www.4dlabs.com.au

£D4D LNABS

SEMICONDUCTORS

COLDELOX

Embedded Graphics Processor

INTERNAL
FUNCTIONS

Document Revision: 7.1
Document Date: 22" March 2019

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Table of Contents

1. ADGL INtroduCtioN.....ccvuuueniiiiiiiiiiiiiiuiieiiiniiireesssssssssseitnrssssssssssssssnseesssssssssssssssssssanes 6

N 2. Goldelox Chip-Resident FUNCtiONs SUMMArY......cccciveeiireeiiieeiriencereeerenererenseereaseesnnns 7
cC D2 B 1 = [0 B VT Yot e 4 T3 11
O 2.1.2. PIN_Set(MOUE, PIN).ciicriiiiiieiiieiiieeeiee ettt e sree st e et e e sreessbeeesbeesbaessaeeesbeesnsseesns 12
.-I: % A o Y[TN o 11 o) SR 13
8 2 e TR o1 T O T 1) S 14
=3 N B o Y[Y =Y [o [o1 Lo) SR 15
L 2 00 TR 101V ol SR 16
— 2.1.6. OW_RESEL() vevvervrreeeeeeeeeseeeeeeeeesess e eesess e esse e e e s ees e s se e ssese e sseseeseeeeseseene 17
g 21,72 OW._REAA() errrreeeeeeeeeeeeeeeeeses e esesssessssess e sesesssssssse e 18
- 2.1.8. OW_REAAD() vrvrereeeeeeseeseeseeseeeeeseeeseeeeeeseeeeseeseesesssesseeseeseeseesseesessessessaseeesaesessesenees 19
Q 2.1.9. OW_WILE(AATA) c.vervreeeerierieeiesieseee st etete et e et eeeteste e e steeseesesreeseesesseensesneensenees 20
E 2.2. Memory ACCesS FUNCLIONScoviiieie e 21
— D A B o111 4= o [o [Y] I RSP 22
| 2.2.2. PEEKW(AUAIESS) .. veeeriieiiieeiieeecteeetee et e eteeetreesteeestaeesateesbaeesaseessaeesseesseeesssenans 23
- 2.2.3. pokeB(address, bYLe ValUE)ccocuiiieiciiiie ettt et e e e e e 24
O 2.2.4. pokeW(address, WOrd_ValU@)........cueeiieiiiieieiieee ettt et e e et 25
& 2.2.5. bits_Set(address, Mask)........ccceiuieeciiiiiie et e 26
Q 2.2.6. bits_Clear(address, Mask)ceceeciiieieciiee et ecre e e et e e e esrre e e e e bre e e e ebaeeeeenes 27
O 2.2.7. bits_Flip(@ddress, Mask)cc.eeivuierciireiieeeieeerte e et e eseeesreeesteeesveestae e saeesreeesnreenns 28
e 2.2.8. bits_Test(address, Mask)cceeeieciiiiieciee ettt e e e e ree e e 29
(a1 D20 T U =T = ol ST o ot [o] o TP 30
) I L= L oY (31 [4 OO 31
,L_) D TN I <Y Yo SRR 32
i - 2.3.2. POP() crverereerereereeeeeseeeeeeeeeee e ee s eeseeeseeees e ee s e s e s e e ee e ee st ee s s e e e ees e s eeeens 33
Q. D T T o U1 o1 (V=] (V1<) I TR 34
E R T e | o] o] () SRS PPRRPRE 35
w 2.3.5. CAII() 1eveurenreeeereeseeseise e 36
x 2.3.6. exec(functionPtr, argCOUNT).......ccicciiiee ettt et e e e ecree e e e etre e e e ebaeeeeeans 37
O 2.4, Maths FUNCHIONS.....coctiiiictiee ettt ettt et e et e e e ab e e e eaae e etaeessaeesnneeeenneas 38
— 2.8, 0. ABS(VAIUR)...uei ettt ettt s bttt e e be e e ba e e s re e etae e abeeebaeeenreeans 39
Ll 2.4.2. MIN(VAIUEL, VAIUB2) ..eeeeeieeiee ettt eetee ettt et e st e e vae e et e e e e snteesbaaesnneeenees 40
D 2.4.3. MAX(VAIUEL, VAIUB2) ..eoiieiviieeeieeee ettt ettt ettt s et e e seatae e e ssatae s e seabaesesnnneesen 41
— 2.4.4. SWAP(RVArL, &VAI2) ..ccccueiecieeeieeeiieeeteeesteeseestteesteesteeesseaesseeensseessteesseeesnseesnses 42
O 2.4.5. SIN(ANGIR) .eveieieeeeiee ettt ettt e et e et r e e s be e e s ta e e e abeesebaeesabeeebae e naeeebeeennreens 43
w D B T €0 1] - Y= 1= S 44
2.8, 7. RAND() cuteeierie ettt cte ettt ettt e et e e et e e et e e e be e e baeesebee e taeeeabaeebaeesbeeebae e raeeebeeennraens 45

DA Y = 1 0T (o TW] '] =T o R 46

2.4.9. SORT(NUMDBET) cuvtiiiiiiiiee ettt ettt eere e et e et e e e e abee s e seabaesessatsesesasbaeeesensreeees 47

GOLDELOX INTERNAL FUNCTIONS Page 2 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

20200, OVF() oo ee s s e see e eseee e ee e e eneee et se s seese e e eeeeseeenans 48

2.5. Text and String FUNCLIONSoviiiiiiiiicciiee et 49

2.5.1. txt_MoveCursor(line, COIUMN)ccciiiiieieee et 50

(7, Do o 101 o] Y (o] o =1 o IS 51
cC T I U1t A (o]0 101 C=) o H TR 52
O 2.5.4. putnUM(fOrmMat, ValUE)ccccueeiiieiieecee ettt et e e ba e e saeeeenns 54
- 25,5 DINE() o oeoeoeeeeeoeee oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo e oo e oo oo oo eees 56
— PN T (o] (o UL £y =Y [) S 57
g 2.5.7. charWidth('Char') oo et raaae e 59
LL 2.5.8. charh@ight('Char') co...uee e et e e e saaaeee s 60
— PR B 4 VY] To 1 oY (e Yo Va1 Y o 61
© 2.5.10. SEENEIZNE() 1+ververeereeeeeereeeeeee e eeeeeeeeeeese e seeeeeeseeeseseeeeee e ssesseeseeeseesseeseeseeeseeaseesseeseees 62
E 2.5.11. SErIEN(POINTEL) cooneeieeiie ettt e et e e re e e rbae e sate e stae e sseesreeesnseeans 63
Q 2.5.12. txt_Set(function, VAIUE)cueii ittt et e e e e 64
E 2.6. Graphics FUNCLIONS....ciiiiiii e e e e e e e s nrrareeaeeeas 66
— 2061 BIX_CIS() e eeeeeeeeeee e e e e e e s e s eeseeesee e ee e eeeeeeee e e sea s e ereeens 67
I 2.6.2. gfx_ChangeColour(oldColour, NeWCOIOUN)ccceciiiiiiciieeeccieee et 68

| - 2.6.3. gfx_Circle(x, y, radius, COIOUT)....cuiiiiiiiiecie ettt e re e tee e eare e 69
O 2.6.4. gfx_CircleFilled(x, y, radius, COlOUN)cccuuiiiiiciiie et e e e iree e 70
& 2.6.5. gfx_Line(X1, Y1, X2, Y2, COIOUN) c..uviiiiiieiieeciee ettt e ctee ettt e e tae e sve e e tae e aee e s raeeenreens 71
Q 2.6.6. fX_HIINE(Y, X1, X2, COIOU) worvvieiiieieiicieeeeceeeete ettt sttt snna 72
O 2.6.7. gfX_VIINE(X, Y1, Y2, COIOUN) cnnitiiiiiiieie ettt ettt e et e e e care e e e e tre e e e e baeeeeaans 73
e 2.6.8. gfx_Rectangle(x1, Y1, X2, Y2, COIOUN) ..cciuiiiiiieiiieeieeecteeeteeectee st eetae e aeeeeveeeeaveeens 74
(o 2.6.9. gfx_RectangleFilled(x1, y1, X2, Y2, COlOUN) .cccuriiiiiiiieceieee ettt 75
(7, 2.6.10. gfx_Polyline(n, VX, VY, COIOUN) ...uuiiiiiiiiiieciie ettt etee e sve e etae e ave e s veeeenreens 76
(&) 2.6.11. gfx_Polygon(n, VX, VY, COIOUN) ...uiiiiiiiiiiiieectee et etee et s e eee e e esvee e snaee e 78
E 2.6.12. gfx_Triangle(x1, y1, X2, Y2, X3, Y3, COIOUN)...cccuiiicriieiieecreeetteecreeetae e e e veeeenre e 79
Q. 2.6.13. 8K _DOL() cvrvveeeeeeeeeeeeeeeeeeeeeeeeeeeee s et eeeeeeeses e e eeseetes s eeee et et s s e eeee et es s e e eeenennaene 80
E 2.6.14. GEX_BUIIEL(FATIUS) cvvrrveerverereeereeeseeeeeeeeeeeseseseseeesesseseseeeseseseseseseseesesesesesesesesesssneses 81
w 2.6.15. gfx_OrbitInit(&x_dest, &Y deS)cciieciiieiciiieeceee e e 82
2.6.16. gfx_Orbit(angle, diStaNCE)cccvviiecriieiieeciee ettt sre e et re e s ereeeeareeas 83

>< 2.6.17. fX_PULPIXEI(X, Y, COIOUN) woiiuriiiiiieeiie ettt ettt e e tee e s ve e eta e e aae e s beeeenreens 84
O 2.6.18. gFX_GEIPIXEI(X,) eerreeereieeiieeee ettt ettt e e et e e re e et e e e st e e e re e e enaeeennes 85
L_IIJ 2.6.19. SfX_IMOVETO(XPOS, YPOS) .reeiirreeirreeeireeesireeeireeestreesireeesseesseessseeessseesssesesssessasesesssessns 86
D 2.6.20. gfx_MoveRel(xoffset, YOTFSEL).....ccviirciiiiiie e s 87
- 20621 GIX_INCX() eveeveeveereerereeeseeesseeseeeseseessessessessesseeseeseeseessesesssesesaseeseesseseeesessesseeseseesesaens 88
O 2.6.22. GFX_INCY() everveeeeeeeeeeeeee et s e en s en e ene e eenan 89
w 2.6.23. 8fX_LINETO(XPOS, YPOS) c.uveeerrieiireeereeesreeeiteeestreesireeesssessseesssssesssessssesessseesssesessessns 90
2.6.24. gfX_LINEREI(XPOS, YPOS) wereireeeiiieieieeeieeeitteesteesstteesteesteeeseeeesseeesraeessteesreeesnseeenees 91

2.6.25. 8IX_BOXTO(X2, Y2).uteeeteeeereeeitieeiteeeereeesteesiseeestaeesiseeesseeessseesasesesseessseessseesasesesssensns 92

2.6.26. gfX_SELCHPREZION() ceeeeriieeeeciiiee ettt ettt ettt e ettt e e et e e e et e e e e e ebreeeeebreeeeebeeeaeanns 93

2.6.27. gfx_ClipWIindoW(X1, Y1, X2, Y2) coccueeeeeeiieeeeectieee ettt e eettee e e ectree e e eeareeeeeteeeeesenraeaeeans 94

GOLDELOX INTERNAL FUNCTIONS Page 3 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR
2.6.28. gfX_FOCUSWINAOW() .veeeuvieeieiieiiieeiieeciee sttt e st e steeeste e ste e esaee e steeesraeesnseesnseeesnseeenees 95
2.6.29. gfX_Set(fuNCtion, VAlUE)cccviiiieiiie et et aaee s 96
2.7. DisPlay /O FUNCLIONS ...ccvveeciie ettt ectee et ette e tee et e e e b e e eare e e eaveeeenaeesneeas 98
(7, 2.7.1. disp_Init(initTable, stateMaching).......c.ccecvieiieeeciiecee e e 99
cC 2.7.2. disp_WriteCONTrol(VaAlUE)cveieieeeeeiiceeeeeceeeeee ettt 101
O 2.7.3. disp_WriteBYte(VAlUR)ueeeeiie ettt e te e ae e s e e e 102
:l: 2.7.4. disp_WriteWOrd(ValUE)ceeeciiieieiiieeectee ettt et e e e arae e e aaae e e 103
— DA A o [=T o =Y =T TSP 104
g 2.7.6. disSp_REAAWOI() .eeeecereeeeeiiieieeiiiee ettt et e e e e e e e e e e e e s e arae e e ennes 105
LL 2.7.7. disp_BIitPixelFill(COloUr, COUNT) ..eeviiiieeeeieeeeecee e e 106
— 2.7.8. disp_BlitPiXeISTOMEIA() .veeeveerrreeiiieeiieeiee et eertee et et eesrre e e e e e nee e raee e ebeeeeaneenns 107
© 2.7.9. disp_BlitPixelsFromMedia(piXelCoUNT)cccecviiieeiiiie e 108
E 2.7.10. disp_SkipPixelsFromMedia(piXelCOUNt).......cccueevieeiiiieiieeeiee e 109
Q 2.7.11. diSp_BIitPIXEISTOCOM()vuervereerreeeereeeeeeseeeeeesseesesesseeseeseessessessessessessesseeseesesessens 110
"E 2.7.12. disp_BIitPixelsSFromCOM(MOE)cccvieeiieeiiiecieectee ettt e ree e 111
— 2.8. Media Functions (SD/SDHC Memory Card or Serial Flash chip).....c...ccccveeeuvennee. 113
| 28,1 MEAIA_INIE() 1rrrrvvereereeeseeseeeeseesseeeseesseeeesesessesessssssesessssesess s eseesesssesss s ssssseseess s 114
- 2.8.2. media_SetAdd(HIWOrd, LOWOId)cccueeeiieeiieeciee ettt ettt e 115
O 2.8.3. media_SetSector(HIWord, LOWOIrd).......cc.eeieciiieieiiiie ettt 116
& 2.8.4. Media_REAUBYLE() .eeeerreerieeeiie i e ettt ettt st e tee st e e stre e e te e e st e e st e e eaae e e beeenae s 117
Q 2.8.5. Media_REAAWOIA() ..vcveieieceeeieceeeceees ettt ettt enenas 118
O 2.8.6. media_WriteByte(byte Val)ooociiiieeee e 119
e 2.8.7. media_WriteWord(Word_Val).......ccccuieiiiiiiieeiee ettt 120
(o PRI 0 1= L= T LU o1 OO 121
(7, 2.8.9. MEIa_IMAZE(X, Y) creeeerrrerreeeiiie it eecreeeete e st eerteeeste e e teeestreeebaeesaseessaesbaeesnbeeesees 122
(&) 2.8.10. MEAIA_VIAEO(X, Y)-ervrrereeeeeeeeeeeeeeeeeeeseeseeseeeeeeeeseeseeseseseesesesseseeseessesseseeseeseseeeees 123
E 2.8.11. media_VideoFrame(x, y, frameNUmMbBer)cccccocvieiiieiiee e 124
Q. 2.9. Flash Memory Chip FUNCLIONS.......ceiiiiieiiciirieeeee et e e eenrreee e e e e e e e nanneees 126
E 2.9, 1. FIASN_SIG() evrvrerreeeeseeeeeseeseeseeeeeseeeeeeeeeseeeeeeseeeseesese e eeeeeeeeeeeeeeeesee et eseeeeereeneeneneens 127
w e T =T T 0 OSSR 128
D T T T o T 2 101 S 1Y =T IR 129
é 2.9.4. flash_BIlockErase(bloCkAAAIress)cuiecurieeiieeiee ettt et 130
S | 2000 O Y o I 00T] o oY I V1 s T o Y o 131
Ll 2.10.1. spi_Init(speed, input_mode, output_mMode)......ccceecuereieriiireree e eee e 132
()] 2.10.2. SPI_REAA() cvvrveevereeeeeeeeeeeeeeeeeeeeseeeeessesseeseesseseeesseesese s eeeseseeeeeeeseseees e esese s eeeseeea 133
- 2.10.3. SPIi_WIEE(DYLE) .. veeetie ettt ettt ettt stre e e e e e aa e e s re e ebae e s abaeenaeas 134
O D L0 Y T DT 1SF- 1 o] L= USSR 135
w 2.11. Serial (UART) Communications FUNCLIONScccceevveeriiieeniieesiee e eeree e 136
b 0 Y=Y 4 o TSROSO 137
D2 N Y =1 o 1 f (o] o -1 USRS 138
2.11.3. SEDAUA(FALE) cuvveeieeireieeeeeee ettt et ea e e e eabe e e eearees 139

GOLDELOX INTERNAL FUNCTIONS Page 4 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

2.11.4. com_AutoBaud(timMeEOUL).....ccccueeeiieeciee et eee et 140

2.11.5. com_Init(buffer, bufsize, QUAITIEr) c...coeeceieeeeee e 141

2 ST oo T 2 (=Y =1 S SPSR 145

n % R A oo T .o (o 1 | RSP 146
cC 2 T o . T 11 SR 147
O 0 e TR oo o o T =15 o (SRR 148
'_|: 2.10.00. COM_SYNC() crveerierieiierieieite et et e ste et ecteete et esteeteeeesbeetsesbeereeasesteessebesteessebesssensenns 149
(&) 2.11.11. COM_CRECKSUM() cvvrvrvereeeeeeeeeseee e ss s s s se s eneons 150
g 0 1 oo o J - 1o S o 2] RSP 151
L 2.12. Sound and Tune (RTTTL) FUNCLIONS ...ccccvvrvieeieeieeieiiieeee e ceerinrree e e e e e eesnnnaeees 152
— 2.12.1. beep(Note, dUration)ccccueeeciieccie ettt e e srre e st e e te e e aae e eseeennaeeans 153
© D 0] o TR o P21V AU Y=Y o) o o P 154
E e T (0o T 2 YU 1Y =T USSR 158
Q 2.12.4. TUNE_CONTINUE() covrreeeeiiieieeeiiee e eeite e e ettt e e e e cree e e e tte e e e e eate e e e seasaeeeesasaeeesnsaeeesnnnaneens 159
'E' 2.12.5. EUNE_STOP()ervrrerrrereeesreeeesesesesseeesesesssssesessoessesesssesssessesesssesseeesssesssessesessesseseseees 160
— D 2 S 0] o T =X o USRI 161
I 2.12.7. tUNE_PIAYING() +eeeveeerreeeieeeiie ettt e etee et et e e te e e ste e et e e stte e et e e e s aae e staeebaeeenbaeennaeas 162
. 2.13. General PUrpoSse FUNCLIONS......uuiiiiiiiiecitieeeee ettt e e 163
O A e Tt I o T- YU =T T =) U 164
& 2.13.2. lookup8(key, byt@CONSELIST).....cveeecreeeririeeiee et e cieeeree et e et e e sae e sre e e vre e e e e enne s 165
Q 2.13.3. lookup16(key, WOrdCONSLLISt)ccuveeeeeciiieeeiiieeeecieee e et ece e et e e aaeee s 166
8 3. Goldelox EVE System Registers Memory Mapccceeeeiiiirmnniininnnninnnnnnininenn, 167
E 4. Appendix A : EXample 4DGL Code......cccvuuiiiiirnniiiiinniiiiinniiiiineniiinnenmmnnee 171
N 5. Hardware TOOIS...ccciiieiiieiiiiiiciiieieicreeeereesereneserenssssensssensssssnsssssesesenssssensassannans 181
.U 5.1. 4D Programming TOOIS.....cccceieiiuiiiiiee e e ettt e e e e e e eecrree e e e e e e s eenrrare e e e e e e e s naeneeees 181
i - 5.2. Evaluation Display MOdUIES..........eeeeiiii it e e e 181
% 6. 4D Labs - WOrkShop4 IDE..........ccccoitruuiiiiinmniiiinnneiiiinmesiiimemsisimsmssmmssssmessss 182
6 6.1. Designer ENVIrONMENT ..o 182
6.2. ViSi ENVIFONMENT .o e e 182

é 6.3. Serial ENVIFONMENT.....ooiii e e e e e e e e e 183
— 7. REVISION HISTOIYeuueueeeeeeenennnnnnnnnnnnnnnnsssnnnse 184
E 8. LeBal NOTICEiireueiiiiiiiniiiiiiieiiitieniinnrrnesntnraessntreaessserensssssnnnsssssssesnssssssenssssssenns 185
— 9. Contact INformation........cceeeeeeiiiiiiiiiiiiiccc e 185

GOLDELOX INTERNAL FUNCTIONS Page 5 of 185 www.4dlabs.com.au

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

1. 4DGL Introduction

The 4D Labs family of embedded graphics processors are powered by a highly optimised soft core virtual engine, E.V.E.
(Extensible Virtual Engine).

EVE is a proprietary, high performance virtual processor with an extensive byte-code instruction set optimised to
execute compiled 4DGL programs. 4DGL (4D Graphics Language) was specifically developed from ground up for the
EVE engine core. It is a high level language which is easy to learn and simple to understand yet powerful enough to
tackle many embedded graphics applications.

4DGL is a graphics oriented language allowing rapid application development. An extensive library of graphics, text
and file system functions and the ease of use of a language that combines the best elements and syntax structure of
languages such as C, Basic, Pascal, etc. Programmers familiar with these languages will feel right at home with 4DGL.
It includes many familiar instructions such as IF..ELSE..ENDIF, WHILE..WEND, REPEAT..UNTIL, GOSUB..ENDSUB, GOTO
as well as a wealth of (chip-resident) internal functions that include SERIN, SEROUT, GFX_LINE, GFX_CIRCLE and many
more.

This document covers the internal (chip-resident) functions available for the Goldelox Processor. This document
should be used in conjunction with “4DGL-Programmers-Reference-Manual” document.

Graphics Functions | |___ System Fonts | —
| SystemServices | | | srial Flash Driver
Internal Functions | Timers |
PmmC Loader
EVE Core e ot oxer
||
Extensible Virtual Engine COMO
Buffered Services
Memory Management DISPLAY
Display Dri
1 I poy D Interface
SRAM FLASH
0 bytes 10K bytes P
(255 vars) User Code Storage :
User Variables User Code Execution Services

Goldelox-GFX2 Internal Block Diagram

GOLDELOX INTERNAL FUNCTIONS Page 6 of 185 www.4dlabs.com.au

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

2. Goldelox Chip-Resident Functions Summary

The following is a summary of chip-resident 4DGL functions within the Goldelox-GFX2 graphics controller. The
document is made up of the following sections:

2.1 GPIO Functions:
e pin_Set(mode, pin)
e OUTPUT, INPUT, ANALOGUE_8, ANALOGUE_10, ONEWIRE, SOUND
e pin_HI(pin)
e pin_LO(pin)
e pin_Read(pin)
e joystick()
e OW_Reset()
e OW_Read()
e OW_Read9()
e OW_Write(data)

2.2 Memory Access Functions:
e peekB(address)
e peekW(address)
e pokeB(address, byte_value)
e pokeW(address, word_value)
e bits_Set(address, mask)
e bits_Clear(address, mask)
e bits_Flip(address, mask)
e bits_Test(address, mask)

2.3 User Stack Functions:
e setsp(index)

e getsp()

e pop()

e push(value)
e drop(n)

o call()

e exec(functionPtr, argCount)

2.4 Math Functions:
e ABS(value)
e MIN(valuel, value2)
e MAX(valuel, value2)
e SWAP(&varl, &var2)

e SIN(angle)
e COS(angle)
e RAND()

e SEED(number)
e SQRT(number)
e OVF()

2.5 Text and String Functions:
e txt_MoveCursor(line, column)
e putch(char)
e putstr(pointer)
e putnum(format, value)
e print(...)
e to(outstream)
e charwidth('char')
e charheight('char')

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 7 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

e strwidth(pointer)

e strheight()

e strlen(pointer)

e txt_Set(function, value)
txt_Set shortcuts:

e txt_FGcolour(colour)
e txt BGcolour(colour)
e txt_FontID(id)

o txt_Width(multiplier)
o txt_Height(multiplier)
e txt_Xgap(pixelcount)
e txt_Ygap(pixelcount)
o txt_Delay(millisecs)

e txt_Opacity(mode)

e txt_Bold(mode)

e txt_ltalic(mode)

e txt_Inverse(mode)

e txt_Underlined(mode)
o txt_Attributes(value)

2.6 Graphics Functions:
o gfx_Cls()
e gfx_ChangeColour(oldColour, newColour)
o gfx_Circle(x, y, radius, colour)
o gfx_CircleFilled(x, y, radius, colour)
e gfx_Line(x1, y1, x2, y2, colour)
e gfx_Hline(y, x1, x2, colour)
e gfx Vline(x, y1, y2, colour)
e gfx_Rectangle(x1, y1, x2, y2, colour)
e gfx_RectangleFilled(x1, y1, x2, y2, colour)
e gfx_Polyline(n, vx, vy, colour)
e gfx_Polygon(n, vx, vy, colour)
o gfx_Triangle(x1, y1, x2, y2, x3, y3, colour)
e gfx_Dot()
o gfx_Bullet(radius)
o gfx_Orbitlnit(&x_dest, &y_dest)
e gfx_Orbit(angle, distance)
o gfx_PutPixel(x, y, colour)
o gfx_GetPixel(x, y)
o gfx_MoveTo(xpos, ypos)
o gfx_MoveRel(xoffset, yoffset)
o gfx_IncX()
e gfx_IncY()
o gfx_LineTo(xpos, ypos)
o gfx_LineRel(xpos, ypos)
o gfx_BoxTo(x2, y2)
o gfx_SetClipRegion()
o gfx_ClipWindow(x1, y1, x2, y2)
e gfx_FocusWindow()
e gfx_Set(function, value)
gfx_Set shortcuts:

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 8 of 185 www.4dlabs.com.au

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

44D LN\BS

SEMICONDUCTORS

GOLDELOX GRAPHICS PROCESSOR

o gfx_PenSize(mode)

e gfx_BGcolour(colour)

e gfx_ObjectColour(colour)
e gfx_Clipping(mode)

o gfx_FrameDelay(delay)

o gfx_ScreenMode(delay)

e gfx_OutlineColour(colour)
e gfx_Contrast(value)

o gfx_LinePattern(pattern)
e gfx_ColourMode(mode)

2.7 Display I/0 Functions:
e disp_Init(initTable, stateMachine)
e disp_WriteControl(value)
o disp_WriteByte(value)
e disp_WriteWord(value)
e disp_ReadByte()
e disp_ReadWord()
e disp_BlitPixelFill(colour, count)
e disp_BlitPixelsToMedia()
e disp_BlitPixelsFromMedia(pixelcount)
e disp_SkipPixelsFromMedia(pixelcount)
e disp_BlitPixelsToCOM()
e disp_BlitPixelsFromCOM(mode)

2.8 Media Functions (SD/SDHC memory Card or Serial Flash chip):

e media_lnit()

e media_SetAdd(HIword, LOword)

e media_SetSector(HIword, LOword)
e media_ReadByte()

e media_ReadWord()

e media_WriteByte(byte_val)

e media_WriteWord(word_val)

e media_Flush()

e media_lmage(x, y)

e media_Video(x, y)

e media_VideoFrame(x, y, frameNumber)

2.9 Flash Memory chip Functions:
o flash_SIG()
o flash_ID()
o flash_BulkErase()
o flash_BlockErase(blockAddress)

2.10 SPI Control Functions:
e spi_Init(speed, input_mode, output_mode)
e spi_Read()
o spi_Write(byte)
e spi_Disable()

2.11 Serial (UART) Communications Functions:
e serin()
e serout(char)
e setbaud(rate)
e com_AutoBaud(timeout)
e com_lInit(buffer, buffsize, qualifier)
e com_Reset()
e com_Count()

GOLDELOX INTERNAL FUNCTIONS Page 9 of 185

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

com_Full()
com_Error()
com_Sync()
com_Checksum()
com_PacketSize()

2.12 Sound and Tune (RTTTL) Functions:
beep(note, duration)
tune_Play(tuneptr)
tune_Pause()

tune_Continue()

tune_Stop()

tune_End()

tune_Playing()

2.13 General Purpose Functions:
e pause(time)
e |ookup8 (key, byteConstList)
e |lookupl6 (key, wordConstList)

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 10 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

2.1. GPIO Functions

Summary of Functions in this section:
e pin_Set(mode, pin)
e OUTPUT, INPUT, ANALOGUE_8, ANALOGUE_10, ONEWIRE, SOUND
pin_HI(pin)
pin_LO(pin)
pin_Read(pin)
joystick()
OW_Reset()
OW_Read()
OW_Read9()
OW_Write(data)

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 11 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax ‘pin_Set(mode, pin);

Arguments mode, pin

mode A value (usually a constant) specifying the pin operation.

pin A value (usually a constant) specifying the pin number.

The arguments can be a variable, array element, expression or constant.

%
O
afd
O
g Returns nothing
LL
Description |Goldelox-GFX2 has limited but powerful I/0.
C There are pre-defined constants for mode and pin:
-
q) pin constants pin value
I 101 0
— 102 1
-
O mode constants | mode value |meaning 101 (102
& OUTPUT 0 Pin is set to an output YES |YES
q) INPUT 1 Pin is set to an input YES |YES
O ANALOGUE_8 2 Pin is set to analogue input, 8 bit mode YES [NO
e ANALOGUE_10 3 Pin is set to analogue input, 10 bit mode YES |NO
Q_ ONEWIRE 4 Pin is set as Dallas One Wire |/O mode YES |YES
(Vp) SOUND 5 Pin is set for RTTTL sound output YES |YES
O
0
m Example pin_Set (OUTPUT, IO02); // set I0O2 to be used as an output
| pin_Set (ANALOGUE 10, IO1); // set IOl to be used as analogue input
-
Ll
-

GOLDELOX INTERNAL FUNCTIONS Page 12 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax ‘pin_HI(pin);

Arguments pin

pin ‘A value (usually a constant) specifying the pin number.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description [Outputs a "High" level (logic 1) on the appropriate pin that was previously selected as an Output. If
the pin is not already set to an output, it is automatically made an output.

Example pin_ HI(IOZ2); // output a Logic 1 on IO2 pin

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 13 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax ‘pin_LO(pin);

Arguments pin

pin ‘A value (usually a constant) specifying the pin number.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description [Outputs a "Low" level (logic 0) on the appropriate pin that was previously selected as an Output. If
the pin is not already set to an output, it is automatically made an output.

Example pin_LO(IO1); // output a Logic 0 on IOl pin

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 14 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |pin_Read(pin);

Arguments pin

pin ‘A value (usually a constant) specifying the pin number.

The arguments can be a variable, array element, expression or constant.

Returns value

value Returns a Logic 1 (0x0001) or a Logic 0 (0x0000) or the analogue value of the input
pin.

Description |Reads the logic state or the analogue value of the pin that was previously selected as an Input. Returns
a "Low" (logic 0) or "High" (logic 1) or Analogue value n.

Example if (pin_Read (I01) < 200) // read the analogue value on IOl
calc Threshold();
else

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 15 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |joystick();

Arguments |none

Returns value

value Returns the joystick value.

Description |Returns the value of the Joystick position (5 position switch implementation).

The JOYSTICK values are:

Value 0 1 2 3 4 5
Status Released UpP LEFT DOWN RIGHT FIRE

Note: The joystick input uses 101 utilizing the A/D converter. Each switch is connected to junction of
2 resistors that form a unique voltage divider circuit. Refer to the Goldelox-GFX2 data sheet example
schematics for the required resistor values.

Example joy := joystick(); // read the joystick
if (joy == 0) putstr(" ")
if (joy == 1) putstr (" UP");
if (joy == 2) putstr("LEFT");
if (joy == 3) putstr ("DOWN");
if (joy == 4) putstr ("RIGHT");
if (joy == 5) putstr("FIRE");

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 16 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS

GOLDELOX GRAPHICS PROCESSOR

Syntax |0W_Reset() ;

Arguments |none

Returns result

result

Reset, and returns the status of the ONEWIRE device
0=ACK
1 = No Activity
(refer to Dallas 1wired documentation for further information)

Description |Resets a ONEWIRE device and returns the status.

Example print ("result=", OW Reset()):

This example will print a 0 if the device initialised successfully.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 17 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |0W_Read() ;

Arguments |none

Returns value

value A word holding the lower 8 bits contain data bits received from the 1-Wire device.

Description |Reads the 8 bit value from a 1-Wire devices register.
(refer to Dallas 1wired documentation for further information)

Example // read temperature from DS1821 device
var temp buf;
OW_Reset () ; // reset the device
OW Write (0OxAA); // send the read command
temp buf := OW_Read(); // read the device register

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 18 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |owW_Reads();

Arguments |none

Returns value

value A word holding 9 or more data bits received from the 1-Wire device.

Description |Reads the 9 or more bit value from a 1-Wire devices register.
(refer to Dallas 1wired documentation for further information)

Example // read temperature from DS1821 device
var temp buf;
OW_Reset () ; // reset the device
OW Write (0OxAA); // send the read command
temp buf := OW Read9(); // read the device register

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 19 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax OW_Write(data);

Arguments data

data ‘The lower 8 bits of data are sent to the 1-Wire device.

The argument can be a variable, array element, expression or constant.

Returns |nothing

Description |Writes the 8 bit data to 1-Wire devices register.
(refer to Dallas 1wired documentation for further information)

Example /7
// For this demo to work, a Dallas DS1821 must be connected to

// I01 AND POWERED FROM 5V.
// DS1821 pinl = Gnd / pin2 = data in/out / pin 3 = +5v
// Refer to the Dallas DS1821 for further information
//
var temp buf, stat buf;
func main ()
pause (1000) ;
txt MoveCursor (0,0);
pin Set (ONEWIRE, PIN 1); // set either I/0 pin to 1 wire mode
if (OW_Reset()) // initialise and test
print ("No device detected");
while (1) ;
endif
txt Set (TEXT COLOUR, LIGHTGREY) ;
txt Set (FONT SIZE, FONT LARGE);
// refer to data sheet for continuous/polled mode

// OW_Write (0x0C); // write status
// OW Write (0b01000010); // set continuous conversion
repeat

txt MoveCursor (0, 0);
print ("result=", OW Reset());

OW _Write (OxEE) ; // start conversion

OW_Reset () ; // reset

OW _Write (0xAA) ; // get temperature

temp buf := OW Read();

OW_Reset () ; // optional

OW Write (OxAC) ; // optional read status

stat buf := OW Read(); // optional 82 when DS1821 run

txt MoveCursor (1, 0);
print ("temp buf=0x", [HEX2] temp buf);
txt MoveCursor (2, 0);
print ("stat buf=0x", [HEX2] stat buf);
forever
endfunc

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 20 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

2.2. Memory Access Functions

Summary of Functions in this section:

e peekB(address)

e peekW(address)

¢ pokeB(address, byte_value)

¢ pokeW(address, word_value)

e Dits_Set(address, mask)
bits_Clear(address, mask)
bits_Flip(address, mask)
bits_Test(address, mask)

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 21 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |peekB(address);

Arguments address

address The address of a memory byte. The address is usually a pre-defined system register
address constant, (see the address constants for all the system byte sized registers in
section 3, table 3.1).

The arguments can be a variable, array element, expression or constant.

Returns byte_value

byte_value ‘The 8 bit value stored at address.

Description |This function returns the 8 bit value that is stored at address.

Note: the peekB(..) and pokeB(..) functions are usually only used with internal system byte registers
using the pre-defined constants. If peekB(..) or pokeB(..) are used to access other locations, the
address must be doubled to get the correct pointer address.

Examp|e var myvar;
myvar := peekB (GFX XMAX) + 1;

This example places the width of the display (horizontal resolution in pixel units) in myvar.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 22 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax

|peekW(address);

Arguments

address

address The address of a memory word. The address is usually a pre-defined system register
address constant, (see the address constants for all the system word sized registers
in section 3, table 3.2).

The arguments can be a variable, array element, expression or constant.

Returns

word_value

word_value The 16 bit value stored at address.

Description

This function returns the 16 bit value that is stored at address.

Example

var myvar;
myvar := peekW(SYSTEM TIMER LO);

This example places the low word of the 32 bit system timer in myvar.
The equivalent operation using a pointer is:-
myvar := *TIMER2;

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 23 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |pokeB(address, byte_value);

Arguments address, byte_value

address The address of a memory byte. The address is usually a pre-defined system register
address constant, (see the address constants for all the system byte sized registers in
section 3, table 3.1).

byte_value The lower 8 bits of byte_value will be stored at address.

The arguments can be a variable, array element, expression or constant.

Returns boolean

boolean IReturns TRUE if poke address was a legal address (usually ignored).

Description |This function writes a 8 bit value to a location specified by address.

Note: the peekB(..) and pokeB(..) functions are usually only used with internal system byte registers
using the pre-defined constants. If peekB(..) or pokeB(..) are used to access other locations, the
address must be doubled to get the correct pointer address.

Example pokeB (CLIP_TOP, 10) ;

This example manually adjusts the top clipping point to 10 pixels down from top of screen.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 24 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |pokeW(address, word_value);

Arguments address, word_value

address The address of a memory word. The address is usually a pre-defined system register
address constant, (see the address constants for all the system word sized registers
in section 3, table 3.2).

word_value The 16 bit word_value will be stored at address.

The arguments can be a variable, array element, expression or constant.

Returns boolean

boolean Returns TRUE if poke address was a legal address (usually ignored).

Description |This function writes a 16 bit value to a location specified by address.

Example pokeW(TIMERZ, 5000) ;

This example sets TIMER2 to 5 seconds.

The equivalent operation using a pointer is:
*TIMER2 := 5000;

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 25 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |bits_Set(address, mask);

Arguments address, mask

address The address of a user memory location.

mask The 16 bit mask containing bits to be set.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description |This function sets the required bits at address by 'ORing' the mask with the value stored at address.

Note: the bits_Set, bits_Clear, bits_Flip and bits_Test functions can only be used for user memory and
will not work with system register variables

Example var myval;

myval := 3;

bits Set (myval, 0xCO);
print ([HEX], myval);

This example sets bits 6 and 7 of myval

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 26 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |bits_CIear(address, mask);

Arguments address, mask

address The address of a user memory location.

mask The 16 bit mask containing bits to be cleared.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description [This function clears the required bits at address by 'ANDing' the inverted mask with the value stored
at address.

Note: the bits_Set, bits_Clear, bits_Flip and bits_Test functions can only be used for user memory and
will not work with system register variables.

Example var myval;
myval := OxFFFF;

bits Clear (myval, 0x3CO00);
print ([HEX], myval);

This example clears bits 10, 11, 12 and 13 of myval

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 27 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |bits_FIip(address, mask);

Arguments address, mask

address The address of a user memory location.

mask The 16 bit mask containing bits to be flipped.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description |This function flips the required bits at address by 'XORing' the mask with the value stored at address.

Note: the bits_Set, bits_Clear, bits_Flip and bits_Test functions can only be used for user memory and
will not work with system register variables.

Example var myval;
myval := OxFFFF;

bits Flip(myval, 0x8802);
print ([HEX], myval);

This example clears bits 15, 11, and 1 of myval

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 28 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax ‘bits_Test(address, mask);

Arguments address, mask

address The address of a user memory location.

mask The 16 bit mask containing bits to be tested.

The arguments can be a variable, array element, expression or constant.

Returns result

result Returns:
- TRUE (logic 1) if any of the tested bits are set.
- FALSE (logic 0) if none of the tested bits are set.

Description |This function tests the required bits at address using the mask with the original value. If any of the
bits are set, the function returns 1. If none of the bits are set, the function returns 0.

Note: the bits_Set, bits_Clear, bits_Flip and bits_Test functions can only be used for user memory and
will not work with system register variables.

Example var myval,res;
myval = 0x1234;
res := bits Test (myval, O0xFF00);

print(res);

This example tests bits 8-15 in myval, if any bits are set, the result will be 1.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 29 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

2.3. User Stack Functions

EVE provides all the requirement for a user stack to aid in development of stack-based processing (e.g. for interpreters
and fast raster drawings). The stack is at a fixed location (it is at the base of the user memory). The stack pointer
always expects the stack to be here —it is hard micro-coded internally.

If none of the stack functions are used, the stack can be disregarded as it will not influence any other program
dynamics —the memory can be used for other purposes. If a user stack is required, it must be configured as the first
array in the users program. The stack pointer always points to the current item on top of the stack.

Note: If the stack pointer is zero, there are no items on the stack.

Typically, your program will look like this:
// the user stack MUST be the first storage in you program
var mystack[20]; // A 20 word stack. The stack must be the first array in the program.
var myvarl, myvar2; //etc

Summary of Functions in this section:
setsp(index)

getsp()

pop()

push(value)

drop(n)

call()

exec(functionPtr, argCount)

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 30 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |setsp(index);

Arguments index

index This argument is used to set the users SP to the required position. The stack pointer
is set to zero during power-up initialisation.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description |The users stack pointer is zeroed at power up, but it is sometimes necessary to alter the stack pointer
for various reasons, such as running multiple concurrent stacks, or resetting to a known position as
part of an error recovery process.

Example setsp (0) ; // reset the stack pointer

This example sets the users stack pointer to 'empty'

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 31 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |getsp() ;

Arguments |none

Returns index

index The current stack index.

Description [This function returns the current stack index into the stack array. If the index is zero, there are no
items on the stack.

Example push (1234) ;
print (getsp()); // print the stack index

This example will print '1' assuming there are no other items on the stack.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 32 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |pop();
Arguments |none
Returns value
value The value at current stack pointer index.
Description |This function returns the value at the current stack pointer index. The stack pointer is then
decremented, so it now points to the item below. If the stack pointer is zero, (ie a pop was performed
on an empty stack) the function returns 0 and the stack pointer is not altered (ie it remains at 0).
Example push (100) ;
push (200) ;
print (pop () + pop());
This example prints '300' and the stack pointer is reduced by 2

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 33 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |push(va|ue);

Arguments value

value |Argument to be pushed to the user stack.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description |Increment the user stack pointer first and then places the item into the user stack array at the current
position. The stack pointer is now pointing to this new item.

Example myvar := 10;
push (1234) ;
push (5678) ;
push (myvar) ;

This example pushes 3 items to the user stack

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 34 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |drop(n);

Arguments n

n |Specifies the number of items to be dropped from the stack.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description |Decrements the user stack pointer determined by the value n. If n exceeds the stack index, the stack
pointer is zeroed.

Example myvar := 10;
push (1234) ;
push (5678) ;
push (myvar) ;
drop (2) ;

This example decrements the stack pointer by 2, effectively dropping 'myvar' and '5678' from the
stack, the next pop would yield 1234.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 35 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |ca||();

Arguments |none

Returns value
value If the called function returns a value then it is available.

Description [Calls the specified function, the arguments to the called function are from the stack. The stacked
parameters are consumed and the stack pointer is altered to match the number of arguments that
were consumed.

Example push (10) ;
push (10) ;
push (50) ;
push (50) ;

push (OXFFFF) ;
push (gfx_RectangleFilled); // push the function call address
push (5) ; // push the argument count

call();

This example takes the function argument count, function pointer, and argument pointer from the
top of the stack and calls the function using the stacked parameters. The 7 arguments on the stack
are discarded.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 36 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |exec(functionPtr, argCount);

Arguments functionPtr, argCount

functionPtr A pointer to a function which will utilise the stacked arguments.

argCount The count of arguments on the stack that are to be passed to the function call.

The arguments can be a variable, array element, expression or constant.

Returns value

value If the called function returns a value then it is available.

Description |Calls the specified function, passing the arguments to the called function from the stack. The stack
and stack pointer are not altered.

Example push (50) ; // set some arbitrary values on the stack
push (50) ;

push (10) ;

push (YELLOW) ;

exec(gfx Circle,4); // exec the circle function using
// the stacked parameters

This example draws a circle using the stacked parameters. The stacked parameters and the stack
pointer are not altered.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 37 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

2.4. Maths Functions

Summary of Functions in this section:
e ABS(value)
MIN(valuel, value2)
MAX(valuel, value2)
SWAP(&varl, &var2)
SIN(angle)
COS(angle)
RAND()
SEED(number)
SQRT(number)
OVF ()

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 38 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |ABS(vaIue);

Arguments value

value |a variable, array element, expression or constant.

The arguments can be a variable, array element, expression or constant.

Returns value

value Returns the absolute value.

Description [This function returns the absolute value of value.

Example var myvar, number;
number := -100;
myvar := ABS (number * 5);

This example returns 500 in variable myvar.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 39 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |MIN(vaIue1, value2);

Arguments valuel, value2

valuel a variable, array element, expression or constant.

value2 a variable, array element, expression or constant.

The arguments can be a variable, array element, expression or constant.

Returns value

value the smaller of the two values.

Description |This function returns the the smaller of valuel and value2.

Example var myvar, numberl, number2;
numberl := 33;
number?2 := 66;
myvar := MIN (numberl, number?2);

This example returns 33 in variable myvar.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 40 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |MAX(vaIue1, value2);

Arguments valuel, value2

valuel a variable, array element, expression or constant.

value2 a variable, array element, expression or constant.

The arguments can be a variable, array element, expression or constant.

Returns value

value the larger of the two values.

Description |This function returns the the larger of valuel and value2.

Example var myvar, numberl, number2;
numberl := 33;
number?2 := 66;
myvar := MAX (numberl, number?2);

This example returns 66 in variable myvar.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 41 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |SWAP(&vaIue1, &value2);

Arguments &varl, &var2
&varl The address of the first variable.

&var2 The address of the second variable.

The arguments can only be a variable or an array element.

Returns |nothing

Description |Given the addresses of two variables (varl and var2), the values at these addresses are swapped.

Example var numberl, number2;
numberl := 33;
number?2 := 66;

SWAP (&numberl, &number?2);

This example swaps the values in numberl and number2. After the function is executed, numberl
will hold 66, and number2 will hold 33.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 42 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS

GOLDELOX GRAPHICS PROCESSOR

Syntax |SIN(angIe);

Arguments angle

angle

The angle in degrees. (Note: The input value is automatically shifted to lie within 0-
359 degrees)

The arguments can be a variable, array element, expression or constant.

Returns result

result

The sine in radians of an argument specified in degrees. The returned value range is
from 127 to -127 which is a more useful representation for graphics work. The real
sine values vary from 1.0 to -1.0 so appropriate scaling must be done in user code as
required.

Description |This function returns the sine of an angle

angle :=
myvar :=

Example var myvar, angle;

This example returns 92 in variable myvar.

133;
SIN (angle) ;

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 43 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS

GOLDELOX GRAPHICS PROCESSOR

Syntax |COS(angIe);

Arguments angle

angle

The angle in degrees. (Note: The input value is automatically shifted to lie within 0-
359 degrees)

The arguments can be a variable, array element, expression or constant.

Returns result

result

The cosine in radians of an argument specified in degrees. The returned value range
is from 127 to -127 which is a more useful representation for graphics work. The real
sine values vary from 1.0 to -1.0 so appropriate scaling must be done in user code as
required.

Description |This function returns the cosine of an angle

angle :=
myvar :=

Example var myvar, angle;

This example returns -86 in variable myvar.

133;
COS (angle) ;

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 44 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax [RAND();

Arguments |none

Returns value

value Returns a pseudo random signed number ranging from -32768 to +32767 each time the
function is called. The random number generator may first be seeded by using the
SEED(number) function. The seed will generate a pseudo random sequence that is
repeatable. You can use the modulo operator (%) to return a number within a certain
range, eg n := RAND() % 100; will return a random number between -99 and +99. If you
are using random number generation for random graphics points, or only require a
positive number set, you will need to use the ABS function so only a positive number is
returned, eg: X1 := ABS(RAND() % 100); will set co-ordinate X1 between 0 and 99. Note
that if the random number generator is not seeded, the first number returned after
reset or power up will be zero. This is normal behavior.

Description |This function returns a pseudo random signed number ranging from -32768 to +32767

Example SEED (1234) ;
print (RAND(),", ",RAND());

This example will print
3558, 1960

to the display.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 45 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |SEED(number);

Arguments number

number |Specifies the seed value for the pseudo random number generator.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description |This function seeds the pseudo random number generator so it will generate a new repeatable
sequence. The seed value can be a positive or negative number.

Example SEED (-50) ;
print (RAND(),", ",RAND());

This example will print
30129, 27266

to the display.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 46 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |SQRT(number);

Arguments number

number |Specifies the positive number for the SQRT function.

The arguments can be a variable, array element, expression or constant.

Returns value

value This function returns the integer square root which is the greatest integer less than or
equal to the square root of number.

Description |This function returns the integer square root of a number.

Example var myvar;
myvar := SQRT(26000) ;

This example returns 161 in variable myvar which is the integer square root of 26000.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 47 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |lovr();
Arguments |none
Returns value
value the high order 16 bits from certain math and shift functions.
Description |This function returns the high order 16 bits from certain math and shift functions. It is extremely
useful for calculating 32 bit address offsets for MEDIA access.
It can be used with the shift operations, addition, subtraction, multiplication and modulus operations.
Example var loWord, hiWord;
loWord := 0x2710 * 0x2710; // (10000 * 10000 in hex format)
hiWord := OVF () ;
print ("O0x", [HEX] hiWord, [HEX] loWord) ;
This example will print
0x05F5E100
to the display , which is 100,000,000 in hexadecimal

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 48 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

2.5. Text and String Functions

Summary of Functions in this section:

e txt_MoveCursor(line, column)
putch(char)
putstr(pointer)
putnum(format, value)
print(...)

to(outstream)
charwidth('char')
charheight('char')
strwidth(pointer)
strheight()
strlen(pointer)
txt_Set(function, value)
txt_Set shortcuts:

e txt FGcolour(colour)
e txt BGcolour(colour)
e txt_FontID(id)

o txt_Width(multiplier)
o txt_Height(multiplier)
e txt_Xgap(pixelcount)
e txt_Ygap(pixelcount)
e txt_Delay(millisecs)

e txt_ Opacity(mode)

e txt Bold(mode)

e txt_ltalic(mode)

e txt_Inverse(mode)

e txt_Underlined(mode)
e txt_Attributes(value)

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 49 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax txt_MoveCursor(line, column);

Arguments line, column
line Holds a positive value for the required line position.
newColour Holds a positive value for the required column position.
The arguments can be a variable, array element, expression or constant

Returns nothing

Moves the origin to a screen position set by line and column parameters. The line and column position
is calculated, based on the size and scaling factor for the currently selected font. When text is
Description |outputted to screen it will be displayed from this position. The text position could also be set with
gfx_MoveTo(...); if required to set the text position to an exact pixel location. Note that lines and
columns start from 0, so line 0, column 0 is the top left corner of the display.

Example txt MoveCursor (4, 9);

This example moves the text origin to the 5% line and the 10 column.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 50 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |putch(char);

Arguments |char

char Holds a positive value for the required character.

The arguments can be a variable, array element, expression or constant

Returns |nothing

Description |putch prints single characters to the current output stream, usually the display.

Example var vj
v := 0x39;

putch (v) ; // print the number 9 to the current display location
putch('\n'); // newline

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 51 of 185 www.4dlabs.com.au

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax

|putstr(pointer);

Arguments

pointer

pointer A string constant or word pointer to a string.

The argument can be a string constant or word pointer to a string, a pointer to an array, or a pointer
to a data statement.

Returns

source

source Returns the pointer to the item that was printed.

Description

putstr prints a string to the current output stream, usually the display. The argument can be a string
constant, a pointer to a string, a pointer to an array, or a pointer to a data statement.

Note: putstr is more efficient that print for printing single strings.
The output of putstr can be redirected to the communications port, the media, or memory using the
to(...); function.

A string constant is automatically terminated with a zero.
A string in a data statement is not automatically terminated with a zero.

All variables in 4DGL are 16bit, if an array is used for holding 8 bit characters, each array element
packs 1 or 2 characters.

Example

//
// Example #1 - print a string constant

//

putstr ("HELLO\n"); //simply print a string constant at current origin

//
// Example #2 - print string via pointer
//
var p; // a var for use as a pointer
p := "String Constant\n"; // assign a string constant to pointer s
putstr (p) ; // print the string using the pointer
putstr (p+8) ; // print, offsetting into the string
//
// Example #3 - printing strings from data table
//
#DATA
byte message "Week",O0
word days sun,mon, tue,wed, thu, fri,sat // pointers to data items
byte sun "Sunday\n\0"
byte mon "Monday\n\0"
byte tue "Tuesday\n\0"
byte wed "Wednesday\n\0"
byte thu "Thursday\n\0"
byte fri "Friday\n\0"
byte sat "Saturday\n\0"
#END
var n;

GOLDELOX INTERNAL FUNCTIONS Page 52 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

putstr
n:=0;
while(n < 7)
putstr (days[n++]); // print the days
wend

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 53 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |putnum(format, value);

Argume
format, value

nts
format |A constant that specifies the number format.
value IThe number to be printed.

Number formatting bits supplied by format

bit 15 14 1312 11109 8 7 6 5 4 3 2 1 O
/N

O
Il

leading zeros suppressed

1 = leading zero blanking
0 = Show Zeros

Y 2 /
| | | v v v
[| | |
[| | |
| | | (nb 0 = 16) | | BASE (usually 2, 10 or 16)
| | | displayed |
[digit gty |
| | | | reserved
[
[
| | | 1 = leading zeros included
[
[
[
|
|
|

sign bit (0 = signed, 1 = unsigned)

1 = space before unsigned number
0 = no space

Pre-Defined format constants quick reference

DECIMAL UNSIGNED DECIMAL HEX BINARY

DEC DECZ DECZB UDEC UDECZ UDECZB HEX HEXZ HEXZB BIN BINZ BINZB

DEC1 DEC1Z DEC1ZB UDEC1 UDEC1Z |UDEC1ZB HEX1 HEX17Z HEX1ZB BIN1 BIN1Z BIN1ZB

DEC2 DEC27 DEC2ZB UDEC2 UDEC2Z |UDEC2ZB HEX2 HEX27Z HEX1ZB BIN2 BIN2Z BIN2ZB

DEC3 DEC37 DEC3ZB UDEC3 UDEC3Z | UDEC3ZB HEX3 HEX37Z HEX1ZB BIN3 BIN3Z BIN3ZB

DEC4 DEC47Z DEC4ZB UDEC4 UDEC4Z |(UDEC4ZB HEX4 HEX47Z HEX1ZB BIN4 BIN4Z BIN4ZB

DEC5 DEC57Z DEC5ZB UDECS UDECS5Z [UDEC5ZB BINS BIN5Z BIN5ZB

BING6 BING6Z BIN6ZB

BIN7 BIN7Z BIN7ZB

BINS BIN8Z BIN8ZB

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

BINS BIN9Z BIN9ZB

BIN1O BIN10Z |BIN10ZB

BIN11 BIN11Z (BIN11ZB

GOLDELOX INTERNAL FUNCTIONS Page 54 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

BIN12 BIN12Z [BIN12ZB

BIN13 BIN13Z [BIN13ZB

BIN14 BIN147Z [BIN14ZB

BIN1S BIN15Z [BIN15ZB

BIN16 BIN16Z |BIN16ZB

Returns [field

field Returns the the default width of the numeric field (digit count), usually ignored.

Descript

ion putnum prints a 16bit number in various formats to the current output stream, usually the display.

Example |[Vvar v;

v := 05678;
putnum (HEX, V) ; // print the number as hex 4 digits
putnum (BIN, v); // print the number as binary 16 digits

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 55 of 185 www.4dlabs.com.au

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |print(...);

4DGL has a versatile print(...) statement for formatting numbers and strings. In it's simplest form, print will simply
print a number as can be seen below:

myvar := 100;
print(myvar);

This will print 100 to the current output device (usually the display in TEXT mode). Note that if you wish to add a
string anywhere within a print(...) statement, just place a quoted string expression and you will be able to mix strings
and numbers in a variety of formats. See the following example.

print("the value of myvar is :- ", myvar, "and its 8bit binary representation is:-", [BIN8]myvar);
* Refer the the table in putnum(..) for all the numeric representations available.

The print(...) statement will accept directives passed in square brackets to make it print in various ways, for instance,
if you wish to print a number in 4 digit hex, use the [HEX4] directive placed in front of the variable to be displayed
within the print statement. See the following example.

print("myvar as a 4 digit HEX number is :- ", [HEX4]myvar);

Note that there are 2 print directives that are not part of the numeric set and will be explained separately. these are
the [STR] and [CHR] directives.

The [STR] directive expects a string pointer to follow:

s := "Hello World"; // assign a string constant to s
print("Var 's' points to a string constant at address", s ," which is", [STR] s);

The [CHR] directive prints the character value of a variable.

print("The third character of the string is ", [CHR] *(s+2));
also
print("The value of 'myvar' as an ASCII charater is '", [CHR] myvar);

Note that you can freely mix string pointers, strings, variables and expressions within a print statement. print(...) can
also use the to(...) function to redirect it's output to a different output device other than the screen using the function
(refer to the to(...) statement for further examples).

GOLDELOX INTERNAL FUNCTIONS Page 56 of 185 www.4dlabs.com.au

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |to(outstream);

Arguments |outstream

outstream A variable or constant specifying the destination for the putch, putstr, putnum
and print functions.

Predefined Name |Constant putch(), putstr(), putnum(), print() redirection

APPEND 0x0000 Output is directed to the same stream that was previously
assigned. Output is appended to user array if previous
redirection was to an array.

comMo OxFFO4 Output is redirected to the COM (serial) port.
TEXT OxFFO8 Output is directed to the screen (default).
MDA OxFF10 Output is directed to the SD/SDHC or FLASH media.

(memory pointer) |0x102 < Ox3FF [Output is redirect to the memory pointer argument.

Returns |nothing

Description [to() sends the printed output to destinations other than the screen. Normally, print just sends its
output to the display in TEXT mode which is the default, however, the output from print can be sent
to COMO, and MDA (media) 'streams'. The to(...) function can also stream to a memory array . Note
that once the to(...) function has taken effect, the stream reverts back to the default stream which is
TEXT as soon as putch, putstr, putnum or print has completed its action. The APPEND argument is
used to send the printed output to the same place as the previous redirection. This is most useful for
building string arrays, or adding sequential data to a media stream.

Example //
// Example #1 - putstr redirection
//
var buf[10]; // a buffer that will hold up to 20
bytes/chars
var s; // a var for use as a pointer
to (buf); putstr ("ONE "); // redirect putstr to the buffer

to (APPEND) ; putstr ("TWO ") ; // and add a couple more items
to (APPEND); putstr ("THREE\n") ;

putstr (buf) ; // print the result

while (media Init ()==0); // wait if no SD/SDHC card detected
media SetSector (0, 2); // at sector 2

//media_SetAdd (0, 1024); // (alternatively, use media SetAdd(),

// lower 9 bits ignored).
to (MDA); putstr("Hello World") ; // now write a ascii test string
media WriteByte ('A'); // write a further 3 bytes
media WriteByte('B');
media WriteByte('C'

’

)
)

to (MDA) ; putstr (buf) ; // write the buffer we prepared earlier
media WriteByte (0); // terminate with ASCII zero

media Flush();

media SetAdd(0, 1024); // reset the media address

while (char:=media ReadByte())
to (COMO0) ; putch(char); // print the stored string to the COM port
wend

GOLDELOX INTERNAL FUNCTIONS Page 57 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

| |repeat forever

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 58 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |charwidth('char');

Arguments 'char’

‘char’ The ascii character for the width calculation.
Returns width
width Returns the width of a single character in pixel units.

Description |charwidth is used to calculate the width in pixel units for a character, based on the currently selected
font. The font can be proportional or mono-spaced. If the total width of the string exceeds 255 pixel
units, the function will return the 'wrapped' (modulo 8) value.

Example //

// Example

//

str := "HELLO\nTHERE"; // note that this string spans 2 lines due
// to the \n.

width := strwidth(str); // get the width of the string, this will
// also capture the height.

height := strheight(); // note, invoking strwidth also calcs height

// which we can now read.

// The string above spans 2 lines, strheight() will calculate height

// correctly for multiple lines.

len := strlen(str); // the strlen() function returns the number
// of characters in a string.

print ("\nLength=",1len); // NB:- the \n in "HELLO\nTHERE" is counted
// as a character.

txt FontID(MS SanSerif8x12); // select this font

w := charwidth ('W'"); // get a characters width

h := charheight ('W'); // and height

txt FontID(O0); // back to default font

print ("\n'W' is " ,w, " pixels wide"); // show width of a character

// '"W' in pixel units.
print ("\n'W' is " ,h, " pixels high"); // show height of a character
// '"W' in pixel units.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 59 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax charheight('char');

Arguments 'char’

‘char’ The ascii character for the height calculation.
Returns width
width |Returns the height of a single character in pixel units.

Description |charheight(char) is used to calculate the height in pixel units for a character, based on the currently
selected font. The font can be proportional or mono-spaced.

Example See example in charwidth ()

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 60 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |strwidth(pointer);

Arguments pointer

pointer The pointer to a zero (0x00) terminated string.
Returns width
width |Returns the width of a string in pixel units.

Description |strwidth() returns the width of a zero terminated string in pixel units. Note that any string constants
declared in your program are automatically terminated with a zero as an end marker by the compiler.
Any string that you create in the DATA section or MEM section must have a zero added as a terminator
for this function to work correctly.

Example See example in charwidth ()

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 61 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |strheight();

Arguments none

Returns height

height |Returns the height of a string in pixel units.

Description [strheight() returns the height of a zero terminated string in pixel units. The strwidth() function must
be called first which makes available width and height. Note that any string constants declared in your
program are automatically terminated with a zero as an end marker by the compiler. Any string that
you create in the DATA section or MEM section must have a zero added as a terminator for this
function to work correctly.

Example See example in charwidth ()

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 62 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |str|en(pointer);

Arguments pointer

pointer The pointer to a zero (0x00) terminated string.
Returns length
length |Returns the length of a string in character units.

Description [strlen() returns the length of a zero terminated string in character units. Note that any string constants
declared in your program are automatically terminated with a zero as an end marker by the compiler.
Any string that you create in the DATA section or MEM section must have a zero added as a terminator
for this function to work correctly.

Example See example in charwidth ()

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 63 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |txt_Set(function, value);

Arguments function, value

function |The function number determines the required action for various text control functions.
Usually a constant, but can be a variable, array element, or expression. There are pre-
defined constants for each of the functions.

value A variable, array element, expression or constant holding a value for the selected
function.

Returns nothing

Description |Given a function number and a value, set the required text control parameter, such as size, colour,
and other formatting controls. This function is extremely useful in a loop to select multiple parameters
from a data statement or a control array. Note also that each function available for txt_Set has a single
parameter 'shortcut' function that has the same effect.

(see the Single parameter short-cuts for the txt_Set functions next page)

function value
|[Predefined Name Description
0 |TEXT_COLOUR Set the text foreground colour Colour 0-65535
1 |TEXT_HIGHLIGHT Set the text background colour Colour 0-65535
2 |FONT_ID Set the required font (0 = system font) See note #5
3 |TEXT_WIDTH Set the text width multiplier (note #6) 1 to 16 (note #7)
4 [TEXT_HEIGHT Set the text height multiplier (note #6) 1 to 16 (note #7)
5 [TEXT_XGAP Set the pixel gap between characters 0 to n (note #8)
6 |TEXT_YGAP Set the pixel gap between lines 0 to n (note #8)
7 |TEXT_PRINTDELAY Set the delay between character printing (Default Omsec)
8 |TEXT_OPACITY Selects whether or not the 'background' pixels are drawn|0 or TRANSPARENT
(default mode is OPAQUE) 1 or OPAQUE
9 |TEXT_BOLD Embolden text 0 or 1 (OFF or ON)
10 [TEXT_ITALIC Italicise text 0 or 1 (OFF or ON)
11 [TEXT_INVERSE Inverted text 0 or 1 (OFF or ON)
12 [TEXT_UNDERLINED Underlined text 0 or 1 (OFF or ON)
13 [TEXT_ATTRIBUTES Control of functions 9,10,11,12 grouped 16 or BOLD
(bits can be combined by using logical 'or' of bits) 32 orITALIC
nb:- bits 0-3 and 8-15 are reserved 64 or INVERSE
128 or UNDERLINED

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 64 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Single parameter short-cuts for the txt_Set(..) functions

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

Function Syntax

Function Action

value

txt_FGcolour()

Set the text foreground colour

Colour 0-65535

txt_BGcolour()

Set the text background colour

Colour 0-65535

txt_FontID(id)

Set the required font (0 = system font)

See note #5

txt_Width(multiplier)

Set the text width multiplier (note #6)

1to 16 (note #7)

txt_Height(multiplier)

Set the text height multiplier (note #6)

1to 16 (note #7)

txt_Xgap(pixelcount)

Set the pixel gap between characters

0 to n (note #8)

txt_Ygap(pixelcount)

Set the pixel gap between lines

0 to n (note #8)

txt_Delay(millisecs)

Set the delay between character printing

(Default Omsec)

txt_Opacity(mode)

Selects whether or not the 'background' pixels are drawn
(default mode is OPAQUE)

0 or TRANSPARENT
1 or OPAQUE

txt_Bold(mode)

Embolden text

0 or 1 (OFF or ON)

txt_ltalic(mode)

Italic text

0 or 1 (OFF or ON)

txt_Inverse(mode)

Inverted text

0 or 1 (OFF or ON)

txt_Underlined(mode)

Underlined text

0 or 1 (OFF or ON)

txt_Attributes(value)

Control of functions 9, 10, 11, 12 grouped
(bits can be combined by using logical 'OR' of bits)
nb:- bits 0-3 and 8-15 are reserved

16 or BOLD

32 orITALIC

64 or INVERSE

128 or UNDERLINED

GOLDELOX INTERNAL FUNCTIONS

Page 65 of 185

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

2.6. Graphics Functions

Summary of Functions in this section:

o gfx _Cls()

e gfx_ChangeColour(oldColour, newColour)

e gfx_Circle(x, y, radius, colour)

o gfx_CircleFilled(x, y, radius, colour)

o gfx_Line(x1, y1, x2, y2, colour)

e gfx_Hline(y, x1, x2, colour)

e gfx_Vline(x, y1, y2, colour)

e gfx_Rectangle(x1, y1, x2, y2, colour)

o gfx_RectangleFilled(x1, y1, x2, y2, colour)

o gfx_Polyline(n, vx, vy, colour)

e gfx_Polygon(n, vx, vy, colour)
gfx_Triangle(x1, y1, x2, y2, x3, y3, colour)
gfx_Dot()
gfx_Bullet(radius)
gfx_OrbitInit(&x_dest, &y_dest)

o gfx_Orbit(angle, distance)

e gfx_PutPixel(x, y, colour)

o gfx_GetPixel(x, y)

o gfx_MoveTo(xpos, ypos)

o gfx_MoveRel(xoffset, yoffset)

o gfx_IncX()

o gfx_IncY()

e gfx_LineTo(xpos, ypos)

e gfx_LineRel(xpos, ypos)

e gfx_BoxTo(x2, y2)

o gfx_SetClipRegion()

o gfx ClipWindow(x1, y1, x2, y2)

o gfx_FocusWindow()

o gfx_Set(function, value)

gfx_Set shortcuts:

o gfx_PenSize(mode)
e gfx_BGcolour(colour)
e gfx_ObjectColour(colour)
o gfx_Clipping(mode)
o gfx_FrameDelay(delay)
o gfx_ScreenMode(delay)
e gfx_OutlineColour(colour)
e gfx_Contrast(value)
o gfx_LinePattern(pattern)
o gfx_ColourMode(mode)

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 66 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax | gfx_Cls();

Arguments |none

Returns |nothing

Description |Clear the screen using the current background colour

Example gfx BGcolour (DARKGRAY) ;
gfx Cls();

This example clears the entire display using colour DARKGRAY

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 67 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax

gfx_ChangeColour(oldColour, newColour);

Arguments

oldColour, newColour

oldColour specifies the sample colour to be changed within the clipping window.

specifies the new colour to change all occurrences of old colour within the clipping

newColour .
window.

The arguments can be a variable, array element, expression or constant

Returns

nothing

Description

Changes all oldColour pixels to newColour within the clipping area.

Example

func main ()
txt Width(3);
txt Height (5);
gfx MoveTo(8,20);
print ("TEST") ; // print the string
gfx SetClipRegion() ; // force clipping area to extents of text
// just printed.
gfx ChangeColour (BLACK, RED); // test change of background colour

repeat forever
endfunc

This example prints a test string, forces the clipping area to the extent of the text that was printed,
then changes the background colour.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 68 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |gfx_CircIe(x, y, rad, colour);

Arguments X, Y, rad, colour

X,y specifies the center of the circle.
rad specifies the radius of the circle.
colour specifies the colour of the circle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Draws a circle with centre point x1, y1 with radius r using the specified colour.

NB: The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the circle will be
drawn filled, if PEN_SIZE is set to OUTLINE, the circle will be drawn as an outline. If the circle is drawn
as SOLID, the outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set
to 0, no outline is drawn.

Example // assuming PEN SIZE is OUTLINE
gfx Circle(50,50,30, O0x001F);

This example draws a BLUE circle outline centred at x=50, y=50 with a radius of 30 pixel units.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 69 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax gfx_CircleFilled(x, y, rad, colour);

Arguments X, Y, rad, colour

X, ¥ specifies the center of the circle.
rad specifies the radius of the circle.
colour specifies the fill colour of the circle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Draws a SOLID circle with centre point x1, y1 with radius using the specified colour.

The outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set to 0, no
outline is drawn.
NB:- The PEN_SIZE is ignored, the circle is always drawn SOLID.

Example gfx OutlineColour (OXFFEO) ;
gfx CircleFilled(25,25,10, 0xF800);

This example draws a filled RED circle with a YELLOW outline at x=25, y=25 with a radius of 10 pixel
units.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 70 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |gfx_Line(x1, y1, x2, y2, colour);

Arguments x1, y1, x2, y2, colour

x1,y1 specifies the starting coordinates of the line.
x2,y2 specifies the ending coordinates of the line.
colour specifies the colour of the line.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Draws a line from x1,y1 to x2,y2 using the specified colour. The line is drawn using the current object
colour. The current origin is not altered. The line may be tessellated with the gfx_LinePattern(...)
function.

Example gfx_Line (100, 100, 10, 10, 0xF800);

This example draws a RED line from x1=10, y1=10 to x2=100, y2=100

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 71 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |gfx_HIine(y, x1, x2, colour);

Arguments y, X1, x2, colour

y specifies the vertical position of the horizontal line.
x1, x2 specifies the horizontal end points of the line.
colour specifies the colour of the horizontal line.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Draws a fast horizontal line from x1 to x2 at vertical co-ordinate y using colour.

Example gfx_Hllne(SO, 10, 80, OXFSOO),‘

This example draws a fast RED horizontal line at y=50, from x1=10 to x2=80

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 72 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |gfx_VIine(x, v1, y2, colour);

Arguments X, y1, y2, colour

X specifies the horizontal position of the vertical line.
vyl y2 specifies the vertical end points of the line.
colour specifies the colour of the vertical line.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Draws a fast vertical line from y1 to y2 at horizontal co-ordinate x using colour.

Example gfx_VlJ_ne(ZO, 30, 70, OXFSOO),‘

This example draws a fast RED vertical line at x=20, from y1=30 to y2=70

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 73 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax gfx_Rectangle(x1, y1, x2, y2, colour);

Arguments x1, y1, x2, y2, colour

x1,y1 specifies the top left corner of the rectangle.
x2,y2 specifies the bottom right corner of the rectangle.
colour specifies the colour of the rectangle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Draws a rectangle from x1, y1 to x2, y2 using the specified colour. The line may be tessellated with
the gfx_LinePattern(...) function.

NB: The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the rectangle will
be drawn filled, if PEN_SIZE is set to OUTLINE, the rectangle will be drawn as an outline. If the
rectangle is drawn as SOLID, the outline colour can be specified with gfx_OutlineColour(...). If
OUTLINE_COLOUR is set to 0, no outline is drawn. The outline may be tessellated with the
gfx_LinePattern(...) function.

Example // assuming PEN SIZE is OUTLINE
gfx Rectangle (10, 10, 30, 30, 0x07EO);

This example draws a GREEN rectangle from x1=10, y1=10 to x2=30, y2=30

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 74 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax gfx_RectangleFilled(x1, y1, x2, y2, colour);

Arguments x1, y1, x2, y2, colour

x1,y1 specifies the top left corner of the rectangle.
x2,y2 specifies the bottom right corner of the rectangle.
colour specifies the colour of the rectangle.

The arguments can be a variable, array element, expression or constant

Returns |nothing

Description |Draws a SOLID rectangle from x1, y1 to x2, y2 using the specified colour. The line may be tessellated
with the gfx_LinePattern(...) function.

The outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set to 0, no
outline is drawn. The outline may be tessellated with the gfx_LinePattern(...) function.

NB:- The PEN_SIZE is ignored, the rectangle is always drawn SOLID.

Example gfx OutlineColour (0XFFEQ) ;
gfx RectangleFilled(30,30,80,80, 0xF800);

This example draws a filled RED rectangle with a YELLOW outline from x1=30,y1=30 to x2=80,y2=80

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 75 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax gfx_Polyline(n, vx, vy, colour);
Arguments n, vx, vy, colour
specifies the number of elements in the x and y arrays specifying the vertices for the
n .
polyline.
specifies the addresses of the storage of the array of elements for the x coordinates of
VX .
the vertices.
specifies the addresses of the storage of the array of elements for the y coordinates of
v .
v the vertices.
colour Specifies the colour for the lines
The arguments can be a variable, array element, expression or constant

7))

O

O

L.

L]

-

) Returns nothing

L]

Description |Plots lines between points specified by a pair of arrays using the specified colour. The lines may be

I tessellated with the gfx_LinePattern(...) function. gfx_Polyline can be used to create complex raster

- graphics by loading the arrays from serial input or from MEDIA with very little code requirement.

m . . " : "

v Example #inherit "4DGL_l6bitColours.fnc

8 var vx[20], vy[20];

o func main ()

[vx[0] := 36; vy[0] := 110;

n- vx[1l] := 36; vy[l] := 80;
vx[2] := 50; vyl[2] := 80;

m vx[3] := 50; vy[3] := 110;

.2 vx[4] := T76; vyl[4] := 104;

-C vx[5] := 85; vy[5] := 80;
vx[6] := 94; vy[6] := 104;

m vx[7] := 76; vyl[7] := 70;

[l vx[8] := 85; vyl[8] = 76;

w vx[9] := 94; wvy[9] := 70;
vx[10] := 110; vy[lO] := 66;

> vx[11] := 110; vy[1l] := 80;

O vx[12] := 100; vy[l2] := 90;
vx[13] := 120; vy[13] := 90;

— vx[14] := 110; vy[l4] := 80;
vx[15] := 101; wvy[1l5] := 70;

D vx[1l6] := 110; vy[l6] := 76;

_I vx[17] := 119; wvy[17] := 70;

O // house

w gfx Rectangle (6,50,66,110,RED) ; // frame
gfx Triangle(6,50,36,9,66,50, YELLOW) ; // roof
gfx_Polyline (4, vx, vy, CYAN); // door
// man
gfx Circle (85, 56, 10, BLUE); // head
gfx_Line (85, 66, 85, 80, BLUE); // body
gfx_Polyline (3, vx+4, vy+4, CYAN); // legs

GOLDELOX INTERNAL FUNCTIONS Page 76 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

gfx Polyline (3, vx+7, vy+7, BLUE); // arms

// woman

gfx Circle (110, 56, 10, PINK); // head

gfx Polyline (5, vx+10, vy+10, BROWN) ; // dress

gfx Line (104, 104, 106, 90, PINK); // left arm
gfx Line (112, 90, 116, 104, PINK); // right arm
gfx Polyline (3, vx+15, vy+15, SALMON); // dress

repeat forever

endfunc

This example draws a simple scene

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 77 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax gfx_Polygon(n, vx, vy, colour);
Arguments n, vx, vy, colour
specifies the number of elements in the x and y arrays specifying the vertices for the
n
polygon.
specifies the addresses of the storage of the array of elements for the x coordinates of
VX .
the vertices.
specifies the addresses of the storage of the array of elements for the y coordinates of
v .
y the vertices.
colour Specifies the colour for the polygon
The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Plots lines between points specified by a pair of arrays using the specified colour. The last point is
drawn back to the first point, completing the polygon. The lines may be tessellated with the
gfx_LinePattern(...) function. gfx_Polygon can be used to create complex raster graphics by loading
the arrays from serial input or from MEDIA with very little code requirement.

Example var vx[7], vyl[7];
func main ()
vx[0] := 10; vy[0] := 10;
vx[1] = 35; vyl[l] := 5;
vx[2] := 80; vy[2] := 10;
vx[3] := 60; vy[3] := 25;
vx[4] := 80; vyl[4] := 40;
vx[5] := 35; vy[5] := 50;
vx[6] := 10; vyl[6] := 40;

gfx Polygon (7, vx, vy, RED);

repeat forever
endfunc

This example draws a simple polygon

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 78 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax gfx_Triangle(x1, y1, x2, y2, x3, y3, colour);

Arguments x1, y1, x2, y2, x3, y3, colour

x1,y1 specifies the first vertices of the triangle.
x2,y2 specifies the second vertices of the triangle.
x3,y3 specifies the third vertices of the triangle.
colour Specifies the colour for the triangle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Draws a triangle outline between vertices x1,y1, x2,y2 and x3,y3 using the specified colour. The line
may be tessellated with the gfx_LinePattern(...) function.

Example gfx Triangle(10,10,30,10,20,30,0xFFEQ) ;

This example draws a CYAN triangular outline with vertices at 10,10 30,10 20,30

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 79 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax | gfx_Dot();

Arguments none

Returns nothing

Description |Draws a pixel at at the current origin using the current object colour.

Example gfx MoveTo (40, 50) ;
gfx ObjectColour (0xF800) ;
gfx Dot () ;

This example draws a RED pixel at 40,50

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 80 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax

|gfx_Bullet(radius);

Arguments

radius

rad specifies the radius of the bullet.

The arguments can be a variable, array element, expression or constant

Returns

nothing

Description

Draws a circle or 'bullet point' with radius r at at the current origin using the current object colour.
Note: The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the circle will be
drawn filled, if PEN_SIZE is set to OUTLINE, the circle will be drawn as an outline. If the circle is drawn
as SOLID, the outline colour can be specified with gfx_OutlineColour(...).

Example

// assuming PEN SIZE is TRANSPARENT
// and OBJECT_COLOUR is WHITE

gfx MoveTo (50,50);
gfx Bullet(5);

This example draws a WHITE circle outline at the current origin with a radius of 5 pixel units.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 81 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax

gfx_OrbitInit(&x_dest, &y_dest);

Arguments

&x_dest, &y_dest

&x_dest, [specifies the addresses of the storage locations for the orbit calculation.
&y_dest

The arguments can be a variable, array element, expression or constant

Returns

nothing

Description

Sets up the internal pointers for the gfx_Orbit(..) result variables. The &x_orb and &y_orb parameters
are the addresses of the variables or array elements that are used to store the result from the
gfx_Orbit(..) function.

Example

var targetX, targetyY;
gfx OrbitInit (&targetX, s&targetY);

This example sets the variables that will receive the result from a gfx_Orbit(..) function call

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 82 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |gfx_0rbit(ang|e, distance);

Arguments angle, distance

angle specifies the angle from the origin to the remote point. The angle is specified in degrees.

distance [specifies the distance from the origin to the remote point in pixel units.

The arguments can be a variable, array element, expression or constant

Returns nothing

Note: result is stored in the variables that were specified with the gfx_OrbitlInit(..) function.

Description |Sets Prior to using this function, the destination address of variables for the calculated coordinates
must be set using the gfx_Orbitinit(..) function. The gfx_Orbit(..) function calculates the x, y
coordinates of a distant point relative to the current origin, where the only known parameters are the
angle and the distance from the current origin. The new coordinates are calculated and then placed
in the destination variables that have been previously set with the gfx_OrbitInit(..) function.

Example var targetX, targetY;

gfx OrbitInit (&targetX, s&targetY);

gfx MoveTo (30, 30);

gfx Bullet (5) // mark the start point with a small WHITE circle

gfx Orbit (30, 50); // calculate a point 50 pixels away from origin at
// 30 degrees

gfx CircleFilled(targetX, targetY,3,0xF800); // mark the target point

// with a RED circle

See example comments for explanation.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 83 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax gfx_PutPixel(x, y, colour);

Arguments X, Y, colour

X,y specifies the screen coordinates of the pixel.

colour Specifies the colour of the pixel.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Draws a pixel at position x,y using the specified colour.

Example gfx_PutPJ_xel(32, 32, OXFFFF);

This example draws a WHITE pixel at x=32, y=32

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 84 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax gfx_GetPixel(x, y);

Arguments X,y

X,y specifies the screen coordinates of the pixel colour to be returned.

The arguments can be a variable, array element, expression or constant

Returns colour
colour The 8 or 16bit colour of the pixel (default 16bit).

Description |Reads the colour value of the pixel at position x,y.

Example gfx PutPixel (20, 20, 1234);
r := gfx GetPixel (20, 20);
print(r) ;

This example prints 1234, the colour of the pixel that was previously placed.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 85 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax gfx_MoveTo(xpos, ypos);

Arguments Xpos, ypos

Xpos specifies the horizontal position of the new origin.

ypos specifies the vertical position of the new origin.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Moves the origin to a new position.

Example ng_MOVETO (10, 20) ;
gfx Dot () ;

This example moves the origin to x=10, y=20 and draws a pixel.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 86 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax gfx_MoveRel(xoffset, yoffset);

Arguments xoffset, yoffset

xoffset specifies the horizontal offset of the new origin.

yoffset specifies the vertical offset of the new origin.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Moves the origin to a new position relative to the old position.

Example ng_MOV@TO (10, 20) ;
gfx MoveRel (-5, -3);
gfx Dot ()

This example draws a pixel using the current object colour at x=5, y=17

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 87 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |gfx_|ncX() ;

Arguments none

Returns old_origin

old_origin Returns the current X origin before the increment.

Description |Increment the current X origin by 1 pixel unit. The original value is returned before incrementing. The
return value can be useful if a function requires the current point before insetting occurs.

Example var n;

gfx MoveTo (20,20);

n := 96;

while (n--)
gfx ObjectColour (n/3);
gfx Bullet(2);
gfx IncX();

wend

This example draws a simple rounded vertical gradient.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 88 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |gfx_|ncY() ;

Arguments none

Returns old_Yorigin

old_Yorigin [Returns the current Y origin before the increment.

Description |Increment the current Y origin by 1 pixel unit. The original value is returned before incrementing. The
return value can be useful if a function requires the current point before insetting occurs.

Example var n;

gfx MoveTo (20,20);

n := 96;

while (n--)
gfx ObjectColour (n/3);
gfx LineRel (20, 0);
gfx IncY();

wend

This example draws a simple horizontal gradient using lines.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 89 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax gfx_LineTo(xpos, ypos);

Arguments Xpos, ypos

Xpos specifies the horizontal position of the line end as well as the new origin.

ypos specifies the vertical position of the line end as well as the new origin.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Draws a line from the current origin to a new position. The Origin is then set to the new position. The
line is drawn using the current object colour. The line may be tessellated with the gfx_LinePattern(...)
function.

Example ng_MOV@TO (10, 20) ;
gfx LineTo (60, 70);

This example draws a line using the current object colour between x1=10,y1=20 and x2=60,y2=70.
The new origin is now set at x=60,y=70.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 90 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax gfx_LineRel(xpos, ypos);

Arguments Xpos, ypos

Xpos specifies the horizontal end point of the line.

ypos specifies the vertical end point of the line.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Draws a line from the current origin to a new position. The line is drawn using the current object
colour. The current origin is not altered. The line may be tessellated with the gfx_LinePattern(...)
function.

Example gfx LinePattern(001100110011001100);
gfx MoveTo (10, 20);
gfx LineRel (50, 50);

This example draws a tessellated line using the current object colour between 10,20 and 50,50.
Note: that gfx_LinePattern(0); must be used after this to return line drawing to normal solid lines.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 91 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |gfx_BoxTo(x2, y2);

Arguments x2,y2

x2,y2 specifies the diagonally opposed corner of the rectangle to be drawn, the top left corner

(assumed to be x1, y1) is anchored by the current origin.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Draws a rectangle from the current origin to the new point using the current object colour. The top
left corner is anchored by the current origin (x1, y1), the bottom right corner is specified by x2, y2.

Note: The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the rectangle will
be drawn filled, if PEN_SIZE is set to OUTLINE, the rectangle will be drawn as an outline. If the circle
is drawn as SOLID, the outline colour can be specified with gfx_OutlineColour(...). If
OUTLINE_COLOUR is set to 0, no outline is drawn.

Example gfx MoveTo (40, 40) ;
n := 10;
while (n--)
gfx BoxTo (50,50);
gfx BoxTo (30,30);
wend

This example draws 2 boxes, anchored from the current origin.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 92 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

Syntax gfx_SetClipRegion();

Arguments none

Returns nothing

Description |Forces the clip region to the extent of the last text that was printed, or the last image that was shown.
Example #constant NUMCOLOURS 6

var colour [NUMCOLOURS];
func main ()
var n,x,y,colr,x1,vyl,x2,y2,w,h;

colour[0] :=RED; // the colour set for the random pixels
colour[1l] :=GREEN;

colour([2] :=BLUE;

colour[3] :=YELLOW;

colour[4] :=CYAN;

colour[5] :=MAGENTA;

txt Width (5); txt Height (7);
gfx MoveTo (6,20) ;

txt Bold (ON) ;

txt FGcolour(1l); // start with a very dark blue

print ("TEST") ; // print the string

gfx SetClipRegion(); // force clipping area to extents of
// text just printed

x1:=peekB (CLIP LEFT POS); // get the cliiping area to local vars

y1:=peekB (CLIP_TOP POS) ;

x2 :=peekB (CLIP RIGHT POS);

y2:=peekB (CLIP_BOTTOM POS) ;

w:=x2-x1; // get the width and height

h:=y2-y1;

txt MoveCursor (10,0);

txt FGcolour (SALMON) ;

print ("x1=",x1," yl=",yl, "\nx2=",x2," y2=",y2); //print the
//clipping region

txt FGcolour (GREEN) ;

pause (1000) ;
repeat
if (!*TIMERO) // if timer has expired-
*TIMERO := 5000; // reset the timer.
colr := colour [n++%NUMCOLOURS]; // select new colour -

// every 5 seconds.
txt_MoveCursor(14,0);
print ([DEC5ZB] n); // print n
endif
x:=ABS (RAND () $w) + x1; // get random pixel position within
// the clip region.
y:=ABS (RAND () $h) + yl;
if (gfx_GetPixel (x,y)) gfx PutPixel (x,y, colr); // update any
// non black pixels
forever
endfunc

This example prints a test string, forces the clipping area to the extent of the text that was printed,
then changes the text colour randomly, pixel by pixel.

GOLDELOX INTERNAL FUNCTIONS Page 93 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax gfx_ClipWindow(x1, y1, x2, y2);

Arguments x1,y1,x2,y2

x1,y1 specifies the horizontal and vertical position of the top left corner of the clipping window.
x2,y2 specifies the horizontal and vertical position of the bottom right corner of the clipping
window.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Specifies a clipping window region on the screen such that any objects and text placed onto the screen
will be clipped and displayed only within that region. For the clipping window to take effect, "Clipping"
setting must be enabled separately using gfx_Set(CLIPPING, ON) or the shortcut gfx_Clipping(ON).

Example VEE D)
gfx ClipWindow (10, 10, 50, 50)
n := 50000;
while (n—-)
gfx PutPixel (RAND() %100, RAND()%100, RAND());
wend

repeat forever

This example will draw 50000 random colour pixels, only the pixels within the clipping area will be
visible

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 94 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax

gfx_FocusWindow();

Arguments none

Returns pixel_count
pixel_count The pixel count of the selected area.

Description |Sets the display hardware GRAM access registers to the clipping area ready for reading or writing. The
function also returns the pixel count of the selected area.

Example // example #l

func main ()
var pixelcount;
txt Height (4);
gfx MoveTo (20,20) ;
print ("TEST") ; // print a string.
gfx SetClipRegion(); // force the clipping region to the
// extent of the text.
Pixelcount:= gfx FocusWindow(); // get the count, focus on region.
pause (1000) ;
disp BlitPixelFill (BLUE, pixelcount); // £ill the region.

print (pixelcount, " pixels\n"); //show the pixel count of region.
repeat forever
endfunc

The above example prints a test string, forces the clipping area to the extent of the text that was
printed, then after a delay, fills the region with a colour. The count of pixels in the region is then
shown.

// example #2

func main ()
var pixels;
putstr ("Open the terminall\n");
putstr ("Type any key to start\n");

while (serin() < 0); // wait for key from terminal before start
gfx ClipWindow (40,40, 44,44); // within a small block on display
pixels:=gfx FocusWindow () ; //focus GRAM and get pixel count

disp BlitPixelFill (0x4142, pixels); // fill the area, using ASCII
// values so we can read easy
disp BlitPixelsToCOM(); // send all the pixel values to com port
print ("Done!") ;
repeat forever
endfunc

This example fills a small screen area, then outputs each pixel of the selected area to the COM port.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 95 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

Syntax |gfx_Set(function, value);
Arguments function, value
function |The function number determines the required action for various graphics control
functions. Usually a constant, but can be a variable, array element, or expression. There
are pre-defined constants for each of the functions.
value A variable, array element, expression or constant holding a value for the selected
function.
Returns nothing
Description |Given a function number and a value, set the required graphics control parameter, such as size,

colour, and other parameters. (see the Single parameter short-cuts for the gfx_Set functions below).

function value
Predefined Name Description
0 |PEN_SIZE Set the draw mode for gfx_LineTo, gfx_LineRel, gfx_Dot,|0 or SOLID
gfx_Bullet and gfx_BoxTo (default mode is OUTLINE) 1 or OUTLINE
nb:- pen size is set to OUTLINE for normal operation
1 |BACKGROUND_COLOUR |Set the screen background colour Colour, 0-65535

OBJECT_COLOUR

Generic colour for gfx_LineTo(...), gfx_LineRel(...),
gfx_Dot(), gfx_Bullet(...) and gfx_BoxTo(...)

Colour, 0-65535

3 |CLIPPING Turns clipping on/off. 0 or 1 (ON or OFF)
The clipping points are set with gfx_ClipWindow(...)

4 Not implemented on Goldelox-GFX2 n/a

5 Not implemented on Goldelox-GFX2 n/a

6 [FRAME_DELAY Set the inter frame delay for media_Video(...) 0 to 255msec

7 |SCREEN_MODE Set required screen behaviour/orientation. 0 or LANDSCAPE
1 or LANDSCAPE _R
2 or PORTRAIT

3 or PORTRAIT_R

OUTLINE_COLOUR

Outline colour for rectangles and circles
(set to O for no effect)

Colour, 0-65535

CONTRAST

Set contrast value, 0 = display off, 1-16 = contrast level
(only available on Goldelox Engineering samples, must be
implemented in users code for Goldelox-GFX2 with
external initialisation tables, refer to individual display
driver data sheets)

0 or OFF
1 to 16 for levels

10

LINE_PATTERN

Sets the line draw pattern for line drawing. If set to zero,
lines are solid, else each '1' bit represents a pixel that is
turned off. See code examples for further reference.

0 bits for pixels on
1 bits for pixels off

11 |COLOUR_MODE Sets 8 or 16bit colour mode (only available on Goldelox|0 or COLOUR16
Engineering samples, must be implemented in users code|1 or COLOURS
for Goldelox-GFX2 with external initialisation tables, refer
to individual display driver data sheets)

0 |PEN_SIZE Set the draw mode for gfx_LineTo, gfx_LineRel, gfx_Dot,|0 or SOLID

GOLDELOX INTERNAL FUNCTIONS

Page 96 of 185

www.4dlabs.com.au

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

44D LN\BS

SEMICONDUCTORS

GOLDELOX GRAPHICS PROCESSOR

gfx_Bullet and gfx_BoxTo (default mode is OUTLINE) 1 or OUTLINE
nb:- pen size is set to OUTLINE for normal operation

Single parameter short-cuts for the gfx_Set(..) functions

Function Syntax Function Action value

gfx_PenSize(mode) Set the draw mode for gfx_LineTo, gfx_LineRel, gfx_Dot,|0 or SOLID
gfx_Bullet and gfx_BoxTo 1 or OUTLINE

Note: pen size is set to OUTLINE for normal operation
(default).

gfx_BGcolour(colour)

Set the screen background colour

Colour 0-65535

gfx_ObjectColour(colour)

Generic colour for gfx_LineTo(...), gfx_LineRel(...),

gfx_Dot(), gfx_Bullet(... and gfx_BoxTo

Colour 0-65535

gfx_Clipping(mode)

Turns clipping on/off.
The clipping points are set with gfx_ClipWindow(...)

0 or 1 (ON or OFF)

gfx_FrameDelay(delay)

Set the inter frame delay for media_Video(...)

0 to 255msec

gfx_ScreenMode(mode)

Set required screen behaviour/orientation.

1 or LANDSCAPE

2 or LANDSCAPE _R
3 or PORTRAIT

4 or PORTRAIT_R

gfx_OutlineColour(colour)

Outline colour for rectangles and circles.
(set to O for no effect)

Colour 0-65535

gfx_Contrast(value)

Set contrast value, 0 = display off, 1-16 = contrast level.
(only available on Goldelox Engineering samples, must be
implemented in users code for Goldelox-GFX2 with
external initialisation tables, refer to individual display
driver data sheets)

0 or OFF
1 to 16 for levels

gfx_LinePattern(pattern)

Sets the line draw pattern for line drawing. If set to zero,
lines are solid, else eac '1' bit represents a pixel that is
turned off. See code examples for further reference.

0 bits for pixels on
1 bits for pixels off

gfx_ColourMode(mode)

Sets 8 or 16bit colour mode

(only available on Goldelox Engineering samples, must be
implemented in users code for Goldelox-GFX2 with
external initialisation tables, refer to individual display
driver data sheets)

0 or COLOUR16
1 or COLOURS8

GOLDELOX INTERNAL FUNCTIONS

Page 97 of 185

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

2.7. Display 1/0 Functions

These functions allow direct display access for fast blitting operations.

Summary of Functions in this section:
e disp_Init(initTable, stateMachine)
e disp_WriteControl(value)
o disp_WriteByte(value)
e disp_WriteWord(value)
e disp_ReadByte()
e disp_ReadWord()
e disp_BIlitPixelFill(colour, count)
e disp_BlitPixelsToMedia()
e disp_BlitPixelsFromMedia(pixelcount)
e disp_SkipPixelsFromMedia(pixelcount)
e disp_BlitPixelsToCOM()
e disp_BlitPixelsFromCOM(mode)

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 98 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |disp_|nit(initTabIe, stateMachine);

Arguments initTable, stateMachine

initTable A reference to the device initialisation table which is stored as a data statement.

stateMachine | reference to the device state machine table which is stored as a data statement.

The arguments can be a variable, array element, expression or constant

Returns nothing

The Goldelox-GFX2 needs to be aware of all the display registers and how to access them. The
initialisation and the state machine tables are necessary to achieve this. Refer to the individual display
data sheet available from the display manufacturer.

Description
Note: for hardware platform modules such as uOLED-96-G1(GFX), uOLED-128-G1(GFX), etc the
disp_Init(,,) is not needed. The modules are factory set-up with their display specific configurations.
Example /7
/ SD1339 Device Initialisation Procedure
//
#DATA

byte initTable
// first 4 bytes of table hold
// display access information

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

_DISPLAY X MAX, // width-1
_DISPLAY X MAX, // height-1
WRITE GRAM, // write access register
WRITE GRAM, // read access register
// now the display initialisation table
0, DISPLAY OFF, // Display OFF
1, REMAP COLOUR_SETTINGS, _65K COLOURS, // Set Re-map/Color Depth
1, DISPLAY START LINE, 0x00,
1, DISPLAY OFFSET, 0x80,
1, DUTY CYCLE, Ox7F, // Duty 127+1 (0x80)
0, DISPLAY NORMAL, // Normal display
1, MASTER CONFIGURE, 0x8E, // Set Master Configuration
1, CONTRAST MASTER, O0xO0F, // Set master contrast
3, CONTRAST RGB, OxFF, OxFF, OxFF, // Set contrast current
1, SET VCOMH, 0x1F, // Set VcomH
1, POWERSAVE MODE, 0x05, // Power saving mode
3, PRECHARGE VOLTAGE RGB, 0x1lc, O0xlc, 0xl1lC, // Set pre-charge
// voltage
1, PHASE PRECHARGE, 0x11, // Set pre & dis charge
1, CLOCK_FREQUENCY, 0x80, // clock & frequency (0xFO0)
0, SLEEP_MODE OFF, // Display on
2, SET_COLUMN ADDRESS, 0x00, 0x7F, // set full screen
2, SET ROW_ADDRESS, 0x00, Ox7F,
OxFF
#END
//
// GRAM access state machine for SSD1339 (on uOLED-128-G1 (GFX))
//
#DATA

byte stateMachine
WRITE CONTROL CONSTANT, SET COLUMN ADDRESS,
WRITE DATA BYTE, VX1,

GOLDELOX INTERNAL FUNCTIONS Page 99 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS

GOLDELOX GRAPHICS PROCESSOR

WRITE DATA BYTE, VX2,
WRITE CONTROL CONSTANT, SET ROW ADDRESS,
WRITE DATA BYTE, VY1,
WRITE DATA BYTE, VY2,
WRITE EXIT
#END

func main ()
disp Init(initTable, stateMachine);
txt MoveCursor (0, 2);
txt Bold(1l);
txt Italic(l);
txt Set (TEXT COLOUR, WHITE) ;
print ("4D LABS");
repeat forever
end

// initialise the display

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 100 of 185

www.4dlabs.com.au

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax disp_WriteControl(value);
Arguments |value
value Specifies the value to be written to the display control register. Only the lower 8 bits
are sent to the display.
The arguments can be a variable, array element, expression or constant
Returns nothing
Sends a single byte (which is the lower 8 bits of value) to the display bus. Refer to individual data
Description [sheets for the display for more information. This function is used to extend the capabilities of the user
code to gain access to the the display hardware.
Example // a function to utilise the hardware circle draw function
// on a SD1339 display driver IC
#constant DRAW CIRCLE 0x86
func myCircle(var x, var y, var r, var fillcolour, var linecolour)
disp WriteControl (DRAW CIRCLE); // Draw Circle command
disp WriteByte (x); // set x1
disp WriteByte (y); // set yl
disp WriteByte(r); // set x2
disp WriteByte (linecolour>>8); // set outline colour Hi byte
disp WriteByte (linecolour); // set outline colour Lo byte
disp WriteByte (fillcolour>>8); // set fill colour Hi byte
disp WriteByte (fillcolour); // set fill colour Lo byte
endfunc

GOLDELOX INTERNAL FUNCTIONS Page 101 of 185 www.4dlabs.com.au

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax disp_WriteByte(value);
Arguments |value
value Specifies the value to be written to the display data register. Only the lower 8 bits
are sent to the display.
The arguments can be a variable, array element, expression or constant
Returns nothing
Sends a single byte (which is the lower 8 bits of value) to the display bus. Refer to individual data
Description [sheets for the display for more information. This function is used to extend the capabilities of the user
code to gain access to the the display hardware.
Example // a function to utilise the hardware circle draw function
// on a SD1339 display driver IC
#constant DRAW CIRCLE 0x86
func myCircle(var x, var y, var r, var fillcolour, var linecolour)
disp WriteControl (DRAW CIRCLE); // Draw Circle command
disp WriteByte (x); // set x1
disp WriteByte (y); // set yl
disp WriteByte(r); // set x2
disp WriteByte (linecolour>>8); // set outline colour Hi byte
disp WriteByte (linecolour); // set outline colour Lo byte
disp WriteByte (fillcolour>>8); // set fill colour Hi byte
disp WriteByte (fillcolour); // set fill colour Lo byte
endfunc

GOLDELOX INTERNAL FUNCTIONS Page 102 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax disp_WriteWord(value);

Arguments |value

value Specifies the value to be written to the display data register. Only the lower 8 bits
are sent to the display.

The arguments can be a variable, array element, expression or constant

Returns nothing

Sends a 16 bit value to the display bus. Since the Goldelox-GFX2 display data bus is 8bits wide, the
HIGH byte is sent first followed by the LOW byte. Refer to individual data sheets for the display for

Description . . . L - .
P more information. This function is used to extend the capabilities of the user code to gain access to
the the display hardware.
Example // a function to utilise the hardware circle draw function

// on a SD1339 display driver IC

#constant DRAW CIRCLE 0x86

func myCircle(var x, var y, var r, var fillcolour, var linecolour)
disp WriteControl (DRAW CIRCLE); // Draw Circle command

disp WriteByte (x); // set x1

disp WriteByte (y): // set yl

disp WriteByte(r); // set x2

disp WriteWord(linecolour) ; // set outline colour

disp WriteWord(fillcolour); // set fill colour
endfunc

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 103 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax disp_ReadByte();

Arguments none

Returns value

value Returns the 8bit data that was read from the display. Only the lower 8bits are valid.

Description |Reads a byte from the display after an internal register or GRAM access has been set.

Example gfx ClipWindow (40,40,44,44); // within a small block on the display
gfx_FocusWindow () ; // focus GRAM
pixel Hi:= dispReadByte(); // read hi byte of first pixel
pixel Lo:= dispReadByte(); // read lo byte of first pixel

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 104 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax disp_ReadWord();

Arguments none

Returns value

value Returns the 16bit data that was read from the display.

Description |Reads a 16bit word from the display after an internal register or GRAM access has been set.

Example gfx ClipWindow (40,40,44,44); // within a small block on the display
gfx_FocusWindow () ; // focus GRAM
pixel := dispReadWord() ; // read 1lst pixel, HI:LO order

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 105 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax disp_BlitPixelFill(colour, count);

Arguments colour, count

colour Specifies the colour for the fill.

count Specifies the number of pixels to fill.

The arguments can be a variable, array element, expression or constant

Returns |nothing

Description |Fi||s a preselected GRAM screen area with the specified colour.

Example gfx ClipWindow (40,40,79,79); // select a block on the display
count := gfx FocusWindow () ; // focus GRAM
myvar:=dispBlitPixelFill (RED,count); // paint the area red

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 106 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax disp_BlitPixelsToMedia();

Arguments none

Returns pixelcount

pixelcount Returns the number of pixels that were written to the media.

Description |Write the selected GRAM area to the media at the current media address.

Example func main ()
var n;
while (!media Init())
putstr ("Insert Card"); // init the card
pause (200) ;
gfx Cls();
pause (200) ;
wend
media SetSector (0x0020,0x0000) ; // we're going to write here
gfx ClipWindow (40,40,55,55); // select 16x16 block on the display
n:=gfx FocusWindow () ; // focus GRAM
while (n—-)
disp BlitPixelFill(RAND(),1); // £fill area with random pixels
wend
n:=disp BlitPixelsToMedia (); // save it to sector

print (n*2," bytes written\n");
print ("Done!");
repeat forever

endfunc

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 107 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax disp_BlitPixelsFromMedia(pixelcount);

Arguments pixelcount

pixelcount Specifying the number of pixels to be consecutively read from the media stream.

The arguments can be a variable, array element, expression or constant

Returns nothing

Read the required number of pixels consecutively from the current media stream and write them to
the current display GRAM address. For 8bit colour mode, each pixel comprises a single 8bit value. For
16bit colour, each pixel is composed of 2 bytes, the high order byte is read first, the low order bye is
read next.

Description

Example cee
media SetAdd(0x0002, 0x3C00); // point to required area of an image

disp BlitPixelsFromMedia (20) ; // write the next 20 pixels from
// media to the current GRAM pointer.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 108 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax disp_SkipPixelsFromMedia(pixelcount);

Arguments pixelcount

pixelcount Specifying the number of pixels to be consecutively skipped from the media stream.

The arguments can be a variable, array element, expression or constant

Returns nothing

Skip the required number of pixels consecutively from the current media stream, discarding them.
Description |For 8bit colour mode, each pixel comprises a single 8bit value. For 16bit colour, each pixel is
composed of 2 bytes, the high order byte is read first, the low order bye is read next.

Example cee
disp SkipPixelsFromMedia (20); // skip the next 20 pixels from media

disp BlitPixelsFromMedia (20) ; // write the next 20 pixels from
// media to the current GRAM pointer.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 109 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax disp_BIlitPixelsToCOM();

Arguments none

Returns pixelcount

pixelcount Returns the number of pixels that were written to the serial port.

Description |Write the selected GRAM area to the serial (COM) port.

Example // After downloading this program, open the Workshop Terminal and
// type any key to start the pixel upload.
func main ()

var pixels;

putstr ("Open the terminal\n");

putstr ("Type any key to start\n");

while (serin() < 0); // wait for a key from terminal
// before we start

gfx ClipWindow (40,40,44,44); // within a small block on the
// display

pixels:=gfx FocusWindow () ; // focus GRAM and get pixel count

// of area
disp BlitPixelFill (0x4142, pixels);// fill the area using ASCII
// values so we can read easily
disp BlitPixelsToCOM() ; // write the pixels to the COM port
print ("Done!") ;
repeat forever
endfunc

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 110 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax disp_BIlitPixelsfromCOM(mode);

Arguments mode

mode mode = 0 : specifies 16 bit pixels
mode = pointer : specifies pointer to 16 element colour lookup table for each 4bit
pixel value

The arguments can be a variable, array element, expression or constant

Returns |nothing

Description |Fi||s a preselected GRAM screen area with the specified colour.

Example // After downloading this program, open the Workshop Terminal and

// type 2 keys per pixel for 1l6bit colour mode. The colour will be
// determined by the ASCII values of the keys, it is only a simple
// test and you have very little control of what colour is actually
// displayed - it is simply a demo of disp BlitPixelsFromCOM action.
// If all is good, you will see the GRAM area being filled with

// pixels.

// NB if using 8bit colour mode, the correct register in the display
// must be set to 8 bit mode, if you have done this correctly, you
// will notice that it only requires 1 key to write each pixel.

// If this is not done correctly, only half the gram area will be

// filled.

func main ()

gfx ClipWindow (40,40,59,59); // writing to a 40x40 block on the
// display.
gfx FocusWindow () ; // NB first focus is just so we can

// get pixel count of area.
print ("Filling ", *IMG PIXEL COUNT," pixels");
gfx FocusWindow () ;
disp BlitPixelsFromCOM(0) ; // get pixels from serial port,

while (*IMG PIXEL COUNT) ; // wait till all the pixels come in
txt MoveCursor (8,5);
print ("Done!") ;
repeat forever
endfunc

//

// the next example uses disp BlitPixelsFromCOM in 4bit CLUT mode
var CLUT1[1l6];

// If the argument to disp BlitPixelsFromCOM(...) is non zero, it is
// expected to be a pointer to a 16 element colour lookup table in
// RAM.

// After downloading this program, open the Workshop Terminal and

// Each key typed will produce 2 pixels from the CLUT. The colour

// will be determined by the values in the CLUT, it is only a simple
// test and you have very little control of what colour is actually
// displayed - it is simply a demo of disp BlitPixelsFromCOM action.
// If all is good, you will see the GRAM area being filled with

// pixels.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

func main ()
// CLUT is set for monochrome mode, however
// it can contain a colour set if required
CLUT1[0] := 0x0000; // BLACK

GOLDELOX INTERNAL FUNCTIONS Page 111 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

CLUT1[1] := 0x1082; // GRAY1

CLUT1[2] := 0x2104; // GRAY2

CLUT1[3] := 0x3186; // GRAY3

CLUT1[4] := 0x4208; // GRAY4

CLUT1[5] := 0x5285; // GRAY5

CLUT1[6] := 0x630C; // GRAY6

CLUT1[7] := O0x738E; // GRAY7

CLUT1[8] := 0x8410; // GRAY8

CLUT1[9] := 0x9492; // GRAY9

CLUT1[10] := OxA514; // GRAY10

CLUT1[11] := 0xB596; // GRAY11

CLUT1[12] := 0xC618; // GRAY12

CLUT1[13] := OxD69A; // GRAY13

CLUT1[14] := 0xE71C; // GRAY14

CLUT1[15] := OxF79E; // ALMOST WHITE

gfx ClipWindow (40,40,59,59); // writing to a 40x40 block on

// the display.

gfx_FocusWindow () ; // NB first focus is just so we can get
// pixel count of area.

print ("Filling ", *IMG PIXEL COUNT," pixels");

gfx FocusWindow () ;

disp BlitPixelsFromCOM (CLUT1); // get pixels from COM port, 4 bit

// CLUT mode mode

while (*IMG PIXEL COUNT) ;

txt MoveCursor (8,5) ;

print ("Done!") ;

repeat forever

endfunc

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 112 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

2.8. Media Functions (SD/SDHC Memory Card or Serial Flash chip)

The media can be SD/SDHC, microSD or serial (NAND) flash device interfaced to the Goldelox-GFX2 SPI port.

Summary of Functions in this section:

e media_lnit()
media_SetAdd(HIword, LOword)
media_SetSector(HIword, LOword)
media_ReadByte()
media_ReadWord()
media_WriteByte(byte_val)
media_WriteWord(word_val)
media_Flush()
media_lmage(x, y)
media_Video(x, y)
media_VideoFrame(x, y, frameNumber)

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 113 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax media_lnit();

Arguments none

Returns result

result Returns: 1 if memory card is present and successfully initialised

Returns: 0if no card is present or not able to initialise

Description |Initialise a uSD/SD/SDHC memory card for further operations. The SD card is connected to the SPI
(serial peripheral interface) of the Goldelox-GFX2 chip.

Example while (!media Init())
gfx Cls();
pause (300) ;
puts (“Please insert SD card”);
pause (300) ;
wend

This example waits for SD card to be inserted and initialised, flashing a message if no SD card
detected.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 114 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax media_SetAdd(Hlword, LOword);

Arguments Hiword, LOword

Hiword specifies the high word (upper 2 bytes) of a 4 byte media memory byte address
wor location.

LOword specifies the low word (lower 2 bytes) of a 4 byte media memory byte address
location.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Set media memory internal Address pointer for access at a non sector aligned byte address.

Example media_SetAdd(O, 513) ;

This example sets the media address to byte 513 (which is sector #1, 2" byte in sector) for subsequent
operations.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 115 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax media_SetSector(Hlword, LOword);

Arguments Hiword, LOword

Hiword specifies the high word (upper 2 bytes) of a 4 byte media memory sector address
wor location.

LOword specifies the low word (lower 2 bytes) of a 4 byte media memory sector address
location.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Set media memory internal Address pointer for sector access.

Example media SetSector (0, 10);

This example sets the media address to the 11t sector (which is also byte address 5120) for
subsequent operations

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 116 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax media_ReadByte();

Arguments none

Returns byte value

Description |Returns the byte value from the current media address. The internal byte address will then be
internally incremented by one.

Example var LObyte, HIbyte;
if (media Init())
media SetAdd (0, 510);
LObyte := media ReadByte();
HIbyte := media ReadByte();
print ([HEX2]HIbyte, [HEX2]LObyte) ;
endif

repeat forever

This example initialises the media, sets the media byte address to 510, and reads the last 2 bytes from
sector 0. If the card happens to be FAT formatted, the result will be “AA55”. The media internal
address is internally incremented for each of the byte operations.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 117 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax media_ReadWord();

Arguments none

Returns word value

Description |Returns the word value (2 bytes) from the current media address. The internal byte address will then
be internally incremented by one. If the address is not aligned, the word will still be read correctly.

Example var myword;
if (media Init())
media SetAdd (0, 510);

myword := media ReadWord();
print ([HEX4]myword) ;
endif

repeat forever

This example initialises the media, sets the media byte address to 510 and reads the last word from
sector 0. If the card happens to be formatted, the result will be “AA55”

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 118 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax media_WriteByte(byte_val);

Arguments byte_val

byte_val The lower 8 bits specifies the byte to be written at the current media address location.

The arguments can be a variable, array element, expression or constant

Returns success

success Returns non zero if write was successful.

Description |Writes a byte to the current media address that was initially set with media_SetSector(...);

Note: Due to design constraints on the Goldelox-GFX2, there is no way of writing bytes or words
within a media sector without starting from the beginning of the sector. All writes will start at the
beginning of a sector and are incremental until the media_Flush() function is executed, or the sector
address rolls over to the next sector. Any remaining bytes in the sector will be padded with OxFF,
destroying the previous contents. An attempt to use the media_SetAdd(..) function will result in the
lower 9 bits being interpreted as zero. If the writing rolls over to the next sector, the media_Flush()
function is issued automatically internally.

Example var n, char;
while (media Init ()==0); // wait if no SD card detected
media SetSector (0, 2); // at sector 2

//media SetAdd (0, 1024); // (alternatively, use media SetAdd(),
// lower 9 bits ignored)
while (n < 10)

media WriteByte(n++ +'0'); // write ASCII '0123456789' to the
wend // first 10 locations.

to (MDA); putstr("Hello World"); // now write a ascii test string
media WriteByte ('A'); // write a further 3 bytes

media WriteByte('B');

media WriteByte('C');

media WriteByte (0); // terminate with zero

media Flush(); // we're finished, close the sector

media SetAdd (0, 1024+5); // set the starting byte address

while (char:=media ReadByte()) putch(char); // print result, starting
// from '5'

repeat forever

This example initialises the media, writes some bytes to the required sector, then prints the result
from the required location.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 119 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax media_WriteWord(word_val);

Arguments |word_val

word_val The 16 bit word to be written at the current media address location.

The arguments can be a variable, array element, expression or constant

Returns success

success Returns non zero if write was successful.

Description |Writes a byte to the current media address that was initially set with media_SetSector(...);

Note: Due to design constraints on the Goldelox-GFX2, there is no way of writing bytes or words
within a media sector without starting from the beginning of the sector. All writes will start at the
beginning of a sector and are incremental until the media_Flush() function is executed, or the sector
address rolls over to the next sector. Any remaining bytes in the sector will be padded with OxFF,
destroying the previous contents. An attempt to use the media_SetAdd(..) function will result in the
lower 9 bits being interpreted as zero. If the writing rolls over to the next sector, the media_Flush()
function is issued automatically internally.

Example var nj
while (media Init()==0); // wait until a good SD card is found
n:=0;
media SetAdd (0, 1536); // set the starting byte address

while (n++ < 20)
media WriteWord(RAND()); // write 20 random words to first 20
wend // word locations.
n:=0;
while (n++ < 20)
media WriteWord (n++*1000);// write sequence of 1000*n to next 20

wend // word locations.

media Flush(); // we're finished, close the sector

media SetAdd (0, 1536+40); // set the starting byte address

n:=0;

while (n++<8) // print result of fist 8 multiplication calcs
print ([HEX4] media ReadWord(),"\n");

wend

repeat forever

This example initialises the media, writes some words to the required sector, then prints the result
from the required location.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 120 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |media_FIush();

Arguments |none

Returns |nothing

Description |After writing any data to a sector, media_Flush() should be called to ensure that the current sector
that is being written is correctly stored back to the media else write operations may be unpredictable.

Example See the media_WriteByte(..) and media_WriteWord(..) examples.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 121 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax media_lmage(x, y);

Arguments X,y

X,y specifies the top left position where the image will be displayed.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Displays an image from the media storage at the specified co-ordinates. The image address is
previously specified with the media_SetAdd(..) or media_SetSector(...) function. If the image is
shown partially off screen, it is necessary to enable clipping for it to be displayed correctly.

Note: it is assumed that the media has been loaded with the example images in GFX2DEMO.GCI
loaded at sector 0. This can be loaded using the Graphics Composer (directly onto the memory card.

Example while (media Init ()==0); // wait if no SD card detected

media SetAdd(0x0001, OxDA0O); // point to the books04 image
media Image (10,10);

gfx Clipping (ON) ; // turn off clipping to see the difference
media Image (-12,50); // show image off-screen to the left

media Image (50,-12); // show image off-screen at the top

repeat forever

This example draws an image at several positions, showing the effects of clipping.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 122 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax media_Video(x, y);

Arguments X,y

X,y specifies the top left position where the video clip will be displayed.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Displays a video clip from the media storage device at the specified co-ordinates. The video address
location in the media is previously specified with the media_SetAdd(..) or media_SetSector(...)
function. If the video is shown partially off screen, it is necessary to enable clipping for it be displayed
correctly. Note that showing a video blocks all other processes until the video has finished showing.
See the media_VideoFrame(...) functions for alternatives.

Note: it is assumed that the media has been loaded with the example video in GFX2DEMO.GCl loaded
at sector 0. This can be loaded using the Graphics Composer directly onto the memory card.

Example while (media Init ()==0); // wait 1f no SD card detected

media SetAdd(0x0001, 0x3CO00); // point to the 10-gear clip
media Video (10,10);

gfx Clipping (ON) ; // turn off clipping to see the difference
media Video(-12,50); // show video off-screen to the left

media Video (50,-12); // show video off-screen at the top

repeat forever

This example plays a video clip at several positions, showing the effects of clipping.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 123 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax media_VideoFrame(x, y, frameNumber);

Arguments X,y

X,y specifies the top left position where the video clip will be displayed.

frameNumber |Specifies the required frame to be shown.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Displays a video from the media storage device at the specified co-ordinates. The video address is
previously specified with the media_SetAdd(..) or media_SetSector(...) function. If the video is shown
partially off screen, it is necessary to enable clipping for it be displayed correctly. The frames can be
shown in any order. This function gives you great flexibility for showing various icons from an image
strip, as well as showing videos while doing other tasks

Note: it is assumed that the media has been loaded with the example video in GFX2DEMO.GCI loaded
at sector 0. This can be loaded using the Graphics Composer directly onto the memory card.

Example var frame;
while (media Init()==0); // wait if no SD card detected
while (media Init()==0); // wait if no SD card detected
media SetAdd(0x0002, 0x3C00); // point to the 10-gear image
repeat
frame := 0; // start at frame 0
repeat

media VideoFrame (30,30, frame++); // display a frame
pause (peekB (IMAGE DELAY)); // pause for the time given in
// the image header
until (frame == peekW(IMG FRAME COUNT)); // loop until we've
// shown all the frames
forever // do it forever

This first example shows how to display frames as required while possibly doing other tasks. Note that
the frame timing (although not noticeable in this small example) is not correct as the delay
commences after the image frame is shown, therefore adding the display overheads to the frame
delay. This second example employs a timer for the framing delay, and shows the same movie
simultaneously running forward and backwards with time left for other tasks as well. A number of
videos (or animated icons) can be shown simultaneously using this method.

var framecount, frame, delay, colr;

frame := 0;

// show the first frame so we can get the video header info

// into the system variables, and then to our local variables.
media VideoFrame (30,30, 0);

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

framecount := peekW(IMG FRAME COUNT); // we can now set some local
// values.
delay := peekB(IMAGE DELAY); // get the frame count and delay
repeat
repeat
pokeW (TIMERO, delay); // set a timer
media VideoFrame (30,30, frame++); // show next frame

GOLDELOX INTERNAL FUNCTIONS Page 124 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

gfx MoveTo (64, 35) ;

print ([DEC2Z] frame) ; // print the frame number

media VideoFrame (30,80, framecount-frame); // show movie
// backwards.

gfx MoveTo (64, 85);

print ([DEC2Z] framecount-frame) ; // print the frame number
if ((frame & 3) == 0)
gfx CircleFilled(80,20,2,colr); // a blinking circle fun
colr := colr ~ 0xF800; // alternate colour,
endif // BLACK/RED using XOR
// do more here if required
while (peekW (TIMERO)) ; // wait for timer to expire
until (frame == peekW (IMG FRAME COUNT)) ;
frame := 0;

forever

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 125 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

2.9. Flash Memory Chip Functions

The functions in this section only apply to serial SPI (NAND) flash devices interfaced to the Goldelox-GFX2 SPI port.

Summary of Functions in this section:
o flash_SIG()
o flash_ID()
o flash_BulkErase()
o flash_BlockErase(blockAddress)

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 126 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |flash_SIG();

Arguments none

Returns signature

signature Release from Deep Power-down, and Read Electronic Signature. Only the low order
byte is valid, the upper byte is ignored.

Description |If a FLASH storage device is connected to the SPI port, and has been correctly initialised with the
spi_Init(...) function, the Electronic Signature of the device can be read using this function. The only
devices supported so far on the Goldelox-GFX2 are the M25Pxx range of devices which are 512Kbit to
32Mbit (2M x 8) Serial Flash Memory.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 127 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |flash_ID();

Arguments none

Returns type_capacity

type_capacity [Reads the memory type and capacity from the serial FLASH device. Hi byte contains
type, and low byte contains capacity. Refer to the device data sheet for further
information.

Description |If a FLASH storage device is connected to the SPI port, and has been correctly initialised with the
spi_Init(...) function, the memory type and capacity from the flash device can be read using this
function. The only devices supported so far on the Goldelox-GFX2 are the M25Pxx range of devices
which are 512Kbit to 32Mbit (2M x 8) Serial Flash Memory.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 128 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax flash_BulkErase();

Arguments none

Returns nothing

Erases the entire flash media device. The function returns no value, and the operation can take up to
80 seconds depending on the size of the flash device.

Description |If a FLASH storage device is connected to the SPI port, and has been correctly initialised with the
spi_Init(...) function, the FLASH device can be completely erased using this function. The only devices
supported so far on the Goldelox-GFX2 are the M25Pxx range of devices which are 512Kbit to 32Mbit
(2M x 8) Serial Flash Memory.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 129 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax flash_BlockErase(blockAddress);

Arguments blockAddress

blockAddress |The address of the 64k FLASH block to be erased.

Returns result

result Erases the required block in a FLASH media device. The function returns no value,
and the operation can take up to 3 milliseconds.

Description |If a FLASH storage device is connected to the SPI port, and has been correctly initialised with the
spi_Init(...) function, the FLASH block can be erased using this function. The only devices supported
so far on the Goldelox-GFX2 are the M25Pxx range of devices which are 512Kbit to 32Mbit (2M x 8)
Serial Flash Memory.

E.g. there are 32 x 64K blocks on a 2Mb flash device.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 130 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

2.10. SPI Control Functions

The SPI functions in this section apply to any general purpose SPI device.

Summary of Functions in this section:
e spi_Init(speed, input_mode, output_mode)
e spi_Read()
e spi_Write(byte)
e spi_Disable()

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 131 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |spi_|nit(speed, input_mode, output_mode);

Arguments speed, input_mode, output_mode

speed Sets the speed of the SPI port.

input_mode Sets the input mode of the SPI port. See diagram below.

output_mode [Sets the output mode of the SPI port. See diagram below.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Sets up the Goldelox-GFX2 SPI port to communicate with SPI devices.

Note: The SPI functions in this section are not necessary when using the memory card or serial flash
chips interfaced to the SPI port. The SPI functions in this section are relevant to those devices other
than the memory card and the serial flash chip used for media access.

SPI MODE ARGUMENTS FOR spi_Init (SPEED, INPUT MODE, OUTPUT MODE) ;

SCK
(pin 11)
CKMODE 0

SCK
(pin 11)
CKMODE_1

SCK
(pin 11)
CKMODE_2

SCK
(pin 11)
CKMODE_3

(pis:ow) X BIT7 X BIT6 X BIT5 X BITA X BIT3 X BIT2 X BITlVX BITO)C

START J SPI OUTPUT MODES

IR IEEE

= S S S S S N S

RXMODE 1
START J SPI INPUT MODES (sample point)

spi Init (SPI SPEED SPI INPUT MODE |, SPI OUTPUT MODE) ;

r

CKMODE_0
CKMODE_1
CKMODE_ 2
CKMODE_3

0 SPI_SLOW (750khz)
1 SMI_MED (3mhz)
2 SPI_FAST (12mhz) 1 RxMODE 1

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

0 RXMODE 0

WNHO

GOLDELOX INTERNAL FUNCTIONS Page 132 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |spi_Read();

Arguments none

Returns byte

byte Returns a single data byte from the SPI device.

Description |This function allows a raw unadorned byte read from the SPI device.
Note: The Chip Select line (SDCS) is lowered automatically.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 133 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |spi_Write(byte) ;

Arguments byte

byte specifies the data byte to be sent to the SPI device.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |This function allows a raw unadorned byte write to the SPI device.
Note: The Chip Select line (SDCS) is lowered automatically.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 134 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax spi_Disable();

Arguments none

Returns nothing

Description [This function raises the Chip Select (SDCS) line of the SPI device, disabling it from further activity. The
CS line will be automatically lowered next time the SPI functions spi_Read() or spi_Write(...) are used,
and also by action of any of the media_ functions.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 135 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

2.11. Serial (UART) Communications Functions

Summary of Functions in this section:
e serin()

serout(char)

setbaud(rate)

com_AutoBaud(timeout)

com_Init(buffer, buffsize, qualifier)

com_Reset()

com_Count()

com_Full()

com_Error()

com_Sync()

com_Checksum()

com_PacketSize()

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 136 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |serin();

Arguments none

Returns char

char Returns: -1if no character is available

Returns: -2 if a framing error or over-run has occurred (auto cleared)
Returns: positive value 0 to 255 for a valid character received

Description |Receives a character from the Serial Port COMO. The transmission format is:

No Parity, 1 Stop Bit, 8 Data Bits (N,8,1).

The default Baud Rate is 115,200 bits per second or 115,200 baud. The baud rate can be changed
under program control by using the setbaud(...) function.

Example var char;
char := serin(); // test the com port
if (char >= 0) // if a valid character is received
process (char) ; // process the character
endif

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 137 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |serout(char);

Arguments |char

char specifies the data byte to be sent to the serial port.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Transmits a single byte from the Serial Port COMO. The transmission format is:

No Parity, 1 Stop Bit, 8 Data Bits (N,8,1).

The default Baud Rate is 115,200 bits per second or 115,200 baud. The baud rate can be changed
under program control by using the setbaud(...) function.

Example

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 138 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |setbaud(rate);

Arguments rate

rate specifies the baud rate divisor value or pre-defined constant

The arguments can be a variable, array element, expression or constant

-

9

0

g Returns nothing

& Description |Use this function to set the required baud rate. The default baud rate is 115,200 baud.

C There are pre-defined baud rate constants for most common baud rates:

C

b Pre Defined Constant Rate Divisor |Error % |Actual Baud Rate

3 BAUD 110 27272 0.00% 110

C BAUD 300 9999 0.00% 300

—— BAUD 600 4999 0.00% 600

I BAUD 1200 2499 0.00% 1200

BAUD 2400 1249 0.00% 2400

S BAUD 4800 624 0.00% 4800

O BAUD 9600 312 -0.16% 9584

& BAUD 14400 207 0.16% 14423

m BAUD 19200 155 0.16% 19230

u BAUD 31250 95 0.00% 31250

o MIDI 95 0.00% 31250

- BAUD 38400 77 0.16% 38461

ﬂ. BAUD 56000 53 -0.79% 55555

m BAUD 57600 51 0.16% 57692

&) BAUD_115200 25 0.16% 115384

— BAUD 128000 22 1.90% 130434

-: BAUD 256000 11 -2.34% 250000

Q BAUD 300000 10 0.00% 300000

E BAUD 375000 8 0.00% 375000

w BAUD 500000 6 0.00% 500000
BAUD 600000 4 0.00% 600000

x

O The baud rate is calculated with the following formula:

— rate-divisor = (3000000 / baud) - 1

LL)

)

-

e

O

GOLDELOX INTERNAL FUNCTIONS Page 139 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax com_AutoBaud(timeout);

Arguments [timeout

timeout |Sets the timeout delay for autobaud detection.

The arguments can be a variable, array element, expression or constant

Returns status

status Returns the divisor value selected for the baud rate generator, else returns 0.

Description |The com_AutoBaud function expects to receive an ascii 'U' (0x55) within a pre-determined time. If
the function is successful, the COM port is configured to the closest speed possible, and the selected
baud rate value is returned.

Example while (br:=com AutoBaud(500)) // 1f we receive a 'U' ok
doMyComms () ; // now connected at br baud rate
endif

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 140 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |com_lnit(buffer, bufsize, qualifier);

Arguments buffer, bufsize, qualifier

buffer specifies the address of a buffer used for the background buffering service.

bufsize specifies the byte size of the user array provided for the buffer (each array element holds
2 bytes). If the buffer size is zero, a buffer of 63 words (126 bytes) should be provided for
automatic packet length mode (see below). Buffer of 63 words (126 bytes) is the
maximum buffer size possible.

qualifier |specifies the qualifying character that must be received to initiate serial data reception

and buffer write. A zero (0x00) indicates no qualifier to be used.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |This is the initialisation function for the serial communications buffered service. Once initialised, the
service runs in the background capturing and buffering serial data without the user application having
to constantly poll the serial port. This frees up the application to service other tasks. The service also
transparently keeps a checksum (see the com_Checksum() function) which can be employed if
required for robust error checking.

MODES OF OPERATION

e No qualifier — simple ring buffer (aka circular queue)

If the qualifier is set to zero, the buffer is continually active as a simple circular queue.
Characters when received from the host are placed in the circular queue (at the 'head' of the
queue) Bytes may be removed from the circular queue (from the 'tail' of the queue) using
the serin() function. If the tail is the same position as the head, there are no bytes in the
queue, therefore serin() will return -1, meaning no character is available, also, the
com_Count() function can be read at any time to determine the number of characters that
are waiting between the tail and head of the queue. If the queue is not read frequently by
the application, and characters are still being sent by the host, the head will eventually catch
up with the tail setting the internal COM_FULL flag (which can be read with the com_Full()
function) . Any further characters from the host are are now discarded, however, all the
characters that were buffered up to this point are readable. This is a good way of reading a
fixed size packet and not necessarily considered to be an error condition. If no characters
are removed from the buffer until the COM_FULL flag (which can be read with the com_Full()
function) becomes set, it is guaranteed that the bytes will be ordered in the buffer from the
start position, therefore, the buffer can be treated as an array and can be read directly
without using serin() at all. In the latter case, the correct action is to process the data from
the buffer, re-initialise the buffer with the com_lInit(..) function, or reset the buffered serial
service by issuing the com_Reset() function (which will return serial reception to polled
mode) , and send an acknowledgement to the host (traditionally a ACK or 6) to indicate that
the application is ready to receive more data and the previous 'packet' has been dealt with,
or conversely, the application may send a negative acknowledgement to indicate that some
sort of error occurred, or the action could not be completed (traditionally a NAK or 16) .

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

If any low level errors occur during the buffering service (such as framing or over-run) the
internal COM_ERROR flag will be set (which can be read with the com_Error() function). Note
that the COM_FULL flag will remain latched to indicate that the buffer did become full, and
is not reset (even if all the characters are read) until the com_lInit(..) or com_Reset() function

GOLDELOX INTERNAL FUNCTIONS Page 141 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

is issued.

e Using a qualifier

If a qualifier character is specified, after the buffer is initialised with com_lInit(..) , the service
will ignore all characters until the qualifier is received and only then initiate the buffer write
sequence with incoming data. After that point, the behaviour is the same as above for the
'non qualified' mode.

e Variable packet length

If the bufsize argument is set to zero, the first byte received (or the 2" byte if a qualifier is
employed) sets the count of characters that are to be received before the COM_FULL flag
(which can be read with the com_Full() function) becomes set. This allows a host to send
variable length packets, which will only alert the application that the packet is ready after
the correct number of characters has been received. The number of bytes to be expected
can be read using the com_PacketSize() function, which will indicate the packet size. In this
mode, it is wise to make the buffer as large as possible due to the fact that if the 'size'
parameter sent by the host is corrupted, more characters than expected (up to 255) can be
receive inadvertently, crashing into any other program variables above the array.

Notes:

e Transparent to normal operation, a check summing system is operating. If the host sends
one extra character (usually at the end of the packet) which is the negated value of the
addition of all the previous characters in the packet, the checksum (which can be read with
the com_Checksum() function) should read zero. com_Checksum() will retain the most
recent value until com_Init(..) is called again to reset the buffer system. Note that the
checksum is only valid after the com_Full() function reports a buffer full situation (ie the
packet is fully received).

e com_PacketSize() will indicate how large the packet is ONLY after the packet reception has
started. Although it is usually not required to know the packet size until the packet has
actually been read, if it is a requirement, the count is available as soon as com_Count()
becomes non zero.

Example //
// Example #1 - no qualifier

// use the Workshop Terminal to test this example

// note that if 7 characters are exceeded, no more
// characters will be accepted as there is no action
// to take care of the com Full situation

//
var combuf[10]; // a buffer for up to 20 characters
putstr ("Default 115.2kb");
com_Init (combuf, 7, 0); // initialize small circular queue of 7
// bytes, no qualifier
repeat
if (com Count ()) // 1f there is a character available
serout (serin()); // echo it back to host
endif

txt MoveCursor(2,0);
print ("\ncom Error ", [DEC2ZB] com Error()); // 1 if error
print ("\ncom Count ", [DEC2ZB] com Count()); // show current count
print ("\ncom Full ", [DEC2ZB] com Full()); // 1 if full
pause (1000); // a delay to slow things up
forever

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

//
// Example #2 - no qualifier
// use the Workshop Terminal to test this example

GOLDELOX INTERNAL FUNCTIONS Page 142 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

// note that if 7 characters are exceeded, the
// com Full situation occurs, but is reset
// once all the pending characters are read

//
var combuf[10]; // a buffer for up to 20 characters
putstr ("Default 115.2kb");
com_Init (combuf, 7, 0); // initialize circular queue of 7 bytes,
// no qualifier
repeat
if (com Count ()) // 1f there is a character available
serout (serin()); // echo it back to host
endif
txt MoveCursor(2,0);
print ("\ncom Error ", [DEC2ZB] com Error()); // 1 if error
print ("\ncom Count ", [DEC2ZB] com Count()); // show current count
print ("\ncom Full ", [DEC2ZB] com Full()); // 1 if full
pause (1000); // a delay to slow things up
// 1f the buffer overflowed, and we have read
// all the characters, then reset the buffer
if (com Full() & (com Count() == 0)) com Init (combuf, 7, '0');
forever
//
// Example #3 - using qualifier (a colon character)

// use the Workshop Terminal to test this example
// note that once the qualifier is received, if 7
// characters are exceeded, the buffer is reset
// once all the pending characters are read

//
var combuf[10]; // a buffer for up to 20 characters
putstr ("Default 115.2kb");
com Init (combuf, 7, ':'); // initialize circular queue of 7 bytes,
// '":' as qualifier
repeat
if (com Count()) // if there is a character available
serout (serin()); // echo it back to host
endif
txt MoveCursor(2,0);
print ("\ncom Sync ", [DEC2ZB] com Sync()); // 1 if qualified
print ("\ncom Error ", [DEC2ZB] com Error()); // 1 if error
print ("\ncom Count ", [DEC2ZB] com Count()); // show current count
print ("\ncom Full ", [DEC2ZB] com Full()); // 1 if full
pause (1000); // a delay to slow things up
// if the buffer overflowed, if we have read
// all the characters, then reset the buffer
if (com Full() & (com Count() == 0)) com Init (combuf, 5, ':');
forever
//

// Example #4 - using qualified packet

// use the Workshop Terminal to test this example
// note that nothing happens until the qualifier
// followed by 10 characters is received. Then an
// acknowledgement is issued to the host, and the
// buffer is reset

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

//

var combuf[10], chr; // a buffer for up to 20 characters
putstr ("Default 115.2kb");

com Init (combuf, 10, ':'); // init buffer 10 bytes to receive
repeat

repeat
txt MoveCursor (2,0);

GOLDELOX INTERNAL FUNCTIONS Page 143 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

print ("\ncom Sync ", [DEC2ZB] com_Sync () // 1 if qualified

);
print ("\ncom Error ", [DEC2ZB] com Error()); // 1 if error
print ("\ncom Count ", [DEC2ZB] com Count()); // show count
print ("\ncom Full ", [DEC2ZB] com Full()); // 1 if full
pause (1000) ; // a delay to slow things up

until (com Full()); // just loop until buffer is full

// buffer is full, echo the characters

while (chr:=serin()) >=0) serout(chr); // echo back characters
to (COMO0) ; print (" OK\n"); // send an acknowledgement
com Init (combuf, 10, ':'); // re-init buffer 10 bytes to receive

forever // do it all again

// Example #5 - using qualified variable length packet
// use the Workshop Terminal to test this example

// NB:- to make the example possible when just using
// a terminal to emulate a packet, the 'space bar'

// (ascii 32) is used to set the size of the packet

// to 32 characters, so you must send the':' qualifier
// then press the space bar (you will then see '32'

// for the packet size) then type 32 characters to

// complete the action. Under normal circumstances,

// the host will send whatever packet size is required.
// Note that nothing happens until the qualifier ':'
// followed by the space bar (to set the packet size),
// then the 32 characters are received. After the

// packet is received, the acknowledgement is issued
// to the host, and the buffer is reset.

// This example also shows the running checksum

// calculation.

//
putstr ("Default 115.2kb");
repeat
com_Init (combuf, 0, ':'); // init. buffer 10 bytes to receive
repeat
txt MoveCursor (2,0);
print ("\ncom Sync ", [DEC2ZB] com_Sync()) ; // 1 if
// qualified
print ("\ncom Error ", [DEC2ZB] com Error()); // 1 if error
print ("\ncom PacketSize ", [DEC2ZB] com PacketSize());
print ("\ncom Count ", [DEC2ZB] com Count()); // show count
print ("\ncom Checksum ", [HEX2ZB] com Checksum()); // checksum
print("\ncom:Full ", [DEC2ZB] com:Full()); // 1 if full
pause (1000) ; // a delay to slow things up
until (com Full()); // just loop until buffer is full
// buffer is full, echo the characters
while ((chr:=serin()) >= 0) serout(chr); // echo back the chars
to (COMO) ; print (™ OK\n"); // send a simple acknowledgement

forever // do it all again

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 144 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |com_Reset();

Arguments |none

Returns |nothing

Description |Resets the serial communications buffered service and returns it to the default polled mode.

Example |com_Reset(); // reset to polled mode

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 145 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax com_Count();

Arguments none

Returns count

count current count of characters in the communications buffer.

Description |Can be read at any time (when in buffered communications is active) to determine the number of
characters that are waiting in the buffer.

Example n := com Count(); // get the number of chars available in the buffer

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 146 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |com_FuII();

Arguments none

Returns status

status Returns 1 if buffer or queue has become full, or is overflowed, else returns 0.

Description |If the queue is not read frequently by the application, and characters are still being sent by the host,
the head will eventually catch up with the tail setting the COM_FULL flag which is read with this
function. If this flag is set, any further characters from the host are discarded, however, all the
characters that were buffered up to this point are readable.

Example if (com Full() & (com Count() == 0))
com_Init (mybuf, 30, 0); // buffer full, recovery
endif

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 147 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax com_Error();

Arguments none

Returns status

status Returns 1 if any low level communications error occurred, else returns 0.

Description |If any low level errors occur during the buffering service (such as framing or over-run) the internal
COM_ERROR flag will be set which can be read with this function.

Example if (com Error()) // if there were low level comms errors,
resetMySystem(); // take corrective action
endif

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 148 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |com_Sync();

Arguments none

Returns status

status |Returns 1if the qualifier character has been received, else returns 0.

Description |If a qualifier character is specified when using buffered communications, after the buffer is initialized
with com_lInit(..) , the service will ignore all characters until the qualifier is received and only then
initiate the buffer write sequence with incoming data. com_Sync() is called to determine if the

qualifier character has been received yet.

Example com Sync(); // reset to polled mode

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 149 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax com_Checksum();

Arguments none

Returns status

status Returns 0 if checksum has been computed correctly.

Description |Transparent to normal operation, a check summing system is operating. If the host sends one extra
character as part of the packet (usually added at the end of the packet) which is the negated value of
the addition of all the previous characters in the packet. Once the com_Full() function reports a buffer
full situation (ie the packet is fully received) , the checksum can be read, and should read zero if the
packet is not corrupted.

Example if (!com_Checksum()) // if checksum is ok
processMyPacket () ; // continue

else
. do recovery action

endif

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 150 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax com_PacketSize();

Arguments none

Returns size

size Returns the size of a packet if in variable packet length mode, or just the size of the serial
buffer if not variable packet length mode.

Description |com_PacketSize() will indicate how large the packet is ONLY after the packet reception has started.
Although it is usually not required to know the packet size until the packet has actually been read, if
it is a requirement, the count is available as soon as com_Count() becomes non zero. If notin variable
packet length mode, com_PacketSize() just returns the size of the specified buffer.

Example If (!com Count())

print ("Waiting....");
else

print (com PacketSize() - com Count()), " bytes to go"); //
endif B a

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 151 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

2.12. Sound and Tune (RTTTL) Functions

Summary of Functions in this section:
e beep(note, duration)

tune_Play(tuneptr)

tune_Pause()

tune_Continue()

tune_Stop()

tune_End()

tune_Playing()

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 152 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |beep(note, duration);

Arguments note, duration

A value (usually a constant) specifying the frequency of the note. Note could be
note

between 0 and 64
duration Secifies the time in milliseconds that the note will be played for.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description [Simple utility to produce a single musical note for the required duration.

Example Beep (20, 50); // play note 20 for 50 milliseconds

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 153 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |tune_PIay(tuneptr);

Arguments tuneptr

Specifies a pointer to a data statement or a string constant containing RTTTL

information.

Note: The argument passed to the tune_Play(...) function must be an ASCII string.

tuneptr L . . .
If the string is passed as a pointer from a #DATA statement, it must be terminated

with a zero (0x00). if a string is passed directly as a parameter, the '0' is

automatically appended by the compiler as per normal strings.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |The tune_Play(...) function in 4DGL uses a variant of the "Ring Tone Text Transfer Language" (RTTTL)
developed by Nokia for cellphone ring tones. There are certain differences that need to be taken into
account, and several additions that will be described later. It is suggested that you have a look at the
original format first, one suggestion being the excellent description on the web at:
http://www.activexperts.com/xmstoolkit/sms/rtttl/

and

http://en.wikipedia.org/wiki/Ring Tone Transfer Language

You will find that with a little practice and minor modifications, most RTTTL tunes that can be
downloaded off the web are playable with the tune_Play(...) function. Also, a wide range of sound
effects can be made using standard RTTTL notation augmented with the additional 4DGL functions.

The 4DGL implementation:
e The "b=nnn" in 4DGL does not represent "beats per minute" (bpm), it represents
"milliseconds per hemidemisemiquaver".
e.g. 120 bpm is 2 beats per second = 128 demisemiquavers per second which is 7.8125msec
per hemidemisemiquaver. Conversely, the default 4DGL value for b = 16msec per
hemidemisemiquaver equates to 62.5 bpm.

e The argument passed to the tune_Play(...); command must be a string. If the string is
passed as a pointer from a #DATA statement, it must be terminated with a zero (0x00).
(if a string is passed directly as a parameter, the zero (0x00) is automatically appended by
the compiler as per normal strings).

e The original RTTTL format is a string divided into three sections:
name, default value, data.
The 4DGL implementation does not have the "name" section - this would be just a waste
of space.

e The 4DGL implementation does not require any spaces or colons anywhere, once again
this would be a waste of space.

o The 4DGL implementation allows default values to be changed anywhere in the string and
does not need to be at the start.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

e The optional default modifiers is a set of parameters separated by commas, where each
value contains a key and a value separated by an '=' character, which describes certain
defaults which will be adhered to during the execution of the ringtone string.

e d-duration
The default duration can be one of 1, 2, 4, 8, 16, 32 or 64 (64 = 1/64th, 1 = 1 whole
unit)

GOLDELOX INTERNAL FUNCTIONS Page 154 of 185 www.4dlabs.com.au

http://www.activexperts.com/xmstoolkit/sms/rtttl/
http://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

1 specifies a Semibreve (Whole Note),
2 indicates it a Minim (Half Note),
4 is a Crotchet (Quarter Note) etc up to 64 which is a hemidemisemiquaver (64th
note).
e b -beat/tempo
"milliseconds per demisemiquaver"
e o0-octave
The default octave (scale) can be 4, 5, 6, or 7.
e If not specified, defaults are:
duration=4 (same as d=4)
octave=6 (same as 0=6)
beat=16 (same as b=16) close to 63bpm

4DGL extended default values:

e r-setrepeat point and counter (eg r=4)
min = 2, max = 255
default value = forever

e p -set portamento value (eg p=5)
min=1, max =14
default value is 4

e a-setarpeggiation step value (eg a=1)
min=1, max =16
default value is 1

4DGL extended commands associated with extended default values:
e R execute a repeat specified by r =
Note: if no repeat count has been specified, the string will repeat forever
e { turn portamento ON
e } turn portamento OFF
Note: portamento default value is OFF
e + raise note as specified by arpeggiation step value
e - lower note as specified by arpeggiation step value

Example /*
This example shows how to use the RTTTL tunes to

generate complex sounds and music.

*/

#DATA
// =250
byte Muppets "d=4, 0=5,b=15,",
"c6,c6,a,b,8a,b,9,p,c6,c6,a,8b,8a,8p,9.,p,e,¢,9, %,
8e,f,8c6,8c,8d,e,8e,8e,8p,8e,9,2p,c6,",
"c6,a,b,8a,b,9,p,c6,c6,a,8b,a,9.,p,e,e,9,%,8e,f,
8c6,8c,8d,e,8e,d,8d,c",0

// part of haunted house theme

byte HauntedHouse "d=4,0=5,b=20,",
"2a4,2e,2d#,2b4,2a4,2c,2d,2a%d,2e.,e,1f4,1a4,
1d#,2e.,d,2c.,bd4,1a4", 0

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

// simple scale with default settings
byte SimpleScale "c,d,e,f,g,a,b,c7", O

// simple scale with default settings and portamento use.
// Note the portamento speed change in the middle of the string,
// and the curly braces that turn the portamento on and off.

GOLDELOX INTERNAL FUNCTIONS Page 155 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

byte SimpleScaleP "b=50,{,c,d,e,f,0=7,9,a,},b,c7", O

// simple scale, much faster
// note b=20 as default, so each note plays for 20msec when d=64
byte Scale2 "d=64,c,d,e,f,g9,a,b,c7", 0O

// simple scale, much faster - with a repeat command set to 20

// note b=20 as default, so each note plays for 20msec when d=64,
// and we repeat 20 times

byte ScaleRep "d=64,r=20,c,d,e,f,g,a,b,c7,R", O

// simple scale, at the fastest possible rate, repeat 200 times
// note that b=1 and d=64 so each note plays for only lmsec
byte ScaleRep?2 "b=1,d=64,r=200,c,d,e,f,9,a,b,c7,R", 0

// simple scale using appregiation to increment the note step

// note that commas can be left out to save space if there is no
// indecision about delimit wvalue

byte ApprScale "a=1l,c, t++tttttttto - ", 0

// scale using appregiation to increment the note step, and the
// note step is larger

// note that commas can be left out to save space if there is no
// indecision about delimit value

byte ApprScaleF "d=8,a=4,c, +tt+t++++++++-——---——————— ", 0

// same as above but demonstrates repeating instead of multiple
// inc/dec operators

// note that commas can be left out to save space if there is no
// indecision about delimit value

byte ApprScaleFR "d=8,a=4,c5,r=11,+,R,r=11,-,R", O

// you can build your own scale sequencers

byte COMPLEX C "d=64,a=5,c4,r=8,+,R", 0
byte COMPLEX DSHARP "d=64,a=5,d#4,r=8,+,R", 0
byte COMPLEX G "d=64,a=5,94,r=8,+,R", O

// just having a bit of fun
byte DEMO "a=3,p=3,0=5,d=4, ,
{,a,r=20,+,R, },c 6,a=5,r=50,-,R, R",0 // forever

#END

#constant number of examples 13
var examples|[number of examples];
var names [number of examples];

func main ()
var n;

// pin_Set (SOUND, PIN 1); // sound on default pin
// pin_Set (SOUND, PIN 2);

// lookup table for the examples

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

examples[0] := HauntedHouse;
examples[1l] := SimpleScale;
examples[2] := SimpleScaleP;
examples[3] := Scale2;
examples([4] := ScaleRep;
examples[5] := ScaleRep2;
examples[6] := ApprScale;
examples[7] := ApprScaleF;

examples[8] ApprScaleFR;
examples[9] := COMPLEX C;
examples[10] COMPLEX DSHARP;
examples[11] COMPLEX G;
examples[12] := Muppets;

GOLDELOX INTERNAL FUNCTIONS Page 156 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

// lookup table for the example names

names [0] := "HauntedHouse";
names[1l] := "SimpleScale";
names[2] := "SimpleScaleP";
names[3] := "Scale2";
names[4] := "ScaleRep";
names[5] := "ScaleRep2";
names[6] := "ApprScale";
names[7] := "ApprScaleF";
names[8] := "ApprScaleFR";
names [9] := "COMPLEX C";
names[10] := "COMPLEX DSHARP";
names[11] = "COMPLEX G";
names[12] := "Muppets";
repeat

n := 0;

// play each demo, demonstrate multitasking while tune playing

repeat

gfx Cls();

txt MoveCursor (0, 8);

tune Play(examples[n]);
txt Set (TEXT PRINTDELAY, 0);
putstr (names[nt+]);

repeat
txt Set (TEXT PRINTDELAY, 50);
txt MoveCursor (0,0);
putstr ("Playing") ;

pause (150) ;
txt MoveCursor (0,0);
putstr (" ")
until (! (sys_Get (CONTROL) & PLAYING));// wait until the tune
// string finishes.
pause (1000) ; // then pause 5 seconds
until (n == number of examples);
gfx Cls();
txt Set (TEXT PRINTDELAY, 0);
tune Play(DEMO); // last example plays forever

putstr ("DEMO CONTINUOUS") ;

// the last demo endlessly loops, play for 10 seconds then pause
pause (10000) ;

tune Pause();
print ("\nPaused....");

pause (10000) ; // pause for 10 seconds

tune Continue () ; // continue
print ("\nContinue....");

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

pause (10000) ; // for 10 seconds

tune End(); // then end it

print ("\nEnd....");

pause (10000) ; // wait for 10 seconds

forever // then do it all again
endfunc

GOLDELOX INTERNAL FUNCTIONS Page 157 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax tune_Pause();

Arguments none

Returns |nothing

Description [Suspends any current tune from playing until a tune_Continue(), tune_Stop() or a new
tune_Play("...") function is called. The oscillator is not stopped.

Example |See example in tune Play(..)

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 158 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax tune_Continue();

Arguments none

Returns nothing

Description |Continues playing any previously stopped or paused tune.

Example See example in tune Play(..)

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 159 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |tune_Stop();

Arguments none

Returns |nothing

Description [Pauses a tune and silences the oscillator until a tune_Continue(), tune_Stop(), tune_End() or a new
tune_Play("...") function is called.

Example |See example in tune Play(..)

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 160 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |tune_End();

Arguments none

Returns nothing

Description |Ends any current tune and resets the tune interpreter.

Example See example in tune Play(..)

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 161 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax tune_Playing();

Arguments none

Returns state

state Returns: 1 if a tune is playing

Returns: 0if no tune is playing

Description |Use this function to check for any current tunes being played. Returns 1 if tune is playing, 0 if no tune
is playing.

Example See example in tune Play(..)

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 162 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

2.13. General Purpose Functions

Summary of Functions in this section:
e pause(time)
o |ookup8 (key, byteConstList)
e lookup16 (key, wordConstList)

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 163 of 185 www.4dlabs.com.au

44D LABS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |pause(time);

Arguments time

time A value specifying the delay time in milliseconds.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description |Stop execution of the user program for a predetermined amount of time.

Example if (joystick() == FIRE) // if fire button pressed
pause (30) // slow down the loop
else

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 164 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |Iookup8(key, byteConstList);

Arguments key, byteConstList

key A byte value to search for in a fixed list of constants. The key argument can be a
variable, array element, expression or constant

byteConstList |A comma separated list of constants and strings to be matched against key.
Note: the string of constants may be freely formed, see example.

Returns result

result See description.

Description |Search a list of 8 bit constant values for a match with a search value key. If found, the index of the
matching constant is returned in result, else result is set to zero. Thus, if the value is found first in the
list, result is set to one. If second in the list, result is set to two etc. If not found, result is returned
with zero.

Note: The list of constants cannot be re-directed. The lookup8(...) functions offer a versatile way for
returning an index for a given value. This can be very useful for data entry filtering and parameter
input checking and where ever you need to check the validity of certain inputs. The entire search list
field can be replaced with a single name if you use the S operator in constant, eg :

#constant HEXVALUES $"0123456789ABCDEE"

Example func main ()
var key, r;

key = 'a';
r := lookup8(key, 0x4D, "abcd", 2, 'Z', 5);
print ("\nSearch value 'a' \nfound as index ", r)

key = 5;

r := lookup8(key, 0x4D, "abcd", 2, 'Z', 5);
print ("\nSearch value 5 \nfound at index ", r)
putstr ("\nScanning..\n") ;

key := -12000; // we will count from -12000 to +12000, only
// the hex ascii values will give a match value

while (key <= 12000)
r := lookup8(key, "0123456789ABCDEF"); // hex lookup
if(r) print([HEX1] r-1); // only print if we got a match in
// the table
key++;
wend

repeat forever
endfunc

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 165 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

Syntax |Iookup16(key, wordConstList);

Arguments key, wordConstList

key A word value to search for in a fixed list of constants. The key argument can be a
variable, array element, expression or constant

wordConstlist |5 comma separated list of constants to be matched against key.

Returns result

result See description.

Description |Search a list of 16 bit constant values for a match with a search value key. If found, the index of the
matching constant is returned in result, else result is set to zero. Thus, if the value is found first in the
list, result is set to one. If second in the list, result is set to two etc. If not found, result is returned
with zero.

Note: The lookup16(...) functions offer a versatile way for returning an index for a given value. This is
very useful for parameter input checking and where ever you need to check the validity of certain
values. The entire search list field can be replaced with a single name by using the $ operator in
constant, eg:

#constant LEGALVALS $5,10,20,50,100,200,500,1000,2000,5000,10000

Example func main ()
var key, r;

key := 5000;

r := lookuplé6 (key,
5,10,20,50,100,200,500,1000,2000,5000,10000) ;

//r := lookupl6 (key, LEGALVALS) ;

if(r)

print ("\nSearch value 5000 \nfound at index ", r);
else

putstr ("\nValue not found");
endif

print("\nOk"); // all done

repeat forever
endfunc

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 166 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

3. Goldelox EVE System Registers Memory Map

The following tables outline in detail the Goldelox-GFX2 system registers and flags.

(7)) Table 3‘.1: BYTE-Size Registers Memory Map
S
CDEC HEX T I
.9 VX1 128 0x80 | display hardware GRAM x1 pos BYTE SYSTEM (R/O)
o) VY1 129 0x81 | display hardware GRAM y1 pos BYTE SYSTEM (R/0O)
O VX2 130 0x82 | display hardware GRAM x2 pos BYTE SYSTEM (R/0O)
C VY2 131 0x83 | display hardware GRAM y2 pos BYTE SYSTEM (R/0O)
: SYS_X_MAX 132 0x84 | display hardware X res-1 BYTE SYSTEM (R/0O)
LL. SYS_Y_MAX 133 0x85 | display hardware Y res-1 BYTE SYSTEM (R/0O)
— WRITE_GRAM_REG 134 | 0x86 | display GRAM write address BYTE SYSTEM (R/0O)
C READ_GRAM_REG 135 | 0x87 | display GRAM read address BYTE SYSTEM (R/O)
cC IMAGE_WIDTH 136 0x88 | loaded image/animation width BYTE SYSTEM (R/O)
- IMAGE_HEIGHT 137 0x89 | loaded image/animation height BYTE SYSTEM (R/0O)
q) IMAGE_DELAY 138 0x8A | frame delay (if animation) BYTE USER
. IMAGE_MODE 139 0x8B | image/animation colour mode BYTE SYSTEM (R/0O)
E CLIP_LEFT_POS 140 | Ox8C | left clipping point setting BYTE USER
CLIP_TOP_POS 141 0x8D | top clipping point setting BYTE USER
I CLIP_RIGHT_POS 142 0x8E | right clipping point setting BYTE USER
[- CLIP_BOTTOM_POS 143 0x8F | bottom clipping point setting BYTE USER
O CLIP_LEFT 144 0x90 | left clipping point active BYTE USER
(p) CLIP_TOP 145 0x91 | top clipping point active BYTE USER
(7)) CLIP_RIGHT 146 0x92 | right clipping point active BYTE USER
Q) CLIP_BOTTOM 147 0x93 | bottom clipping point active BYTE USER
(&) FONT_TYPE 148 0x94 | 0 =fixed, 1 = proportional BYTE SYSTEM (R/O)
O FONT_MAX 149 0x95 | number of chars in font set BYTE SYSTEM (R/0O)
FONT_OFFSET 150 | 0x96 | ASCIl offset (usually 0x20) BYTE SYSTEM (R/0O)
n_ FONT_WIDTH 151 0x97 | width of font (pixel units) BYTE SYSTEM (R/0O)
(7, FONT_HEIGHT 152 0x98 | height of font (pixel units) BYTE SYSTEM (R/O)
U TEXT_XMAG 153 0x99 | text width magnification BYTE USER
© == TEXT_YMAG 154 0x9A | text height magnification BYTE USER
_: TEXT_MARGIN 155 0x9B | text place holder for CR BYTE SYSTEM (R/0O)
Q_ TEXT_DELAY 156 0x9C | text delay effect (0-255msec) BYTE USER
(4] TEXT_X_GAP 157 0x9D | X pixel gap between chars BYTE USER
- TEXT_Y_GAP 158 O0x9E | Y pixel gap between chars BYTE USER
w GFX_XMAX 159 O0x9F | width of current orientation BYTE SYSTEM (R/0O)
GFX_YMAX 160 0xAO | height of current orientation BYTE SYSTEM (R/0O)
x GFX_SCREENMODE 161 0xAl | Current screen mode (0-3) BYTE SYSTEM (R/0O)
O reserved 162- | OxA2- reserved BYTE SYSTEM (R/0)
| 165 OxA5
UJ * NOTES:
O SYSTEM registers are maintained by internal system functions and should not be written to. They
SYSTEM should only ever be read.
- DO NOT WRITE to these registers.
O USER USER registers are read/write (R/W) registers used to alter the system behaviour. Refer to the
w individual functions for information on the interaction with these registers.
These registers are accessible with peekB and pokeB functions.

GOLDELOX INTERNAL FUNCTIONS Page 167 of 185 www.4dlabs.com.au

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

44D LN\BS

SEMICONDUCTORS

GOLDELOX GRAPHICS PROCESSOR

Table 3.2: WORD-Size Registers Memory Map

ADDRESS
LABEL DEC HEX USAGE SIZE *NOTES

SYS_OVERFLOW 83 0x53 16bit overflow register WORD | USER
SYS_COLOUR 84 0x54 internal variable for colour WORD | SYSTEM
SYS_RETVAL 85 0x55 return value of last function WORD | SYSTEM
GFX_BACK_COLOUR 86 0x56 | screen background colour WORD | USER
GFX_OBJECT_COLOUR 87 0x57 | graphics object colour WORD | USER
GFX_TEXT_COLOUR 88 0x58 | text foreground colour WORD | USER
GFX_TEXT_BGCOLOUR 89 0x59 | text background colour WORD | USER
GFX_OUTLINE_COLOUR 90 Ox5A | circle/rectangle outline WORD | USER
GFX_LINE_PATTERN 91 0x5B | line draw tessellation WORD | USER
IMG_PIXEL_COUNT 92 0x5C count of pixels in image WORD | SYSTEM
IMG_FRAME_COUNT 93 0x5D | count of frames in animation WORD | SYSTEM
MEDIA_HEAD 94 Ox5E media sector head position WORD | SYSTEM
SYS_OUTSTREAM 95 Ox5F Output stream handle WORD | SYSTEM
GFX_LEFT 96 0x60 image left real point WORD | SYSTEM
GFX_TOP 97 0x61 image top real point WORD | SYSTEM
GFX_RIGHT 98 0x62 image right real point WORD | SYSTEM
GFX_BOTTOM 99 0x63 image bottom real point WORD | SYSTEM
GFX_X1 100 0x64 image left clipped point WORD | SYSTEM
GFX_Y1 101 0x65 image top clipped point WORD | SYSTEM
GFX_X2 102 0x66 image right clipped point WORD | SYSTEM
GFX_Y2 103 0x67 image bottom clipped point WORD | SYSTEM
GFX_X_ORG 104 0x68 current X origin WORD USER
GFX_Y_ORG 105 0x69 current Y origin WORD | USER
RANDOM_LO 106 0x6A | random generator LO word WORD | SYSTEM
RANDOM_HI 107 0x6B | random generator HI word WORD | SYSTEM
MEDIA_ADDR_LO 108 0x6C | media byte address LO WORD | SYSTEM
MEDIA_ADDR_HI 109 0x6D | media byte address Hl WORD | SYSTEM
SECTOR_ADDR_LO 110 Ox6E media sector address LO WORD | SYSTEM
SECTOR_ADDR_HI 111 Ox6F media sector address Hl WORD | SYSTEM
SYSTEM_TIMER_LO 112 0x70 1msec system timer LO word WORD USER
SYSTEM_TIMER_HI 113 0x71 1msec system timer HI word WORD | USER
TIMERO 114 0x72 1msec user timer O WORD USER
TIMER1 115 0x73 1msec user timer 1 WORD USER
TIMER2 116 0x74 1msec user timer 2 WORD USER
TIMER3 117 0x75 1msec user timer 3 WORD USER
INCVAL 118 O0x76 predec/preinc/postdec/postinc WORD | USER

addend
TEMP_MEDIA_ADDRLO 119 0x77 | temporary media address LO WORD | SYSTEM
TEMP_MEDIA_ADDRHI 120 0x78 | temporary media address Hl WORD | SYSTEM
GFX_TRANSPARENTCOLOUR | 121 0x79 Image transparency colour WORD | USER
GFX_STRINGMETRIX 122 | oxza | oW byte=string width WORD | SYSTEM

High byte = string height

Low byte = last character

printed
GFX_TEMPSTORE1 123 0x7B . . . WORD | SYSTEM

High byte = video frame timer

over-ride
reserved 124 0x7C | reserved WORD | SYSTEM
reserved 125 0x7D | reserved WORD | SYSTEM
SYS_FLAGS1 126 Ox7E system control flags word 0 WORD | FLAGS
SYS_FLAGS2 127 Ox7F system control flags word 1 WORD | FLAGS
USR_SP 128 0x80 User defined stack pointer WORD | USERSTACK
USR_MEM 129 0x81 | 255 user variables / array(s) WORD | MEMORY

GOLDELOX INTERNAL FUNCTIONS

Page 168 of 185

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

SYS_STACK | 384 | 0x180 | 128 level EVE machine stack | WORD | SYSTEMSTACK
* NOTES:

SYSTEM registers are maintained by internal system functions and should not be written to.
SYSTEM They should only ever be read.

DO NOT WRITE to these registers.

USER registers are read/write (R/W) registers used to alter the system behaviour. Refer to the

USER individual functions for information on the interaction with these registers.
USERSTACK Used by the debugging and system extension utilities
MEMORY 255 word size variables for users program
STACK 128 word EVE system stack (STACK grows upwards)
FLAGS are a mixture of bits that are either maintained by internal system functions or set /
FLAGS cleared by various system functions. Refer to the FLAGS Register Bit Map table, and individual

functions for further details.
These registers are accessible with peekW and pokeW functions.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 169 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

SYS_FLAGS1 126 | Ox7E * denotes auto reset
Bit 0 _STREAMLOCK Used internally SYSTEM 0x0001
Bit 1 _PENSIZE Object, 0 = solid, 1 = outline SYSTEM | 0x0002
Bit 2 _OPACITY Text, 0 = transparent, 1 = opaque SYSTEM 0x0004
Bit 3 _OUTLINED box/circle outline 0 = off, 1 = on SYSTEM 0x0008
Bit 4 _BOLD * text, 0 = normal, 1 = bold SYSTEM 0x0010
Bit 5 _ITALIC * Text, 0 = normal, 1 = italic SYSTEM 0x0020
Bit 6 _INVERSE * Text, 0 = normal, 1 = inverse SYSTEM 0x0040
Bit 7 _UNDERLINED * Text, 0 = normal, 1 = underlined SYSTEM 0x0080
Bit 8 _CLIPPING 0 = clipping off, 1 = clipping on SYSTEM 0x0100
Bit 9 _STRMODE Used internally SYSTEM 0x0200
Bit 10 _SERMODE Used internally SYSTEM 0x0400
Bit 11 _TXTMODE Used internally SYSTEM 0x0800
Bit 12 _MEDIAMODE Used internally SYSTEM | 0x1000
Bit 13 _PATTERNED Used internally SYSTEM | 0x2000
Bit 14 _COLOURS Display mode, 0 = 16bit, 1 = 8bit SYSTEM 0x4000
Bit 15 _MEDIAFONT 0 = internal font, 1 = media font SYSTEM 0x8000

SYS_FLAGS2 127 | Ox7F

SD/SDHC or FLASH is

Bit 0 MEDIA_INSTALLED . SYSTEM | 0x0001
- - detected/active
Bit 1 _MEDIA_TYPE 0 =SD/SDHC, 1 = FLASH chip SYSTEM | 0x0002
Bit 2 _MEDIA_READ 1= MEDIA read in progress SYSTEM 0x0004
Bit 3 _MEDIA_WRITE 1 = MEDIA write in progress SYSTEM 0x0008
Bit 4 _OW_PIN 0=101, 1 =102 (Dallas OW Pin) SYSTEM | 0x0010
Bit 5 _PTR_TYPE Used internally SYSTEM 0x0020
Bit 6 _TEMP1 Used internally SYSTEM 0x0040
Bit 7 _TEMP2 Used internally SYSTEM 0x0080
Bit 8 _RUNMODE 1 = running pcode from media SYSTEM 0x0100
Bit 9 _SIGNED 0 = number printed '-' prepend SYSTEM 0x0200
Bit 10 _RUNFLAG 1 = EVE processor is running SYSTEM 0x0400
Bit 11 _SINGLESTEP 1 = set breakpoint for debugger SYSTEM 0x0800
Bit 12 _COMMINT 1 = buffered coms active SYSTEM 0x1000
Bit 13 _DUMMY16 1 = display needs 16bit dummy SYSTEM | 0x2000
Bit 14 _DISP16 1 =display is 16bit interface SYSTEM | 0x4000
Bit 15 _PROPFONT 1 = current font is proportional SYSTEM 0x8000

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 170 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

4. Appendix A : Example 4DGL Code

#platform "Goldelox—-GFX2"

/* 4DGL Demo Application
-— Scaled General Demo -
-- Tested on uOLED-128-Gl1 -
-- and uOLED160-Gl platforms --
-- Goldelox GFX2 Platforms --
*/

#inherit "4DGL 1l6bitColours.fnc"
// define a custom font.

// Custom fonts can also be placed in MEDIA (ie on uSD/uSDHC card), however
// text blitting will run much faster from a data statement.

#DATA
byte MS SanSerif8x12
2, // Type 2, Char Width preceeds character; Table of widths also
96, // Num chars
32, // Starting Char
8, // Font Width
12, // Font Height
4, 4, 6, 8, 7, 8, 1, 3, // Widths of chars 0x32 to 0x39
, 4, 5, 7, 4, 4, 4, o, // etc.
P R P P R PR
14 7! 4/ 4! 7/ 7! 7/ 7!
’ 81 8/ 81 8/ 81 7/ 81
14 4! 6/ 8! 7/ 8! 8/ 8!
’ 81 8/ 81 8/ 81 8/ 81
14 8! 8/ 4! 6/ 4! 7/ 7!
P R Y P P R PR
14 3! 3/ 7! 3/ 9! 7/ 7!
r T 4y 61 4, 7, 7T, 81
, 6, 6, 5, 3, 5, 8, 4

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 32 ' !
0x00,0x00, 0x40,0x40, 0x40,0x40, 0x40,0x40,0x40,0x00,0x40,0x00, // 33 "1
0x00,0x00,0x48,0x48,0x48,0x00,0x00,0x00,0x00,0x00,0x00,0x00, J/ 34 1w
0x00,0x00, 0x24,0x24,0x7E,0x24,0x24,0x24,0x7E,0x24,0x24,0x00, // 35 '"#'
0x00,0x00,0x10,0x38,0x54,0x50,0x30,0x18,0x14,0x54,0x38,0x10, // 36 'S!'
0x00,0x00,0x30,0x49,0x32,0x04,0x08,0x10,0x26,0x49,0x06,0x00, // 37 '%!
0x00,0x00,0x20,0x50,0x50,0x20,0x20,0x54,0x48,0x48,0x34,0x00, // 38 '&'
0x00,0x00,0x40,0x40,0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 39 ''!
0x00,0x00,0x20,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40, // 40 ' ("'
0x00,0x00,0x40,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20, // 41 ")
0x00,0x00,0x00,0x50,0x20,0x50,0x00,0x00,0x00,0x00,0x00,0x00, // 42 '*!
0x00,0x00, 0x00,0x00, 0x00,0x10,0x10,0x7C,0x10,0x10,0x00,0x00, // 43 '+
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x40, // 44 ',
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x60,0x00,0x00,0x00,0x00, // 45 '-!
0x00,0x00, 0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x40,0x00, // 46 '.!
0x00,0x00,0x08,0x08,0x08,0x10,0x10,0x20,0x20,0x40,0x40,0x00, // 47 '/
0x00,0x00,0x38,0x44,0x44,0x44,0x44,0x44,0x44,0x44,0x38,0x00, // 48 '0'
0x00,0x00,0x10,0x70,0%x10,0x10,0x10,0x10,0x10,0x10,0x10,0x00, // 49 '1°
0x00,0x00, 0x38,0x44,0x04,0x04, 0x08,0x10, 0x20,0x40, 0x7C, 0x00, // 50 '2"'
0x00,0x00,0x38,0x44,0x04,0x04,0x18,0x04,0x04,0x44,0x38,0x00, // 51 '3
0x00,0x00,0x08,0x18,0x18,0x28,0x28,0x48,0x7C,0x08,0x08,0x00, // 52 '4!'
0x00,0x00,0x7C,0x40,0x40,0x78,0x44,0x04,0x04,0x44,0x38,0x00, // 53 '5"'
0x00,0x00,0x38,0x44,0x40,0x40,0x78,0x44,0x44,0x44,0x38,0x00, // 54 '6'
0x00,0x00,0x7C,0x04,0x08,0x08,0x10,0x10,0x20,0x20,0x20,0x00, // 55 '7°'
0x00,0x00,0x38,0x44,0x44,0x44,0x38,0x44,0x44,0x44,0x38,0x00, // 56 '8'
0x00,0x00,0x38,0x44,0x44,0x44,0x3C,0x04,0x04,0x44,0x38,0x00, // 57 '9
0x00,0x00, 0x00,0x00,0x00,0x40,0x00,0x00,0x00,0x00,0x40,0x00, // 58 ':!'
0x00,0x00,0x00,0x00,0x00,0x20,0x00,0x00,0x00,0x00,0x20,0x40, // 59 ';!'
0x00,0x00, 0x00,0x00,0x08,0x10,0x20,0x40,0x20,0x10,0x08,0x00, // 60 '<!'
0x00,0x00,0x00,0x00,0x00,0x00,0x7C,0x00,0x7C,0x00,0x00,0x00, // 61 '="'
0x00,0x00, 0x00,0x00, 0x40,0x20, 0x10,0x08, 0x10,0x20, 0x40, 0x00, // 62 '>'
0x00,0x00,0x38,0x44,0x04,0x04,0x08,0x10,0x10,0x00,0x10,0x00, // 63 '2!'
0x00,0x00, 0x0C, 0x32,0x21,0x4D, 0x53,0x52,0x4C,0x20,0x31, 0x0E, // 64 '@"'

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

N SN SN N~ o~ 0~

W J I JIdDdJIJI I 99999 oD JOd DD WJ0J00o0oRDdOoYdJD 0000 0000
~

~

GOLDELOX INTERNAL FUNCTIONS Page 171 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

0x00,0x00,0x10,0x10,0x28,0x28,0x44,0x44,0x7C,0x82,0x82,0x00, // 65 'A'
0x00,0x00,0x78,0x44,0x44,0x44,0x78,0x44,0x44,0x44,0x78,0x00, // 66 'B'
0x00,0x00,0x3C,0x42,0x40,0x40,0x40,0x40,0x40,0x42,0x3C,0x00, // 67 'C!'
0x00,0x00,0x78,0x44,0x42,0x42,0x42,0x42,0x42,0x44,0x78,0x00, // 68 'D'
0x00,0x00,0x7C,0x40,0x40,0x40,0x78,0x40,0x40,0x40,0x7C, 0x00, // 69 'E'
0x00,0x00,0x7C, 0x40,0x40,0x40,0x78,0x40,0x40,0x40,0x40,0x00, // 70 'E'
0x00,0x00,0x3C,0x42,0x40,0x40,0x4E,0x42,0x42,0x46,0x3A,0x00, // 71 'G!
0x00,0x00,0x42,0x42,0x42,0x42,0x7E,0x42,0x42,0x42,0x42,0x00, // 72 'H'
0x00,0x00,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x00, // 73 "I
0x00,0x00,0x10,0x10,0x10,0x10, 0x10,0x10, 0x90,0x90, 0x60,0x00, // 74 'J"
0x00,0x00,0x44,0x48,0x50,0x60,0x60,0x50,0x48,0x44,0x42,0x00, // 715 'K'
0x00,0x00,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x7C, 0x00, // 76 'L'
0x00,0x00,0x41,0x41,0x63,0x63,0x55,0x55,0x49,0x49,0x41,0x00, // 77 'M!'
0x00,0x00,0x42,0x62,0x62,0x52,0x52,0x4A,0x46,0x46,0x42,0x00, // 78 'N'
0x00,0x00,0x3C,0x42,0x42,0x42,0x42,0x42,0x42,0x42,0x3C, 0x00, // 79 'O
0x00,0x00,0x7C,0x42,0x42,0x42,0x7C,0x40,0x40,0x40,0x40,0x00, // 80 'P'
0x00,0x00,0x3C,0x42,0x42,0x42,0x42,0x42,0x4A,0x46,0x3C,0x02, // 81 'Q'
0x00,0x00,0x7C, 0x42,0x42,0x42,0x7C,0x42,0x42,0x42,0x42,0x00, // 82 'R'
0x00,0x00,0x38,0x44,0x40,0x40,0x38,0x04,0x04,0x44,0x38,0x00, // 83 'S’
0x00,0x00,0x7C,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x00, // 84 'T'
0x00,0x00,0x42,0x42,0x42,0x42,0x42,0x42,0x42,0x42,0x3C,0x00, // 85 'U'
0x00,0x00,0x41,0x41,0x22,0x22,0x22,0x14,0x14,0x08,0x08,0x00, // 86 'V'
0x00,0x00,0x41,0x41,0x41,0x22,0x2A,0x2A,0x1C,0x14,0x14,0x00, // 87 'W'
0x00,0x00, 0x41,0x41,0x22,0x14,0x08,0x14,0x22,0x41,0x41,0x00, // 88 'X'
0x00,0x00,0x41,0x41,0x22,0x14,0x08,0x08,0x08,0x08,0x08,0x00, // 89 'Y'
0x00,0x00, 0x7F,0x01, 0x02,0x04, 0x08,0x10, 0x20,0x40, 0x7F, 0x00, // 90 'z’
0x00,0x00,0x60,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40, // 91 '[!
0x00,0x00,0x40,0x40,0x40,0x20,0x20,0x10,0x10,0x08,0x08,0x00, // 92 '"\'
0x00,0x00,0x60,0x20,0%x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20, // 93 ']"
0x00,0x10,0x28,0x44,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 94 '~
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 95 ' !
0x00,0x00,0x40,0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 96 '
0x00,0x00,0x00,0x00,0x00,0x38,0x04,0x3C,0x44,0x44,0x3C,0x00, // 97 'a'
0x00,0x00, 0x40,0x40, 0x40,0x78, 0x44,0x44,0x44,0x44,0x78,0x00, // 98 'b'
0x00,0x00,0x00,0x00,0x00,0x38,0x44,0x40,0x40,0x44,0x38,0x00, // 99 'c!'
0x00,0x00,0x04,0x04,0x04,0x3C,0x44,0x44,0x44,0x44,0x3C,0x00, // 100 'd’
0x00,0x00,0x00,0x00,0x00,0x38,0x44,0x7C,0x40,0x44,0x38,0x00, // 101 'e!
0x00,0x00, 0x20,0x40,0x40,0x60,0x40,0x40,0x40,0x40,0x40,0x00, // 102 'f!'
0x00,0x00,0x00,0x00,0x00,0x3C,0x44,0x44,0x44,0x44,0x3C,0x04, // 103 'g"'
0x00,0x00, 0x40,0x40, 0x40,0x58, 0x64,0x44,0x44,0x44,0x44,0x00, // 104 'h'
0x00,0x00,0x40,0x00,0x00,0x40,0x40,0x40,0x40,0x40,0x40,0x00, // 105 'i!
0x00,0x00,0x40,0x00, 0x00,0x40,0x40,0x40,0x40,0x40,0x40,0x40, // 106 'j'
0x00,0x00,0x40,0x40,0x40,0x48,0x50,0x60,0x50,0x48,0x44,0x00, // 107 'k!'
0x00,0x00,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x00, // 108 '1'
0x00,0x00,0x00,0x00,0x00,0x76,0x49,0x49,0x49,0x49,0x49,0x00, // 109 'm'
0x00,0x00, 0x00,0x00,0x00,0x58, 0x64,0x44,0x44,0x44,0x44,0x00, // 110
0x00,0x00,0x00,0x00,0x00,0x38,0x44,0x44,0x44,0x44,0x38,0x00, // 111 !
0x00,0x00,0x00,0x00,0x00,0x78,0x44,0x44,0x44,0x44,0x78,0x40, // 112 !
0x00,0x00,0x00,0x00,0x00,0x3C,0x44,0x44,0x44,0x44,0x3C,0x04, // 113
0x00,0x00,0x00,0x00,0x00,0x60,0x40,0x40,0x40,0x40,0x40,0x00, // 114
0x00,0x00, 0x00,0x00,0x00,0x30,0x48,0x20,0x10,0x48,0x30,0x00, // 115 '
0x00,0x00,0x00,0x40,0x40,0x60,0x40,0x40,0x40,0x40,0x20,0x00, // 116 !
0x00,0x00,0x00,0x00,0x00,0x44,0x44,0x44,0x44,0x4C,0x34,0x00, // 117 !
0x00,0x00,0x00,0x00,0x00,0x44,0x44,0x28,0x28,0x10,0x10,0x00, // 118 !
0x00,0x00,0x00,0x00,0x00,0x49,0x49,0x55,0x55,0x22,0x22,0x00, // 119
0x00,0x00,0x00,0x00,0x00,0x48,0x48,0x30,0x30,0x48,0x48,0x00, // 120
0x00,0x00,0x00,0x00,0x00,0x48,0x48,0x48,0x48,0x30,0x20,0x20, // 121 !
0x00,0x00,0x00,0x00,0x00,0x78,0x08,0x10,0x20,0x40,0x78,0x00, // 122 !
0x00,0x10,0x20,0x20,0x20,0x20,0x40,0x20,0x20,0x20,0x20,0x10, // 123
0x00,0x00,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40, // 124
0x00,0x40,0x20,0x20,0x20,0x20,0x10,0x20,0x20,0x20,0x20,0x40, // 125
0x00,0x00,0x00,0x32,0x4C,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 126
0x00,0x00, 0x00, 0x60,0x60,0x60,0x60,0x60,0x60,0x60,0x60,0x60 // 127 '

N N N N N N N NS N NS N NS N N N N NS NS N N N NS NS N N NS NS NS N N NS NS NS s N S

DI T T e R T)

SO UWwWwUuoho 00 JdJ I d JJJ3JJ0Ww-JdJwwaI9d J39393I9d 33> 00> 0000 00 00 00 00 0 00 00 OO0 -] oy 0 0 -] 0 o o

N N NS SN S S S S N S~~~

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

O —=—=NK X 5 g ccdnhr,qQTO0s3

#END

// a message for the moving banner
#DATA

byte message "...... Goldelox GFX2 Graphics...... ", 0
#END

GOLDELOX INTERNAL FUNCTIONS Page 172 of 185 www.4dlabs.com.au

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

// the 'wall' colours

#CONST
LEFTCOLOUR 0xF800
RIGHTCOLOUR OxXFFFF
TOPCOLOUR 0x001F
BOTTOMCOLOUR 0x07E0
#END

// constants for the view-port
// These may need adjusting for smaller displays
#CONST

windowXpos 30

windowYpos 30

windowWidth 110

windowHeight 60
#END

// object types.

// 2,3,4,5 and 6 doubles as polygon vertices counts

#CONST
RANDOM
CIRCLE
LINE
TRIANGLE
RECTANGLE
PENTAGON
HEXAGON

#END

o U W N O

// 'ball' speed factors determine

// how many pixels to jump per movement
#constant XSPEED 3

#constant YSPEED 2

// the width of the side walls
#constant WALLWIDTH 2

// 'ball' object radius
#constant BALLSIZE 4

// global working variables

var ball x, ball y, ball r, ball colour;

var xdir, ydir, xspeed, yspeed;

var screenwidth, screenheight, xc, yc;

var tophit, bottomhit, lefthit, righthit;

var windowLeft, windowTop, windowRight, windowBottom;
var angle, newseed;

// global variables for the polygon generator
var Xcoords[6], Ycoords[6]; // big enough for a hexagon
var targetX, targetY; // targets for orbit

// array of pointers for text messages
var messages|[4];

// polyline array for scope
#constant SAMPLES 20

var ScopeBufX[SAMPLES];

var ScopeBufY[SAMPLES];

var freql4];

var mediaflag; // set to 1 if uSD/uSDHC card detected

//

// draw random waveform

GOLDELOX INTERNAL FUNCTIONS Page 173 of 185

www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

//

func doRandScope (var samples, var colr, var smpl)
var w,h,n,xstep,yoffs, x,yscale,xoffs, seedoffs;
w := windowRight-windowLeft;
h := windowBottom-windowTop;

xstep:=w/samples+1l;

yscale:=h/2;

yoffs:=h/2+windowTop;

SEED (smpl) ;

x:=windowLeft;

while (n<samples)

// undraw the old sample as we create new one (looks better, less flicker)
gfx Line (ScopeBufX([n],ScopeBufY[n], ScopeBufX[n+1],ScopeBufY[n+1],BLACK) ;

ScopeBufY[n] :=(RAND () $yscale) +yoffs;
ScopeBufX[n] :=x;
X := xtxstep;
n++;
wend
gfx Polyline (samples, ScopeBufX, ScopeBufY, colr); // draw the new sample
endfunc
//
// draw a sinewave
//

func doSineScope (var samples, var colr, var smpl)
var w,h,n,xstep,yoffs,x,yscale,xoffs, seedoffs;
w := windowRight-windowLeft;
h := windowBottom-windowTop;
xstep:=w/samples+1;
yscale:=h/2;
yoffs:=h/2+windowTop;
x:=windowLeft;
gfx_Polyline (samples, ScopeBufX, ScopeBufY, BLACK); // undraw the old
// buffer first
while (n<samples)
ScopeBufY[n] :=SIN(xoffs)/4+yoffs;
ScopeBufX[n] :=x;

X := XtXstep;
xoffs := xoffs+smpl;
n++;
wend
gfx Polyline (samples, ScopeBufX, ScopeBufY, colr);; // draw the new sample
endfunc
//

// build a polygon with a number of sides determined by var "sides"

// around the current origin. The distance from the origin to the

// equidistent vertices from origin determined

// by var "distance". var "angle" is the starting angle for the

// first virtices. Draws the polygon in colour var "colr"

// NB make sure the array is big enough for the required number of sides

func MakePolygon (var angle, var sides, var distance, var colr)
var index, step;

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

index := 0;

step := 360/sides; // work out the step size

while (sides < 360) // until we do a complete polygon
gfx Orbit (angle, distance);
Xcoords [index] := targetX; // build a polygon in the matrix
Ycoords [index] = targetY;
index++;
angle := angle + step;
sides := sides + step;

wend

gfx Polygon (index, Xcoords, Ycoords, colr);

endfunc

//

GOLDELOX INTERNAL FUNCTIONS Page 174 of 185 www.4dlabs.com.au

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

// ball object control

//

func DrawBall (var type, var colour)
var count;

gosub (type), (
circle,
text,
triangle,
rectangle,
pentagon,
hexagon,
random
) i
goto default; // unknown type default exit

// case circle

circle:
gfx _CircleFilled(ball x, ball y, BALLSIZE, colour); // redraw the ball
endsub;

// case text

text:
txt Opacity (TRANSPARENT) ; // transparent text
txt FontID(O0); // default small font
//txt FGcolour (RAND()) ;
txt FGcolour (colour) ;

gfx_MoveTo (ball x, ball y); // draw a pixel trail
putstr ("4DGL") ;
endsub;

// these cases same, type is used to determine number of sides

triangle:

rectangle:

pentagon:

hexagon:
gfx_MoveTo (ball_x, ball y); // using the balls origin
MakePolygon (angle, type, 10, colour); // make 3 sided polygon = triangle
endsub;

// case random
random:
if (colour)
SEED (newseed) ;

gfx ObjectColour (RAND () | 0x8408) ; // ensure hi colours
else
SEED (newseed++) ;
RAND () ; // RAND here to compensate so we get repeat sequence
gfx ObjectColour (BLACK) ;
endif
count := 5;

while (count--)
gfx MoveTo (ball x+RAND() %15, ball y+RAND()315);

//gfx_Dot () ; // draw a pixel trail
gfx Bullet (3); // draw random circles
//gfx BoxTo (ball x, ball y); // draw random boxes
wend
endsub;
default:
endfunc
//

// part of intro, fill clipped area with pixels then remove in same orded
//
func doDots ()

GOLDELOX INTERNAL FUNCTIONS Page 175 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS

GOLDELOX GRAPHICS PROCESSOR

var n,x,y,w,h;
// random dots

SEED (1234) ;

w := windowRight - windowLeft;

h := windowBottom - windowTop;

n := -3000;

while (n++<3000)
x := ABS (RAND () %w) windowLeft+1;
y := ABS (RAND () %h) windowTop+1;
gfx PutPixel(x , y RAND()) ;

wend

// undraw the dots

SEED (1234) ;
n := -3000;
while (n++<3000)
x := ABS(RAND() %$w) + windowLeft+1;

y := ABS(RAND () %h) + windowTop+1;
RAND () ;
gfx PutPixel(x , yv , 0);
wend
endfunc
//

// part of intro, fill entire screen with lines then remove in same orded
// Note that clipping will take care of line endpoints outside to clipping area

//
func doLines ()
var n;
// random lines
SEED (9876) ;
n := -200;
while (n++<200)
gfx Line (ABS (RAND () $screenwidth), ABS(RAND () %3screenheight), ABS (RAND/()
$screenwidth), ABS (RAND () %$screenheight), RAND()) ;
wend
// undraw the lines
SEED (9876) ;
n := -200;
while (n++<200)
gfx Line (ABS (RAND () $screenwidth), ABS(RAND () 3screenheight), ABS (RAND/()
%screenwidth), ABS (RAND () %$screenheight), 0);
RAND () ;
wend
endfunc
//

// Check the baal position against the walls.
// Change direction registers accordingly.
//
func collision()

if (ball x <= lefthit)

ball x := lefthit;
ball colour := LEFTCOLOUR;
xdir := -xdir;

endif

if (ball x >= righthit)

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

ball x := righthit;
ball colour := RIGHTCOLOUR;
xdir := -xdir;

endif

if (ball y <= tophit)

ball y := tophit;
ball colour := TOPCOLOUR;
ydir := -ydir;

endif

GOLDELOX INTERNAL FUNCTIONS Page 176 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

if (ball y >= bottomhit)
ball y := bottomhit;

ball colour := BOTTOMCOLOUR;
ydir := -ydir;
endif
endfunc
//
// EVE starts executing code from here
//

func main ()
var mode, timer, obj, scrollpos, n, linepattern, intro, intronum, scopeloop;

if (media Init() == 0) // initialise and test the uSD/uSDHC card
print ("No uSD CARD Installed\n");
print ("Some demo's are disabled");

pause (2000) ;
gfx Cls();
endif
mode := 0;
linepattern := 0xFOFO;
messages[0] := " LANDSCAPE";

messages[1l] := "LANDSCAPE R";
messages[2] := " PORTRAIT";
messages[3] := "PORTRAIT R";

//gfx Set (CONTRAST, 16);
gfx Contrast (16); // max. brightness
gfx Cls();

// set generic target variables for the orbit command

gfx OrbitInit (&targetX, s&targetY);

txt Set (FONT ID, MS SanSerif8x12); // don't use default system font, use
// font provided

repeat
timer := 0; // timer for SCREEN MODE switching
gfx Cls();
gfx_Set (SCREEN_MODE, mode) ; // set required screen mode

// this is mainly for 'non square' display to make the ball speed realistic
if (mode < 2)

xspeed := XSPEED; // keep correct ball speed aspect
yspeed := YSPEED;
ellse
xspeed := YSPEED;
yspeed := XSPEED;
endif

// get the display parameters
screenwidth := peekB (GFX XMAX) ;
screenheight := peekB (GFX YMAX) ;

// determine the centre point

xc := screenwidth >> 1;

yc := screenheight >> 1;

ball colour := WHITE; // initial ball colour
xdir := 1; ydir := 1; // initial ball direction
ball x := 20; ball y := 20; // initial ball position

// draw the walls
// draw Top Wall
gfx RectangleFilled (0, 0, screenwidth-1, WALLWIDTH-1, TOPCOLOUR) ;

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

// Draw Bottom Wall
gfx RectangleFilled (0, screenheight-WALLWIDTH, screenwidth-1, screenheight-
1, BOTTOMCOLOUR) ;

GOLDELOX INTERNAL FUNCTIONS Page 177 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

// Draw Left Wall
gfx RectangleFilled (0, WALLWIDTH-1, WALLWIDTH-1, screenheight-WALLWIDTH-1,
LEFTCOLOUR) ;

// Draw Right Wall
gfx RectangleFilled(screenwidth-WALLWIDTH, WALLWIDTH, screenwidth-1,
screenheight-WALLWIDTH-1, RIGHTCOLOUR) ;

// calculate the collision positions

tophit := WALLWIDTH+BALLSIZE;

bottomhit := screenheight-WALLWIDTH-BALLSIZE-1;
lefthit := WALLWIDTH+BALLSIZE;

righthit := screenwidth-WALLWIDTH-BALLSIZE-1;

// set clipping area

windowLeft := lefthit;
windowTop := tophit+10;
windowRight := righthit - 16;
windowBottom := bottomhit -40;

// preset the clipping area, activated later...
gfx ClipWindow (windowLeft, windowTop, windowRight, windowBottom) ;

// draw a rectangle around the clipped area

gfx Rectangle (windowLeft-1, windowTop-1, windowRight+l, windowBottom+1,
YELLOW) ;

// test: draw a small outline rectangle outside

gfx Rectangle (windowLeft+5, windowBottom+10, windowLeft+1l5, windowBottom+20,
RED) ;

// test: draw a small solid rectangle outside

gfx RectangleFilled(windowLeft+20, windowBottom+10, windowLeft+30,
windowBottom+20, GREEN) ;

// test: draw a small outline circle
gfx Circle(windowLeft+40, windowBottom+1l5, 5, BLUE);

// test: draw a small filled circle
gfx CircleFilled(windowLeft+60, windowBottom+15, 5, YELLOW) ;

gfx Set (CLIPPING, OFF); // turn off clipping so we can print outside
// the clip region

txt FGcolour (RED) ;

txt BGcolour (YELLOW) ;

txt Bold (ON) ;

//txt FontID(2);

//txt Set (TEXT ITALIC, ON);

//txt Set (TEXT OPACITY, TRANSPARENT) ; // transparent text is faster

//gfx MoveTo (xc-50, yc+20);

gfx MoveTo (xc-50, bottomhit -12);

print (mode," ", [STR] messages[mode]) ;

gfx Set (CLIPPING, ON); // turn on clipping

// decide which intro we use for the next screen
if (intro)
intro := 0;
// clear the clipped area
gfx RectangleFilled(windowLeft,windowTop,windowRight,windowBottom, BLACK) ;

intronum++;
if (intronum == 1)
n:=-180;

while (n<180)
doSineScope (SAMPLES, YELLOW, n++);
n++;
//pause (10) ;

wend

else if (intronum == 2)

n:=200;

while (n)
doRandScope (SAMPLES, BLUE, n--);

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 178 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

//pause (10) ;

wend
else if (intronum == 3)
doLines () ;
else
doDots () ;
intronum := 0;
endif
gfx RectangleFilled(windowLeft,windowTop,windowRight, windowBottom, BLACK) ;

endif

// timer0 is the screen mode change timer

*TIMERO := 7000;

repeat
// draw a cross through the clipped area box
gfx LinePattern(linepattern);
gfx Line (windowLeft+l,windowTop+l,windowRight-1,windowBottom-1, MAGENTA) ;
gfx Line (windowLeft+l,windowBottom-1,windowRight-1,windowTop+1l, MAGENTA) ;
gfx LinePattern(0);

// timer2 is used for the banner scrolling
if (!*TIMER2)

*TIMER2 := 50;
txt Opacity (OPAQUE) ; // transparent text
txt_FontID(0); // default system font

gfx Clipping (OFF) ;
gfx ClipWindow (windowLeft+10, WALLWIDTH, windowRight-10, WALLWIDTH+8) ;
gfx Clipping (ON) ;

scrollpos := scrollpos-1;
n:=strwidth (message) ;
if (scrollpos < windowLeft+10-n) scrollpos := windowRight-10;

gfx MoveTo (scrollpos, WALLWIDTH+2);
txt FGcolour (WHITE) ;
txt BGcolour (DARKGREEN) ;
//txt Italic (ON);
txt Bold (ON) ;
putstr (message) ;
gfx Clipping (OFF) ;
gfx ClipWindow (windowLeft, windowTop+l, windowRight, windowBottom) ;
gfx Clipping (ON) ;
endif

// timer3 is used to shift the line pattern
if (! *TIMER3)

*TIMER3 := 100;

linepattern := linepattern << 1;

if (OVF()) linepattern := linepattern | 1;
endif

// timer 0 is for ball timing

if (! *TIMER1)
*TIMER1 := 30;
DrawBall (obj, BLACK) ; // erase the ball object
angle := angle + 10;

ball x := ball x + xdir * xspeed;
ball y := ball y + ydir * yspeed;

collision(); // detect collision

DrawBall (obj, ball colour); // redraw the ball object

//DrawBall (obj, RAND()); // redraw the ball object
endif

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

until (!*TIMERO)

scrollpos := windowLeft+10; // reset the banner
if (++mode > 3)
mode := 0; // next screen mode
if (obj++ > HEXAGON) obj:=0; // nextball object
intro := 1; // set flag so we do the intro

GOLDELOX INTERNAL FUNCTIONS Page 179 of 185 www.4dlabs.com.au

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

endif

forever // start again
endfunc

//

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 180 of 185 www.4dlabs.com.au

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
(7))
Q
O
o
| .
(a
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

Table of Contents

5. Hardware Tools

The following hardware tools are required for full
control of the Goldelox Processor.

The 4D Programming Cable, uUSB-PA5-II and 4D-UPA
Programming Adaptors are essential hardware tools
to program, customise and test the Goldelox
Processor.

Note: Any of the 4D Programming Cable, uUSB-PA5-
Il or 4D-UPA Programming Adaptor can be used,
along with previous generation 4D programmers
too.

The 4D programming interfaces are used to program a
new Firmware/PmmC, Display Driver and for
downloading compiled 4DGL code into the processor.
They even serve as an interface for communicating
serial data to the PC.

The 4D Programming Cable, uUSB-PA5 and gen4-PA
Programming Adaptor are available from 4D Systems,
www.4dsystems.com.au

Using a non-4D programming interface could damage
your processor, and void your Warranty.

4D-UPA Programming Adaptor

The following modules, available from 4D Systems,
can be used for evaluation purposes to discover what
the Goldelox processor has to offer.

UOLED-128-G2 - 1.5” Intelligent Goldelox Display

Other modules, such as the 0.96” and 1.7” OLED, or
1.44” LCD versions are also available. Please contact
4D Systems for more information, or visit the 4D
Systems website, www.4dsystems.com.au

GOLDELOX INTERNAL FUNCTIONS

Page 181 of 185

www.4dsystems.com.au

file:///C:/Users/James/Dropbox/4D%20Projects/Documentation/uLCD-32WPTu%20Datasheet/www.4dsystems.com.au
http://www.4dsystems.com.au/
http://www.4dsystems.com.au/product/4D-Programming-Cable/
http://www.4dsystems.com.au/product/uUSB-PA5/
http://www.4dsystems.com.au/product/gen4_PA/

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

44D LN\BS

SEMICONDUCTORS

GOLDELOX GRAPHICS PROCESSOR

6. 4D Labs - Workshop4 IDE

Workshop4 is a comprehensive software IDE that
provides an integrated software development
platform for all of the 4D family of processors and
modules. The IDE combines the Editor, Compiler,
Linker and Down- Loader to develop complete 4DGL
application code. All user application code is
developed within the Workshop4 IDE.

Bl I0E wwesinsas

Ty oo p . Xl
Bl \VORKSHOP PRO I

=2} ‘ Create a new 4D Systems Project
/%) S a2, G, e 3 S

g s . Create a new 4D Labs Project
ﬂ e g & v e, B = L g

The Workshop4 IDE supports multiple development
environments for the user, to cater for different user
requirements and skill level.

e The Designer environment enables the user to
write 4DGL code in its natural form to program
the Goldelox module.

e Avisual programming experience, suitably called
ViSi, enables drag-and-drop type placement of
objects to assist with 4DGL code generation and
allows the user to visualise how the display will
look while being developed.

e A Serial environment is also provided to
transform the Goldelox module into a slave serial
module, allowing the user to control the display
from any host microcontroller or device with a
serial port.

The Workshop4 IDE is available from the 4D Labs
website. www.4dsystems.com.au

For a comprehensive manual on the Workshop4 IDE
Software along with other documents, refer to the
documentation from the 4D Labs website, on the
Workshop4 product page.

Workshop4 IDE Userquide

6.1. Designer Environment

Choose the Designer environment to write 4DGL code
in its raw form.

The Designer environment provides the user with a
simple yet effective programming environment where
pure 4DGL code can be written, compiled and
downloaded to the Goldelox.

6.2. ViSi Environment

ViSi was designed to make the creation of graphical
displays a more visual experience.

ViSi is a great software tool that allows the user to see
the instant results of their desired graphical layout.
Additionally, there is a selection of inbuilt dials, gauges
and meters that can simply be placed onto the
simulated module display. From here each object can
have its properties edited, and at the click of a button
all relevant 4DGL code associated with that object is
produced in the user program. The user can then write
4DGL code around these objects to utilise them in the
way they choose.

GOLDELOX INTERNAL FUNCTIONS

Page 182 of 185

www.4dlabs.com.au

file:///D:/Dropbox%20(4D%20Team)/4D%20Labs%20Products/_Semiconductors/4DLS-Goldelox/Documentation/Internal%20Functions/www.4dsystems.com.au
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

6.3. Serial Environment

The Serial environment in the Workshop4 IDE
provides the user the ability to transform the Goldelox
into a slave serial graphics controller.

This enables the user to use their favourite
microcontroller or serial device as the Host, without
having to learn 4DGL or program in a separate IDE.
Once the Goldelox is configured and downloaded to
from the Serial Environment, simple graphic
commands can be sent from the users host
microcontroller to display primitives, images, sound or
even video.

Refer to the “Serial Command Set Reference Manual”
from the Workshop4 product page on the 4D Labs
website for a complete listing of all the supported
serial commands

By default, each module shipped from the 4D Systems
factory will come pre-programmed ready for use in
the Serial mode.

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 183 of 185 www.4dlabs.com.au

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

Table of Contents

7. Revision History

Revision Revision Content Revision Date

1.0 First Release 12/09/2009

1-Fixed typing errors in Sec 2.4.4. Correct Syntax is SWAP(&valuel, &value2).

2-Fixed typing errors in Sec 2.5.7 in the Description.

3-Fixed typing errors in Sec 2.5.8 in the Description.
4.0 4—F!xed typ|.ng errors m_Sec 2.5.9 in the Syntax. _ . . 08/03/2012

5-Fixed typing errors in Sec 2.5.10. Correct Syntax is strheight(). It doesn't need an

argument.

6-Fixed typing errors in Sec 2.7.10 in the Syntax.

7-Fixed typing errors in Sec 2.9.3 in the Syntax
5.0 1-Fixed typing errors in Sec 2.6.29 in the Description. Corrected Screen Modes. 07/06/2012
6.0 Reformatted, minor document updates 13/09/2012
6.1 Fixed minor TOC numbering error 16/11/2012
6.2 Added range for the Beep function, 0-64 30/01/2013
6.3 SCREEN_MODE constants changed, documented incorrectly 04/02/2013
6.4 com_Init buffer size corrected 07/02/2013
7.0 Updated formatting and contents 01/05/2017
71 Updated Formatting, minor putnum and putstr description updates, Fixed inverted states 22/03/2019

’ relating to BOLD, ITALIC, TEXT INVERSE, TEXT ITALIC in txt_Set()

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£ =
I
-
o
7))
(7))
Q
O
o
| .
(a
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

GOLDELOX INTERNAL FUNCTIONS Page 184 of 185 www.4dsystems.com.au

7))
c
O
)
O
c
-
L.
©
C
-
Q
)
£
I
-
o
7))
v
Q
O
o
| .
(a8
7))
.2
i
Q.
(O
-
O
x
O
—
LLl
)]
—
@)
O

44D LN\BS

SEMICONDUCTORS GOLDELOX GRAPHICS PROCESSOR

8. Legal Notice

Proprietary Information

The information contained in this document is the property of 4D Labs Semiconductors and may be the subject of
patents pending or granted, and must not be copied or disclosed without prior written permission.

4D Labs Semiconductors endeavours to ensure that the information in this document is correct and fairly stated but
does not accept liability for any error or omission. The development of 4D Labs Semiconductors products and services
is continuous and published information may not be up to date. It is important to check the current position with 4D
Labs Semiconductors. 4D Labs Semiconductors reserves the right to modify, update or makes changes to
Specifications or written material without prior notice at any time.

All trademarks belong to their respective owners and are recognised and acknowledged.
Disclaimer of Warranties & Limitation of Liability

4D Labs Semiconductors makes no warranty, either expressed or implied with respect to any product, and specifically
disclaims all other warranties, including, without limitation, warranties for merchantability, non-infringement and
fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with
your specifications.

Images and graphics used throughout this document are for illustrative purposes only. All images and graphics used
are possible to be displayed on the 4D Labs Semiconductors range of products, however the quality may vary.

In no event shall 4D Labs Semiconductors be liable to the buyer or to any third party for any indirect, incidental,
special, consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss
of business opportunity) arising out of or relating to any product or service provided or to be provided by 4D Labs
Semiconductors, or the use or inability to use the same, even if 4D Labs Semiconductors has been advised of the
possibility of such damages.

4D Labs Semiconductors products are not fault tolerant nor designed, manufactured or intended for use or resale as
on line control equipment in hazardous environments requiring fail — safe performance, such as in the operation of
nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines or
weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical
or environmental damage (‘High Risk Activities’). 4D Labs Semiconductors and its suppliers specifically disclaim any
expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Labs Semiconductors’ products and devices in 'High Risk Activities' and in any other application is entirely
at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless 4D Labs Semiconductors from any
and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any 4D Labs Semiconductors intellectual property rights.

9. Contact Information

For Technical Support: www.4dsystems.com.au/support
For Sales Support: sales@4dsystems.com.au
Website: www.4dsystems.com.au

Copyright 4D Labs Semiconductors 2000-2019.

GOLDELOX INTERNAL FUNCTIONS Page 185 of 185 www.4dlabs.com.au

	1. 4DGL Introduction
	2. Goldelox Chip-Resident Functions Summary
	2.1. GPIO Functions
	2.1.1. pin_Set(mode, pin)
	2.1.2. pin_HI(pin)
	2.1.3. pin_LO(pin)
	2.1.4. pin_Read(pin)
	2.1.5. joystick()
	2.1.6. OW_Reset()
	2.1.7. OW_Read()
	2.1.8. OW_Read9()
	2.1.9. OW_Write(data)

	2.2. Memory Access Functions
	2.2.1. peekB(address)
	2.2.2. peekW(address)
	2.2.3. pokeB(address, byte_value)
	2.2.4. pokeW(address, word_value)
	2.2.5. bits_Set(address, mask)
	2.2.6. bits_Clear(address, mask)
	2.2.7. bits_Flip(address, mask)
	2.2.8. bits_Test(address, mask)

	2.3. User Stack Functions
	1.1.1. setsp(index)
	2.3.1. getsp()
	2.3.2. pop()
	2.3.3. push(value)
	2.3.4. drop(n)
	2.3.5. call()
	2.3.6. exec(functionPtr, argCount)

	2.4. Maths Functions
	2.4.1. ABS(value)
	2.4.2. MIN(value1, value2)
	2.4.3. MAX(value1, value2)
	2.4.4. SWAP(&var1, &var2)
	2.4.5. SIN(angle)
	2.4.6. COS(angle)
	2.4.7. RAND()
	2.4.8. SEED(number)
	2.4.9. SQRT(number)
	2.4.10. OVF()

	2.5. Text and String Functions
	2.5.1. txt_MoveCursor(line, column)
	2.5.2. putch(char)
	2.5.3. putstr(pointer)
	2.5.4. putnum(format, value)
	2.5.5. print(...)
	2.5.6. to(outstream)
	2.5.7. charwidth('char')
	2.5.8. charheight('char')
	2.5.9. strwidth(pointer)
	2.5.10. strheight()
	2.5.11. strlen(pointer)
	2.5.12. txt_Set(function, value)

	2.6. Graphics Functions
	2.6.1. gfx_Cls()
	2.6.2. gfx_ChangeColour(oldColour, newColour)
	2.6.3. gfx_Circle(x, y, radius, colour)
	2.6.4. gfx_CircleFilled(x, y, radius, colour)
	2.6.5. gfx_Line(x1, y1, x2, y2, colour)
	2.6.6. gfx_Hline(y, x1, x2, colour)
	2.6.7. gfx_Vline(x, y1, y2, colour)
	2.6.8. gfx_Rectangle(x1, y1, x2, y2, colour)
	2.6.9. gfx_RectangleFilled(x1, y1, x2, y2, colour)
	2.6.10. gfx_Polyline(n, vx, vy, colour)
	2.6.11. gfx_Polygon(n, vx, vy, colour)
	2.6.12. gfx_Triangle(x1, y1, x2, y2, x3, y3, colour)
	2.6.13. gfx_Dot()
	2.6.14. gfx_Bullet(radius)
	2.6.15. gfx_OrbitInit(&x_dest, &y_dest)
	2.6.16. gfx_Orbit(angle, distance)
	2.6.17. gfx_PutPixel(x, y, colour)
	2.6.18. gfx_GetPixel(x, y)
	2.6.19. gfx_MoveTo(xpos, ypos)
	2.6.20. gfx_MoveRel(xoffset, yoffset)
	2.6.21. gfx_IncX()
	2.6.22. gfx_IncY()
	2.6.23. gfx_LineTo(xpos, ypos)
	2.6.24. gfx_LineRel(xpos, ypos)
	2.6.25. gfx_BoxTo(x2, y2)
	2.6.26. gfx_SetClipRegion()
	2.6.27. gfx_ClipWindow(x1, y1, x2, y2)
	2.6.28. gfx_FocusWindow()
	2.6.29. gfx_Set(function, value)

	2.7. Display I/O Functions
	2.7.1. disp_Init(initTable, stateMachine)
	2.7.2. disp_WriteControl(value)
	2.7.3. disp_WriteByte(value)
	2.7.4. disp_WriteWord(value)
	2.7.5. disp_ReadByte()
	2.7.6. disp_ReadWord()
	2.7.7. disp_BlitPixelFill(colour, count)
	2.7.8. disp_BlitPixelsToMedia()
	2.7.9. disp_BlitPixelsFromMedia(pixelcount)
	2.7.10. disp_SkipPixelsFromMedia(pixelcount)
	2.7.11. disp_BlitPixelsToCOM()
	2.7.12. disp_BlitPixelsFromCOM(mode)

	2.8. Media Functions (SD/SDHC Memory Card or Serial Flash chip)
	2.8.1. media_Init()
	2.8.2. media_SetAdd(HIword, LOword)
	2.8.3. media_SetSector(HIword, LOword)
	2.8.4. media_ReadByte()
	2.8.5. media_ReadWord()
	2.8.6. media_WriteByte(byte_val)
	2.8.7. media_WriteWord(word_val)
	2.8.8. media_Flush()
	2.8.9. media_Image(x, y)
	2.8.10. media_Video(x, y)
	2.8.11. media_VideoFrame(x, y, frameNumber)

	2.9. Flash Memory Chip Functions
	2.9.1. flash_SIG()
	2.9.2. flash_ID()
	2.9.3. flash_BulkErase()
	2.9.4. flash_BlockErase(blockAddress)

	2.10. SPI Control Functions
	2.10.1. spi_Init(speed, input_mode, output_mode)
	2.10.2. spi_Read()
	2.10.3. spi_Write(byte)
	2.10.4. spi_Disable()

	2.11. Serial (UART) Communications Functions
	2.11.1. serin()
	2.11.2. serout(char)
	2.11.3. setbaud(rate)
	2.11.4. com_AutoBaud(timeout)
	2.11.5. com_Init(buffer, bufsize, qualifier)
	2.11.6. com_Reset()
	2.11.7. com_Count()
	2.11.8. com_Full()
	2.11.9. com_Error()
	2.11.10. com_Sync()
	2.11.11. com_Checksum()
	2.11.12. com_PacketSize()

	2.12. Sound and Tune (RTTTL) Functions
	2.12.1. beep(note, duration)
	2.12.2. tune_Play(tuneptr)
	2.12.3. tune_Pause()
	2.12.4. tune_Continue()
	2.12.5. tune_Stop()
	2.12.6. tune_End()
	2.12.7. tune_Playing()

	2.13. General Purpose Functions
	2.13.1. pause(time)
	2.13.2. lookup8(key, byteConstList)
	2.13.3. lookup16(key, wordConstList)

	3. Goldelox EVE System Registers Memory Map
	4. Appendix A : Example 4DGL Code
	5. Hardware Tools
	5.1. 4D Programming Tools
	5.2. Evaluation Display Modules

	6. 4D Labs - Workshop4 IDE
	6.1. Designer Environment
	6.2. ViSi Environment
	6.3. Serial Environment

	7. Revision History
	8. Legal Notice
	9. Contact Information

