Intel® PRO/Wireless 2011 LAN Solution - FTP - Manuels - INTEL INTEL sur FNAC.COM  - Revenir à l'accueil

 

 

 

Accéder au pdf : 

 

http://download.intel.com/support/wireless/wlan/pro2011/wireless.pdf

 

Voir également :

Jim Parsons se fait tirer le portrait

 

 

Ce qui compte est à l'intérieur. #lookinside

Look Inside. Jack Andraka

[   ]

 Brochure_journées_ré..> 18-Dec-2011 08:50  1.8M  

[TXT]

 INTEL-All-Wi-Fi-is-N..> 01-Apr-2015 14:58  2.5M  

[TXT]

 INTEL-Aspera-FASP-Sp..> 23-Mar-2015 18:57  641K  

[TXT]

 INTEL-CLC-Genomics-W..> 23-Mar-2015 18:57  644K  

[TXT]

 INTEL-Education.htm     23-Mar-2015 18:56  646K  

[TXT]

 INTEL-Fiche-produit-..> 01-Apr-2015 15:03  1.9M  

[TXT]

 INTEL-Find-the-Best-..> 23-Mar-2015 18:57  560K  

[TXT]

 INTEL-Finding-an-app..> 01-Apr-2015 15:03  2.0M  

[TXT]

 INTEL-Glossaire.htm     24-Mar-2015 05:59  923K  

[TXT]

 INTEL-Intel-Code-of-..> 23-Mar-2015 18:57  629K  

[TXT]

 INTEL-Intel-Edison-G..> 01-Apr-2015 14:57  2.5M  

[TXT]

 INTEL-Intel-Educatio..> 01-Apr-2015 15:02  2.0M  

[TXT]

 INTEL-Intel-Xeon-Pro..> 23-Mar-2015 18:57  640K  

[TXT]

 INTEL-LSI-incorpore-..> 01-Apr-2015 15:01  2.0M  

[TXT]

 INTEL-Linux-Tutorial..> 01-Apr-2015 14:56  2.5M  

[TXT]

 INTEL-Look-Inside-In..> 01-Apr-2015 14:57  2.5M  

[TXT]

 INTEL-Manuel-d-Insta..> 01-Apr-2015 14:56  2.6M  

[TXT]

 INTEL-Manuel-d-Insta..> 01-Apr-2015 14:56  2.5M  

[TXT]

 INTEL-Manuel-d-Insta..> 01-Apr-2015 14:59  2.3M  

[TXT]

 INTEL-Manuel-d-Insta..> 01-Apr-2015 15:00  2.3M  

[TXT]

 INTEL-Manuel-d-insta..> 01-Apr-2015 15:00  2.3M  

[TXT]

 INTEL-Manuel-d-insta..> 01-Apr-2015 15:00  2.3M  

[TXT]

 INTEL-Manuel-d-insta..> 01-Apr-2015 14:59  2.3M  

[TXT]

 INTEL-Pentium-Proces..> 01-Apr-2015 15:04  1.9M  

[TXT]

 INTEL-Processeur-Int..> 23-Mar-2015 18:57  628K  

[TXT]

 INTEL-Processeurs-ov..> 23-Mar-2015 18:56  670K  

[TXT]

 INTEL-Processeurs-ov..> 23-Mar-2015 18:56  679K  

[TXT]

 INTEL-Release_Notes_..> 01-Apr-2015 15:02  2.0M  

[TXT]

 INTEL-Ressources-tec..> 23-Mar-2015 18:57  628K  

[TXT]

 INTEL-Salesforce-Dis..> 23-Mar-2015 18:56  641K  

[TXT]

 INTEL-Telemedicine-S..> 23-Mar-2015 18:57  560K  

[TXT]

 INTEL-Texas-Advanced..> 23-Mar-2015 18:57  641K  

[TXT]

 INTEL-University-of-..> 23-Mar-2015 18:57  641K  

[TXT]

 INTEL-Videos-Tech-10..> 23-Mar-2015 18:56  712K  

[TXT]

 INTEL-Videos-Tech-10..> 23-Mar-2015 18:55  722K  

[TXT]

 INTEL-Xeon-Processor..> 23-Mar-2015 18:56  641K  

[TXT]

 INTEL-download.intel..> 23-Mar-2015 18:56  679K  

[TXT]

 INTEL-download.intel..> 23-Mar-2015 18:56  712K  

[TXT]

 INTEL-download.intel..> 01-Apr-2015 15:04  1.9M  

[TXT]

 INTEL-intelbxrts2011..> 01-Apr-2015 14:58  2.5M  

[TXT]

 INTEL-intelthermalso..> 01-Apr-2015 15:00  2.3M  

[TXT]

 INTEL-motherboards-s..> 01-Apr-2015 15:01  2.2M  

[TXT]

 INTEL-rts2011ac_ther..> 01-Apr-2015 14:56  2.6M  

[TXT]

 INTEL-x25e_high_perf..> 01-Apr-2015 15:03  1.9M  

[TXT]

 INTEL-x25e_high_perf..> 01-Apr-2015 15:03  2.0M  

[TXT]

 INTELdocumentation.htm  26-Jan-2012 18:19  7.3M  

[   ]

 getting_started_ampl..> 18-Dec-2011 08:49  2.1M  

[   ]

 getting_started_c.pdf   18-Dec-2011 08:50   85K  

[   ]

 mklman.pdf              18-Dec-2011 08:55   18M  
Recherche par catégories :

Imprimantes       Téléphones

      GSM            Informatique

Ordinateurs            Galaxy

    Photo                  TV  

Electroménager 

Vidéos :

Miniature

Samsung Galaxy Gear: A Long Time Coming

Samsung Mobile :

Miniature

Götze joins #GALAXY11

Miniature

Illustrator Marion Deuchars on the simple joy of Dot, Circle, Box with GALAXY Note 3

SAMSUNG MEMORY - MEMOIRE :

Miniature

Samsung Memory Solutions Forum - Highlights

Miniature

Samsung Memory Solutions Forum - Opening

Miniature

Samsung Memory Solutions Forum - Future Technology

Miniature

Samsung VNAND PR Video

Miniature

Samsung SSD Solutions - David Lin

Miniature

Samsung SSD 840 EVO - Jonathan da Silva

Miniature

Samsung SSD Leadership - Jim Elliott

Miniature

Redesigning Flash Storage Technology - Keun Soo Jo

http://download.intel.com/support/viiv/sb/inteviiv_sharingmedia1.pdf Now you can be connected without being tied down – with Intel® PRO/Wireless 2011 LAN Adapters and Access Points. Fast and compatible with existing Ethernet technology, wireless LANs extend the reach and the usefulness of your wired network resources. From conference rooms, training centers and cafeterias, you are free to work, teach or study wherever you’re most productive. There’s no easier way to provide reliable, real-time LAN access away from the desk. Extend your network … or create a new one No network? No problem – the Intel® PRO/Wireless 2011 LAN Solution can serve as the basis for an entirely new network infrastructure, in which devices are instantly deployed or reconfigured without the costs and concerns of pulling wires throughout a building. Intel® PRO/Wireless 2011 LAN PC Cards also let you create ad hoc networks on-the-fly, sharing information in secure peer-to-peer sessions, allowing communication with only the people you authorize. Intel is the worldwide leader in Fast Ethernet networking connections1 , and also co-inventor of the Ethernet, Fast Ethernet and Gigabit Ethernet standards, so it shouldn’t be surprising that Intel is now providing the best Wireless Ethernet solutions. Intel has designed these new wireless LAN products to IEEE 802.11b High Rate specifications, protecting your investment in infrastructure and assuring you of cross-vendor interoperability. Fast 11Mbps connectivity based on ■ Interoperates with other 802.11b Wi-Fi*-approved products IEEE 802.11b High Rate standard ■ Backwards compatible with 802.11 Direct Sequence products (aka Wireless Ethernet) at 1 and 2Mbps ■ Dynamic rate scaling tunes performance to minimize interference ■ Automatic load balancing and preemptive roaming optimize each client’s connection to the LAN ■ Seamless bridging between separate Ethernet networks allows connectivity without cables Reliable and trusted net access – ■ 128-bit Wired Equivalent Privacy (WEP) protects information even when you’re not at your desk in transit by adding powerful encryption without a noticeable impact to performance ■ Bi-directional authentication restricts LAN access to recognized clients and Access Points via advanced security settings Brand name reliability ■ The quality, reliability and support that you would expect from the world leader in Fast Ethernet networking connections1 Simple to set up and manage ■ Plug ‘n’ Play adapter installation ■ Browser-based configuration and management with full support for SNMP v3 ■ Integrates into existing Ethernet networks • Supporting Features Benefits • Intel® PRO/Wireless 2011 LAN Solution Networks as mobile as the people who use them ■ Extend LAN connectivity without costly wiring ■ Deploy instant networks at any location KEY FEATURES • ■ Enables mobile roaming and building-wide coverage ■ Bridges wired and wireless networks ■ Eases installation and management KEY FEATURES • • Support for data and VoIP applications, wireless handsets – Enables converged H.323 voice and data networks that are truly mobile. Network-to-network bridging – Bridges between wired and wireless networks and can also connect two wired networks wirelessly. Secure access control with bi-directional authentication – Use MAC addresses and pre-defined network IDs to restrict which adapters and Access Points can connect to the network. Embedded web server – Configure, monitor and manage Access Points from anywhere in the world via standard web browser. Multi-purpose design – Mounts easily on walls and ceilings, rests discreetly on shelves and filing cabinets. • Private, trusted connections 128-bit Wired Equivalent Privacy (WEP) ■ Encrypts transmissions to help ensure privacy while maintaining speed and quality Bi-directional authentication ■ Restricts LAN access to recognized clients and Access Points via advanced security settings Standards-based design Compliant with IEEE 802.11b High Rate specification ■ Ensures interoperability with all other 802.11b High Rate compliant products Reliable performance Seamless bridging to, from and between ■ Innovative, cost-effective solution extends the reach of Ethernet networks wired networks to conference rooms, classrooms, training centers, etc. Wireless repeating ■ Extends network coverage to areas that don’t have network access Simple to set up and manage Advanced manageability ■ Allows firmware updates via FTP or a direct serial connection without taking the Access Point offline ■ Upgrade entire wireless network at one time from one remote location Embedded web server with full support for ■ Enables configuration and management with a browser from SNMP v3 anywhere in the world, so changes take just a few mouse clicks, not a personal visit Receives power through the Ethernet cable2 ■ Simplifies set-up and eliminates costly process of running electricity to each Access Point Comprehensive site survey tool ■ Makes it easy to optimize Access Point placement for best (included in every box) coverage and performance Features Benefits BNC-mounted 1dB gain diversity antennas – Provide reliable coverage for most indoor environments. Built-in BNC connectors also support a wide variety of optional specialty antennas. Intel® PRO/Wireless 2011 LAN Access Point The fastest & easiest way to enable network connectivity wherever you need it Whether you need to extend the reach of a wired network or quickly deploy an all wireless LAN, Intel® PRO/Wireless 2011 LAN Access Points provide a reliable, easy-to-install network infrastructure. Intel’s standards-based solution is ideal for historic buildings, leased office spaces, temporary projects … any location where wired connectivity is not practical or cost-effective. Uninterrupted connectivity Advanced roaming scheme ■ Operates continuously and automatically in the background, so that connection with a new Access Point is established before the old connection is lost Mobile IP ■ Seamless roaming across sub-nets without rebooting Location profiles ■ Enables travel between offices or between home and work without reconfiguring laptops to log onto a network International roaming ■ Automatically selects the correct spectrum range when used in multiple countries Easy to use and manage Task Tray indicators ■ Automatic updates keep users informed of signal strength and quality PRO/Wireless client utilities ■ Optimize power and performance levels, graph interference patterns, view transmission statistics DHCP support ■ Lets clients obtain a leased IP address from a DHCP server, eliminating the complexity of assigning fixed IP addresses in a large enterprise Robust management system ■ Configure and monitor from anywhere in the world via web browser Automatic performance optimizations Load balancing ■ Automatically switches among Access Points to optimize signal strength and quality, and minimize spectrum sharing Dynamic rate scaling ■ Always seeks to connect at 11Mbps, then switches (if network traffic demands) to 5.5, 2 or 1Mbps for increased signal range; automatically returns to higher speed when conditions allow Advanced power management ■ Extends laptop battery life to maximize time away from the desk Ad hoc mode ■ Allows direct peer-to-peer communication without using an Access Point – perfect for small networks or temporary project teams Features Benefits ■ Advanced hardware design provides secure, high-speed connectivity while roaming ■ Ad hoc mode enables simple peer-to-peer networks ■ Intelligent on-board power management extends laptop battery life KEY FEATURES DHCP – Supports the same dynamic IP address servers as wired networks. Location profiles – Allows hassle-free traveling among networks. Mobile IP – Enables roaming across sub-nets without rebooting. Integrated diversity antennas – Two integrated antennas overcome multi-path problems for the best possible connection. Automatic load balancing and preemptive roaming – Continuously monitors signal strength, signal quality and Access Point traffic and makes adjustments to optimize performance. • • • Intel® PRO/Wireless 2011 LAN PC Card Fast, reliable network connectivity – even when you’re not at your desk Unleash the productivity of your workforce with Intel® PRO/Wireless 2011 LAN PC Cards. With untethered instant-networking capabilities, users of laptops and other mobile devices can work where they’re most productive. Take your network with you Immediate access to critical information while you’re still in a conference room … real-time updates to your supply-chain system from the factory floor … ad hoc, peer-to-peer networking sessions wherever you happen to be … classroom computers and peripherals that communicate with each other and the Internet instantly and easily – the possibilities of wireless connectivity come to life with Intel PRO/Wireless 2011 LAN PC Cards. 0600/SG/JN/PP/OC/10K Please Recycle NP1690 Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. For the most current product information, please visit http://www.intel.com/network * Third-party trademarks are the property of their respective owners. Copyright © 2000, Intel Corporation. All rights reserved. SPECIFICATIONS Intel® PRO/Wireless LAN PC Card NOTEBOOK SLOT TYPE Type II 16-bit PC card SOFTWARE DRIVERS Windows* 2000, 98, 95, NT*, Pocket PC and DOS; Linux*; Palm OS* DEVICE DRIVERS NDIS2, NDIS3, NDIS4, NDIS5 and ODI SOFTWARE UTILITIES Location profiles “My WLAN places”; Real-time signal strength/quality “NIC Utilities”; Diagnostic and Configuration “NIC Info”; Firmware upgrade “NIC Update”; Site Survey Tool NETWORK ARCHITECTURE Supports peer-to-peer networking and communication to TYPES wired networks via Access Points RANGE AT 1MBPS (TYPICAL) 1500ft (460m) open environment; 300ft (90m) office environment RANGE AT 11MBPS (TYPICAL) 400ft (120m) open environment; 100ft (30m) office environment ANTENNA Integrated internal diversity antenna LED INDICATORS Link status and link activity RECEIVE SENSITIVITY -87dBm @ 1Mbps; -85dBm @ 2Mbps; -84dBm @ 5.5Mbps -81dBm @ 11Mbps MAX OUTPUT POWER Typical 18dBm; Minimum 14dBm POWER CONSUMPTION Transmit: 300mA typical (500mA max.); Receive: 170mA typical (300mA max.); Sleep: 10mA typical (25mA max.) SAFETY COMPLIANCE USA/Canada: UL1950/CSA 22.2; Europe: CE Marked DIMENSIONS Length: 111mm/4.37in; Width: 54mm/2.23in; Thickness: 5mm/.20in; Weight: 1.6oz/45.36g SPECIFICATIONS Intel® PRO/Wireless LAN Access Point STANDARDS CONFORMANCE IEEE 802.11b High Rate, IEEE 802.3 (10BASE-T), 802.1H, 802.1d Spanning Tree, SNMP v2 LOCAL CONFIGURATION Direct console port (serial EIA-232 DB-9 male) REMOTE CONFIGURATION HTTP, Telnet, SNMP, PPP, tFTP, and Intel feature to perform bulk configuration to many APs AUTOMATIC CONFIGURATION BOOTP and DHCP MAXIMUM CLIENTS 256 MANAGEMENT FEATURES Client Access Control via MAC address; Embedded HTTP Server SNMP traps; Multilevel passwords DIAGNOSTIC CAPABILITIES Event logging, data packet tracing, SNMP alarm generation, operating statistics; Protocol and bandwidth filters; Site Survey utility with signal strength logging ROAMING SUPPORT IEEE 802.11b High Rate compliant with Intel enhanced roaming features; Mobile IP PERFORMANCE Proxy ARP; Short preamble support; QoS Voice and ENHANCEMENTS Data Prioritization SECURITY 64- or 128-bit Encryption; Access Control List; MD5 Member Authentication (Mobile IP) RANGE AT 1MBPS (TYPICAL) 1500ft (460m) open environment; 300ft (90m) office environment RANGE AT 11MBPS (TYPICAL) 400ft (120m) open environment; 100ft (30m) office environment ANTENNA Two 2.2dBi dipole antennas with diversity support; also supports specialty antennas LED INDICATORS Status, network activity, and RF activity RECEIVE SENSITIVITY -87dBm @ 1Mbps; -85dBm @ 2Mbps; -84dBm @ 5.5Mbps; -81dBm @ 11Mbps MAX OUTPUT POWER Typical 18dBm; Minimum 14dBm POWER SUPPLY Input: 85 to 270V AC; Ouput: 12V DC POWER ENHANCEMENTS Power over Ethernet option2 (eliminates need for AC power at AP location) SAFETY COMPLIANCE USA/Canada: UL1950/CSA 22.2; Europe: CE Marked DIMENSIONS Length: 15.24cm/6in; Width: 21.59mm/8.5in; Height: 4.45cm/1.75in; Weight (w/ power supply): 1lbs./0.454kg HARDWARE SHIPPING Access Point, two dipole antennas, one power supply, one CONFIGURATION country-specific power supply cord (three in “EU” SKU), mounting brackets, clips and screws CUSTOMER SUPPORT Intel Customer Support Services offers a broad selection of programs. For more information, contact us on the World Wide Web at support.intel.com/sites/support. Service and availability may vary by country. ON-LINE DOCUMENTS To learn more about Intel ® PRO/Wireless 2011 LAN Solutions, or to connect with an Intel® Premier Provider in your area, visit us at www.intel.com/network ORDER CODES Wireless PC Card, 2.4GHz, 11Mbps North America WPC2011NA Europe R&TTE countries, Australia WPC2011EU France WPC2011FR Japan WPC2011JP Wireless Enterprise Access Point, 2.4GHz, 11Mbps North America WEAP2011NA Europe R&TTE countries, Australia WEAP2011EU France WEAP2011FR Japan WEAP2011JP FOR PRODUCT INFORMATION World Wide Web www.intel.com/network U.S. and Canada 800-538-3373 UK +0870-6072439 France +01-41-918529 Germany +069-9509-6099 Italy +02-696-33276 Spain +91-377-8166 Finland +9-693-79297 Denmark +38-487077 Norway +23-1620-50 Sweden +08-445-1251 Holland +020-487-4562 Japan +81-298-47-0800 Hong Kong, Taiwan, Korea, Singapore and ASEAN +65-213-1000 Australia +61-2-9937-5800 SPECIFICATIONS Intel® PRO/Wireless LAN Product Suite DYNAMIC RATE SHIFTING 1, 2, 5.5, 11Mbps (Auto-selects highest usable rate) NETWORK STANDARD(S) IEEE 802.11b High Rate, 802.3, 802.1H, 802.1d Spanning Tree FREQUENCY 2.4GHz ISM band WIRELESS MEDIUM Direct Sequence Spread Spectrum (DSSS) MEDIA ACCESS CONTROL Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) OPERATING SYSTEMS SUPPORTED Windows* 2000, 98, 95, NT*, and Pocket PC; Linux*; Palm OS* ENCRYPTION No encryption option; 64-bit WEP encryption option; 128-bit WEP encryption option MODULATION DBPSK @ 1Mbps; DQPSK @ 2Mbps; CCK @ 5.5 and 11Mbps OPERATING CHANNELS 11 channels (U.S. and Canada); 13 channels (ETSI compliant countries); 14 channels (Japan) ROAMING IEEE 802.11b High Rate compliant with Intel enhanced roaming features; Mobile IP with MD5 encryption for member authentication CERTIFICATION U.S./Canada: FCC Part 15 Class B US Unintentional Emissions; FCC Part 15.247, 15.205, 15.209 US Spread Spectrum; DOC RSS-210 Canadian Spread Spectrum; Europe: ETS 300 328, ETS 300 826, CE Marked; Japan: RCR STD-33; Contact us for other information outside the U.S. ENVIRONMENTAL OPERATING RANGES Operating Temperature: -20° to 70°C; Storage Temperature: -30° to 80°C; Operating Altitude: up to 2.4km; Humidity: 95% maximum non-condensing Shock: 40G, 11mS, half sine; Vibration: 2G peak, sine; 0.02G peak random WARRANTY Three year: Access Points; Lifetime limited: Client Adapters 1 Dell’Oro Group, 1999 2 Requires optional accessory Document Number: 317804-010 Intel® Core™2 Duo Processor, Intel® Pentium® Dual Core Processor, and Intel® Celeron® Dual-Core Processor Thermal and Mechanical Design Guidelines Supporting the: - Intel® Core™2 Duo Processor E6000 Δ and E4000 Δ Series - Intel® Pentium® Dual Core Processor E2000 Δ Series - Intel® Celeron® Dual-Core Processor E1000Δ Series December 2008 2 Thermal and Mechanical Design Guidelines THIS DOCUMENT AND RELATED MATERIALS AND INFORMATION ARE PROVIDED “AS IS” WITH NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE. INTEL ASSUMES NO RESPONSIBILITY FOR ANY ERRORS CONTAINED IN THIS DOCUMENT AND HAS NO LIABILITIES OR OBLIGATIONS FOR ANY DAMAGES ARISING FROM OR IN CONNECTION WITH THE USE OF THIS DOCUMENT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Intel may make changes to specifications and product descriptions at any time, without notice. Intel accepts no duty to update specifications or product descriptions with information. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The hardware vendor remains solely responsible for the design, sale and functionality of its product, including any liability arising from product infringement or product warranty. Intel provides this information for customer’s convenience only. Use at your own risk. Intel accepts no liability for results if customer chooses at its discretion to implement these methods within its business operations. Intel makes no representations or warranties regarding the accuracy or completeness of the information provided. Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting http://www.intel.com . The Intel® Core™2 Duo processor, Intel® Pentium® Dual Core processor and Intel® Pentium® 4 processor may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request. ∆ Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. Over time processor numbers will increment based on changes in clock, speed, cache, FSB, or other features, and increments are not intended to represent proportional or quantitative increases in any particular feature. Current roadmap processor number progression is not necessarily representative of future roadmaps. See www.intel.com/products/processor_number for details. Intel, Pentium, Core, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2007–2008 Intel Corporation Thermal and Mechanical Design Guidelines 3 Contents 1 Introduction ...................................................................................................11 1.1 Document Goals and Scope ...................................................................11 1.1.1 Importance of Thermal Management ..........................................11 1.1.2 Document Goals......................................................................11 1.1.3 Document Scope .....................................................................12 1.2 References ..........................................................................................13 1.3 Definition of Terms ...............................................................................13 2 Processor Thermal/Mechanical Information .........................................................15 2.1 Mechanical Requirements ......................................................................15 2.1.1 Processor Package ...................................................................15 2.1.2 Heatsink Attach ......................................................................17 2.2 Thermal Requirements ..........................................................................18 2.2.1 Processor Case Temperature .....................................................18 2.2.2 Thermal Profile .......................................................................19 2.2.3 TCONTROL..................................................................................20 2.3 Heatsink Design Considerations ..............................................................21 2.3.1 Heatsink Size..........................................................................22 2.3.2 Heatsink Mass.........................................................................22 2.3.3 Package IHS Flatness...............................................................23 2.3.4 Thermal Interface Material........................................................23 2.4 System Thermal Solution Considerations .................................................24 2.4.1 Chassis Thermal Design Capabilities...........................................24 2.4.2 Improving Chassis Thermal Performance ....................................24 2.4.3 Summary ...............................................................................25 2.5 System Integration Considerations..........................................................25 3 Thermal Metrology ..........................................................................................27 3.1 Characterizing Cooling Performance Requirements ....................................27 3.1.1 Example ................................................................................28 3.2 Processor Thermal Solution Performance Assessment ................................29 3.3 Local Ambient Temperature Measurement Guidelines.................................29 3.4 Processor Case Temperature Measurement Guidelines ...............................32 4 Thermal Management Logic and Thermal Monitor Feature .....................................33 4.1 Processor Power Dissipation ...................................................................33 4.2 Thermal Monitor Implementation ............................................................33 4.2.1 PROCHOT# Signal ...................................................................34 4.2.2 Thermal Control Circuit ............................................................34 4.2.3 Thermal Monitor 2 ...................................................................35 4.2.4 Operation and Configuration .....................................................36 4.2.5 On-Demand Mode ...................................................................37 4.2.6 System Considerations.............................................................37 4.2.7 Operating System and Application Software Considerations ...........38 4.2.8 THERMTRIP# Signal.................................................................38 4.2.9 Cooling System Failure Warning ................................................38 4 Thermal and Mechanical Design Guidelines 4.2.10 Digital Thermal Sensor.............................................................38 4.2.11 Platform Environmental Control Interface (PECI)..........................39 5 Balanced Technology Extended (BTX) Thermal/Mechanical Design Information ........41 5.1 Overview of the Balanced Technology Extended (BTX) Reference Design ......41 5.1.1 Target Heatsink Performance ....................................................41 5.1.2 Acoustics ...............................................................................42 5.1.3 Effective Fan Curve .................................................................44 5.1.4 Voltage Regulator Thermal Management .....................................45 5.1.5 Altitude..................................................................................46 5.1.6 Reference Heatsink Thermal Validation .......................................46 5.2 Environmental Reliability Testing ............................................................46 5.2.1 Structural Reliability Testing .....................................................46 5.2.2 Power Cycling .........................................................................49 5.2.3 Recommended BIOS/CPU/Memory Test Procedures ......................49 5.3 Material and Recycling Requirements ......................................................49 5.4 Safety Requirements ............................................................................50 5.5 Geometric Envelope for Intel Reference BTX Thermal Module Assembly ........50 5.6 Preload and TMA Stiffness .....................................................................51 5.6.1 Structural Design Strategy........................................................51 5.6.2 TMA Preload versus Stiffness ....................................................51 6 ATX Thermal/Mechanical Design Information.......................................................55 6.1 ATX Reference Design Requirements .......................................................55 6.2 Validation Results for Reference Design ...................................................58 6.2.1 Heatsink Performance ..............................................................58 6.2.2 Acoustics ...............................................................................59 6.2.3 Altitude..................................................................................60 6.2.4 Heatsink Thermal Validation .....................................................60 6.3 Environmental Reliability Testing ............................................................61 6.3.1 Structural Reliability Testing .....................................................61 6.3.2 Power Cycling .........................................................................63 6.3.3 Recommended BIOS/CPU/Memory Test Procedures ......................63 6.4 Material and Recycling Requirements ......................................................63 6.5 Safety Requirements ............................................................................64 6.6 Geometric Envelope for Intel Reference ATX Thermal Mechanical Design ......64 6.7 Reference Attach Mechanism..................................................................65 6.7.1 Structural Design Strategy........................................................65 6.7.2 Mechanical Interface to the Reference Attach Mechanism ..............66 7 Intel® Quiet System Technology (Intel® QST) .....................................................69 7.1 Intel® QST Algorithm ............................................................................69 7.1.1 Output Weighting Matrix ..........................................................70 7.1.2 Proportional-Integral-Derivative (PID) ........................................70 7.2 Board and System Implementation of Intel® QST ......................................72 7.3 Intel® QST Configuration and Tuning.......................................................74 7.4 Fan Hub Thermistor and Intel® QST ........................................................74 Appendix A LGA775 Socket Heatsink Loading ......................................................................75 A.1 LGA775 Socket Heatsink Considerations ..................................................75 A.2 Metric for Heatsink Preload for ATX/uATX Designs Non-Compliant with Intel® Reference Design .................................................................75 Thermal and Mechanical Design Guidelines 5 A.2.1 Heatsink Preload Requirement Limitations...................................75 A.2.2 Motherboard Deflection Metric Definition.....................................76 A.2.3 Board Deflection Limits ............................................................77 A.2.4 Board Deflection Metric Implementation Example.........................78 A.2.5 Additional Considerations .........................................................79 A.3 Heatsink Selection Guidelines.................................................................80 Appendix B Heatsink Clip Load Metrology ............................................................................81 B.1 Overview ............................................................................................81 B.2 Test Preparation...................................................................................81 B.2.1 Heatsink Preparation................................................................81 B.2.2 Typical Test Equipment ............................................................84 B.3 Test Procedure Examples.......................................................................84 B.3.1 Time-Zero, Room Temperature Preload Measurement ...................85 B.3.2 Preload Degradation under Bake Conditions ................................85 Appendix C Thermal Interface Management.........................................................................87 C.1 Bond Line Management .........................................................................87 C.2 Interface Material Area..........................................................................87 C.3 Interface Material Performance...............................................................87 Appendix D Case Temperature Reference Metrology..............................................................89 D.1 Objective and Scope .............................................................................89 D.2 Supporting Test Equipment....................................................................89 D.3 Thermal Calibration and Controls ............................................................91 D.4 IHS Groove .........................................................................................91 D.5 Thermocouple Attach Procedure .............................................................95 D.5.1 Thermocouple Conditioning and Preparation ................................95 D.5.2 Thermocouple Attachment to the IHS .........................................96 D.5.3 Solder Process ...................................................................... 101 D.5.4 Cleaning and Completion of Thermocouple Installation................ 105 D.6 Thermocouple Wire Management .......................................................... 108 Appendix E Legacy Fan Speed Control .............................................................................. 109 E.1 Thermal Solution Design ..................................................................... 109 E.1.1 Determine Thermistor Set Points ............................................. 109 E.1.2 Minimum Fan Speed Set Point ................................................. 110 E.2 Board and System Implementation ....................................................... 111 E.2.1 Choosing Fan Speed Control Settings ....................................... 111 E.3 Combining Thermistor and On-Die Thermal Sensor Control....................... 115 E.4 Interaction of Thermal Profile and TCONTROL ............................................. 115 Appendix F Balanced Technology Extended (BTX) System Thermal Considerations.................. 121 Appendix G Fan Performance for Reference Design ............................................................. 125 Appendix H Mechanical Drawings ..................................................................................... 128 Appendix I Intel Enabled Reference Solution Information.................................................... 146 6 Thermal and Mechanical Design Guidelines Figures Figure 2-1. Package IHS Load Areas ..................................................................15 Figure 2-2. Processor Case Temperature Measurement Location ............................19 Figure 2-3. Example Thermal Profile ..................................................................20 Figure 3-1. Processor Thermal Characterization Parameter Relationships.................28 Figure 3-2. Locations for Measuring Local Ambient Temperature, Active ATX Heatsink .......................................................................................31 Figure 3-3. Locations for Measuring Local Ambient Temperature, Passive Heatsink ...31 Figure 4-1. Thermal Monitor Control ..................................................................35 Figure 4-2. Thermal Monitor 2 Frequency and Voltage Ordering .............................36 Figure 4-3. TCONTROL for Digital Thermal Sensor................................................39 Figure 5-1. Effective TMA Fan Curves with Reference Extrusion..............................45 Figure 5-2. Random Vibration PSD ....................................................................47 Figure 5-3. Shock Acceleration Curve.................................................................48 Figure 5-4. Intel Type II TMA 65W Reference Design............................................50 Figure 5-5. Upward Board Deflection During Shock ..............................................51 Figure 5-6. Minimum Required Processor Preload to Thermal Module Assembly Stiffness .......................................................................................52 Figure 5-7. Thermal Module Attach Pointes and Duct-to-SRM Interface Features ......53 Figure 6-1. D60188-001Reference Design – Exploded View ...................................56 Figure 6-2. E18764-001 Reference Design – Exploded View ..................................57 Figure 6-3. Bottom View of Copper Core Applied by TC-1996 Grease ......................57 Figure 6-4. Random Vibration PSD ....................................................................61 Figure 6-5. Shock Acceleration Curve.................................................................62 Figure 6-6. Upward Board Deflection During Shock ..............................................65 Figure 6-7. Reference Clip/Heatsink Assembly.....................................................66 Figure 6-8. Critical Parameters for Interfacing to Reference Clip.............................67 Figure 6-9. Critical Core Dimension ...................................................................67 Figure 7-1. Intel® QST Overview .......................................................................70 Figure 7-2. PID Controller Fundamentals ............................................................71 Figure 7-3. Intel® QST Platform Requirements ....................................................72 Figure 7-4. Example Acoustic Fan Speed Control Implementation...........................73 Figure 7-5. Digital Thermal Sensor and Thermistor ..............................................74 Figure 7-6. Board Deflection Definition ...............................................................77 Figure 7-7. Example: Defining Heatsink Preload Meeting Board Deflection Limit .......79 Figure 7-8. Load Cell Installation in Machined Heatsink Base Pocket – Bottom View ..82 Figure 7-9. Load Cell Installation in Machined Heatsink Base Pocket – Side View ......83 Figure 7-10. Preload Test Configuration..............................................................83 Figure 7-11. Omega Thermocouple ....................................................................90 Figure 7-12. 775-LAND LGA Package Reference Groove Drawing at 6 o’clock Exit .....92 Figure 7-13. 775-LAND LGA Package Reference Groove Drawing at 3 o’clock Exit (Old Drawing) ..............................................................................93 Figure 7-14. IHS Groove at 6 o’clock Exit on the 775-LAND LGA Package ................94 Figure 7-15. IHS Groove at 6 o’clock Exit Orientation Relative to the LGA775 Socket ........................................................................................94 Figure 7-16. Inspection of Insulation on Thermocouple .........................................95 Figure 7-17. Bending the Tip of the Thermocouple ...............................................96 Figure 7-18. Securing Thermocouple Wires with Kapton* Tape Prior to Attach .........96 Figure 7-19. Thermocouple Bead Placement........................................................97 Figure 7-20. Position Bead on the Groove Step....................................................98 Thermal and Mechanical Design Guidelines 7 Figure 7-21. Detailed Thermocouple Bead Placement ...........................................98 Figure 7-22. Third Tape Installation ...................................................................98 Figure 7-23. Measuring Resistance Between Thermocouple and IHS .......................99 Figure 7-24. Applying Flux to the Thermocouple Bead ........................................ 100 Figure 7-25. Cutting Solder ............................................................................ 100 Figure 7-26. Positioning Solder on IHS ............................................................. 101 Figure 7-27. Solder Station Setup ................................................................... 102 Figure 7-28. View Through Lens at Solder Station.............................................. 103 Figure 7-29. Moving Solder back onto Thermocouple Bead .................................. 103 Figure 7-30. Removing Excess Solder .............................................................. 104 Figure 7-31. Thermocouple placed into groove .................................................. 105 Figure 7-32. Removing Excess Solder .............................................................. 105 Figure 7-33. Filling Groove with Adhesive ......................................................... 106 Figure 7-34. Application of Accelerant .............................................................. 106 Figure 7-35. Removing Excess Adhesive from IHS ............................................. 107 Figure 7-36. Finished Thermocouple Installation ................................................ 107 Figure 7-37. Thermocouple Wire Management................................................... 108 Figure 7-38. Thermistor Set Points .................................................................. 110 Figure 7-39. Example Fan Speed Control Implementation ................................... 111 Figure 7-40. Fan Speed Control....................................................................... 112 Figure 7-41. Temperature Range = 5 °C........................................................... 113 Figure 7-42. Temperature Range = 10 °C ......................................................... 114 Figure 7-43. On-Die Thermal Sensor and Thermistor .......................................... 115 Figure 7-44. FSC Definition Example................................................................ 117 Figure 7-45. System Airflow Illustration with System Monitor Point Area Identified . 122 Figure 7-46. Thermal sensor Location Illustration .............................................. 123 Figure 7-47. ATX/µATX Motherboard Keep-out Footprint Definition and Height Restrictions for Enabling Components - Sheet 1 .............................. 129 Figure 7-48. ATX/µATX Motherboard Keep-out Footprint Definition and Height Restrictions for Enabling Components - Sheet 2 .............................. 130 Figure 7-49. ATX/µATX Motherboard Keep-out Footprint Definition and Height Restrictions for Enabling Components - Sheet 3 .............................. 131 Figure 7-50. BTX Thermal Module Keep Out Volumetric – Sheet 1 ........................ 132 Figure 7-51. BTX Thermal Module Keep Out Volumetric – Sheet 2 ........................ 133 Figure 7-52. BTX Thermal Module Keep Out Volumetric – Sheet 3 ........................ 134 Figure 7-53. BTX Thermal Module Keep Out Volumetric – Sheet 4 ........................ 135 Figure 7-54. BTX Thermal Module Keep Out Volumetric – Sheet 5 ........................ 136 Figure 7-55. ATX Reference Clip – Sheet 1........................................................ 137 Figure 7-56. ATX Reference Clip - Sheet 2 ........................................................ 138 Figure 7-57. Reference Fastener - Sheet 1........................................................ 139 Figure 7-58. Reference Fastener - Sheet 2........................................................ 140 Figure 7-59. Reference Fastener - Sheet 3........................................................ 141 Figure 7-60. Reference Fastener - Sheet 4........................................................ 142 Figure 7-61. Intel® D60188-001 Reference Solution Assembly ............................. 143 Figure 7-62. Intel® D60188-001 Reference Solution Heatsink .............................. 144 Figure 7-63. Intel® E18764-001 Reference Solution Assembly ............................. 145 8 Thermal and Mechanical Design Guidelines Tables Table 2-1. Heatsink Inlet Temperature of Intel Reference Thermal Solutions............24 Table 2-2. Heatsink Inlet Temperature of Intel Boxed Processor Thermal Solutions ...24 Table 5-1. Balanced Technology Extended (BTX) Type II Reference TMA Performance ...................................................................................42 Table 5-2. Acoustic Targets ..............................................................................43 Table 5-3. VR Airflow Requirements...................................................................46 Table 5-4. Processor Preload Limits ...................................................................52 Table 6-1. D60188-001 Reference Heatsink Performance ......................................58 Table 6-2. E18764-001 Reference Heatsink Performance ......................................58 Table 6-3. Acoustic Results for ATX Reference Heatsink (D60188-001) ...................59 Table 6-4. Acoustic Results for ATX Reference Heatsink (E18764-001)....................59 Table 7-1. Board Deflection Configuration Definitions ...........................................76 Table 7-2. Typical Test Equipment .....................................................................84 Table 7-3. FSC Definitions .............................................................................. 116 Table 7-4. ATX FSC Settings ........................................................................... 118 Table 7-5. Balanced Technology Extended (BTX) Fan Speed Control Settings ......... 119 Table 7-6. Fan Electrical Performance Requirements .......................................... 125 Table 7-7. Intel® Representative Contact for Licensing Information of BTX Reference Design .......................................................................... 146 Table 7-8. D60188-001 Reference Thermal Solution Providers ............................. 146 Table 7-9. E18764-001 Reference Thermal Solution Providers ............................. 147 Table 7-10. Balanced Technology Extended (BTX) Reference Thermal Solution Providers .................................................................................... 148 Thermal and Mechanical Design Guidelines 9 Revision History Revision Number Description Revision Date -001 • Initial release. July 2007 -002 • Added Intel® Core™2 Duo Desktop processor E4400 at Tc-max of 73.3 °C. August 2007 -003 • Added Intel® Pentium® Dual Core processor E2180 specifications August 2007 -004 • Added Intel® Pentium® Dual Core processor E2160 and E2140 at Tcmax of 73.3 °C September 2007 -005 • Added Intel® Core™2 Duo Desktop processor E4600 October 2007 -006 • Added Intel® Pentium® Dual Core processor E2200 specifications December 2007 -007 • Added Intel® Celeron® Dual-Core processor E1000Δ series • Updated reference design Intel P/N, supplier P/N and heatsink drawing • Updated Intel® Boxed Processor Thermal Solutions inlet ambient temperature assumption January 2008 -008 • Added Intel® Pentium® Dual Core processor E2220 specifications • Added Intel® Core™2 Duo Desktop processor E4700 specifications March 2008 -009 • Added Intel® Celeron® Dual-Core processor E1400 April 2008 -010 • Added Intel® Celeron® Dual-Core processor E1500 December 2008 § 10 Thermal and Mechanical Design Guidelines Introduction Thermal and Mechanical Design Guidelines 11 1 Introduction 1.1 Document Goals and Scope 1.1.1 Importance of Thermal Management The objective of thermal management is to ensure that the temperatures of all components in a system are maintained within their functional temperature range. Within this temperature range, a component is expected to meet its specified performance. Operation outside the functional temperature range can degrade system performance, cause logic errors or cause component and/or system damage. Temperatures exceeding the maximum operating limit of a component may result in irreversible changes in the operating characteristics of this component. In a system environment, the processor temperature is a function of both system and component thermal characteristics. The system level thermal constraints consist of the local ambient air temperature and airflow over the processor as well as the physical constraints at and above the processor. The processor temperature depends in particular on the component power dissipation, the processor package thermal characteristics, and the processor thermal solution. All of these parameters are affected by the continued push of technology to increase processor performance levels and packaging density (more transistors). As operating frequencies increase and packaging size decreases, the power density increases while the thermal solution space and airflow typically become more constrained or remains the same within the system. The result is an increased importance on system design to ensure that thermal design requirements are met for each component, including the processor, in the system. 1.1.2 Document Goals Depending on the type of system and the chassis characteristics, new system and component designs may be required to provide adequate cooling for the processor. The goal of this document is to provide an understanding of these thermal characteristics and discuss guidelines for meeting the thermal requirements imposed on single processor systems using the Intel® Core™2 Duo processor E6000 and E4000 series, Intel® Pentium® Dual Core processor E2000 series, and Intel® Celeron® DualCore processor E1000Δ series. The concepts given in this document are applicable to any system form factor. Specific examples used will be the Intel enabled reference solution for ATX/uATX systems. See the applicable BTX form factor reference documents to design a thermal solution for that form factor. Introduction 12 Thermal and Mechanical Design Guidelines 1.1.3 Document Scope This design guide supports the following processors: • Intel® Core™2 Duo processor with 4 MB cache at Tc-max of 60.1 °C applies to Intel® Core™2 Duo processors E6700, E6600, E6420 and E6320 • Intel® Core™2 Duo processor with 4 MB cache at Tc-max of 72.0 °C applies to Intel® Core™2 Duo processors E6850, E6750, E6550 and E6540 • Intel® Core™2 Duo processor with 2 MB cache of Tc-max of 72.0 °C applies to Intel® Core™2 Duo processor E4700 • Intel® Core™2 Duo processor with 2 MB cache at Tc-max of 61.4 °C applies to Intel® Core™2 Duo processor E6000 series of processors E6400 and E6300 and Intel® Core™2 Duo processor E4000 series of the processors E4400 and E4300 • Intel® Pentium® Dual Core processor E2000 series at Tc-max of 61.4 °C applies to the Intel® Pentium® Dual Core processors E2160 and E2140 • Intel® Core™2 Duo processor with 2 MB cache at Tc-max of 73.3 °C applies to Intel® Core™2 Duo processors E6400, E4600, E4500, E4400, and E4300 • Intel® Pentium® Dual Core processor E2000 series at Tc-max of 73.3 °C applies to the Intel® Pentium® Dual Core processors E2220, E2200, E2180, E2160, and E2140 • Intel® Celeron® dual-core processor E1000 Series of Tc-max of 73.3 °C applies to the Intel® Celeron ® dual-core processor E1200, E1400, and E1500 In this document when a reference is made to “the processor” it is intended that this includes all the processors supported by this document. If needed for clarity, the specific processor will be listed. In this document, when a reference is made to the “the reference design” it is intended that this includes all ATX reference designs (D60188-001 and E18764-001) supported by this document. If needed for clarify, the specific reference design will be listed. In this document, when a reference is made to “the Datasheet”, the reader should refer to the Intel® Core™2 Extreme Processor X6800 and Intel® Core™2 Duo Desktop Processor E6000 and E4000 Sequences Datasheet, Intel® Pentium® Dual-Core Desktop Processor E2000 Series Datasheet, or Intel® Celeron ® Dual-Core Processor E1000 Series Datasheet. If needed for clarity, the specific processor datasheet will be referenced. Chapter 2 of this document discusses package thermal mechanical requirements to design a thermal solution for the processor in the context of personal computer applications. Chapter 3 discusses the thermal solution considerations and metrology recommendations to validate a processor thermal solution. Chapter 4 addresses the benefits of the processor’s integrated thermal management logic for thermal design. Chapter 5 gives information on the Intel reference thermal solution for the processor in BTX platform. Chapter 6 gives information on the Intel reference thermal solution for the processor in ATX platform. Chapter 7 discusses the implementation of acoustic fan speed control. The physical dimensions and thermal specifications of the processor that are used in this document are for illustration only. Refer to the datasheet for the product dimensions, thermal power dissipation and maximum case temperature. In case of conflict, the data in the datasheet supersedes any data in this document. Introduction Thermal and Mechanical Design Guidelines 13 1.2 References Material and concepts available in the following documents may be beneficial when reading this document. Document Location Intel® Core™2 Extreme Processor X6800 and Intel® Core™2 Duo Desktop Processor E6000 and E4000 Series Datasheet http://intel.com /design/processor/datashts/3132 78.htm Intel® Pentium® Dual-Core Desktop Processor E2000 Series Datasheet www.intel.com//design/processor /datashts/316981.htm Intel® Celeron ® Dual-Core Processor E1000 Series Datasheet http://www.intel.com/design/proc essor/datashts/318924.htm LGA775 Socket Mechanical Design Guide http://intel.com/design/ Pentium4/guides/ 302666.htm uATX SFF Design Guidance http://www.formfactors.org/ Fan Specification for 4-wire PWM Controlled Fans http://www.formfactors.org/ ATX Thermal Design Suggestions http://www.formfactors.org/ microATX Thermal Design Suggestions http://www.formfactors.org/ Balanced Technology Extended (BTX) System Design Guide http://www.formfactors.org/ Thermally Advantaged Chassis version 1.1 http://www.intel.com/go/chassis/ 1.3 Definition of Terms Term Description TA The measured ambient temperature locally surrounding the processor. The ambient temperature should be measured just upstream of a passive heatsink or at the fan inlet for an active heatsink. TC The case temperature of the processor, measured at the geometric center of the topside of the IHS. TE The ambient air temperature external to a system chassis. This temperature is usually measured at the chassis air inlets. TS Heatsink temperature measured on the underside of the heatsink base, at a location corresponding to TC. TC-MAX The maximum case temperature as specified in a component specification. ΨCA Case-to-ambient thermal characterization parameter (psi). A measure of thermal solution performance using total package power. Defined as (TC – TA) / Total Package Power. Note: Heat source must be specified for Ψ measurements. Introduction 14 Thermal and Mechanical Design Guidelines Term Description ΨCS Case-to-sink thermal characterization parameter. A measure of thermal interface material performance using total package power. Defined as (TC – TS) / Total Package Power. Note: Heat source must be specified for Ψ measurements. ΨSA Sink-to-ambient thermal characterization parameter. A measure of heatsink thermal performance using total package power. Defined as (TS – TA) / Total Package Power. Note: Heat source must be specified for Ψ measurements. TIM Thermal Interface Material: The thermally conductive compound between the heatsink and the processor case. This material fills the air gaps and voids, and enhances the transfer of the heat from the processor case to the heatsink. PMAX The maximum power dissipated by a semiconductor component. TDP Thermal Design Power: a power dissipation target based on worst-case applications. Thermal solutions should be designed to dissipate the thermal design power. IHS Integrated Heat Spreader: a thermally conductive lid integrated into a processor package to improve heat transfer to a thermal solution through heat spreading. LGA775 Socket The surface mount socket designed to accept the processors in the 775–Land LGA package. ACPI Advanced Configuration and Power Interface. Bypass Bypass is the area between a passive heatsink and any object that can act to form a duct. For this example, it can be expressed as a dimension away from the outside dimension of the fins to the nearest surface. Thermal Monitor A feature on the processor that attempts to keep the processor die temperature within factory specifications. TCC Thermal Control Circuit: Thermal Monitor uses the TCC to reduce die temperature by lowering effective processor frequency when the die temperature has exceeded its operating limits. TDIODE Temperature reported from the on-die thermal diode. FSC Fan Speed Control: Thermal solution that includes a variable fan speed which is driven by a PWM signal and uses the on-die thermal diode as a reference to change the duty cycle of the PWM signal. TCONTROL TCONTROL is the specification limit for use with the on-die thermal diode. PWM Pulse width modulation is a method of controlling a variable speed fan. The enabled 4 wire fans use the PWM duty cycle % from the fan speed controller to modulate the fan speed. Health Monitor Component Any standalone or integrated component that is capable of reading the processor temperature and providing the PWM signal to the 4 pin fan header. BTX Balanced Technology Extended. TMA Thermal Module Assembly. The heatsink, fan and duct assembly for the BTX thermal solution § Processor Thermal/Mechanical Information Thermal and Mechanical Design Guidelines 15 2 Processor Thermal/Mechanical Information 2.1 Mechanical Requirements 2.1.1 Processor Package The processors covered in the document are packaged in a 775-Land LGA package that interfaces with the motherboard via a LGA775 socket. Refer to the datasheet for detailed mechanical specifications. The processor connects to the motherboard through a land grid array (LGA) surface mount socket. The socket contains 775 contacts arrayed about a cavity in the center of the socket with solder balls for surface mounting to the motherboard. The socket is named LGA775 socket. A description of the socket is in the LGA775 Socket Mechanical Design Guide. The package includes an integrated heat spreader (IHS) that is shown in Figure 2-1 for illustration only. Refer to the processor datasheet for further information. In case of conflict, the package dimensions in the processor datasheet supersedes dimensions provided in this document. Figure 2-1. Package IHS Load Areas Top Surface of IHS to install a heatsink IHS Step to interface w ith LGA775 Socket Load Plate Substrate Top Surface of IHS to install a heatsink IHS Step to interface w ith LGA775 Socket Load Plate Substrate Processor Thermal/Mechanical Information 16 Thermal and Mechanical Design Guidelines The primary function of the IHS is to transfer the non-uniform heat distribution from the die to the top of the IHS, out of which the heat flux is more uniform and spread over a larger surface area (not the entire IHS area). This allows more efficient heat transfer out of the package to an attached cooling device. The top surface of the IHS is designed to be the interface for contacting a heatsink. The IHS also features a step that interfaces with the LGA775 socket load plate, as described in LGA775 Socket Mechanical Design Guide. The load from the load plate is distributed across two sides of the package onto a step on each side of the IHS. It is then distributed by the package across all of the contacts. When correctly actuated, the top surface of the IHS is above the load plate allowing proper installation of a heatsink on the top surface of the IHS. After actuation of the socket load plate, the seating plane of the package is flush with the seating plane of the socket. Package movement during socket actuation is along the Z direction (perpendicular to substrate) only. Refer to the LGA775 Socket Mechanical Design Guide for further information about the LGA775 socket. The processor package has mechanical load limits that are specified in the processor datasheet. The specified maximum static and dynamic load limits should not be exceeded during their respective stress conditions. These include heatsink installation, removal, mechanical stress testing, and standard shipping conditions. • When a compressive static load is necessary to ensure thermal performance of the thermal interface material between the heatsink base and the IHS, it should not exceed the corresponding specification given in the processor datasheet. • When a compressive static load is necessary to ensure mechanical performance, it should remain in the minimum/maximum range specified in the processor datasheet • The heatsink mass can also generate additional dynamic compressive load to the package during a mechanical shock event. Amplification factors due to the impact force during shock must be taken into account in dynamic load calculations. The total combination of dynamic and static compressive load should not exceed the processor datasheet compressive dynamic load specification during a vertical shock. For example, with a 0.550 kg [1.2 lb] heatsink, an acceleration of 50G during an 11 ms trapezoidal shock with an amplification factor of 2 results in approximately a 539 N [117 lbf] dynamic load on the processor package. If a 178 N [40 lbf] static load is also applied on the heatsink for thermal performance of the thermal interface material the processor package could see up to a 717 N [156 lbf]. The calculation for the thermal solution of interest should be compared to the processor datasheet specification. No portion of the substrate should be used as a load- bearing surface. Finally, the processor datasheet provides package handling guidelines in terms of maximum recommended shear, tensile and torque loads for the processor IHS relative to a fixed substrate. These recommendations should be followed in particular for heatsink removal operations. Processor Thermal/Mechanical Information Thermal and Mechanical Design Guidelines 17 2.1.2 Heatsink Attach 2.1.2.1 General Guidelines There are no features on the LGA775 socket to directly attach a heatsink: a mechanism must be designed to attach the heatsink directly to the motherboard. In addition to holding the heatsink in place on top of the IHS, this mechanism plays a significant role in the robustness of the system in which it is implemented, in particular: • Ensuring thermal performance of the thermal interface material (TIM) applied between the IHS and the heatsink. TIMs based on phase change materials are very sensitive to applied pressure: the higher the pressure, the better the initial performance. TIMs such as thermal greases are not as sensitive to applied pressure. Designs should consider a possible decrease in applied pressure over time due to potential structural relaxation in retention components. • Ensuring system electrical, thermal, and structural integrity under shock and vibration events. The mechanical requirements of the heatsink attach mechanism depend on the mass of the heatsink and the level of shock and vibration that the system must support. The overall structural design of the motherboard and the system have to be considered when designing the heatsink attach mechanism. Their design should provide a means for protecting LGA775 socket solder joints. One of the strategies for mechanical protection of the socket is to use a preload and high stiffness clip. This strategy is implemented by the reference design and described in Section 6.7. Note: Package pull-out during mechanical shock and vibration is constrained by the LGA775 socket load plate (refer to the LGA775 Socket Mechanical Design Guide for further information). 2.1.2.2 Heatsink Clip Load Requirement The attach mechanism for the heatsink developed to support the processor should create a static preload on the package between 18 lbf and 70 lbf throughout the life of the product for designs compliant with the reference design assumptions: • 72 mm x 72 mm mounting hole span for ATX (refer to Figure 7-47). • TMA preload vs. stiffness for BTX within the limits shown on Figure 5-6. • And no board stiffening device (backing plate, chassis attach, etc.). The minimum load is required to protect against fatigue failure of socket solder joint in temperature cycling. It is important to take into account potential load degradation from creep over time when designing the clip and fastener to the required minimum load. This means that, depending on clip stiffness, the initial preload at beginning of life of the product may be significantly higher than the minimum preload that must be met throughout the life of the product. For additional guidelines on mechanical design, in particular on designs departing from the reference design assumptions refer to Appendix A. For clip load metrology guidelines, refer to Appendix B. Processor Thermal/Mechanical Information 18 Thermal and Mechanical Design Guidelines 2.1.2.3 Additional Guidelines In addition to the general guidelines given above, the heatsink attach mechanism for the processor should be designed to the following guidelines: • Holds the heatsink in place under mechanical shock and vibration events and applies force to the heatsink base to maintain desired pressure on the thermal interface material. Note that the load applied by the heatsink attach mechanism must comply with the package specifications described in the processor datasheet. One of the key design parameters is the height of the top surface of the processor IHS above the motherboard. The IHS height from the top of board is expected to vary from 7.517 mm to 8.167 mm. This data is provided for information only, and should be derived from: ⎯ The height of the socket seating plane above the motherboard after reflow, given in the LGA775 Socket Mechanical Design Guide with its tolerances. ⎯ The height of the package, from the package seating plane to the top of the IHS, and accounting for its nominal variation and tolerances that are given in the corresponding processor datasheet. • Engages easily, and if possible, without the use of special tools. In general, the heatsink is assumed to be installed after the motherboard has been installed into the chassis. • Minimizes contact with the motherboard surface during installation and actuation to avoid scratching the motherboard. 2.2 Thermal Requirements Refer to the datasheet for the processor thermal specifications. The majority of processor power is dissipated through the IHS. There are no additional components, e.g., BSRAMs, which generate heat on this package. The amount of power that can be dissipated as heat through the processor package substrate and into the socket is usually minimal. The thermal limits for the processor are the Thermal Profile and TCONTROL. The Thermal Profile defines the maximum case temperature as a function of power being dissipated. TCONTROL is a specification used in conjunction with the temperature reported by the digital thermal sensor and a fan speed control method. Designing to these specifications allows optimization of thermal designs for processor performance and acoustic noise reduction. 2.2.1 Processor Case Temperature For the processor, the case temperature is defined as the temperature measured at the geometric center of the package on the surface of the IHS. For illustration, Figure 2-2 shows the measurement location for a 37.5 mm x 37.5 mm [1.474 in x 1.474 in] 775-Land LGA processor package with a 28.7 mm x 28.7 mm [1.13 in x 1.13 in] IHS top surface. Techniques for measuring the case temperature are detailed in Section 3.4. Note: In case of conflict, the package dimensions in the processor datasheet supersedes dimensions provided in this document. Processor Thermal/Mechanical Information Thermal and Mechanical Design Guidelines 19 Figure 2-2. Processor Case Temperature Measurement Location 37.5 mm Measure TC at this point (geometric center of the package) 37.5 mm 37.5 mm Measure TC at this point (geometric center of the package) 37.5 mm 2.2.2 Thermal Profile The Thermal Profile defines the maximum case temperature as a function of processor power dissipation. The TDP and Maximum Case Temperature are defined as the maximum values of the thermal profile. By design the thermal solutions must meet the thermal profile for all system operating conditions and processor power levels. Refer to the processor datasheet for further information. While the thermal profile provides flexibility for ATX /BTX thermal design based on its intended target thermal environment, thermal solutions that are intended to function in a multitude of systems and environments need to be designed for the worst-case thermal environment. The majority of ATX /BTX platforms are targeted to function in an environment that will have up to a 35 °C ambient temperature external to the system. Note: For ATX platforms, an active air-cooled design, assumed be used in ATX Chassis, with a fan installed at the top of the heatsink equivalent to the reference design (see Chapter 6) should be designed to manage the processor TDP at an inlet temperature of 35 °C + 5 °C = 40 °C. For BTX platforms, a front-to-back cooling design equivalent to Intel BTX TMA Type II reference design (see the Chapter 5) should be designed to manage the processor TDP at an inlet temperature of 35 °C + 0.5 °C = 35.5 °C. The slope of the thermal profile was established assuming a generational improvement in thermal solution performance of the reference design. For an example of Intel® Core™2 Duo processor with 4 MB cache at Tc-max of 60.1 °C in ATX platform, its improvement is about 16% over the Intel reference design (D60188- 001). This performance is expressed as the slope on the thermal profile and can be thought of as the thermal resistance of the heatsink attached to the processor, ΨCA (Refer to Processor Thermal/Mechanical Information 20 Thermal and Mechanical Design Guidelines Section 3.1). The intercept on the thermal profile assumes a maximum ambient operating condition that is consistent with the available chassis solutions. To determine compliance to the thermal profile, a measurement of the actual processor power dissipation is required. The measured power is plotted on the Thermal Profile to determine the maximum case temperature. Using the example in Figure 2-3 for the Intel® Core™2 Duo processor with 4 MB cache at Tc-max of 60.1 °C dissipating 50 W, the maximum case temperature is 56.2 °C. See the datasheet for the thermal profile. Figure 2-3. Example Thermal Profile 2.2.3 TCONTROL TCONTROL defines the maximum operating temperature for the digital thermal sensor when the thermal solution fan speed is being controlled by the digital thermal sensor. The TCONTROL parameter defines a very specific processor operating region where fan speed can be reduced. This allows the system integrator a method to reduce the acoustic noise of the processor cooling solution, while maintaining compliance to the processor thermal specification. Note: The TCONTROL value for the processor is relative to the Thermal Control Circuit (TCC) activation set point which will be seen as 0 via the digital thermal sensor. As a result the TCONTROL value will always be a negative number. See Chapter 4 for the discussion the thermal management logic and features and Chapter 7 on Intel® Quiet System Technology (Intel® QST). The value of TCONTROL is driven by a number of factors. One of the most significant of these is the processor idle power. As a result a processor with a high (closer to 0 ) Processor Thermal/Mechanical Information Thermal and Mechanical Design Guidelines 21 TCONTROL will dissipate more power than a part with lower value (farther from 0, e.g., more negative number) of TCONTROL when running the same application. This is achieved in part by using the ΨCA vs. RPM and RPM vs. Acoustics (dBA) performance curves from the Intel enabled thermal solution. A thermal solution designed to meet the thermal profile would be expected to provide similar acoustic performance of different parts with potentially different TCONTROL values. The value for TCONTROL is calculated by the system BIOS based on values read from a factory configured processor register. The result can be used to program a fan speed control component. See the appropriate processor datasheet for further details on reading the register and calculating TCONTROL. See Chapter 7, Intel® Quiet System Technology (Intel® QST), for details on implementing a design using TCONTROL and the Thermal Profile. 2.3 Heatsink Design Considerations To remove the heat from the processor, three basic parameters should be considered: • The area of the surface on which the heat transfer takes place. Without any enhancements, this is the surface of the processor package IHS. One method used to improve thermal performance is by attaching a heatsink to the IHS. A heatsink can increase the effective heat transfer surface area by conducting heat out of the IHS and into the surrounding air through fins attached to the heatsink base. • The conduction path from the heat source to the heatsink fins. Providing a direct conduction path from the heat source to the heatsink fins and selecting materials with higher thermal conductivity typically improves heatsink performance. The length, thickness, and conductivity of the conduction path from the heat source to the fins directly impact the thermal performance of the heatsink. In particular, the quality of the contact between the package IHS and the heatsink base has a higher impact on the overall thermal solution performance as processor cooling requirements become stricter. Thermal interface material (TIM) is used to fill in the gap between the IHS and the bottom surface of the heatsink, and thereby improve the overall performance of the stack-up (IHS-TIMHeatsink). With extremely poor heatsink interface flatness or roughness, TIM may not adequately fill the gap. The TIM thermal performance depends on its thermal conductivity as well as the pressure applied to it. Refer to Section 2.3.4 and Appendix C for further information on TIM and on bond line management between the IHS and the heatsink base. • The heat transfer conditions on the surface on which heat transfer takes place. Convective heat transfer occurs between the airflow and the surface exposed to the flow. It is characterized by the local ambient temperature of the air, TA, and the local air velocity over the surface. The higher the air velocity over the surface, and the cooler the air, the more efficient is the resulting cooling. The nature of the airflow can also enhance heat transfer via convection. Turbulent flow can provide improvement over laminar flow. In the case of a heatsink, the surface exposed to the flow includes in particular the fin faces and the heatsink base. Active heatsinks typically incorporate a fan that helps manage the airflow through the heatsink. Processor Thermal/Mechanical Information 22 Thermal and Mechanical Design Guidelines Passive heatsink solutions require in-depth knowledge of the airflow in the chassis. Typically, passive heatsinks see lower air speed. These heatsinks are therefore typically larger (and heavier) than active heatsinks due to the increase in fin surface required to meet a required performance. As the heatsink fin density (the number of fins in a given cross-section) increases, the resistance to the airflow increases: it is more likely that the air travels around the heatsink instead of through it, unless air bypass is carefully managed. Using air-ducting techniques to manage bypass area can be an effective method for controlling airflow through the heatsink. 2.3.1 Heatsink Size The size of the heatsink is dictated by height restrictions for installation in a system and by the real estate available on the motherboard and other considerations for component height and placement in the area potentially impacted by the processor heatsink. The height of the heatsink must comply with the requirements and recommendations published for the motherboard form factor of interest. Designing a heatsink to the recommendations may preclude using it in system adhering strictly to the form factor requirements, while still in compliance with the form factor documentation. For the ATX/microATX form factor, it is recommended to use: • The ATX motherboard keep-out footprint definition and height restrictions for enabling components, defined for the platforms designed with the LGA775 socket in Appendix H of this design guide. • The motherboard primary side height constraints defined in the ATX Specification V2.1 and the microATX Motherboard Interface Specification V1.1 found at http://www.formfactors.org/. The resulting space available above the motherboard is generally not entirely available for the heatsink. The target height of the heatsink must take into account airflow considerations (for fan performance for example) as well as other design considerations (air duct, etc.). For BTX form factor, it is recommended to use: • The BTX motherboard keep-out footprint definitions and height restrictions for enabling components for platforms designed with the LGA77 socket in Appendix H of this design guide. • An overview of other BTX system considerations for thermal solutions can be obtained in the latest version of the Balanced Technology Extended (BTX) System Design Guide found at http://www.formfactors.org/. 2.3.2 Heatsink Mass With the need to push air cooling to better performance, heatsink solutions tend to grow larger (increase in fin surface) resulting in increased mass. The insertion of highly thermally conductive materials like copper to increase heatsink thermal conduction performance results in even heavier solutions. As mentioned in Section 2.1, the heatsink mass must take into consideration the package and socket load limits, the heatsink attach mechanical capabilities, and the mechanical shock and vibration profile targets. Beyond a certain heatsink mass, the cost of developing and implementing a heatsink attach mechanism that can ensure the system integrity under the mechanical shock and vibration profile targets may become prohibitive. Processor Thermal/Mechanical Information Thermal and Mechanical Design Guidelines 23 The recommended maximum heatsink mass for the ATX thermal solution is 550g. This mass includes the fan and the heatsink only. The attach mechanism (clip, fasteners, etc.) are not included. The mass limit for BTX heatsinks that use Intel reference design structural ingredients is 900 grams. The BTX structural reference component strategy and design is reviewed in depth in the latest version of the Balanced Technology Extended (BTX) System Design Guide. Note: The 550g mass limit for ATX solutions is based on the capabilities of the reference design components that retain the heatsink to the board and apply the necessary preload. Any reuse of the clip and fastener in derivative designs should not exceed 550g. ATX Designs that have a mass of greater than 550g should analyze the preload as discussed in Appendix A and retention limits of the fastener. Note: The chipset components on the board are affected by processor heatsink mass. Exceeding these limits may require the evaluation of the chipset for shock and vibration. 2.3.3 Package IHS Flatness The package IHS flatness for the product is specified in the datasheet and can be used as a baseline to predict heatsink performance during the design phase. Intel recommends testing and validating heatsink performance in full mechanical enabling configuration to capture any impact of IHS flatness change due to combined socket and heatsink loading. While socket loading alone may increase the IHS warpage, the heatsink preload redistributes the load on the package and improves the resulting IHS flatness in the enabled state. 2.3.4 Thermal Interface Material Thermal interface material application between the processor IHS and the heatsink base is generally required to improve thermal conduction from the IHS to the heatsink. Many thermal interface materials can be pre-applied to the heatsink base prior to shipment from the heatsink supplier and allow direct heatsink attach, without the need for a separate thermal interface material dispense or attach process in the final assembly factory. All thermal interface materials should be sized and positioned on the heatsink base in a way that ensures the entire processor IHS area is covered. It is important to compensate for heatsink-to-processor attach positional alignment when selecting the proper thermal interface material size. When pre-applied material is used, it is recommended to have a protective application tape over it. This tape must be removed prior to heatsink installation. Processor Thermal/Mechanical Information 24 Thermal and Mechanical Design Guidelines 2.4 System Thermal Solution Considerations 2.4.1 Chassis Thermal Design Capabilities The Intel reference thermal solutions and Intel Boxed Processor thermal solutions assume that the chassis delivers a maximum TA at the inlet of the processor fan heatsink. The following tables show the TA requirements for the reference solutions and Intel Boxed Processor thermal solutions. Table 2-1. Heatsink Inlet Temperature of Intel Reference Thermal Solutions ATX D60188- 001 ATX E18764-001 BTX Type II Heatsink Inlet Temperature 40 °C 40 °C 35.5 °C NOTE: 1. Intel reference designs (D60188-001 and E18764-001) are assumed be used in the chassis where expected the temperature rise is 5 °C. Table 2-2. Heatsink Inlet Temperature of Intel Boxed Processor Thermal Solutions Boxed Processor for Intel® Core™2 Duo Processor E6000 and E4000 Series, Intel® Pentium® Dual Core Processor E2000 Series, and Intel® Celeron® DualCore Processor E1000 Series Heatsink Inlet Temperature 40 °C NOTE: 1. Boxed Processor thermal solutions for ATX assume the use of the thermally advantaged chassis (refer to Thermally Advantaged Chassis version 1.1 for Thermally Advantaged Chassis thermal and mechanical requirements). 2.4.2 Improving Chassis Thermal Performance The heat generated by components within the chassis must be removed to provide an adequate operating environment for both the processor and other system components. Moving air through the chassis brings in air from the external ambient environment and transports the heat generated by the processor and other system components out of the system. The number, size and relative position of fans and vents determine the chassis thermal performance, and the resulting ambient temperature around the processor. The size and type (passive or active) of the thermal solution and the amount of system airflow can be traded off against each other to meet specific system design constraints. Additional constraints are board layout, spacing, component placement, acoustic requirements and structural considerations that limit the thermal solution size. For more information, refer to the Performance ATX Desktop System Thermal Design Suggestions or Performance microATX Desktop System Thermal Design Suggestions or Balanced Technology Extended (BTX) System Design Guide documents available on the http://www.formfactors.org/ web site. Processor Thermal/Mechanical Information Thermal and Mechanical Design Guidelines 25 In addition to passive heatsinks, fan heatsinks and system fans are other solutions that exist for cooling integrated circuit devices. For example, ducted blowers, heat pipes and liquid cooling are all capable of dissipating additional heat. Due to their varying attributes, each of these solutions may be appropriate for a particular system implementation. To develop a reliable, cost-effective thermal solution, thermal characterization and simulation should be carried out at the entire system level, accounting for the thermal requirements of each component. In addition, acoustic noise constraints may limit the size, number, placement, and types of fans that can be used in a particular design. To ease the burden on thermal solutions, the Thermal Monitor feature and associated logic have been integrated into the silicon of the processor. By taking advantage of the Thermal Monitor feature, system designers may reduce thermal solution cost by designing to TDP instead of maximum power. Thermal Monitor attempts to protect the processor during sustained workload above TDP. Implementation options and recommendations are described in Chapter 4. 2.4.3 Summary In summary, considerations in heatsink design include: • The local ambient temperature TA at the heatsink, which is a function of chassis design. • The thermal design power (TDP) of the processor, and the corresponding maximum TC as calculated from the thermal profile. These parameters are usually combined in a single lump cooling performance parameter, ΨCA (case to air thermal characterization parameter). More information on the definition and the use of ΨCA is given Sections 3.1. • Heatsink interface to IHS surface characteristics, including flatness and roughness. • The performance of the thermal interface material used between the heatsink and the IHS. • The required heatsink clip static load, between 18 lbf to 70 lbf throughout the life of the product (Refer to Section 2.1.2.2 for further information). • Surface area of the heatsink. • Heatsink material and technology. • Volume of airflow over the heatsink surface area. • Development of airflow entering and within the heatsink area. • Physical volumetric constraints placed by the system 2.5 System Integration Considerations Manufacturing with Intel® Components using 775–Land LGA Package and LGA775 Socket documentation provides Best Known Methods for all aspects LGA775 socket based platforms and systems manufacturing. Of particular interest for package and heatsink installation and removal is the System Assembly module. A video covering system integration is also available. Contact your Intel field sales representative for further information. Processor Thermal/Mechanical Information 26 Thermal and Mechanical Design Guidelines § Thermal Metrology Thermal and Mechanical Design Guidelines 27 3 Thermal Metrology This chapter discusses guidelines for testing thermal solutions, including measuring processor temperatures. In all cases, the thermal engineer must measure power dissipation and temperature to validate a thermal solution. To define the performance of a thermal solution the “thermal characterization parameter”, Ψ (“psi”) will be used. 3.1 Characterizing Cooling Performance Requirements The idea of a “thermal characterization parameter”, Ψ (“psi”), is a convenient way to characterize the performance needed for the thermal solution and to compare thermal solutions in identical situations (same heat source and local ambient conditions). The thermal characterization parameter is calculated using total package power. Note: Heat transfer is a three-dimensional phenomenon that can rarely be accurately and easily modeled by a single resistance parameter like Ψ. The case-to-local ambient thermal characterization parameter value (ΨCA) is used as a measure of the thermal performance of the overall thermal solution that is attached to the processor package. It is defined by the following equation, and measured in units of °C/W: ΨCA = (TC – TA) / PD (Equation 1) Where: ΨCA = Case-to-local ambient thermal characterization parameter (°C/W) TC = Processor case temperature (°C) TA = Local ambient temperature in chassis at processor (°C) PD = Processor total power dissipation (W) (assumes all power dissipates through the IHS) The case-to-local ambient thermal characterization parameter of the processor, ΨCA, is comprised of ΨCS, the thermal interface material thermal characterization parameter, and of ΨSA, the sink-to-local ambient thermal characterization parameter: ΨCA = ΨCS + ΨSA (Equation 2) Where: ΨCS = Thermal characterization parameter of the thermal interface material (°C/W) ΨSA = Thermal characterization parameter from heatsink-to-local ambient (°C/W) Thermal Metrology 28 Thermal and Mechanical Design Guidelines ΨCS is strongly dependent on the thermal conductivity and thickness of the TIM between the heatsink and IHS. ΨSA is a measure of the thermal characterization parameter from the bottom of the heatsink to the local ambient air. ΨSA is dependent on the heatsink material, thermal conductivity, and geometry. It is also strongly dependent on the air velocity through the fins of the heatsink. Figure 3-1 illustrates the combination of the different thermal characterization parameters. Figure 3-1. Processor Thermal Characterization Parameter Relationships TIM TS TA ΨCA LGA775 Socket Processor IHS System Board TC Heatsink TIM TS TA ΨCA LGA775 Socket Processor IHS System Board TC Heatsink 3.1.1 Example The cooling performance, ΨCA, is then defined using the principle of thermal characterization parameter described above: • The case temperature TC-MAX and thermal design power TDP given in the processor datasheet. • Define a target local ambient temperature at the processor, TA. Since the processor thermal profile applies to all processor frequencies, it is important to identify the worst case (lowest ΨCA) for a targeted chassis characterized by TA to establish a design strategy. The following provides an illustration of how one might determine the appropriate performance targets. The example power and temperature numbers used here are not related to any specific Intel processor thermal specifications, and are for illustrative purposes only. Thermal Metrology Thermal and Mechanical Design Guidelines 29 Assume the TDP, as listed in the datasheet, is 100 W and the maximum case temperature from the thermal profile for 100 W is 67 °C. Assume as well that the system airflow has been designed such that the local ambient temperature is 38 °C. Then the following could be calculated using equation 1 (shown on previous page): ΨCA = (TC,- TA) / TDP = (67 – 38) / 100 = 0.29 °C/W To determine the required heatsink performance, a heatsink solution provider would need to determine ΨCS performance for the selected TIM and mechanical load configuration. If the heatsink solution were designed to work with a TIM material performing at ΨCS ≤ 0.10 °C/W, solving for equation 2 from above, the performance of the heatsink would be: ΨSA = ΨCA − ΨCS = 0.29 − 0.10 = 0.19 °C/W 3.2 Processor Thermal Solution Performance Assessment Thermal performance of a heatsink should be assessed using a thermal test vehicle (TTV) provided by Intel. The TTV is a stable heat source that the user can make accurate power measurement, whereas processors can introduce additional factors that can impact test results. In particular, the power level from actual processors varies significantly, even when running the maximum power application provided by Intel, due to variances in the manufacturing process. The TTV provides consistent power and power density for thermal solution characterization and results can be easily translated to real processor performance. Accurate measurement of the power dissipated by an actual processor is beyond the scope of this document. Once the thermal solution is designed and validated with the TTV, it is strongly recommended to verify functionality of the thermal solution on real processors and on fully integrated systems. The Intel maximum power application enables steady power dissipation on a processor to assist in this testing. This maximum power application is provided by Intel. 3.3 Local Ambient Temperature Measurement Guidelines The local ambient temperature TA is the temperature of the ambient air surrounding the processor. For a passive heatsink, TA is defined as the heatsink approach air temperature; for an actively cooled heatsink, it is the temperature of inlet air to the active cooling fan. It is worthwhile to determine the local ambient temperature in the chassis around the processor to understand the effect it may have on the case temperature. TA is best measured by averaging temperature measurements at multiple locations in the heatsink inlet airflow. This method helps reduce error and eliminate minor spatial variations in temperature. The following guidelines are meant to enable accurate determination of the localized air temperature around the processor during system thermal testing. Thermal Metrology 30 Thermal and Mechanical Design Guidelines For active heatsinks, it is important to avoid taking measurement in the dead flow zone that usually develops above the fan hub and hub spokes. Measurements should be taken at four different locations uniformly placed at the center of the annulus formed by the fan hub and the fan housing to evaluate the uniformity of the air temperature at the fan inlet. The thermocouples should be placed approximately 3 mm to 8 mm [0.1 to 0.3 in] above the fan hub vertically and halfway between the fan hub and the fan housing horizontally as shown in the ATX heatsink in Figure 3-2 (avoiding the hub spokes). Using an open bench to characterize an active heatsink can be useful, and usually ensures more uniform temperatures at the fan inlet. However, additional tests that include a solid barrier above the test motherboard surface can help evaluate the potential impact of the chassis. This barrier is typically clear Plexiglas*, extending at least 100 mm [4 in] in all directions beyond the edge of the thermal solution. Typical distance from the motherboard to the barrier is 81 mm [3.2 in]. For even more realistic airflow, the motherboard should be populated with significant elements like memory cards, graphic card, and chipset heatsink. If a barrier is used, the thermocouple can be taped directly to the barrier with a clear tape at the horizontal location as previously described, half way between the fan hub and the fan housing. If a variable speed fan is used, it may be useful to add a thermocouple taped to the barrier above the location of the temperature sensor used by the fan to check its speed setting against air temperature. When measuring TA in a chassis with a live motherboard, add-in cards, and other system components, it is likely that the TA measurements will reveal a highly non-uniform temperature distribution across the inlet fan section. For passive heatsinks, thermocouples should be placed approximately 13 mm to 25 mm [0.5 to 1.0 in] away from processor and heatsink as shown in Figure 3-3. The thermocouples should be placed approximately 51 mm [2.0 in] above the baseboard. This placement guideline is meant to minimize the effect of localized hot spots from baseboard components. Note: Testing an active heatsink with a variable speed fan can be done in a thermal chamber to capture the worst-case thermal environment scenarios. Otherwise, when doing a bench top test at room temperature, the fan regulation prevents the heatsink from operating at its maximum capability. To characterize the heatsink capability in the worst-case environment in these conditions, it is then necessary to disable the fan regulation and power the fan directly, based on guidance from the fan supplier. Thermal Metrology Thermal and Mechanical Design Guidelines 31 Figure 3-2. Locations for Measuring Local Ambient Temperature, Active ATX Heatsink Note: Drawing Not to Scale Figure 3-3. Locations for Measuring Local Ambient Temperature, Passive Heatsink Note: Drawing Not to Scale Thermal Metrology 32 Thermal and Mechanical Design Guidelines 3.4 Processor Case Temperature Measurement Guidelines To ensure functionality and reliability, the processor is specified for proper operation when TC is maintained at or below the thermal profile as listed in the datasheet. The measurement location for TC is the geometric center of the IHS. Figure 2-2 shows the location for TC measurement. Special care is required when measuring TC to ensure an accurate temperature measurement. Thermocouples are often used to measure TC. Before any temperature measurements are made, the thermocouples must be calibrated, and the complete measurement system must be routinely checked against known standards. When measuring the temperature of a surface that is at a different temperature from the surrounding local ambient air, errors could be introduced in the measurements. The measurement errors could be caused by poor thermal contact between the junction of the thermocouple and the surface of the integrated heat spreader, heat loss by radiation, convection, by conduction through thermocouple leads, or by contact between the thermocouple cement and the heatsink base. Appendix D defines a reference procedure for attaching a thermocouple to the IHS of a 775-Land LGA processor package for TC measurement. This procedure takes into account the specific features of the 775-Land LGA package and of the LGA775 socket for which it is intended. § Thermal Management Logic and Thermal Monitor Feature Thermal and Mechanical Design Guidelines 33 4 Thermal Management Logic and Thermal Monitor Feature 4.1 Processor Power Dissipation An increase in processor operating frequency not only increases system performance, but also increases the processor power dissipation. The relationship between frequency and power is generalized in the following equation: P = CV2 F (where P = power, C = capacitance, V = voltage, F = frequency). From this equation, it is evident that power increases linearly with frequency and with the square of voltage. In the absence of power saving technologies, ever increasing frequencies will result in processors with power dissipations in the hundreds of watts. Fortunately, there are numerous ways to reduce the power consumption of a processor, and Intel is aggressively pursuing low power design techniques. For example, decreasing the operating voltage, reducing unnecessary transistor activity, and using more power efficient circuits can significantly reduce processor power consumption. An on-die thermal management feature called Thermal Monitor is available on the processor. It provides a thermal management approach to support the continued increases in processor frequency and performance. By using a highly accurate on-die temperature sensing circuit and a fast acting Thermal Control Circuit (TCC), the processor can rapidly initiate thermal management control. The Thermal Monitor can reduce cooling solution cost, by allowing thermal designs to target TDP. The processor also supports an additional power reduction capability known as Thermal Monitor 2 described in Section 4.2.3. 4.2 Thermal Monitor Implementation The Thermal Monitor consists of the following components: • A highly accurate on-die temperature sensing circuit • A bi-directional signal (PROCHOT#) that indicates if the processor has exceeded its maximum temperature or can be asserted externally to activate the Thermal Control Circuit (TCC) (see Section 4.2.1 for more details on user activation of TCC via PROCHOT# signal) • A Thermal Control Circuit that will attempt to reduce processor temperature by rapidly reducing power consumption when the on-die temperature sensor indicates that it has exceeded the maximum operating point. • Registers to determine the processor thermal status. Thermal Management Logic and Thermal Monitor Feature 34 Thermal and Mechanical Design Guidelines 4.2.1 PROCHOT# Signal The primary function of the PROCHOT# signal is to provide an external indication the processor has reached the TCC activation temperature. While PROCHOT# is asserted, the TCC will be active. Assertion of the PROCHOT# signal is independent of any register settings within the processor. It is asserted any time the processor die temperature reaches the trip point. PROCHOT# can be configured via BIOS as an output or bi-directional signal. As an output, PROCHOT# will go active when the processor temperature of either core reaches the TCC activation temperature. As an input, assertion of PROCHOT# will activate the TCC for both cores. The TCC will remain active until the system deasserts PROCHOT#. The temperature at which the PROCHOT# signal goes active is individually calibrated during manufacturing. Once configured, the processor temperature at which the PROCHOT# signal is asserted is not re-configurable. One application of the Bi-directional PROCHOT# is for the thermal protection of voltage regulators (VR). System designers can implement a circuit to monitor the VR temperature and activate the TCC when the temperature limit of the VR is reached. By asserting PROCHOT# (pulled-low) which activates the TCC, the VR can cool down as a result of reduced processor power consumption. Bi-directional PROCHOT# can allow VR thermal designs to target maximum sustained current instead of maximum current. Systems should still provide proper cooling for the VR, and rely on bidirectional PROCHOT# signal only as a backup in case of system cooling failure. Note: A thermal solution designed to meet the thermal profile specifications should rarely experience activation of the TCC as indicated by the PROCHOT# signal going active. 4.2.2 Thermal Control Circuit The Thermal Control Circuit portion of the Thermal Monitor must be enabled for the processor to operate within specifications. The Thermal Monitor’s TCC, when active, will attempt to lower the processor temperature by reducing the processor power consumption. There are two methods by which TCC can reduce processor power dissipation. These methods are referred to as Thermal Monitor 1 (TM1) and Thermal Monitor 2 (TM2). 4.2.2.1 Thermal Monitor In the original implementation of thermal monitor this is done by changing the duty cycle of the internal processor clocks, resulting in a lower effective frequency. When active, the TCC turns the processor clocks off and then back on with a predetermined duty cycle. The duty cycle is processor specific, and is fixed for a particular processor. The maximum time period the clocks are disabled is ~3 μs. This time period is frequency dependent and higher frequency processors will disable the internal clocks for a shorter time period. Figure 4-1 illustrates the relationship between the internal processor clocks and PROCHOT#. Performance counter registers, status bits in model specific registers (MSRs), and the PROCHOT# output pin are available to monitor the Thermal Monitor behavior. Thermal Management Logic and Thermal Monitor Feature Thermal and Mechanical Design Guidelines 35 Figure 4-1. Thermal Monitor Control PROCHOT# Resultant internal clock Normal clock Internal clock Duty cycle control 4.2.3 Thermal Monitor 2 The second method of power reduction is TM2. TM2 provides an efficient means of reducing the power consumption within the processor and limiting the processor temperature. When TM2 is enabled, and a high temperature situation is detected, the enhanced TCC will be activated. The enhanced TCC causes the processor to adjust its operating frequency (by dropping the bus-to-core multiplier to its minimum available value) and input voltage identification (VID) value. This combination of reduced frequency and VID results in a reduction in processor power consumption. A processor enabled for TM2 includes two operating points, each consisting of a specific operating frequency and voltage. The first operating point represents the normal operating condition for the processor. The second operating point consists of both a lower operating frequency and voltage. When the TCC is activated, the processor automatically transitions to the new frequency. This transition occurs very rapidly (on the order of 5 microseconds). During the frequency transition, the processor is unable to service any bus requests, all bus traffic is blocked. Edge-triggered interrupts will be latched and kept pending until the processor resumes operation at the new frequency. Once the new operating frequency is engaged, the processor will transition to the new core operating voltage by issuing a new VID code to the voltage regulator. The voltage regulator must support VID transitions in order to support TM2. During the voltage change, it will be necessary to transition through multiple VID codes to reach the target operating voltage. Each step will be one VID table entry (i.e. 12.5 mV steps). The processor continues to execute instructions during the voltage transition. Operation at the lower voltage reduces the power consumption of the processor, providing a temperature reduction. Thermal Management Logic and Thermal Monitor Feature 36 Thermal and Mechanical Design Guidelines Once the processor has sufficiently cooled, and a minimum activation time has expired, the operating frequency and voltage transition back to the normal system operating point. Transition of the VID code will occur first, in order to insure proper operation once the processor reaches its normal operating frequency. Refer to Figure 4-2 for an illustration of this ordering. Figure 4-2. Thermal Monitor 2 Frequency and Voltage Ordering VID Frequency Temperature TTM2 f MAX f TM2 VID VIDTM2 PROCHOT# Time Refer to the datasheet for further information on TM2. 4.2.4 Operation and Configuration Thermal Monitor must be enabled to ensure proper processor operation. The Thermal Control Circuit feature can be configured and monitored in a number of ways. OEMs are required to enable the Thermal Control Circuit while using various registers and outputs to monitor the processor thermal status. The Thermal Control Circuit is enabled by the BIOS setting a bit in an MSR (model specific register). Enabling the Thermal Control Circuit allows the processor to attempt to maintain a safe operating temperature without the need for special software drivers or interrupt handling routines. When the Thermal Control Circuit has been enabled, processor power consumption will be reduced after the thermal sensor detects a high temperature, i.e. PROCHOT# assertion. The Thermal Control Circuit and PROCHOT# transitions to inactive once the temperature has been reduced below the thermal trip point, although a small time-based hysteresis has been included to prevent multiple PROCHOT# transitions around the trip point. External hardware can monitor PROCHOT# and generate an interrupt whenever there is a transition from active-toinactive or inactive-to-active. PROCHOT# can also be configured to generate an internal interrupt which would initiate an OEM supplied interrupt service routine. Thermal Management Logic and Thermal Monitor Feature Thermal and Mechanical Design Guidelines 37 Regardless of the configuration selected, PROCHOT# will always indicate the thermal status of the processor. The power reduction mechanism of thermal monitor can also be activated manually using an “on-demand” mode. Refer to Section 4.2.5 for details on this feature. 4.2.5 On-Demand Mode For testing purposes, the thermal control circuit may also be activated by setting bits in the ACPI MSRs. The MSRs may be set based on a particular system event (e.g., an interrupt generated after a system event), or may be set at any time through the operating system or custom driver control thus forcing the thermal control circuit on. This is referred to as “on-demand” mode. Activating the thermal control circuit may be useful for thermal solution investigations or for performance implication studies. When using the MSRs to activate the on-demand clock modulation feature, the duty cycle is configurable in steps of 12.5%, from 12.5% to 87.5%. For any duty cycle, the maximum time period the clocks are disabled is ~3 μs. This time period is frequency dependent, and decreases as frequency increases. To achieve different duty cycles, the length of time that the clocks are disabled remains constant, and the time period that the clocks are enabled is adjusted to achieve the desired ratio. For example, if the clock disable period is 3 µs, and a duty cycle of ¼ (25%) is selected, the clock on time would be reduced to approximately 1 μs [on time (1 μs) ÷ total cycle time (3 + 1) μs = ¼ duty cycle]. Similarly, for a duty cycle of 7/8 (87.5%), the clock on time would be extended to 21 μs [21 ÷ (21 + 3) = 7/8 duty cycle]. In a high temperature situation, if the thermal control circuit and ACPI MSRs (automatic and on-demand modes) are used simultaneously, the fixed duty cycle determined by automatic mode would take precedence. Note: On-demand mode can not activate the power reduction mechanism of Thermal Monitor 2 4.2.6 System Considerations Intel requires the Thermal Monitor and Thermal Control Circuit to be enabled for all processors. The thermal control circuit is intended to protect against short term thermal excursions that exceed the capability of a well designed processor thermal solution. Thermal Monitor should not be relied upon to compensate for a thermal solution that does not meet the thermal profile up to the thermal design power (TDP). Each application program has its own unique power profile, although the profile has some variability due to loop decisions, I/O activity and interrupts. In general, compute intensive applications with a high cache hit rate dissipate more processor power than applications that are I/O intensive or have low cache hit rates. The processor TDP is based on measurements of processor power consumption while running various high power applications. This data is used to determine those applications that are interesting from a power perspective. These applications are then evaluated in a controlled thermal environment to determine their sensitivity to activation of the thermal control circuit. This data is used to derive the TDP targets published in the processor datasheet. Thermal Management Logic and Thermal Monitor Feature 38 Thermal and Mechanical Design Guidelines A system designed to meet the thermal profile specification published in the processor datasheet greatly reduces the probability of real applications causing the thermal control circuit to activate under normal operating conditions. Systems that do not meet these specifications could be subject to more frequent activation of the thermal control circuit depending upon ambient air temperature and application power profile. Moreover, if a system is significantly under designed, there is a risk that the Thermal Monitor feature will not be capable of reducing the processor power and temperature and the processor could shutdown and signal THERMTRIP#. For information regarding THERMTRIP#, refer to the processor datasheet and to Section 4.2.8 of this Thermal Design Guidelines. 4.2.7 Operating System and Application Software Considerations The Thermal Monitor feature and its thermal control circuit work seamlessly with ACPI compliant operating systems. The Thermal Monitor feature is transparent to application software since the processor bus snooping, ACPI timer, and interrupts are active at all times. 4.2.8 THERMTRIP# Signal In the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon temperature has exceeded the TCC activation temperature by approximately 20 to 25 °C. At this point the system bus signal THERMTRIP# goes active and power must be removed from the processor. THERMTRIP# activation is independent of processor activity and does not generate any bus cycles. Refer to the processor datasheet for more information about THERMTRIP#. The temperature where the THERMTRIP# signal goes active is individually calibrated during manufacturing and once configuration can not be changed. 4.2.9 Cooling System Failure Warning It may be useful to use the PROCHOT# signal as an indication of cooling system failure. Messages could be sent to the system administrator to warn of the cooling failure, while the thermal control circuit would allow the system to continue functioning or allow a normal system shutdown. If no thermal management action is taken, the silicon temperature may exceed the operating limits, causing THERMTRIP# to activate and shut down the processor. Regardless of the system design requirements or thermal solution ability, the Thermal Monitor feature must still be enabled to ensure proper processor operation. 4.2.10 Digital Thermal Sensor Multiple digital thermal sensors can be implemented within the package without adding a pair of signal pins per sensor as required with the thermal diode. The digital thermal sensor is easier to place in thermally sensitive locations of the processor than the thermal diode. This is achieved due to a smaller foot print and decreased sensitivity to noise. Since the DTS is factory set on a per-part basis there is no need for the health monitor components to be updated at each processor family Thermal Management Logic and Thermal Monitor Feature Thermal and Mechanical Design Guidelines 39 The processor introduces the Digital Thermal Sensor (DTS) as the on-die sensor to use for fan speed control (FSC). The DTS will eventually replace the on-die thermal diode used in pervious products. The processor will have both the DTS and thermal diode enabled. The DTS is monitoring the same sensor that activates the TCC (see Section 4.2.2). Readings from the DTS are relative to the activation of the TCC. The DTS value where TCC activation occurs is 0 (zero). A TCONTROL value will be provided for use with DTS. The usage model for TCONTROL with the DTS is the same as with the on-die thermal diode: • If the Digital thermal sensor is less than TCONTROL, the fan speed can be reduced. • If the Digital thermal sensor is greater than or equal to TCONTROL, then TC must be maintained at or below the Thermal Profile for the measured power dissipation. The calculation of TCONTROL is slightly different from previous product. There is no base value to sum with the TOFFSET located in the same MSR as used in previous processors. The BIOS only needs to read the TOFFSET MSR and provide this value to the fan speed control device. Figure 4-3. TCONTROL for Digital Thermal Sensor Digital Thermometer Temperature 30 20 10 70 60 50 40 30 20 0 70 60 50 40 Tcontrol= 66 Tcontrol= -10 Fan Speed Temperature Time Power Thermal Diode Temperature 30 20 10 70 60 50 40 30 20 10 70 60 50 40 30 20 0 70 60 50 40 30 20 0 70 60 50 40 Tcontrol= 66 Tcontrol Fan Speed Temperature Time Power Digital Thermometer Temperature 30 20 10 70 60 50 40 30 20 0 70 60 50 40 Tcontrol= 66 Tcontrol= -10 Fan Speed Temperature Time Power Thermal Diode Temperature 30 20 10 70 60 50 40 30 20 10 70 60 50 40 30 20 0 70 60 50 40 30 20 0 70 60 50 40 Tcontrol= 66 Tcontrol Fan Speed Temperature Time Power Note: The processor has both the DTS and thermal diode. The TCONTROL in the MSR is relevant only to the DTS. 4.2.11 Platform Environmental Control Interface (PECI) The PECI interface is a proprietary single wire bus between the processor and the chipset or other health monitoring device. At this time the digital thermal sensor is the only data being transmitted. For an overview of the PECI interface see PECI Feature Set Overview. For additional information on the PECI, see the datasheet. The PECI bus is available on pin G5 of the LGA 775 socket. Intel chipsets beginning with the ICH8 have included PECI host controller. The PECI interface and the Manageability Engine are key elements to the Intel® Quiet System Technology (Intel® Thermal Management Logic and Thermal Monitor Feature 40 Thermal and Mechanical Design Guidelines QST), see Chapter 7 and the Intel® Quiet System Technology Configuration and Tuning Manual. Intel has worked with many vendors that provide fan speed control devices to provide PECI host controllers. Please consult the local representative for your preferred vendor for their product plans and availability. § Balanced Technology Extended (BTX) Thermal/Mechanical Design Information Thermal and Mechanical Design Guidelines 41 5 Balanced Technology Extended (BTX) Thermal/Mechanical Design Information 5.1 Overview of the Balanced Technology Extended (BTX) Reference Design The reference thermal module assembly is a Type II BTX compliant design and is compliant with the reference BTX motherboard keep-out and height recommendations defined Section 6.6. The solution comes as an integrated assembly. An isometric view of the assembly is provided Figure 5-4. 5.1.1 Target Heatsink Performance Table 5-1 provides the target heatsink performance for the processor with the BTX boundary conditions. The results will be evaluated using the test procedure described in Section 5.2. The table also includes a TA assumption of 35.5 °C for the Intel reference thermal solution at the processor fan heatsink inlet discussed Section 3.3. The analysis assumes a uniform external ambient temperature to the chassis of 35 °C across the fan inlet, resulting in a temperature rise, TR, of 0.5 °C. Meeting TA and ΨCA targets can maximize processor performance (refer to Sections 2.2, 2.4. and Chapter 4). Minimizing TR, can lead to improved acoustics. Balanced Technology Extended (BTX) Thermal/Mechanical Design Information 42 Thermal and Mechanical Design Guidelines Table 5-1. Balanced Technology Extended (BTX) Type II Reference TMA Performance Processor Thermal Requirements, Ψca (Mean + 3σ) TA Assumption Notes Intel® Core™2 Duo processor with 4 MB cache at Tc-max of 60.1 °C 0.38 °C/W 35.5 °C 1,2 Intel® Core™2 Duo processor with 4 MB / 2 MB cache at Tc-max of 72.0 °C 0.56 °C/W 35.5 °C 1,2,3 Intel® Core™2 Duo processor with 2 MB cache at Tc-max of 61.4 °C 0.40 °C/W 35.5 °C 1,2 Intel® Core™2 Duo processor with 2 MB cache at Tc-max of 73.3 °C 0.58 °C/W 35.5 °C 1,2,3 Intel® Pentium® Dual Core processor E2000 series at Tc-max of 61.4 °C 0.40 °C/W 35.5 °C 1 Intel® Pentium® Dual Core processor E2000 series at Tc-max of 73.3 °C 0.58 °C/W 35.5 °C 1,3 Intel® Celeron® Dual-Core Processor E1000 series at Tc-max of 73.3° C 0.58 °C/W 35.5 °C 1,3 NOTES: 1. Performance targets (Ψ ca) as measured with a live processor at TDP. 2. The difference in Ψ ca between the Intel® Core™2 Duo 4 MB and 2 MB is due to a slight difference in the die size. 3. BTX Type II reference TMA is the higher thermal solution performance of the Intel® Core™2 Duo processor with 4 MB / 2 MB cache at Tc-max of 72.0 °C, Intel® Core™2 Duo processor with 2 MB cache at Tc-max of 73.3 °C, Intel® Pentium® Dual Core processor E2000 series at Tc-max of 73.3 °C, and Intel® Celeron® Dual-Core Processor E1000 Series at Tc-max of 73.3° C. Customers can generate an improvement in cost saving for these processors to likely use the designs with the cheater TIM, the cheater fan and the lower fin density extrusion. 5.1.2 Acoustics To optimize acoustic emission by the fan heatsink assembly, the Type II reference design implements a variable speed fan. A variable speed fan allows higher thermal performance at higher fan inlet temperatures (TA) and the appropriate thermal performance with improved acoustics at lower fan inlet temperatures. Using the example in Table 5-2 for the Intel® Core™2 Duo processor with 4 MB cache at Tc-max of 60.1 °C the required fan speed necessary to meet thermal specifications can be controlled by the fan inlet temperature and should comply with the following requirements. Balanced Technology Extended (BTX) Thermal/Mechanical Design Information Thermal and Mechanical Design Guidelines 43 Table 5-2. Acoustic Targets Fan Speed RPM Thermistor Set Point Acoustic Thermal Requirements, Ψca Notes ~ 5300 High TA ≥ 35 °C ≤ 6.4 BA 0.38 °C/W Case 1: Thermal Design Power Maximum fan speed 100% PWM duty cycle ~ 2500 Low TA = 23 °C No Target Defined 0.56 °C/W Case 2 Thermal Design Power System (PSU, HDD, TMA) Fan speed limited by the fan hub thermistor ~ 1400 Low TA = 23 °C ≤ 3.4 BA ~0.87 °C/W Case 3 50% Thermal Design Power TMA Only ~ 1400 Low TA = 23 °C ≤ 4.0 BA ~0.87 °C/W Case 3 50% Thermal Design Power System (PSU, HDD, TMA) NOTES: 1. Acoustic performance is defined in terms of measured sound power (LwA) as defined in ISO 9296 standard, and measured according to ISO 7779. 2. Acoustic testing will be for the TMA only when installed in a BTX S2 chassis for Case 1 and 3 3. Acoustics testing for Case 2 will be system level in the same a BTX S2 reference chassis and commercially available power supply. Acoustic data for Case 2 will be provided in the validation report but this condition is not a target for the design. The acoustic model is predicting that the power supply fan will be the acoustic limiter. 4. The fan speeds (RPM) are estimates for one of the two reference fans and will be adjusted to meet thermal performance targets then acoustic target during validation. The designer should identify the fan speed required to meet the effective fan curve shown in Section 5.1.3 While the fan hub thermistor helps optimize acoustics at high processor workloads by adapting the maximum fan speed to support the processor thermal profile, additional acoustic improvements can be achieved at lower processor workload by using the TCONTROL specifications described in Section 2.2.3. Intel’s recommendation is to use the fan with 4 Wire PWM Controlled to implement fan speed control capability based the digital thermal sensor. Refer to Chapter 7 for further details. Note: Appendix G gives detailed fan performance for the Intel reference thermal solutions with 4 Wire PWM Controlled fan. Balanced Technology Extended (BTX) Thermal/Mechanical Design Information 44 Thermal and Mechanical Design Guidelines 5.1.3 Effective Fan Curve The TMA must fulfill the processor cooling requirements shown in Table 5-1 when it is installed in a functional BTX system. When installed in a system, the TMA must operate against the backpressure created by the chassis impedance (due to vents, bezel, peripherals, etc…) and will operate at lower net airflow than if it were tested outside of the system on a bench top or open air environment. Therefore an allowance must be made to accommodate or predict the reduction in Thermal Module performance due to the reduction in heatsink airflow from chassis impedance. For this reason, it is required that the Thermal Module satisfy the prescribed ΨCA requirements when operating against an impedance that is characteristic for BTX platforms. Because of the coupling between TMA thermal performance and system impedance, the designer should understand the TMA effective fan curve. This effective fan curve represents the performance of the fan component AND the impedance of the stator, heatsink, duct, and flow partitioning devices. The BTX system integrator will be able to evaluate a TMA based on the effective fan curve of the assembly and the airflow impedance of their target system. Note: It is likely that at some operating points the fans speed will be driven by the system airflow requirements and not the processor thermal limits. Figure 5-1 shows the effective fan curve for the reference design TMA. These curves are based on analysis. The boundary conditions used are the S2 6.9L reference chassis, the reference TMA with the flow portioning device, extrusion and an AVC Type II fan geometry. When selecting a fan for use in the TMA care should be taken that similar effective fan curves can be achieved. Final verification requires the overlay of the Type II MASI curve to ensure thermal compliance. Balanced Technology Extended (BTX) Thermal/Mechanical Design Information Thermal and Mechanical Design Guidelines 45 Figure 5-1. Effective TMA Fan Curves with Reference Extrusion 0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 Airflow (cfm) dP (in. H2O) Reference TMA @ 5300 RPM Reference TMA @ 2500 RPM Reference TMA @ 1200 RPM 5.1.4 Voltage Regulator Thermal Management The BTX TMA is integral to the cooling of the processor voltage regulator (VR). The reference design TMA will include a flow partitioning device to ensure an appropriate airflow balance between the TMA and the VR. In validation the need for this component will be evaluated. The BTX thermal management strategy relies on the Thermal Module to provide effective cooling for the voltage regulator (VR) chipset and system memory components on the motherboard. The Thermal Module is required to have features that allow for airflow to bypass the heatsink and flow over the VR region on both the primary and secondary sides of the board. The following requirements apply to VR cooling. Balanced Technology Extended (BTX) Thermal/Mechanical Design Information 46 Thermal and Mechanical Design Guidelines Table 5-3. VR Airflow Requirements Item Target Minimum VR bypass airflow for 775_VR_CONFIG_06 processors 2.4 CFM NOTES: 1. This is the recommended airflow rate that should be delivered to the VR when the VR power is at a maximum in order to support the 775_VR_CONFIG_06 processors at TDP power dissipation and the chassis external environment temperature is at 35 ºC. Less airflow is necessary when the VR power is not at a maximum or if the external ambient temperature is less than 35 ºC. 2. This recommended airflow rate is based on the requirements for the Intel® 965 Express Chipset Family. 5.1.5 Altitude The reference TMA will be evaluated at sea level. However, many companies design products that must function reliably at high altitude, typically 1,500 m [5,000 ft] or more. Air-cooled temperature calculations and measurements at sea level must be adjusted to take into account altitude effects like variation in air density and overall heat capacity. This often leads to some degradation in thermal solution performance compared to what is obtained at sea level, with lower fan performance and higher surface temperatures. The system designer needs to account for altitude effects in the overall system thermal design to make sure that the TC requirement for the processor is met at the targeted altitude. 5.1.6 Reference Heatsink Thermal Validation The Intel reference heatsink will be validated within the specific boundary conditions based on the methodology described Section 5.2. Testing is done in a BTX chassis at ambient lab temperature. The test results, for a number of samples, will be reported in terms of a worst-case mean + 3σ value for thermal characterization parameter using real processors (based on the thermal test vehicle correction factors). 5.2 Environmental Reliability Testing 5.2.1 Structural Reliability Testing Structural reliability tests consist of unpackaged, system -level vibration and shock tests of a given thermal solution in the assembled state. The thermal solution should meet the specified thermal performance targets after these tests are conducted; however, the test conditions outlined here may differ from your own system requirements. Balanced Technology Extended (BTX) Thermal/Mechanical Design Information Thermal and Mechanical Design Guidelines 47 5.2.1.1 Random Vibration Test Procedure Recommended performance requirement for a system: • Duration: 10 min/axis, 3 axes • Frequency Range: 5 Hz to 500 Hz 5 Hz @ .001 g2/Hz to 20 Hz @ 0.01 g2/Hz (slope up) 20 Hz to 500 Hz @ 0.01 g2/Hz (flat) • Power Spectral Density (PSD) Profile: 2.2 G RMS Figure 5-2. Random Vibration PSD Vibration System Level 0.0001 0.001 0.01 0.1 1 10 100 1000 Hz g2/Hz + 3 dB Control Limit - 3 dB Control Limit 5.2.1.2 Shock Test Procedure Recommended performance requirement for a system: •Quantity: 2 drops for + and - directions in each of 3 perpendicular axes (i.e., total 12 drops). •Profile: 25 G trapezoidal waveform 225 in/sec minimum velocity change. (systems > 20 lbm) 250 in/sec minimum velocity change. (systems < 20 lbm) •Setup: Mount sample system on tester. Balanced Technology Extended (BTX) Thermal/Mechanical Design Information 48 Thermal and Mechanical Design Guidelines Figure 5-3. Shock Acceleration Curve 5.2.1.2.1 Recommended Test Sequence Each test sequence should start with components (i.e., motherboard, heatsink assembly, etc.) that have never been previously submitted to any reliability testing. The test sequence should always start with a visual inspection after assembly, and BIOS/CPU/Memory test (refer to Section 6.3.3). Prior to the mechanical shock & vibration test, the units under test should be preconditioned for 72 hours at 45 ºC. The purpose is to account for load relaxation during burn-in stage. The stress test should be followed by a visual inspection and then BIOS/CPU/Memory test. 5.2.1.2.2 Post-Test Pass Criteria The post-test pass criteria are: 1. No significant physical damage to the heatsink attach mechanism (including such items as clip and motherboard fasteners). 2. Heatsink must remain attached to the motherboard. 3. Heatsink remains seated and its bottom remains mated flatly against IHS surface. No visible gap between the heatsink base and processor IHS. No visible tilt of the heatsink with respect to its attach mechanism. 4. No signs of physical damage on motherboard surface due to impact of heatsink or heatsink attach mechanism. 5. No visible physical damage to the processor package. 6. Successful BIOS/Processor/memory test of post-test samples. 7. Thermal compliance testing to demonstrate that the case temperature specification can be met. Balanced Technology Extended (BTX) Thermal/Mechanical Design Information Thermal and Mechanical Design Guidelines 49 5.2.2 Power Cycling Thermal performance degradation due to TIM degradation is evaluated using power cycling testing. The test is defined by 7500 cycles for the case temperature from room temperature (~23 ºC) to the maximum case temperature defined by the thermal profile at TDP. 5.2.3 Recommended BIOS/CPU/Memory Test Procedures This test is to ensure proper operation of the product before and after environmental stresses, with the thermal mechanical enabling components assembled. The test shall be conducted on a fully operational motherboard that has not been exposed to any battery of tests prior to the test being considered. Testing setup should include the following components, properly assembled and/or connected: • Appropriate system motherboard • Processor • All enabling components, including socket and thermal solution parts • Power supply • Disk drive • Video card • DIMM • Keyboard • Monitor The pass criterion is that the system under test shall successfully complete the checking of BIOS, basic processor functions and memory, without any errors. 5.3 Material and Recycling Requirements Material shall be resistant to fungal growth. Examples of non-resistant materials include cellulose materials, animal and vegetable based adhesives, grease, oils, and many hydrocarbons. Synthetic materials such as PVC formulations, certain polyurethane compositions (e.g., polyester and some polyethers), plastics which contain organic fillers of laminating materials, paints, and varnishes also are susceptible to fungal growth. If materials are not fungal growth resistant, then MILSTD-810E, Method 508.4 must be performed to determine material performance. Material used shall not have deformation or degradation in a temperature life test. Any plastic component exceeding 25 grams must be recyclable per the European Blue Angel recycling standards. Balanced Technology Extended (BTX) Thermal/Mechanical Design Information 50 Thermal and Mechanical Design Guidelines 5.4 Safety Requirements Heatsink and attachment assemblies shall be consistent with the manufacture of units that meet the safety standards: • UL Recognition-approved for flammability at the system level. All mechanical and thermal enabling components must be a minimum UL94V-2 approved. • CSA Certification. All mechanical and thermal enabling components must have CSA certification. • All components (in particular the heatsink fins) must meet the test requirements of UL1439 for sharp edges. • If the International Accessibility Probe specified in IEC 950 can access the moving parts of the fan, consider adding safety feature so that there is no risk of personal injury. 5.5 Geometric Envelope for Intel Reference BTX Thermal Module Assembly Figure 7-50 through Figure 7-54 in Appendix H gives the motherboard keep-out information for the BTX thermal mechanical solutions. Additional information on BTX design considerations can be found in Balanced Technology Extended (BTX) System Design Guide available at http://www.formfactors.org. The maximum height of the TMA above the motherboard is 60.60 mm [2.386 inches], for compliance with the motherboard primary side height constraints defined in the BTX Interface Specification for Zone A, found at http://www.formfactors.org. Figure 5-4. Intel Type II TMA 65 W Reference Design Development vendor information for the Intel Type II TMA Reference Solution is provided in Appendix I. Balanced Technology Extended (BTX) Thermal/Mechanical Design Information Thermal and Mechanical Design Guidelines 51 5.6 Preload and TMA Stiffness 5.6.1 Structural Design Strategy Structural design strategy for the Intel Type II TMA is to minimize upward board deflection during shock to help protect the LGA775 socket. BTX thermal solutions utilize the SRM and TMA that together resists local board curvature under the socket and minimize, board deflection (Figure 5-5). In addition, a moderate preload provides initial downward deflection. Figure 5-5. Upward Board Deflection During Shock 5.6.2 TMA Preload versus Stiffness The Thermal Module assembly is required to provide a static preload to ensure protection against fatigue failure of socket solder joint. The allowable preload range for BTX platforms is provided in Table 5-4, but the specific target value is a function of the Thermal Module effective stiffness. The solution space for the Thermal Module effective stiffness and applied preload combinations is shown by the shaded region of Figure 5-6. This solution space shows that the Thermal Module assembly must have an effective stiffness that is sufficiently large such that the minimum preload determined from the relationship requirement in Figure 5-6 does not exceed the maximum allowed preload shown in Table 5-4. Furthermore, if the Thermal Module effective stiffness is so large that the minimum preload determined from Figure 5-6 is below the minimum required value given in Less curvature in region between SRM and TMA Shock Load Balanced Technology Extended (BTX) Thermal/Mechanical Design Information 52 Thermal and Mechanical Design Guidelines Table 5-4, then the Thermal Module should be re-designed to have a preload that lies within the range given in Table 5-4, allowing for preload tolerances. Table 5-4. Processor Preload Limits Parameter Minimum Required Maximum Allowed Notes Processor Preload 98 N [22 lbf] 222 N [50 lbf] 1 NOTES: 1. These values represent upper and lower bounds for the processor preload. The nominal preload design point for the Thermal Module is based on a combination of requirements of the TIM, ease of assembly and the Thermal Module effective stiffness. Figure 5-6. Minimum Required Processor Preload to Thermal Module Assembly Stiffness NOTES: 1. The shaded region shown is the acceptable domain for Thermal Module assembly effective stiffness and processor preload combinations. The Thermal Module design should have a design preload and stiffness that lies within this region. The design tolerance for the preload and TMA stiffness should also reside within this boundary. Note that the lower and upper horizontal boundaries represent the preload limits provided in Table 5-4. The equation for the left hand boundary is described in note 2. 2. The equation for this section of the preload-Thermal Module stiffness boundary is given by the following relationship: Min Preload = 1.38E-3*k^2 – 1.18486k + 320.24753 for k < 300 N/mm where k is the Thermal Module assembly effective stiffness. Please note that this equation is only valid in the stiffness domain of 93N/mm < k < 282N/mm. This equation would not apply, for example, for TMA stiffness less than 93N/mm, 3. The target stiffness for the 65W Type II TMA reference design is 484 N/mm (2764 lb / in). Note: These preload and stiffness recommendations are specific to the TMA mounting scheme that meets the BTX Interface Specification and Support Retention Mechanism (SRM) Design Guide. For TMA mounting schemes that use only the motherboard Balanced Technology Extended (BTX) Thermal/Mechanical Design Information Thermal and Mechanical Design Guidelines 53 mounting hole position for TMA attach, the required preload is approximately 10-15N greater than the values stipulated in Figure 5-6; however, Intel has not conducted any validation testing with this TMA mounting scheme. Figure 5-7. Thermal Module Attach Pointes and Duct-to-SRM Interface Features SRM Front attach point use 6x32 screw See detail A Detail A See detail B Detail B Rear attach point use 6x32 screw Chassis PEM nut Duct front interface feature see note 2 SRM Front attach point use 6x32 screw See detail A Detail A See detail B Detail B Rear attach point use 6x32 screw Chassis PEM nut Duct front interface feature see note 2 NOTES: 1. For clarity the motherboard is not shown in this figure. In an actual assembly, the captive 6x32 screws in the thermal module pass through the rear holes in the motherboard designated in the socket keep-in Figure 7-50 through Figure 7-54 in Appendix H and screw into the SRM and chassis PEM features. 2. This front duct ramp feature has both outer and inner lead-in that allows the feature to slide easily into the SRM slot and around the chassis PEM nut. Note that the front PEM nut is part of the chassis not the SRM. § Balanced Technology Extended (BTX) Thermal/Mechanical Design Information 54 Thermal and Mechanical Design Guidelines ATX Thermal/Mechanical Design Information Thermal and Mechanical Design Guidelines 55 6 ATX Thermal/Mechanical Design Information 6.1 ATX Reference Design Requirements This chapter will document the requirements for an active air-cooled design, with a fan installed at the top of the heatsink. The thermal technology required for the processor. The processors of Intel® Core™2 Duo processor with 4 MB cache at Tc-max of 60.1 °C, Intel® Core™2 Duo processor with 2 MB cache at Tc-max of 61.4 °C and Intel® Pentium® Dual Core processor E2000 series at Tc-max of 61.4 °C require a thermal solution equivalent to the D60188-001 reference design, see Figure 6-1 for an exploded view of this reference design. Note: The part number D60188-001 provided in this document is for reference only. The revision number -001 may be subject to change without notice. The D60188-001 reference design takes advantage of an acoustic improvement to reduce the fan speed to show the acoustic advantage (its acoustic results show in the Table 6-3). The D60188-001 reference design takes advantage of the cost saving for the light fan/heatsink mass (450g) and the new TIM material (Dow Corning TC-1996 grease). A bottom view of the copper core applied by this grease is provided Figure 6-3. ATX Thermal/Mechanical Design Information 56 Thermal and Mechanical Design Guidelines Figure 6-1. D60188-001Reference Design – Exploded View The processors of Intel® Core™2 Duo processor with 4 MB / 2 MB cache at Tc-max of 72.0 °C, Intel® Core™2 Duo processor with 2 MB cache at Tc-max of 73.3 °C, Intel® Pentium® Dual Core processor E2000 series at Tc-max of 73.3 °C, and Intel® Celeron® Dual-Core processor E1000 series at Tc-max of 73.3 °C require a thermal solution equivalent to the E18764-001 reference design; see Figure 6-2 for an exploded view of this reference design. Note: The part number E18764-001 provided in this document is for reference only. The revision number -001 may be subject to change without notice. The E18764-001 reference design takes advantage of an acoustic improvement to reduce the fan speed to show the acoustic advantage (its acoustic results show in the Table 6-4). The E18764-001 reference design takes advantage of the cost savings for the several features of the design including the reduced heatsink height, inserted aluminum core, and the new TIM material (Dow Corning TC-1996 grease, see Figure 6-3). The overall 46mm height thermal solution supports the unique and smaller desktop PCs including small and ultra small form factors, down to the 5L size, see uATX SFF Guidance for additional details on uATX SFF design. ATX Thermal/Mechanical Design Information Thermal and Mechanical Design Guidelines 57 Figure 6-2. E18764-001 Reference Design – Exploded View Figure 6-3. Bottom View of Copper Core Applied by TC-1996 Grease The ATX motherboard keep-out and the height recommendations defined Section 6.6 remain the same for a thermal solution for the processor in the 775-Land LGA package. Note: If this fan design is used in your product and you will deliver it to end use customers, you have the responsibility to determine an adequate level of protection (e.g., protection barriers, a cage, or an interlock) against contact with the energized fan by the user during user servicing. Note: Development vendor information for the reference design is provided in Appendix I. ATX Thermal/Mechanical Design Information 58 Thermal and Mechanical Design Guidelines 6.2 Validation Results for Reference Design 6.2.1 Heatsink Performance Table 6-1 provides the D60188-001 heatsink performance for the processors of Intel® Core™2 Duo processor with 4 MB cache at Tc-max of 60.1 °C, Intel® Core™2 Duo processor with 2 MB cache at Tc-max of 61.4 °C, and Intel® Pentium® Dual Core processor E2000 series at Tc-max of 61.4 °C. Table 6-2 provides the E18764-001 heatsink performance for the processors of Intel® Core™2 Duo processor with 4 MB / 2 MB cache at Tc-max of 72.0 °C and Intel® Core™2 Duo processor with 2 MB cache at Tc-max of 73.3 °C, Intel® Pentium® dual-core processor E2000 series at Tc-max of 73.3 °C, and Intel® Celeron® dual-core processor E1000 series at Tc-max of 73.3 °C. The results are based on the test procedure described in Section 6.2.4. The tables also include a TA assumption of 40°C for the Intel reference thermal solution at the processor fan heatsink inlet discussed Section 2.4.1. Table 6-1. D60188-001 Reference Heatsink Performance Processor Target Thermal Performance, Ψca (Mean + 3σ) TA Assumption Notes Intel® Core™2 Duo processor with 4 MB cache at Tc-max of 60.1 °C 0.31 °C/W 40 °C 1, 2 Intel® Core™2 Duo processor with 2 MB cache at Tc-max of 61.4 °C 0.33 °C/W 40 °C 1, 2 Intel® Pentium® Dual Core processor E2000 series at Tc-max of 61.4 °C 0.33 °C/W 40 °C 1 NOTES: 1. Performance targets (Ψ ca) as measured with a live processor at TDP. 2. The difference in Ψ ca between the Intel® Core™2 Duo 4 MB and 2 MB is due to a slight difference in the die size. Table 6-2. E18764-001 Reference Heatsink Performance Processor Target Thermal Performance, Ψca (Mean + 3σ) TA Assumption Notes Intel® Core™2 Duo processor with 4 MB / 2 MB cache at Tc-max of 72.0 °C 0.49 °C/W 40 °C 1, 2 Intel® Core™2 Duo processor with 2 MB cache at Tc-max of 73.3 °C 0.51 °C/W 40 °C 1, 2 Intel® Pentium® Dual Core processor E2000 series at Tc-max of 73.3 °C 0.51 °C/W 40 °C 1 Intel® Celeron® Dual-Core processor E1000 series at Tc-max of 73.3 °C 0.51 °C/W 40 °C 1 NOTES: 1. Performance targets (Ψ ca) as measured with a live processor at TDP. 2. The difference in Ψ ca between the Intel® Core™2 Duo 4 MB and 2 MB is due to a slight difference in the die size. ATX Thermal/Mechanical Design Information Thermal and Mechanical Design Guidelines 59 6.2.2 Acoustics To optimize acoustic emission by the fan heatsink assembly, the reference design implements a variable speed fan. A variable speed fan allows higher thermal performance at higher fan inlet temperatures (TA) and lower thermal performance with improved acoustics at lower fan inlet temperatures. The required fan speed necessary to meet thermal specifications can be controlled by the fan inlet temperature and should comply with requirements listed in the following table. Table 6-3. Acoustic Results for ATX Reference Heatsink (D60188-001) Fan Speed RPM Thermistor Set Point Acoustic Thermal Requirements, Ψca Notes 2900 High TA = 40 °C 4.5 BA 0.31 °C/W (Core™2 Duo 4MB at Tc-max of 60.1 °C) 0.33 °C/W (Core™2 Duo 2MB at Tc-max of 61.4 °C) 0.33 °C/W (E2000 series at Tc-max of 61.4 °C ) 1800 Low TA = 30 °C 3.5 BA 0.46 °C/W (Core™2 Duo 4MB at Tc-max of 60.1 °C) 0.48 °C/W (Core™2 Duo 2MB at Tc-max of 61.4 °C) 0.48 °C/W (E2000 series at Tc-max of 61.4 °C) Thermal Design Power, Fan speed limited by the fan hub thermistor 1000 Low TA = 28 °C Minimum fan speed Table 6-4. Acoustic Results for ATX Reference Heatsink (E18764-001) Fan Speed RPM Thermistor Set Point Acoustic Thermal Requirements, Ψca Notes 3900 High TA = 40 °C 5.0 BA • 0.49 °C/W (Intel Core™2 Duo processor, 4 MB / 2 MB at Tc-max of 72.0 °C) • 0.51 °C/W (Intel Core™2 Duo processor, 2 MB at Tc-max of 73.3 °C) • 0.51 °C/W (E2000 series at Tc-max of 73.3 °C ) • 0.51 °C/W (E1000 Series of Tc-max of 73.3 °C ) 2000 Low TA = 30 °C 3.5 BA • 0.65 °C/W (Intel Core™2 Duo processor, 4 MB / 2 MB at Tc-max of 72.0 °C) • 0.67 °C/W (Intel Core™2 Duo processor, 2 MB at Tc-max of 73.3 °C) • 0.67 °C/W (E2000 series at Tc-max of 73.3 °C) • 0.67 °C/W (E1000 Series of Tc-max of 73.3 °C) Thermal Design Power, Fan speed limited by the fan hub thermistor NOTES: 1. Acoustic performance is defined in terms of measured sound power (LwA) as defined in ISO 9296 standard, and measured according to ISO 7779. While the fan hub thermistor helps optimize acoustics at high processor workloads by adapting the maximum fan speed to support the processor thermal profile, additional acoustic improvements can be achieved at lower processor workload by using the ATX Thermal/Mechanical Design Information 60 Thermal and Mechanical Design Guidelines TCONTROL specifications described in Section 2.2.3. Intel recommendation is to use the fan with 4 Wire PWM Controlled to implement fan speed control capability based digital thermal sensor temperature. Refer to Chapter 7 for further details. Note: Appendix G gives detailed fan performance for the Intel reference thermal solutions with 4 Wire PWM Controlled fan. 6.2.3 Altitude Many companies design products that must function reliably at high altitude, typically 1,500 m [5,000 ft] or more. Air-cooled temperature calculations and measurements at the test site elevation must be adjusted to take into account altitude effects like variation in air density and overall heat capacity. This often leads to some degradation in thermal solution performance compared to what is obtained at sea level, with lower fan performance and higher surface temperatures. The system designer needs to account for altitude effects in the overall system thermal design to make sure that the TC requirement for the processor is met at the targeted altitude. 6.2.4 Heatsink Thermal Validation Intel recommends evaluation of the heatsink within the specific boundary conditions based on the methodology described Section 6.3. Testing is done on bench top test boards at ambient lab temperature. In particular, for the reference heatsink, the Plexiglas* barrier is installed 81.28 mm [3.2 in] above the motherboard (refer to Sections 3.3 and 6.6). The test results, for a number of samples, are reported in terms of a worst-case mean + 3σ value for thermal characterization parameter using real processors (based on the thermal test vehicle correction factors). Note: The above 81.28 mm obstruction height that is used for testing complies with the recommended obstruction height of 88.9 mm for the ATX form factor. However, it would conflict with systems in strict compliance with the ATX specification which allows an obstruction as low as 76.2 mm above the motherboard surface in Area A. ATX Thermal/Mechanical Design Information Thermal and Mechanical Design Guidelines 61 6.3 Environmental Reliability Testing 6.3.1 Structural Reliability Testing Structural reliability tests consist of unpackaged, board-level vibration and shock tests of a given thermal solution in the assembled state. The thermal solution should meet the specified thermal performance targets after these tests are conducted; however, the test conditions outlined here may differ from your own system requirements. 6.3.1.1 Random Vibration Test Procedure Duration: 10 min/axis, 3 axes Frequency Range: 5 Hz to 500 Hz Power Spectral Density (PSD) Profile: 3.13 G RMS Figure 6-4. Random Vibration PSD 0.001 0.01 0.1 1 10 100 1000 Frequency (Hz) PSD (g^2/Hz) 3.13GRMS (10 minutes per axis) 5 Hz 500 Hz (5, 0.01) (20, 0.02) (500, 0.02) 6.3.1.2 Shock Test Procedure Recommended performance requirement for a motherboard: • Quantity: 3 drops for + and - directions in each of 3 perpendicular axes (i.e., total 18 drops). • Profile: 50 G trapezoidal waveform, 170 in/sec minimum velocity change. • Setup: Mount sample board on test fixture. ATX Thermal/Mechanical Design Information 62 Thermal and Mechanical Design Guidelines Figure 6-5. Shock Acceleration Curve 0 10 20 30 40 50 60 0 2 4 6 8 10 12 Time (milliseconds) A c c e l e r a t i o n (g) 6.3.1.2.1 Recommended Test Sequence Each test sequence should start with components (i.e., motherboard, heatsink assembly, etc.) that have never been previously submitted to any reliability testing. The test sequence should always start with a visual inspection after assembly, and BIOS/CPU/Memory test (refer to Section 6.3.3). Prior to the mechanical shock & vibration test, the units under test should be preconditioned for 72 hours at 45 ºC. The purpose is to account for load relaxation during burn-in stage. The stress test should be followed by a visual inspection and then BIOS/CPU/Memory test. 6.3.1.2.2 Post-Test Pass Criteria The post-test pass criteria are: 1. No significant physical damage to the heatsink attach mechanism (including such items as clip and motherboard fasteners). 2. Heatsink must remain attached to the motherboard. 3. Heatsink remains seated and its bottom remains mated flatly against IHS surface. No visible gap between the heatsink base and processor IHS. No visible tilt of the heatsink with respect to its attach mechanism. 4. No signs of physical damage on motherboard surface due to impact of heatsink or heatsink attach mechanism. 5. No visible physical damage to the processor package. 6. Successful BIOS/Processor/memory test of post-test samples. 7. Thermal compliance testing to demonstrate that the case temperature specification can be met. ATX Thermal/Mechanical Design Information Thermal and Mechanical Design Guidelines 63 6.3.2 Power Cycling Thermal performance degradation due to TIM degradation is evaluated using power cycling testing. The test is defined by 7500 cycles for the case temperature from room temperature (~23 ºC) to the maximum case temperature defined by the thermal profile at TDP. 6.3.3 Recommended BIOS/CPU/Memory Test Procedures This test is to ensure proper operation of the product before and after environmental stresses, with the thermal mechanical enabling components assembled. The test shall be conducted on a fully operational motherboard that has not been exposed to any battery of tests prior to the test being considered. Testing setup should include the following components, properly assembled and/or connected: • Appropriate system motherboard • Processor • All enabling components, including socket and thermal solution parts • Power supply • Disk drive • Video card • DIMM • Keyboard • Monitor The pass criterion is that the system under test shall successfully complete the checking of BIOS, basic processor functions and memory, without any errors. 6.4 Material and Recycling Requirements Material shall be resistant to fungal growth. Examples of non-resistant materials include cellulose materials, animal and vegetable based adhesives, grease, oils, and many hydrocarbons. Synthetic materials such as PVC formulations, certain polyurethane compositions (e.g., polyester and some polyethers), plastics which contain organic fillers of laminating materials, paints, and varnishes also are susceptible to fungal growth. If materials are not fungal growth resistant, then MILSTD-810E, Method 508.4 must be performed to determine material performance. Material used shall not have deformation or degradation in a temperature life test. Any plastic component exceeding 25 grams must be recyclable per the European Blue Angel recycling standards. ATX Thermal/Mechanical Design Information 64 Thermal and Mechanical Design Guidelines 6.5 Safety Requirements Heatsink and attachment assemblies shall be consistent with the manufacture of units that meet the safety standards: • UL Recognition-approved for flammability at the system level. All mechanical and thermal enabling components must be a minimum UL94V-2 approved. • CSA Certification. All mechanical and thermal enabling components must have CSA certification. • All components (in particular the heatsink fins) must meet the test requirements of UL1439 for sharp edges. • If the International Accessibility Probe specified in IEC 950 can access the moving parts of the fan, consider adding safety feature so that there is no risk of personal injury. 6.6 Geometric Envelope for Intel Reference ATX Thermal Mechanical Design Figure 7-47, Figure 7-48 and Figure 7-49 in Appendix H gives detailed reference ATX/μATX motherboard keep-out information for the reference thermal/mechanical enabling design. These drawings include height restrictions in the enabling component region. The maximum height of the reference solution above the motherboard is 71.12 mm [2.8 inches], and is compliant with the motherboard primary side height constraints defined in the ATX Specification revision 2.1 and the microATX Motherboard Interface Specification revision 1.1 found at http://www.formfactors.org. The reference solution requires a chassis obstruction height of at least 81.28 mm [3.2 inches], measured from the top of the motherboard (refer to Sections 3.3 and 6.2.4). This allows for appropriate fan inlet airflow to ensure fan performance, and therefore overall cooling solution performance. This is compliant with the recommendations found in both ATX Specification V2.1 and microATX Motherboard Interface Specification V1.1 documents. ATX Thermal/Mechanical Design Information Thermal and Mechanical Design Guidelines 65 6.7 Reference Attach Mechanism 6.7.1 Structural Design Strategy Structural design strategy for the reference design is to minimize upward board deflection during shock to help protect the LGA775 socket. The reference design uses a high clip stiffness that resists local board curvature under the heatsink, and minimizes, in particular, upward board deflection (Figure 6-6). In addition, a moderate preload provides initial downward deflection. Figure 6-6. Upward Board Deflection During Shock The target metal clip nominal stiffness is 540 N/mm [3100 lb/in]. The combined target for reference clip and fasteners nominal stiffness is 380 N/mm [2180 lb/in]. The nominal preload provided by the reference design is 191.3 N ± 44.5 N [43 lb ± 10 lb]. Note: Intel reserves the right to make changes and modifications to the design as necessary to the reference design, in particular the clip and fastener. Less curvature in region under stiff clip Shock Load ATX Thermal/Mechanical Design Information 66 Thermal and Mechanical Design Guidelines 6.7.2 Mechanical Interface to the Reference Attach Mechanism The attach mechanism component from the reference design can be used by other 3rd party cooling solutions. The attach mechanism consists of: • A metal attach clip that interfaces with the heatsink core, see Appendix H, Figure 7-55 and Figure 7-56 for the component drawings. • Four plastic fasteners, see Appendix H, Figure 7-57, Figure 7-58, Figure 7-59 and Figure 7-60 for the component drawings. The clip is assembled to heatsink during copper core insertion, and is meant to be trapped between the core shoulder and the extrusion as shown in Figure 6-7. Figure 6-7. Reference Clip/Heatsink Assembly Core shoulder traps clip in place Clip The mechanical interface with the reference attach mechanism is defined in Figure 6-8 and Figure 6-9. Complying with the mechanical interface parameters is critical to generating a heatsink preload compliant with the minimum preload requirement given in Section 2.1.2.2. Additional requirements for the reference attach mechanism (clip and fasteners) include: • Heatsink/fan mass ≤ 550 g (i.e., total assembly mass, including clip and fasteners < 595 g • Whole assembly center of gravity ≤ 25.4 mm, measured from the top of the IHS ⎯ Whole assembly = Heatsink + Fan + Attach clip + Fasteners ATX Thermal/Mechanical Design Information Thermal and Mechanical Design Guidelines 67 Figure 6-8. Critical Parameters for Interfacing to Reference Clip Core Fin Array Fan Clip See Detail A Detail A Fin Array Clip Core 1.6 mm Figure 6-9. Critical Core Dimension R 0.40 mm max R 0.40 mm max Φ36.14 +/- 0.10 mm Gap required to avoid core surface blemish during clip assembly. Recommend 0.3 mm min. 1.00 mm min 2.596 +/- 0.10 mm Φ38.68 +/- 0.30 mm 1.00 +/- 0.10 mm Core NOTE: Dimension from the bottom of the clip to the bottom of the heatsink core (or base) should be met to enable the required load from the heatsink clip (i.e., 43 lbf nominal +/- 10 lbf) § ATX Thermal/Mechanical Design Information 68 Thermal and Mechanical Design Guidelines Intel® Quiet System Technology (Intel® QST) Thermal and Mechanical Design Guidelines 69 7 Intel® Quiet System Technology (Intel® QST) In the Intel® 965 Express Family Chipset a new control algorithm for fan speed control is being introduced. It is composed of an Intel® Management Engine (ME) in the Graphics Memory Controller Hub (GMCH) which executes the Intel® Quiet System Technology (Intel® QST) algorithm and the ICH8 containing the sensor bus and fan control circuits. The ME provides integrated fan speed control in lieu of the mechanisms available in a SIO or a stand-alone ASIC. The Intel QST is time based as compared to the linear or state control used by the current generation of FSC devices. A short discussion of Intel QST will follow along with thermal solution design recommendations. For a complete discussion of programming the Intel QST in the ME please consult the Intel® Quiet System Technology (Intel® QST) Configuration and Tuning Manual. Note: Fan speed control algorithms and Intel QST in particular rely on a thermal solution being compliant to the processor thermal profile. It is unlikely that any fan speed control algorithm can compensate for a non-compliant thermal solution. See Chapter 5 and Chapter 6 for thermal solution requirements that should be met before evaluating or configuring a system with Intel QST. 7.1 Intel® QST Algorithm The objective of Intel QST is to minimize the system acoustics by more closely controlling the thermal sensors to the corresponding processor or chipset device TCONTROL value. This is achieved by the use of a Proportional-Integral-Derivative (PID) control algorithm and a Fan Output Weighting Matrix. The PID algorithm takes into account the difference between the current temperature and the target (TCONTROL), the rate of change and direction of change to minimize the required fan speed change. The Fan Output Weighting Matrix uses the effects of each fan on a thermal sensor to minimize the required fan speed changes Figure 7-1 shows in a very simple manner how Intel QST works. See the Intel Quiet System Technology (Intel® QST) Configuration and Tuning Manual for a detail discussion of the inputs and response. Intel® Quiet System Technology (Intel® QST) 70 Thermal and Mechanical Design Guidelines Figure 7-1. Intel® QST Overview Fan to sensor Relationship (Output Weighting Matrix) Temperature sensing and response Calculations (PID) Fan Commands (PID) Fans Temperature Sensors Intel® QST System Response PECI / SST PWM 7.1.1 Output Weighting Matrix Intel QST provides an Output Weighting Matrix that provides a means for a single thermal sensor to affect the speed of multiple fans. An example of how the matrix could be used is if a sensor located next to the memory is sensitive to changes in both the processor heatsink fan and a 2nd fan in the system. By placing a factor in this matrix additional the Intel QST could command the processor thermal solution fan and this 2nd fan to both accelerate a small amount. At the system level these two small changes can result in a smaller change in acoustics than having a single fan respond to this sensor. 7.1.2 Proportional-Integral-Derivative (PID) The use of Proportional-Integral-Derivative (PID) control algorithms allow the magnitude of fan response to be determined based upon the difference between current temperature readings and specific temperature targets. A major advantage of a PID Algorithm is the ability to control the fans to achieve sensor temperatures much closer to the TCONTROL. Figure 7-2 is an illustration of the PID fan control algorithm. As illustrated in the figure, when the actual temperature is below the target temperature, the fan will slow down. The current FSC devices have a fixed temperature vs. PWM output relationship and miss this opportunity to achieve additional acoustic benefits. As the actual temperature starts ramping up and approaches the target temperature, the algorithm will instruct the fan to speed up gradually, but will not abruptly increase the fan speed to respond to the condition. It can allow an overshoot over the target temperature for a short period of time while ramping up the fan to bring the actual temperature to the Intel® Quiet System Technology (Intel® QST) Thermal and Mechanical Design Guidelines 71 target temperature. As a result of its operation, the PID control algorithm can enable an acoustic-friendly platform. Figure 7-2. PID Controller Fundamentals Proportional Error Derivative (Slope) Integral (time averaged) RPM Temperature Time + dPWM - dPWM Actual Temperature Fan Speed Limit Temperature For a PID algorithm to work limit temperatures are assigned for each temperature sensor. For Intel QST, the TCONTROL for the processor and chipset are to be used as the limit temperature. The ME will measure the error, slope and rate of change using the following equations: • Proportional Error (P) = TLIMIT – TACTUAL • Integral (I) = Time averaged error • Derivative (D) = ΔTemp / ΔTime Three gain values are used to control response of algorithm. • Kp = proportional gain • Ki = Integral gain • Kd = derivative gain The Intel® Quiet System Technology (Intel® QST) Configuration and Tuning Manual provides initial values for the each of the gain constants. In addition it provides a methodology to tune these gain values based on system response. Finally the fan speed change will be calculated using the following formula: ΔPWM = -P*(Kp) – I*(Ki) + D*(Kd) Intel® Quiet System Technology (Intel® QST) 72 Thermal and Mechanical Design Guidelines 7.2 Board and System Implementation of Intel® QST To implement the board must be configured as shown in Figure 7-3 and listed below: • ME system (S0-S1) with Controller Link connected and powered • DRAM with Channel A DIMM 0 installed and 2MB reserved for Intel® QST FW execution • SPI Flash with sufficient space for the Intel® QST Firmware • SST-based thermal sensors to provide board thermal data for Intel® QST algorithms • Intel® QST firmware Figure 7-3. Intel® QST Platform Requirements Note: Simple Serial Transport (SST) is a single wire bus that is included in the ICH8 to provide additional thermal and voltage sensing capability to the Intel® Management Engine (ME) Intel® Quiet System Technology (Intel® QST) Thermal and Mechanical Design Guidelines 73 Figure 7-4 shows the major connections for a typical implementation that can support processors with Digital thermal sensor or a thermal diode. In this configuration a SST Thermal Sensor has been added to read the on-die thermal diode that is in all of the processors in the 775-land LGA packages shipped before the Intel® Core™2 Duo processor. With the proper configuration information the ME can be accommodate inputs from PECI or SST for the processor socket. Additional SST sensors can be added to monitor system thermal (see Appendix F for BTX recommendations for placement). Figure 7-4. Example Acoustic Fan Speed Control Implementation Intel has engaged with a number of major manufacturers of thermal / voltage sensors to provide devices for the SST bus. Contact your Intel Field Sales representative for the current list of manufacturers and visit their web sites or local sales representatives for a part suitable for your design. Intel® Quiet System Technology (Intel® QST) 74 Thermal and Mechanical Design Guidelines 7.3 Intel® QST Configuration and Tuning Initial configuration of the Intel QST is the responsibility of the board manufacturer. The SPI flash should be programmed with the hardware configuration of the motherboard and initial settings for fan control, fan monitoring, voltage and thermal monitoring. This initial data is generated using the Intel provided Configuration Tool. At the system integrator the Configuration Tool can be used again but this time to tune the Intel QST subsystem to reflect the shipping system configuration. In the tuning process the Intel QST can be modified to have the proper relationships between the installed fans and sensors in the shipping system. A Weighting Matrix Utility and Intel QST Log program are planned to assist in optimizing the fan management and achieve acoustic goal. See your Intel field sales representative for availability of these tools. 7.4 Fan Hub Thermistor and Intel® QST There is no closed loop control between Intel QST and the thermistor, but they can work in tandem to provide the maximum fan speed reduction. The BTX reference design includes a thermistor on the fan hub. This Variable Speed Fan curve will determine the maximum fan speed as a function of the inlet ambient temperature and by design provides a ΨCA sufficient to meet the thermal profile of the processor. Intel QST, by measuring the processor Digital thermal sensor will command the fan to reduce speed below the VSF curve in response to processor workload. Conversely if the processor workload increases the FSC will command the fan via the PWM duty cycle to accelerate the fan up to the limit imposed by the VSF curve. Care needs to be taken in BTX designs to ensure the fan speed at the minimum operating speed provides sufficient air flow to support the other system components. Figure 7-5. Digital Thermal Sensor and Thermistor Fan Speed (RPM) Inlet Temperature (°C) Full Speed 30 38 Min. Operating Variable Speed Fan (VSF) Curve Fan Speed Operating Range with FSC 34 Min %Fan Speed (% PWM Duty Cycle) 100 % Fan Speed (RPM) Inlet Temperature (°C) Full Speed 30 38 Min. Operating Variable Speed Fan (VSF) Curve Fan Speed Operating Range with FSC 34 Min %Fan Speed (% PWM Duty Cycle) 100 % § LGA775 Socket Heatsink Loading Thermal and Mechanical Design Guidelines 75 Appendix A LGA775 Socket Heatsink Loading A.1 LGA775 Socket Heatsink Considerations Heatsink clip load is traditionally used for: • Mechanical performance in mechanical shock and vibration ⎯ Refer to Section 6.7.1 for the information on the structural design strategy for the reference design • Thermal interface performance ⎯ Required preload depends on TIM ⎯ Preload can be low for thermal grease In addition to mechanical performance in shock and vibration and TIM performance, LGA775 socket requires a minimum heatsink preload to protect against fatigue failure of socket solder joints. Solder ball tensile stress is originally created when, after inserting a processor into the socket, the LGA775 socket load plate is actuated. In addition, solder joint shear stress is caused by coefficient of thermal expansion (CTE) mismatch induced shear loading. The solder joint compressive axial force (Faxial) induced by the heatsink preload helps to reduce the combined joint tensile and shear stress. Overall, the heatsink required preload is the minimum preload needed to meet all of the above requirements: Mechanical shock and vibration and TIM performance AND LGA775 socket protection against fatigue failure. A.2 Metric for Heatsink Preload for ATX/uATX Designs Non-Compliant with Intel® Reference Design A.2.1 Heatsink Preload Requirement Limitations Heatsink preload by itself is not an appropriate metric for solder joint force across various mechanical designs and does not take into account for example (not an exhaustive list): • Heatsink mounting hole span • Heatsink clip/fastener assembly stiffness and creep • Board stiffness and creep • Board stiffness is modified by fixtures like backing plate, chassis attach, etc. LGA775 Socket Heatsink Loading 76 Thermal and Mechanical Design Guidelines Simulation shows that the solder joint force (Faxial) is proportional to the board deflection measured along the socket diagonal. The matching of Faxial required to protect the LGA775 socket solder joint in temperature cycling is equivalent to matching a target MB deflection. Therefore, the heatsink preload for LGA775 socket solder joint protection against fatigue failure can be more generally defined as the load required to create a target board downward deflection throughout the life of the product. This board deflection metric provides guidance for mechanical designs that differ from the reference design for ATX//µATX form factor. A.2.2 Motherboard Deflection Metric Definition Motherboard deflection is measured along either diagonal (refer to Figure 7-6): d = dmax – (d1 + d2)/2 d’ = dmax – (d’1 + d’2)/2 Configurations in which the deflection is measured are defined in the Table 7-1. To measure board deflection, follow industry standard procedures (such as IPC) for board deflection measurement. Height gauges and possibly dial gauges may also be used. Table 7-1. Board Deflection Configuration Definitions Configuration Parameter Processor + Socket load plate Heatsink Parameter Name d_ref yes no BOL deflection, no preload d_BOL yes yes BOL deflection with preload d_EOL yes yes EOL deflection NOTES: BOL: Beginning of Life EOL: End of Life LGA775 Socket Heatsink Loading Thermal and Mechanical Design Guidelines 77 Figure 7-6. Board Deflection Definition d1 d2 d’1 d’2 A.2.3 Board Deflection Limits Deflection limits for the ATX/µATX form factor are: d_BOL - d_ref≥ 0.09 mm and d_EOL - d_ref ≥ 0.15 mm And d’_BOL – d’_ref≥ 0.09 mm and d_EOL’ – d_ref’ ≥ 0.15 mm NOTES: 1. The heatsink preload must remain within the static load limits defined in the processor datasheet at all times. 2. Board deflection should not exceed motherboard manufacturer specifications. LGA775 Socket Heatsink Loading 78 Thermal and Mechanical Design Guidelines A.2.4 Board Deflection Metric Implementation Example This section is for illustration only, and relies on the following assumptions: • 72 mm x 72 mm hole pattern of the reference design • Board stiffness = 900 lb/in at BOL, with degradation that simulates board creep over time ⎯ Though these values are representative, they may change with selected material and board manufacturing process. Check with your motherboard vendor. • Clip stiffness assumed constant – No creep. Using Figure 7-7, the heatsink preload at beginning of life is defined to comply with d_EOL – d_ref = 0.15 mm depending on clip stiffness assumption. Note that the BOL and EOL preload and board deflection differ. This is a result of the creep phenomenon. The example accounts for the creep expected to occur in the motherboard. It assumes no creep to occur in the clip. However, there is a small amount of creep accounted for in the plastic fasteners. This situation is somewhat similar to the reference design. The impact of the creep to the board deflection is a function of the clip stiffness: • The relatively compliant clips store strain energy in the clip under the BOL preload condition and tend to generate increasing amounts of board deflection as the motherboard creeps under exposure to time and temperature. • In contrast, the stiffer clips stores very little strain energy, and therefore do not generate substantial additional board deflection through life. NOTES: 1. Board and clip creep modify board deflection over time and depends on board stiffness, clip stiffness, and selected materials. 2. Designers must define the BOL board deflection that will lead to the correct end of life board deflection LGA775 Socket Heatsink Loading Thermal and Mechanical Design Guidelines 79 Figure 7-7. Example: Defining Heatsink Preload Meeting Board Deflection Limit A.2.5 Additional Considerations Intel recommends to design to {d_BOL - d_ref = 0.15mm} at BOL when EOL conditions are not known or difficult to assess. The following information is given for illustration only. It is based on the reference keep-out, assuming there is no fixture that changes board stiffness: d_ref is expected to be 0.18 mm on average, and be as high as 0.22 mm As a result, the board should be able to deflect 0.37 mm minimum at BOL Additional deflection as high as 0.09 mm may be necessary to account for additional creep effects impacting the board/clip/fastener assembly. As a result, designs could see as much as 0.50 mm total downward board deflection under the socket. In addition to board deflection, other elements need to be considered to define the space needed for the downward board total displacement under load, like the potential interference of through-hole mount component pin tails of the board with a mechanical fixture on the back of the board. NOTES: 1. The heatsink preload must remain below the maximum load limit of the package at all times (Refer to processor datasheet) 2. Board deflection should not exceed motherboard manufacturer specifications. LGA775 Socket Heatsink Loading 80 Thermal and Mechanical Design Guidelines A.2.5.1 Motherboard Stiffening Considerations To protect LGA775 socket solder joint, designers need to drive their mechanical design to: • Allow downward board deflection to put the socket balls in a desirable force state to protect against fatigue failure of socket solder joint (refer to Sections A.2.1, A.2.2, and A.2.3. • Prevent board upward bending during mechanical shock event • Define load paths that keep the dynamic load applied to the package within specifications published in the processor datasheet Limiting board deflection may be appropriate in some situations like: • Board bending during shock • Board creep with high heatsink preload However, the load required to meet the board deflection recommendation (refer to Section A.2.3) with a very stiff board may lead to heatsink preloads exceeding package maximum load specification. For example, such a situation may occur when using a backing plate that is flush with the board in the socket area, and prevents the board to bend underneath the socket. A.3 Heatsink Selection Guidelines Evaluate carefully heatsinks coming with motherboard stiffening devices (like backing plates), and conduct board deflection assessments based on the board deflection metric. Solutions derived from the reference design comply with the reference heatsink preload, for example: • The Boxed Processor • The reference design (D60188-001 and E18764-001) Intel will collaborate with vendors participating in its third party test house program to evaluate third party solutions. Vendor information now is available in Intel® Core™2 Duo Processor Support Components webpage www.intel.com/go/thermal_Core2Duo . § Heatsink Clip Load Metrology Thermal and Mechanical Design Guidelines 81 Appendix B Heatsink Clip Load Metrology B.1 Overview This section describes a procedure for measuring the load applied by the heatsink/clip/fastener assembly on a processor package. This procedure is recommended to verify the preload is within the design target range for a design, and in different situations. For example: • Heatsink preload for the LGA775 socket • Quantify preload degradation under bake conditions. Note: This document reflects the current metrology used by Intel. Intel is continuously exploring new ways to improve metrology. Updates will be provided later as this document is revised as appropriate. B.2 Test Preparation B.2.1 Heatsink Preparation Three load cells are assembled into the base of the heatsink under test, in the area interfacing with the processor Integrated Heat Spreader (IHS), using load cells equivalent to those listed in Section B.2.2. To install the load cells, machine a pocket in the heatsink base, as shown in Figure 7-8 and Figure 7-9. The load cells should be distributed evenly, as close as possible to the pocket walls. Apply wax around the circumference of each load cell and the surface of the pocket around each cell to maintain the load cells in place during the heatsink installation on the processor and motherboard (Refer to Figure 7-9). The depth of the pocket depends on the height of the load cell used for the test. It is necessary that the load cells protrude out of the heatsink base. However, this protrusion should be kept minimal, as it will create additional load by artificially raising the heatsink base. The measurement offset depends on the whole assembly stiffness (i.e. motherboard, clip, fastener, etc.). For example, the reference design clip and fasteners assembly stiffness is around 380 N/mm [2180 lb/in]. In that case, a protrusion of 0.038 mm [0.0015”] will create an extra load of 15 N [3.3 lb]. Figure 7-10 shows an example using the reference design. Note: When optimizing the heatsink pocket depth, the variation of the load cell height should also be taken into account to make sure that all load cells protrude equally from the heatsink base. It may be useful to screen the load cells prior to installation to minimize variation. Heatsink Clip Load Metrology 82 Thermal and Mechanical Design Guidelines Remarks: Alternate Heatsink Sample Preparation As mentioned above, making sure that the load cells have minimum protrusion out of the heatsink base is paramount to meaningful results. An alternate method to make sure that the test setup will measure loads representative of the non-modified design is: • Machine the pocket in the heat sink base to a depth such that the tips of the load cells are just flush with the heat sink base • Then machine back the heatsink base by around 0.25 mm [0.01”], so that the load cell tips protrude beyond the base. Proceeding this way, the original stack height of the heatsink assembly should be preserved. This should not affect the stiffness of the heatsink significantly. Figure 7-8. Load Cell Installation in Machined Heatsink Base Pocket – Bottom View Package IHS Outline (Top Surface) Load Cells Heatsink Base Pocket Diameter ~ 29 mm [~1.15”] Heatsink Clip Load Metrology Thermal and Mechanical Design Guidelines 83 Figure 7-9. Load Cell Installation in Machined Heatsink Base Pocket – Side View Figure 7-10. Preload Test Configuration Load Cells (3x) Preload Fixture (copper core with milled out pocket) Wax to maintain load cell in position during heatsink installation Height of pocket ~ height of selected load cell Load cell protrusion (Note: to be optimized depending on assembly stiffness) Heatsink Clip Load Metrology 84 Thermal and Mechanical Design Guidelines B.2.2 Typical Test Equipment For the heatsink clip load measurement, use equivalent test equipment to the one listed Table 7-2. Table 7-2. Typical Test Equipment Item Description Part Number (Model) Load cell Notes: 1, 5 Honeywell*-Sensotec* Model 13 subminiature load cells, compression only Select a load range depending on load level being tested. www.sensotec.com AL322BL Data Logger (or scanner) Notes: 2, 3, 4 Vishay* Measurements Group Model 6100 scanner with a 6010A strain card (one card required per channel). Model 6100 NOTES: 1. Select load range depending on expected load level. It is usually better, whenever possible, to operate in the high end of the load cell capability. Check with your load cell vendor for further information. 2. Since the load cells are calibrated in terms of mV/V, a data logger or scanner is required to supply 5 volts DC excitation and read the mV response. An automated model will take the sensitivity calibration of the load cells and convert the mV output into pounds. 3. With the test equipment listed above, it is possible to automate data recording and control with a 6101-PCI card (GPIB) added to the scanner, allowing it to be connected to a PC running LabVIEW* or Vishay's StrainSmart* software. 4. IMPORTANT: In addition to just a zeroing of the force reading at no applied load, it is important to calibrate the load cells against known loads. Load cells tend to drift. Contact your load cell vendor for calibration tools and procedure information. 5. When measuring loads under thermal stress (bake for example), load cell thermal capability must be checked, and the test setup must integrate any hardware used along with the load cell. For example, the Model 13 load cells are temperature compensated up to 71 °C, as long as the compensation package (spliced into the load cell's wiring) is also placed in the temperature chamber. The load cells can handle up to 121 °C (operating), but their uncertainty increases according to 0.02% rdg/°F. B.3 Test Procedure Examples The following sections give two examples of load measurement. However, this is not meant to be used in mechanical shock and vibration testing. Any mechanical device used along with the heatsink attach mechanism will need to be included in the test setup (i.e., back plate, attach to chassis, etc.). Prior to any test, make sure that the load cell has been calibrated against known loads, following load cell vendor’s instructions. Heatsink Clip Load Metrology Thermal and Mechanical Design Guidelines 85 B.3.1 Time-Zero, Room Temperature Preload Measurement 1. Pre-assemble mechanical components on the board as needed prior to mounting the motherboard on an appropriate support fixture that replicate the board attach to a target chassis • For example: standard ATX board should sit on ATX compliant stand-offs. If the attach mechanism includes fixtures on the back side of the board, those must be included, as the goal of the test is to measure the load provided by the actual heatsink mechanism. 2. Install relevant test vehicle (TTV, processor) in the socket 3. Assemble the heatsink reworked with the load cells to motherboard as shown for the reference design example in Figure 7-10, and actuate attach mechanism. 4. Collect continuous load cell data at 1 Hz for the duration of the test. A minimum time to allow the load cell to settle is generally specified by the load vendors (often of order of 3 minutes). The time zero reading should be taken at the end of this settling time. 5. Record the preload measurement (total from all three load cells) at the target time and average the values over 10 seconds around this target time as well, i.e. in the interval , for example over [target time – 5 seconds ; target time + 5 seconds]. B.3.2 Preload Degradation under Bake Conditions This section describes an example of testing for potential clip load degradation under bake conditions. 1. Preheat thermal chamber to target temperature (45 ºC or 85 ºC for example) 2. Repeat time-zero, room temperature preload measurement 3. Place unit into preheated thermal chamber for specified time 4. Record continuous load cell data as follows: • Sample rate = 0.1 Hz for first 3 hrs • Sample rate = 0.01 Hz for the remainder of the bake test 5. Remove assembly from thermal chamber and set into room temperature conditions 6. Record continuous load cell data for next 30 minutes at sample rate of 1 Hz. § Heatsink Clip Load Metrology 86 Thermal and Mechanical Design Guidelines Thermal Interface Management Thermal and Mechanical Design Guidelines 87 Appendix C Thermal Interface Management To optimize a heatsink design, it is important to understand the impact of factors related to the interface between the processor and the heatsink base. Specifically, the bond line thickness, interface material area and interface material thermal conductivity should be managed to realize the most effective thermal solution. C.1 Bond Line Management Any gap between the processor integrated heat spreader (IHS) and the heatsink base degrades thermal solution performance. The larger the gap between the two surfaces, the greater the thermal resistance. The thickness of the gap is determined by the flatness and roughness of both the heatsink base and the integrated heat spreader, plus the thickness of the thermal interface material (for example thermal grease) used between these two surfaces and the clamping force applied by the heatsink attach clip(s). C.2 Interface Material Area The size of the contact area between the processor and the heatsink base will impact the thermal resistance. There is, however, a point of diminishing returns. Unrestrained incremental increases in thermal interface material area do not translate to a measurable improvement in thermal performance. C.3 Interface Material Performance Two factors impact the performance of the interface material between the processor and the heatsink base: • Thermal resistance of the material • Wetting/filling characteristics of the material Thermal resistance is a description of the ability of the thermal interface material to transfer heat from one surface to another. The higher the thermal resistance, the less efficient the interface material is at transferring heat. The thermal resistance of the interface material has a significant impact on the thermal performance of the overall thermal solution. The higher the thermal resistance, the larger the temperature drop is across the interface and the more efficient the thermal solution (heatsink, fan) must be to achieve the desired cooling. The wetting or filling characteristic of the thermal interface material is its ability, under the load applied by the heatsink retention mechanism, to spread and fill the gap between the processor and the heatsink. Since air is an extremely poor thermal conductor, the more completely the interface material fills the gaps, the lower the temperature drops across the interface. In this case, thermal interface material area also becomes significant; the larger the desired thermal interface material area, the higher the force required to spread the thermal interface material. § Thermal Interface Management 88 Thermal and Mechanical Design Guidelines Case Temperature Reference Metrology Thermal and Mechanical Design Guidelines 89 Appendix DCase Temperature Reference Metrology D.1 Objective and Scope This appendix defines a reference procedure for attaching a thermocouple to the IHS of a 775-land LGA package for TC measurement. This procedure takes into account the specific features of the 775-land LGA package and of the LGA775 socket for which it is intended. The recommended equipment for the reference thermocouple installation, including tools and part numbers are also provided. In addition a video Thermocouple Attach Using Solder – Video CD-ROM is available that shows the process in real time. The following supplier can do machining the groove and attaching a thermocouple to the IHS followed by the reference procedure. The supplier is listed the following table as a convenience to Intel’s general customers and the list may be subject to change without notice. Supplier Contact Phone Email Address THERM-X OF CALIFORNIA Ernesto B Valencia 510-441-7566 Ext. 242 ernestov@ther m-x.com 1837 Whipple Road, Hayward, Ca 94544 D.2 Supporting Test Equipment To apply the reference thermocouple attach procedure, it is recommended to use the equipment (or equivalent) given in the following table. Item Description Part Number Measurement and Output Microscope Olympus* Light microscope or equivalent SZ-40 DMM Digital Multi Meter for resistance measurement Fluke 79 Series Thermal Meter Hand held thermocouple meter Multiple Vendors Solder Station (see note 1 for ordering information) Heater Block Heater assembly to reflow solder on IHS 30330 Heater WATLOW120V 150W Firerod 0212G G1A38- L12 Transformer Superior Powerstat transformer 05F857 Case Temperature Reference Metrology 90 Thermal and Mechanical Design Guidelines Item Description Part Number Miscellaneous Hardware Solder Indium Corp. of America Alloy 57BI / 42SN / 1AG 0.010 Diameter 52124 Flux Indium Corp. of America 5RMA Loctite* 498 Adhesive Super glue w/thermal characteristics 49850 Adhesive Accelerator Loctite* 7452 for fast glue curing 18490 Kapton* Tape For holding thermocouple in place Not Available Thermocouple Omega *,36 gauge, “T” Type (see note 2 for ordering information) OSK2K1280/5SR TC-TT-T-36-72 Calibration and Control Ice Point Cell Omega*, stable 0 ºC temperature source for calibration and offset TRCIII Hot Point Cell Omega *, temperature source to control and understand meter slope gain CL950-A-110 NOTES: 1. The Solder Station consisting of the Heater Block, Heater, Press and Transformer are available from Jemelco Engineering 480-804-9514 2. This part number is a custom part with the specified insulation trimming and packaging requirements necessary for quality thermocouple attachment, See Figure 7-11. Order from Omega Anthony Alvarez, Direct phone (203) 359-7671, Direct fax (203) 968- 7142, E-Mail: aalvarez@omega.com Figure 7-11. Omega Thermocouple Case Temperature Reference Metrology Thermal and Mechanical Design Guidelines 91 D.3 Thermal Calibration and Controls It is recommended that full and routine calibration of temperature measurement equipment be performed before attempting to perform temperature case measurement. Intel recommends checking the meter probe set against known standards. This should be done at 0 ºC (using ice bath or other stable temperature source) and at an elevated temperature, around 80 ºC (using an appropriate temperature source). Wire gauge and length also should be considered as some less expensive measurement systems are heavily impacted by impedance. There are numerous resources available throughout the industry to assist with implementation of proper controls for thermal measurements. NOTES: 1. It is recommended to follow company standard procedures and wear safety items like glasses for cutting the IHS and gloves for chemical handling. 2. Please ask your Intel field sales representative if you need assistance to groove and/or install a thermocouple according to the reference process. D.4 IHS Groove Cut a groove in the package IHS; see the drawings given in Figure 7-12 and Figure 7-13. The groove orientation in Figure 7-12 is toward the IHS notch to allow the thermocouple wire to be routed under the socket lid. This will protect the thermocouple from getting damaged or pinched when removing and installing the heatsink (see Figure 7-37). Case Temperature Reference Metrology 92 Thermal and Mechanical Design Guidelines Figure 7-12. 775-LAND LGA Package Reference Groove Drawing at 6 o’clock Exit Case Temperature Reference Metrology Thermal and Mechanical Design Guidelines 93 Figure 7-13. 775-LAND LGA Package Reference Groove Drawing at 3 o’clock Exit (Old Drawing) Case Temperature Reference Metrology 94 Thermal and Mechanical Design Guidelines The orientation of the groove at 6 o’clock exit relative to the package pin 1 indicator (gold triangle in one corner of the package) is shown in Figure 7-14 for the 775-Land LGA package IHS. Figure 7-14. IHS Groove at 6 o’clock Exit on the 775-LAND LGA Package When the processor is installed in the LGA775 socket, the groove is parallel to the socket load lever, and is toward the IHS notch as shown Figure 7-15. Figure 7-15. IHS Groove at 6 o’clock Exit Orientation Relative to the LGA775 Socket Select a machine shop that is capable of holding drawing specified tolerances. IHS groove geometry is critical for repeatable placement of the thermocouple bead, ensuring precise thermal measurements. The specified dimensions minimize the impact of the groove on the IHS under the socket load. A larger groove may cause the IHS to warp under the socket load such that it does not represent the performance of an ungrooved IHS on production packages. Inspect parts for compliance to specifications before accepting from machine shop. Pin1 indicator IHS Groove Case Temperature Reference Metrology Thermal and Mechanical Design Guidelines 95 D.5 Thermocouple Attach Procedure The procedure to attach a thermocouple with solder takes about 15 minutes to complete. Before proceeding turn on the solder block heater, as it can take up to 30 minutes to reach the target temperature of 153 – 155 °C. Note: To avoid damage to the processor ensure the IHS temperature does not exceed 155 °C. As a complement to the written procedure a video Thermocouple Attach Using Solder – Video CD-ROM is available. D.5.1 Thermocouple Conditioning and Preparation 7. Use a calibrated thermocouple as specified in Sections D.2 and D.3. 8. Under a microscope verify the thermocouple insulation meets the quality requirements. The insulation should be about 1/16 inch (0.062 ± 0.030) from the end of the bead (Figure 7-16). Figure 7-16. Inspection of Insulation on Thermocouple 9. Measure the thermocouple resistance by holding both contacts on the connector on one probe and the tip of thermocouple to the other probe of the DMM (measurement should be about~3.0 ohms for 36-gauge type T thermocouple).