = system font, else pointer to user font
TXT_FONT_MAX 99 0x63 | max number of chars in font
TXT_FONT_OFFSET 100 0x64 | starting offset (normally 0x20)
TXT_FONT_WIDTH 101 0x65 | current font width
TXT_FONT_HEIGHT 102 0x66 | Current font height
GFX_TOUCH_REGION_X1 103 0x67 touch capture region
GFX_TOUCH_REGION_Y 104 0x68 | touch capture region
GFX_TOUCH_REGION_X2 105 0x69 touch capture region
GFX_TOUCH_REGION_Y2 106 Ox6A | touch capture region
GFX_CLIP_LEFT_VAL 107 0x6B | left clipping point (set with gfx_ClipWindow(...)
GFX_CLIP_TOP_VAL 108 0x6C | top clipping point (set with gfx_ClipWindow(...)
GFX_CLIP_RIGHT_VAL 109 0x6D | right clipping point (set with gfx_ClipWindow(...)
GFX_CLIP_BOTTOM_VAL 110 0x6E | bottom clipping point (set with gfx_ClipWindow(...)
GFX_CLIP_LEFT 111 Ox6F | current clip value (reads full size if clipping turned off)
GFX_CLIP_TOP 112 0x70 | current clip value (reads full size if clipping turned off)
GFX_CLIP_RIGHT 113 0x71 | current clip value (reads full size if clipping turned off)
GFX_CLIP_BOTTOM 114 0x72 | current clip value (reads full size if clipping turned off)
GRAM_PIXEL_COUNT_LO 115 0x73 | LO word of count of pixels in the set GRAM area
GRAM_PIXEL_COUNT_HI 116 0x74 | Hl word of count of pixels in the set GRAM area
TOUCH_RAW_X 117 0x75 | 12 bit raw A2D X value from touch screen
TOUCH_RAW_Y 118 0x76 | 12 bit raw A2D Y value from touch screen
GFX_LAST_CHAR_WIDTH 119 0x77 | calculated char width from last call to charWidth function
GFX_LAST_CHAR_HEIGHT 120 0x78 | calculated height from last call to charHeight function
GFX_LAST_STR_WIDTH 121 0x79 | calculated width from last call to strWidth function
GFX_LAST_STR_HEIGHT 122 0x7A | calculated height from last call to strHeight function
PIN_COUNTER_PA4 123 0x7B pin counter for PA4
PIN_COUNTER_PAS5 124 0x7C pin counter for PA5
PIN_COUNTER_PA6 125 0x7D | pin counter for PA6
PIN_COUNTER_PA7 126 Ox7E pin counter for PA7
PIN_COUNTER_PAS8 127 Ox7F pin counter for PA8
PIN_COUNTER_PA9 128 0x80 pin counter for PA9
PIN_EVENT_PA4 129 0x81 | pin counter rollover event for PA4
PIN_EVENT_PA5 130 0x82 | pin counter rollover event for PA5S
PIN_EVENT_PA6 131 0x83 | pin counter rollover event for PA6
PIN_EVENT_PA7 132 0x84 | pin counter rollover event for PA7
PIN_EVENT_PAS8 133 0x85 | pin counter rollover event for PA8
PIN_EVENT_PA9 134 0x86 | pin counter rollover event for PA9
QEN1_COUNTER_LO 135 0x87 qguadrature encoder #1 counter LO
QEN1_COUNTER_HI 136 0x88 | quadrature encoder #1 counter HI
QEN1_DELTA 137 0x89 quadrature encoder #1 delta count
QEN2_COUNTER_LO 138 0x8A | quadrature encoder #2 counter LO
QEN2_COUNTER_HI 139 0x8B | quadrature encoder #2 counter Hl
QEN2_DELTA 140 0x8C quadrature encoder #2 delta count
FALSE_REASON 141 0x8D | explanation 'false’ results, currently only for flash_ functions

NOTE: These registers are accessible with peekW and pokeW functions.

DIABLO16 INTERNAL FUNCTIONS

Page 546 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS

4. Appendix A : Runtime Error Messages

DIABLO16 GRAPHICS PROCESSOR

1 Failed to receive 'L' during loading process from Workshop Not in Diablo16
%) i
C 2 Did not receive valid header info from Workshop chJ)r;ZXpected error during Program
O 3 Header size does not match loader info Not in Diablo16
0 m—
4 4 Could not allocate enough memory for program Unexpected error during Program
(&) load
C 5 Loader checksum error Unexpected error during Program
: load
LL. 6 Did not receive header prior to 'L' command Not in Diablo16
S 7 Header size entry does not match loader value lor;zxpec e
C 8 Failed to load program from FLASH Internal
-
m 9 Could not allocate code segment Not in Diablo16
. 10 Could not load function file from disk File on disk possibly corrupted
E 11 Bad header in program file File on disk possibly corrupted
I 12 Header in program file differs from file size File on disk possibly corrupted
[13 Could not allocate global memory for program file Program probably too large
o 14 Program File checksum error File on disk possibly corrupted
v Infinitely recursive program or
n 15 EVE Stack Overflow insufficient Stack Size
8 16 Unsupported PmmC function Program error, or .fnc file mismatch
o 17 Illegal COMO Event Function address Program error
18 Illegal COM1, COMZ2, or COM3 Event Function address Program error
19 Bad txt_Set(...) command number Program error
8 20 Bad gfx_Get(...) command number Program error
'-E 21 Bad gfx_Set(...) command number Program error
Q_ 22 Bad address for peekW or pokeW Program error
(q0] 23 Bad timer number for Timer function Program error
6 24 Bad Event for sys_SetTimerEvent(...) Program error
25 Flash Write Verify Failed Internal
m Program specifies #MODE of 'save
- | 26 Bad or missing uSD Card to disk', but no valid disk can be
O found
J 27 lllegal Event Function Address Program error
m 28 Not a pre-defined baud rate Program error in setbaud()
< 29 Target of flash_Exec cannot have globals or privates Program error
D Inherent widgets are used in this program and have not
30 been loaded into Flash Bank 5. Use the utility in Workshop User error
to load them.

DIABLO16 INTERNAL FUNCTIONS

Page 547 of 554

www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

5. Hardware Tools

The following hardware tools are required for full
control of the Diablo16 Processor.

The 4D Programming Cable, uUSB-PA5-II and 4D-UPA
Programming Adaptors are essential hardware tools
to program, customise and test the Diablol6
Processor.

Note: Any of the 4D Programming Cable, uUSB-PA5-
Il or gen4-PA Programming Adaptor can be used,
along with previous generation 4D programmers
too.

The 4D programming interfaces are used to program a
new Firmware/PmmC, Display Driver and for
downloading compiled 4DGL code into the processor.
They even serve as an interface for communicating
serial data to the PC.

The 4D Programming Cable, uUSB-PA5 and 4D-UPA
Programming Adaptor are available from 4D Systems,
www.4dsystems.com.au

Using a non-4D programming interface could damage
your processor, and void your Warranty.

4D-UPA Programming Adaptor

4D Systems has a number of modules available which
can be used for evaluation purposes or equally as final
products, to discover what the Diablo16 processor has
to offer.

gend4-ulLCD-70DT — 7.0” Resistive Touch Diablo16
Intelligent Display Module

gen4-ulLCD-43DT — 4.3” Resistive Touch Diablo16
Intelligent Display Module

gen4-uLCD-35DT — 3.5” Resistive Touch Diablo16
Intelligent Display Module

Other modules will also be available. Please contact
4D Systems for more information, or visit the 4D
Systems website, www.4dsystems.com.au

DIABLO16 INTERNAL FUNCTIONS

Page 548 of 554

www.4dlabs.com.au

http://www.4dsystems.com.au/
http://www.4dsystems.com.au/
http://www.4dsystems.com.au/product/4D-Programming-Cable/
http://www.4dsystems.com.au/product/uUSB-PA5/
http://www.4dsystems.com.au/product/gen4_PA/
http://www.4dsystems.com.au/product/gen4_uLCD_70D/
http://www.4dsystems.com.au/product/gen4_uLCD_43D/
http://www.4dsystems.com.au/product/gen4_uLCD_35D/

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

The Diablo16 Processor uses off the shelf standard
SDHC/SD/micro-SD memory cards with up to 4GB
capacity usable with FAT16 formatting. For any FAT
file related operations, before the memory card can
be used it must first be
formatted with FAT16
option. The formatting
of the card can be done
on any PC system with a
card reader. Select the
appropriate drive and choose the FAT16 (or just FAT in
some systems) option when formatting. The card is
now ready to be used in the Diablol6 based
application.

The Diablol6 Processor
also supports high capacity
HC memory cards (4GB
and above). The available
capacity of SD-HC cards
varies according to the
way the card is partitioned
and the commands used to access it.

Sanmisk »
4GB micro
S

The FAT partition is always first (if it exists) and can be
up to the maximum size permitted by FAT16.
Windows 7 will format FAT16 up to 4GB. Windows XP
will format FAT16 up to 2GB and the Windows XP
command prompt will format FAT16 up to 4GB.

RMPET, a 4D Labs tool found in the Workshop4 IDE, is
capable of repartitioning and formatting microSD
cards to be the appropriate type and format. This
should be used for all cards.

occurring. Furthermore, manufacturers may choose
to implement read disturb protection on a specific
part of the flash memory only, such that the beginning
part of the memory might not be protected. The
RMPET utility in Workshop4 is designed to create the
first partition at an offset from the start of the
microSD card to account for this situation. It is
therefore recommended to always partition and
format an industrial microSD card using the RMPET
utility before using it with 4D Systems processors.

Note: A microSD card capable of SPl is a requirement
for all 4D Systems’ display modules powered by
Goldelox, Picaso, Picaso Lite or Diablo16 Processors.
If a non-SPI compatible card is used, it will simply fail
to mount, or may cause intermittent issues resulting
in lock ups and crashing of the application. Please
refer to the 4D Systems website for microSD cards
offered by 4D Systems.

Note: Read disturb is a well-known issue with flash
memory devices, such as microSD cards, where
reading data from a flash cell can cause the nearby
cells in the same memory block to change over time.
This issue can be prevented by using industrial-grade
microSD cards with read disturb protection.
Industrial-grade microSD cards have a firmware that
actively monitors the read operation and refreshes
areas of memory which have high traffic and even
move data around to prevent read disturb error from

DIABLO16 INTERNAL FUNCTIONS

Page 549 of 554

www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

6. Workshop4 IDE

Workshop4 is a comprehensive software IDE that
provides an integrated software development
platform for all of the 4D family of processors and
modules. The IDE combines the Editor, Compiler,
Linker and Downloader to develop complete 4DGL
application code. All user application code is
developed within the Workshop4 IDE.

— WORKSHOP PRO
B IOE i
-

& H Gret o new 4D Systens Project
S

4D SYSTEMS 40 LABS

SEMICONDUCTORS

The Workshop4 IDE supports multiple development
environments for the user, to cater for different user
requirements and skill level.

e The Designer environment enables the user to
write 4DGL code in its natural form to program the
4D processor of choice.

e A visual programming experience, suitably called
ViSi, enables drag-and-drop type placement of
objects to assist with 4DGL code generation and
allows the user to visualise how the display will
look while being developed.

e An advanced environment called ViSi-Genie
doesn’t require any 4DGL coding at all, it is all
done automatically for you. Simply lay the display
out with the objects you want, set the events to
drive them and the code is written for you
automatically. ViSi-Genie provides the latest rapid
development experience from 4D Labs.

The Workshop4 IDE is available from the 4D Systems
website. www.4dsystems.com.au

For a comprehensive manual on the Workshop4 IDE
Software along with other documents, refer to the
documentation from the 4D Labs website, on the
Workshop4 product page.

Choose the Designer environment to write 4DGL code
in its raw form.

The Designer environment provides the user with a
simple yet effective programming environment where
pure 4DGL code can be written, compiled and
downloaded to the Diablo16.

= Voo d BMGECONTIOUBOWLCORFTM T |

ERRCICER X006 506510075

ViSi was designed to make the creation of graphical
displays a more visual experience. It is a great
software tool that allows the user to see the instant
results of their desired graphical layout.

Additionally, there is a selection of inbuilt dials, gauges
and meters that can simply be placed onto the
simulated module display. From here each object can
have its properties edited, and at the click of a button
all relevant 4DGL code associated with that object is
produced in the user program. The user can then write
4DGL code around these objects to utilise them in the
way they choose.

,mf o Toke Wk Eomme Syt - i
[JoHE=s yOOX 00 50053892 = 2

e wnassienn f—

Wowdie | RO LD FTL PO e

DIABLO16 INTERNAL FUNCTIONS

Page 550 of 554

www.4dlabs.com.au

http://www.4dsystems.com.au/

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS

DIABLO16 GRAPHICS PROCESSOR

Workshop4 PRO adds a professional set of features to
the ViSi environment, called Smart Widgets. These
smart widgets allow Users to create custom gauges,
sliders, buttons and more, rather than relying on the
built-in ones. This provides an extra level of
customisation available for intelligent products.

ViSi Genie is a breakthrough in the way 4D Labs’
graphic processors are programmed. It is an
environment like no other, a code-less programming
environment that provides the user with a rapid visual
experience, enabling a simple GUI application to be
‘written’ from scratch in literally seconds.

ViSi Genie does all the background coding, no 4DGL to
learn, it does it all for you.

Pick and choose the relevant objects to place on the
display, much like the ViSi Environment, yet without
having to write a single line of code. Each object has
parameters which can be set, and configurable events
to animate and drive other objects or communicate
with external devices.

Simply place an object on the screen, position and size
it to suit, set the parameters such as colour, range,
text, and finally select the event you wish the object
to be associated with, it is that simple.

In seconds you can transform a blank display into a
fully animated GUI with moving sliders, animated
press and release buttons, and much more. All
without writing a single line of code!

ViSi Genie provides the user with a feature rich rapid
development environment, second to none.

ViSi-Genie’s functionality can be extended with the
purchase of a Workshop4 PRO License.

Workshop4 PRO adds a professional set of features to
the Visi-Genie environment called Genie-Magic. The
added features allow the user to add in 4DGL scripts,
which can be activated from the display itself, from an
interfacing Host, or from an external sensor or device.
These PRO set of features of Genie-Magic allow the
User to create an immensely powerful GUI system
with a fraction of the effort required by other systems.

Along with Genie-Magic, ViSi-Genie also benefits from
Smart widgets, as described in the previous ViSi
Environment section.

Refer to the “ViSi Genie User Guide” and “ViSi-Genie
User Reference Manual” from the Workshop 4
product page on the 4D Systems website for
information about the ViSi-Genie Environment and its
Protocol.

The Serial environment in the Workshop4 IDE
provides the user the ability to transform the Diablo16
into a slave serial graphics controller.

This enables the user to use their favourite
microcontroller or serial device as the Host, without
having to learn 4DGL or program in a separate IDE.
Once the Diablo16 is configured and downloaded to
from the Serial Environment, simple graphic
commands can be sent from the wusers host
microcontroller to display primitives, images, sound or
even video.

Refer to the “Diablo16 Serial Command Set Reference
Manual” from the Workshop4 product page on the 4D
Labs website for a complete listing of all the supported
serial commands

DIABLO16 INTERNAL FUNCTIONS

Page 551 of 554

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

7. Revision History

Revision History

1.0 First Release 22/07/2013

Added new Functions disp_Disconnect(), disp_Init() and sys_DeepSleep(). Fix spelling

mistake in file_LoadlmageControl L2

Fixed gfx_Contrast description as it contained Picaso information, other minor non-
fucntional related fixes.

Added com_TXblock, com1_TXblock, com2_TXblock and com3_TXblock, com_RXblock,
com1_RXblock, com2_RXblock and com3_RXblock, com_Mode, crc_CSUM_8, crc_16,
crc_MODBUS and crc_CCITT for support of CRCs, non 8N1 mode and block transmit and
receive

13 Added spiflash_SIG, spiflash_ID, spiflash_BulkErase, spiflash_BlockErase, spiflash_SetAdd, 23/12/2013
spiflash_Read, spiflash_Write spiflash_Image, spiflash_PutC, spiflash_GetC, spiflash_PutW,
spiflash_GetW, spiflash_PutS, spiflash_GetS spiflash_LoadFunction, spiflash_Run,
spiflash_Exec, spiflash_LoadlmageControl, spiflash_PlayWAV for support if SPI Flash memory
Fixed error return codes in file_PlayWAV and added missing code.

07/11/2013

1.4 Added bus_Read8 and bus_Write8 06/01/2014

Added Mode PWM_BINARY and usage notes. Added notes to spiflash initialization. Added
15 disp_BlitPixelsFromCOMXx. Added special baud rates to com_SetBaud(). Added 25/02/2014
spix_ReadBlock and spix_Writeblock. All these additions apply to PmmC 1.1 and later.

1.6 Documented v1.1 PmmC’s changes to files opened in append mode. Added new 12C options. 21/03/2014

17 D.ocumented V1.3 PmmC s.new snd_Freq(), sys_GetDateVar(), sys_GetTimeVar() and 07/07/2014
pin_PulseoutCount() functions.

18 Added keywords Backlight and Brightness to assist searchers finding the contrast setting. 04/08/2014

Fixed format of date in sys_GetDate function.

Documented V1.5 PmmC’s new txt_FontBank, putnumXY, flt_PRINTxy, file_Rename,
1.9 file_Setdate, NP_Write and OW_* functions. Fixed error in memory size used for file_Mount. 16/09/2014
Added detail to set_Clipping().

Updated information for file_LoadlmageControl mode 2. Updated control block size in
file_Mount. Added information about source of uSD based font in txt_FontID. Added

1.10 information about the use of TRANSPARENCY. Fixed spelling of snd_Freq in example. Added 22/12/2014
information about the SPIx_Write and SPIx_Read operations. Clarified information about
events.
Added more information about interrupts and NP_Write. Added notes to
1.1l comx_TXbufferHold. Fixed case of pwm_Init() Ll
1.12 Modification to Analog Input read rates 06/03/2015

Fixed 12Cx_Write return code information. Clarified str_Length and bus_SetChangelnterrupt
1.13 examples. Fixed syntax example for usub_3232. Added ‘page’ options to gfx_Set for uLCD- 07/05/2015
43D* displays.

Fixed FontIDs for deja fonts. Updated udiv_3232 sample. Improved return description for
str_Match and str_Matchl. Added str_Printf to ‘to’ function. Added runtime Error 29.

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

1.14 Improved examples for str_Cat, str_CatN, str_Find, str_FindI, str_Match, str_Matchl and 14/07/2015
file_Exec.
115 Corrected flt_POW syntax typo. Corrected incurred information relating to PA14 and PA15. 06/10/2015

Improvements to a few pin_ and bus_ function examples.

DIABLO16 INTERNAL FUNCTIONS Page 552 of 554 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

Revision History Continued...

Add information about TXT_MARGIN to txt_MoveCursor() and gfx_MoveTo() functions. Add
|_TOUCH_DISABLE detail to img_SetAttributes() and img_ClearAttributes() functions. Fix
gfx_PieSlice() documentation. Add comx_TXbufferBrk() and comx_InitBrk() functions in
support of sending and receiving BREAK characters. Updated serin() and serout() as
appropriate. Added PA14, PA15 to pins that can be used with various functions. Addded
new options to PWM_Init() function.

1.16 08/02/2016

2.0 Updated formatting and contents 06/05/2017

Updated formatting. Improved touch_Get(). Fixed inverted states relating to BOLD, ITALIC,
TEXT INVERSE, TEXT ITALIC in txt_Set(). Improved explanation of pointers in file_Write and
file_Read. Putnum alignment improved. putstr explanation improved. sys_Sleep() and
sys_DeepSleep() minor description improvements.

Added Notel information regarding PA12/PA13 GPIO, for clarity. No change in original
functionality. Fixed a few historical minor example spelling mistakes/typo’s.

Lots of additions for gfx_, widget_, file_, img_, flash_ and spiflash_ functions, relating to
2.3 new features such as new widgets and flash memory. 16/07/2020
Additional information for spi_Init and SPIx_Init functions added

21 21/03/2019

2.2 19/08/2019

2.4 Typo fix on gfx_PointWithinRectangle &recta argument for last 2 components of the array 07/08/2020

25 Updated DISPLAY_PAGE, READ_PAGE and WRITE_PAGE information, to reflect differences 08/10/2020
’ between SSD1961 and SSD1963 Driver IC’s on 4.3” products.

2.6 Removal of incorrect Note from crc_CCITT function 13/10/2020

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

DIABLO16 INTERNAL FUNCTIONS Page 553 of 554 www.4dlabs.com.au

7))
c
O
o
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
v
Q
&
@)
-
(a8
(7))
=
i
Q.
(O
-
O
(o
o |
@)
—
(a 8]
<
)]

44D LN\BS

SEMICONDUCTORS DIABLO16 GRAPHICS PROCESSOR

8. Legal Notice

Proprietary Information

The information contained in this document is the property of 4D Labs Semiconductors and may be the subject of
patents pending or granted, and must not be copied or disclosed without prior written permission.

4D Labs Semiconductors endeavours to ensure that the information in this document is correct and fairly stated but
does not accept liability for any error or omission. The development of 4D Labs Semiconductors products and services
is continuous and published information may not be up to date. It is important to check the current position with 4D
Labs Semiconductors. 4D Labs Semiconductors reserves the right to modify, update or makes changes to
Specifications or written material without prior notice at any time.

All trademarks belong to their respective owners and are recognised and acknowledged.
Disclaimer of Warranties & Limitation of Liability

4D Labs Semiconductors makes no warranty, either expressed or implied with respect to any product, and specifically
disclaims all other warranties, including, without limitation, warranties for merchantability, non-infringement and
fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with
your specifications.

Images and graphics used throughout this document are for illustrative purposes only. All images and graphics used
are possible to be displayed on the 4D Labs Semiconductors range of products, however the quality may vary.

In no event shall 4D Labs Semiconductors be liable to the buyer or to any third party for any indirect, incidental,
special, consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss
of business opportunity) arising out of or relating to any product or service provided or to be provided by 4D Labs
Semiconductors, or the use or inability to use the same, even if 4D Labs Semiconductors has been advised of the
possibility of such damages.

4D Labs Semiconductors products are not fault tolerant nor designed, manufactured or intended for use or resale as
on line control equipment in hazardous environments requiring fail — safe performance, such as in the operation of
nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines or
weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical
or environmental damage (‘High Risk Activities’). 4D Labs Semiconductors and its suppliers specifically disclaim any
expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Labs Semiconductors’ products and devices in 'High Risk Activities' and in any other application is entirely
at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless 4D Labs Semiconductors from any
and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any 4D Labs Semiconductors intellectual property rights.

9. Contact Information

For Technical Support: www.4dlabs.com.au/support
For Sales Support: sales@4dlabs.com.au
Website: www.4dlabs.com.au

Copyright 4D Labs Semiconductors 2000-2020.

DIABLO16 INTERNAL FUNCTIONS Page 554 of 554 www.4dlabs.com.au

	1. 4DGL Introduction
	2. Diablo16 Chip-Resident Functions Summary
	2.1. GPIO Functions
	2.1.1 pin_Set(mode, pin)
	2.1.2 pin_HI(pin)
	2.1.3 pin_LO(pin)
	2.1.4 pin_Val(pin)
	2.1.5 pin_Read(pin)
	2.1.6 bus_Read()
	2.1.7 bus_Read8()
	2.1.8 bus_Write8(value)
	2.1.9 bus_SetPins(value)
	2.1.10 bus_ClearPins(value)
	2.1.11 bus_SetChangeInterrupt (function, portmask)
	2.1.12 Qencoder1(PHApin, PHBpin, mode)
	2.1.13 Qencoder1Reset()
	2.1.14 Qencoder2(PHApin, PHBpin, mode)
	2.1.15 Qencoder2Reset()
	2.1.16 pwm_Init(pin, mode, value)
	2.1.17 pin_Pulseout(pin, value)
	2.1.18 pin_Counter(pin, mode, OVFfunction)
	2.1.19 ana_HS(rate, samples, IO1buf, IO2buf, IO3buf, IO4buf, userFunction)
	2.1.20 pin_PulseoutCount(pin, frequency, count, function)
	2.1.21 OW_Reset(pin)
	2.1.22 OW_Read(pin)
	2.1.23 OW_Read9(pin)
	2.1.24 OW_Write(pin, data)
	2.1.25 NP_Write(pin, data, size, Options, RepeatFirst, Repeat, RepeatLast)

	2.2. System Memory Access Functions
	2.2.1 peekW(address)
	2.2.2 pokeW(address, word_value)

	2.3. Maths Functions
	2.3.1 ABS(value)
	2.3.2 MIN(value1, value2)
	2.3.3 MAX(value1, value2)
	2.3.4 SWAP(&var1, &var2)
	2.3.5 SIN(angle)
	2.3.6 COS(angle)
	2.3.7 RAND()
	2.3.8 RANDVAL(low, high)
	2.3.9 SEED(number)
	2.3.10 SQRT(number)
	2.3.11 OVF()
	2.3.12 CY()
	2.3.13 EVE_SP()
	2.3.14 EVE_SSIZE()
	2.3.15 uadd_3232(&res32, &val1, &val2)
	2.3.16 usub_3232(&res32, &val1, &val2)
	2.3.17 umul_1616(&res32, val1, val2)
	2.3.18 udiv_3232(&res32, val1, val2)
	2.3.19 ucmp_3232(&val1, &val2)

	2.4. Text and String Functions
	2.4.1 txt_MoveCursor(line, column)
	2.4.2 putch(char)
	2.4.3 putchXY(xpos, ypos, char)
	2.4.4 putstr(pointer)
	2.4.5 putstrXY(xpos, ypos, string)
	2.4.6 putstrCentred(xc, yc, string)
	2.4.7 putnum(format, value)
	2.4.8 print(...)
	2.4.9 to(outstream)
	2.4.10 charwidth('char')
	2.4.11 charheight('char')
	2.4.12 strwidth(pointer)
	2.4.13 strheight()
	2.4.14 strlen(pointer)
	2.4.15 unicode_page(charbeg, charend, charoffset)
	2.4.16 txt_Set(function, value)
	2.4.17 txt_FontBank(bank, address)
	2.4.18 PutnumXY(x, y, format, value)

	2.5. Ctype Functions
	2.5.1 isdigit(char)
	2.5.2 isxdigit(char)
	2.5.3 isupper(char)
	2.5.4 islower(char)
	2.5.5 isalpha(char)
	2.5.6 isalnum(char)
	2.5.7 isprint(char)
	2.5.8 isspace(char)
	2.5.9 toupper(char)
	2.5.10 tolower(char)
	2.5.11 LObyte(var)
	2.5.12 HIbyte(var)
	2.5.13 ByteSwap(var)
	2.5.14 NybleSwap(var)

	2.6. Graphics Functions
	2.6.1 gfx_Cls()
	2.6.2 gfx_ChangeColour(oldColour, newColour)
	2.6.3 gfx_Circle(x, y, radius, colour)
	2.6.4 gfx_CircleFilled(x, y, radius, colour)
	2.6.5 gfx_Line(x1, y1, x2, y2, colour)
	2.6.6 gfx_Hline(y, x1, x2, colour)
	2.6.7 gfx_Vline(x, y1, y2, colour)
	2.6.8 gfx_Rectangle(x1, y1, x2, y2, colour)
	2.6.9 gfx_RectangleFilled(x1, y1, x2, y2, colour)
	2.6.10 gfx_RoundRect(x1, y1, x2, y2, rad, colour)
	2.6.11 gfx_Polyline(n, vx, vy, colour)
	2.6.12 gfx_Polygon(n, vx, vy, colour)
	2.6.13 gfx_Triangle(x1, y1, x2, y2, x3, y3, colour)
	2.6.14 gfx_Dot()
	2.6.15 gfx_Bullet(radius)
	2.6.16 gfx_OrbitInit(&x_dest, &y_dest)
	2.6.17 gfx_Orbit(angle, distance)
	2.6.18 gfx_PutPixel(x, y, colour)
	2.6.19 gfx_GetPixel(x, y)
	2.6.20 gfx_MoveTo(xpos, ypos)
	2.6.21 gfx_MoveRel(xoffset, yoffset)
	2.6.22 gfx_IncX()
	2.6.23 gfx_IncY()
	2.6.24 gfx_LineTo(xpos, ypos)
	2.6.25 gfx_LineRel(xpos, ypos)
	2.6.26 gfx_BoxTo(x2, y2)
	2.6.27 gfx_SetClipRegion()
	2.6.28 gfx_Ellipse(x, y, xrad, yrad, colour)
	2.6.29 gfx_EllipseFilled(x, y, xrad, yrad, colour)
	2.6.30 gfx_Button(state, x, y, buttonColour, txtColour, font, txtWidth txtHeight, text)
	2.6.31 gfx_Button2(state, x, y, width, height, buttonColour, txtColour, text)
	2.6.32 gfx_Button3(state, x, y, width, height, buttonColour, txtColour, text)
	2.6.33 gfx_Panel(state, x, y, width, height, Colour)
	2.6.34 gfx_RoundPanel(state, x, y, width, height, radius, bevelwidth, Colour)
	2.6.35 gfx_Slider2(mode, x1, y1, width, height, colour, scale, value)
	2.6.36 gfx_ScreenCopyPaste(xs, ys, xd, yd, width, height)
	2.6.37 gfx_Slider(mode, x1, y1, x2, y2, colour, scale, value)
	2.6.38 gfx_RGBto565(RED, GREEN, BLUE)
	2.6.39 gfx_332to565(COLOUR8BIT)
	2.6.40 gfx_565to332(COLOUR)
	2.6.41 gfx_TriangleFilled(x1, y1, x2, y2, x3, y3, colour)
	2.6.42 gfx_PolygonFilled(n, vx, vy, colour)
	2.6.43 gfx_Origin(x, y)
	2.6.44 gfx_Get(mode)
	2.6.45 gfx_ClipWindow(x1, y1, x2, y2)
	2.6.46 gfx_Set(function, value)
	2.6.47 gfx_Arc(xc, yc, radius, step, startangle, endangle, mode)
	2.6.48 gfx_CheckBox(state, x, y, Width, Height, boxColour, textColour, text)
	2.6.49 gfx_RadioButton(state, x, y, width, height, boxColour, textColour, text)
	2.6.50 gfx_FillPattern(patptr, mode)
	2.6.51 gfx_Gradient(style, x1, y1, x2, y2, color1, color2)
	2.6.52 gfx_RoundGradient(style, x1, y1, x2, y2, radius, color1, color2)
	2.6.53 gfx_PieSlice(cx, cy, spread, radius, step, startangle, endangle, mode, colour)
	2.6.54 gfx_PointWithinBox(x, y, &rect)
	2.6.55 gfx_PointWithinRectangle(x, y, &recta)
	2.6.56 gfx_ReadBresLine(x1, y1, x2, y2, ptr)
	2.6.57 gfx_WriteBresLine(x1, y1, x2, y2, ptr)
	2.6.58 gfx_ReadGRAMarea(x1, y1, x2, y2, ptr)
	2.6.59 gfx_WriteGRAMarea(x1, y1, x2, y2, ptr)
	2.6.60 gfx_Surround(x1, y1, x2, y2, rad1, rad2, colour)
	2.6.61 gfx_Scope(Left, Width, Yzero, n, Xstep, Yamp, Colourbg, old_y1, new_y1, Colour1, … old_y4, new_y4, Colour4)
	2.6.62 gfx_RingSegment(x, y, Rad1, Rad2, starta, enda, colour)
	2.6.63 gfx_AngularMeter(value, &MeterRam, &MeterDef)
	2.6.64 gfx_Panel2(state, x, y, width, height, w1, w2, cl, cr)
	2.6.65 gfx_Needle(value, &NeedleRam, &NeedleDef)
	2.6.66 gfx_Dial(value, &DialRam, &DialDef)
	2.6.67 gfx_Gauge(value, &GaugeRam, &GaugeDef)
	2.6.68 gfx_LedDigits(value, &LedDigitRam, &LedDigitDef)
	2.6.69 gfx_LedDigit(x, y, digitsize, oncolour, offcolour, value)
	2.6.70 gfx_Slider5(value, &SliderRam, &SliderDef)
	2.6.71 gfx_Switch(state, &SwitchRam, &SwitchDef)
	2.6.72 gfx_Button4(state, &gfx_ButtonRam, &gfx_ButtonDef)
	2.6.73 gfx_Led(state, &LedRam, &LedDef)
	2.6.74 gfx_Scale(&ScaleRam, &ScaleDef)
	2.6.75 gfx_RulerGauge(value, &RulerGaugeRam, &RulerGaugeDef)
	2.6.76 gfx_GradientShape(GradientRAM, HorzVert, OuterWidth, X, Y, W, H, TLrad, TRrad, BLrad, BRrad, Darken, OuterColor, OuterType, OuterLevel, InnerColor, InnerType, InnerLevel, Split)
	2.6.77 gfx_GradientColor (Type, Darken, Level, H, Pos, Color)
	2.6.78 gfx_GradTriangleFilled(X0, Y0, X1, Y1, X2, Y2, SolidCol, GradientCol, GradientHeight, GradientY, GradientLevel, Type)
	2.6.79 gfx_XYrotToVal(x,y,base,mina,maxa,minv,maxv)
	2.6.80 gfx_XYlinToVal(x,y,base,minpos,maxpos,minv,maxv)

	2.7. Widget Functions
	2.7.1 widget_Create(count)
	2.7.2 widget_Add(hndl, index, widget)
	2.7.3 widget_Delete(hndl, index)
	2.7.4 widget_Realloc(handle, n)
	2.7.5 widget_GetWord(hndl, index, offset)
	2.7.6 widget_Setposition(hndl, index, xpos, ypos)
	2.7.7 widget_Enable(hndl, index)
	2.7.8 widget_Disable(hndl, index)
	2.7.9 widget_SetWord(hndl, index, offset, value)
	2.7.10 widget_SetAttributes(hndl, index, value)
	2.7.11 widget_ClearAttributes(hndl, index, value)
	2.7.12 widget_Touched(hndl, index)

	2.8. Display I/O Functions
	2.8.1 disp_SetReg(register, data)
	2.8.2 disp_setGRAM(x1, y1, x2, y2)
	2.8.3 disp_WrGRAM(colour)
	2.8.4 disp_WriteControl(value)
	2.8.5 disp_WriteWord(value)
	2.8.6 disp_ReadWord()
	2.8.7 disp_Disconnect()
	2.8.8 disp_Init()
	2.8.9 disp_BlitPixelsFromCOMn()

	2.9. Media Functions (SD/SDHC Memory Card or Serial Flash chip)
	2.9.1 media_Init()
	2.9.2 media_SetAdd(HIword, LOword)
	2.9.3 media_SetSector(HIword, LOword)
	2.9.4 media_RdSector(Destination_Address)
	2.9.5 media_WrSector(Source_Address)
	2.9.6 media_ReadByte()
	2.9.7 media_ReadWord()
	2.9.8 media_WriteByte(byte_val)
	2.9.9 media_WriteWord(word_val)
	2.9.10 media_Flush()
	2.9.11 media_Image(x, y)
	2.9.12 media_Video(x, y)
	2.9.13 media_VideoFrame(x, y, frameNumber)

	2.10. Flash Memory Chip Functions
	2.10.1 flash_Bank()
	2.10.2 flash_Blit1(bank, offset, count, pallete2colour)
	2.10.3 flash_Blit2(bank, offset, count, pallete4colour)
	2.10.4 flash_Blit4(bank, offset, count, pallete16colour)
	2.10.5 flash_Blit8(bank, offset, count)
	2.10.6 flash_Blit16(bank, offset, count)
	2.10.7 flash_Copy(bank, ptr, dest, count)
	2.10.8 flash_EraseBank(bank, confirmation)
	2.10.9 flash_Exec(flashbank, arglistptr)
	2.10.10 flash_GetByte(bank, ptr)
	2.10.11 flash_GetWord(bank, ptr)
	2.10.12 flash_LoadFile(bank, filename)
	2.10.13 flash_putstr(bank, ptr)
	2.10.14 flash_Run(bank)
	2.10.15 flash_WriteBlock(sourceptr, bank, page)
	2.10.16 flash_FunctionCall(bank, index, state, &FunctionRam, &FunctionDef, FunctionArgCount, FunctionArgStringMap)
	2.10.17 flash_LoadSPIflash(bank, hndl, idx)

	2.11. SPI Control Functions
	2.11.1 spi_Init(speed, address_mode)
	2.11.2 spi_Read()
	2.11.3 spi_Write(byte)
	2.11.4 spi_Disable()
	2.11.5 SPI1_Init(speed, mode, enablepin) or SPI2_Init(speed, mode, enablepin) or SPI3_Init(speed, mode, enablepin)
	2.11.6 SPI1_Read() or SPI2_Read() or SPI3_Read()
	2.11.7 SPI1_Write(byte) or SPI2_Write(byte) or SPI3_Write(byte)
	2.11.8 SPI1_SCK_pin(pin) or SPI2_SCK_pin(pin) or SPI3_SCK_pin(pin)
	2.11.9 SPI1_SDI_pin(pin) or SPI2_SDI_pin(pin) or SPI3_SDI_pin(pin)
	2.11.10 SPI1_SDO_pin(pin) or SPI2_SDO_pin(pin) or SPI3_SDO_pin(pin)
	2.11.11 spi_ReadBlock() or spi1_ReadBlock() or spi2_ReadBlock() or spi3_ReadBlock()
	2.11.12 spi_WriteBlock() or spi1_WriteBlock() or spi2_WriteBlock() or spi3_WriteBlock()

	2.12. Serial (UART) Communications Functions
	2.12.1 COM1_RX_pin(pin) or COM2_RX_pin(pin) or COM3_RX_pin(pin)
	2.12.2 COM1_TX_pin(pin) or COM2_TX_pin(pin) or COM3_TX_pin(pin)
	2.12.3 setbaud(baudnum)
	2.12.4 com_SetBaud(comport, baudrate/10)
	2.12.5 serin() or serin1() or serin2() or serin3()
	2.12.6 serout(char) or serout1(char) or serout2(char) or serout3(char)
	2.12.7 com_Init(buffer, bufsize, qualifier) or com1_Init(buffer, bufsize, qualifier) or com2_Init(buffer, bufsize, qualifier) or com3_Init(buffer, bufsize, qualifier)
	2.12.8 com_Reset() or com1_Reset() or com2_Reset() or com3_Reset()
	2.12.9 com_Count() or com1_Count() or com2_Count() or com3_Count()
	2.12.10 com_Full() or com1_Full() or com2_Full() or com3_Full()
	2.12.11 com_Error() or com1_Error() or com2_Error() or com3_Error()
	2.12.12 com_Sync() or com1_Sync() or com2_Sync() or com3_Sync()
	2.12.13 com_TXbuffer(buf, bufsize,pin) or com1_TXbuffer(buf, bufsize,pin) or com2_TXbuffer(buf, bufsize,pin) or com3_TXbuffer(buf, bufsize,pin)
	2.12.14 com_TXbufferHold(state) or com1_TXbufferHold(state) or com2_TXbufferHold(state) or com3_TXbufferHold(state)
	2.12.15 com_TXcount() or com1_TXcount() or com2_TXcount() or com3_TXcount()
	2.12.16 com_TXemptyEvent(function) or comn_TXemptyEvent(function)
	2.12.17 com_Mode("databits", "parity", "Stopbits", "comport")
	2.12.18 com_RXblock() or com1_RXblock() or com2_RXblock() or com3_RXblock()
	2.12.19 com_TXblock() or com1_TXblock() or com2_TXblock() or com3_TXblock()
	2.12.20 com_InitBrk(buffer, bufsize, qualifier) or com1_InitBrk (buffer, bufsize, qualifier) or com2_InitBrk (buffer, bufsize, qualifier) or com3_InitBrk (buffer, bufsize, qualifier)
	2.12.21 com_TXbufferBrk(buf, bufsize,pin) or com1_TXbufferBrk(buf, bufsize,pin) or com2_TXbufferBrk(buf, bufsize,pin) or com3_TXbufferBrk(buf, bufsize,pin)

	2.13. I2C BUS Master Functions
	2.13.1 I2C1_Open(Speed, SCL, SDA) or I2C2_Open(Speed, SCL, SDA) or I2C3_Open(Speed, SCL, SDA)
	2.13.2 I2C1_Close() or I2C2_Close() or I2C3_Close()
	2.13.3 I2C1_Start() or I2C2_Start() or I2C3_Start()
	2.13.4 I2C1_Stop() or I2C2_Stop() or I2C3_Stop()
	2.13.5 I2C1_Restart() or I2C2_Restart() or I2C3_Restart()
	2.13.6 I2C1_Read() or I2C2_Read() or I2C3_Read()
	2.13.7 I2C1_Write(byte) or I2C2_Write(byte) or I2C3_Write(byte)
	2.13.8 I2C1_Ack() or I2C2_Ack() or I2C3_Ack()
	2.13.9 I2C1_Nack() or I2C2_Nack() or I2C3_Nack()
	2.13.10 I2C1_AckStatus or I2C2_AckStatus or I2C3_AckStatus
	2.13.11 I2C1_AckPoll(control) or I2C2_AckPoll(control) or I2C3_AckPoll(control)
	2.13.12 I2C1_Idle() or I2C2_Idle() or I2C3_Idle()
	2.13.13 I2C1_Gets(buffer, size) or I2C2_Gets(buffer, size) or I2C3_Gets(buffer, size)
	2.13.14 I2C1_Getn() or I2C2_Getn() or I2C3_Getn()
	2.13.15 I2C1_Puts(buffer) or I2C2_Puts(buffer) or I2C3_Puts(buffer)
	2.13.16 I2C1_Putn() or I2C2_Putn() or I2C3_Putn()

	2.14. Timer Functions
	2.14.1 sys_T()
	2.14.2 sys_T_HI()
	2.14.3 sys_SetTimer(timernum, value)
	2.14.4 sys_GetTimer(timernum)
	2.14.5 sys_SetTimerEvent(timernum, function)
	2.14.6 sys_EventQueue()
	2.14.7 sys_EventsPostpone()
	2.14.8 sys_EventsResume()
	2.14.9 sys_DeepSleep(units)
	2.14.10 sys_Sleep(units)
	2.14.11 iterator(offset)
	2.14.12 sys_GetDate()
	2.14.13 sys_GetTime()
	2.14.14 sys_SetDate(year, month, day)
	2.14.15 sys_SetTime(hour, minute, second)
	2.14.16 sys_GetDateVar(&year, &month, &day)
	2.14.17 sys_GetTimeVar(&hour, &minute, &second, &msecs)

	2.15. FAT16 File Functions
	2.15.1 file_Error()
	2.15.2 file_Count(filename)
	2.15.3 file_Dir(filename)
	2.15.4 file_FindFirst(fname)
	2.15.5 file_FindNext()
	2.15.6 file_Exists(fname)
	2.15.7 file_Open(fname, mode)
	2.15.8 file_Close(handle)
	2.15.9 file_Read(destination, size, handle)
	2.15.10 file_Seek(handle, HiWord, LoWord)
	2.15.11 file_Index(handle, Hisize, LoSize, recordnum)
	2.15.12 file_Tell(handle, &HiWord, &LoWord)
	2.15.13 file_Write(*source, size, handle)
	2.15.14 file_Size(handle, &HiWord, &LoWord)
	2.15.15 file_Image(x, y, handle)
	2.15.16 file_ScreenCapture(x, y, width, height, handle)
	2.15.17 file_PutC(char, handle)
	2.15.18 file_GetC(handle)
	2.15.19 file_PutW(word, handle)
	2.15.20 file_GetW(handle)
	2.15.21 file_PutS(*source, handle)
	2.15.22 file_GetS(*string, size, handle)
	2.15.23 file_Erase(fname)
	2.15.24 file_Rewind(handle)
	2.15.25 file_LoadFunction(fname.4XE)
	2.15.26 file_Run(fname.4XE, arglistptr)
	2.15.27 file_Exec(fname.4XE, arglistptr)
	2.15.28 file_LoadImageControl(fname1, fname2, mode)
	2.15.29 file_Mount()
	2.15.30 file_Unmount()
	2.15.31 file_PlayWAV(fname)
	2.15.32 file_Rename(oldname, newname)
	2.15.33 file_SetDate(handle, year, month, day, hour, minute, second)
	2.15.34 file_CheckUpdate(filename, options)

	2.16. Sound Control Functions
	2.16.1 Snd_Volume(var)
	2.16.2 Snd_Pitch(pitch)
	2.16.3 Snd_BufSize(var)
	2.16.4 snd_Stop()
	2.16.5 snd_Pause()
	2.16.6 snd_Continue()
	2.16.7 snd_Playing()
	2.16.8 snd_Freq(frequency, duration)

	2.17. String Class Functions
	2.17.1 str_Ptr(&var)
	2.17.2 str_GetD(&ptr, &var)
	2.17.3 str_GetW(&ptr, &var)
	2.17.4 str_GetHexW(&ptr, &var)
	2.17.5 str_GetC(&ptr, &var)
	2.17.6 str_GetByte(ptr)
	2.17.7 str_GetWord(ptr)
	2.17.8 str_PutByte(ptr, val)
	2.17.9 str_PutWord(ptr, val)
	2.17.10 str_Match(&ptr, *str)
	2.17.11 str_MatchI(&ptr, *str)
	2.17.12 str_Find(&ptr, *str)
	2.17.13 str_FindI(&ptr, *str)
	2.17.14 str_Length(ptr)
	2.17.15 str_Printf(&ptr, *format)
	2.17.16 str_Cat(&destination, &source)
	2.17.17 str_CatN(&ptr, str, count)
	2.17.18 str_ByteMove(src, dest, count)
	2.17.19 str_Copy(dest, src)
	2.17.20 str_CopyN(dest, src, count)

	2.18. Touch Screen Functions
	2.18.1 touch_DetectRegion(x1, y1, x2, y2)
	2.18.2 touch_Set(mode)
	2.18.3 touch_Get(mode)
	2.18.4 touch_TestArea(&rect)
	2.18.5 touch_TestBox(&rect)

	2.19. Image Control Functions
	2.19.1 img_SetPosition(handle, index, xpos, ypos)
	2.19.2 img_Enable(handle, index)
	2.19.3 img_Disable(handle, index)
	2.19.4 img_Darken(handle, index)
	2.19.5 img_Lighten(handle, index)
	2.19.6 img_SetWord(handle, index, offset, word)
	2.19.7 img_GetWord(handle, index, offset)
	2.19.8 img_Show(handle, index)
	2.19.9 img_SetAttributes(handle, index, value)
	2.19.10 img_ClearAttributes(handle, index, value)
	2.19.11 img_Touched(handle, index)
	2.19.12 img_SelectReadPosition(handle, index, frame, xpos, ypos)
	2.19.13 img_SequentialRead(count, ptr)
	2.19.14 img_FileRead(*dest, size, handle, index)
	2.19.15 img_FileSeek(handle, index, HiWord, LoWord)
	2.19.16 img_FileIndex(handle, index, HiSize, LoSize, recordnum)
	2.19.17 img_FileTell(handle, index, &HiWord, &LoWord)
	2.19.18 img_ FileSize(handle, index, &HiWord, &LoWord)
	2.19.19 img_FileGetC(handle, index)
	2.19.20 img_FileGetW(handle, index)
	2.19.21 img_FileGetS(*string, size, handle, index)
	2.19.22 img_FileRewind(handle, index)
	2.19.23 img_FileLoadFunction(handle, index)
	2.19.24 img_FileRun(handle, index, arglistptr)
	2.19.25 img_FileExec(handle, index, arglistptr)
	2.19.26 img_FilePlayWAV(handle, index)
	2.19.27 img_TxtFontID(handle, index)

	2.20. Memory Allocation Functions
	2.20.1 mem_Alloc(size)
	2.20.2 mem_AllocV(size)
	2.20.3 mem_Allocz(size)
	2.20.4 mem_Realloc(&ptr, size)
	2.20.5 mem_Free(allocation)
	2.20.6 mem_Heap()
	2.20.7 mem_Set(ptr, char, size)
	2.20.8 mem_Copy(source, destination, count)
	2.20.9 mem_Compare(ptr1, ptr2, count)
	2.20.10 mem_ArrayOp1(memarray, count, op, value)
	2.20.11 mem_ArrayOp2(memarray1, memarray2, count, op, value)

	2.21. General Purpose Functions
	2.21.1 pause(time)
	2.21.2 lookup8(key, byteConstList)
	2.21.3 lookup16(key, wordConstList)

	2.22. Floating point Functions
	2.22.1 flt_ADD(&result, &floatA, &floatB)
	2.22.2 flt_SUB(&result, &floatA, &floatB)
	2.22.3 flt_MUL(&result, &floatA, &floatB)
	2.22.4 flt_DIV(&result, &floatA, &floatB)
	2.22.5 flt_POW(&result, &floatA, &floatB)
	2.22.6 flt_ABS(&result, &floatval)
	2.22.7 flt_CEIL(&result, &floatval)
	2.22.8 flt_FLOOR(&result, &floatval)
	2.22.9 flt_SIN(&result, &floatval)
	2.22.10 flt_COS(&result, &floatval)
	2.22.11 flt_TAN(&result, &floatval)
	2.22.12 flt_ASIN(&result, &floatval)
	2.22.13 flt_ACOS(&result, &floatval)
	2.22.14 flt_ATAN(&result, &floatval)
	2.22.15 flt_EXP(&result, &floatval)
	2.22.16 flt_LOG(&result, &floatval)
	2.22.17 flt_SQR(&result, &floatval)
	2.22.18 flt_LT(&floatA, &floatB)
	2.22.19 flt_EQ(&floatA, &floatB)
	2.22.20 flt_NE(&floatA, &floatB)
	2.22.21 flt_GT(&floatA, &floatB)
	2.22.22 flt_GE(&floatA, &floatB)
	2.22.23 flt_LE(&floatA, &floatB)
	2.22.24 flt_SGN(&floatval)
	2.22.25 flt_FTOI(&floatval)
	2.22.26 flt_ITOF(&fresult, var16)
	2.22.27 flt_UITOF(&fresult, uvar16)
	2.22.28 flt_LTOF(&fresult, var32)
	2.22.29 flt_ULTOF(&fresult, uvar32)
	2.22.30 flt_VAL(&fresult, numstring)
	2.22.31 flt_PRINT (&fvalue, formatstring)
	2.22.32 flt_PRINTxy (x, y, &fvalue, formatstring)

	2.23. Misc System Functions
	2.23.1 sys_PmmC()
	2.23.2 sys_Driver()

	2.24. SPI FLASH Functions
	2.24.1 spiflash_BlockErase(spi#, Enablepin, block)
	2.24.2 spiflash_BulkErase(spi#, Enablepin)
	2.24.3 spiflash_Exec(spi#, Enablepin, arglistptr)
	2.24.4 spiflash_GetC(spi#, Enablepin)
	2.24.5 spiflash_GetS(*String, size, spi#, Enablepin)
	2.24.6 spiflash_GetW(spi#, Enablepin)
	2.24.7 spiflash_ID(spi#, Enablepin)
	2.24.8 spiflash_Image(x, y, spi#, Enablepin)
	2.24.9 spiflash_LoadFunction(spi#, Enablepin)
	2.24.10 spiflash_LoadImageControl(spi#, Enablepin)
	2.24.11 spiflash_PlayWAV(spi#, Enablepin)
	2.24.12 spiflash_PutC(char, spi#, Enablepin)
	2.24.13 spiflash_PutS(source, spi#, Enablepin)
	2.24.14 spiflash_PutW(word, spi#, Enablepin)
	2.24.15 spiflash_Read(destination, size, spi#, Enablepin)
	2.24.16 spiflash_Run(spi#, Enablepin, arglistptr)
	2.24.17 spiflash_SetAdd(spi#, HiWord, LoWord)
	2.24.18 spiflash_SIG(spi#, Enablepin)
	2.24.19 spiflash_Write(Source, size, spi#, Enablepin)
	2.24.20 spiflash_Block32Erase(spi#, Enablepin)
	2.24.21 spiflash_Sector4Erase(spi#, Enablepin)
	2.24.22 spiflash_ReadByte(flags, spi#, Enablepin)
	2.24.23 spiflash_WriteByte(reg/value, spi#, Enablepin)
	2.24.24 spiflash_SetMode(spi#, mode)
	2.24.25 spiflash_LoadGCFImageControl(spi#, Enablepin)

	2.25. CRC Functions
	2.25.1 crc_16(buf, count)
	2.25.2 crc_CCITT(buf, count, seed)
	2.25.3 crc_CSUM_8(buf, count)
	2.25.4 crc_MODBUS(buf, count)

	3. System Registers Memory Map
	4. Appendix A : Runtime Error Messages
	5. Hardware Tools
	5.1. 4D Programming Tools
	5.2. Display Modules
	5.3. Memory Cards - FAT16 Format

	6. Workshop4 IDE
	6.1. Designer Environment
	6.2. ViSi Environment
	6.3. ViSi Genie Environment
	6.4. Serial Environment

	7. Revision History
	8. Legal Notice
	9. Contact Information

