
Table of Contents

GOLDELOX INTERNAL FUNCTIONS Page 1 of 185 www.4dsystems.com.au

GOLDELOX
Embedded Graphics Processor

INTERNAL
FUNCTIONS

Document Revision: 7.1

Document Date: 22nd March 2019

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 2 of 185 www.4dlabs.com.au

Table of Contents
1. 4DGL Introduction .. 6

2. Goldelox Chip-Resident Functions Summary ... 7

2.1. GPIO Functions ... 11

2.1.1. pin_Set(mode, pin) ... 12

2.1.2. pin_HI(pin) .. 13

2.1.3. pin_LO(pin) ... 14

2.1.4. pin_Read(pin) ... 15

2.1.5. joystick() ... 16

2.1.6. OW_Reset() .. 17

2.1.7. OW_Read() ... 18

2.1.8. OW_Read9() ... 19

2.1.9. OW_Write(data) ... 20

2.2. Memory Access Functions ... 21

2.2.1. peekB(address) ... 22

2.2.2. peekW(address).. 23

2.2.3. pokeB(address, byte_value) ... 24

2.2.4. pokeW(address, word_value) ... 25

2.2.5. bits_Set(address, mask) .. 26

2.2.6. bits_Clear(address, mask) .. 27

2.2.7. bits_Flip(address, mask) ... 28

2.2.8. bits_Test(address, mask) .. 29

2.3. User Stack Functions .. 30

1.1.1. setsp(index) .. 31

2.3.1. getsp() ... 32

2.3.2. pop() ... 33

2.3.3. push(value) ... 34

2.3.4. drop(n) .. 35

2.3.5. call() .. 36

2.3.6. exec(functionPtr, argCount).. 37

2.4. Maths Functions... 38

2.4.1. ABS(value)... 39

2.4.2. MIN(value1, value2) ... 40

2.4.3. MAX(value1, value2) .. 41

2.4.4. SWAP(&var1, &var2) .. 42

2.4.5. SIN(angle) ... 43

2.4.6. COS(angle) .. 44

2.4.7. RAND() .. 45

2.4.8. SEED(number) .. 46

2.4.9. SQRT(number) .. 47

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 3 of 185 www.4dlabs.com.au

2.4.10. OVF() ... 48

2.5. Text and String Functions .. 49

2.5.1. txt_MoveCursor(line, column) ... 50

2.5.2. putch(char) ... 51

2.5.3. putstr(pointer) .. 52

2.5.4. putnum(format, value) ... 54

2.5.5. print(...) ... 56

2.5.6. to(outstream) ... 57

2.5.7. charwidth('char') .. 59

2.5.8. charheight('char') ... 60

2.5.9. strwidth(pointer) .. 61

2.5.10. strheight() ... 62

2.5.11. strlen(pointer) .. 63

2.5.12. txt_Set(function, value) .. 64

2.6. Graphics Functions ... 66

2.6.1. gfx_Cls() .. 67

2.6.2. gfx_ChangeColour(oldColour, newColour) ... 68

2.6.3. gfx_Circle(x, y, radius, colour) ... 69

2.6.4. gfx_CircleFilled(x, y, radius, colour) .. 70

2.6.5. gfx_Line(x1, y1, x2, y2, colour) ... 71

2.6.6. gfx_Hline(y, x1, x2, colour) ... 72

2.6.7. gfx_Vline(x, y1, y2, colour) ... 73

2.6.8. gfx_Rectangle(x1, y1, x2, y2, colour) .. 74

2.6.9. gfx_RectangleFilled(x1, y1, x2, y2, colour) ... 75

2.6.10. gfx_Polyline(n, vx, vy, colour) ... 76

2.6.11. gfx_Polygon(n, vx, vy, colour) ... 78

2.6.12. gfx_Triangle(x1, y1, x2, y2, x3, y3, colour) .. 79

2.6.13. gfx_Dot() ... 80

2.6.14. gfx_Bullet(radius) ... 81

2.6.15. gfx_OrbitInit(&x_dest, &y_dest) .. 82

2.6.16. gfx_Orbit(angle, distance) .. 83

2.6.17. gfx_PutPixel(x, y, colour) .. 84

2.6.18. gfx_GetPixel(x, y) .. 85

2.6.19. gfx_MoveTo(xpos, ypos) ... 86

2.6.20. gfx_MoveRel(xoffset, yoffset) ... 87

2.6.21. gfx_IncX() .. 88

2.6.22. gfx_IncY() .. 89

2.6.23. gfx_LineTo(xpos, ypos) ... 90

2.6.24. gfx_LineRel(xpos, ypos) .. 91

2.6.25. gfx_BoxTo(x2, y2) .. 92

2.6.26. gfx_SetClipRegion() .. 93

2.6.27. gfx_ClipWindow(x1, y1, x2, y2) .. 94

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 4 of 185 www.4dlabs.com.au

2.6.28. gfx_FocusWindow() .. 95

2.6.29. gfx_Set(function, value) ... 96

2.7. Display I/O Functions ... 98

2.7.1. disp_Init(initTable, stateMachine) .. 99

2.7.2. disp_WriteControl(value) ... 101

2.7.3. disp_WriteByte(value) .. 102

2.7.4. disp_WriteWord(value) .. 103

2.7.5. disp_ReadByte().. 104

2.7.6. disp_ReadWord() .. 105

2.7.7. disp_BlitPixelFill(colour, count) .. 106

2.7.8. disp_BlitPixelsToMedia() .. 107

2.7.9. disp_BlitPixelsFromMedia(pixelcount) ... 108

2.7.10. disp_SkipPixelsFromMedia(pixelcount) .. 109

2.7.11. disp_BlitPixelsToCOM() ... 110

2.7.12. disp_BlitPixelsFromCOM(mode) .. 111

2.8. Media Functions (SD/SDHC Memory Card or Serial Flash chip) 113

2.8.1. media_Init() .. 114

2.8.2. media_SetAdd(HIword, LOword) ... 115

2.8.3. media_SetSector(HIword, LOword) .. 116

2.8.4. media_ReadByte() .. 117

2.8.5. media_ReadWord() .. 118

2.8.6. media_WriteByte(byte_val) ... 119

2.8.7. media_WriteWord(word_val) ... 120

2.8.8. media_Flush() ... 121

2.8.9. media_Image(x, y) .. 122

2.8.10. media_Video(x, y) ... 123

2.8.11. media_VideoFrame(x, y, frameNumber) .. 124

2.9. Flash Memory Chip Functions .. 126

2.9.1. flash_SIG() .. 127

2.9.2. flash_ID() .. 128

2.9.3. flash_BulkErase() .. 129

2.9.4. flash_BlockErase(blockAddress) ... 130

2.10. SPI Control Functions ... 131

2.10.1. spi_Init(speed, input_mode, output_mode) .. 132

2.10.2. spi_Read() ... 133

2.10.3. spi_Write(byte) ... 134

2.10.4. spi_Disable() ... 135

2.11. Serial (UART) Communications Functions ... 136

2.11.1. serin().. 137

2.11.2. serout(char) .. 138

2.11.3. setbaud(rate) .. 139

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 5 of 185 www.4dlabs.com.au

2.11.4. com_AutoBaud(timeout).. 140

2.11.5. com_Init(buffer, bufsize, qualifier) ... 141

2.11.6. com_Reset() .. 145

2.11.7. com_Count() ... 146

2.11.8. com_Full() ... 147

2.11.9. com_Error() .. 148

2.11.10. com_Sync() ... 149

2.11.11. com_Checksum() .. 150

2.11.12. com_PacketSize() .. 151

2.12. Sound and Tune (RTTTL) Functions ... 152

2.12.1. beep(note, duration) .. 153

2.12.2. tune_Play(tuneptr) ... 154

2.12.3. tune_Pause() .. 158

2.12.4. tune_Continue() ... 159

2.12.5. tune_Stop() ... 160

2.12.6. tune_End() .. 161

2.12.7. tune_Playing() .. 162

2.13. General Purpose Functions .. 163

2.13.1. pause(time) .. 164

2.13.2. lookup8(key, byteConstList).. 165

2.13.3. lookup16(key, wordConstList) .. 166

3. Goldelox EVE System Registers Memory Map ... 167

4. Appendix A : Example 4DGL Code ... 171

5. Hardware Tools .. 181

5.1. 4D Programming Tools... 181

5.2. Evaluation Display Modules ... 181

6. 4D Labs - Workshop4 IDE .. 182

6.1. Designer Environment ... 182

6.2. ViSi Environment .. 182

6.3. Serial Environment ... 183

7. Revision History ... 184

8. Legal Notice ... 185

9. Contact Information ... 185

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 6 of 185 www.4dlabs.com.au

1. 4DGL Introduction

The 4D Labs family of embedded graphics processors are powered by a highly optimised soft core virtual engine, E.V.E.
(Extensible Virtual Engine).

EVE is a proprietary, high performance virtual processor with an extensive byte-code instruction set optimised to
execute compiled 4DGL programs. 4DGL (4D Graphics Language) was specifically developed from ground up for the
EVE engine core. It is a high level language which is easy to learn and simple to understand yet powerful enough to
tackle many embedded graphics applications.

4DGL is a graphics oriented language allowing rapid application development. An extensive library of graphics, text
and file system functions and the ease of use of a language that combines the best elements and syntax structure of
languages such as C, Basic, Pascal, etc. Programmers familiar with these languages will feel right at home with 4DGL.
It includes many familiar instructions such as IF..ELSE..ENDIF, WHILE..WEND, REPEAT..UNTIL, GOSUB..ENDSUB, GOTO
as well as a wealth of (chip-resident) internal functions that include SERIN, SEROUT, GFX_LINE, GFX_CIRCLE and many
more.

This document covers the internal (chip-resident) functions available for the Goldelox Processor. This document
should be used in conjunction with “4DGL-Programmers-Reference-Manual” document.

Goldelox-GFX2 Internal Block Diagram

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 7 of 185 www.4dlabs.com.au

2. Goldelox Chip-Resident Functions Summary

The following is a summary of chip-resident 4DGL functions within the Goldelox-GFX2 graphics controller. The
document is made up of the following sections:

2.1 GPIO Functions:

• pin_Set(mode, pin)

• OUTPUT, INPUT, ANALOGUE_8, ANALOGUE_10, ONEWIRE, SOUND

• pin_HI(pin)

• pin_LO(pin)

• pin_Read(pin)

• joystick()

• OW_Reset()

• OW_Read()

• OW_Read9()

• OW_Write(data)

2.2 Memory Access Functions:

• peekB(address)

• peekW(address)

• pokeB(address, byte_value)

• pokeW(address, word_value)

• bits_Set(address, mask)

• bits_Clear(address, mask)

• bits_Flip(address, mask)

• bits_Test(address, mask)

2.3 User Stack Functions:

• setsp(index)

• getsp()

• pop()

• push(value)

• drop(n)

• call()

• exec(functionPtr, argCount)

2.4 Math Functions:

• ABS(value)

• MIN(value1, value2)

• MAX(value1, value2)

• SWAP(&var1, &var2)

• SIN(angle)

• COS(angle)

• RAND()

• SEED(number)

• SQRT(number)

• OVF ()

2.5 Text and String Functions:

• txt_MoveCursor(line, column)

• putch(char)

• putstr(pointer)

• putnum(format, value)

• print(...)

• to(outstream)

• charwidth('char')

• charheight('char')

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 8 of 185 www.4dlabs.com.au

• strwidth(pointer)

• strheight()

• strlen(pointer)

• txt_Set(function, value)
txt_Set shortcuts:

• txt_FGcolour(colour)

• txt_BGcolour(colour)

• txt_FontID(id)

• txt_Width(multiplier)

• txt_Height(multiplier)

• txt_Xgap(pixelcount)

• txt_Ygap(pixelcount)

• txt_Delay(millisecs)

• txt_Opacity(mode)

• txt_Bold(mode)

• txt_Italic(mode)

• txt_Inverse(mode)

• txt_Underlined(mode)

• txt_Attributes(value)

2.6 Graphics Functions:

• gfx_Cls()

• gfx_ChangeColour(oldColour, newColour)

• gfx_Circle(x, y, radius, colour)

• gfx_CircleFilled(x, y, radius, colour)

• gfx_Line(x1, y1, x2, y2, colour)

• gfx_Hline(y, x1, x2, colour)

• gfx_Vline(x, y1, y2, colour)

• gfx_Rectangle(x1, y1, x2, y2, colour)

• gfx_RectangleFilled(x1, y1, x2, y2, colour)

• gfx_Polyline(n, vx, vy, colour)

• gfx_Polygon(n, vx, vy, colour)

• gfx_Triangle(x1, y1, x2, y2, x3, y3, colour)

• gfx_Dot()

• gfx_Bullet(radius)

• gfx_OrbitInit(&x_dest, &y_dest)

• gfx_Orbit(angle, distance)

• gfx_PutPixel(x, y, colour)

• gfx_GetPixel(x, y)

• gfx_MoveTo(xpos, ypos)

• gfx_MoveRel(xoffset, yoffset)

• gfx_IncX()

• gfx_IncY()

• gfx_LineTo(xpos, ypos)

• gfx_LineRel(xpos, ypos)

• gfx_BoxTo(x2, y2)

• gfx_SetClipRegion()

• gfx_ClipWindow(x1, y1, x2, y2)

• gfx_FocusWindow()

• gfx_Set(function, value)
gfx_Set shortcuts:

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 9 of 185 www.4dlabs.com.au

• gfx_PenSize(mode)

• gfx_BGcolour(colour)

• gfx_ObjectColour(colour)

• gfx_Clipping(mode)

• gfx_FrameDelay(delay)

• gfx_ScreenMode(delay)

• gfx_OutlineColour(colour)

• gfx_Contrast(value)

• gfx_LinePattern(pattern)

• gfx_ColourMode(mode)

2.7 Display I/O Functions:

• disp_Init(initTable, stateMachine)

• disp_WriteControl(value)

• disp_WriteByte(value)

• disp_WriteWord(value)

• disp_ReadByte()

• disp_ReadWord()

• disp_BlitPixelFill(colour, count)

• disp_BlitPixelsToMedia()

• disp_BlitPixelsFromMedia(pixelcount)

• disp_SkipPixelsFromMedia(pixelcount)

• disp_BlitPixelsToCOM()

• disp_BlitPixelsFromCOM(mode)

2.8 Media Functions (SD/SDHC memory Card or Serial Flash chip):

• media_Init()

• media_SetAdd(HIword, LOword)

• media_SetSector(HIword, LOword)

• media_ReadByte()

• media_ReadWord()

• media_WriteByte(byte_val)

• media_WriteWord(word_val)

• media_Flush()

• media_Image(x, y)

• media_Video(x, y)

• media_VideoFrame(x, y, frameNumber)

2.9 Flash Memory chip Functions:

• flash_SIG()

• flash_ID()

• flash_BulkErase()

• flash_BlockErase(blockAddress)

2.10 SPI Control Functions:

• spi_Init(speed, input_mode, output_mode)

• spi_Read()

• spi_Write(byte)

• spi_Disable()

2.11 Serial (UART) Communications Functions:

• serin()

• serout(char)

• setbaud(rate)

• com_AutoBaud(timeout)

• com_Init(buffer, buffsize, qualifier)

• com_Reset()

• com_Count()

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 10 of 185 www.4dlabs.com.au

• com_Full()

• com_Error()

• com_Sync()

• com_Checksum()

• com_PacketSize()

2.12 Sound and Tune (RTTTL) Functions:

• beep(note, duration)

• tune_Play(tuneptr)

• tune_Pause()

• tune_Continue()

• tune_Stop()

• tune_End()

• tune_Playing()

2.13 General Purpose Functions:

• pause(time)

• lookup8 (key, byteConstList)

• lookup16 (key, wordConstList)

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 11 of 185 www.4dlabs.com.au

2.1. GPIO Functions

Summary of Functions in this section:

• pin_Set(mode, pin)

• OUTPUT, INPUT, ANALOGUE_8, ANALOGUE_10, ONEWIRE, SOUND

• pin_HI(pin)

• pin_LO(pin)

• pin_Read(pin)

• joystick()

• OW_Reset()

• OW_Read()

• OW_Read9()

• OW_Write(data)

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 12 of 185 www.4dlabs.com.au

2.1.1. pin_Set(mode, pin)

Syntax pin_Set(mode, pin);

Arguments mode, pin

mode A value (usually a constant) specifying the pin operation.

pin A value (usually a constant) specifying the pin number.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description Goldelox-GFX2 has limited but powerful I/O.

There are pre-defined constants for mode and pin:

pin constants pin value

IO1 0

IO2 1

mode constants mode value meaning IO1 IO2

OUTPUT 0 Pin is set to an output YES YES

INPUT 1 Pin is set to an input YES YES

ANALOGUE_8 2 Pin is set to analogue input, 8 bit mode YES NO

ANALOGUE_10 3 Pin is set to analogue input, 10 bit mode YES NO

ONEWIRE 4 Pin is set as Dallas One Wire I/O mode YES YES

SOUND 5 Pin is set for RTTTL sound output YES YES

Example pin_Set(OUTPUT, IO2); // set IO2 to be used as an output

pin_Set(ANALOGUE_10, IO1); // set IO1 to be used as analogue input

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 13 of 185 www.4dlabs.com.au

2.1.2. pin_HI(pin)

Syntax pin_HI(pin);

Arguments pin

pin A value (usually a constant) specifying the pin number.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description Outputs a "High" level (logic 1) on the appropriate pin that was previously selected as an Output. If
the pin is not already set to an output, it is automatically made an output.

Example pin_HI(IO2); // output a Logic 1 on IO2 pin

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 14 of 185 www.4dlabs.com.au

2.1.3. pin_LO(pin)

Syntax pin_LO(pin);

Arguments pin

pin A value (usually a constant) specifying the pin number.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description Outputs a "Low" level (logic 0) on the appropriate pin that was previously selected as an Output. If
the pin is not already set to an output, it is automatically made an output.

Example pin_LO(IO1); // output a Logic 0 on IO1 pin

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 15 of 185 www.4dlabs.com.au

2.1.4. pin_Read(pin)

Syntax pin_Read(pin);

Arguments pin

pin A value (usually a constant) specifying the pin number.

The arguments can be a variable, array element, expression or constant.

Returns value

value Returns a Logic 1 (0x0001) or a Logic 0 (0x0000) or the analogue value of the input

pin.

Description Reads the logic state or the analogue value of the pin that was previously selected as an Input. Returns
a "Low" (logic 0) or "High" (logic 1) or Analogue value n.

Example if(pin_Read(IO1) < 200) // read the analogue value on IO1

 calc_Threshold();

else

 ...

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 16 of 185 www.4dlabs.com.au

2.1.5. joystick()

Syntax joystick();

Arguments none

Returns value

 value Returns the joystick value.

Description Returns the value of the Joystick position (5 position switch implementation).

The JOYSTICK values are:

Value 0 1 2 3 4 5

Status Released UP LEFT DOWN RIGHT FIRE

Note: The joystick input uses IO1 utilizing the A/D converter. Each switch is connected to junction of
2 resistors that form a unique voltage divider circuit. Refer to the Goldelox-GFX2 data sheet example
schematics for the required resistor values.

Example joy := joystick(); // read the joystick

if (joy == 0) putstr(" ");

if (joy == 1) putstr(" UP");

if (joy == 2) putstr("LEFT");

if (joy == 3) putstr("DOWN");

if (joy == 4) putstr("RIGHT");

if (joy == 5) putstr("FIRE");

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 17 of 185 www.4dlabs.com.au

2.1.6. OW_Reset()

Syntax OW_Reset();

Arguments none

Returns result

result Reset, and returns the status of the ONEWIRE device
0 = ACK
1 = No Activity

(refer to Dallas 1wired documentation for further information)

Description Resets a ONEWIRE device and returns the status.

Example print ("result=", OW_Reset());

This example will print a 0 if the device initialised successfully.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 18 of 185 www.4dlabs.com.au

2.1.7. OW_Read()

Syntax OW_Read();

Arguments none

Returns value

 value A word holding the lower 8 bits contain data bits received from the 1-Wire device.

Description Reads the 8 bit value from a 1-Wire devices register.
(refer to Dallas 1wired documentation for further information)

Example // read temperature from DS1821 device

var temp_buf;

OW_Reset(); // reset the device

OW_Write(0xAA); // send the read command

temp_buf := OW_Read(); // read the device register

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 19 of 185 www.4dlabs.com.au

2.1.8. OW_Read9()

Syntax OW_Read9();

Arguments none

Returns value

 value A word holding 9 or more data bits received from the 1-Wire device.

Description Reads the 9 or more bit value from a 1-Wire devices register.
(refer to Dallas 1wired documentation for further information)

Example // read temperature from DS1821 device

var temp_buf;

OW_Reset(); // reset the device

OW_Write(0xAA); // send the read command

temp_buf := OW_Read9(); // read the device register

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 20 of 185 www.4dlabs.com.au

2.1.9. OW_Write(data)

Syntax OW_Write(data);

Arguments data

data The lower 8 bits of data are sent to the 1-Wire device.

The argument can be a variable, array element, expression or constant.

Returns nothing

Description Writes the 8 bit data to 1-Wire devices register.
(refer to Dallas 1wired documentation for further information)

Example //===

// For this demo to work, a Dallas DS1821 must be connected to

// IO1 AND POWERED FROM 5V.

// DS1821 pin1 = Gnd / pin2 = data in/out / pin 3 = +5v

// Refer to the Dallas DS1821 for further information

//===

var temp_buf, stat_buf;

func main()

 pause(1000);

 txt_MoveCursor(0,0);

 pin_Set(ONEWIRE, PIN_1); // set either I/O pin to 1 wire mode

 if(OW_Reset()) // initialise and test

 print("No device detected");

 while(1);

 endif

 txt_Set(TEXT_COLOUR, LIGHTGREY);

 txt_Set(FONT_SIZE, FONT_LARGE);

 // refer to data sheet for continuous/polled mode

 // OW_Write(0x0C); // write status

 // OW_Write(0b01000010); // set continuous conversion

 repeat

 txt_MoveCursor(0, 0);

 print ("result=", OW_Reset());

 OW_Write(0xEE); // start conversion

 OW_Reset(); // reset

 OW_Write(0xAA); // get temperature

 temp_buf := OW_Read();

 OW_Reset(); // optional

 OW_Write(0xAC); // optional read status

 stat_buf := OW_Read(); // optional 82 when DS1821 run

 txt_MoveCursor(1, 0);

 print ("temp_buf=0x", [HEX2] temp_buf);

 txt_MoveCursor(2, 0);

 print ("stat_buf=0x", [HEX2] stat_buf);

 forever

endfunc

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 21 of 185 www.4dlabs.com.au

2.2. Memory Access Functions

Summary of Functions in this section:

• peekB(address)

• peekW(address)

• pokeB(address, byte_value)

• pokeW(address, word_value)

• bits_Set(address, mask)

• bits_Clear(address, mask)

• bits_Flip(address, mask)

• bits_Test(address, mask)

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 22 of 185 www.4dlabs.com.au

2.2.1. peekB(address)

Syntax peekB(address);

Arguments address

address The address of a memory byte. The address is usually a pre-defined system register
address constant, (see the address constants for all the system byte sized registers in
section 3, table 3.1).

The arguments can be a variable, array element, expression or constant.

Returns byte_value

 byte_value The 8 bit value stored at address.

Description This function returns the 8 bit value that is stored at address.

Note: the peekB(..) and pokeB(..) functions are usually only used with internal system byte registers
using the pre-defined constants. If peekB(..) or pokeB(..) are used to access other locations, the
address must be doubled to get the correct pointer address.

Example var myvar;

myvar := peekB(GFX_XMAX) + 1;

This example places the width of the display (horizontal resolution in pixel units) in myvar.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 23 of 185 www.4dlabs.com.au

2.2.2. peekW(address)

Syntax peekW(address);

Arguments address

address The address of a memory word. The address is usually a pre-defined system register
address constant, (see the address constants for all the system word sized registers
in section 3, table 3.2).

The arguments can be a variable, array element, expression or constant.

Returns word_value

 word_value The 16 bit value stored at address.

Description This function returns the 16 bit value that is stored at address.

Example var myvar;

myvar := peekW(SYSTEM_TIMER_LO);

This example places the low word of the 32 bit system timer in myvar.
The equivalent operation using a pointer is:-
myvar := *TIMER2;

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 24 of 185 www.4dlabs.com.au

2.2.3. pokeB(address, byte_value)

Syntax pokeB(address, byte_value);

Arguments address, byte_value

address The address of a memory byte. The address is usually a pre-defined system register
address constant, (see the address constants for all the system byte sized registers in
section 3, table 3.1).

byte_value The lower 8 bits of byte_value will be stored at address.

The arguments can be a variable, array element, expression or constant.

Returns boolean

 boolean Returns TRUE if poke address was a legal address (usually ignored).

Description This function writes a 8 bit value to a location specified by address.

Note: the peekB(..) and pokeB(..) functions are usually only used with internal system byte registers
using the pre-defined constants. If peekB(..) or pokeB(..) are used to access other locations, the
address must be doubled to get the correct pointer address.

Example pokeB(CLIP_TOP, 10);

This example manually adjusts the top clipping point to 10 pixels down from top of screen.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 25 of 185 www.4dlabs.com.au

2.2.4. pokeW(address, word_value)

Syntax pokeW(address, word_value);

Arguments address, word_value

address The address of a memory word. The address is usually a pre-defined system register
address constant, (see the address constants for all the system word sized registers
in section 3, table 3.2).

word_value The 16 bit word_value will be stored at address.

The arguments can be a variable, array element, expression or constant.

Returns boolean

 boolean Returns TRUE if poke address was a legal address (usually ignored).

Description This function writes a 16 bit value to a location specified by address.

Example pokeW(TIMER2, 5000);

This example sets TIMER2 to 5 seconds.
The equivalent operation using a pointer is:
*TIMER2 := 5000;

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 26 of 185 www.4dlabs.com.au

2.2.5. bits_Set(address, mask)

Syntax bits_Set(address, mask);

Arguments address, mask

address The address of a user memory location.

mask The 16 bit mask containing bits to be set.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description This function sets the required bits at address by 'ORing' the mask with the value stored at address.

Note: the bits_Set, bits_Clear, bits_Flip and bits_Test functions can only be used for user memory and
will not work with system register variables

Example var myval;

myval := 3;

bits_Set(myval, 0xC0);

print([HEX], myval);

This example sets bits 6 and 7 of myval

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 27 of 185 www.4dlabs.com.au

2.2.6. bits_Clear(address, mask)

Syntax bits_Clear(address, mask);

Arguments address, mask

address The address of a user memory location.

mask The 16 bit mask containing bits to be cleared.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description This function clears the required bits at address by 'ANDing' the inverted mask with the value stored
at address.

Note: the bits_Set, bits_Clear, bits_Flip and bits_Test functions can only be used for user memory and
will not work with system register variables.

Example var myval;

myval := 0xFFFF;

bits_Clear(myval, 0x3C00);

print([HEX], myval);

This example clears bits 10, 11, 12 and 13 of myval

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 28 of 185 www.4dlabs.com.au

2.2.7. bits_Flip(address, mask)

Syntax bits_Flip(address, mask);

Arguments address, mask

address The address of a user memory location.

mask The 16 bit mask containing bits to be flipped.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description This function flips the required bits at address by 'XORing' the mask with the value stored at address.

Note: the bits_Set, bits_Clear, bits_Flip and bits_Test functions can only be used for user memory and
will not work with system register variables.

Example var myval;

myval := 0xFFFF;

bits_Flip(myval, 0x8802);

print([HEX], myval);

This example clears bits 15, 11, and 1 of myval

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 29 of 185 www.4dlabs.com.au

2.2.8. bits_Test(address, mask)

Syntax bits_Test(address, mask);

Arguments address, mask

address The address of a user memory location.

mask The 16 bit mask containing bits to be tested.

The arguments can be a variable, array element, expression or constant.

Returns result

 result Returns:
- TRUE (logic 1) if any of the tested bits are set.
- FALSE (logic 0) if none of the tested bits are set.

Description This function tests the required bits at address using the mask with the original value. If any of the
bits are set, the function returns 1. If none of the bits are set, the function returns 0.

Note: the bits_Set, bits_Clear, bits_Flip and bits_Test functions can only be used for user memory and
will not work with system register variables.

Example var myval,res;

myval = 0x1234;

res := bits_Test(myval, 0xFF00);

print(res);

This example tests bits 8-15 in myval, if any bits are set, the result will be 1.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 30 of 185 www.4dlabs.com.au

2.3. User Stack Functions

EVE provides all the requirement for a user stack to aid in development of stack-based processing (e.g. for interpreters
and fast raster drawings). The stack is at a fixed location (it is at the base of the user memory). The stack pointer
always expects the stack to be here – it is hard micro-coded internally.
If none of the stack functions are used, the stack can be disregarded as it will not influence any other program
dynamics – the memory can be used for other purposes. If a user stack is required, it must be configured as the first
array in the users program. The stack pointer always points to the current item on top of the stack.

Note: If the stack pointer is zero, there are no items on the stack.

Typically, your program will look like this:

// the user stack MUST be the first storage in you program
var mystack[20]; // A 20 word stack. The stack must be the first array in the program.
var myvar1, myvar2; // etc

Summary of Functions in this section:

• setsp(index)

• getsp()

• pop()

• push(value)

• drop(n)

• call()

• exec(functionPtr, argCount)

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 31 of 185 www.4dlabs.com.au

1.1.1. setsp(index)

Syntax setsp(index);

Arguments index

index This argument is used to set the users SP to the required position. The stack pointer
is set to zero during power-up initialisation.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description The users stack pointer is zeroed at power up, but it is sometimes necessary to alter the stack pointer
for various reasons, such as running multiple concurrent stacks, or resetting to a known position as
part of an error recovery process.

Example setsp(0); // reset the stack pointer

This example sets the users stack pointer to 'empty'

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 32 of 185 www.4dlabs.com.au

2.3.1. getsp()

Syntax getsp();

Arguments none

Returns index

 index The current stack index.

Description This function returns the current stack index into the stack array. If the index is zero, there are no
items on the stack.

Example push(1234);

print(getsp()); // print the stack index

This example will print '1' assuming there are no other items on the stack.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 33 of 185 www.4dlabs.com.au

2.3.2. pop()

Syntax pop();

Arguments none

Returns value

 value The value at current stack pointer index.

Description This function returns the value at the current stack pointer index. The stack pointer is then
decremented, so it now points to the item below. If the stack pointer is zero, (ie a pop was performed
on an empty stack) the function returns 0 and the stack pointer is not altered (ie it remains at 0).

Example push(100);

push(200);

print(pop()+ pop());

This example prints '300' and the stack pointer is reduced by 2

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 34 of 185 www.4dlabs.com.au

2.3.3. push(value)

Syntax push(value);

Arguments value

value Argument to be pushed to the user stack.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description Increment the user stack pointer first and then places the item into the user stack array at the current
position. The stack pointer is now pointing to this new item.

Example myvar := 10;

push(1234);

push(5678);

push(myvar);

This example pushes 3 items to the user stack

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 35 of 185 www.4dlabs.com.au

2.3.4. drop(n)

Syntax drop(n);

Arguments n

n Specifies the number of items to be dropped from the stack.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description Decrements the user stack pointer determined by the value n. If n exceeds the stack index, the stack
pointer is zeroed.

Example myvar := 10;

push(1234);

push(5678);

push(myvar);

drop(2);

This example decrements the stack pointer by 2, effectively dropping 'myvar' and '5678' from the
stack, the next pop would yield 1234.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 36 of 185 www.4dlabs.com.au

2.3.5. call()

Syntax call();

Arguments none

Returns value

 value If the called function returns a value then it is available.

Description Calls the specified function, the arguments to the called function are from the stack. The stacked
parameters are consumed and the stack pointer is altered to match the number of arguments that
were consumed.

Example push(10);

push(10);

push(50);

push(50);

push(0xFFFF);

push(gfx_RectangleFilled); // push the function call address

push(5); // push the argument count

//~~~~~~~

call();

This example takes the function argument count, function pointer, and argument pointer from the
top of the stack and calls the function using the stacked parameters. The 7 arguments on the stack
are discarded.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 37 of 185 www.4dlabs.com.au

2.3.6. exec(functionPtr, argCount)

Syntax exec(functionPtr, argCount);

Arguments functionPtr, argCount

functionPtr A pointer to a function which will utilise the stacked arguments.

argCount The count of arguments on the stack that are to be passed to the function call.

The arguments can be a variable, array element, expression or constant.

Returns value

 value If the called function returns a value then it is available.

Description Calls the specified function, passing the arguments to the called function from the stack. The stack
and stack pointer are not altered.

Example push(50); // set some arbitrary values on the stack

push(50);

push(10);

push(YELLOW);

//~~~~~~~

exec(gfx_Circle,4); // exec the circle function using

 // the stacked parameters

This example draws a circle using the stacked parameters. The stacked parameters and the stack
pointer are not altered.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 38 of 185 www.4dlabs.com.au

2.4. Maths Functions

Summary of Functions in this section:

• ABS(value)

• MIN(value1, value2)

• MAX(value1, value2)

• SWAP(&var1, &var2)

• SIN(angle)

• COS(angle)

• RAND()

• SEED(number)

• SQRT(number)

• OVF ()

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 39 of 185 www.4dlabs.com.au

2.4.1. ABS(value)

Syntax ABS(value);

Arguments value

value a variable, array element, expression or constant.

The arguments can be a variable, array element, expression or constant.

Returns value

 value Returns the absolute value.

Description This function returns the absolute value of value.

Example var myvar, number;

number := -100;

myvar := ABS(number * 5);

This example returns 500 in variable myvar.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 40 of 185 www.4dlabs.com.au

2.4.2. MIN(value1, value2)

Syntax MIN(value1, value2);

Arguments value1, value2

value1 a variable, array element, expression or constant.

value2 a variable, array element, expression or constant.

The arguments can be a variable, array element, expression or constant.

Returns value

 value the smaller of the two values.

Description This function returns the the smaller of value1 and value2.

Example var myvar, number1, number2;

number1 := 33;

number2 := 66;

myvar := MIN(number1, number2);

This example returns 33 in variable myvar.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 41 of 185 www.4dlabs.com.au

2.4.3. MAX(value1, value2)

Syntax MAX(value1, value2);

Arguments value1, value2

value1 a variable, array element, expression or constant.

value2 a variable, array element, expression or constant.

The arguments can be a variable, array element, expression or constant.

Returns value

 value the larger of the two values.

Description This function returns the the larger of value1 and value2.

Example var myvar, number1, number2;

number1 := 33;

number2 := 66;

myvar := MAX(number1, number2);

This example returns 66 in variable myvar.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 42 of 185 www.4dlabs.com.au

2.4.4. SWAP(&var1, &var2)

Syntax SWAP(&value1, &value2);

Arguments &var1, &var2

&var1 The address of the first variable.

&var2 The address of the second variable.

The arguments can only be a variable or an array element.

Returns nothing

Description Given the addresses of two variables (var1 and var2), the values at these addresses are swapped.

Example var number1, number2;

number1 := 33;

number2 := 66;

SWAP(&number1, &number2);

This example swaps the values in number1 and number2. After the function is executed, number1
will hold 66, and number2 will hold 33.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 43 of 185 www.4dlabs.com.au

2.4.5. SIN(angle)

Syntax SIN(angle);

Arguments angle

angle The angle in degrees. (Note: The input value is automatically shifted to lie within 0-
359 degrees)

The arguments can be a variable, array element, expression or constant.

Returns result

result The sine in radians of an argument specified in degrees. The returned value range is
from 127 to -127 which is a more useful representation for graphics work. The real
sine values vary from 1.0 to -1.0 so appropriate scaling must be done in user code as
required.

Description This function returns the sine of an angle

Example var myvar, angle;

angle := 133;

myvar := SIN(angle);

This example returns 92 in variable myvar.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 44 of 185 www.4dlabs.com.au

2.4.6. COS(angle)

Syntax COS(angle);

Arguments angle

angle The angle in degrees. (Note: The input value is automatically shifted to lie within 0-
359 degrees)

The arguments can be a variable, array element, expression or constant.

Returns result

result The cosine in radians of an argument specified in degrees. The returned value range
is from 127 to -127 which is a more useful representation for graphics work. The real
sine values vary from 1.0 to -1.0 so appropriate scaling must be done in user code as
required.

Description This function returns the cosine of an angle

Example var myvar, angle;

angle := 133;

myvar := COS(angle);

This example returns -86 in variable myvar.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 45 of 185 www.4dlabs.com.au

2.4.7. RAND()

Syntax RAND();

Arguments none

Returns value

value Returns a pseudo random signed number ranging from -32768 to +32767 each time the
function is called. The random number generator may first be seeded by using the
SEED(number) function. The seed will generate a pseudo random sequence that is
repeatable. You can use the modulo operator (%) to return a number within a certain
range, eg n := RAND() % 100; will return a random number between -99 and +99. If you
are using random number generation for random graphics points, or only require a
positive number set, you will need to use the ABS function so only a positive number is
returned, eg: X1 := ABS(RAND() % 100); will set co-ordinate X1 between 0 and 99. Note
that if the random number generator is not seeded, the first number returned after
reset or power up will be zero. This is normal behavior.

Description This function returns a pseudo random signed number ranging from -32768 to +32767

Example SEED(1234);

print(RAND(),", ",RAND());

This example will print
3558, 1960

to the display.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 46 of 185 www.4dlabs.com.au

2.4.8. SEED(number)

Syntax SEED(number);

Arguments number

number Specifies the seed value for the pseudo random number generator.

The arguments can be a variable, array element, expression or constant.

Returns nothing

Description This function seeds the pseudo random number generator so it will generate a new repeatable
sequence. The seed value can be a positive or negative number.

Example SEED(-50);

print(RAND(),", ",RAND());

This example will print
30129, 27266

to the display.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 47 of 185 www.4dlabs.com.au

2.4.9. SQRT(number)

Syntax SQRT(number);

Arguments number

number Specifies the positive number for the SQRT function.

The arguments can be a variable, array element, expression or constant.

Returns value

value This function returns the integer square root which is the greatest integer less than or

equal to the square root of number.

Description This function returns the integer square root of a number.

Example var myvar;

myvar := SQRT(26000);

This example returns 161 in variable myvar which is the integer square root of 26000.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 48 of 185 www.4dlabs.com.au

2.4.10. OVF()

Syntax OVF();

Arguments none

Returns value

 value the high order 16 bits from certain math and shift functions.

Description This function returns the high order 16 bits from certain math and shift functions. It is extremely
useful for calculating 32 bit address offsets for MEDIA access.
It can be used with the shift operations, addition, subtraction, multiplication and modulus operations.

Example var loWord, hiWord;

loWord := 0x2710 * 0x2710; // (10000 * 10000 in hex format)

hiWord := OVF();

print ("0x", [HEX] hiWord, [HEX] loWord);

This example will print
0x05F5E100

to the display , which is 100,000,000 in hexadecimal

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 49 of 185 www.4dlabs.com.au

2.5. Text and String Functions

Summary of Functions in this section:

• txt_MoveCursor(line, column)
• putch(char)

• putstr(pointer)

• putnum(format, value)

• print(...)

• to(outstream)

• charwidth('char')

• charheight('char')

• strwidth(pointer)

• strheight()

• strlen(pointer)

• txt_Set(function, value)
txt_Set shortcuts:

• txt_FGcolour(colour)

• txt_BGcolour(colour)

• txt_FontID(id)

• txt_Width(multiplier)

• txt_Height(multiplier)

• txt_Xgap(pixelcount)

• txt_Ygap(pixelcount)

• txt_Delay(millisecs)

• txt_Opacity(mode)

• txt_Bold(mode)

• txt_Italic(mode)

• txt_Inverse(mode)

• txt_Underlined(mode)

• txt_Attributes(value)

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 50 of 185 www.4dlabs.com.au

2.5.1. txt_MoveCursor(line, column)

Syntax txt_MoveCursor(line, column);

Arguments line, column

line Holds a positive value for the required line position.

newColour Holds a positive value for the required column position.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description

Moves the origin to a screen position set by line and column parameters. The line and column position
is calculated, based on the size and scaling factor for the currently selected font. When text is
outputted to screen it will be displayed from this position. The text position could also be set with
gfx_MoveTo(...); if required to set the text position to an exact pixel location. Note that lines and
columns start from 0, so line 0 , column 0 is the top left corner of the display.

Example txt_MoveCursor(4, 9);

This example moves the text origin to the 5th line and the 10th column.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 51 of 185 www.4dlabs.com.au

2.5.2. putch(char)

Syntax putch(char);

Arguments char

char Holds a positive value for the required character.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description putch prints single characters to the current output stream, usually the display.

Example var v;

v := 0x39;

putch(v); // print the number 9 to the current display location

putch('\n'); // newline

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 52 of 185 www.4dlabs.com.au

2.5.3. putstr(pointer)

Syntax putstr(pointer);

Arguments pointer

pointer A string constant or word pointer to a string.

The argument can be a string constant or word pointer to a string, a pointer to an array, or a pointer
to a data statement.

Returns source

 source Returns the pointer to the item that was printed.

Description putstr prints a string to the current output stream, usually the display. The argument can be a string
constant, a pointer to a string, a pointer to an array, or a pointer to a data statement.

Note: putstr is more efficient that print for printing single strings.
The output of putstr can be redirected to the communications port, the media, or memory using the
to(...); function.

A string constant is automatically terminated with a zero.

A string in a data statement is not automatically terminated with a zero.

All variables in 4DGL are 16bit, if an array is used for holding 8 bit characters, each array element
packs 1 or 2 characters.

Example //==

// Example #1 – print a string constant

//==

putstr("HELLO\n"); //simply print a string constant at current origin

//==

// Example #2 – print string via pointer

//==

var p; // a var for use as a pointer

p := "String Constant\n"; // assign a string constant to pointer s

putstr(p); // print the string using the pointer

putstr(p+8); // print, offsetting into the string

//==

// Example #3 – printing strings from data table

//==

#DATA

 byte message "Week",0

 word days sun,mon,tue,wed,thu,fri,sat // pointers to data items

 byte sun "Sunday\n\0"

 byte mon "Monday\n\0"

 byte tue "Tuesday\n\0"

 byte wed "Wednesday\n\0"

 byte thu "Thursday\n\0"

 byte fri "Friday\n\0"

 byte sat "Saturday\n\0"

#END

var n;

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 53 of 185 www.4dlabs.com.au

putstr

n:=0;

while(n < 7)

 putstr(days[n++]); // print the days

wend

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 54 of 185 www.4dlabs.com.au

2.5.4. putnum(format, value)

Syntax putnum(format, value);

Argume
nts

format, value

format A constant that specifies the number format.

value The number to be printed.

Number formatting bits supplied by format

 bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 | | | | ___ ___/ __ __/ _____ _____/

 | | | | V V V

 | | | | | | |

 | | | | | | |

 | | | | (nb 0 = 16) | |____BASE (usually 2, 10 or 16)

 | | | | displayed |

 | | | | digit qty |

 | | | | |___reserved

 | | | |

 | | | |

 | | | |______ 1 = leading zeros included

 | | | 0 = leading zeros suppressed

 | | |

 | | |_______ 1 = leading zero blanking

 | | 0 = Show Zeros

 | |

 | |_____ sign bit (0 = signed, 1 = unsigned)

 |

 |______ 1 = space before unsigned number

 0 = no space

Pre-Defined format constants quick reference

DECIMAL UNSIGNED DECIMAL HEX BINARY

DEC DECZ DECZB UDEC UDECZ UDECZB HEX HEXZ HEXZB BIN BINZ BINZB

DEC1 DEC1Z DEC1ZB UDEC1 UDEC1Z UDEC1ZB HEX1 HEX1Z HEX1ZB BIN1 BIN1Z BIN1ZB

DEC2 DEC2Z DEC2ZB UDEC2 UDEC2Z UDEC2ZB HEX2 HEX2Z HEX1ZB BIN2 BIN2Z BIN2ZB

DEC3 DEC3Z DEC3ZB UDEC3 UDEC3Z UDEC3ZB HEX3 HEX3Z HEX1ZB BIN3 BIN3Z BIN3ZB

DEC4 DEC4Z DEC4ZB UDEC4 UDEC4Z UDEC4ZB HEX4 HEX4Z HEX1ZB BIN4 BIN4Z BIN4ZB

DEC5 DEC5Z DEC5ZB UDEC5 UDEC5Z UDEC5ZB BIN5 BIN5Z BIN5ZB

 BIN6 BIN6Z BIN6ZB

 BIN7 BIN7Z BIN7ZB

 BIN8 BIN8Z BIN8ZB

 BIN9 BIN9Z BIN9ZB

 BIN10 BIN10Z BIN10ZB

 BIN11 BIN11Z BIN11ZB

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 55 of 185 www.4dlabs.com.au

 BIN12 BIN12Z BIN12ZB

 BIN13 BIN13Z BIN13ZB

 BIN14 BIN14Z BIN14ZB

 BIN15 BIN15Z BIN15ZB

 BIN16 BIN16Z BIN16ZB

Returns field

 field Returns the the default width of the numeric field (digit count), usually ignored.

Descript
ion

putnum prints a 16bit number in various formats to the current output stream, usually the display.

Example var v;
v := 05678;

putnum(HEX, v); // print the number as hex 4 digits

putnum(BIN, v); // print the number as binary 16 digits

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 56 of 185 www.4dlabs.com.au

2.5.5. print(...)

Syntax print(...);

4DGL has a versatile print(...) statement for formatting numbers and strings. In it's simplest form, print will simply
print a number as can be seen below:

myvar := 100;
print(myvar);

This will print 100 to the current output device (usually the display in TEXT mode). Note that if you wish to add a
string anywhere within a print(...) statement, just place a quoted string expression and you will be able to mix strings
and numbers in a variety of formats. See the following example.

print("the value of myvar is :- ", myvar, "and its 8bit binary representation is:-", [BIN8]myvar);

* Refer the the table in putnum(..) for all the numeric representations available.

The print(...) statement will accept directives passed in square brackets to make it print in various ways, for instance,
if you wish to print a number in 4 digit hex, use the [HEX4] directive placed in front of the variable to be displayed
within the print statement. See the following example.

print("myvar as a 4 digit HEX number is :- ", [HEX4]myvar);

Note that there are 2 print directives that are not part of the numeric set and will be explained separately. these are
the [STR] and [CHR] directives.

The [STR] directive expects a string pointer to follow:

s := "Hello World"; // assign a string constant to s
print("Var 's' points to a string constant at address", s ," which is", [STR] s);

The [CHR] directive prints the character value of a variable.

print("The third character of the string is '", [CHR] *(s+2));
also

print("The value of 'myvar' as an ASCII charater is '", [CHR] myvar);

Note that you can freely mix string pointers, strings, variables and expressions within a print statement. print(...) can
also use the to(...) function to redirect it's output to a different output device other than the screen using the function
(refer to the to(...) statement for further examples).

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 57 of 185 www.4dlabs.com.au

2.5.6. to(outstream)

Syntax to(outstream);

Arguments outstream

outstream A variable or constant specifying the destination for the putch, putstr, putnum
and print functions.

Predefined Name Constant putch(), putstr(), putnum(), print() redirection

APPEND 0x0000 Output is directed to the same stream that was previously
assigned. Output is appended to user array if previous
redirection was to an array.

COM0 0xFF04 Output is redirected to the COM (serial) port.

TEXT 0xFF08 Output is directed to the screen (default).

MDA 0xFF10 Output is directed to the SD/SDHC or FLASH media.

(memory pointer) 0x102 < 0x3FF Output is redirect to the memory pointer argument.

Returns nothing

Description to() sends the printed output to destinations other than the screen. Normally, print just sends its
output to the display in TEXT mode which is the default, however, the output from print can be sent
to COM0, and MDA (media) 'streams'. The to(...) function can also stream to a memory array . Note
that once the to(...) function has taken effect, the stream reverts back to the default stream which is
TEXT as soon as putch, putstr, putnum or print has completed its action. The APPEND argument is
used to send the printed output to the same place as the previous redirection. This is most useful for
building string arrays, or adding sequential data to a media stream.

Example //==

// Example #1 – putstr redirection

//==

var buf[10]; // a buffer that will hold up to 20

bytes/chars

var s; // a var for use as a pointer

to(buf); putstr("ONE "); // redirect putstr to the buffer

to(APPEND); putstr("TWO "); // and add a couple more items

to(APPEND); putstr("THREE\n");

putstr(buf); // print the result

while (media_Init()==0); // wait if no SD/SDHC card detected

media_SetSector(0, 2); // at sector 2

//media_SetAdd(0, 1024); // (alternatively, use media_SetAdd(),

 // lower 9 bits ignored).

to(MDA); putstr("Hello World"); // now write a ascii test string

media_WriteByte('A'); // write a further 3 bytes

media_WriteByte('B');

media_WriteByte('C');

to(MDA); putstr(buf); // write the buffer we prepared earlier

media_WriteByte(0); // terminate with ASCII zero

media_Flush();

media_SetAdd(0, 1024); // reset the media address

while(char:=media_ReadByte())

 to(COM0); putch(char); // print the stored string to the COM port

wend

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 58 of 185 www.4dlabs.com.au

repeat forever

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 59 of 185 www.4dlabs.com.au

2.5.7. charwidth('char')

Syntax charwidth('char');

Arguments 'char'

 'char' The ascii character for the width calculation.

Returns width

 width Returns the width of a single character in pixel units.

Description charwidth is used to calculate the width in pixel units for a character, based on the currently selected
font. The font can be proportional or mono-spaced. If the total width of the string exceeds 255 pixel
units, the function will return the 'wrapped' (modulo 8) value.

Example //==

// Example

//==

str := "HELLO\nTHERE"; // note that this string spans 2 lines due

 // to the \n.

width := strwidth(str); // get the width of the string, this will

 // also capture the height.

height := strheight(); // note, invoking strwidth also calcs height

 // which we can now read.

// The string above spans 2 lines, strheight() will calculate height

// correctly for multiple lines.

len := strlen(str); // the strlen() function returns the number

 // of characters in a string.

print("\nLength=",len); // NB:- the \n in "HELLO\nTHERE" is counted

 // as a character.

txt_FontID(MS_SanSerif8x12); // select this font

w := charwidth('W'); // get a characters width

h := charheight('W'); // and height

txt_FontID(0); // back to default font

print ("\n'W' is " ,w, " pixels wide"); // show width of a character

 // 'W' in pixel units.

print ("\n'W' is " ,h, " pixels high"); // show height of a character

 // 'W' in pixel units.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 60 of 185 www.4dlabs.com.au

2.5.8. charheight('char')

Syntax charheight('char');

Arguments 'char'

 'char' The ascii character for the height calculation.

Returns width

 width Returns the height of a single character in pixel units.

Description charheight(char) is used to calculate the height in pixel units for a character, based on the currently
selected font. The font can be proportional or mono-spaced.

Example See example in charwidth()

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 61 of 185 www.4dlabs.com.au

2.5.9. strwidth(pointer)

Syntax strwidth(pointer);

Arguments pointer

 pointer The pointer to a zero (0x00) terminated string.

Returns width

 width Returns the width of a string in pixel units.

Description strwidth() returns the width of a zero terminated string in pixel units. Note that any string constants
declared in your program are automatically terminated with a zero as an end marker by the compiler.
Any string that you create in the DATA section or MEM section must have a zero added as a terminator
for this function to work correctly.

Example See example in charwidth()

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 62 of 185 www.4dlabs.com.au

2.5.10. strheight()

Syntax strheight();

Arguments none

Returns height

 height Returns the height of a string in pixel units.

Description strheight() returns the height of a zero terminated string in pixel units. The strwidth() function must
be called first which makes available width and height. Note that any string constants declared in your
program are automatically terminated with a zero as an end marker by the compiler. Any string that
you create in the DATA section or MEM section must have a zero added as a terminator for this
function to work correctly.

Example See example in charwidth()

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 63 of 185 www.4dlabs.com.au

2.5.11. strlen(pointer)

Syntax strlen(pointer);

Arguments pointer

 pointer The pointer to a zero (0x00) terminated string.

Returns length

 length Returns the length of a string in character units.

Description strlen() returns the length of a zero terminated string in character units. Note that any string constants
declared in your program are automatically terminated with a zero as an end marker by the compiler.
Any string that you create in the DATA section or MEM section must have a zero added as a terminator
for this function to work correctly.

Example See example in charwidth()

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 64 of 185 www.4dlabs.com.au

2.5.12. txt_Set(function, value)

Syntax txt_Set(function, value);

Arguments function, value

function The function number determines the required action for various text control functions.

Usually a constant, but can be a variable, array element, or expression. There are pre-

defined constants for each of the functions.

value A variable, array element, expression or constant holding a value for the selected

function.

Returns nothing

Description Given a function number and a value, set the required text control parameter, such as size, colour,
and other formatting controls. This function is extremely useful in a loop to select multiple parameters
from a data statement or a control array. Note also that each function available for txt_Set has a single
parameter 'shortcut' function that has the same effect.
(see the Single parameter short-cuts for the txt_Set functions next page)

function value

Predefined Name Description

0 TEXT_COLOUR Set the text foreground colour Colour 0-65535

1 TEXT_HIGHLIGHT Set the text background colour Colour 0-65535

2 FONT_ID Set the required font (0 = system font) See note #5

3 TEXT_WIDTH Set the text width multiplier (note #6) 1 to 16 (note #7)

4 TEXT_HEIGHT Set the text height multiplier (note #6) 1 to 16 (note #7)

5 TEXT_XGAP Set the pixel gap between characters 0 to n (note #8)

6 TEXT_YGAP Set the pixel gap between lines 0 to n (note #8)

7 TEXT_PRINTDELAY Set the delay between character printing (Default 0msec)

8 TEXT_OPACITY Selects whether or not the 'background' pixels are drawn
(default mode is OPAQUE)

0 or TRANSPARENT
1 or OPAQUE

9 TEXT_BOLD Embolden text 0 or 1 (OFF or ON)

10 TEXT_ITALIC Italicise text 0 or 1 (OFF or ON)

11 TEXT_INVERSE Inverted text 0 or 1 (OFF or ON)

12 TEXT_UNDERLINED Underlined text 0 or 1 (OFF or ON)

13 TEXT_ATTRIBUTES Control of functions 9,10,11,12 grouped
(bits can be combined by using logical 'or' of bits)
nb:- bits 0-3 and 8-15 are reserved

16 or BOLD
32 or ITALIC
64 or INVERSE
128 or UNDERLINED

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 65 of 185 www.4dlabs.com.au

Single parameter short-cuts for the txt_Set(..) functions

Function Syntax Function Action value

txt_FGcolour() Set the text foreground colour Colour 0-65535

txt_BGcolour() Set the text background colour Colour 0-65535

txt_FontID(id) Set the required font (0 = system font) See note #5

txt_Width(multiplier) Set the text width multiplier (note #6) 1 to 16 (note #7)

txt_Height(multiplier) Set the text height multiplier (note #6) 1 to 16 (note #7)

txt_Xgap(pixelcount) Set the pixel gap between characters 0 to n (note #8)

txt_Ygap(pixelcount) Set the pixel gap between lines 0 to n (note #8)

txt_Delay(millisecs) Set the delay between character printing (Default 0msec)

txt_Opacity(mode) Selects whether or not the 'background' pixels are drawn
(default mode is OPAQUE)

0 or TRANSPARENT
1 or OPAQUE

txt_Bold(mode) Embolden text 0 or 1 (OFF or ON)

txt_Italic(mode) Italic text 0 or 1 (OFF or ON)

txt_Inverse(mode) Inverted text 0 or 1 (OFF or ON)

txt_Underlined(mode) Underlined text 0 or 1 (OFF or ON)

txt_Attributes(value) Control of functions 9, 10, 11, 12 grouped
(bits can be combined by using logical 'OR' of bits)
nb:- bits 0-3 and 8-15 are reserved

16 or BOLD
32 or ITALIC
64 or INVERSE
128 or UNDERLINED

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 66 of 185 www.4dlabs.com.au

2.6. Graphics Functions

Summary of Functions in this section:

• gfx_Cls()

• gfx_ChangeColour(oldColour, newColour)

• gfx_Circle(x, y, radius, colour)

• gfx_CircleFilled(x, y, radius, colour)

• gfx_Line(x1, y1, x2, y2, colour)

• gfx_Hline(y, x1, x2, colour)

• gfx_Vline(x, y1, y2, colour)

• gfx_Rectangle(x1, y1, x2, y2, colour)

• gfx_RectangleFilled(x1, y1, x2, y2, colour)

• gfx_Polyline(n, vx, vy, colour)

• gfx_Polygon(n, vx, vy, colour)

• gfx_Triangle(x1, y1, x2, y2, x3, y3, colour)

• gfx_Dot()

• gfx_Bullet(radius)

• gfx_OrbitInit(&x_dest, &y_dest)

• gfx_Orbit(angle, distance)

• gfx_PutPixel(x, y, colour)

• gfx_GetPixel(x, y)

• gfx_MoveTo(xpos, ypos)

• gfx_MoveRel(xoffset, yoffset)

• gfx_IncX()

• gfx_IncY()

• gfx_LineTo(xpos, ypos)

• gfx_LineRel(xpos, ypos)

• gfx_BoxTo(x2, y2)

• gfx_SetClipRegion()

• gfx_ClipWindow(x1, y1, x2, y2)

• gfx_FocusWindow()

• gfx_Set(function, value)
gfx_Set shortcuts:

• gfx_PenSize(mode)

• gfx_BGcolour(colour)

• gfx_ObjectColour(colour)

• gfx_Clipping(mode)

• gfx_FrameDelay(delay)

• gfx_ScreenMode(delay)

• gfx_OutlineColour(colour)

• gfx_Contrast(value)

• gfx_LinePattern(pattern)

• gfx_ColourMode(mode)

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 67 of 185 www.4dlabs.com.au

2.6.1. gfx_Cls()

Syntax gfx_Cls();

Arguments none

Returns nothing

Description Clear the screen using the current background colour

Example gfx_BGcolour(DARKGRAY);

gfx_Cls();

This example clears the entire display using colour DARKGRAY

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 68 of 185 www.4dlabs.com.au

2.6.2. gfx_ChangeColour(oldColour, newColour)

Syntax gfx_ChangeColour(oldColour, newColour);

Arguments oldColour, newColour

oldColour specifies the sample colour to be changed within the clipping window.

newColour
specifies the new colour to change all occurrences of old colour within the clipping

window.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Changes all oldColour pixels to newColour within the clipping area.

Example func main()

 txt_Width(3);

 txt_Height(5);

 gfx_MoveTo(8,20);

 print("TEST"); // print the string

 gfx_SetClipRegion(); // force clipping area to extents of text

 // just printed.

 gfx_ChangeColour(BLACK, RED); // test change of background colour

 repeat forever

endfunc

This example prints a test string, forces the clipping area to the extent of the text that was printed,
then changes the background colour.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 69 of 185 www.4dlabs.com.au

2.6.3. gfx_Circle(x, y, radius, colour)

Syntax gfx_Circle(x, y, rad, colour);

Arguments x, y, rad, colour

x, y specifies the center of the circle.

rad specifies the radius of the circle.

colour specifies the colour of the circle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a circle with centre point x1, y1 with radius r using the specified colour.

NB: The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the circle will be

drawn filled, if PEN_SIZE is set to OUTLINE, the circle will be drawn as an outline. If the circle is drawn

as SOLID, the outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set

to 0, no outline is drawn.

Example // assuming PEN_SIZE is OUTLINE

gfx_Circle(50,50,30, 0x001F);

This example draws a BLUE circle outline centred at x=50, y=50 with a radius of 30 pixel units.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 70 of 185 www.4dlabs.com.au

2.6.4. gfx_CircleFilled(x, y, radius, colour)

Syntax gfx_CircleFilled(x, y, rad, colour);

Arguments x, y, rad, colour

x, y specifies the center of the circle.

rad specifies the radius of the circle.

colour specifies the fill colour of the circle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a SOLID circle with centre point x1, y1 with radius using the specified colour.

The outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set to 0, no

outline is drawn.

NB:- The PEN_SIZE is ignored, the circle is always drawn SOLID.

Example gfx_OutlineColour(0xFFE0);

gfx_CircleFilled(25,25,10, 0xF800);

This example draws a filled RED circle with a YELLOW outline at x=25, y=25 with a radius of 10 pixel
units.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 71 of 185 www.4dlabs.com.au

2.6.5. gfx_Line(x1, y1, x2, y2, colour)

Syntax gfx_Line(x1, y1, x2, y2, colour);

Arguments x1, y1, x2, y2, colour

x1, y1 specifies the starting coordinates of the line.

x2, y2 specifies the ending coordinates of the line.

colour specifies the colour of the line.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a line from x1,y1 to x2,y2 using the specified colour. The line is drawn using the current object

colour. The current origin is not altered. The line may be tessellated with the gfx_LinePattern(...)

function.

Example gfx_Line(100, 100, 10, 10, 0xF800);

This example draws a RED line from x1=10, y1=10 to x2=100, y2=100

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 72 of 185 www.4dlabs.com.au

2.6.6. gfx_Hline(y, x1, x2, colour)

Syntax gfx_Hline(y, x1, x2, colour);

Arguments y, x1, x2, colour

y specifies the vertical position of the horizontal line.

x1, x2 specifies the horizontal end points of the line.

colour specifies the colour of the horizontal line.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a fast horizontal line from x1 to x2 at vertical co-ordinate y using colour.

Example gfx_Hline(50, 10, 80, 0xF800);

This example draws a fast RED horizontal line at y=50, from x1=10 to x2=80

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 73 of 185 www.4dlabs.com.au

2.6.7. gfx_Vline(x, y1, y2, colour)

Syntax gfx_Vline(x, y1, y2, colour);

Arguments x, y1, y2, colour

x specifies the horizontal position of the vertical line.

y1, y2 specifies the vertical end points of the line.

colour specifies the colour of the vertical line.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a fast vertical line from y1 to y2 at horizontal co-ordinate x using colour.

Example gfx_Vline(20, 30, 70, 0xF800);

This example draws a fast RED vertical line at x=20, from y1=30 to y2=70

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 74 of 185 www.4dlabs.com.au

2.6.8. gfx_Rectangle(x1, y1, x2, y2, colour)

Syntax gfx_Rectangle(x1, y1, x2, y2, colour);

Arguments x1, y1, x2, y2, colour

x1, y1 specifies the top left corner of the rectangle.

x2, y2 specifies the bottom right corner of the rectangle.

colour specifies the colour of the rectangle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a rectangle from x1, y1 to x2, y2 using the specified colour. The line may be tessellated with

the gfx_LinePattern(...) function.

NB: The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the rectangle will

be drawn filled, if PEN_SIZE is set to OUTLINE, the rectangle will be drawn as an outline. If the

rectangle is drawn as SOLID, the outline colour can be specified with gfx_OutlineColour(...). If

OUTLINE_COLOUR is set to 0, no outline is drawn. The outline may be tessellated with the

gfx_LinePattern(...) function.

Example // assuming PEN_SIZE is OUTLINE

gfx_Rectangle(10, 10, 30, 30, 0x07E0);

This example draws a GREEN rectangle from x1=10, y1=10 to x2=30, y2=30

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 75 of 185 www.4dlabs.com.au

2.6.9. gfx_RectangleFilled(x1, y1, x2, y2, colour)

Syntax gfx_RectangleFilled(x1, y1, x2, y2, colour);

Arguments x1, y1, x2, y2, colour

x1, y1 specifies the top left corner of the rectangle.

x2, y2 specifies the bottom right corner of the rectangle.

colour specifies the colour of the rectangle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a SOLID rectangle from x1, y1 to x2, y2 using the specified colour. The line may be tessellated

with the gfx_LinePattern(...) function.

The outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set to 0, no

outline is drawn. The outline may be tessellated with the gfx_LinePattern(...) function.

NB:- The PEN_SIZE is ignored, the rectangle is always drawn SOLID.

Example gfx_OutlineColour(0xFFE0);

gfx_RectangleFilled(30,30,80,80, 0xF800);

This example draws a filled RED rectangle with a YELLOW outline from x1=30,y1=30 to x2=80,y2=80

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 76 of 185 www.4dlabs.com.au

2.6.10. gfx_Polyline(n, vx, vy, colour)

Syntax gfx_Polyline(n, vx, vy, colour);

Arguments n, vx, vy, colour

n
specifies the number of elements in the x and y arrays specifying the vertices for the

polyline.

vx
specifies the addresses of the storage of the array of elements for the x coordinates of

the vertices.

vy
specifies the addresses of the storage of the array of elements for the y coordinates of

the vertices.

colour Specifies the colour for the lines

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Plots lines between points specified by a pair of arrays using the specified colour. The lines may be

tessellated with the gfx_LinePattern(...) function. gfx_Polyline can be used to create complex raster

graphics by loading the arrays from serial input or from MEDIA with very little code requirement.

Example #inherit "4DGL_16bitColours.fnc"

var vx[20], vy[20];

func main()

 vx[0] := 36; vy[0] := 110;

 vx[1] := 36; vy[1] := 80;

 vx[2] := 50; vy[2] := 80;

 vx[3] := 50; vy[3] := 110;

 vx[4] := 76; vy[4] := 104;

 vx[5] := 85; vy[5] := 80;

 vx[6] := 94; vy[6] := 104;

 vx[7] := 76; vy[7] := 70;

 vx[8] := 85; vy[8] := 76;

 vx[9] := 94; vy[9] := 70;

 vx[10] := 110; vy[10] := 66;

 vx[11] := 110; vy[11] := 80;

 vx[12] := 100; vy[12] := 90;

 vx[13] := 120; vy[13] := 90;

 vx[14] := 110; vy[14] := 80;

 vx[15] := 101; vy[15] := 70;

 vx[16] := 110; vy[16] := 76;

 vx[17] := 119; vy[17] := 70;

 // house

 gfx_Rectangle(6,50,66,110,RED); // frame

 gfx_Triangle(6,50,36,9,66,50,YELLOW); // roof

 gfx_Polyline(4, vx, vy, CYAN); // door

 // man

 gfx_Circle(85, 56, 10, BLUE); // head

 gfx_Line(85, 66, 85, 80, BLUE); // body

 gfx_Polyline(3, vx+4, vy+4, CYAN); // legs

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 77 of 185 www.4dlabs.com.au

 gfx_Polyline(3, vx+7, vy+7, BLUE); // arms

 // woman

 gfx_Circle(110, 56, 10, PINK); // head

 gfx_Polyline(5, vx+10, vy+10, BROWN); // dress

 gfx_Line(104, 104, 106, 90, PINK); // left arm

 gfx_Line(112, 90, 116, 104, PINK); // right arm

 gfx_Polyline(3, vx+15, vy+15, SALMON); // dress

 repeat forever

endfunc

This example draws a simple scene

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 78 of 185 www.4dlabs.com.au

2.6.11. gfx_Polygon(n, vx, vy, colour)

Syntax gfx_Polygon(n, vx, vy, colour);

Arguments n, vx, vy, colour

n
specifies the number of elements in the x and y arrays specifying the vertices for the

polygon.

vx
specifies the addresses of the storage of the array of elements for the x coordinates of

the vertices.

vy
specifies the addresses of the storage of the array of elements for the y coordinates of

the vertices.

colour Specifies the colour for the polygon

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Plots lines between points specified by a pair of arrays using the specified colour. The last point is

drawn back to the first point, completing the polygon. The lines may be tessellated with the

gfx_LinePattern(...) function. gfx_Polygon can be used to create complex raster graphics by loading

the arrays from serial input or from MEDIA with very little code requirement.

Example var vx[7], vy[7];

func main()

 vx[0] := 10; vy[0] := 10;

 vx[1] := 35; vy[1] := 5;

 vx[2] := 80; vy[2] := 10;

 vx[3] := 60; vy[3] := 25;

 vx[4] := 80; vy[4] := 40;

 vx[5] := 35; vy[5] := 50;

 vx[6] := 10; vy[6] := 40;

 gfx_Polygon(7, vx, vy, RED);

 repeat forever

endfunc

This example draws a simple polygon

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 79 of 185 www.4dlabs.com.au

2.6.12. gfx_Triangle(x1, y1, x2, y2, x3, y3, colour)

Syntax gfx_Triangle(x1, y1, x2, y2, x3, y3, colour);

Arguments x1, y1, x2, y2, x3, y3, colour

x1, y1 specifies the first vertices of the triangle.

x2, y2 specifies the second vertices of the triangle.

x3, y3 specifies the third vertices of the triangle.

colour Specifies the colour for the triangle.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a triangle outline between vertices x1,y1 , x2,y2 and x3,y3 using the specified colour. The line

may be tessellated with the gfx_LinePattern(...) function.

Example gfx_Triangle(10,10,30,10,20,30,0xFFE0);

This example draws a CYAN triangular outline with vertices at 10,10 30,10 20,30

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 80 of 185 www.4dlabs.com.au

2.6.13. gfx_Dot()

Syntax gfx_Dot();

Arguments none

Returns nothing

Description Draws a pixel at at the current origin using the current object colour.

Example gfx_MoveTo(40,50);

gfx_ObjectColour(0xF800);

gfx_Dot();

This example draws a RED pixel at 40,50

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 81 of 185 www.4dlabs.com.au

2.6.14. gfx_Bullet(radius)

Syntax gfx_Bullet(radius);

Arguments radius

rad specifies the radius of the bullet.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a circle or 'bullet point' with radius r at at the current origin using the current object colour.

Note: The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the circle will be

drawn filled, if PEN_SIZE is set to OUTLINE, the circle will be drawn as an outline. If the circle is drawn

as SOLID, the outline colour can be specified with gfx_OutlineColour(...).

Example // assuming PEN_SIZE is TRANSPARENT

// and OBJECT_COLOUR is WHITE

gfx_MoveTo(50,50);

gfx_Bullet(5);

This example draws a WHITE circle outline at the current origin with a radius of 5 pixel units.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 82 of 185 www.4dlabs.com.au

2.6.15. gfx_OrbitInit(&x_dest, &y_dest)

Syntax gfx_OrbitInit(&x_dest, &y_dest);

Arguments &x_dest, &y_dest

&x_dest,
&y_dest

specifies the addresses of the storage locations for the orbit calculation.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Sets up the internal pointers for the gfx_Orbit(..) result variables. The &x_orb and &y_orb parameters

are the addresses of the variables or array elements that are used to store the result from the

gfx_Orbit(..) function.

Example var targetX, targetY;

gfx_OrbitInit(&targetX, &targetY);

This example sets the variables that will receive the result from a gfx_Orbit(..) function call

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 83 of 185 www.4dlabs.com.au

2.6.16. gfx_Orbit(angle, distance)

Syntax gfx_Orbit(angle, distance);

Arguments angle, distance

angle specifies the angle from the origin to the remote point. The angle is specified in degrees.

distance specifies the distance from the origin to the remote point in pixel units.

The arguments can be a variable, array element, expression or constant

Returns nothing

 Note: result is stored in the variables that were specified with the gfx_OrbitInit(..) function.

Description Sets Prior to using this function, the destination address of variables for the calculated coordinates

must be set using the gfx_OrbitInit(..) function. The gfx_Orbit(..) function calculates the x, y

coordinates of a distant point relative to the current origin, where the only known parameters are the

angle and the distance from the current origin. The new coordinates are calculated and then placed

in the destination variables that have been previously set with the gfx_OrbitInit(..) function.

Example var targetX, targetY;

gfx_OrbitInit(&targetX, &targetY);

gfx_MoveTo(30, 30);

gfx_Bullet(5) // mark the start point with a small WHITE circle

gfx_Orbit(30, 50); // calculate a point 50 pixels away from origin at

 // 30 degrees

gfx_CircleFilled(targetX,targetY,3,0xF800); // mark the target point

 // with a RED circle

See example comments for explanation.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 84 of 185 www.4dlabs.com.au

2.6.17. gfx_PutPixel(x, y, colour)

Syntax gfx_PutPixel(x, y, colour);

Arguments x, y, colour

x, y specifies the screen coordinates of the pixel.

colour Specifies the colour of the pixel.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a pixel at position x,y using the specified colour.

Example gfx_PutPixel(32, 32, 0xFFFF);

This example draws a WHITE pixel at x=32, y=32

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 85 of 185 www.4dlabs.com.au

2.6.18. gfx_GetPixel(x, y)

Syntax gfx_GetPixel(x, y);

Arguments x, y

x, y specifies the screen coordinates of the pixel colour to be returned.

The arguments can be a variable, array element, expression or constant

Returns colour

 colour The 8 or 16bit colour of the pixel (default 16bit).

Description Reads the colour value of the pixel at position x,y.

Example gfx_PutPixel(20, 20, 1234);

r := gfx_GetPixel(20, 20);

print(r);

This example prints 1234, the colour of the pixel that was previously placed.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 86 of 185 www.4dlabs.com.au

2.6.19. gfx_MoveTo(xpos, ypos)

Syntax gfx_MoveTo(xpos, ypos);

Arguments xpos, ypos

xpos specifies the horizontal position of the new origin.

ypos specifies the vertical position of the new origin.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Moves the origin to a new position.

Example gfx_MoveTo(10, 20);

gfx_Dot();

This example moves the origin to x=10, y=20 and draws a pixel.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 87 of 185 www.4dlabs.com.au

2.6.20. gfx_MoveRel(xoffset, yoffset)

Syntax gfx_MoveRel(xoffset, yoffset);

Arguments xoffset, yoffset

xoffset specifies the horizontal offset of the new origin.

yoffset specifies the vertical offset of the new origin.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Moves the origin to a new position relative to the old position.

Example gfx_MoveTo(10, 20);

gfx_MoveRel(-5, -3);

gfx_Dot();

This example draws a pixel using the current object colour at x=5, y=17

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 88 of 185 www.4dlabs.com.au

2.6.21. gfx_IncX()

Syntax gfx_IncX();

Arguments none

Returns old_origin

 old_origin Returns the current X origin before the increment.

Description Increment the current X origin by 1 pixel unit. The original value is returned before incrementing. The

return value can be useful if a function requires the current point before insetting occurs.

Example var n;

gfx_MoveTo(20,20);

n := 96;

while (n--)

 gfx_ObjectColour(n/3);

 gfx_Bullet(2);

 gfx_IncX();

wend

This example draws a simple rounded vertical gradient.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 89 of 185 www.4dlabs.com.au

2.6.22. gfx_IncY()

Syntax gfx_IncY();

Arguments none

Returns old_Yorigin

 old_Yorigin Returns the current Y origin before the increment.

Description Increment the current Y origin by 1 pixel unit. The original value is returned before incrementing. The

return value can be useful if a function requires the current point before insetting occurs.

Example var n;

gfx_MoveTo(20,20);

n := 96;

while (n--)

 gfx_ObjectColour(n/3);

 gfx_LineRel(20, 0);

 gfx_IncY();

wend

This example draws a simple horizontal gradient using lines.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 90 of 185 www.4dlabs.com.au

2.6.23. gfx_LineTo(xpos, ypos)

Syntax gfx_LineTo(xpos, ypos);

Arguments xpos, ypos

xpos specifies the horizontal position of the line end as well as the new origin.

ypos specifies the vertical position of the line end as well as the new origin.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a line from the current origin to a new position. The Origin is then set to the new position. The

line is drawn using the current object colour. The line may be tessellated with the gfx_LinePattern(...)

function.

Example gfx_MoveTo(10, 20);

gfx_LineTo(60, 70);

This example draws a line using the current object colour between x1=10,y1=20 and x2=60,y2=70.
The new origin is now set at x=60,y=70.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 91 of 185 www.4dlabs.com.au

2.6.24. gfx_LineRel(xpos, ypos)

Syntax gfx_LineRel(xpos, ypos);

Arguments xpos, ypos

xpos specifies the horizontal end point of the line.

ypos specifies the vertical end point of the line.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a line from the current origin to a new position. The line is drawn using the current object

colour. The current origin is not altered. The line may be tessellated with the gfx_LinePattern(...)

function.

Example gfx_LinePattern(0b1100110011001100);

gfx_MoveTo(10, 20);

gfx_LineRel(50, 50);

This example draws a tessellated line using the current object colour between 10,20 and 50,50.
Note: that gfx_LinePattern(0); must be used after this to return line drawing to normal solid lines.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 92 of 185 www.4dlabs.com.au

2.6.25. gfx_BoxTo(x2, y2)

Syntax gfx_BoxTo(x2, y2);

Arguments x2, y2

x2,y2 specifies the diagonally opposed corner of the rectangle to be drawn, the top left corner

(assumed to be x1, y1) is anchored by the current origin.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Draws a rectangle from the current origin to the new point using the current object colour. The top

left corner is anchored by the current origin (x1, y1), the bottom right corner is specified by x2, y2.

Note: The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the rectangle will

be drawn filled, if PEN_SIZE is set to OUTLINE, the rectangle will be drawn as an outline. If the circle

is drawn as SOLID, the outline colour can be specified with gfx_OutlineColour(...). If

OUTLINE_COLOUR is set to 0, no outline is drawn.

Example gfx_MoveTo(40,40);

n := 10;

while (n--)

 gfx_BoxTo(50,50);

 gfx_BoxTo(30,30);

wend

This example draws 2 boxes, anchored from the current origin.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 93 of 185 www.4dlabs.com.au

2.6.26. gfx_SetClipRegion()

Syntax gfx_SetClipRegion();

Arguments none

Returns nothing

Description Forces the clip region to the extent of the last text that was printed, or the last image that was shown.

Example #constant NUMCOLOURS 6

var colour[NUMCOLOURS];

func main()

 var n,x,y,colr,x1,y1,x2,y2,w,h;

 colour[0]:=RED; // the colour set for the random pixels

 colour[1]:=GREEN;

 colour[2]:=BLUE;

 colour[3]:=YELLOW;

 colour[4]:=CYAN;

 colour[5]:=MAGENTA;

 txt_Width(5); txt_Height(7);

 gfx_MoveTo(6,20);

 txt_Bold(ON);

 txt_FGcolour(1); // start with a very dark blue

 print("TEST"); // print the string

 gfx_SetClipRegion(); // force clipping area to extents of

 // text just printed

 x1:=peekB(CLIP_LEFT_POS); // get the cliiping area to local vars

 y1:=peekB(CLIP_TOP_POS);

 x2:=peekB(CLIP_RIGHT_POS);

 y2:=peekB(CLIP_BOTTOM_POS);

 w:=x2-x1; // get the width and height

 h:=y2-y1;

 txt_MoveCursor(10,0);

 txt_FGcolour(SALMON);

 print("x1=",x1," y1=",y1,"\nx2=",x2," y2=",y2); //print the

 //clipping region

 txt_FGcolour(GREEN);

 pause(1000);

 repeat

 if (!*TIMER0) // if timer has expired-

 *TIMER0 := 5000; // reset the timer.

 colr := colour[n++%NUMCOLOURS]; // select new colour -

 // every 5 seconds.

 txt_MoveCursor(14,0);

 print([DEC5ZB] n); // print n

 endif

 x:=ABS(RAND()%w) + x1; // get random pixel position within

 // the clip region.

 y:=ABS(RAND()%h) + y1;

 if(gfx_GetPixel(x,y)) gfx_PutPixel(x,y, colr); // update any

 // non black pixels

 forever

endfunc

This example prints a test string, forces the clipping area to the extent of the text that was printed,
then changes the text colour randomly, pixel by pixel.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 94 of 185 www.4dlabs.com.au

2.6.27. gfx_ClipWindow(x1, y1, x2, y2)

Syntax gfx_ClipWindow(x1, y1, x2, y2);

Arguments x1, y1, x2, y2

x1, y1 specifies the horizontal and vertical position of the top left corner of the clipping window.

x2, y2 specifies the horizontal and vertical position of the bottom right corner of the clipping

window.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Specifies a clipping window region on the screen such that any objects and text placed onto the screen

will be clipped and displayed only within that region. For the clipping window to take effect, "Clipping"

setting must be enabled separately using gfx_Set(CLIPPING, ON) or the shortcut gfx_Clipping(ON).

Example var n;

gfx_ClipWindow(10, 10, 50, 50)

n := 50000;

while(n--)

 gfx_PutPixel(RAND()%100, RAND()%100, RAND());

wend

repeat forever

This example will draw 50000 random colour pixels, only the pixels within the clipping area will be
visible

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 95 of 185 www.4dlabs.com.au

2.6.28. gfx_FocusWindow()

Syntax gfx_FocusWindow();

Arguments none

Returns pixel_count

 pixel_count The pixel count of the selected area.

Description Sets the display hardware GRAM access registers to the clipping area ready for reading or writing. The

function also returns the pixel count of the selected area.

Example // example #1

func main()

 var pixelcount;

 txt_Height(4);

 gfx_MoveTo(20,20);

 print("TEST"); // print a string.

 gfx_SetClipRegion(); // force the clipping region to the

 // extent of the text.

 Pixelcount:= gfx_FocusWindow(); // get the count, focus on region.

 pause(1000);

 disp_BlitPixelFill(BLUE, pixelcount); // fill the region.

 print(pixelcount, " pixels\n"); //show the pixel count of region.

 repeat forever

endfunc

The above example prints a test string, forces the clipping area to the extent of the text that was
printed, then after a delay, fills the region with a colour. The count of pixels in the region is then
shown.

// example #2

func main()

 var pixels;

 putstr("Open the terminal\n");

 putstr("Type any key to start\n");

 while(serin() < 0); // wait for key from terminal before start

 gfx_ClipWindow(40,40,44,44); // within a small block on display

 pixels:=gfx_FocusWindow(); //focus GRAM and get pixel count

 disp_BlitPixelFill(0x4142, pixels); // fill the area, using ASCII

 // values so we can read easy

 disp_BlitPixelsToCOM(); // send all the pixel values to com port

 print("Done!");

 repeat forever

endfunc

This example fills a small screen area, then outputs each pixel of the selected area to the COM port.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 96 of 185 www.4dlabs.com.au

2.6.29. gfx_Set(function, value)

Syntax gfx_Set(function, value);

Arguments function, value

function The function number determines the required action for various graphics control

functions. Usually a constant, but can be a variable, array element, or expression. There

are pre-defined constants for each of the functions.

value A variable, array element, expression or constant holding a value for the selected

function.

Returns nothing

Description Given a function number and a value, set the required graphics control parameter, such as size,

colour, and other parameters. (see the Single parameter short-cuts for the gfx_Set functions below).

function value

Predefined Name Description

0 PEN_SIZE Set the draw mode for gfx_LineTo, gfx_LineRel, gfx_Dot,
gfx_Bullet and gfx_BoxTo (default mode is OUTLINE)
nb:- pen size is set to OUTLINE for normal operation

0 or SOLID
1 or OUTLINE

1 BACKGROUND_COLOUR Set the screen background colour Colour, 0-65535

2 OBJECT_COLOUR Generic colour for gfx_LineTo(...), gfx_LineRel(...),
gfx_Dot(), gfx_Bullet(...) and gfx_BoxTo(...)

Colour, 0-65535

3 CLIPPING Turns clipping on/off.
The clipping points are set with gfx_ClipWindow(...)

0 or 1 (ON or OFF)

4 TRANSPARENT_COLOUR Not implemented on Goldelox-GFX2 n/a

5 TRANSPARENCY Not implemented on Goldelox-GFX2 n/a

6 FRAME_DELAY Set the inter frame delay for media_Video(...) 0 to 255msec

7 SCREEN_MODE Set required screen behaviour/orientation. 0 or LANDSCAPE
1 or LANDSCAPE _R
2 or PORTRAIT
3 or PORTRAIT_R

8 OUTLINE_COLOUR Outline colour for rectangles and circles
(set to 0 for no effect)

Colour, 0-65535

9 CONTRAST Set contrast value, 0 = display off, 1-16 = contrast level
(only available on Goldelox Engineering samples, must be
implemented in users code for Goldelox-GFX2 with
external initialisation tables, refer to individual display
driver data sheets)

0 or OFF
1 to 16 for levels

10 LINE_PATTERN Sets the line draw pattern for line drawing. If set to zero,
lines are solid, else each '1' bit represents a pixel that is
turned off. See code examples for further reference.

0 bits for pixels on
1 bits for pixels off

11 COLOUR_MODE Sets 8 or 16bit colour mode (only available on Goldelox
Engineering samples, must be implemented in users code
for Goldelox-GFX2 with external initialisation tables, refer
to individual display driver data sheets)

0 or COLOUR16
1 or COLOUR8

0 PEN_SIZE Set the draw mode for gfx_LineTo, gfx_LineRel, gfx_Dot, 0 or SOLID

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 97 of 185 www.4dlabs.com.au

gfx_Bullet and gfx_BoxTo (default mode is OUTLINE)
nb:- pen size is set to OUTLINE for normal operation

1 or OUTLINE

Single parameter short-cuts for the gfx_Set(..) functions

Function Syntax Function Action value

gfx_PenSize(mode) Set the draw mode for gfx_LineTo, gfx_LineRel, gfx_Dot,
gfx_Bullet and gfx_BoxTo
Note: pen size is set to OUTLINE for normal operation
(default).

0 or SOLID
1 or OUTLINE

gfx_BGcolour(colour) Set the screen background colour Colour 0-65535

gfx_ObjectColour(colour) Generic colour for gfx_LineTo(...), gfx_LineRel(...),
gfx_Dot(), gfx_Bullet(... and gfx_BoxTo

Colour 0-65535

gfx_Clipping(mode) Turns clipping on/off.
The clipping points are set with gfx_ClipWindow(...)

0 or 1 (ON or OFF)

gfx_FrameDelay(delay) Set the inter frame delay for media_Video(...) 0 to 255msec

gfx_ScreenMode(mode) Set required screen behaviour/orientation. 1 or LANDSCAPE
2 or LANDSCAPE _R
3 or PORTRAIT
4 or PORTRAIT_R

gfx_OutlineColour(colour) Outline colour for rectangles and circles.
(set to 0 for no effect)

Colour 0-65535

gfx_Contrast(value) Set contrast value, 0 = display off, 1-16 = contrast level.
(only available on Goldelox Engineering samples, must be
implemented in users code for Goldelox-GFX2 with
external initialisation tables, refer to individual display
driver data sheets)

0 or OFF
1 to 16 for levels

gfx_LinePattern(pattern) Sets the line draw pattern for line drawing. If set to zero,
lines are solid, else eac '1' bit represents a pixel that is
turned off. See code examples for further reference.

0 bits for pixels on
1 bits for pixels off

gfx_ColourMode(mode) Sets 8 or 16bit colour mode
(only available on Goldelox Engineering samples, must be
implemented in users code for Goldelox-GFX2 with
external initialisation tables, refer to individual display
driver data sheets)

0 or COLOUR16
1 or COLOUR8

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 98 of 185 www.4dlabs.com.au

2.7. Display I/O Functions

These functions allow direct display access for fast blitting operations.

Summary of Functions in this section:

• disp_Init(initTable, stateMachine)

• disp_WriteControl(value)

• disp_WriteByte(value)

• disp_WriteWord(value)

• disp_ReadByte()

• disp_ReadWord()

• disp_BlitPixelFill(colour, count)

• disp_BlitPixelsToMedia()

• disp_BlitPixelsFromMedia(pixelcount)

• disp_SkipPixelsFromMedia(pixelcount)

• disp_BlitPixelsToCOM()

• disp_BlitPixelsFromCOM(mode)

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 99 of 185 www.4dlabs.com.au

2.7.1. disp_Init(initTable, stateMachine)

Syntax disp_Init(initTable, stateMachine);

Arguments initTable, stateMachine

initTable A reference to the device initialisation table which is stored as a data statement.

stateMachine A reference to the device state machine table which is stored as a data statement.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description

The Goldelox-GFX2 needs to be aware of all the display registers and how to access them. The
initialisation and the state machine tables are necessary to achieve this. Refer to the individual display
data sheet available from the display manufacturer.

Note: for hardware platform modules such as uOLED-96-G1(GFX), uOLED-128-G1(GFX), etc the
disp_Init(,,) is not needed. The modules are factory set-up with their display specific configurations.

Example //===

/ SD1339 Device Initialisation Procedure

//===

#DATA

byte initTable

// first 4 bytes of table hold

// display access information

 _DISPLAY_X_MAX, // width-1

 _DISPLAY_X_MAX, // height-1

 WRITE_GRAM, // write access register

 WRITE_GRAM, // read access register

 // now the display initialisation table

 0, DISPLAY_OFF, // Display OFF

 1, REMAP_COLOUR_SETTINGS, _65K_COLOURS, // Set Re-map/Color Depth

 1, DISPLAY_START_LINE, 0x00,

 1, DISPLAY_OFFSET, 0x80,

 1, DUTY_CYCLE, 0x7F, // Duty 127+1 (0x80)

 0, DISPLAY_NORMAL, // Normal display

 1, MASTER_CONFIGURE, 0x8E, // Set Master Configuration

 1, CONTRAST_MASTER, 0x0F, // Set master contrast

 3, CONTRAST_RGB, 0xFF, 0xFF, 0xFF, // Set contrast current

 1, SET_VCOMH, 0x1F, // Set VcomH

 1, POWERSAVE_MODE, 0x05, // Power saving mode

 3, PRECHARGE_VOLTAGE_RGB, 0x1C, 0x1C, 0x1C, // Set pre-charge

 // voltage

 1, PHASE_PRECHARGE, 0x11, // Set pre & dis_charge

 1, CLOCK_FREQUENCY, 0x80, // clock & frequency (0xF0)

 0, SLEEP_MODE_OFF, // Display on

 2, SET_COLUMN_ADDRESS, 0x00, 0x7F, // set full screen

 2, SET_ROW_ADDRESS, 0x00, 0x7F,

 0xFF

#END

//===

// GRAM access state machine for SSD1339 (on uOLED-128-G1(GFX))

//===

#DATA

byte stateMachine

 WRITE_CONTROL_CONSTANT, SET_COLUMN_ADDRESS,

 WRITE_DATA_BYTE, _VX1,

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 100 of 185 www.4dlabs.com.au

 WRITE_DATA_BYTE, _VX2,

 WRITE_CONTROL_CONSTANT, SET_ROW_ADDRESS,

 WRITE_DATA_BYTE, _VY1,

 WRITE_DATA_BYTE, _VY2,

 WRITE_EXIT

#END

func main()

 disp_Init(initTable, stateMachine); // initialise the display

 txt_MoveCursor(0, 2);

 txt_Bold(1);

 txt_Italic(1);

 txt_Set(TEXT_COLOUR, WHITE);

 print("4D LABS");

 repeat forever

end

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 101 of 185 www.4dlabs.com.au

2.7.2. disp_WriteControl(value)

Syntax disp_WriteControl(value);

Arguments value

value Specifies the value to be written to the display control register. Only the lower 8 bits
are sent to the display.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description
Sends a single byte (which is the lower 8 bits of value) to the display bus. Refer to individual data
sheets for the display for more information. This function is used to extend the capabilities of the user
code to gain access to the the display hardware.

Example // a function to utilise the hardware circle draw function

// on a SD1339 display driver IC

#constant DRAW_CIRCLE 0x86

func myCircle(var x, var y, var r, var fillcolour, var linecolour)

 disp_WriteControl(DRAW_CIRCLE); // Draw Circle command

 disp_WriteByte(x); // set x1

 disp_WriteByte(y); // set y1

 disp_WriteByte(r); // set x2

 disp_WriteByte(linecolour>>8); // set outline colour Hi byte

 disp_WriteByte(linecolour); // set outline colour Lo byte

 disp_WriteByte(fillcolour>>8); // set fill colour Hi byte

 disp_WriteByte(fillcolour); // set fill colour Lo byte

endfunc

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 102 of 185 www.4dlabs.com.au

2.7.3. disp_WriteByte(value)

Syntax disp_WriteByte(value);

Arguments value

value Specifies the value to be written to the display data register. Only the lower 8 bits
are sent to the display.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description
Sends a single byte (which is the lower 8 bits of value) to the display bus. Refer to individual data
sheets for the display for more information. This function is used to extend the capabilities of the user
code to gain access to the the display hardware.

Example // a function to utilise the hardware circle draw function

// on a SD1339 display driver IC

#constant DRAW_CIRCLE 0x86

func myCircle(var x, var y, var r, var fillcolour, var linecolour)

 disp_WriteControl(DRAW_CIRCLE); // Draw Circle command

 disp_WriteByte(x); // set x1

 disp_WriteByte(y); // set y1

 disp_WriteByte(r); // set x2

 disp_WriteByte(linecolour>>8); // set outline colour Hi byte

 disp_WriteByte(linecolour); // set outline colour Lo byte

 disp_WriteByte(fillcolour>>8); // set fill colour Hi byte

 disp_WriteByte(fillcolour); // set fill colour Lo byte

endfunc

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 103 of 185 www.4dlabs.com.au

2.7.4. disp_WriteWord(value)

Syntax disp_WriteWord(value);

Arguments value

value Specifies the value to be written to the display data register. Only the lower 8 bits
are sent to the display.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description

Sends a 16 bit value to the display bus. Since the Goldelox-GFX2 display data bus is 8bits wide, the
HIGH byte is sent first followed by the LOW byte. Refer to individual data sheets for the display for
more information. This function is used to extend the capabilities of the user code to gain access to
the the display hardware.

Example // a function to utilise the hardware circle draw function

// on a SD1339 display driver IC

#constant DRAW_CIRCLE 0x86

func myCircle(var x, var y, var r, var fillcolour, var linecolour)

 disp_WriteControl(DRAW_CIRCLE); // Draw Circle command

 disp_WriteByte(x); // set x1

 disp_WriteByte(y); // set y1

 disp_WriteByte(r); // set x2

 disp_WriteWord(linecolour); // set outline colour

 disp_WriteWord(fillcolour); // set fill colour

endfunc

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 104 of 185 www.4dlabs.com.au

2.7.5. disp_ReadByte()

Syntax disp_ReadByte();

Arguments none

Returns value

 value Returns the 8bit data that was read from the display. Only the lower 8bits are valid.

Description Reads a byte from the display after an internal register or GRAM access has been set.

Example gfx_ClipWindow(40,40,44,44); // within a small block on the display

gfx_FocusWindow(); // focus GRAM

pixel_Hi:= dispReadByte(); // read hi byte of first pixel

pixel_Lo:= dispReadByte(); // read lo byte of first pixel

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 105 of 185 www.4dlabs.com.au

2.7.6. disp_ReadWord()

Syntax disp_ReadWord();

Arguments none

Returns value

 value Returns the 16bit data that was read from the display.

Description Reads a 16bit word from the display after an internal register or GRAM access has been set.

Example gfx_ClipWindow(40,40,44,44); // within a small block on the display

gfx_FocusWindow(); // focus GRAM

pixel := dispReadWord(); // read 1st pixel, HI:LO order

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 106 of 185 www.4dlabs.com.au

2.7.7. disp_BlitPixelFill(colour, count)

Syntax disp_BlitPixelFill(colour, count);

Arguments colour, count

colour Specifies the colour for the fill.

count Specifies the number of pixels to fill.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Fills a preselected GRAM screen area with the specified colour.

Example gfx_ClipWindow(40,40,79,79); // select a block on the display

count := gfx_FocusWindow(); // focus GRAM

myvar:=dispBlitPixelFill(RED,count); // paint the area red

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 107 of 185 www.4dlabs.com.au

2.7.8. disp_BlitPixelsToMedia()

Syntax disp_BlitPixelsToMedia();

Arguments none

Returns pixelcount

 pixelcount Returns the number of pixels that were written to the media.

Description Write the selected GRAM area to the media at the current media address.

Example func main()

 var n;

 while(!media_Init())

 putstr("Insert Card"); // init the card

 pause(200);

 gfx_Cls();

 pause(200);

 wend

 media_SetSector(0x0020,0x0000); // we're going to write here

 gfx_ClipWindow(40,40,55,55); // select 16x16 block on the display

 n:=gfx_FocusWindow(); // focus GRAM

 while(n--)

 disp_BlitPixelFill(RAND(),1); // fill area with random pixels

 wend

 n:=disp_BlitPixelsToMedia (); // save it to sector

 print(n*2," bytes written\n");

 print("Done!");

 repeat forever

endfunc

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 108 of 185 www.4dlabs.com.au

2.7.9. disp_BlitPixelsFromMedia(pixelcount)

Syntax disp_BlitPixelsFromMedia(pixelcount);

Arguments pixelcount

pixelcount Specifying the number of pixels to be consecutively read from the media stream.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description

Read the required number of pixels consecutively from the current media stream and write them to
the current display GRAM address. For 8bit colour mode, each pixel comprises a single 8bit value. For
16bit colour, each pixel is composed of 2 bytes, the high order byte is read first, the low order bye is
read next.

Example ...

media_SetAdd(0x0002, 0x3C00); // point to required area of an image

disp_BlitPixelsFromMedia(20); // write the next 20 pixels from

 // media to the current GRAM pointer.

...

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 109 of 185 www.4dlabs.com.au

2.7.10. disp_SkipPixelsFromMedia(pixelcount)

Syntax disp_SkipPixelsFromMedia(pixelcount);

Arguments pixelcount

pixelcount Specifying the number of pixels to be consecutively skipped from the media stream.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description
Skip the required number of pixels consecutively from the current media stream, discarding them.
For 8bit colour mode, each pixel comprises a single 8bit value. For 16bit colour, each pixel is
composed of 2 bytes, the high order byte is read first, the low order bye is read next.

Example ...

disp_SkipPixelsFromMedia(20); // skip the next 20 pixels from media

disp_BlitPixelsFromMedia(20); // write the next 20 pixels from

 // media to the current GRAM pointer.

...

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 110 of 185 www.4dlabs.com.au

2.7.11. disp_BlitPixelsToCOM()

Syntax disp_BlitPixelsToCOM();

Arguments none

Returns pixelcount

 pixelcount Returns the number of pixels that were written to the serial port.

Description Write the selected GRAM area to the serial (COM) port.

Example // After downloading this program, open the Workshop Terminal and

// type any key to start the pixel upload.

func main()

 var pixels;

 putstr("Open the terminal\n");

 putstr("Type any key to start\n");

 while(serin() < 0); // wait for a key from terminal

 // before we start

 gfx_ClipWindow(40,40,44,44); // within a small block on the

 // display

 pixels:=gfx_FocusWindow(); // focus GRAM and get pixel count

 // of area

 disp_BlitPixelFill(0x4142, pixels);// fill the area using ASCII

 // values so we can read easily

 disp_BlitPixelsToCOM(); // write the pixels to the COM port

 print("Done!");

 repeat forever

endfunc

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 111 of 185 www.4dlabs.com.au

2.7.12. disp_BlitPixelsFromCOM(mode)

Syntax disp_BlitPixelsFromCOM(mode);

Arguments mode

mode mode = 0 : specifies 16 bit pixels
mode = pointer : specifies pointer to 16 element colour lookup table for each 4bit
pixel value

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Fills a preselected GRAM screen area with the specified colour.

Example // After downloading this program, open the Workshop Terminal and

// type 2 keys per pixel for 16bit colour mode. The colour will be

// determined by the ASCII values of the keys, it is only a simple

// test and you have very little control of what colour is actually

// displayed - it is simply a demo of disp_BlitPixelsFromCOM action.

// If all is good, you will see the GRAM area being filled with

// pixels.

// NB if using 8bit colour mode, the correct register in the display

// must be set to 8 bit mode, if you have done this correctly, you

// will notice that it only requires 1 key to write each pixel.

// If this is not done correctly, only half the gram area will be

// filled.

func main()

 gfx_ClipWindow(40,40,59,59); // writing to a 40x40 block on the

 // display.

 gfx_FocusWindow(); // NB first focus is just so we can

 // get pixel count of area.

 print("Filling ",*IMG_PIXEL_COUNT," pixels");

 gfx_FocusWindow();

 disp_BlitPixelsFromCOM(0); // get pixels from serial port,

 while(*IMG_PIXEL_COUNT); // wait till all the pixels come in

 txt_MoveCursor(8,5);

 print("Done!");

 repeat forever

endfunc

//===

// the next example uses disp_BlitPixelsFromCOM in 4bit CLUT mode

var CLUT1[16];

// If the argument to disp_BlitPixelsFromCOM(...) is non zero, it is

// expected to be a pointer to a 16 element colour lookup table in

// RAM.

// After downloading this program, open the Workshop Terminal and

// Each key typed will produce 2 pixels from the CLUT. The colour

// will be determined by the values in the CLUT, it is only a simple

// test and you have very little control of what colour is actually

// displayed - it is simply a demo of disp_BlitPixelsFromCOM action.

// If all is good, you will see the GRAM area being filled with

// pixels.

func main()

 // CLUT is set for monochrome mode, however

 // it can contain a colour set if required

 CLUT1[0] := 0x0000; // BLACK

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 112 of 185 www.4dlabs.com.au

 CLUT1[1] := 0x1082; // GRAY1

 CLUT1[2] := 0x2104; // GRAY2

 CLUT1[3] := 0x3186; // GRAY3

 CLUT1[4] := 0x4208; // GRAY4

 CLUT1[5] := 0x5285; // GRAY5

 CLUT1[6] := 0x630C; // GRAY6

 CLUT1[7] := 0x738E; // GRAY7

 CLUT1[8] := 0x8410; // GRAY8

 CLUT1[9] := 0x9492; // GRAY9

 CLUT1[10] := 0xA514; // GRAY10

 CLUT1[11] := 0xB596; // GRAY11

 CLUT1[12] := 0xC618; // GRAY12

 CLUT1[13] := 0xD69A; // GRAY13

 CLUT1[14] := 0xE71C; // GRAY14

 CLUT1[15] := 0xF79E; // ALMOST WHITE

 gfx_ClipWindow(40,40,59,59); // writing to a 40x40 block on

 // the display.

 gfx_FocusWindow(); // NB first focus is just so we can get

 // pixel count of area.

 print("Filling ",*IMG_PIXEL_COUNT," pixels");

 gfx_FocusWindow();

 disp_BlitPixelsFromCOM(CLUT1); // get pixels from COM port, 4 bit

 // CLUT mode mode

 while(*IMG_PIXEL_COUNT);

 txt_MoveCursor(8,5);

 print("Done!");

 repeat forever

endfunc

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 113 of 185 www.4dlabs.com.au

2.8. Media Functions (SD/SDHC Memory Card or Serial Flash chip)

The media can be SD/SDHC, microSD or serial (NAND) flash device interfaced to the Goldelox-GFX2 SPI port.

Summary of Functions in this section:

• media_Init()

• media_SetAdd(HIword, LOword)

• media_SetSector(HIword, LOword)

• media_ReadByte()

• media_ReadWord()

• media_WriteByte(byte_val)

• media_WriteWord(word_val)

• media_Flush()

• media_Image(x, y)

• media_Video(x, y)

• media_VideoFrame(x, y, frameNumber)

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 114 of 185 www.4dlabs.com.au

2.8.1. media_Init()

Syntax media_Init();

Arguments none

Returns result

result Returns: 1 if memory card is present and successfully initialised

Returns: 0 if no card is present or not able to initialise

Description Initialise a uSD/SD/SDHC memory card for further operations. The SD card is connected to the SPI

(serial peripheral interface) of the Goldelox-GFX2 chip.

Example while(!media_Init())

 gfx_Cls();

 pause(300);

 puts(“Please insert SD card”);

 pause(300);

wend

This example waits for SD card to be inserted and initialised, flashing a message if no SD card
detected.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 115 of 185 www.4dlabs.com.au

2.8.2. media_SetAdd(HIword, LOword)

Syntax media_SetAdd(HIword, LOword);

Arguments HIword, LOword

HIword
specifies the high word (upper 2 bytes) of a 4 byte media memory byte address

location.

LOword specifies the low word (lower 2 bytes) of a 4 byte media memory byte address

location.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Set media memory internal Address pointer for access at a non sector aligned byte address.

Example media_SetAdd(0, 513);

This example sets the media address to byte 513 (which is sector #1, 2nd byte in sector) for subsequent
operations.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 116 of 185 www.4dlabs.com.au

2.8.3. media_SetSector(HIword, LOword)

Syntax media_SetSector(HIword, LOword);

Arguments HIword, LOword

HIword
specifies the high word (upper 2 bytes) of a 4 byte media memory sector address

location.

LOword specifies the low word (lower 2 bytes) of a 4 byte media memory sector address

location.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Set media memory internal Address pointer for sector access.

Example media_SetSector(0, 10);

This example sets the media address to the 11th sector (which is also byte address 5120) for
subsequent operations

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 117 of 185 www.4dlabs.com.au

2.8.4. media_ReadByte()

Syntax media_ReadByte();

Arguments none

Returns byte value

Description Returns the byte value from the current media address. The internal byte address will then be

internally incremented by one.

Example var LObyte, HIbyte;

if(media_Init())

 media_SetAdd(0, 510);

 LObyte := media_ReadByte();

 HIbyte := media_ReadByte();

 print([HEX2]HIbyte,[HEX2]LObyte);

endif

repeat forever

This example initialises the media, sets the media byte address to 510, and reads the last 2 bytes from
sector 0. If the card happens to be FAT formatted, the result will be “AA55”. The media internal
address is internally incremented for each of the byte operations.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 118 of 185 www.4dlabs.com.au

2.8.5. media_ReadWord()

Syntax media_ReadWord();

Arguments none

Returns word value

Description Returns the word value (2 bytes) from the current media address. The internal byte address will then

be internally incremented by one. If the address is not aligned, the word will still be read correctly.

Example var myword;

if(media_Init())

 media_SetAdd(0, 510);

 myword := media_ReadWord();

 print([HEX4]myword);

endif

repeat forever

This example initialises the media, sets the media byte address to 510 and reads the last word from
sector 0. If the card happens to be formatted, the result will be “AA55”

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 119 of 185 www.4dlabs.com.au

2.8.6. media_WriteByte(byte_val)

Syntax media_WriteByte(byte_val);

Arguments byte_val

byte_val The lower 8 bits specifies the byte to be written at the current media address location.

The arguments can be a variable, array element, expression or constant

Returns success

 success Returns non zero if write was successful.

Description Writes a byte to the current media address that was initially set with media_SetSector(...);

Note: Due to design constraints on the Goldelox-GFX2, there is no way of writing bytes or words
within a media sector without starting from the beginning of the sector. All writes will start at the
beginning of a sector and are incremental until the media_Flush() function is executed, or the sector
address rolls over to the next sector. Any remaining bytes in the sector will be padded with 0xFF,
destroying the previous contents. An attempt to use the media_SetAdd(..) function will result in the
lower 9 bits being interpreted as zero. If the writing rolls over to the next sector, the media_Flush()
function is issued automatically internally.

Example var n, char;

while (media_Init()==0); // wait if no SD card detected

media_SetSector(0, 2); // at sector 2

//media_SetAdd(0, 1024); // (alternatively, use media_SetAdd(),

 // lower 9 bits ignored)

while (n < 10)

 media_WriteByte(n++ +'0'); // write ASCII '0123456789' to the

wend // first 10 locations.

to(MDA); putstr("Hello World"); // now write a ascii test string

media_WriteByte('A'); // write a further 3 bytes

media_WriteByte('B');

media_WriteByte('C');

media_WriteByte(0); // terminate with zero

media_Flush(); // we're finished, close the sector

media_SetAdd(0, 1024+5); // set the starting byte address

while(char:=media_ReadByte()) putch(char); // print result, starting

 // from '5'

repeat forever

This example initialises the media, writes some bytes to the required sector, then prints the result
from the required location.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 120 of 185 www.4dlabs.com.au

2.8.7. media_WriteWord(word_val)

Syntax media_WriteWord(word_val);

Arguments word_val

word_val The 16 bit word to be written at the current media address location.

The arguments can be a variable, array element, expression or constant

Returns success

 success Returns non zero if write was successful.

Description Writes a byte to the current media address that was initially set with media_SetSector(...);

Note: Due to design constraints on the Goldelox-GFX2, there is no way of writing bytes or words
within a media sector without starting from the beginning of the sector. All writes will start at the
beginning of a sector and are incremental until the media_Flush() function is executed, or the sector
address rolls over to the next sector. Any remaining bytes in the sector will be padded with 0xFF,
destroying the previous contents. An attempt to use the media_SetAdd(..) function will result in the
lower 9 bits being interpreted as zero. If the writing rolls over to the next sector, the media_Flush()
function is issued automatically internally.

Example var n;

while (media_Init()==0); // wait until a good SD card is found

n:=0;

media_SetAdd(0, 1536); // set the starting byte address

while (n++ < 20)

 media_WriteWord(RAND()); // write 20 random words to first 20

wend // word locations.

n:=0;

while (n++ < 20)

 media_WriteWord(n++*1000);// write sequence of 1000*n to next 20

wend // word locations.

media_Flush(); // we're finished, close the sector

media_SetAdd(0, 1536+40); // set the starting byte address

n:=0;

while(n++<8) // print result of fist 8 multiplication calcs

 print([HEX4] media_ReadWord(),"\n");

wend

repeat forever

This example initialises the media, writes some words to the required sector, then prints the result
from the required location.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 121 of 185 www.4dlabs.com.au

2.8.8. media_Flush()

Syntax media_Flush();

Arguments none

Returns nothing

Description After writing any data to a sector, media_Flush() should be called to ensure that the current sector
that is being written is correctly stored back to the media else write operations may be unpredictable.

Example See the media_WriteByte(..) and media_WriteWord(..) examples.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 122 of 185 www.4dlabs.com.au

2.8.9. media_Image(x, y)

Syntax media_Image(x, y);

Arguments x, y

x, y specifies the top left position where the image will be displayed.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Displays an image from the media storage at the specified co-ordinates. The image address is
previously specified with the media_SetAdd(..) or media_SetSector(...) function. If the image is
shown partially off screen, it is necessary to enable clipping for it to be displayed correctly.

Note: it is assumed that the media has been loaded with the example images in GFX2DEMO.GCI
loaded at sector 0. This can be loaded using the Graphics Composer (directly onto the memory card.

Example while(media_Init()==0); // wait if no SD card detected

media_SetAdd(0x0001, 0xDA00); // point to the books04 image

media_Image(10,10);

gfx_Clipping(ON); // turn off clipping to see the difference

media_Image(-12,50); // show image off-screen to the left

media_Image(50,-12); // show image off-screen at the top

repeat forever

This example draws an image at several positions, showing the effects of clipping.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 123 of 185 www.4dlabs.com.au

2.8.10. media_Video(x, y)

Syntax media_Video(x, y);

Arguments x, y

x, y specifies the top left position where the video clip will be displayed.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Displays a video clip from the media storage device at the specified co-ordinates. The video address
location in the media is previously specified with the media_SetAdd(..) or media_SetSector(...)
function. If the video is shown partially off screen, it is necessary to enable clipping for it be displayed
correctly. Note that showing a video blocks all other processes until the video has finished showing.
See the media_VideoFrame(...) functions for alternatives.

Note: it is assumed that the media has been loaded with the example video in GFX2DEMO.GCI loaded
at sector 0. This can be loaded using the Graphics Composer directly onto the memory card.

Example while(media_Init()==0); // wait if no SD card detected

media_SetAdd(0x0001, 0x3C00); // point to the 10-gear clip

media_Video(10,10);

gfx_Clipping(ON); // turn off clipping to see the difference

media_Video(-12,50); // show video off-screen to the left

media_Video(50,-12); // show video off-screen at the top

repeat forever

This example plays a video clip at several positions, showing the effects of clipping.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 124 of 185 www.4dlabs.com.au

2.8.11. media_VideoFrame(x, y, frameNumber)

Syntax media_VideoFrame(x, y, frameNumber);

Arguments x, y

x, y specifies the top left position where the video clip will be displayed.

frameNumber Specifies the required frame to be shown.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Displays a video from the media storage device at the specified co-ordinates. The video address is
previously specified with the media_SetAdd(..) or media_SetSector(...) function. If the video is shown
partially off screen, it is necessary to enable clipping for it be displayed correctly. The frames can be
shown in any order. This function gives you great flexibility for showing various icons from an image
strip, as well as showing videos while doing other tasks

Note: it is assumed that the media has been loaded with the example video in GFX2DEMO.GCI loaded
at sector 0. This can be loaded using the Graphics Composer directly onto the memory card.

Example var frame;

while (media_Init()==0); // wait if no SD card detected

while (media_Init()==0); // wait if no SD card detected

media_SetAdd(0x0002, 0x3C00); // point to the 10-gear image

repeat

 frame := 0; // start at frame 0

 repeat

 media_VideoFrame(30,30, frame++); // display a frame

 pause(peekB(IMAGE_DELAY)); // pause for the time given in

 // the image header

 until(frame == peekW(IMG_FRAME_COUNT)); // loop until we've

 // shown all the frames

forever // do it forever

This first example shows how to display frames as required while possibly doing other tasks. Note that
the frame timing (although not noticeable in this small example) is not correct as the delay
commences after the image frame is shown, therefore adding the display overheads to the frame
delay. This second example employs a timer for the framing delay, and shows the same movie
simultaneously running forward and backwards with time left for other tasks as well. A number of
videos (or animated icons) can be shown simultaneously using this method.

var framecount, frame, delay, colr;

frame := 0;

// show the first frame so we can get the video header info

// into the system variables, and then to our local variables.

media_VideoFrame(30,30, 0);

framecount := peekW(IMG_FRAME_COUNT); // we can now set some local

 // values.

delay := peekB(IMAGE_DELAY); // get the frame count and delay

repeat

 repeat

 pokeW(TIMER0, delay); // set a timer

 media_VideoFrame(30,30, frame++); // show next frame

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 125 of 185 www.4dlabs.com.au

 gfx_MoveTo(64,35);

 print([DEC2Z] frame); // print the frame number

 media_VideoFrame(30,80, framecount-frame); // show movie

 // backwards.

 gfx_MoveTo(64,85);

 print([DEC2Z] framecount-frame); // print the frame number

 if ((frame & 3) == 0)

 gfx_CircleFilled(80,20,2,colr); // a blinking circle fun

 colr := colr ^ 0xF800; // alternate colour,

 endif // BLACK/RED using XOR

 // do more here if required

 while(peekW(TIMER0)); // wait for timer to expire

 until(frame == peekW(IMG_FRAME_COUNT));

 frame := 0;

forever

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 126 of 185 www.4dlabs.com.au

2.9. Flash Memory Chip Functions

The functions in this section only apply to serial SPI (NAND) flash devices interfaced to the Goldelox-GFX2 SPI port.

Summary of Functions in this section:

• flash_SIG()

• flash_ID()

• flash_BulkErase()

• flash_BlockErase(blockAddress)

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 127 of 185 www.4dlabs.com.au

2.9.1. flash_SIG()

Syntax flash_SIG();

Arguments none

Returns signature

signature Release from Deep Power-down, and Read Electronic Signature. Only the low order

byte is valid, the upper byte is ignored.

Description If a FLASH storage device is connected to the SPI port, and has been correctly initialised with the

spi_Init(...) function, the Electronic Signature of the device can be read using this function. The only

devices supported so far on the Goldelox-GFX2 are the M25Pxx range of devices which are 512Kbit to

32Mbit (2M x 8) Serial Flash Memory.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 128 of 185 www.4dlabs.com.au

2.9.2. flash_ID()

Syntax flash_ID();

Arguments none

Returns type_capacity

type_capacity Reads the memory type and capacity from the serial FLASH device. Hi byte contains

type, and low byte contains capacity. Refer to the device data sheet for further
information.

Description If a FLASH storage device is connected to the SPI port, and has been correctly initialised with the

spi_Init(...) function, the memory type and capacity from the flash device can be read using this

function. The only devices supported so far on the Goldelox-GFX2 are the M25Pxx range of devices

which are 512Kbit to 32Mbit (2M x 8) Serial Flash Memory.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 129 of 185 www.4dlabs.com.au

2.9.3. flash_BulkErase()

Syntax flash_BulkErase();

Arguments none

Returns nothing

Erases the entire flash media device. The function returns no value, and the operation can take up to
80 seconds depending on the size of the flash device.

Description If a FLASH storage device is connected to the SPI port, and has been correctly initialised with the

spi_Init(...) function, the FLASH device can be completely erased using this function. The only devices

supported so far on the Goldelox-GFX2 are the M25Pxx range of devices which are 512Kbit to 32Mbit

(2M x 8) Serial Flash Memory.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 130 of 185 www.4dlabs.com.au

2.9.4. flash_BlockErase(blockAddress)

Syntax flash_BlockErase(blockAddress);

Arguments blockAddress

 blockAddress The address of the 64k FLASH block to be erased.

Returns result

result Erases the required block in a FLASH media device. The function returns no value,

and the operation can take up to 3 milliseconds.

Description If a FLASH storage device is connected to the SPI port, and has been correctly initialised with the

spi_Init(...) function, the FLASH block can be erased using this function. The only devices supported

so far on the Goldelox-GFX2 are the M25Pxx range of devices which are 512Kbit to 32Mbit (2M x 8)

Serial Flash Memory.

E.g. there are 32 x 64K blocks on a 2Mb flash device.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 131 of 185 www.4dlabs.com.au

2.10. SPI Control Functions

The SPI functions in this section apply to any general purpose SPI device.

Summary of Functions in this section:

• spi_Init(speed, input_mode, output_mode)

• spi_Read()

• spi_Write(byte)

• spi_Disable()

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 132 of 185 www.4dlabs.com.au

2.10.1. spi_Init(speed, input_mode, output_mode)

Syntax spi_Init(speed, input_mode, output_mode);

Arguments speed, input_mode, output_mode

speed Sets the speed of the SPI port.

input_mode Sets the input mode of the SPI port. See diagram below.

output_mode Sets the output mode of the SPI port. See diagram below.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Sets up the Goldelox-GFX2 SPI port to communicate with SPI devices.

Note: The SPI functions in this section are not necessary when using the memory card or serial flash
chips interfaced to the SPI port. The SPI functions in this section are relevant to those devices other
than the memory card and the serial flash chip used for media access.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 133 of 185 www.4dlabs.com.au

2.10.2. spi_Read()

Syntax spi_Read();

Arguments none

Returns byte

 byte Returns a single data byte from the SPI device.

Description This function allows a raw unadorned byte read from the SPI device.

Note: The Chip Select line (SDCS) is lowered automatically.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 134 of 185 www.4dlabs.com.au

2.10.3. spi_Write(byte)

Syntax spi_Write(byte);

Arguments byte

byte specifies the data byte to be sent to the SPI device.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description This function allows a raw unadorned byte write to the SPI device.

Note: The Chip Select line (SDCS) is lowered automatically.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 135 of 185 www.4dlabs.com.au

2.10.4. spi_Disable()

Syntax spi_Disable();

Arguments none

Returns nothing

Description This function raises the Chip Select (SDCS) line of the SPI device, disabling it from further activity. The

CS line will be automatically lowered next time the SPI functions spi_Read() or spi_Write(...) are used,

and also by action of any of the media_ functions.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 136 of 185 www.4dlabs.com.au

2.11. Serial (UART) Communications Functions

Summary of Functions in this section:

• serin()

• serout(char)

• setbaud(rate)

• com_AutoBaud(timeout)

• com_Init(buffer, buffsize, qualifier)

• com_Reset()

• com_Count()

• com_Full()

• com_Error()

• com_Sync()

• com_Checksum()

• com_PacketSize()

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 137 of 185 www.4dlabs.com.au

2.11.1. serin()

Syntax serin();

Arguments none

Returns char

char Returns: -1 if no character is available

Returns: -2 if a framing error or over-run has occurred (auto cleared)
Returns: positive value 0 to 255 for a valid character received

Description Receives a character from the Serial Port COM0. The transmission format is:

No Parity, 1 Stop Bit, 8 Data Bits (N,8,1).

The default Baud Rate is 115,200 bits per second or 115,200 baud. The baud rate can be changed

under program control by using the setbaud(...) function.

Example var char;

char := serin(); // test the com port

if (char >= 0) // if a valid character is received

 process(char); // process the character

endif

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 138 of 185 www.4dlabs.com.au

2.11.2. serout(char)

Syntax serout(char);

Arguments char

char specifies the data byte to be sent to the serial port.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Transmits a single byte from the Serial Port COM0. The transmission format is:

No Parity, 1 Stop Bit, 8 Data Bits (N,8,1).

The default Baud Rate is 115,200 bits per second or 115,200 baud. The baud rate can be changed

under program control by using the setbaud(...) function.

Example

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 139 of 185 www.4dlabs.com.au

2.11.3. setbaud(rate)

Syntax setbaud(rate);

Arguments rate

rate specifies the baud rate divisor value or pre-defined constant

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Use this function to set the required baud rate. The default baud rate is 115,200 baud.

There are pre-defined baud rate constants for most common baud rates:

Pre Defined Constant Rate Divisor Error % Actual Baud Rate

BAUD_110 27272 0.00% 110

BAUD_300 9999 0.00% 300

BAUD_600 4999 0.00% 600

BAUD_1200 2499 0.00% 1200

BAUD_2400 1249 0.00% 2400

BAUD_4800 624 0.00% 4800

BAUD_9600 312 -0.16% 9584

BAUD_14400 207 0.16% 14423

BAUD_19200 155 0.16% 19230

BAUD_31250 95 0.00% 31250

MIDI 95 0.00% 31250

BAUD_38400 77 0.16% 38461

BAUD_56000 53 -0.79% 55555

BAUD_57600 51 0.16% 57692

BAUD_115200 25 0.16% 115384

BAUD_128000 22 1.90% 130434

BAUD_256000 11 -2.34% 250000

BAUD_300000 10 0.00% 300000

BAUD_375000 8 0.00% 375000

BAUD_500000 6 0.00% 500000

BAUD_600000 4 0.00% 600000

The baud rate is calculated with the following formula:
rate-divisor = (3000000 / baud) - 1

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 140 of 185 www.4dlabs.com.au

2.11.4. com_AutoBaud(timeout)

Syntax com_AutoBaud(timeout);

Arguments timeout

timeout Sets the timeout delay for autobaud detection.

The arguments can be a variable, array element, expression or constant

Returns status

 status Returns the divisor value selected for the baud rate generator, else returns 0.

Description The com_AutoBaud function expects to receive an ascii 'U' (0x55) within a pre-determined time. If

the function is successful, the COM port is configured to the closest speed possible, and the selected

baud rate value is returned.

Example while (br:=com_AutoBaud(500)) // if we receive a 'U' ok

 doMyComms(); // now connected at br baud rate

endif

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 141 of 185 www.4dlabs.com.au

2.11.5. com_Init(buffer, bufsize, qualifier)

Syntax com_Init(buffer, bufsize, qualifier);

Arguments buffer, bufsize, qualifier

buffer specifies the address of a buffer used for the background buffering service.

bufsize specifies the byte size of the user array provided for the buffer (each array element holds

2 bytes). If the buffer size is zero, a buffer of 63 words (126 bytes) should be provided for

automatic packet length mode (see below). Buffer of 63 words (126 bytes) is the

maximum buffer size possible.

qualifier specifies the qualifying character that must be received to initiate serial data reception

and buffer write. A zero (0x00) indicates no qualifier to be used.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description This is the initialisation function for the serial communications buffered service. Once initialised, the
service runs in the background capturing and buffering serial data without the user application having
to constantly poll the serial port. This frees up the application to service other tasks. The service also
transparently keeps a checksum (see the com_Checksum() function) which can be employed if
required for robust error checking.

MODES OF OPERATION

• No qualifier – simple ring buffer (aka circular queue)

If the qualifier is set to zero, the buffer is continually active as a simple circular queue.
Characters when received from the host are placed in the circular queue (at the 'head' of the
queue) Bytes may be removed from the circular queue (from the 'tail' of the queue) using
the serin() function. If the tail is the same position as the head, there are no bytes in the
queue, therefore serin() will return -1, meaning no character is available, also, the
com_Count() function can be read at any time to determine the number of characters that
are waiting between the tail and head of the queue. If the queue is not read frequently by
the application, and characters are still being sent by the host, the head will eventually catch
up with the tail setting the internal COM_FULL flag (which can be read with the com_Full()
function) . Any further characters from the host are are now discarded, however, all the
characters that were buffered up to this point are readable. This is a good way of reading a
fixed size packet and not necessarily considered to be an error condition. If no characters
are removed from the buffer until the COM_FULL flag (which can be read with the com_Full()
function) becomes set, it is guaranteed that the bytes will be ordered in the buffer from the
start position, therefore, the buffer can be treated as an array and can be read directly
without using serin() at all. In the latter case, the correct action is to process the data from
the buffer, re-initialise the buffer with the com_Init(..) function, or reset the buffered serial
service by issuing the com_Reset() function (which will return serial reception to polled
mode) , and send an acknowledgement to the host (traditionally a ACK or 6) to indicate that
the application is ready to receive more data and the previous 'packet' has been dealt with,
or conversely, the application may send a negative acknowledgement to indicate that some
sort of error occurred, or the action could not be completed (traditionally a NAK or 16) .

If any low level errors occur during the buffering service (such as framing or over-run) the
internal COM_ERROR flag will be set (which can be read with the com_Error() function). Note
that the COM_FULL flag will remain latched to indicate that the buffer did become full, and
is not reset (even if all the characters are read) until the com_Init(..) or com_Reset() function

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 142 of 185 www.4dlabs.com.au

is issued.

• Using a qualifier

If a qualifier character is specified, after the buffer is initialised with com_Init(..) , the service
will ignore all characters until the qualifier is received and only then initiate the buffer write
sequence with incoming data. After that point, the behaviour is the same as above for the
'non qualified' mode.

• Variable packet length

If the bufsize argument is set to zero, the first byte received (or the 2nd byte if a qualifier is
employed) sets the count of characters that are to be received before the COM_FULL flag
(which can be read with the com_Full() function) becomes set. This allows a host to send
variable length packets, which will only alert the application that the packet is ready after
the correct number of characters has been received. The number of bytes to be expected
can be read using the com_PacketSize() function, which will indicate the packet size. In this
mode, it is wise to make the buffer as large as possible due to the fact that if the 'size'
parameter sent by the host is corrupted, more characters than expected (up to 255) can be
receive inadvertently, crashing into any other program variables above the array.

Notes:

• Transparent to normal operation, a check summing system is operating. If the host sends
one extra character (usually at the end of the packet) which is the negated value of the
addition of all the previous characters in the packet , the checksum (which can be read with
the com_Checksum() function) should read zero. com_Checksum() will retain the most
recent value until com_Init(..) is called again to reset the buffer system. Note that the
checksum is only valid after the com_Full() function reports a buffer full situation (ie the
packet is fully received).

• com_PacketSize() will indicate how large the packet is ONLY after the packet reception has
started. Although it is usually not required to know the packet size until the packet has
actually been read, if it is a requirement, the count is available as soon as com_Count()
becomes non zero.

Example //==

// Example #1 – no qualifier

// use the Workshop Terminal to test this example

// note that if 7 characters are exceeded, no more

// characters will be accepted as there is no action

// to take care of the com_Full situation

//==

var combuf[10]; // a buffer for up to 20 characters

putstr("Default 115.2kb");

com_Init(combuf, 7, 0); // initialize small circular queue of 7

 // bytes, no qualifier

repeat

 if(com_Count()) // if there is a character available

 serout(serin()); // echo it back to host

 endif

 txt_MoveCursor(2,0);

 print("\ncom_Error ",[DEC2ZB] com_Error()); // 1 if error

 print("\ncom_Count ",[DEC2ZB] com_Count()); // show current count

 print("\ncom_Full ",[DEC2ZB] com_Full()); // 1 if full

 pause(1000); // a delay to slow things up

forever

//==

// Example #2 – no qualifier

// use the Workshop Terminal to test this example

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 143 of 185 www.4dlabs.com.au

// note that if 7 characters are exceeded, the

// com_Full situation occurs, but is reset

// once all the pending characters are read

//==

var combuf[10]; // a buffer for up to 20 characters

putstr("Default 115.2kb");

com_Init(combuf, 7, 0); // initialize circular queue of 7 bytes,

 // no qualifier

repeat

 if(com_Count()) // if there is a character available

 serout(serin()); // echo it back to host

 endif

 txt_MoveCursor(2,0);

 print("\ncom_Error ",[DEC2ZB] com_Error()); // 1 if error

 print("\ncom_Count ",[DEC2ZB] com_Count()); // show current count

 print("\ncom_Full ",[DEC2ZB] com_Full()); // 1 if full

 pause(1000); // a delay to slow things up

 // if the buffer overflowed, and we have read

 // all the characters, then reset the buffer

 if (com_Full() & (com_Count() == 0)) com_Init(combuf, 7, '0');

forever

//==

// Example #3 – using qualifier (a colon character)

// use the Workshop Terminal to test this example

// note that once the qualifier is received, if 7

// characters are exceeded, the buffer is reset

// once all the pending characters are read

//==

var combuf[10]; // a buffer for up to 20 characters

putstr("Default 115.2kb");

com_Init(combuf, 7, ':'); // initialize circular queue of 7 bytes,

 // ':' as qualifier

repeat

 if(com_Count()) // if there is a character available

 serout(serin()); // echo it back to host

 endif

 txt_MoveCursor(2,0);

 print("\ncom_Sync ",[DEC2ZB] com_Sync()); // 1 if qualified

 print("\ncom_Error ",[DEC2ZB] com_Error()); // 1 if error

 print("\ncom_Count ",[DEC2ZB] com_Count()); // show current count

 print("\ncom_Full ",[DEC2ZB] com_Full()); // 1 if full

 pause(1000); // a delay to slow things up

 // if the buffer overflowed, if we have read

 // all the characters, then reset the buffer

 if (com_Full() & (com_Count() == 0)) com_Init(combuf, 5, ':');

forever

//==

// Example #4 – using qualified packet

// use the Workshop Terminal to test this example

// note that nothing happens until the qualifier

// followed by 10 characters is received. Then an

// acknowledgement is issued to the host, and the

// buffer is reset

//==

var combuf[10], chr; // a buffer for up to 20 characters

putstr("Default 115.2kb");

com_Init(combuf, 10, ':'); // init buffer 10 bytes to receive

repeat

 repeat

 txt_MoveCursor(2,0);

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 144 of 185 www.4dlabs.com.au

 print("\ncom_Sync ",[DEC2ZB] com_Sync()); // 1 if qualified

 print("\ncom_Error ",[DEC2ZB] com_Error()); // 1 if error

 print("\ncom_Count ",[DEC2ZB] com_Count()); // show count

 print("\ncom_Full ",[DEC2ZB] com_Full()); // 1 if full

 pause(1000); // a delay to slow things up

 until(com_Full()); // just loop until buffer is full

 // buffer is full, echo the characters

 while (chr:=serin()) >=0) serout(chr); // echo back characters

 to(COM0); print(" OK\n"); // send an acknowledgement

 com_Init(combuf, 10, ':'); // re-init buffer 10 bytes to receive

forever // do it all again

//==

// Example #5 – using qualified variable length packet

// use the Workshop Terminal to test this example

// NB:- to make the example possible when just using

// a terminal to emulate a packet, the 'space bar'

// (ascii 32) is used to set the size of the packet

// to 32 characters, so you must send the':' qualifier

// then press the space bar (you will then see '32'

// for the packet size) then type 32 characters to

// complete the action. Under normal circumstances,

// the host will send whatever packet size is required.

// Note that nothing happens until the qualifier ':'

// followed by the space bar (to set the packet size),

// then the 32 characters are received. After the

// packet is received, the acknowledgement is issued

// to the host, and the buffer is reset.

// This example also shows the running checksum

// calculation.

//==

putstr("Default 115.2kb");

repeat

 com_Init(combuf, 0, ':'); // init. buffer 10 bytes to receive

 repeat

 txt_MoveCursor(2,0);

 print("\ncom_Sync ",[DEC2ZB] com_Sync()); // 1 if

 // qualified

 print("\ncom_Error ",[DEC2ZB] com_Error()); // 1 if error

 print("\ncom_PacketSize ",[DEC2ZB] com_PacketSize());

 print("\ncom_Count ",[DEC2ZB] com_Count()); // show count

 print("\ncom_Checksum ",[HEX2ZB] com_Checksum()); // checksum

 print("\ncom_Full ",[DEC2ZB] com_Full()); // 1 if full

 pause(1000); // a delay to slow things up

 until(com_Full()); // just loop until buffer is full

 // buffer is full, echo the characters

 while ((chr:=serin()) >= 0) serout(chr); // echo back the chars

 to(COM0); print(" OK\n"); // send a simple acknowledgement

forever // do it all again

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 145 of 185 www.4dlabs.com.au

2.11.6. com_Reset()

Syntax com_Reset();

Arguments none

Returns nothing

Description Resets the serial communications buffered service and returns it to the default polled mode.

Example com_Reset(); // reset to polled mode

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 146 of 185 www.4dlabs.com.au

2.11.7. com_Count()

Syntax com_Count();

Arguments none

Returns count

 count current count of characters in the communications buffer.

Description Can be read at any time (when in buffered communications is active) to determine the number of

characters that are waiting in the buffer.

Example n := com_Count(); // get the number of chars available in the buffer

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 147 of 185 www.4dlabs.com.au

2.11.8. com_Full()

Syntax com_Full();

Arguments none

Returns status

 status Returns 1 if buffer or queue has become full, or is overflowed, else returns 0.

Description If the queue is not read frequently by the application, and characters are still being sent by the host,

the head will eventually catch up with the tail setting the COM_FULL flag which is read with this

function. If this flag is set, any further characters from the host are discarded, however, all the

characters that were buffered up to this point are readable.

Example if(com_Full() & (com_Count() == 0))

 com_Init(mybuf, 30, 0); // buffer full, recovery

endif

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 148 of 185 www.4dlabs.com.au

2.11.9. com_Error()

Syntax com_Error();

Arguments none

Returns status

 status Returns 1 if any low level communications error occurred, else returns 0.

Description If any low level errors occur during the buffering service (such as framing or over-run) the internal

COM_ERROR flag will be set which can be read with this function.

Example if(com_Error()) // if there were low level comms errors,

 resetMySystem(); // take corrective action

endif

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 149 of 185 www.4dlabs.com.au

2.11.10. com_Sync()

Syntax com_Sync();

Arguments none

Returns status

 status Returns 1 if the qualifier character has been received, else returns 0.

Description If a qualifier character is specified when using buffered communications, after the buffer is initialized

with com_Init(..) , the service will ignore all characters until the qualifier is received and only then

initiate the buffer write sequence with incoming data. com_Sync() is called to determine if the

qualifier character has been received yet.

Example com_Sync(); // reset to polled mode

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 150 of 185 www.4dlabs.com.au

2.11.11. com_Checksum()

Syntax com_Checksum();

Arguments none

Returns status

 status Returns 0 if checksum has been computed correctly.

Description Transparent to normal operation, a check summing system is operating. If the host sends one extra

character as part of the packet (usually added at the end of the packet) which is the negated value of

the addition of all the previous characters in the packet. Once the com_Full() function reports a buffer

full situation (ie the packet is fully received) , the checksum can be read, and should read zero if the

packet is not corrupted.

Example if(!com_Checksum()) // if checksum is ok

 processMyPacket(); // continue

else

 … do recovery action

endif

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 151 of 185 www.4dlabs.com.au

2.11.12. com_PacketSize()

Syntax com_PacketSize();

Arguments none

Returns size

size Returns the size of a packet if in variable packet length mode, or just the size of the serial

buffer if not variable packet length mode.

Description com_PacketSize() will indicate how large the packet is ONLY after the packet reception has started.

Although it is usually not required to know the packet size until the packet has actually been read, if

it is a requirement, the count is available as soon as com_Count() becomes non zero. If not in variable

packet length mode, com_PacketSize() just returns the size of the specified buffer.

Example If (!com_Count())

 print("Waiting....");

else

 print(com_PacketSize() - com_Count()), " bytes to go"); //
endif

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 152 of 185 www.4dlabs.com.au

2.12. Sound and Tune (RTTTL) Functions

Summary of Functions in this section:

• beep(note, duration)

• tune_Play(tuneptr)

• tune_Pause()

• tune_Continue()

• tune_Stop()

• tune_End()

• tune_Playing()

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 153 of 185 www.4dlabs.com.au

2.12.1. beep(note, duration)

Syntax beep(note, duration);

Arguments note, duration

note
A value (usually a constant) specifying the frequency of the note. Note could be

between 0 and 64

duration Secifies the time in milliseconds that the note will be played for.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Simple utility to produce a single musical note for the required duration.

Example Beep(20, 50); // play note 20 for 50 milliseconds

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 154 of 185 www.4dlabs.com.au

2.12.2. tune_Play(tuneptr)

Syntax tune_Play(tuneptr);

Arguments tuneptr

tuneptr

Specifies a pointer to a data statement or a string constant containing RTTTL

information.

Note: The argument passed to the tune_Play(...) function must be an ASCII string.

If the string is passed as a pointer from a #DATA statement, it must be terminated

with a zero (0x00). if a string is passed directly as a parameter, the '0' is

automatically appended by the compiler as per normal strings.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description The tune_Play(...) function in 4DGL uses a variant of the "Ring Tone Text Transfer Language" (RTTTL)
developed by Nokia for cellphone ring tones. There are certain differences that need to be taken into
account, and several additions that will be described later. It is suggested that you have a look at the
original format first, one suggestion being the excellent description on the web at:
http://www.activexperts.com/xmstoolkit/sms/rtttl/
and
http://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language

You will find that with a little practice and minor modifications, most RTTTL tunes that can be
downloaded off the web are playable with the tune_Play(...) function. Also, a wide range of sound
effects can be made using standard RTTTL notation augmented with the additional 4DGL functions.

The 4DGL implementation:

• The "b=nnn" in 4DGL does not represent "beats per minute" (bpm), it represents
"milliseconds per hemidemisemiquaver".
e.g. 120 bpm is 2 beats per second = 128 demisemiquavers per second which is 7.8125msec
per hemidemisemiquaver. Conversely, the default 4DGL value for b = 16msec per
hemidemisemiquaver equates to 62.5 bpm.

• The argument passed to the tune_Play(...); command must be a string. If the string is
passed as a pointer from a #DATA statement, it must be terminated with a zero (0x00).
(if a string is passed directly as a parameter, the zero (0x00) is automatically appended by
the compiler as per normal strings).

• The original RTTTL format is a string divided into three sections:
name, default value, data.
The 4DGL implementation does not have the "name" section - this would be just a waste
of space.

• The 4DGL implementation does not require any spaces or colons anywhere, once again
this would be a waste of space.

• The 4DGL implementation allows default values to be changed anywhere in the string and
does not need to be at the start.

• The optional default modifiers is a set of parameters separated by commas, where each
value contains a key and a value separated by an '=' character, which describes certain
defaults which will be adhered to during the execution of the ringtone string.

• d - duration
The default duration can be one of 1, 2, 4, 8, 16, 32 or 64 (64 = 1/64th, 1 = 1 whole
unit)

http://www.activexperts.com/xmstoolkit/sms/rtttl/
http://en.wikipedia.org/wiki/Ring_Tone_Transfer_Language

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 155 of 185 www.4dlabs.com.au

1 specifies a Semibreve (Whole Note),
2 indicates it a Minim (Half Note),
4 is a Crotchet (Quarter Note) etc up to 64 which is a hemidemisemiquaver (64th
note).

• b - beat/tempo
"milliseconds per demisemiquaver"

• o - octave
The default octave (scale) can be 4, 5, 6, or 7.

• If not specified, defaults are:
duration = 4 (same as d=4)
octave = 6 (same as o=6)
beat = 16 (same as b=16) close to 63bpm

4DGL extended default values:

• r - set repeat point and counter (eg r=4)
min = 2, max = 255
default value = forever

• p - set portamento value (eg p=5)
min = 1, max = 14
default value is 4

• a - set arpeggiation step value (eg a=1)
min = 1, max = 16
default value is 1

4DGL extended commands associated with extended default values:

• R execute a repeat specified by r =
 Note: if no repeat count has been specified, the string will repeat forever

• { turn portamento ON

• } turn portamento OFF
 Note: portamento default value is OFF

• + raise note as specified by arpeggiation step value

• - lower note as specified by arpeggiation step value

Example /*

This example shows how to use the RTTTL tunes to

generate complex sounds and music.

*/

//---

#DATA

 // b=250

 byte Muppets "d=4,o=5,b=15,",

 "c6,c6,a,b,8a,b,g,p,c6,c6,a,8b,8a,8p,g.,p,e,e,g,f,

 8e,f,8c6,8c,8d,e,8e,8e,8p,8e,g,2p,c6,",

 "c6,a,b,8a,b,g,p,c6,c6,a,8b,a,g.,p,e,e,g,f,8e,f,

 8c6,8c,8d,e,8e,d,8d,c",0

 // part of haunted house theme

 byte HauntedHouse "d=4,o=5,b=20,",

 "2a4,2e,2d#,2b4,2a4,2c,2d,2a#4,2e.,e,1f4,1a4,

 1d#,2e.,d,2c.,b4,1a4", 0

 // simple scale with default settings

 byte SimpleScale "c,d,e,f,g,a,b,c7", 0

 // simple scale with default settings and portamento use.

 // Note the portamento speed change in the middle of the string,

 // and the curly braces that turn the portamento on and off.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 156 of 185 www.4dlabs.com.au

 byte SimpleScaleP "b=50,{,c,d,e,f,p=7,g,a,},b,c7", 0

 // simple scale, much faster

 // note b=20 as default, so each note plays for 20msec when d=64

 byte Scale2 "d=64,c,d,e,f,g,a,b,c7", 0

 // simple scale, much faster - with a repeat command set to 20

 // note b=20 as default, so each note plays for 20msec when d=64,

 // and we repeat 20 times

 byte ScaleRep "d=64,r=20,c,d,e,f,g,a,b,c7,R", 0

 // simple scale, at the fastest possible rate, repeat 200 times

 // note that b=1 and d=64 so each note plays for only 1msec

 byte ScaleRep2 "b=1,d=64,r=200,c,d,e,f,g,a,b,c7,R", 0

 // simple scale using appregiation to increment the note step

 // note that commas can be left out to save space if there is no

 // indecision about delimit value

 byte ApprScale "a=1,c,+++++++++++------------", 0

 // scale using appregiation to increment the note step, and the

 // note step is larger

 // note that commas can be left out to save space if there is no

 // indecision about delimit value

 byte ApprScaleF "d=8,a=4,c,++++++++++++------------", 0

 // same as above but demonstrates repeating instead of multiple

 // inc/dec operators

 // note that commas can be left out to save space if there is no

 // indecision about delimit value

 byte ApprScaleFR "d=8,a=4,c5,r=11,+,R,r=11,-,R", 0

 // you can build your own scale sequencers

 byte COMPLEX_C "d=64,a=5,c4,r=8,+,R", 0

 byte COMPLEX_DSHARP "d=64,a=5,d#4,r=8,+,R", 0

 byte COMPLEX_G "d=64,a=5,g4,r=8,+,R", 0

 // just having a bit of fun

 byte DEMO "a=3,p=3,o=5,d=4,b=5,

 {,a,r=20,+,R,},c,d=16,a=5,r=50,-,R, R",0 // forever

#END

//---

#constant number_of_examples 13

var examples[number_of_examples];

var names[number_of_examples];

//---

func main()

 var n;

 // pin_Set(SOUND, PIN_1); // sound on default pin

 // pin_Set(SOUND, PIN_2);

 // lookup table for the examples

 examples[0] := HauntedHouse;

 examples[1] := SimpleScale;

 examples[2] := SimpleScaleP;

 examples[3] := Scale2;

 examples[4] := ScaleRep;

 examples[5] := ScaleRep2;

 examples[6] := ApprScale;

 examples[7] := ApprScaleF;

 examples[8] := ApprScaleFR;

 examples[9] := COMPLEX_C;

 examples[10] := COMPLEX_DSHARP;

 examples[11] := COMPLEX_G;

 examples[12] := Muppets;

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 157 of 185 www.4dlabs.com.au

 // lookup table for the example names

 names[0] := "HauntedHouse";

 names[1] := "SimpleScale";

 names[2] := "SimpleScaleP";

 names[3] := "Scale2";

 names[4] := "ScaleRep";

 names[5] := "ScaleRep2";

 names[6] := "ApprScale";

 names[7] := "ApprScaleF";

 names[8] := "ApprScaleFR";

 names[9] := "COMPLEX_C";

 names[10] := "COMPLEX_DSHARP";

 names[11] := "COMPLEX_G";

 names[12] := "Muppets";

 repeat

 n := 0;

 // play each demo, demonstrate multitasking while tune playing

 repeat

 gfx_Cls();

 txt_MoveCursor(0,8);

 tune_Play(examples[n]);

 txt_Set(TEXT_PRINTDELAY, 0);

 putstr(names[n++]);

 repeat

 txt_Set(TEXT_PRINTDELAY, 50);

 txt_MoveCursor(0,0);

 putstr("Playing");

 pause(150);

 txt_MoveCursor(0,0);

 putstr(" ");

 until (!(sys_Get(CONTROL) & PLAYING));// wait until the tune

 // string finishes.

 pause(1000); // then pause 5 seconds

 until (n == number_of_examples);

 gfx_Cls();

 txt_Set(TEXT_PRINTDELAY, 0);

 tune_Play(DEMO); // last example plays forever

 putstr("DEMO CONTINUOUS");

 // the last demo endlessly loops, play for 10 seconds then pause

 pause(10000);

 tune_Pause();

 print("\nPaused....");

 pause(10000); // pause for 10 seconds

 tune_Continue(); // continue

 print("\nContinue....");

 pause(10000); // for 10 seconds

 tune_End(); // then end it

 print("\nEnd....");

 pause(10000); // wait for 10 seconds

 forever // then do it all again

endfunc

//---

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 158 of 185 www.4dlabs.com.au

2.12.3. tune_Pause()

Syntax tune_Pause();

Arguments none

Returns nothing

Description Suspends any current tune from playing until a tune_Continue(), tune_Stop() or a new

tune_Play("...") function is called. The oscillator is not stopped.

Example See example in tune_Play(..)

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 159 of 185 www.4dlabs.com.au

2.12.4. tune_Continue()

Syntax tune_Continue();

Arguments none

Returns nothing

Description Continues playing any previously stopped or paused tune.

Example See example in tune_Play(..)

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 160 of 185 www.4dlabs.com.au

2.12.5. tune_Stop()

Syntax tune_Stop();

Arguments none

Returns nothing

Description Pauses a tune and silences the oscillator until a tune_Continue(), tune_Stop(), tune_End() or a new

tune_Play("...") function is called.

Example See example in tune_Play(..)

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 161 of 185 www.4dlabs.com.au

2.12.6. tune_End()

Syntax tune_End();

Arguments none

Returns nothing

Description Ends any current tune and resets the tune interpreter.

Example See example in tune_Play(..)

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 162 of 185 www.4dlabs.com.au

2.12.7. tune_Playing()

Syntax tune_Playing();

Arguments none

Returns state

state Returns: 1 if a tune is playing

Returns: 0 if no tune is playing

Description Use this function to check for any current tunes being played. Returns 1 if tune is playing, 0 if no tune

is playing.

Example See example in tune_Play(..)

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 163 of 185 www.4dlabs.com.au

2.13. General Purpose Functions

Summary of Functions in this section:

• pause(time)

• lookup8 (key, byteConstList)

• lookup16 (key, wordConstList)

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 164 of 185 www.4dlabs.com.au

2.13.1. pause(time)

Syntax pause(time);

Arguments time

time A value specifying the delay time in milliseconds.

The arguments can be a variable, array element, expression or constant

Returns nothing

Description Stop execution of the user program for a predetermined amount of time.

Example if (joystick() == FIRE) // if fire button pressed

 pause(30) // slow down the loop

else

 ...

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 165 of 185 www.4dlabs.com.au

2.13.2. lookup8(key, byteConstList)

Syntax lookup8(key, byteConstList);

Arguments key, byteConstList

key A byte value to search for in a fixed list of constants. The key argument can be a
variable, array element, expression or constant

byteConstList A comma separated list of constants and strings to be matched against key.
Note: the string of constants may be freely formed, see example.

Returns result

 result See description.

Description Search a list of 8 bit constant values for a match with a search value key. If found, the index of the
matching constant is returned in result, else result is set to zero. Thus, if the value is found first in the
list, result is set to one. If second in the list, result is set to two etc. If not found, result is returned
with zero.

Note: The list of constants cannot be re-directed. The lookup8(...) functions offer a versatile way for
returning an index for a given value. This can be very useful for data entry filtering and parameter
input checking and where ever you need to check the validity of certain inputs. The entire search list
field can be replaced with a single name if you use the $ operator in constant, eg :

#constant HEXVALUES $"0123456789ABCDEF"

Example func main()

 var key, r;

 key := 'a';

 r := lookup8(key, 0x4D, "abcd", 2, 'Z', 5);

 print("\nSearch value 'a' \nfound as index ", r)

 key := 5;

 r := lookup8(key, 0x4D, "abcd", 2, 'Z', 5);

 print("\nSearch value 5 \nfound at index ", r)

 putstr("\nScanning..\n");

 key := -12000; // we will count from -12000 to +12000, only

 // the hex ascii values will give a match value

 while(key <= 12000)

 r := lookup8(key, "0123456789ABCDEF"); // hex lookup

 if(r) print([HEX1] r-1); // only print if we got a match in

 // the table

 key++;

 wend

 repeat forever

endfunc

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 166 of 185 www.4dlabs.com.au

2.13.3. lookup16(key, wordConstList)

Syntax lookup16(key, wordConstList);

Arguments key, wordConstList

key A word value to search for in a fixed list of constants. The key argument can be a
variable, array element, expression or constant

wordConstList A comma separated list of constants to be matched against key.

Returns result

 result See description.

Description Search a list of 16 bit constant values for a match with a search value key. If found, the index of the
matching constant is returned in result, else result is set to zero. Thus, if the value is found first in the
list, result is set to one. If second in the list, result is set to two etc. If not found, result is returned
with zero.

Note: The lookup16(...) functions offer a versatile way for returning an index for a given value. This is
very useful for parameter input checking and where ever you need to check the validity of certain
values. The entire search list field can be replaced with a single name by using the $ operator in
constant, eg:

#constant LEGALVALS $5,10,20,50,100,200,500,1000,2000,5000,10000

Example func main()

 var key, r;

 key := 5000;

 r := lookup16(key,

5,10,20,50,100,200,500,1000,2000,5000,10000);

 //r := lookup16(key, LEGALVALS);

 if(r)

 print("\nSearch value 5000 \nfound at index ", r);

 else

 putstr("\nValue not found");

 endif

 print("\nOk"); // all done

 repeat forever

endfunc

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 167 of 185 www.4dlabs.com.au

3. Goldelox EVE System Registers Memory Map

The following tables outline in detail the Goldelox-GFX2 system registers and flags.

Table 3.1: BYTE-Size Registers Memory Map

LABEL
ADDRESS

USAGE SIZE *NOTES
DEC HEX

VX1 128 0x80 display hardware GRAM x1 pos BYTE SYSTEM (R/O)

VY1 129 0x81 display hardware GRAM y1 pos BYTE SYSTEM (R/O)

VX2 130 0x82 display hardware GRAM x2 pos BYTE SYSTEM (R/O)

VY2 131 0x83 display hardware GRAM y2 pos BYTE SYSTEM (R/O)

SYS_X_MAX 132 0x84 display hardware X res-1 BYTE SYSTEM (R/O)

SYS_Y_MAX 133 0x85 display hardware Y res-1 BYTE SYSTEM (R/O)

WRITE_GRAM_REG 134 0x86 display GRAM write address BYTE SYSTEM (R/O)

READ_GRAM_REG 135 0x87 display GRAM read address BYTE SYSTEM (R/O)

IMAGE_WIDTH 136 0x88 loaded image/animation width BYTE SYSTEM (R/O)

IMAGE_HEIGHT 137 0x89 loaded image/animation height BYTE SYSTEM (R/O)

IMAGE_DELAY 138 0x8A frame delay (if animation) BYTE USER

IMAGE_MODE 139 0x8B image/animation colour mode BYTE SYSTEM (R/O)

CLIP_LEFT_POS 140 0x8C left clipping point setting BYTE USER

CLIP_TOP_POS 141 0x8D top clipping point setting BYTE USER

CLIP_RIGHT_POS 142 0x8E right clipping point setting BYTE USER

CLIP_BOTTOM_POS 143 0x8F bottom clipping point setting BYTE USER

CLIP_LEFT 144 0x90 left clipping point active BYTE USER

CLIP_TOP 145 0x91 top clipping point active BYTE USER

CLIP_RIGHT 146 0x92 right clipping point active BYTE USER

CLIP_BOTTOM 147 0x93 bottom clipping point active BYTE USER

FONT_TYPE 148 0x94 0 = fixed, 1 = proportional BYTE SYSTEM (R/O)

FONT_MAX 149 0x95 number of chars in font set BYTE SYSTEM (R/O)

FONT_OFFSET 150 0x96 ASCII offset (usually 0x20) BYTE SYSTEM (R/O)

FONT_WIDTH 151 0x97 width of font (pixel units) BYTE SYSTEM (R/O)

FONT_HEIGHT 152 0x98 height of font (pixel units) BYTE SYSTEM (R/O)

TEXT_XMAG 153 0x99 text width magnification BYTE USER

TEXT_YMAG 154 0x9A text height magnification BYTE USER

TEXT_MARGIN 155 0x9B text place holder for CR BYTE SYSTEM (R/O)

TEXT_DELAY 156 0x9C text delay effect (0-255msec) BYTE USER

TEXT_X_GAP 157 0x9D X pixel gap between chars BYTE USER

TEXT_Y_GAP 158 0x9E Y pixel gap between chars BYTE USER

GFX_XMAX 159 0x9F width of current orientation BYTE SYSTEM (R/O)

GFX_YMAX 160 0xA0 height of current orientation BYTE SYSTEM (R/O)

GFX_SCREENMODE 161 0xA1 Current screen mode (0-3) BYTE SYSTEM (R/O)

reserved
162-
165

0xA2-
0xA5

reserved BYTE SYSTEM (R/O)

* NOTES:

SYSTEM
SYSTEM registers are maintained by internal system functions and should not be written to. They
should only ever be read.
DO NOT WRITE to these registers.

USER
USER registers are read/write (R/W) registers used to alter the system behaviour. Refer to the
individual functions for information on the interaction with these registers.

These registers are accessible with peekB and pokeB functions.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 168 of 185 www.4dlabs.com.au

Table 3.2: WORD-Size Registers Memory Map

LABEL
ADDRESS

USAGE SIZE *NOTES
DEC HEX

SYS_OVERFLOW 83 0x53 16bit overflow register WORD USER

SYS_COLOUR 84 0x54 internal variable for colour WORD SYSTEM

SYS_RETVAL 85 0x55 return value of last function WORD SYSTEM

GFX_BACK_COLOUR 86 0x56 screen background colour WORD USER

GFX_OBJECT_COLOUR 87 0x57 graphics object colour WORD USER

GFX_TEXT_COLOUR 88 0x58 text foreground colour WORD USER

GFX_TEXT_BGCOLOUR 89 0x59 text background colour WORD USER

GFX_OUTLINE_COLOUR 90 0x5A circle/rectangle outline WORD USER

GFX_LINE_PATTERN 91 0x5B line draw tessellation WORD USER

IMG_PIXEL_COUNT 92 0x5C count of pixels in image WORD SYSTEM

IMG_FRAME_COUNT 93 0x5D count of frames in animation WORD SYSTEM

MEDIA_HEAD 94 0x5E media sector head position WORD SYSTEM

SYS_OUTSTREAM 95 0x5F Output stream handle WORD SYSTEM

GFX_LEFT 96 0x60 image left real point WORD SYSTEM

GFX_TOP 97 0x61 image top real point WORD SYSTEM

GFX_RIGHT 98 0x62 image right real point WORD SYSTEM

GFX_BOTTOM 99 0x63 image bottom real point WORD SYSTEM

GFX_X1 100 0x64 image left clipped point WORD SYSTEM

GFX_Y1 101 0x65 image top clipped point WORD SYSTEM

GFX_X2 102 0x66 image right clipped point WORD SYSTEM

GFX_Y2 103 0x67 image bottom clipped point WORD SYSTEM

GFX_X_ORG 104 0x68 current X origin WORD USER

GFX_Y_ORG 105 0x69 current Y origin WORD USER

RANDOM_LO 106 0x6A random generator LO word WORD SYSTEM

RANDOM_HI 107 0x6B random generator HI word WORD SYSTEM

MEDIA_ADDR_LO 108 0x6C media byte address LO WORD SYSTEM

MEDIA_ADDR_HI 109 0x6D media byte address HI WORD SYSTEM

SECTOR_ADDR_LO 110 0x6E media sector address LO WORD SYSTEM

SECTOR_ADDR_HI 111 0x6F media sector address HI WORD SYSTEM

SYSTEM_TIMER_LO 112 0x70 1msec system timer LO word WORD USER

SYSTEM_TIMER_HI 113 0x71 1msec system timer HI word WORD USER

TIMER0 114 0x72 1msec user timer 0 WORD USER

TIMER1 115 0x73 1msec user timer 1 WORD USER

TIMER2 116 0x74 1msec user timer 2 WORD USER

TIMER3 117 0x75 1msec user timer 3 WORD USER

INCVAL 118 0x76
predec/preinc/postdec/postinc
addend

WORD USER

TEMP_MEDIA_ADDRLO 119 0x77 temporary media address LO WORD SYSTEM

TEMP_MEDIA_ADDRHI 120 0x78 temporary media address HI WORD SYSTEM

GFX_TRANSPARENTCOLOUR 121 0x79 Image transparency colour WORD USER

GFX_STRINGMETRIX 122 0x7A
Low byte = string width
High byte = string height

WORD SYSTEM

GFX_TEMPSTORE1 123 0x7B

Low byte = last character
printed
High byte = video frame timer
over-ride

WORD SYSTEM

reserved 124 0x7C reserved WORD SYSTEM

reserved 125 0x7D reserved WORD SYSTEM

SYS_FLAGS1 126 0x7E system control flags word 0 WORD FLAGS

SYS_FLAGS2 127 0x7F system control flags word 1 WORD FLAGS

USR_SP 128 0x80 User defined stack pointer WORD USERSTACK

USR_MEM 129 0x81 255 user variables / array(s) WORD MEMORY

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 169 of 185 www.4dlabs.com.au

SYS_STACK 384 0x180 128 level EVE machine stack WORD SYSTEMSTACK

* NOTES:

SYSTEM
SYSTEM registers are maintained by internal system functions and should not be written to.
They should only ever be read.
DO NOT WRITE to these registers.

USER
USER registers are read/write (R/W) registers used to alter the system behaviour. Refer to the
individual functions for information on the interaction with these registers.

USERSTACK Used by the debugging and system extension utilities

MEMORY 255 word size variables for users program

STACK 128 word EVE system stack (STACK grows upwards)

FLAGS
FLAGS are a mixture of bits that are either maintained by internal system functions or set /
cleared by various system functions. Refer to the FLAGS Register Bit Map table, and individual
functions for further details.

These registers are accessible with peekW and pokeW functions.

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 170 of 185 www.4dlabs.com.au

Table 3.3: FLAG Registers Bit Map

REGISTER
ADDRESS

NAME USAGE *NOTES VALUE
DEC HEX

SYS_FLAGS1 126 0x7E * denotes auto reset

Bit 0 _STREAMLOCK Used internally SYSTEM 0x0001

Bit 1 _PENSIZE Object, 0 = solid, 1 = outline SYSTEM 0x0002

Bit 2 _OPACITY Text, 0 = transparent, 1 = opaque SYSTEM 0x0004

Bit 3 _OUTLINED box/circle outline 0 = off, 1 = on SYSTEM 0x0008

Bit 4 _BOLD * text, 0 = normal, 1 = bold SYSTEM 0x0010

Bit 5 _ITALIC * Text, 0 = normal, 1 = italic SYSTEM 0x0020

Bit 6 _INVERSE * Text, 0 = normal, 1 = inverse SYSTEM 0x0040

Bit 7 _UNDERLINED * Text, 0 = normal, 1 = underlined SYSTEM 0x0080

Bit 8 _CLIPPING 0 = clipping off, 1 = clipping on SYSTEM 0x0100

Bit 9 _STRMODE Used internally SYSTEM 0x0200

Bit 10 _SERMODE Used internally SYSTEM 0x0400

Bit 11 _TXTMODE Used internally SYSTEM 0x0800

Bit 12 _MEDIAMODE Used internally SYSTEM 0x1000

Bit 13 _PATTERNED Used internally SYSTEM 0x2000

Bit 14 _COLOUR8 Display mode, 0 = 16bit, 1 = 8bit SYSTEM 0x4000

Bit 15 _MEDIAFONT 0 = internal font, 1 = media font SYSTEM 0x8000

SYS_FLAGS2 127 0x7F

Bit 0 _MEDIA_INSTALLED
SD/SDHC or FLASH is
detected/active

SYSTEM 0x0001

Bit 1 _MEDIA_TYPE 0 = SD/SDHC, 1 = FLASH chip SYSTEM 0x0002

Bit 2 _MEDIA_READ 1 = MEDIA read in progress SYSTEM 0x0004

Bit 3 _MEDIA_WRITE 1 = MEDIA write in progress SYSTEM 0x0008

Bit 4 _OW_PIN 0 = IO1, 1 = IO2 (Dallas OW Pin) SYSTEM 0x0010

Bit 5 _PTR_TYPE Used internally SYSTEM 0x0020

Bit 6 _TEMP1 Used internally SYSTEM 0x0040

Bit 7 _TEMP2 Used internally SYSTEM 0x0080

Bit 8 _RUNMODE 1 = running pcode from media SYSTEM 0x0100

Bit 9 _SIGNED 0 = number printed '-' prepend SYSTEM 0x0200

Bit 10 _RUNFLAG 1 = EVE processor is running SYSTEM 0x0400

Bit 11 _SINGLESTEP 1 = set breakpoint for debugger SYSTEM 0x0800

Bit 12 _COMMINT 1 = buffered coms active SYSTEM 0x1000

Bit 13 _DUMMY16 1 = display needs 16bit dummy SYSTEM 0x2000

Bit 14 _DISP16 1 = display is 16bit interface SYSTEM 0x4000

Bit 15 _PROPFONT 1 = current font is proportional SYSTEM 0x8000

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 171 of 185 www.4dlabs.com.au

4. Appendix A : Example 4DGL Code

#platform "Goldelox-GFX2"

/* 4DGL Demo Application

 -- Scaled General Demo -

 -- Tested on uOLED-128-G1 -

 -- and uOLED160-G1 platforms --

 -- Goldelox GFX2 Platforms --

*/

#inherit "4DGL_16bitColours.fnc"

// define a custom font.

// Custom fonts can also be placed in MEDIA (ie on uSD/uSDHC card), however

// text blitting will run much faster from a data statement.

#DATA

 byte MS_SanSerif8x12

 2, // Type 2, Char Width preceeds character; Table of widths also

 96, // Num chars

 32, // Starting Char

 8, // Font_Width

 12, // Font_Height

 4, 4, 6, 8, 7, 8, 7, 3, // Widths of chars 0x32 to 0x39

 4, 4, 5, 7, 4, 4, 4, 6, // etc.

 7, 7, 7, 7, 7, 7, 7, 7,

 7, 7, 4, 4, 7, 7, 7, 7,

 8, 8, 8, 8, 8, 8, 7, 8,

 8, 4, 6, 8, 7, 8, 8, 8,

 8, 8, 8, 8, 8, 8, 8, 8,

 8, 8, 8, 4, 6, 4, 7, 7,

 4, 7, 7, 7, 7, 7, 4, 7,

 7, 3, 3, 7, 3, 9, 7, 7,

 7, 7, 4, 6, 4, 7, 7, 8,

 6, 6, 6, 5, 3, 5, 8, 4,

 4, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 32 ' '

 4, 0x00,0x00,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x00,0x40,0x00, // 33 '!'

 6, 0x00,0x00,0x48,0x48,0x48,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 34 '"'

 8, 0x00,0x00,0x24,0x24,0x7E,0x24,0x24,0x24,0x7E,0x24,0x24,0x00, // 35 '#'

 7, 0x00,0x00,0x10,0x38,0x54,0x50,0x30,0x18,0x14,0x54,0x38,0x10, // 36 '$'

 8, 0x00,0x00,0x30,0x49,0x32,0x04,0x08,0x10,0x26,0x49,0x06,0x00, // 37 '%'

 7, 0x00,0x00,0x20,0x50,0x50,0x20,0x20,0x54,0x48,0x48,0x34,0x00, // 38 '&'

 3, 0x00,0x00,0x40,0x40,0x40,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 39 '''

 4, 0x00,0x00,0x20,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40, // 40 '('

 4, 0x00,0x00,0x40,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20, // 41 ')'

 5, 0x00,0x00,0x00,0x50,0x20,0x50,0x00,0x00,0x00,0x00,0x00,0x00, // 42 '*'

 7, 0x00,0x00,0x00,0x00,0x00,0x10,0x10,0x7C,0x10,0x10,0x00,0x00, // 43 '+'

 4, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x20,0x40, // 44 ','

 4, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x60,0x00,0x00,0x00,0x00, // 45 '-'

 4, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x40,0x00, // 46 '.'

 6, 0x00,0x00,0x08,0x08,0x08,0x10,0x10,0x20,0x20,0x40,0x40,0x00, // 47 '/'

 7, 0x00,0x00,0x38,0x44,0x44,0x44,0x44,0x44,0x44,0x44,0x38,0x00, // 48 '0'

 7, 0x00,0x00,0x10,0x70,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x00, // 49 '1'

 7, 0x00,0x00,0x38,0x44,0x04,0x04,0x08,0x10,0x20,0x40,0x7C,0x00, // 50 '2'

 7, 0x00,0x00,0x38,0x44,0x04,0x04,0x18,0x04,0x04,0x44,0x38,0x00, // 51 '3'

 7, 0x00,0x00,0x08,0x18,0x18,0x28,0x28,0x48,0x7C,0x08,0x08,0x00, // 52 '4'

 7, 0x00,0x00,0x7C,0x40,0x40,0x78,0x44,0x04,0x04,0x44,0x38,0x00, // 53 '5'

 7, 0x00,0x00,0x38,0x44,0x40,0x40,0x78,0x44,0x44,0x44,0x38,0x00, // 54 '6'

 7, 0x00,0x00,0x7C,0x04,0x08,0x08,0x10,0x10,0x20,0x20,0x20,0x00, // 55 '7'

 7, 0x00,0x00,0x38,0x44,0x44,0x44,0x38,0x44,0x44,0x44,0x38,0x00, // 56 '8'

 7, 0x00,0x00,0x38,0x44,0x44,0x44,0x3C,0x04,0x04,0x44,0x38,0x00, // 57 '9'

 4, 0x00,0x00,0x00,0x00,0x00,0x40,0x00,0x00,0x00,0x00,0x40,0x00, // 58 ':'

 4, 0x00,0x00,0x00,0x00,0x00,0x20,0x00,0x00,0x00,0x00,0x20,0x40, // 59 ';'

 7, 0x00,0x00,0x00,0x00,0x08,0x10,0x20,0x40,0x20,0x10,0x08,0x00, // 60 '<'

 7, 0x00,0x00,0x00,0x00,0x00,0x00,0x7C,0x00,0x7C,0x00,0x00,0x00, // 61 '='

 7, 0x00,0x00,0x00,0x00,0x40,0x20,0x10,0x08,0x10,0x20,0x40,0x00, // 62 '>'

 7, 0x00,0x00,0x38,0x44,0x04,0x04,0x08,0x10,0x10,0x00,0x10,0x00, // 63 '?'

 8, 0x00,0x00,0x0C,0x32,0x21,0x4D,0x53,0x52,0x4C,0x20,0x31,0x0E, // 64 '@'

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 172 of 185 www.4dlabs.com.au

 8, 0x00,0x00,0x10,0x10,0x28,0x28,0x44,0x44,0x7C,0x82,0x82,0x00, // 65 'A'

 8, 0x00,0x00,0x78,0x44,0x44,0x44,0x78,0x44,0x44,0x44,0x78,0x00, // 66 'B'

 8, 0x00,0x00,0x3C,0x42,0x40,0x40,0x40,0x40,0x40,0x42,0x3C,0x00, // 67 'C'

 8, 0x00,0x00,0x78,0x44,0x42,0x42,0x42,0x42,0x42,0x44,0x78,0x00, // 68 'D'

 8, 0x00,0x00,0x7C,0x40,0x40,0x40,0x78,0x40,0x40,0x40,0x7C,0x00, // 69 'E'

 7, 0x00,0x00,0x7C,0x40,0x40,0x40,0x78,0x40,0x40,0x40,0x40,0x00, // 70 'F'

 8, 0x00,0x00,0x3C,0x42,0x40,0x40,0x4E,0x42,0x42,0x46,0x3A,0x00, // 71 'G'

 8, 0x00,0x00,0x42,0x42,0x42,0x42,0x7E,0x42,0x42,0x42,0x42,0x00, // 72 'H'

 4, 0x00,0x00,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x00, // 73 'I'

 6, 0x00,0x00,0x10,0x10,0x10,0x10,0x10,0x10,0x90,0x90,0x60,0x00, // 74 'J'

 8, 0x00,0x00,0x44,0x48,0x50,0x60,0x60,0x50,0x48,0x44,0x42,0x00, // 75 'K'

 7, 0x00,0x00,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x7C,0x00, // 76 'L'

 8, 0x00,0x00,0x41,0x41,0x63,0x63,0x55,0x55,0x49,0x49,0x41,0x00, // 77 'M'

 8, 0x00,0x00,0x42,0x62,0x62,0x52,0x52,0x4A,0x46,0x46,0x42,0x00, // 78 'N'

 8, 0x00,0x00,0x3C,0x42,0x42,0x42,0x42,0x42,0x42,0x42,0x3C,0x00, // 79 'O'

 8, 0x00,0x00,0x7C,0x42,0x42,0x42,0x7C,0x40,0x40,0x40,0x40,0x00, // 80 'P'

 8, 0x00,0x00,0x3C,0x42,0x42,0x42,0x42,0x42,0x4A,0x46,0x3C,0x02, // 81 'Q'

 8, 0x00,0x00,0x7C,0x42,0x42,0x42,0x7C,0x42,0x42,0x42,0x42,0x00, // 82 'R'

 8, 0x00,0x00,0x38,0x44,0x40,0x40,0x38,0x04,0x04,0x44,0x38,0x00, // 83 'S'

 8, 0x00,0x00,0x7C,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x10,0x00, // 84 'T'

 8, 0x00,0x00,0x42,0x42,0x42,0x42,0x42,0x42,0x42,0x42,0x3C,0x00, // 85 'U'

 8, 0x00,0x00,0x41,0x41,0x22,0x22,0x22,0x14,0x14,0x08,0x08,0x00, // 86 'V'

 8, 0x00,0x00,0x41,0x41,0x41,0x22,0x2A,0x2A,0x1C,0x14,0x14,0x00, // 87 'W'

 8, 0x00,0x00,0x41,0x41,0x22,0x14,0x08,0x14,0x22,0x41,0x41,0x00, // 88 'X'

 8, 0x00,0x00,0x41,0x41,0x22,0x14,0x08,0x08,0x08,0x08,0x08,0x00, // 89 'Y'

 8, 0x00,0x00,0x7F,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x7F,0x00, // 90 'Z'

 4, 0x00,0x00,0x60,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40, // 91 '['

 6, 0x00,0x00,0x40,0x40,0x40,0x20,0x20,0x10,0x10,0x08,0x08,0x00, // 92 '\'

 4, 0x00,0x00,0x60,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20,0x20, // 93 ']'

 7, 0x00,0x10,0x28,0x44,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 94 '^'

 7, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 95 '_'

 4, 0x00,0x00,0x40,0x20,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 96 '`'

 7, 0x00,0x00,0x00,0x00,0x00,0x38,0x04,0x3C,0x44,0x44,0x3C,0x00, // 97 'a'

 7, 0x00,0x00,0x40,0x40,0x40,0x78,0x44,0x44,0x44,0x44,0x78,0x00, // 98 'b'

 7, 0x00,0x00,0x00,0x00,0x00,0x38,0x44,0x40,0x40,0x44,0x38,0x00, // 99 'c'

 7, 0x00,0x00,0x04,0x04,0x04,0x3C,0x44,0x44,0x44,0x44,0x3C,0x00, // 100 'd'

 7, 0x00,0x00,0x00,0x00,0x00,0x38,0x44,0x7C,0x40,0x44,0x38,0x00, // 101 'e'

 4, 0x00,0x00,0x20,0x40,0x40,0x60,0x40,0x40,0x40,0x40,0x40,0x00, // 102 'f'

 7, 0x00,0x00,0x00,0x00,0x00,0x3C,0x44,0x44,0x44,0x44,0x3C,0x04, // 103 'g'

 7, 0x00,0x00,0x40,0x40,0x40,0x58,0x64,0x44,0x44,0x44,0x44,0x00, // 104 'h'

 3, 0x00,0x00,0x40,0x00,0x00,0x40,0x40,0x40,0x40,0x40,0x40,0x00, // 105 'i'

 3, 0x00,0x00,0x40,0x00,0x00,0x40,0x40,0x40,0x40,0x40,0x40,0x40, // 106 'j'

 7, 0x00,0x00,0x40,0x40,0x40,0x48,0x50,0x60,0x50,0x48,0x44,0x00, // 107 'k'

 3, 0x00,0x00,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x00, // 108 'l'

 9, 0x00,0x00,0x00,0x00,0x00,0x76,0x49,0x49,0x49,0x49,0x49,0x00, // 109 'm'

 7, 0x00,0x00,0x00,0x00,0x00,0x58,0x64,0x44,0x44,0x44,0x44,0x00, // 110 'n'

 7, 0x00,0x00,0x00,0x00,0x00,0x38,0x44,0x44,0x44,0x44,0x38,0x00, // 111 'o'

 7, 0x00,0x00,0x00,0x00,0x00,0x78,0x44,0x44,0x44,0x44,0x78,0x40, // 112 'p'

 7, 0x00,0x00,0x00,0x00,0x00,0x3C,0x44,0x44,0x44,0x44,0x3C,0x04, // 113 'q'

 4, 0x00,0x00,0x00,0x00,0x00,0x60,0x40,0x40,0x40,0x40,0x40,0x00, // 114 'r'

 6, 0x00,0x00,0x00,0x00,0x00,0x30,0x48,0x20,0x10,0x48,0x30,0x00, // 115 's'

 4, 0x00,0x00,0x00,0x40,0x40,0x60,0x40,0x40,0x40,0x40,0x20,0x00, // 116 't'

 7, 0x00,0x00,0x00,0x00,0x00,0x44,0x44,0x44,0x44,0x4C,0x34,0x00, // 117 'u'

 7, 0x00,0x00,0x00,0x00,0x00,0x44,0x44,0x28,0x28,0x10,0x10,0x00, // 118 'v'

 8, 0x00,0x00,0x00,0x00,0x00,0x49,0x49,0x55,0x55,0x22,0x22,0x00, // 119 'w'

 6, 0x00,0x00,0x00,0x00,0x00,0x48,0x48,0x30,0x30,0x48,0x48,0x00, // 120 'x'

 6, 0x00,0x00,0x00,0x00,0x00,0x48,0x48,0x48,0x48,0x30,0x20,0x20, // 121 'y'

 6, 0x00,0x00,0x00,0x00,0x00,0x78,0x08,0x10,0x20,0x40,0x78,0x00, // 122 'z'

 5, 0x00,0x10,0x20,0x20,0x20,0x20,0x40,0x20,0x20,0x20,0x20,0x10, // 123 '{'

 3, 0x00,0x00,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40, // 124 '|'

 5, 0x00,0x40,0x20,0x20,0x20,0x20,0x10,0x20,0x20,0x20,0x20,0x40, // 125 '}'

 8, 0x00,0x00,0x00,0x32,0x4C,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 126 '~'

 4, 0x00,0x00,0x00,0x60,0x60,0x60,0x60,0x60,0x60,0x60,0x60,0x60 // 127 '•'

#END

// a message for the moving banner

#DATA

 byte message "......Goldelox GFX2 Graphics......",0

#END

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 173 of 185 www.4dlabs.com.au

// the 'wall' colours

#CONST

 LEFTCOLOUR 0xF800

 RIGHTCOLOUR 0xFFFF

 TOPCOLOUR 0x001F

 BOTTOMCOLOUR 0x07E0

#END

// constants for the view-port

// These may need adjusting for smaller displays

#CONST

 windowXpos 30

 windowYpos 30

 windowWidth 110

 windowHeight 60

#END

// object types.

// 2,3,4,5 and 6 doubles as polygon vertices counts

#CONST

 RANDOM 0

 CIRCLE 1

 LINE 2

 TRIANGLE 3

 RECTANGLE 4

 PENTAGON 5

 HEXAGON 6

#END

// 'ball' speed factors determine

// how many pixels to jump per movement

#constant XSPEED 3

#constant YSPEED 2

// the width of the side walls

#constant WALLWIDTH 2

// 'ball' object radius

#constant BALLSIZE 4

// global working variables

var ball_x, ball_y, ball_r, ball_colour;

var xdir, ydir, xspeed, yspeed;

var screenwidth, screenheight, xc, yc;

var tophit, bottomhit, lefthit, righthit;

var windowLeft, windowTop, windowRight, windowBottom;

var angle, newseed;

// global variables for the polygon generator

var Xcoords[6], Ycoords[6]; // big enough for a hexagon

var targetX, targetY; // targets for orbit

// array of pointers for text messages

var messages[4];

// polyline array for scope

#constant SAMPLES 20

var ScopeBufX[SAMPLES];

var ScopeBufY[SAMPLES];

var freq[4];

var mediaflag; // set to 1 if uSD/uSDHC card detected

//==

// draw random waveform

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 174 of 185 www.4dlabs.com.au

//==

func doRandScope(var samples, var colr, var smpl)

 var w,h,n,xstep,yoffs,x,yscale,xoffs,seedoffs;

 w := windowRight-windowLeft;

 h := windowBottom-windowTop;

 xstep:=w/samples+1;

 yscale:=h/2;

 yoffs:=h/2+windowTop;

 SEED(smpl);

 x:=windowLeft;

 while (n<samples)

 // undraw the old sample as we create new one (looks better, less flicker)

 gfx_Line(ScopeBufX[n],ScopeBufY[n],ScopeBufX[n+1],ScopeBufY[n+1],BLACK);

 ScopeBufY[n]:=(RAND()%yscale)+yoffs;

 ScopeBufX[n]:=x;

 x := x+xstep;

 n++;

 wend

 gfx_Polyline(samples, ScopeBufX, ScopeBufY, colr); // draw the new sample

endfunc

//==

// draw a sinewave

//==

func doSineScope(var samples, var colr, var smpl)

 var w,h,n,xstep,yoffs,x,yscale,xoffs,seedoffs;

 w := windowRight-windowLeft;

 h := windowBottom-windowTop;

 xstep:=w/samples+1;

 yscale:=h/2;

 yoffs:=h/2+windowTop;

 x:=windowLeft;

 gfx_Polyline(samples, ScopeBufX, ScopeBufY, BLACK); // undraw the old

 // buffer first

 while (n<samples)

 ScopeBufY[n]:=SIN(xoffs)/4+yoffs;

 ScopeBufX[n]:=x;

 x := x+xstep;

 xoffs := xoffs+smpl;

 n++;

 wend

 gfx_Polyline(samples, ScopeBufX, ScopeBufY, colr);; // draw the new sample

endfunc

//==

// build a polygon with a number of sides determined by var "sides"

// around the current origin. The distance from the origin to the

// equidistent vertices from origin determined

// by var "distance". var "angle" is the starting angle for the

// first virtices. Draws the polygon in colour var "colr"

// NB make sure the array is big enough for the required number of sides

//==

func MakePolygon(var angle, var sides, var distance, var colr)

 var index, step;

 index := 0;

 step := 360/sides; // work out the step size

 while (sides < 360) // until we do a complete polygon

 gfx_Orbit(angle, distance);

 Xcoords[index] := targetX; // build a polygon in the matrix

 Ycoords[index] := targetY;

 index++;

 angle := angle + step;

 sides := sides + step;

 wend

 gfx_Polygon(index, Xcoords, Ycoords, colr);

endfunc

//==

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 175 of 185 www.4dlabs.com.au

// ball object control

//==

func DrawBall(var type, var colour)

 var count;

 gosub(type),(

 circle,

 text,

 triangle,

 rectangle,

 pentagon,

 hexagon,

 random

);

 goto default; // unknown type default exit

// case circle

circle:

 gfx_CircleFilled(ball_x, ball_y, BALLSIZE, colour); // redraw the ball

 endsub;

// case text

text:

 txt_Opacity(TRANSPARENT); // transparent text

 txt_FontID(0); // default small font

 //txt_FGcolour(RAND());

 txt_FGcolour(colour);

 gfx_MoveTo(ball_x, ball_y); // draw a pixel trail

 putstr("4DGL");

 endsub;

// these cases same, type is used to determine number of sides

triangle:

rectangle:

pentagon:

hexagon:

 gfx_MoveTo(ball_x, ball_y); // using the balls origin

 MakePolygon(angle, type, 10, colour); // make 3 sided polygon = triangle

 endsub;

// case random

random:

 if (colour)

 SEED(newseed);

 gfx_ObjectColour(RAND()|0x8408); // ensure hi colours

 else

 SEED(newseed++);

 RAND(); // RAND here to compensate so we get repeat sequence

 gfx_ObjectColour(BLACK);

 endif

 count := 5;

 while (count--)

 gfx_MoveTo(ball_x+RAND()%15, ball_y+RAND()%15);

 //gfx_Dot(); // draw a pixel trail

 gfx_Bullet(3); // draw random circles

 //gfx_BoxTo(ball_x, ball_y); // draw random boxes

 wend

 endsub;

default:

endfunc

//==

// part of intro, fill clipped area with pixels then remove in same orded

//==

func doDots()

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 176 of 185 www.4dlabs.com.au

 var n,x,y,w,h;

 // random dots

 SEED(1234);

 w := windowRight - windowLeft;

 h := windowBottom - windowTop;

 n := -3000;

 while (n++<3000)

 x := ABS(RAND()%w) + windowLeft+1;

 y := ABS(RAND()%h) + windowTop+1;

 gfx_PutPixel(x , y , RAND());

 wend

 // undraw the dots

 SEED(1234);

 n := -3000;

 while (n++<3000)

 x := ABS(RAND()%w) + windowLeft+1;

 y := ABS(RAND()%h) + windowTop+1;

 RAND();

 gfx_PutPixel(x , y , 0);

 wend

endfunc

//==

// part of intro, fill entire screen with lines then remove in same orded

// Note that clipping will take care of line endpoints outside to clipping area

//==

func doLines()

 var n;

 // random lines

 SEED(9876);

 n := -200;

 while (n++<200)

 gfx_Line(ABS(RAND()%screenwidth), ABS(RAND()%screenheight), ABS(RAND()

 %screenwidth), ABS(RAND()%screenheight), RAND());

 wend

 // undraw the lines

 SEED(9876);

 n := -200;

 while (n++<200)

 gfx_Line(ABS(RAND()%screenwidth), ABS(RAND()%screenheight), ABS(RAND()

 %screenwidth), ABS(RAND()%screenheight), 0);

 RAND();

 wend

endfunc

//==

// Check the baal position against the walls.

// Change direction registers accordingly.

//==

func collision()

 if(ball_x <= lefthit)

 ball_x := lefthit;

 ball_colour := LEFTCOLOUR;

 xdir := -xdir;

 endif

 if(ball_x >= righthit)

 ball_x := righthit;

 ball_colour := RIGHTCOLOUR;

 xdir := -xdir;

 endif

 if (ball_y <= tophit)

 ball_y := tophit;

 ball_colour := TOPCOLOUR;

 ydir := -ydir;

 endif

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 177 of 185 www.4dlabs.com.au

 if(ball_y >= bottomhit)

 ball_y := bottomhit;

 ball_colour := BOTTOMCOLOUR;

 ydir := -ydir;

 endif

endfunc

//==

// EVE starts executing code from here

//==

func main()

 var mode, timer, obj, scrollpos, n, linepattern, intro, intronum, scopeloop;

 if (media_Init() == 0) // initialise and test the uSD/uSDHC card

 print("No uSD CARD Installed\n");

 print("Some demo's are disabled");

 pause(2000);

 gfx_Cls();

 endif

 mode := 0;

 linepattern := 0xF0F0;

 messages[0] := " LANDSCAPE";

 messages[1] := "LANDSCAPE_R";

 messages[2] := " PORTRAIT";

 messages[3] := "PORTRAIT_R";

 //gfx_Set(CONTRAST, 16);

 gfx_Contrast(16); // max. brightness

 gfx_Cls();

 // set generic target variables for the orbit command

 gfx_OrbitInit(&targetX, &targetY);

 txt_Set(FONT_ID, MS_SanSerif8x12); // don't use default system font, use

 // font provided

repeat

 timer := 0; // timer for SCREEN_MODE switching

 gfx_Cls();

 gfx_Set(SCREEN_MODE, mode); // set required screen mode

 // this is mainly for 'non square' display to make the ball speed realistic

 if (mode < 2)

 xspeed := XSPEED; // keep correct ball speed aspect

 yspeed := YSPEED;

 else

 xspeed := YSPEED;

 yspeed := XSPEED;

 endif

 // get the display parameters

 screenwidth := peekB(GFX_XMAX);

 screenheight := peekB(GFX_YMAX);

 // determine the centre point

 xc := screenwidth >> 1;

 yc := screenheight >> 1;

 ball_colour := WHITE; // initial ball colour

 xdir := 1; ydir := 1; // initial ball direction

 ball_x := 20; ball_y := 20; // initial ball position

 // draw the walls

 // draw Top Wall

 gfx_RectangleFilled(0, 0, screenwidth-1, WALLWIDTH-1, TOPCOLOUR);

 // Draw Bottom Wall

 gfx_RectangleFilled(0, screenheight-WALLWIDTH, screenwidth-1, screenheight-

 1, BOTTOMCOLOUR);

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 178 of 185 www.4dlabs.com.au

 // Draw Left Wall

 gfx_RectangleFilled(0, WALLWIDTH-1, WALLWIDTH-1, screenheight-WALLWIDTH-1,

 LEFTCOLOUR);

 // Draw Right Wall

 gfx_RectangleFilled(screenwidth-WALLWIDTH, WALLWIDTH, screenwidth-1,

 screenheight-WALLWIDTH-1, RIGHTCOLOUR);

 // calculate the collision positions

 tophit := WALLWIDTH+BALLSIZE;

 bottomhit := screenheight-WALLWIDTH-BALLSIZE-1;

 lefthit := WALLWIDTH+BALLSIZE;

 righthit := screenwidth-WALLWIDTH-BALLSIZE-1;

 // set clipping area

 windowLeft := lefthit;

 windowTop := tophit+10;

 windowRight := righthit - 16;

 windowBottom := bottomhit -40;

 // preset the clipping area, activated later...

 gfx_ClipWindow(windowLeft, windowTop, windowRight, windowBottom);

 // draw a rectangle around the clipped area

 gfx_Rectangle(windowLeft-1, windowTop-1, windowRight+1, windowBottom+1,

 YELLOW);

 // test: draw a small outline rectangle outside

 gfx_Rectangle(windowLeft+5, windowBottom+10, windowLeft+15, windowBottom+20,

 RED);

 // test: draw a small solid rectangle outside

 gfx_RectangleFilled(windowLeft+20, windowBottom+10, windowLeft+30,

 windowBottom+20, GREEN);

 // test: draw a small outline circle

 gfx_Circle(windowLeft+40, windowBottom+15, 5, BLUE);

 // test: draw a small filled circle

 gfx_CircleFilled(windowLeft+60, windowBottom+15, 5, YELLOW);

 gfx_Set(CLIPPING, OFF); // turn off clipping so we can print outside

 // the clip region

 txt_FGcolour(RED);

 txt_BGcolour(YELLOW);

 txt_Bold(ON);

 //txt_FontID(2);

 //txt_Set(TEXT_ITALIC, ON);

 //txt_Set(TEXT_OPACITY, TRANSPARENT); // transparent text is faster

 //gfx_MoveTo(xc-50, yc+20);

 gfx_MoveTo(xc-50, bottomhit -12);

 print(mode," ",[STR] messages[mode]);

 gfx_Set(CLIPPING, ON); // turn on clipping

 // decide which intro we use for the next screen

 if (intro)

 intro := 0;

 // clear the clipped area

 gfx_RectangleFilled(windowLeft,windowTop,windowRight,windowBottom, BLACK);

 intronum++;

 if (intronum == 1)

 n:=-180;

 while(n<180)

 doSineScope(SAMPLES, YELLOW, n++);

 n++;

 //pause(10);

 wend

 else if (intronum == 2)

 n:=200;

 while(n)

 doRandScope(SAMPLES, BLUE, n--);

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 179 of 185 www.4dlabs.com.au

 //pause(10);

 wend

 else if (intronum == 3)

 doLines();

 else

 doDots();

 intronum := 0;

 endif

 gfx_RectangleFilled(windowLeft,windowTop,windowRight,windowBottom,BLACK);

 endif

 // timer0 is the screen mode change timer

 *TIMER0 := 7000;

 repeat

 // draw a cross through the clipped area box

 gfx_LinePattern(linepattern);

 gfx_Line(windowLeft+1,windowTop+1,windowRight-1,windowBottom-1, MAGENTA);

 gfx_Line(windowLeft+1,windowBottom-1,windowRight-1,windowTop+1, MAGENTA);

 gfx_LinePattern(0);

 // timer2 is used for the banner scrolling

 if (!*TIMER2)

 *TIMER2 := 50;

 txt_Opacity(OPAQUE); // transparent text

 txt_FontID(0); // default system font

 gfx_Clipping(OFF);

 gfx_ClipWindow(windowLeft+10,WALLWIDTH,windowRight-10,WALLWIDTH+8);

 gfx_Clipping(ON);

 scrollpos := scrollpos-1;

 n:=strwidth(message);

 if(scrollpos < windowLeft+10-n) scrollpos := windowRight-10;

 gfx_MoveTo(scrollpos, WALLWIDTH+2);

 txt_FGcolour(WHITE);

 txt_BGcolour(DARKGREEN);

 //txt_Italic(ON);

 txt_Bold(ON);

 putstr(message);

 gfx_Clipping(OFF);

 gfx_ClipWindow(windowLeft, windowTop+1, windowRight, windowBottom);

 gfx_Clipping(ON);

 endif

 // timer3 is used to shift the line pattern

 if(!*TIMER3)

 *TIMER3 := 100;

 linepattern := linepattern << 1;

 if (OVF()) linepattern := linepattern | 1;

 endif

 // timer 0 is for ball timing

 if(!*TIMER1)

 *TIMER1 := 30;

 DrawBall(obj, BLACK); // erase the ball object

 angle := angle + 10;

 ball_x := ball_x + xdir * xspeed;

 ball_y := ball_y + ydir * yspeed;

 collision(); // detect collision

 DrawBall(obj, ball_colour); // redraw the ball object

 //DrawBall(obj, RAND()); // redraw the ball object

 endif

 until (!*TIMER0)

 scrollpos := windowLeft+10; // reset the banner

 if (++mode > 3)

 mode := 0; // next screen mode

 if (obj++ > HEXAGON) obj:=0; // nextball object

 intro := 1; // set flag so we do the intro

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 180 of 185 www.4dlabs.com.au

 endif

 forever // start again

endfunc

//==

Table of Contents

GOLDELOX INTERNAL FUNCTIONS Page 181 of 185 www.4dsystems.com.au

5. Hardware Tools

The following hardware tools are required for full
control of the Goldelox Processor.

5.1. 4D Programming Tools

The 4D Programming Cable, uUSB-PA5-II and 4D-UPA
Programming Adaptors are essential hardware tools
to program, customise and test the Goldelox
Processor.

Note: Any of the 4D Programming Cable, uUSB-PA5-
II or 4D-UPA Programming Adaptor can be used,
along with previous generation 4D programmers
too.

The 4D programming interfaces are used to program a
new Firmware/PmmC, Display Driver and for
downloading compiled 4DGL code into the processor.
They even serve as an interface for communicating
serial data to the PC.

The 4D Programming Cable, uUSB-PA5 and gen4-PA
Programming Adaptor are available from 4D Systems,
www.4dsystems.com.au

Using a non-4D programming interface could damage
your processor, and void your Warranty.

4D Programming Cable

uUSB-PA5-II Programming Adaptor

4D-UPA Programming Adaptor

5.2. Evaluation Display Modules

The following modules, available from 4D Systems,
can be used for evaluation purposes to discover what
the Goldelox processor has to offer.

uOLED-128-G2 - 1.5” Intelligent Goldelox Display

Other modules, such as the 0.96” and 1.7” OLED, or
1.44” LCD versions are also available. Please contact
4D Systems for more information, or visit the 4D
Systems website, www.4dsystems.com.au

file:///C:/Users/James/Dropbox/4D%20Projects/Documentation/uLCD-32WPTu%20Datasheet/www.4dsystems.com.au
http://www.4dsystems.com.au/
http://www.4dsystems.com.au/product/4D-Programming-Cable/
http://www.4dsystems.com.au/product/uUSB-PA5/
http://www.4dsystems.com.au/product/gen4_PA/

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 182 of 185 www.4dlabs.com.au

6. 4D Labs - Workshop4 IDE

Workshop4 is a comprehensive software IDE that
provides an integrated software development
platform for all of the 4D family of processors and
modules. The IDE combines the Editor, Compiler,
Linker and Down- Loader to develop complete 4DGL
application code. All user application code is
developed within the Workshop4 IDE.

The Workshop4 IDE supports multiple development
environments for the user, to cater for different user
requirements and skill level.

• The Designer environment enables the user to
write 4DGL code in its natural form to program
the Goldelox module.

• A visual programming experience, suitably called
ViSi, enables drag-and-drop type placement of
objects to assist with 4DGL code generation and
allows the user to visualise how the display will
look while being developed.

• A Serial environment is also provided to
transform the Goldelox module into a slave serial
module, allowing the user to control the display
from any host microcontroller or device with a
serial port.

The Workshop4 IDE is available from the 4D Labs
website. www.4dsystems.com.au

For a comprehensive manual on the Workshop4 IDE
Software along with other documents, refer to the
documentation from the 4D Labs website, on the
Workshop4 product page.

Workshop4 IDE Userguide

6.1. Designer Environment

Choose the Designer environment to write 4DGL code
in its raw form.

The Designer environment provides the user with a
simple yet effective programming environment where
pure 4DGL code can be written, compiled and
downloaded to the Goldelox.

6.2. ViSi Environment

ViSi was designed to make the creation of graphical
displays a more visual experience.

ViSi is a great software tool that allows the user to see
the instant results of their desired graphical layout.
Additionally, there is a selection of inbuilt dials, gauges
and meters that can simply be placed onto the
simulated module display. From here each object can
have its properties edited, and at the click of a button
all relevant 4DGL code associated with that object is
produced in the user program. The user can then write
4DGL code around these objects to utilise them in the
way they choose.

file:///D:/Dropbox%20(4D%20Team)/4D%20Labs%20Products/_Semiconductors/4DLS-Goldelox/Documentation/Internal%20Functions/www.4dsystems.com.au
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 183 of 185 www.4dlabs.com.au

6.3. Serial Environment

The Serial environment in the Workshop4 IDE
provides the user the ability to transform the Goldelox
into a slave serial graphics controller.

This enables the user to use their favourite
microcontroller or serial device as the Host, without
having to learn 4DGL or program in a separate IDE.
Once the Goldelox is configured and downloaded to
from the Serial Environment, simple graphic
commands can be sent from the users host
microcontroller to display primitives, images, sound or
even video.

Refer to the “Serial Command Set Reference Manual”
from the Workshop4 product page on the 4D Labs
website for a complete listing of all the supported
serial commands

By default, each module shipped from the 4D Systems
factory will come pre-programmed ready for use in
the Serial mode.

http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

Table of Contents

GOLDELOX INTERNAL FUNCTIONS Page 184 of 185 www.4dsystems.com.au

7. Revision History

Revision Revision Content Revision Date

1.0 First Release 12/09/2009

4.0

1-Fixed typing errors in Sec 2.4.4. Correct Syntax is SWAP(&value1, &value2).
2-Fixed typing errors in Sec 2.5.7 in the Description.
3-Fixed typing errors in Sec 2.5.8 in the Description.
4-Fixed typing errors in Sec 2.5.9 in the Syntax.
5-Fixed typing errors in Sec 2.5.10. Correct Syntax is strheight(). It doesn't need an
argument.
6-Fixed typing errors in Sec 2.7.10 in the Syntax.
7-Fixed typing errors in Sec 2.9.3 in the Syntax

08/03/2012

5.0 1-Fixed typing errors in Sec 2.6.29 in the Description. Corrected Screen Modes. 07/06/2012

6.0 Reformatted, minor document updates 13/09/2012

6.1 Fixed minor TOC numbering error 16/11/2012

6.2 Added range for the Beep function, 0-64 30/01/2013

6.3 SCREEN_MODE constants changed, documented incorrectly 04/02/2013

6.4 com_Init buffer size corrected 07/02/2013

7.0 Updated formatting and contents 01/05/2017

7.1
Updated Formatting, minor putnum and putstr description updates, Fixed inverted states
relating to BOLD, ITALIC, TEXT INVERSE, TEXT ITALIC in txt_Set()

22/03/2019

GOLDELOX GRAPHICS PROCESSOR

GOLDELOX INTERNAL FUNCTIONS Page 185 of 185 www.4dlabs.com.au

8. Legal Notice

Proprietary Information

The information contained in this document is the property of 4D Labs Semiconductors and may be the subject of
patents pending or granted, and must not be copied or disclosed without prior written permission.

4D Labs Semiconductors endeavours to ensure that the information in this document is correct and fairly stated but
does not accept liability for any error or omission. The development of 4D Labs Semiconductors products and services
is continuous and published information may not be up to date. It is important to check the current position with 4D
Labs Semiconductors. 4D Labs Semiconductors reserves the right to modify, update or makes changes to
Specifications or written material without prior notice at any time.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Labs Semiconductors makes no warranty, either expressed or implied with respect to any product, and specifically
disclaims all other warranties, including, without limitation, warranties for merchantability, non-infringement and
fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with
your specifications.

Images and graphics used throughout this document are for illustrative purposes only. All images and graphics used
are possible to be displayed on the 4D Labs Semiconductors range of products, however the quality may vary.

In no event shall 4D Labs Semiconductors be liable to the buyer or to any third party for any indirect, incidental,
special, consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss
of business opportunity) arising out of or relating to any product or service provided or to be provided by 4D Labs
Semiconductors, or the use or inability to use the same, even if 4D Labs Semiconductors has been advised of the
possibility of such damages.

4D Labs Semiconductors products are not fault tolerant nor designed, manufactured or intended for use or resale as
on line control equipment in hazardous environments requiring fail – safe performance, such as in the operation of
nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines or
weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical
or environmental damage (‘High Risk Activities’). 4D Labs Semiconductors and its suppliers specifically disclaim any
expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Labs Semiconductors’ products and devices in 'High Risk Activities' and in any other application is entirely
at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless 4D Labs Semiconductors from any
and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any 4D Labs Semiconductors intellectual property rights.

9. Contact Information

For Technical Support: www.4dsystems.com.au/support
For Sales Support: sales@4dsystems.com.au
Website: www.4dsystems.com.au

Copyright 4D Labs Semiconductors 2000-2019.

	1. 4DGL Introduction
	2. Goldelox Chip-Resident Functions Summary
	2.1. GPIO Functions
	2.1.1. pin_Set(mode, pin)
	2.1.2. pin_HI(pin)
	2.1.3. pin_LO(pin)
	2.1.4. pin_Read(pin)
	2.1.5. joystick()
	2.1.6. OW_Reset()
	2.1.7. OW_Read()
	2.1.8. OW_Read9()
	2.1.9. OW_Write(data)

	2.2. Memory Access Functions
	2.2.1. peekB(address)
	2.2.2. peekW(address)
	2.2.3. pokeB(address, byte_value)
	2.2.4. pokeW(address, word_value)
	2.2.5. bits_Set(address, mask)
	2.2.6. bits_Clear(address, mask)
	2.2.7. bits_Flip(address, mask)
	2.2.8. bits_Test(address, mask)

	2.3. User Stack Functions
	1.1.1. setsp(index)
	2.3.1. getsp()
	2.3.2. pop()
	2.3.3. push(value)
	2.3.4. drop(n)
	2.3.5. call()
	2.3.6. exec(functionPtr, argCount)

	2.4. Maths Functions
	2.4.1. ABS(value)
	2.4.2. MIN(value1, value2)
	2.4.3. MAX(value1, value2)
	2.4.4. SWAP(&var1, &var2)
	2.4.5. SIN(angle)
	2.4.6. COS(angle)
	2.4.7. RAND()
	2.4.8. SEED(number)
	2.4.9. SQRT(number)
	2.4.10. OVF()

	2.5. Text and String Functions
	2.5.1. txt_MoveCursor(line, column)
	2.5.2. putch(char)
	2.5.3. putstr(pointer)
	2.5.4. putnum(format, value)
	2.5.5. print(...)
	2.5.6. to(outstream)
	2.5.7. charwidth('char')
	2.5.8. charheight('char')
	2.5.9. strwidth(pointer)
	2.5.10. strheight()
	2.5.11. strlen(pointer)
	2.5.12. txt_Set(function, value)

	2.6. Graphics Functions
	2.6.1. gfx_Cls()
	2.6.2. gfx_ChangeColour(oldColour, newColour)
	2.6.3. gfx_Circle(x, y, radius, colour)
	2.6.4. gfx_CircleFilled(x, y, radius, colour)
	2.6.5. gfx_Line(x1, y1, x2, y2, colour)
	2.6.6. gfx_Hline(y, x1, x2, colour)
	2.6.7. gfx_Vline(x, y1, y2, colour)
	2.6.8. gfx_Rectangle(x1, y1, x2, y2, colour)
	2.6.9. gfx_RectangleFilled(x1, y1, x2, y2, colour)
	2.6.10. gfx_Polyline(n, vx, vy, colour)
	2.6.11. gfx_Polygon(n, vx, vy, colour)
	2.6.12. gfx_Triangle(x1, y1, x2, y2, x3, y3, colour)
	2.6.13. gfx_Dot()
	2.6.14. gfx_Bullet(radius)
	2.6.15. gfx_OrbitInit(&x_dest, &y_dest)
	2.6.16. gfx_Orbit(angle, distance)
	2.6.17. gfx_PutPixel(x, y, colour)
	2.6.18. gfx_GetPixel(x, y)
	2.6.19. gfx_MoveTo(xpos, ypos)
	2.6.20. gfx_MoveRel(xoffset, yoffset)
	2.6.21. gfx_IncX()
	2.6.22. gfx_IncY()
	2.6.23. gfx_LineTo(xpos, ypos)
	2.6.24. gfx_LineRel(xpos, ypos)
	2.6.25. gfx_BoxTo(x2, y2)
	2.6.26. gfx_SetClipRegion()
	2.6.27. gfx_ClipWindow(x1, y1, x2, y2)
	2.6.28. gfx_FocusWindow()
	2.6.29. gfx_Set(function, value)

	2.7. Display I/O Functions
	2.7.1. disp_Init(initTable, stateMachine)
	2.7.2. disp_WriteControl(value)
	2.7.3. disp_WriteByte(value)
	2.7.4. disp_WriteWord(value)
	2.7.5. disp_ReadByte()
	2.7.6. disp_ReadWord()
	2.7.7. disp_BlitPixelFill(colour, count)
	2.7.8. disp_BlitPixelsToMedia()
	2.7.9. disp_BlitPixelsFromMedia(pixelcount)
	2.7.10. disp_SkipPixelsFromMedia(pixelcount)
	2.7.11. disp_BlitPixelsToCOM()
	2.7.12. disp_BlitPixelsFromCOM(mode)

	2.8. Media Functions (SD/SDHC Memory Card or Serial Flash chip)
	2.8.1. media_Init()
	2.8.2. media_SetAdd(HIword, LOword)
	2.8.3. media_SetSector(HIword, LOword)
	2.8.4. media_ReadByte()
	2.8.5. media_ReadWord()
	2.8.6. media_WriteByte(byte_val)
	2.8.7. media_WriteWord(word_val)
	2.8.8. media_Flush()
	2.8.9. media_Image(x, y)
	2.8.10. media_Video(x, y)
	2.8.11. media_VideoFrame(x, y, frameNumber)

	2.9. Flash Memory Chip Functions
	2.9.1. flash_SIG()
	2.9.2. flash_ID()
	2.9.3. flash_BulkErase()
	2.9.4. flash_BlockErase(blockAddress)

	2.10. SPI Control Functions
	2.10.1. spi_Init(speed, input_mode, output_mode)
	2.10.2. spi_Read()
	2.10.3. spi_Write(byte)
	2.10.4. spi_Disable()

	2.11. Serial (UART) Communications Functions
	2.11.1. serin()
	2.11.2. serout(char)
	2.11.3. setbaud(rate)
	2.11.4. com_AutoBaud(timeout)
	2.11.5. com_Init(buffer, bufsize, qualifier)
	2.11.6. com_Reset()
	2.11.7. com_Count()
	2.11.8. com_Full()
	2.11.9. com_Error()
	2.11.10. com_Sync()
	2.11.11. com_Checksum()
	2.11.12. com_PacketSize()

	2.12. Sound and Tune (RTTTL) Functions
	2.12.1. beep(note, duration)
	2.12.2. tune_Play(tuneptr)
	2.12.3. tune_Pause()
	2.12.4. tune_Continue()
	2.12.5. tune_Stop()
	2.12.6. tune_End()
	2.12.7. tune_Playing()

	2.13. General Purpose Functions
	2.13.1. pause(time)
	2.13.2. lookup8(key, byteConstList)
	2.13.3. lookup16(key, wordConstList)

	3. Goldelox EVE System Registers Memory Map
	4. Appendix A : Example 4DGL Code
	5. Hardware Tools
	5.1. 4D Programming Tools
	5.2. Evaluation Display Modules

	6. 4D Labs - Workshop4 IDE
	6.1. Designer Environment
	6.2. ViSi Environment
	6.3. Serial Environment

	7. Revision History
	8. Legal Notice
	9. Contact Information

