Consent Manager Tag v2.0 (for TCF 2.0) -->
Farnell PDF

RS COMPONENTS Images.png

SmartRF06 Evaluation Board User's Guide (Rev. A) - Texas - Texas Instruments - Farnell - Farnell Element 14

SmartRF06 Evaluation Board User's Guide (Rev. A) - Texas - Texas Instruments - Farnell - Farnell Element 14 - Revenir à l'accueil

 

 

Branding Farnell element14 (France)

 

Farnell Element 14 :

Miniature

Everything You Need To Know About Arduino

Miniature

Tutorial 01 for Arduino: Getting Acquainted with Arduino

Miniature

The Cube® 3D Printer

Miniature

What's easier- DIY Dentistry or our new our website features?

 

Miniature

Ben Heck's Getting Started with the BeagleBone Black Trailer

Miniature

Ben Heck's Home-Brew Solder Reflow Oven 2.0 Trailer

Miniature

Get Started with Pi Episode 3 - Online with Raspberry Pi

Miniature

Discover Simulink Promo -- Exclusive element14 Webinar

Miniature

Ben Heck's TV Proximity Sensor Trailer

Miniature

Ben Heck's PlayStation 4 Teardown Trailer

See the trailer for the next exciting episode of The Ben Heck show. Check back on Friday to be among the first to see the exclusive full show on element…

Miniature

Get Started with Pi Episode 4 - Your First Raspberry Pi Project

Connect your Raspberry Pi to a breadboard, download some code and create a push-button audio play project.

Miniature

Ben Heck Anti-Pickpocket Wallet Trailer

Miniature

Molex Earphones - The 14 Holiday Products of Newark element14 Promotion

Miniature

Tripp Lite Surge Protector - The 14 Holiday Products of Newark element14 Promotion

Miniature

Microchip ChipKIT Pi - The 14 Holiday Products of Newark element14 Promotion

Miniature

Beagle Bone Black - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M E26, LED Lamps - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M Colored Duct Tape - The 14 Holiday Products of Newark element14 Promotion

Miniature

Tenma Soldering Station - The 14 Holiday Products of Newark element14 Promotion

Miniature

Duratool Screwdriver Kit - The 14 Holiday Products of Newark element14 Promotion

Miniature

Cubify 3D Cube - The 14 Holiday Products of Newark element14 Promotion

Miniature

Bud Boardganizer - The 14 Holiday Products of Newark element14 Promotion

Miniature

Raspberry Pi Starter Kit - The 14 Holiday Products of Newark element14 Promotion

Miniature

Fluke 323 True-rms Clamp Meter - The 14 Holiday Products of Newark element14 Promotion

Miniature

Dymo RHINO 6000 Label Printer - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M LED Advanced Lights A-19 - The 14 Holiday Products of Newark element14 Promotion

Miniature

Innovative LPS Resistor Features Very High Power Dissipation

Miniature

Charge Injection Evaluation Board for DG508B Multiplexer Demo

Miniature

Ben Heck The Great Glue Gun Trailer Part 2

Miniature

Introducing element14 TV

Miniature

Ben Heck Time to Meet Your Maker Trailer

Miniature

Détecteur de composants

Miniature

Recherche intégrée

Miniature

Ben Builds an Accessibility Guitar Trailer Part 1

Miniature

Ben Builds an Accessibility Guitar - Part 2 Trailer

Miniature

PiFace Control and Display Introduction

Miniature

Flashmob Farnell

Miniature

Express Yourself in 3D with Cube 3D Printers from Newark element14

Miniature

Farnell YouTube Channel Move

Miniature

Farnell: Design with the best

Miniature

French Farnell Quest

Miniature

Altera - 3 Ways to Quickly Adapt to Changing Ethernet Protocols

Miniature

Cy-Net3 Network Module

Miniature

MC AT - Professional and Precision Series Thin Film Chip Resistors

Miniature

Solderless LED Connector

Miniature

PSA-T Series Spectrum Analyser: PSA1301T/ PSA2701T

Miniature

3-axis Universal Motion Controller For Stepper Motor Drivers: TMC429

Miniature

Voltage Level Translation

Puce électronique / Microchip :

Miniature

Microchip - 8-bit Wireless Development Kit

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 2 of 3

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 3 of 3

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 1 of 3

Sans fil - Wireless :

Miniature

Microchip - 8-bit Wireless Development Kit

Miniature

Wireless Power Solutions - Wurth Electronics, Texas Instruments, CadSoft and element14

Miniature

Analog Devices - Remote Water Quality Monitoring via a Low Power, Wireless Network

Texas instrument :

Miniature

Texas Instruments - Automotive LED Headlights

Miniature

Texas Instruments - Digital Power Solutions

Miniature

Texas Instruments - Industrial Sensor Solutions

Miniature

Texas Instruments - Wireless Pen Input Demo (Mobile World Congress)

Miniature

Texas Instruments - Industrial Automation System Components

Miniature

Texas Instruments - TMS320C66x - Industry's first 10-GHz fixed/floating point DSP

Miniature

Texas Instruments - TMS320C66x KeyStone Multicore Architecture

Miniature

Texas Instruments - Industrial Interfaces

Miniature

Texas Instruments - Concerto™ MCUs - Connectivity without compromise

Miniature

Texas Instruments - Stellaris Robot Chronos

Miniature

Texas Instruments - DRV8412-C2-KIT, Brushed DC and Stepper Motor Control Kit

Ordinateurs :

Miniature

Ask Ben Heck - Connect Raspberry Pi to Car Computer

Miniature

Ben's Portable Raspberry Pi Computer Trailer

Miniature

Ben's Raspberry Pi Portable Computer Trailer 2

Miniature

Ben Heck's Pocket Computer Trailer

Miniature

Ask Ben Heck - Atari Computer

Miniature

Ask Ben Heck - Using Computer Monitors for External Displays

Miniature

Raspberry Pi Partnership with BBC Computer Literacy Project - Answers from co-founder Eben Upton

Miniature

Installing RaspBMC on your Raspberry Pi with the Farnell element14 Accessory kit

Miniature

Raspberry Pi Served - Joey Hudy

Miniature

Happy Birthday Raspberry Pi

Miniature

Raspberry Pi board B product overview

Logiciels :

Miniature

Ask Ben Heck - Best Opensource or Free CAD Software

Miniature

Tektronix FPGAView™ software makes debugging of FPGAs faster than ever!

Miniature

Ask Ben Heck - Best Open-Source Schematic Capture and PCB Layout Software

Miniature

Introduction to Cadsoft EAGLE PCB Design Software in Chinese

Miniature

Altera - Developing Software for Embedded Systems on FPGAs

Tutoriels :

Miniature

Ben Heck The Great Glue Gun Trailer Part 1

Miniature

the knode tutorial - element14

Miniature

Ben's Autodesk 123D Tutorial Trailer

Miniature

Ben's CadSoft EAGLE Tutorial Trailer

Miniature

Ben Heck's Soldering Tutorial Trailer

Miniature

Ben Heck's AVR Dev Board tutorial

Miniature

Ben Heck's Pinball Tutorial Trailer

Miniature

Ben Heck's Interface Tutorial Trailer

Miniature

First Stage with Python and PiFace Digital

Miniature

Cypress - Getting Started with PSoC® 3 - Part 2

Miniature

Energy Harvesting Challenge

Miniature

New Features of CadSoft EAGLE v6

Autres documentations :

 [TXT] Farnell-SL59830-Inte..> 06-Jul-2014 10:07 1.0M  

[TXT]

 Farnell-ALF1210-PDF.htm 06-Jul-2014 10:06  4.0M  

[TXT]

 Farnell-AD7171-16-Bi..> 06-Jul-2014 10:06  1.0M  

[TXT]

 Farnell-Low-Noise-24..> 06-Jul-2014 10:05  1.0M  

[TXT]

 Farnell-ESCON-Featur..> 06-Jul-2014 10:05  938K  

[TXT]

 Farnell-74LCX573-Fai..> 06-Jul-2014 10:05  1.9M  

[TXT]

 Farnell-1N4148WS-Fai..> 06-Jul-2014 10:04  1.9M  

[TXT]

 Farnell-FAN6756-Fair..> 06-Jul-2014 10:04  850K  

[TXT]

 Farnell-Datasheet-Fa..> 06-Jul-2014 10:04  861K  

[TXT]

 Farnell-ES1F-ES1J-fi..> 06-Jul-2014 10:04  867K  

[TXT]

 Farnell-QRE1113-Fair..> 06-Jul-2014 10:03  879K  

[TXT]

 Farnell-2N7002DW-Fai..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-FDC2512-Fair..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-FDV301N-Digi..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-S1A-Fairchil..> 06-Jul-2014 10:03  896K  

[TXT]

 Farnell-BAV99-Fairch..> 06-Jul-2014 10:03  896K  

[TXT]

 Farnell-74AC00-74ACT..> 06-Jul-2014 10:03  911K  

[TXT]

 Farnell-NaPiOn-Panas..> 06-Jul-2014 10:02  911K  

[TXT]

 Farnell-LQ-RELAYS-AL..> 06-Jul-2014 10:02  924K  

[TXT]

 Farnell-ev-relays-ae..> 06-Jul-2014 10:02  926K  

[TXT]

 Farnell-ESCON-Featur..> 06-Jul-2014 10:02  931K  

[TXT]

 Farnell-Amplifier-In..> 06-Jul-2014 10:02  940K  

[TXT]

 Farnell-Serial-File-..> 06-Jul-2014 10:02  941K  

[TXT]

 Farnell-Both-the-Del..> 06-Jul-2014 10:01  948K  

[TXT]

 Farnell-Videk-PDF.htm   06-Jul-2014 10:01  948K  

[TXT]

 Farnell-EPCOS-173438..> 04-Jul-2014 10:43  3.3M  

[TXT]

 Farnell-Sensorless-C..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-197.31-KB-Te..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-PIC12F609-61..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-PADO-semi-au..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-03-iec-runds..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-ACC-Silicone..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-Series-TDS10..> 04-Jul-2014 10:39  4.0M 

[TXT]

 Farnell-03-iec-runds..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-0430300011-D..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-06-6544-8-PD..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-3M-Polyimide..> 21-Mar-2014 08:09  3.9M  

[TXT]

 Farnell-3M-VolitionT..> 25-Mar-2014 08:18  3.3M  

[TXT]

 Farnell-10BQ060-PDF.htm 14-Jun-2014 09:50  2.4M  

[TXT]

 Farnell-10TPB47M-End..> 14-Jun-2014 18:16  3.4M  

[TXT]

 Farnell-12mm-Size-In..> 14-Jun-2014 09:50  2.4M  

[TXT]

 Farnell-24AA024-24LC..> 23-Jun-2014 10:26  3.1M  

[TXT]

 Farnell-50A-High-Pow..> 20-Mar-2014 17:31  2.9M  

[TXT]

 Farnell-197.31-KB-Te..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-1907-2006-PD..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-5910-PDF.htm    25-Mar-2014 08:15  3.0M  

[TXT]

 Farnell-6517b-Electr..> 29-Mar-2014 11:12  3.3M  

[TXT]

 Farnell-A-True-Syste..> 29-Mar-2014 11:13  3.3M  

[TXT]

 Farnell-ACC-Silicone..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-AD524-PDF.htm   20-Mar-2014 17:33  2.8M  

[TXT]

 Farnell-ADL6507-PDF.htm 14-Jun-2014 18:19  3.4M  

[TXT]

 Farnell-ADSP-21362-A..> 20-Mar-2014 17:34  2.8M  

[TXT]

 Farnell-ALF1210-PDF.htm 04-Jul-2014 10:39  4.0M  

[TXT]

 Farnell-ALF1225-12-V..> 01-Apr-2014 07:40  3.4M  

[TXT]

 Farnell-ALF2412-24-V..> 01-Apr-2014 07:39  3.4M  

[TXT]

 Farnell-AN10361-Phil..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-ARADUR-HY-13..> 26-Mar-2014 17:55  2.8M  

[TXT]

 Farnell-ARALDITE-201..> 21-Mar-2014 08:12  3.7M  

[TXT]

 Farnell-ARALDITE-CW-..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-ATMEL-8-bit-..> 19-Mar-2014 18:04  2.1M  

[TXT]

 Farnell-ATMEL-8-bit-..> 11-Mar-2014 07:55  2.1M  

[TXT]

 Farnell-ATmega640-VA..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-ATtiny20-PDF..> 25-Mar-2014 08:19  3.6M  

[TXT]

 Farnell-ATtiny26-L-A..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-Alimentation..> 14-Jun-2014 18:24  2.5M  

[TXT]

 Farnell-Alimentation..> 01-Apr-2014 07:42  3.4M  

[TXT]

 Farnell-Amplificateu..> 29-Mar-2014 11:11  3.3M  

[TXT]

 Farnell-An-Improved-..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-Atmel-ATmega..> 19-Mar-2014 18:03  2.2M  

[TXT]

 Farnell-Avvertenze-e..> 14-Jun-2014 18:20  3.3M  

[TXT]

 Farnell-BC846DS-NXP-..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-BC847DS-NXP-..> 23-Jun-2014 10:24  3.3M  

[TXT]

 Farnell-BF545A-BF545..> 23-Jun-2014 10:28  2.1M  

[TXT]

 Farnell-BK2650A-BK26..> 29-Mar-2014 11:10  3.3M  

[TXT]

 Farnell-BT151-650R-N..> 13-Jun-2014 18:40  1.7M  

[TXT]

 Farnell-BTA204-800C-..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-BUJD203AX-NX..> 13-Jun-2014 18:41  1.7M  

[TXT]

 Farnell-BYV29F-600-N..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-BYV79E-serie..> 10-Mar-2014 16:19  1.6M  

[TXT]

 Farnell-BZX384-serie..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-Battery-GBA-..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-C.A-6150-C.A..> 14-Jun-2014 18:24  2.5M  

[TXT]

 Farnell-C.A 8332B-C...> 01-Apr-2014 07:40  3.4M  

[TXT]

 Farnell-CC2560-Bluet..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-CD4536B-Type..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-CIRRUS-LOGIC..> 10-Mar-2014 17:20  2.1M  

[TXT]

 Farnell-CS5532-34-BS..> 01-Apr-2014 07:39  3.5M  

[TXT]

 Farnell-Cannon-ZD-PD..> 11-Mar-2014 08:13  2.8M  

[TXT]

 Farnell-Ceramic-tran..> 14-Jun-2014 18:19  3.4M  

[TXT]

 Farnell-Circuit-Note..> 26-Mar-2014 18:00  2.8M  

[TXT]

 Farnell-Circuit-Note..> 26-Mar-2014 18:00  2.8M  

[TXT]

 Farnell-Cles-electro..> 21-Mar-2014 08:13  3.9M  

[TXT]

 Farnell-Conception-d..> 11-Mar-2014 07:49  2.4M  

[TXT]

 Farnell-Connectors-N..> 14-Jun-2014 18:12  2.1M  

[TXT]

 Farnell-Construction..> 14-Jun-2014 18:25  2.5M  

[TXT]

 Farnell-Controle-de-..> 11-Mar-2014 08:16  2.8M  

[TXT]

 Farnell-Cordless-dri..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:58  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:58  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:59  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:59  2.7M  

[TXT]

 Farnell-DC-Fan-type-..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-DC-Fan-type-..> 14-Jun-2014 09:51  1.8M  

[TXT]

 Farnell-Davum-TMC-PD..> 14-Jun-2014 18:27  2.4M  

[TXT]

 Farnell-De-la-puissa..> 29-Mar-2014 11:10  3.3M  

[TXT]

 Farnell-Directive-re..> 25-Mar-2014 08:16  3.0M  

[TXT]

 Farnell-Documentatio..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-Download-dat..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-ECO-Series-T..> 20-Mar-2014 08:14  2.5M  

[TXT]

 Farnell-ELMA-PDF.htm    29-Mar-2014 11:13  3.3M  

[TXT]

 Farnell-EMC1182-PDF.htm 25-Mar-2014 08:17  3.0M  

[TXT]

 Farnell-EPCOS-173438..> 04-Jul-2014 10:43  3.3M  

[TXT]

 Farnell-EPCOS-Sample..> 11-Mar-2014 07:53  2.2M  

[TXT]

 Farnell-ES2333-PDF.htm  11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-Ed.081002-DA..> 19-Mar-2014 18:02  2.5M  

[TXT]

 Farnell-F28069-Picco..> 14-Jun-2014 18:14  2.0M  

[TXT]

 Farnell-F42202-PDF.htm  19-Mar-2014 18:00  2.5M  

[TXT]

 Farnell-FDS-ITW-Spra..> 14-Jun-2014 18:22  3.3M  

[TXT]

 Farnell-FICHE-DE-DON..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-Fastrack-Sup..> 23-Jun-2014 10:25  3.3M  

[TXT]

 Farnell-Ferric-Chlor..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-Fiche-de-don..> 14-Jun-2014 09:47  2.5M  

[TXT]

 Farnell-Fiche-de-don..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-Fluke-1730-E..> 14-Jun-2014 18:23  2.5M  

[TXT]

 Farnell-GALVA-A-FROI..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-GALVA-MAT-Re..> 26-Mar-2014 17:57  2.7M  

[TXT]

 Farnell-GN-RELAYS-AG..> 20-Mar-2014 08:11  2.6M  

[TXT]

 Farnell-HC49-4H-Crys..> 14-Jun-2014 18:20  3.3M  

[TXT]

 Farnell-HFE1600-Data..> 14-Jun-2014 18:22  3.3M  

[TXT]

 Farnell-HI-70300-Sol..> 14-Jun-2014 18:27  2.4M  

[TXT]

 Farnell-HUNTSMAN-Adv..> 10-Mar-2014 16:17  1.7M  

[TXT]

 Farnell-Haute-vitess..> 11-Mar-2014 08:17  2.4M  

[TXT]

 Farnell-IP4252CZ16-8..> 13-Jun-2014 18:41  1.7M  

[TXT]

 Farnell-Instructions..> 19-Mar-2014 18:01  2.5M  

[TXT]

 Farnell-KSZ8851SNL-S..> 23-Jun-2014 10:28  2.1M  

[TXT]

 Farnell-L-efficacite..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-LCW-CQ7P.CC-..> 25-Mar-2014 08:19  3.2M  

[TXT]

 Farnell-LME49725-Pow..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-LOCTITE-542-..> 25-Mar-2014 08:15  3.0M  

[TXT]

 Farnell-LOCTITE-3463..> 25-Mar-2014 08:19  3.0M  

[TXT]

 Farnell-LUXEON-Guide..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-Leaded-Trans..> 23-Jun-2014 10:26  3.2M  

[TXT]

 Farnell-Les-derniers..> 11-Mar-2014 07:50  2.3M  

[TXT]

 Farnell-Loctite3455-..> 25-Mar-2014 08:16  3.0M  

[TXT]

 Farnell-Low-cost-Enc..> 13-Jun-2014 18:42  1.7M  

[TXT]

 Farnell-Lubrifiant-a..> 26-Mar-2014 18:00  2.7M  

[TXT]

 Farnell-MC3510-PDF.htm  25-Mar-2014 08:17  3.0M  

[TXT]

 Farnell-MC21605-PDF.htm 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-MCF532x-7x-E..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-MICREL-KSZ88..> 11-Mar-2014 07:54  2.2M  

[TXT]

 Farnell-MICROCHIP-PI..> 19-Mar-2014 18:02  2.5M  

[TXT]

 Farnell-MOLEX-39-00-..> 10-Mar-2014 17:19  1.9M  

[TXT]

 Farnell-MOLEX-43020-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MOLEX-43160-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MOLEX-87439-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MPXV7002-Rev..> 20-Mar-2014 17:33  2.8M  

[TXT]

 Farnell-MX670-MX675-..> 14-Jun-2014 09:46  2.5M  

[TXT]

 Farnell-Microchip-MC..> 13-Jun-2014 18:27  1.8M  

[TXT]

 Farnell-Microship-PI..> 11-Mar-2014 07:53  2.2M  

[TXT]

 Farnell-Midas-Active..> 14-Jun-2014 18:17  3.4M  

[TXT]

 Farnell-Midas-MCCOG4..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-Miniature-Ci..> 26-Mar-2014 17:55  2.8M  

[TXT]

 Farnell-Mistral-PDF.htm 14-Jun-2014 18:12  2.1M  

[TXT]

 Farnell-Molex-83421-..> 14-Jun-2014 18:17  3.4M  

[TXT]

 Farnell-Molex-COMMER..> 14-Jun-2014 18:16  3.4M  

[TXT]

 Farnell-Molex-Crimp-..> 10-Mar-2014 16:27  1.7M  

[TXT]

 Farnell-Multi-Functi..> 20-Mar-2014 17:38  3.0M  

[TXT]

 Farnell-NTE_SEMICOND..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-NXP-74VHC126..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-NXP-BT136-60..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-NXP-PBSS9110..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-NXP-PCA9555 ..> 11-Mar-2014 07:54  2.2M  

[TXT]

 Farnell-NXP-PMBFJ620..> 10-Mar-2014 16:16  1.7M  

[TXT]

 Farnell-NXP-PSMN1R7-..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-NXP-PSMN7R0-..> 10-Mar-2014 17:19  2.1M  

[TXT]

 Farnell-NXP-TEA1703T..> 11-Mar-2014 08:15  2.8M  

[TXT]

 Farnell-Nilfi-sk-E-..> 14-Jun-2014 09:47  2.5M  

[TXT]

 Farnell-Novembre-201..> 20-Mar-2014 17:38  3.3M  

[TXT]

 Farnell-OMRON-Master..> 10-Mar-2014 16:26  1.8M  

[TXT]

 Farnell-OSLON-SSL-Ce..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-OXPCIE958-FB..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-PADO-semi-au..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-PBSS5160T-60..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-PDTA143X-ser..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-PDTB123TT-NX..> 13-Jun-2014 18:43  1.5M  

[TXT]

 Farnell-PESD5V0F1BL-..> 13-Jun-2014 18:43  1.5M  

[TXT]

 Farnell-PESD9X5.0L-P..> 13-Jun-2014 18:43  1.6M  

[TXT]

 Farnell-PIC12F609-61..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-PIC18F2455-2..> 23-Jun-2014 10:27  3.1M  

[TXT]

 Farnell-PIC24FJ256GB..> 14-Jun-2014 09:51  2.4M  

[TXT]

 Farnell-PMBT3906-PNP..> 13-Jun-2014 18:44  1.5M  

[TXT]

 Farnell-PMBT4403-PNP..> 23-Jun-2014 10:27  3.1M  

[TXT]

 Farnell-PMEG4002EL-N..> 14-Jun-2014 18:18  3.4M  

[TXT]

 Farnell-PMEG4010CEH-..> 13-Jun-2014 18:43  1.6M  

[TXT]

 Farnell-Panasonic-15..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-Panasonic-EC..> 20-Mar-2014 17:36  2.6M  

[TXT]

 Farnell-Panasonic-EZ..> 20-Mar-2014 08:10  2.6M  

[TXT]

 Farnell-Panasonic-Id..> 20-Mar-2014 17:35  2.6M  

[TXT]

 Farnell-Panasonic-Ne..> 20-Mar-2014 17:36  2.6M  

[TXT]

 Farnell-Panasonic-Ra..> 20-Mar-2014 17:37  2.6M  

[TXT]

 Farnell-Panasonic-TS..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-Panasonic-Y3..> 20-Mar-2014 08:11  2.6M  

[TXT]

 Farnell-Pico-Spox-Wi..> 10-Mar-2014 16:16  1.7M  

[TXT]

 Farnell-Pompes-Charg..> 24-Apr-2014 20:23  3.3M  

[TXT]

 Farnell-Ponts-RLC-po..> 14-Jun-2014 18:23  3.3M  

[TXT]

 Farnell-Portable-Ana..> 29-Mar-2014 11:16  2.8M  

[TXT]

 Farnell-Premier-Farn..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-Produit-3430..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-Proskit-SS-3..> 10-Mar-2014 16:26  1.8M  

[TXT]

 Farnell-Puissance-ut..> 11-Mar-2014 07:49  2.4M  

[TXT]

 Farnell-Q48-PDF.htm     23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-Radial-Lead-..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-Realiser-un-..> 11-Mar-2014 07:51  2.3M  

[TXT]

 Farnell-Reglement-RE..> 21-Mar-2014 08:08  3.9M  

[TXT]

 Farnell-Repartiteurs..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-S-TRI-SWT860..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-SB175-Connec..> 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-SMBJ-Transil..> 29-Mar-2014 11:12  3.3M  

[TXT]

 Farnell-SOT-23-Multi..> 11-Mar-2014 07:51  2.3M  

[TXT]

 Farnell-SPLC780A1-16..> 14-Jun-2014 18:25  2.5M  

[TXT]

 Farnell-SSC7102-Micr..> 23-Jun-2014 10:25  3.2M  

[TXT]

 Farnell-SVPE-series-..> 14-Jun-2014 18:15  2.0M  

[TXT]

 Farnell-Sensorless-C..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-Septembre-20..> 20-Mar-2014 17:46  3.7M  

[TXT]

 Farnell-Serie-PicoSc..> 19-Mar-2014 18:01  2.5M  

[TXT]

 Farnell-Serie-Standa..> 14-Jun-2014 18:23  3.3M  

[TXT]

 Farnell-Series-2600B..> 20-Mar-2014 17:30  3.0M  

[TXT]

 Farnell-Series-TDS10..> 04-Jul-2014 10:39  4.0M  

[TXT]

 Farnell-Signal-PCB-R..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-Strangkuhlko..> 21-Mar-2014 08:09  3.9M  

[TXT]

 Farnell-Supercapacit..> 26-Mar-2014 17:57  2.7M  

[TXT]

 Farnell-TDK-Lambda-H..> 14-Jun-2014 18:21  3.3M  

[TXT]

 Farnell-TEKTRONIX-DP..> 10-Mar-2014 17:20  2.0M  

[TXT]

 Farnell-Tektronix-AC..> 13-Jun-2014 18:44  1.5M  

[TXT]

 Farnell-Telemetres-l..> 20-Mar-2014 17:46  3.7M  

[TXT]

 Farnell-Termometros-..> 14-Jun-2014 18:14  2.0M  

[TXT]

 Farnell-The-essentia..> 10-Mar-2014 16:27  1.7M  

[TXT]

 Farnell-U2270B-PDF.htm  14-Jun-2014 18:15  3.4M  

[TXT]

 Farnell-USB-Buccanee..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-USB1T11A-PDF..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-V4N-PDF.htm     14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-WetTantalum-..> 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-XPS-AC-Octop..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-XPS-MC16-XPS..> 11-Mar-2014 08:15  2.8M  

[TXT]

 Farnell-YAGEO-DATA-S..> 11-Mar-2014 08:13  2.8M  

[TXT]

 Farnell-ZigBee-ou-le..> 11-Mar-2014 07:50  2.4M  

[TXT]

 Farnell-celpac-SUL84..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-china_rohs_o..> 21-Mar-2014 10:04  3.9M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:34  2.8M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:35  2.7M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:31  2.9M  

[TXT]

 Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32  2.9M  

[TXT]

 Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32  2.9M  

[TXT]

 Farnell-ir1150s_fr.p..> 29-Mar-2014 11:11  3.3M  

[TXT]

 Farnell-manual-bus-p..> 10-Mar-2014 16:29  1.9M  

[TXT]

 Farnell-propose-plus..> 11-Mar-2014 08:19  2.8M  

[TXT]

 Farnell-techfirst_se..> 21-Mar-2014 08:08  3.9M  

[TXT]

 Farnell-testo-205-20..> 20-Mar-2014 17:37  3.0M  

[TXT]

 Farnell-testo-470-Fo..> 20-Mar-2014 17:38  3.0M  

[TXT]

 Farnell-uC-OS-III-Br..> 10-Mar-2014 17:20  2.0M  

[TXT]

 Sefram-7866HD.pdf-PD..> 29-Mar-2014 11:46  472K  

[TXT]

 Sefram-CAT_ENREGISTR..> 29-Mar-2014 11:46  461K  

[TXT]

 Sefram-CAT_MESUREURS..> 29-Mar-2014 11:46  435K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  481K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  442K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  422K  

[TXT]

 Sefram-SP270.pdf-PDF..> 29-Mar-2014 11:46  464K
User’s Guide SWRU321A – May 2013 SmartRF™ is a trademark of Texas Instruments SmartRF06 Evaluation Board User’s Guide User’s Guide SWRU321A – May 2013 Page 3/32 Table of Contents 4.1 INSTALLING SMARTRF STUDIO AND USB DRIVERS ................................................................ 7 4.1.1 SmartRF Studio ................................................................................................................. 7 4.1.2 FTDI USB driver ................................................................................................................ 7 5.1 ABSOLUTE MAXIMUM RATINGS ........................................................................................... 11 6.1 XDS100V3 EMULATOR ...................................................................................................... 13 6.1.1 UART back channel ........................................................................................................ 14 6.2 POWER SOURCES ............................................................................................................. 14 6.2.1 USB Power ...................................................................................................................... 15 6.2.2 Battery Power .................................................................................................................. 15 6.2.3 External Power Supply .................................................................................................... 16 6.3 POWER DOMAINS .............................................................................................................. 17 6.3.1 XDS Domain ................................................................................................................... 17 6.3.2 EM Domain...................................................................................................................... 17 6.3.3 3.3 V Domain .................................................................................................................. 18 6.4 LCD ................................................................................................................................. 18 6.5 MICRO SD CARD SLOT ...................................................................................................... 19 6.6 ACCELEROMETER .............................................................................................................. 19 6.7 AMBIENT LIGHT SENSOR .................................................................................................... 20 6.8 BUTTONS .......................................................................................................................... 20 6.9 LEDS ............................................................................................................................... 21 6.9.1 General Purpose LEDs ................................................................................................... 21 6.9.2 XDS100v3 Emulator LEDs .............................................................................................. 21 6.10 EM CONNECTORS ............................................................................................................. 21 6.11 BREAKOUT HEADERS AND JUMPERS ................................................................................... 23 6.11.1 I/O Breakout Headers ..................................................................................................... 23 6.11.2 XDS100v3 Emulator Bypass Headers ............................................................................ 24 6.11.3 20-pin ARM JTAG Header .............................................................................................. 25 6.11.4 10-pin ARM Cortex Debug Header ................................................................................. 26 6.12 CURRENT MEASUREMENT .................................................................................................. 27 6.12.1 High-side current sensing ............................................................................................... 27 6.12.2 Current Measurement Jumper ........................................................................................ 27 7.1 20-PIN ARM JTAG HEADER .............................................................................................. 29 7.2 10-PIN ARM CORTEX DEBUG HEADER ............................................................................... 29 7.3 CUSTOM STRAPPING ......................................................................................................... 30 List of Figures Figure 1 – Driver install: a) Update driver, b) Specify path to FTDI drivers..................................... 8 Figure 2 – Driver install: a) VCP loaded and b) drivers successfully installed ................................ 8 Figure 3 – SmartRF06EB (rev. 1.2.1) with EM connected ............................................................ 10 Figure 4 – SmartRF06EB architecture .......................................................................................... 12 Figure 5 – SmartRF06EB revision 1.2.1 front side ........................................................................ 13 Figure 6 – SmartRF06EB revision 1.2.1 reverse side ................................................................... 13 Figure 7 – Jumper mounted on J5 to enable the UART back channel ......................................... 14 Figure 8 – Main power switch (P501) and source selection switch (P502) ................................... 15 Figure 9 – SmartRF06EB power selection switch (P502) in “USB” position ................................. 15 Figure 10 – SmartRF06EB power source selection switch (P502) in “BAT” position ................... 16 Figure 11 – SmartRF06EB external power supply header (J501) ................................................ 16 Figure 12 – Power domain overview of SmartRF06EB ................................................................. 17 Figure 13 – Mount a jumper on J502 to bypass EM domain voltage regulator ............................. 18 Figure 14 – Simplified schematic of Ambient Light Sensor setup ................................................. 20 Figure 15 – SmartRF06EB EM connectors RF1 and RF2 ............................................................ 21 User’s Guide SWRU321A – May 2013 Page 4/32 Figure 16 – SmartRF06EB I/O breakout overview ........................................................................ 23 Figure 17 – XDS100v3 Emulator Bypass Header (P408) ............................................................. 24 Figure 18 – 20-pin ARM JTAG header (P409) .............................................................................. 25 Figure 19 – 10-pin ARM Cortex Debug header (P410) ................................................................. 26 Figure 20 – Simplified schematic of high-side current sensing setup ........................................... 27 Figure 21 – Measuring current consumption using jumper J503 .................................................. 27 Figure 22 – Simplified connection diagram for different debugging scenarios ............................. 28 Figure 23 – Debugging external target using SmartRF06EB ........................................................ 29 Figure 24 – ARM JTAG header (P409) with strapping to debug external target .......................... 30 List of Tables Table 1 – SmartRF06EB features ................................................................................................... 5 Table 2 – Supply voltage: Recommended operating conditions and absolute max. ratings ........ 11 Table 3 – Temperature: Recommended operating conditions and storage temperatures ........... 11 Table 4 – UART Back channel signal connections ....................................................................... 14 Table 5 – Power domain overview of SmartRF06EB .................................................................... 17 Table 6 – LCD signal connections ................................................................................................. 19 Table 7 – Micro SD Card signal connections ................................................................................ 19 Table 8 – Accelerometer signal connections ................................................................................. 20 Table 9 – Ambient Light Sensor signal connections ..................................................................... 20 Table 10 – Button signal connections ........................................................................................... 20 Table 11 – General purpose LED signal connections ................................................................... 21 Table 12 – EM connector RF1 pin-out........................................................................................... 22 Table 13 – EM connector RF2 pin-out........................................................................................... 22 Table 14 – SmartRF06EB I/O breakout overview ......................................................................... 24 Table 15 – 20-pin ARM JTAG header pin-out (P409) ................................................................... 25 Table 16 – 10-pin ARM Cortex Debug header pin-out (P410) ...................................................... 26 Table 17 – Debugging external target: Minimum strapping (cJTAG support) ............................... 30 Table 18 – Debugging external target: Optional strapping ............................................................ 30 User’s Guide SWRU321A – May 2013 Page 5/32 1 Introduction The SmartRF06 Evaluation Board (SmartRF06EB or simply EB) is the motherboard in development kits for Low Power RF ARM Cortex®-M based System on Chips from Texas Instruments. The board has a wide range of features, listed in Table 1 below. Component Description TI XDS100v3 Emulator cJTAG and JTAG emulator for easy programming and debugging of SoCs on Evaluation Modules or external targets. High-speed USB 2.0 interface Easy plug and play access to full SoC control using SmartRF™ Studio PC software. Integrated serial port over USB enables communication between the SoC via the UART back channel. 64x128 pixels serial LCD Big LCD display for demo use and user interface development. LEDs Four general purpose LEDs for demo use or debugging. Micro SD card slot External flash for extra storage, over-the-air upgrades and more. Buttons Five push-buttons for demo use and user interfacing. Accelerometer Three-axis highly configurable digital accelerometer for application development and demo use. Light Sensor Ambient Light Sensor for application development and demo use. Current measurement Current sense amplifier for high side current measurements. Breakout pins Easy access to SoC GPIO pins for quick and easy debugging. Table 1 – SmartRF06EB features 2 About this manual This manual contains reference information about the SmartRF06EB. Chapter 4 will give a quick introduction on how to get started with the SmartRF06EB. It describes how to install SmartRF™ Studio to get the required USB drivers for the evaluation board. Chapter 5 briefly explains how the EB can be used throughout a project’s development cycle. Chapter 6 gives an overview of the various features and functionality provided by the board. A troubleshooting guide is found in chapter 8 and Appendix A contains the schematics for SmartRF06EB revision 1.2.1. The PC tools SmartRF™ Studio and SmartRF™ Flash Programmer have their own user manual. See chapter 9 for references to relevant documents and web pages. User’s Guide SWRU321A – May 2013 Page 6/32 3 Acronyms and Abbreviations ALS Ambient Light Sensor cJTAG Compact JTAG (IEEE 1149.7) CW Continuous Wave DK Development Kit EB Evaluation Board EM Evaluation Module FPGA Field-Programmable Gate Array I/O Input/Output JTAG Joint Test Action Group (IEEE 1149.1) LCD Liquid Crystal Display LED Light Emitting Diode LPRF Low Power RF MCU Micro Controller MISO Master In, Slave Out (SPI signal) MOSI Master Out, Slave In (SPI signal) NA Not Applicable / Not Available NC Not Connected RF Radio Frequency RTS Request to Send RX Receive SoC System on Chip SPI Serial Peripheral Interface TI Texas Instruments TP Test Point TX Transmit UART Universal Asynchronous Receive Transmit USB Universal Serial Bus VCP Virtual COM Port User’s Guide SWRU321A – May 2013 Page 7/32 4 Getting Started Before connecting the SmartRF06EB to the PC via the USB cable, it is highly recommended to perform the steps described below. 4.1 Installing SmartRF Studio and USB drivers Before your PC can communicate with the SmartRF06EB over USB, you will need to install the USB drivers for the EB. The latest SmartRF Studio installer [1] includes USB drivers both for Windows x86 and Windows x64 platforms. After you have downloaded SmartRF Studio from the web, extract the zip-file, run the installer and follow the instructions. Select the complete installation to include the SmartRF Studio program, the SmartRF Studio documentation and the necessary drivers needed to communicate with the SmartRF06EB. 4.1.1 SmartRF Studio SmartRF Studio is a PC application developed for configuration and evaluation of many RF-IC products from Texas Instruments. The application is designed for use with SmartRF Evaluation Boards, such as SmartRF06EB, and runs on Microsoft Windows operating systems. SmartRF Studio lets you explore and experiment with the RF-ICs as it gives full overview and access to the devices’ registers to configure the radio and has a control interface for simple radio operation from the PC. This means that SmartRF Studio will help radio system designers to easily evaluate the RF-IC at an early stage in the design process. It also offers a flexible code export function of radio register settings for software developers. The latest version of SmartRF Studio can be downloaded from the Texas Instruments website [1], where you will also find a complete user manual. 4.1.2 FTDI USB driver SmartRF PC software such as SmartRF Studio uses a proprietary USB driver from FTDI [2] to communicate with SmartRF06 evaluation boards. Connect your SmartRF06EB to the computer with a USB cable and turn it on. If you did a complete install of SmartRF Studio, Windows will recognize the device automatically and the SmartRF06EB is ready for use! 4.1.2.1 Install FTDI USB driver manually in Windows If the SmartRF06EB was not properly recognized after plugging it into your PC, try the following steps to install the necessary USB drivers. The steps described are for Microsoft Windows 7, but are very similar to those in Windows XP and Windows Vista. It is assumed that you have already downloaded and installed the latest version of SmartRF Studio 7 [1]. Open the Windows Device Manager and right click on the first “Texas Instruments XDS100v3” found under “Other devices” as shown in Figure 1a. Select “Update Driver Software…” and, in the appearing dialog, browse to \Drivers\ftdi as shown in Figure 1b. User’s Guide SWRU321A – May 2013 Page 8/32 a) b) Figure 1 – Driver install: a) Update driver, b) Specify path to FTDI drivers Press Next and wait for the driver to be installed. The selected device should now appear in the Device Manager as “TI XDS100v3 Channel x” (x = A or B) as seen in Figure 2b. Repeat the above steps for the second “Texas Instruments XDS100v3” listed under “Other devices”. 4.1.2.1.1 Enable XDS100v3 UART back channel on Windows If you have both “TI XDS100v3 Channel A” and “TI XDS100v3 Channel B” listed under Universal Serial Bus Controllers, you can proceed. Right click on “TI XDS100v3 Channel B” and select Properties. Under the Advanced tab, make sure “Load VCP” is checked as shown in Figure 2a. A “USB Serial Port” may be listed under “Other devices”, as seen in Figure 1a. Follow the same steps as for the “Texas Instruments XDS100v3” devices to install the VCP driver. When the drivers from \Drivers\ftdi is properly installed, you should see the USB Serial Port device be listed under “Ports (COM & LPT)” as shown in Figure 2b. The SmartRF06EB drivers are now installed correctly. Figure 2 – Driver install: a) VCP loaded and b) drivers successfully installed User’s Guide SWRU321A – May 2013 Page 9/32 4.1.2.2 Install XSD100v3 UART back channel on Linux The ports on SmartRF06EB will typically be mounted as ttyUSB0 or ttyUSB1. The UART back channel is normally mounted as ttyUSB1. 1. Download the Linux drivers from [2]. 2. Untar the ftdi_sio.tar.gz file on your Linux system. 3. Connect the SmartRF06EB to your system. 4. Install driver a. Verify the USB Product ID (PID) and Vendor ID (VID). The TI XDS100v3 USB VID is 0x0403 and the PID is 0xA6D1, but if you wish to find the PID using a terminal window/shell, use > lsusb | grep -i future b. Install driver using modprobe In a terminal window/shell, navigate to the ftdi_sio folder and run > sudo modprobe ftdi_sio vendor=0x403 product=0xA6D1 SmartRF06EB should now be correctly mounted. The above steps have been tested on Fedora and Ubuntu distributions. If the above steps failed, try uninstalling ‘brltty’ prior to step 5 (technical note TN_101, [2]). > sudo apt-get remove brltty User’s Guide SWRU321A – May 2013 Page 10/32 5 Using the SmartRF06 Evaluation Board The SmartRF06EB is a flexible test and development platform that works together with RF Evaluation Modules from Texas Instruments. An Evaluation Module (EM) is a small RF module with RF chip, balun, matching filter, SMA antenna connector and I/O connectors. The modules can be plugged into the SmartRF06EB which lets the PC take direct control of the RF device on the EM over the USB interface. SmartRF06EB currently supports: - CC2538EM SmartRF06EB is included in e.g. the CC2538 development kit. Figure 3 – SmartRF06EB (rev. 1.2.1) with EM connected The PC software that controls the SmartRF06EB + EM is SmartRF Studio. Studio can be used to perform several RF tests and measurements, e.g. to set up a CW signal and send/receive packets. User’s Guide SWRU321A – May 2013 Page 11/32 The EB+EM can be of great help during the whole development cycle for a new RF product. - Perform comparative studies. Compare results obtained with EB+EM with results from your own system. - Perform basic functional tests of your own hardware by connecting the radio on your board to SmartRF06EB. SmartRF Studio can be used to exercise the radio. - Verify your own software with known good RF hardware, by simply connecting your own microcontroller to an EM via the EB. Test the send function by transmitting packets from your SW and receive with another board using SmartRF Studio. Then transmit using SmartRF Studio and receive with your own software. - Develop code for your SoC and use the SmartRF06EB as a standalone board without PC tools. The SmartRF06EB can also be used as a debugger interface to the SoCs from IAR Embedded workbench for ARM or Code Composer Studio from Texas Instruments. For details on how to use the SmartRF06EB to debug external targets, see chapter 7. 5.1 Absolute Maximum Ratings The minimum and maximum operating supply voltages and absolute maximum ratings for the active components onboard the SmartRF06EB are summarized in Table 2. Table 3 lists the recommended operating temperature and storage temperature ratings. Please refer to the respective component’s datasheet for further details. Component Operating voltage Absolute max. rating Min. [V] Max. [V] Min. [V] Max. [V] XDS100v3 Emulator1 [4] +1.8 +3.6 -0.3 +3.75 LCD [5] +3.0 +3.3 -0.3 +3.6 Accelerometer [6] +1.62 +3.6 -0.3 +4.25 Ambient light sensor [7] +2.32 +5.5 NA +6 Table 2 – Supply voltage: Recommended operating conditions and absolute max. ratings Component Operating temperature Storage temperature Min. [˚C] Max. [˚C] Min. [˚C] Max. [˚C] XDS100v3 Emulator [4] -20 +70 -50 +110 LCD [5] -20 +70 -30 +80 Accelerometer [6] -40 +85 -50 +150 Ambient light sensor [7] -40 +85 -40 +85 Table 3 – Temperature: Recommended operating conditions and storage temperatures 1 The XDS100v3 Emulator is USB powered. Values refer to the supply and I/O pin voltages of the connected target. 2 Recommended minimum operating voltage. User’s Guide SWRU321A – May 2013 Page 12/32 6 SmartRF06 Evaluation Board Overview SmartRF06EB acts as the motherboard in development kits for ARM® Cortex™ based Low Power RF SoCs from Texas Instruments. The board has several user interfaces and connections to external interfaces, allowing fast prototyping and testing of both software and hardware. An overview of the SmartRF06EB architecture is found in Figure 4. The board layout is found in Figure 5 and Figure 6, while the schematics are located in Appendix A. This chapter will give an overview of the general architecture of the board and describe the available I/O. The following sub-sections will explain the I/O in more detail. Pin connections between the EM and the evaluation board I/O can be found in section 6.10. EM Domain (1.8 – 3.6 V) XDS Domain 3.3 V Domain EM Connectors Light Sensor Buttons LEDs Accelerometer XDS100v3 Emulator XDS LEDs Level shifter SD Card Reader Load switch 20-pin ARM JTAG Header Bypass Header UART back channel Level shifter 10-pin ARM Cortex Debug Header (c)JTAG USB I/O breakout headers 3.3 V Domain Enable LCD I/O Breakout Headers Figure 4 – SmartRF06EB architecture User’s Guide SWRU321A – May 2013 Page 13/32 EM current measurement testpoint and jumper XDS bypass header 20-pin ARM JTAG Header General purpose buttons UART back channel breakout XDS LEDs 10-pin ARM Cortex Header EM I/O breakout Main power switch Power source selection switch External power supply connector EM reset button Regulator bypass jumper Micro SD card slot LCD Accelerometer LEDs Ambient Light Sensor EM connectors UART back channel enable Jumper Figure 5 – SmartRF06EB revision 1.2.1 front side 1.5 V AAA Alkaline Battery holder XDS100v3 Emulator 1.5 V AAA Alkaline Battery holder CR2032 coin cell battery holder Figure 6 – SmartRF06EB revision 1.2.1 reverse side 6.1 XDS100v3 Emulator The XDS100v3 Emulator from Texas Instruments has cJTAG and regular JTAG support. cJTAG is a 2-pin extension to regular 4-pin JTAG. The XDS100v3 consists of a USB to JTAG chip from FTDI [2] and an FPGA to convert JTAG instructions to cJTAG format. User’s Guide SWRU321A – May 2013 Page 14/32 In addition to regular debugging capabilities using cJTAG or JTAG, the XDS100v3 Emulator supports a UART backchannel over a USB Virtual COM Port (VCP) to the PC. The UART back channel supports flow control, 8-N-1 format and data rates up to 12Mbaud. Please see the XDS100v3 emulator product page [4] for detailed information about the emulator. The XDS100v3 Emulator is powered over USB and is switched on as long as the USB cable is connected to the SmartRF06EB and the main power switch (S501) is in the ON position. The XDS100v3 Emulator supports targets with operating voltages between 1.8 V and 3.6. The min (max) operating temperature is -20 (+70) ˚C. 6.1.1 UART back channel The mounted EM can be connected to the PC via the XDS100v3 Emulator’s UART back channel. When connected to a PC, the XDS100v3 is enumerated as a Virtual COM Port (VCP) over USB. The driver used is a royalty free VCP driver from FTDI, available for e.g. Microsoft Windows, Linux and Max OS X. The UART back channel gives the mounted EM access to a four pin UART interface, supporting 8-N-1 format at data rates up to 12 Mbaud. To enable the SmartRF06EB UART back channel the “Enable UART over XDS100v3” jumper (J5), located on the lower right side of the EB, must be mounted (Figure 7). Table 4 shows an overview of the I/O signals related to UART Back Channel. Figure 7 – Jumper mounted on J5 to enable the UART back channel Signal name Description Probe header EM pin RF1.7_UART_RX UART Receive (EM data in) EM_UART_RX (P412.2) RF1.7 RF1.9_UART_TX UART Transmit (EM data out) EM_UART_TX (P412.3) RF1.9 RF1.3_UART_CTS UART Clear To Send signal EM_UART_CTS (P412.4) RF1.3 RF2.18_UART_RTS UART Request To Send signal EM_UART_RTS (P412.5) RF2.18 Table 4 – UART Back channel signal connections 6.2 Power Sources There are three ways to power the SmartRF06EB; batteries, USB bus and external power supply. The power source can be selected using the power source selection switch (S502) seen in Figure 8. The XDS100v3 Emulator can only be powered over USB. The main power supply switch (S501) cuts power to the SmartRF06EB. Never connect batteries and an external power source to the SmartRF06EB at the same time! Doing so may lead to excessive currents that may damage the batteries or cause onboard components to break. The CR2032 coin cell battery is in particular very sensitive to reverse currents (charging) and must never be combined with other power sources (AAA batteries or an external power source). User’s Guide SWRU321A – May 2013 Page 15/32 Figure 8 – Main power switch (P501) and source selection switch (P502) 6.2.1 USB Power When the SmartRF06EB is connected to a PC via a USB cable, it can draw power from the USB bus. The onboard voltage regulator supplies approximately 3.3 V to the mounted EM and the EB peripherals. To power the mounted EM and the EB peripherals from the USB bus, the power source selection switch (S502) should be in “USB” position (Figure 9). The maximum current consumption is limited by the regulator to 1500 mA3. Figure 9 – SmartRF06EB power selection switch (P502) in “USB” position 6.2.2 Battery Power The SmartRF06EB can be powered using two 1.5 V AAA alkaline batteries or a 3 V CR2032 coin cell battery. The battery holders for the AAA batteries and the CR2032 coin cell battery are located on the reverse side of the PCB. To power the mounted EM and the EB peripherals using batteries, the power source selection switch (S502) should be in “BAT” position (Figure 10). When battery powered, the EM power domain is by default regulated to 2.1 V. The voltage regulator may be bypassed by mounting a jumper on J502. See section 6.3.2 for more details. Do not power the SmartRF06EB using two 1.5 V AAA batteries and a 3 V CR2032 coin cell battery at the same time. Doing so may lead to excessive currents that may damage the batteries or cause onboard components to break. 3 Note that most USB power sources are limited to 500 mA. User’s Guide SWRU321A – May 2013 Page 16/32 Figure 10 – SmartRF06EB power source selection switch (P502) in “BAT” position 6.2.3 External Power Supply The SmartRF06EB can be powered using an external power supply. To power the mounted EM and the EB peripherals using an external power supply, the power source selection switch (S502) should be in “BAT” position (Figure 10 in section 6.2.2). The external supply’s ground should be connected to the SmartRF06EB ground, e.g. to the ground pad in the top left corner of the EB. Connect the positive supply connector to the external power header J501 (Figure 11). The applied voltage must be in the range from 2.1 V to 3.6 V and limited to max 1.5 A. When powered by an external power supply, the EM power domain is by default regulated to 2.1 V. The voltage regulator may be bypassed by mounting a jumper on J502. See section 6.3.2 for more details. There is a risk of damaging the onboard components if the applied voltage on the external power connector/header is lower than -0.3 V or higher than 3.6 V (combined absolute maximum ratings for onboard components). See section 5.1 for further information. Figure 11 – SmartRF06EB external power supply header (J501) User’s Guide SWRU321A – May 2013 Page 17/32 6.3 Power Domains The SmartRF06EB is divided into three power domains, described in detail in the following sections. The SmartRF06EB components, and what power domain they belong to, is shown in Figure 12 and Table 5 below. XDS domain (3.3 V) XDS100v3, XDS LEDs EM domain (1.8 - 3.6 V) ACC, ALS, keys, LEDs 3.3 V domain (3.3 V) LCD, SD card Power sources USB, batteries, external supply Level shifters Level shifters Mounted EM Figure 12 – Power domain overview of SmartRF06EB Component Power domain Power source Evaluation Module EM domain (LO_VDD) USB, battery, external General Purpose LEDs EM domain (LO_VDD) USB, battery, external Accelerometer EM domain (LO_VDD) USB, battery, external Ambient Light Sensor EM domain (LO_VDD) USB, battery, external Current measurement MSP MCU EM domain (LO_VDD) USB, battery, external LEDs EM domain (LO_VDD) USB, battery, external XDS100v3 Emulator XDS domain USB XDS100v3 LEDs XDS domain USB SD Card Slot 3.3 V domain (HI_VDD) Same as EM domain LCD 3.3 V domain (HI_VDD) Same as EM domain Table 5 – Power domain overview of SmartRF06EB 6.3.1 XDS Domain The XDS100v3 Emulator (see section 6.1) onboard the SmartRF06EB is in the XDS domain. The XDS domain is powered over USB. The USB voltage supply (+5 V) is down-converted to +3.3 V and +1.5 V for the different components of the XDS100v3 Emulator. The SmartRF06EB must be connected to e.g. a PC over USB for the XDS domain to be powered up. The domain is turned on/off by the SmartRF06EB main power switch. 6.3.2 EM Domain The mounted EM board and most of the SmartRF06EB peripherals are powered in the EM domain and signals in this domain (accessible by the EM), are prefixed “LV_” in the schematics. Table 5 lists the EB peripherals that are powered in the EM domain. The domain is turned on/off by the SmartRF06EB power switch. User’s Guide SWRU321A – May 2013 Page 18/32 The EM domain may be powered using various power sources; USB powered (regulated to 3.3 V), battery powered (regulated to 2.1 V or unregulated) and using an external power supply (regulated to 2.1 V or unregulated). When battery powered or powered by an external source, the EM power domain is by default regulated to 2.1 V using a step down converter. The step down converter may be bypassed by mounting a jumper on J502 (Figure 13), powering the EM domain directly from the source. When J502 is not mounted, the EM power domain is regulated to 2.1 V. The maximum current consumption of the EM power domain is then limited by the regulator to 410 mA. Figure 13 – Mount a jumper on J502 to bypass EM domain voltage regulator 6.3.3 3.3 V Domain The 3.3 V domain is a sub domain of the EM domain. The 3.3 V domain is regulated to 3.3 V using a buck-boost converter, irrespective of the source powering the EM domain. Signals in the 3.3V domain (controlled by the EM) are prefixed “HV_” for High Voltage in the schematics. Two EB peripherals are in the 3.3 V domain, the LCD and the SD card slot, as listed in Table 5. These peripherals are connected to the EM domain via level shifters U401 and U402. The 3.3 V domain may be switched on (off) completely by the mounted EM board by pulling signal LV_3.3V_EN to a logical 1 (0). See Table 14 in section 6.11.1 for details about the mapping between the EM and signals onboard the SmartRF06EB. 6.4 LCD The SmartRF06EB comes with a 128x64 pixels display from Electronic Assembly (DOGM128E-6) [4]. The LCD display is available to mounted EM via a SPI interface, enabling software development of user interfaces and demo use. Table 6 shows an overview of the I/O signals related to the LCD. The recommended operating condition for the LCD display is a supply voltage between 3.0 V and 3.3 V. The LCD display is powered from the 3.3 V power domain (HI_VDD). The min (max) operating temperature is -20 (+70) ˚C. The LCD connector on SmartRF06EB is very tight to ensure proper contact between the EM and the LCD. Be extremely cautious when removing the LCD to avoid the display from breaking. NOTE: Mounting a jumper on J502 will not have any effect if the SmartRF06EB is powered over USB (when the power source selection switch, S502, is in “USB” position). User’s Guide SWRU321A – May 2013 Page 19/32 Signal name Description Probe header EM pin LV_3.3V_EN 3.3 V domain enable signal4 RF1.15 (P407.1) RF1.15 LV_LCD_MODE LCD mode signal RF1.11 (P406.7) RF1.11 ¯L¯V¯_¯L¯C¯D¯_¯R¯¯E¯S¯E¯T¯ LCD reset signal (active low) RF1.13 (P406.9) RF1.13 ¯L¯V¯_¯L¯C¯D¯_¯C¯¯S LCD Chip Select (active low) RF1.17 (P407.3) RF1.17 LV_SPI_SCK SPI Clock RF1.16_SCK (P407.2) RF1.16 LV_SPI_MOSI SPI MOSI (LCD input) RF1.18_MOSI (P407.4) RF1.18 Table 6 – LCD signal connections 6.5 Micro SD Card Slot The SmartRF06EB has a micro SD card slot for connecting external SD/MMC flash devices (flash device not included). A connected flash device is available to the mounted EM via a SPI interface, giving it access to extra flash, enabling over-the-air upgrades and more. Table 8 shows an overview of I/O signals related to the micro SD card slot. The micro SD card is powered from the 3.3 V power domain (HI_VDD). Signal name Description Probe header EM pin LV_3.3V_EN 3.3 V domain enable signal4 RF1.15 (P407.1) RF1.15 ¯L¯V¯_¯S¯D¯C¯¯A¯R¯D¯_¯C¯¯S SD card Chip Select (active low) RF2.12 (P411.1) RF2.12 LV_SPI_SCK SPI Clock RF1.16_SCK (P407.2) RF1.16 LV_SPI_MOSI SPI MOSI (SD card input) RF1.18_MOSI (P407.4) RF1.18 LV_SPI_MISO SPI MISO (SD card output) RF1.20_MISO (P407.5) RF1.20 Table 7 – Micro SD Card signal connections 6.6 Accelerometer The SmartRF06EB is equipped with a BMA250 digital accelerometer from Bosch Sensortech [6]. The accelerometer is available to the mounted EM via an SPI interface and has two dedicated interrupt lines. The accelerometer is suitable for application development, prototyping and demo use. Table 8 shows an overview of I/O signals related to the accelerometer. The recommended operating condition for the accelerometer is a supply voltage between 1.62 V and 3.6 V. The min (max) operating temperature is -40 (+85) ˚C. Signal name Description Probe header EM pin LV_ACC_PWR Acc. power enable signal RF2.8 (P407.8) RF2.8 LV_ACC_INT1 Acc. interrupt signal RF2.16 (P411.5) RF2.16 LV_ACC_INT2 Acc. interrupt signal RF2.14 (P411.3) RF2.14 ¯L¯V¯_¯A¯C¯C¯¯¯C¯S¯ Acc. Chip Select (active low) RF2.10 (P407.9) RF2.10 LV_SPI_SCK SPI Clock RF1.16_SCK (P407.2) RF1.16 LV_SPI_MOSI SPI MOSI (acc. input) RF1.18_MOSI (P407.4) RF1.18 4 The LCD and SD card are both powered in the 3.3 V domain and cannot be powered on/off individually. User’s Guide SWRU321A – May 2013 Page 20/32 LV_SPI_MISO SPI MISO (acc. output) RF1.20_MISO (P407.5) RF1.20 Table 8 – Accelerometer signal connections 6.7 Ambient Light Sensor The SmartRF06EB has an analog SFH 5711 ambient light sensor (ALS) from Osram [7] that is available for the mounted EM via the EM connectors, enabling quick application development for demo use and prototyping. Figure 14 and Table 9 shows an overview of I/O signals related to the ambient light sensor. The recommended operating condition for the ambient light sensor is a supply voltage between 2.3 V and 5.5 V. The min (max) operating temperature is -40 (+85) ˚C. Ambient Light Sensor LV_ALS_OUT LV_ALS_PWR 22 kOhm Figure 14 – Simplified schematic of Ambient Light Sensor setup Signal name Description Probe header EM pin LV_ALS_PWR ALS power enable signal RF2.6 (P407.7) RF2.6 LV_ALS_OUT ALS output signal (analog) RF2.5 (P411.6) RF2.5 Table 9 – Ambient Light Sensor signal connections 6.8 Buttons There are 6 buttons on the SmartRF06EB. Status of the LEFT, RIGHT, UP, DOWN and SELECT buttons are available to the mounted EM. These buttons are intended for user interfacing and development of demo applications. The EM RESET button resets the mounted EM by pulling its reset line low (¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯). Table 10 shows an overview of I/O signals related to the buttons. Signal name Description Probe header EM pin LV_BTN_LEFT Left button (active low) RF1.6 (P406.4) RF1.6 LV_BTN_RIGHT Right button (active low) RF1.8 (P406.5) RF1.8 LV_BTN_UP Up button (active low) RF1.10 (P406.6) RF1.10 LV_BTN_DOWN Down button (active low) RF1.12 (P406.8) RF1.12 LV_BTN_SELECT Select button (active low) RF1.14 (P406.10) RF1.14 ¯L¯V¯_¯B¯T¯N¯_¯R¯¯E¯S¯E¯T¯ EM reset button (active low) ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ (P411.4) RF2.15 Table 10 – Button signal connections User’s Guide SWRU321A – May 2013 Page 21/32 6.9 LEDs 6.9.1 General Purpose LEDs The four LEDs D601, D602, D603, D604 can be controlled from the mounted EM and are suitable for demo use and debugging. The LEDs are active high. Table 11 shows an overview of I/O signals related to the LEDs. Signal name Description Probe header EM pin LV_LED_1 LED 1 (red) RF2.11 (P407.10) RF2.11 LV_LED_2 LED 2 (yellow) RF2.13 (P411.2) RF2.13 LV_LED_3 LED 3 (green) RF1.2 (P406.1) RF1.2 LV_LED_4 LED 4 (red-orange) RF1.4 (P406.2) RF1.4 Table 11 – General purpose LED signal connections 6.9.2 XDS100v3 Emulator LEDs The XDS100v3 emulator has two LEDs to indicate its status, D2 and D4. The LEDs are located on the top side of the SmartRF06EB. LED D2 is lit whenever the XDS100v3 Emulator is powered, while LED D4 (ADVANCED MODE) is lit when the XDS100v3 is in an active cJTAG debug state. 6.10 EM Connectors The EM connectors, shown in Figure 15, are used for connecting an EM board to the SmartRF06EB. The connectors RF1 and RF2 are the main interface and are designed to inhibit incorrect mounting of the EM board. The pin-out of the EM connectors is given in Table 12 and Table 13. Figure 15 – SmartRF06EB EM connectors RF1 and RF2 User’s Guide SWRU321A – May 2013 Page 22/32 EM pin Signal name Description Probe header Breakout header RF1.1 GND Ground RF1.2 RF1.2 GPIO signal to EM board P406.1 P403.1-2 RF1.3 RF1.3_UART_CTS UART back channel / GPIO P412.4 P408.15-16 RF1.4 RF1.4 GPIO signal to EM board P406.2 P403.3-4 RF1.5 RF1.5 GPIO signal to EM board P406.3 P403.5-6 RF1.6 RF1.6 GPIO signal to EM board P406.4 P403.7-8 RF1.7 RF1.7_UART_RX UART back channel (EM RX) P412.2 P408.11-12 RF1.8 RF1.8 GPIO signal to EM board P406.5 P403.9-10 RF1.9 RF1.9_UART_TX UART back channel (EM TX) P412.3 P408.13-14 RF1.10 RF1.10 GPIO signal to EM board P406.6 P403.11-12 RF1.11 RF1.11 GPIO signal to EM board P406.7 P403.13-14 RF1.12 RF1.12 GPIO signal to EM board P406.8 P403.15-16 RF1.13 RF1.13 GPIO signal to EM board P406.9 P403.17-18 RF1.14 RF1.14 GPIO signal to EM board P406.10 P403.19-20 RF1.15 RF1.15 GPIO signal to EM board P407.1 P404.1-2 RF1.16 RF1.16_SPI_SCK EM SPI Clock P407.2 P404.3-4 RF1.17 RF1.17 GPIO signal to EM board P407.3 P404.5-6 RF1.18 RF1.18_SPI_MOSI EM SPI MOSI P407.4 P404.7-8 RF1.19 GND Ground RF1.20 RF1.20_SPI_MISO EM SPI MISO P407.5 P404.9-10 Table 12 – EM connector RF1 pin-out EM pin Signal name Description Probe header Breakout header RF2.1 RF2.1_JTAG_TCK JTAG Test Clock P409.9 P408.1-2 RF2.2 GND Ground RF2.3 RF_VDD2 EM power TP10 J503.1-2 RF2.4 RF2.4_JTAG_TMS JTAG Test Mode Select P409.7 P408.3-4 RF2.5 RF2.5 GPIO signal to EM board P407.6 P404.11-12 RF2.6 RF2.6 GPIO signal to EM board P407.7 P404.13-14 RF2.7 RF_VDD1 EM power TP10 J503.1-2 RF2.8 RF2.8 GPIO signal to EM board P407.8 P404.15-16 RF2.9 RF_VDD1 EM power TP10 J503.1-2 RF2.10 RF2.10 GPIO signal to EM board P407.9 P404.17-18 RF2.11 RF2.11 GPIO signal to EM board P407.10 P404.19-20 RF2.12 RF2.12 GPIO signal to EM board P411.1 P405.1-2 RF2.13 RF2.13 GPIO signal to EM board P411.2 P405.3-4 RF2.14 RF2.14 GPIO signal to EM board P411.3 P405.5-6 RF2.15 ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ EM reset signal (active low) P411.4 P405.7-8 RF2.16 RF2.16 GPIO signal to EM board P411.5 P405.9-10 RF2.17 RF2.17_JTAG_TDI GPIO / JTAG Test Data In P409.5 P408.5-6 RF2.18 RF2.18_UART_RTS GPIO / UART Back Channel P412.5 P408.17-18 RF2.19 RF2.19_JTAG_TDO GPIO / JTAG Test Data Out P409.13 P408.7-8 RF2.20 GND Ground Table 13 – EM connector RF2 pin-out User’s Guide SWRU321A – May 2013 Page 23/32 6.11 Breakout Headers and Jumpers The SmartRF06EB has several breakout headers, giving access to all EM connector pins. An overview of the SmartRF06EB I/O breakout headers is given in Figure 16. Probe headers P406, P407, P411 and P412 give access to the I/O signals of the mounted EM. Breakout headers P403, P404 and P405 allow the user to map any EM I/O signal to any peripheral on the SmartRF06EB. The XDS bypass header (P408) makes it possible to disconnect the XDS100v3 Emulator onboard the EB from the EM. Using the 20-pin ARM JTAG header (P409) or the 10-pin ARM Cortex Debug Header (P410), it is possible to debug external targets using the onboard emulator. Evaluation Module Peripheral probe headers P406, P407, P411 I/O breakout headers P403, P404, P405 SmartRF06EB peripherals ACC, ALS, keys, LCD, LED, SD card XDS bypass header P408 XDS100v3 Emulator 20-pin ARM-JTAG Debug Header P409 10-pin Cortex Debug Header P410 UART back channel probe header P412 Figure 16 – SmartRF06EB I/O breakout overview 6.11.1 I/O Breakout Headers The I/O breakout headers on SmartRF06EB consist of pin connectors P406, P407, P411 and P412. P406, P407 and P411 are located at the top left side of SmartRF06EB. All EM signals available on these probe headers can be connected to or disconnected from SmartRF06EB peripherals using jumpers on headers P403, P404, P405. Probe header P412 is located near the bottom right corner of the SmartRF06EB. The signals available on P412 are connected to the XDS100v3 Emulator’s UART back channel using jumpers on header P408. The I/O breakout mapping between the SmartRF06EB and the mounted EM is given in Table 14. The leftmost column in the below table refers to the silk print seen on the SmartRF06EB. The rightmost column shows the corresponding CC2538 I/O pad on CC2538EM. NOTE: By default, all jumpers are mounted on P403, P404, P405 and P408. The default configuration is assumed in this user’s guide unless otherwise stated. User’s Guide SWRU321A – May 2013 Page 24/32 Probe header Silk print EB signal name EM connector CC2538EM I/O P406 RF1.2 LV_LED_3 RF1.2 PC2 RF1.4 LV_LED_4 RF1.4 PC3 RF1.5 NC RF1.5 PB1 RF1.6 LV_BTN_LEFT RF1.6 PC4 RF1.8 LV_BTN_RIGHT RF1.8 PC5 RF1.10 LV_BTN_UP RF1.10 PC6 RF1.11 LV_LCD_MODE RF1.11 PB2 RF1.12 LV_BTN_DOWN RF1.12 PC7 RF1.13 ¯L¯V¯_¯L¯C¯D¯_¯R¯¯E¯S¯E¯T¯ RF1.13 PB3 RF1.14 LV_BTN_SELECT RF1.14 PA3 P407 RF1.15 LV_3.3V_EN RF1.15 PB4 RF1.16_SCK LV_SPI_SCK RF1.16 PA2 RF1.17 ¯L¯V¯_¯L¯C¯D¯_¯C¯¯S RF1.17 PB5 RF1.18_MOSI LV_SPI_MOSI RF1.18 PA4 RF1.20_MISO LV_SPI_MISO RF1.20 PA5 RF2.5 LV_ALS_OUT RF2.5 PA6 RF2.6 LV_ALS_PWR RF2.6 PA7 RF2.8 LV_ACC_PWR RF2.8 PD4 RF2.10 ¯L¯V¯_¯A¯C¯C¯¯¯C¯S¯ RF2.10 PD5 RF2.11 LV_LED_1 RF2.11 PC0 P411 RF2.12 ¯L¯V¯_¯S¯D¯C¯¯A¯R¯D¯_¯C¯¯S RF2.12 PD0 RF2.13 LV_LED_2 RF2.13 PC1 RF2.14 LV_ACC_INT2 RF2.14 PD1 RF2.15_RESET ¯L¯V¯_¯B¯T¯N¯_¯R¯¯E¯S¯E¯T¯ RF2.15 nRESET RF2.16 LV_ACC_INT1 RF2.16 PD2 P412 EM_UART_RX RF1.7_UART_RX RF1.7 PA0 EM_UART_TX RF1.9_UART_TX RF1.9 PA1 EM_UART_CTS RF1.3_UART_CTS RF1.3 PB0 EM_UART_RTS RF2.18_UART_RTS RF2.18 PD3 Table 14 – SmartRF06EB I/O breakout overview 6.11.2 XDS100v3 Emulator Bypass Headers The XDS100v3 Emulator bypass header, P408, is by default mounted with jumpers (Figure 17), connecting the XDS100v3 Emulator to a mounted EM or external target. By removing the jumpers on P408, the XDS100v3 Emulator may be disconnected from the target. Figure 17 – XDS100v3 Emulator Bypass Header (P408) User’s Guide SWRU321A – May 2013 Page 25/32 6.11.3 20-pin ARM JTAG Header The SmartRF06EB comes with a standard 20-pin ARM JTAG header [8] (Figure 18), enabling the user to debug an external target using the XDS100v3 Emulator. The pin-out of the ARM JTAG header is given in Table 15. Chapter 7 has more information on how to debug an external target using the XDS100v3 Emulator onboard the SmartRF06EB. Figure 18 – 20-pin ARM JTAG header (P409) Pin Signal Description EB signal name XDS bypass header P409.1 VTRef Voltage reference VDD_SENSE P408.19-20 P409.2 VSupply Voltage supply NC P409.3 nTRST Test Reset NC P409.4 GND Ground GND P409.5 TDI Test Data In RF2.17_JTAG_TDI P408.5-6 P409.6 GND Ground GND P409.7 TMS Test Mode Select RF2.4_JTAG_TMS P408.3-4 P409.8 GND Ground GND P409.9 TCK Test Clock RF2.1_JTAG_TCK P408.1-2 P409.10 GND Ground GND P409.11 RTCK Return Clock NC P409.12 GND Ground GND P409.13 TDO Test Data Out RF2.19_JTAG_TDO P408.7-8 P409.14 GND Ground GND P409.15 nSRST System Reset ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ P408.9-10 P409.16 GND Ground GND P409.17 DBGRQ Debug Request NC P409.18 GND Ground GND P409.19 DBGACK Debug Acknowledge NC P409.20 GND Ground GND Table 15 – 20-pin ARM JTAG header pin-out (P409) User’s Guide SWRU321A – May 2013 Page 26/32 6.11.4 10-pin ARM Cortex Debug Header The SmartRF06EB comes with a standard 10-pin ARM Cortex debug header [8] (Figure 19), enabling the user to debug an external target using the XDS100v3 Emulator. The ARM Cortex debug header is located near the right hand edge of the EB. The header pin-out is given in Table 16. Chapter 7 has more information on how to debug an external target using the XDS100v3 Emulator onboard the SmartRF06EB. Figure 19 – 10-pin ARM Cortex Debug header (P410) Pin Signal Description EB signal name XDS bypass header P410.1 VCC Voltage reference VDD_SENSE P408.19-20 P410.2 TMS Test Mode Select RF2.4_JTAG_TMS P408.3-4 P410.3 GND Ground GND P410.4 TCK Test Clock RF2.1_JTAG_TCK P408.1-2 P410.5 GND Ground GND P410.6 TDO Test Data Out RF2.19_JTAG_TDO P408.7-8 P410.7 KEY Key NC P410.8 TDI Test Data In RF2.17_JTAG_TDI P408.5-6 P410.9 GNDDetect Ground detect GND P410.10 nRESET System Reset ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ P408.9-10 Table 16 – 10-pin ARM Cortex Debug header pin-out (P410) User’s Guide SWRU321A – May 2013 Page 27/32 6.12 Current Measurement The SmartRF06EB provides two options for easy measurements of the current consumption of a mounted EM. The following sections describe these two options in detail. 6.12.1 High-side current sensing The SmartRF06EB comes with a current sensing unit for measuring the current consumption of the mounted EM (Figure 20). The current sensing setup is “high-side”, that is, it measures the current going to the mounted EM. The current is converted to a voltage, available at the CURMEAS_OUTPUT test point (TP11), located near the right edge of the SmartRF06EB. Using the SmartRF06EB together with for example an oscilloscope makes it easy to measure the EM current consumption as a function of time. The relationship between the voltage measured at CURMEAS_OUTPUT, VCURMEAS, and the EM current consumption, IEM, is given by Equation 1 below. 15 V I CURMEAS EM (1) G = 100 0.15 Ohm To EM IEM VCURMEAS Figure 20 – Simplified schematic of high-side current sensing setup 6.12.2 Current Measurement Jumper SmartRF06EB has a current measurement header, J503, for easy measurement of EM current consumption. Header J503 is located on the upper right hand side of the EB. By replacing the jumper with an ammeter, as shown in Figure 21, the current consumption of the mounted EM can be measured. Figure 21 – Measuring current consumption using jumper J503 User’s Guide SWRU321A – May 2013 Page 28/32 7 Debugging an external target using SmartRF06EB You can easily use XDS100v3 Emulator onboard the SmartRF06EB to debug an external target. It is in this chapter assumed that the target is self-powered. When debugging an external, self-powered target using SmartRF06EB, make sure to remove the jumper from the current measurement header (J503) as shown in the second scenario of Figure 22. In this scenario, the onboard XDS100v3 senses the target voltage of the external target. In the left side scenario of the same figure, the XDS100v3 senses the target voltage of the EB’s EM domain. Having a jumper mounted on header J503 when debugging an external target will cause a conflict between the EB’s EM domain supply voltage and the target’s supply voltage. This may result in excess currents, damaging the onboard components of the SmartRF06EB or the target board. In Figure 22, the right hand side scenario shows how it is possible to debug an EM mounted on the SmartRF06EB using an external debugger. In this scenario, all the jumpers must be removed from the SmartRF06EB header P408 to avoid signaling conflicts between the onboard XDS100v3 Emulator and the external debugger. XDS100v3 06EB XDS + EM EM (EM domain) XDS100v3 06EB XDS + external target Ext. target (Target VDD) EM (EM domain) XDS100v3 External debugger + EM External debugger EM (EM domain) P408 (jumpers on) P408 (jumpers off) J503 (mounted) J503 (mounted) J503 (not mounted) Current measurement jumper XDS bypass header P408 (jumpers on) Debug header P409/P410 P409/P410 Figure 22 – Simplified connection diagram for different debugging scenarios User’s Guide SWRU321A – May 2013 Page 29/32 7.1 20-pin ARM JTAG Header The SmartRF06EB has a standard 20-pin ARM JTAG header mounted on the right hand side (P409). Make sure all the jumpers on the XDS bypass header (P408) are mounted and that the jumper is removed from header J503. Connect the external board to the 20-pin ARM JTAG header (P409) using a 20-pin flat cable as seen in Figure 23. Make sure pin 1 on P409 matches pin 1 on the external target. See sections 6.11.3 and 6.11.2 for more info about the 20-pin ARM JTAG header and the XDS bypass header, respectively. Figure 23 – Debugging external target using SmartRF06EB 7.2 10-pin ARM Cortex Debug Header The SmartRF06EB has a standard 10-pin ARM Cortex Debug header mounted on the right hand side (P410). Make sure all the jumpers on the XDS bypass header (P408) are mounted and that the jumper is removed from header J503. Connect the external board to the 10-pin ARM JTAG header using a 10-pin flat cable. Make sure pin 1 on P410 matches pin 1 on the external target See sections 6.11.4 and 6.11.2 for more info about the 10-pin ARM Cortex Debug header and the XDS bypass header, respectively. User’s Guide SWRU321A – May 2013 Page 30/32 7.3 Custom Strapping If the external board does not have a 20-pin ARM JTAG connector nor a 10-pin ARM Cortex connector, the needed signals may be strapped from the onboard XDS100v3 Emulator to the external target board. Make sure all the jumpers on the XDS bypass header (P408) are mounted and that the jumper is removed from header J503. Table 17 shows the signals that must be strapped between the SmartRF06EB and the target board. Table 18 shows additional signals that are optional or needed for debugging using 4-pin JTAG. Figure 24 shows where the signals listed in Table 17 and Table 18 can be found on the 20-pin ARM JTAG header. EB Signal Name EB Breakout Description VDD_SENSE P409.1 Target voltage supply GND P409.4 Common ground for EB and external board RF2.1_JTAG_TCK P409.9 Test Clock RF2.4_JTAG_TMS P409.7 Test Mode Select Table 17 – Debugging external target: Minimum strapping (cJTAG support) EB Signal Name EB Breakout Description RF2.17_JTAG_TDI P409.5 Test Data In (optional for cJTAG) RF2.19_JTAG_TDO P409.13 Test Data Out (optional for cJTAG) ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ P409.15 Target reset signal (optional) Table 18 – Debugging external target: Optional strapping VDD_SENSE RF2.17_JTAG_TDI RF2.4_JTAG_TMS RF2.1_JTAG_TCK RF2.19_JTAG_TDO GND 2-pin cJTAG 4-pin JTAG Optional + RF2.15_RESET Figure 24 – ARM JTAG header (P409) with strapping to debug external target User’s Guide SWRU321A – May 2013 Page 31/32 8 Frequently Asked Questions Q1 Nothing happens when I power up the evaluation board. Why? A1 Make sure you have a power source connected to the EB. Verify that the power source selection switch (S502) is set correctly according to your power source. When powering the EB from either batteries or an external power source, S502 should be in “BAT” position. When powering the EB over USB, the switch should be in “USB” position. Also, make sure the EM current measurement jumper (J503) is short circuited. Q2 Why are there two JTAG connectors on the SmartRF06EB, which one should I use? A2 The SmartRF06EB comes with two different standard debug connectors, the 20-pin ARM JTAG connector (P409) and the compact 10-pin ARM Cortex debug connector (P410). These debug connectors are there to more easily debug external targets without the need of customized strapping. For more details on how to debug external targets using the SmartRF06EB, see chapter 7. Q3 Can I use the SmartRF06EB to debug an 8051 SoC such as CC2530? A3 No, you cannot debug an 8051 SoC using the SmartRF06EB. Q4 When connecting my SmartRF06EB to my PC, no serial port appears. Why? A4 It may be that the virtual COM port on the SmartRF06EB’s XDS100 channel B hasn’t been enabled. Section 4.1.2.1.1 describes how to enable the Vritual COM Port in the USB driver. User’s Guide SWRU321A – May 2013 Page 32/32 9 References [1] SmartRF Studio Product Page http://www.ti.com/tool/smartrftm-studio [2] FTDI USB Driver Page http://www.ftdichip.com [3] SmartRF Flash Programmer Product Page http://www.ti.com/tool/flash-programmer [4] XDS100 Emulator Product Page http://processors.wiki.ti.com/index.php/XDS100 [5] Electronic Assembly DOGM128-6 Datasheet http://www.lcd-module.com/eng/pdf/grafik/dogm128e.pdf [6] Bosch Sensortec BMA250 Datasheet http://ae-bst.resource.bosch.com/media/products/dokumente/bma250/bst-bma250- ds002-05.pdf [7] Osram SFH 5711 http://www.osram-os.com [8] Cortex-M Debug Connectors http://infocenter.arm.com/help/topic/com.arm.doc.faqs/attached/13634/cortex_debu g_connectors.pdf 10 Document History Revision Date Description/Changes SWRU321A 2013-05-21 Minor fixes to Figure 4. Fixed incorrect EM mapping in Table 11. Added steps for installing SmartRF06EB on Linux. SWRU321 2012-09-07 Initial version. User’s Guide SWRU321A – May 2013 Appendix A Schematics SmartRF06EB 1.2.1 LOW VOLTAGE PERIPHERALS XDS100v3 - FPGA XDS100v3 - FTDI EM INTERFACE/ LEVEL SHIFTERS POWER SUPPLY HIGH VOLTAGE PERIPHERALS 1 FM2 FIDUCIAL_MARK_1mm 1 FM4 FIDUCIAL_MARK_1mm H2 HOLE_3 H3 HOLE_3 1 FM5 FIDUCIAL_MARK_1mm H1 HOLE_3 1 FM6 FIDUCIAL_MARK_1mm 1 FM1 FIDUCIAL_MARK_1mm H4 HOLE_3 1 FM3 FIDUCIAL_MARK_1mm TP13 TESTPOINT_PAD TP12 TESTPOINT_PAD ISSUED 1(7) SmartRF06EB - Top Level SCALE SHEET DWG NO. REV. DWG COMPANY NAME SIZE FSCM NO. CONTRACT NO. Texas Instruments A3 DRAWN 13/07/12 13/07/12 12/07/12 MAW 1.2.1 APPROVALS DATE CHECKED PRG_TDO EXT_SELECT ADV_MODE V_USB V_USB RESET_N VCCPLF T_TVD VTARGET UART_EN_N P3.3VXDS P1.8V P3.3VXDS P3.3VXDS +1.5V P3.3VXDS P3.3VXDS P3.3VXDS P3.3VXDS P3.3VXDS P3.3VXDS P3.3VXDS P3.3VXDS 1 2 3 4 STANDBY VDD OUTPUT ASDM GND O1 ASDM 100.000MHZ 1 2 3 Q1 BC846 1 2 3 4 5 6 7 8 9 10 INA+ INAOUTA OUTB V+ INB+ OPA2363 INBVENA ENB U6 OPA2363 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 GND GND GND GND GND UART_EN_N GND VCCPLF CLK_100M P1.5V P3.3VXDS RESET_N DTSA_BYP CBL_DIS EMU1 POD_RLS P3.3VXDS TVD CLK_FAIL SRST_OUT RTCK EMU0 EMU_EN TRST TMS TDO TDI TCK P1.5V P3.3VXDS SUSPEND ALT_FUNC PRG_TCK PRG_TMS PRG_TDI PRG_TDO PRG_TCK PRG_TDI PRG_TMS P3.3VXDS P3.3VXDS PRG_TDO PRG_TRST P3.3VXDS VTARGET P1.5V VTARGET PWRGOOD VTARGET P1.5V ADV_MODE EXT_SELECT T_DIS VTARGET IO32RSB0 GBC0/IO35RSB0 IO13RSB0 GAA0/IO00RSB0 GBC1/IO36RSB0 IO15RSB0 GAA1/IO01RSB0 GAC1/IO05RSB0 GBB0/IO37RSB0 IO19RSB0 GNDQ GBA2/IO41RSB0 GBA0/IO39RSB0 GBB1/IO38RSB0 GBA1/IO40RSB0 GCC2/IO59RSB0 GBB2/IO43RSB0 GDC1/IO61RSB0 IO09RSB0 GCC1/IO51RSB0 GDC0/IO62RSB0 GCC0/IO52RSB0 VMV0 GDA1/IO65RSB0 VCCIB0 GAB1/IO03RSB0 GCA1/IO55RSB0 TDO VCC GBC2/IO45RSB0 VCC VJTAG VCC VCCIB1 VCC IO11RSB0 VMV1 NC GCA0/IO56RSB0 TMS GAC0/IO04RSB0 TRST GDA2/IO70RSB1 IO84RSB1 TDI VPUMP IO87RSB1 GDB2/IO71RSB1 IO42RSB0 IO93RSB1 IO75RSB1 TCK IO96RSB1 IO94RSB1 GDC2/IO72RSB1 IO97RSB1 IO81RSB1 GND IO95RSB1 IO99RSB1 GCB2/IO58RSB0 GND IO100RSB1 IO47RSB0 IO102RSB1 GEC2/IO104RSB1 GEB2/IO105RSB1 GEA2/IO106RSB1 GNDQ VMV1 GEA0/IO107RSB1 GND GEA1/IO108RSB1 GEB0/IO109RSB1 GEB1/IO110RSB1 GEC0/IO111RSB1 GFA2/IO120RSB1 GFA1/IO121RSB1 VCCPLF GFA0/IO122RSB1 VCOMPLF GFB0/IO123RSB1 GFB1/IO124RSB1 IO129RSB1 IO130RSB1 GAC2/IO131RSB1 IO132RSB1 GAA2/IO67RSB1 GND GAB2/IO69RSB1 GND VCCIB1 VCCIB0 GND IO68RSB1 IO28RSB0 IO25RSB0 IO22RSB0 IO07RSB0 GAB0/IO02RSB0 A3PN125-ZVQG100 U11 A3PN125-VQFP 1 2 C23 C_4U7_0603_X5R_K_6 1 2 C27 C_4U7_0603_X5R_K_6 1 2 C26 C_4U7_0603_X5R_K_6 1 2 C24 C_100N_0402_X5R_K_10 1 2 C22 C_100N_0402_X5R_K_10 1 2 C21 C_100N_0402_X5R_K_10 1 2 C25 C_100N_0402_X5R_K_10 2 1 D1 CDBP0130L-G 2 1 R1 L_BEAD_102_0402 1 2 D4 LED_EL19-21SRC 1 2 J5 PINROW_SMD_1X2_2.54MM 1 2 T_TMS R47 R_10K_0402_F 1 2 R50 R_1K0_0402_F 1 2 R49 R_1K0_0402_F 1 2 R27 R_1K0_0402_F 1 2 R24 R_5K1_0402_J 1 2 R54 R_5K1_0402_J 1 2 R41 R_10K_0402_F 1 2 R48 R_10K_0402_F 1 2 R46 R_10K_0402_F 2 1 PWRGOOD R31 R_10K_0402_F 2 1 PRG_TMS R43 R_10K_0402_F 2 1 R44 R_10K_0402_F 1 2 T_EMU4 R52 R_51_0402_G 1 2 T_EMU2 R51 R_51_0402_G 1 2 T_EMU3 R53 R_51_0402_G 1 2 T_TDI R18 R_51_0402_G 1 2 T_RTCK R23 R_51_0402_G 1 2 T_TRST R19 R_51_0402_G 1 2 T_EMU5 R55 R_51_0402_G 1 2 T_TMS R15 R_51_0402_G 1 2 T_TDO R16 R_51_0402_G 1 2 T_TCK R17 R_51_0402_G 1 2 CLK_100M R33 R_51_0402_G 1 2 R30 R_120K_0402_F 2 1 R29 R_120K_0402_F 1 2 R25 R_120K_0402_F 1 2 R42 R_220_0402_J 1 2 T_EMU1 R20 R_470_0402_F 1 2 T_EMU0 R22 R_470_0402_F 1 2 T_SRST R21 R_470_0402_F 1 2 C34 C_15N_0402_X7R_K_25 1 2 T_DIS R12 R_0_0402 1 2 3 4 T_TVD 5 T_TDI T_TDO T_RTCK IO2 IO3 IO1 GND TPD4E002 IO4 TUP8D4E002 1 2 3 4 T_DIS 5 T_TRST T_EMU2 T_TMS IO2 IO3 IO1 GND TPD4E002 IO4 TUP7D4E002 1 2 3 4 T_TCK 5 T_EMU0 T_SRST T_EMU1 IO2 IO3 IO1 GND TPD4E002 IO4 TUP9D4E002 1 2 3 4 T_EMU5 5 T_EMU3 GND T_EMU4 IO2 IO3 IO1 GND TPD4E002 IO4 TUP12D4E002 TP7 PRG_TRST Testpoint_Circle_40mils TP6 PRG_TCK Testpoint_Circle_40mils TP5 PRG_TDI Testpoint_Circle_40mils TP9 Testpoint_Circle_40mils TP8 Testpoint_Circle_40mils TP4 PRG_TMS Testpoint_Circle_40mils PRG_TDO TP3 Testpoint_Circle_40mils ISSUED SmartRF06EB - XDS100v3 - FPGA SCALE SHEET 2(7) DWG NO. REV. DWG COMPANY NAME SIZE FSCM NO. CONTRACT NO. Texas Instruments A3 DRAWN 13/07/12 13/07/12 The XDS100 is connected to the EM through connector P408. See the EM interface page for details. 12/07/12 MAW 1.2.1 APPROVALS DATE CHECKED PWREN V_USB USBDP EEPROM_DATA EEPROM_CS EEPROM_CLK P3.3VXDS P3.3VXDPS3.3VXDS P3.3VXDSP3.3VXDS P3.3VXDS P3.3VXDS P3.3VXDS +1.5V P3.3VXDS P3.3VXDS P3.3VXDS +1.5V +1.5V +1.5V P1.8V P1.8V P1.8V P1.8V P3.3VXDS P3.3VXDS VBUS P1.8V P1.8V P3.3VXDS P3.3VXDS 1 2 R5 R_1K0_0402_F 1 2 3 4 5 6 7 DVBUS D+ ID GND Shield Shield P1 USB-B_MICRO 1 2 3 4 5 6 GND DO CLK 93AA46B CS VCC DIN U1 93AA46B 1 2 C9 C_4U7_0603_X5R_K_6 1 C15 2 C_4U7_0603_X5R_K_6 1 C19 2 C_4U7_0603_X5R_K_6 1 2 C3 C_4U7_0603_X5R_K_6 1 2 C28 C_4U7_0603_X5R_K_6 1 2 C18 C_27P_0402_NP0_J_50 1 2 C13 C_27P_0402_NP0_J_50 1 2 C29 C_100N_0402_X5R_K_10 1 2 C6 C_100N_0402_X5R_K_10 1 2 C12 C_100N_0402_X5R_K_10 1 2 C8 C_100N_0402_X5R_K_10 1 2 C17 C_100N_0402_X5R_K_10 1 2 C11 C_100N_0402_X5R_K_10 1 2 C20 C_100N_0402_X5R_K_10 1 2 C30 C_100N_0402_X5R_K_10 1 2 C5 C_100N_0402_X5R_K_10 1 2 C4 C_100N_0402_X5R_K_10 1 2 C16 C_100N_0402_X5R_K_10 1 2 C14 C_100N_0402_X5R_K_10 1 2 C31 C_100N_0402_X5R_K_10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 USBDM TCK TDI TDO TMS TRST EMU_EN EMU0 RTCK SRST_OUT CLK_FAIL TVD POD_RLS EMU1 CBL_DIS DTSA_BYP ALT_FUNC SUSPEND PRG_TCK PRG_TDI PRG_TDO PRG_TMS PRG_TRST PWREN EEPROM_DATA EEPROM_CLK EEPROM_CS EECLK EECS RESET REF DP FT2232H DM TEST VREGOUT OSCO BCBUS7 BCBUS6 BCBUS4 BCBUS3 BCBUS2 BCBUS1 VCORE BDBUS7 BDBUS6 VREGIN BDBUS5 BDBUS4 BDBUS3 BDBUS2 BDBUS1 VCCIO ACBUS7 ACBUS6 ACBUS5 ACBUS3 ADBUS7 VCORE OSCI ADBUS6 BCBUS5 ADBUS3 VPHY SUSPEND GND GND GND GND GND GND GND GND ACBUS4 AGND EEDATA BCBUS0 VCORE ACBUS0 BDBUS0 ACBUS2 ADBUS2 VCCIO VCCIO PWREN ADBUS4 VCCIO ADBUS1 ADBUS5 VPLL ACBUS1 ADBUS0 U4 FT2232HL 2 1 R8 L_BEAD_102_0402 2 1 R7 L_BEAD_102_0402 1 2 D2 LED_EL19-21SYGC 2 1 R2 R_0_0402 1 2 R3 R_1K0_0402_F 2 1 R9 R_1K0_0402_F 1 2 R4 R_1K0_0402_F 2 1 R6 R_2K7_0402_F 1 2 R10 R_12K_0402_F 1 2 R28 R_270_0402_F 1 2 3 4 5 GND IO2 IO1 NC VCC TPD2E001 U3 TPD2E001 1 2 3 4 Y1 X_12.000/30/30/10/20 ISSUED 3(7) SmartRF06EB - XDS100v3 - FTDI SCALE SHEET DWG NO. REV. DWG COMPANY NAME SIZE FSCM NO. CONTRACT NO. Texas Instruments A3 DRAWN 13/07/12 13/07/12 12/07/12 MAW 1.2.1 APPROVALS DATE CHECKED VDD_MEASURED LV_SDCARD_CS LV_LED_2 LV_BTN_RESET LV_ACC_INT1 LV_ACC_INT2 RF2.12 RF2.13 RF2.14 RF2.15_RESET RF_VDD1 RF_VDD2 RF1.4 RF1.5 RF1.6 RF1.8 RF1.10 RF1.11 RF1.12 RF1.13 RF1.14 RF1.16_SPI_SCK RF1.17 RF1.18_SPI_MOSI RF1.20_SPI_MISO RF2.5 RF2.6 RF2.8 RF2.10 RF2.11 LV_LED_4 LV_BTN_LEFT LV_BTN_RIGHT LV_BTN_UP LV_LCD_MODE LV_BTN_DOWN LV_LCD_RESET LV_BTN_SELECT LV_3.3V_EN LV_SPI_SCK LV_LCD_CS LV_SPI_MOSI LV_SPI_MISO LV_ALS_OUT LV_ALS_PWR LV_ACC_PWR LV_ACC_CS LV_LED_1 RF1.2 RF1.4 RF1.5 RF1.6 RF1.8 RF1.10 RF1.11 RF1.12 RF1.13 RF1.14 RF1.7_UART_RX RF1.9_UART_TX RF1.3_UART_CTS RF2.18_UART_RTS VDD_MEASURED LV_BTN_RESET VDD_SENSE LO_VDD LO_VDD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 RF2.1_JTAG_TCK GND RF_VDD2 RF2.4_JTAG_TMS RF2.5 RF2.6 RF_VDD1 RF2.8 RF_VDD1 RF2.10 RF2.11 RF2.12 RF2.13 RF2.14 RF2.15_RESET RF2.16 RF2.17_JTAG_TDI RF2.18_UART_RTS RF2.19_JTAG_TDO GND RF2 SMD_HEADER_2X10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 LV_LED_3 RF1.2 P403 PINROW_SMD_2X10_2.54MM 1 2 3 4 5 6 7 8 9 10 P406 PINROW_1X10 1 2 3 4 5 6 P412 PINROW_1X6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 VDD_SENSE GND RF2.17_JTAG_TDI GND RF2.4_JTAG_TMS GND RF2.1_JTAG_TCK GND GND RF2.19_JTAG_TDO GND RF2.15_RESET GND GND GND P409 PINROW_SMD_2X10_2.54MM 1 2 3 4 5 6 7 8 9 10 RF1.15 RF1.16_SPI_SCK RF1.17 RF1.18_SPI_MOSI RF1.20_SPI_MISO RF2.5 RF2.6 RF2.8 RF2.10 RF2.11 P407 PINROW_1X10 1 2 C403 C_100N_0402_X5R_K_10 1 2 C507 C_100N_0402_X5R_K_10 1 2 C404 C_100N_0402_X5R_K_10 1 2 C508 C_100N_0402_X5R_K_10 1 2 R402 R_0_0603 1 2 3 4 S606 PUSH_BUTTON_SKRAAK 1 2 J503 PINROW_SMD_1X2_2.54MM 1 2 3 4 5 6 7 8 9 10 RF2.16 P405 PINROW_SMD_2X5_2.54MM 1 2 3 4 5 6 7 8 9 10 VDD_SENSE RF2.4_JTAG_TMS RF2.1_JTAG_TCK RF2.19_JTAG_TDO RF2.17_JTAG_TDI RF2.15_RESET P410 PINROW_SMD_2X5_1.27MM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 T_TCK RF2.1_JTAG_TCK T_TMS RF2.4_JTAG_TMS T_TDI RF2.17_JTAG_TDI T_TDO RF2.19_JTAG_TDO T_SRST RF2.15_RESET T_EMU3 RF1.7_UART_RX T_EMU2 RF1.9_UART_TX T_EMU5 RF1.3_UART_CTS T_EMU4 RF2.18_UART_RTS T_TVD VDD_SENSE P408 PINROW_SMD_2X10_2.54MM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 GND RF1.2 RF1.3_UART_CTS RF1.4 RF1.5 RF1.6 RF1.7_UART_RX RF1.8 RF1.9_UART_TX RF1.10 RF1.11 RF1.12 RF1.13 RF1.14 RF1.15 RF1.16_SPI_SCK RF1.17 RF1.18_SPI_MOSI GND RF1.20_SPI_MISO RF1 SMD_HEADER_2X10 1 2 3 4 CURMEAS_OUTPUT R2 R1 IN- 1.6M GND OUT 1.6M INA216 IN+ U504 INA216A3 1 2 C402 C_0603 1 2 R502 R_0R15_0603_F 1 2 C401 C_0805 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 RF1.15 P404 PINROW_SMD_2X10_2.54MM 1 2 3 4 5 RF2.12 RF2.13 RF2.14 RF2.15_RESET RF2.16 P411 PINROW_1X5 TP10 Testpoint_Circle_40mils TP11 TESTPIN_SMALL TP20 TESTPIN_SMALL EM Interface / SmartRF06EB - Level Shifters ISSUED 4(7) EM DEBUG CONNECTION SCALE SHEET DWG NO. REV. DWG COMPANY NAME SIZE FSCM NO. CONTRACT NO. Texas Instruments A3 DRAWN 13/07/12 13/07/12 EM CONNECTORS 10-pin ARM Cortex JTAG Connector RESET Optional RC filter EM CURRENT MEASUREMENT 12/07/12 MAW 1.2.1 APPROVALS DATE 20-pin ARM JTAG Connector EM <--> EB BREAKOUT and PROBE HEADERS Rshunt = 0.15 Ohm Gain = 100 Vin = Ishunt x Rshunt Vout = Vin x Gain Saturation point for INA216 ----------------------------- Vout_max = LO_VDD (2.1V to 3.6V) Vin_max = LO_VDD / 100 = 21mV to 36mV Ishunt_max = 140mA to 240mA Bypass jumper block for connection between EM and XDS100v3 CHECKED V_USB P3.3V V_USB P2.1V V_UNREG V_UNREG VBAT VBUS P3.3VXDS VBAT HI_VDD P3.3VXDS +1.5V P3.3VXDS P3.3VXDS LO_VDD 3 2 1 + B503 CR2032_SOCKET 1 2 4 3 5 6 8 7 VOUT EN NC VIN GND NR TPS73533 GND U2 TPS73533 1 2 C33 C_100N_0402_X5R_K_10 1 2 3 6 5 4 V_UNREG V_USB S501 SMD_SWITCH_DPDT 2 1 D3 BAT54J 1 2 3 V_UNREG R11 R_0_0402_3PORT_2-3 1 2 C32 C_100N_0402_X5R_K_10 3 2 1 4 5 6 P2.1V P3.3V S502 SMD_SWITCH_DPDT 1 2 C503 C_2U2_0402_X5R_M_6P3VDC 1 2 C502 C_2U2_0402_X5R_M_6P3VDC 1 2 C1 C_100N_0402_X5R_K_10 1 2 C501 C_2U2_0402_X5R_M_6P3VDC 1 2 + B501 1XAAA_KEYSTONE 1 2 + B502 1XAAA_KEYSTONE 1 2 C2 C_18N_0603_X7R_J_50 1 2 C10 C_100N_0402_X5R_K_10 2 1 L502 L_2U2_0805_N_LQM21 1 2 C7 C_4U7_0603_X5R_K_6 2 1 L501 L_2U2_0805_N_LQM21 1 2 J502 PINROW_SMD_1X2_2.54MM 1 2 J501 PINROW_SMD_1X2_2.54MM 2 1 R403 R_10K_0402_F 1 2 C504 C_2U2_0402_X5R_M_6P3VDC 1 2 V_UNREG R501 R_47K_0402_F 2 4 1 3 LV_3.3V_EN ON GND VIN VOUT U601 TPS22902 1 2 3 4 5 SUSPEND TLV70015 NC4 VOUT EN GND VIN U5 TLV70015 1 2 R32 R_10K_0402_F 1 2 4 3 5 6 STAT SW GND VIN ON/BYP VOUT U501 TPS62730 1 2 3 4 6 5 7 8 9 10 11 V_UNREG LV_3.3V_EN FB Thermal VINA PS L1 GND PGND L2 EN VIN VOUT U502 TPS63031 TP2 Testpoint_Circle_40mils TP18 Testpoint_Circle_40mils TP1 Testpoint_Circle_40mils TP17 Testpoint_Circle_40mils TP19 Testpoint_Circle_40mils OFF MAIN ON/OFF SWITCH 2.1V REG ISSUED POWER SELECT SWITCH SmartRF06EB - USB (5V) ON 5(7) Power Supply USB TO 1.5V (FPGA) 3.3V FOR HV PERIPHERALS 3.3V REG USB TO 3.3V BATTERIES SCALE SHEET BATTERY or EXTERNAL DWG NO. REV. DWG COMPANY NAME BATTERY or EXTERNAL SIZE FSCM NO. CONTRACT NO. XDS 3.3V Texas Instruments A3 BATTERY REGULATORS REGULATOR BYPASS JUMPER DRAWN POWERED from USB (XDS100v3) XDS100v3 VOLTAGE REGULATORS BUCK (2.1V) BUCK/BOOST (3.3V) 13/07/12 13/07/12 CONNECTOR FOR EXTERNAL POWER POWERED from BATTERY or External Power Supply 2.1V FOR EM and LV PERIPHERALS USB 12/07/12 MAW 1.2.1 DATE Software controlled switch for enabling the "High Voltage" domain for board peripherals. APPROVALS CHECKED HV_SPI_MOSI HV_SPI_SCK HV_SPI_MISO LO_VDD HI_VDD HI_VDD HI_VDD HI_VDD HI_VDD LO_VDD HI_VDD LO_VDD LO_VDD LO_VDD HI_VDD HI_VDD HI_VDD HI_VDD HI_VDD LO_VDD LO_VDD LO_VDD 1 2 C601 C_1U_0402_X5R_K_6P3 NC(C2-) NC(A3+) NC(A2+) NC(A1+) V2 CAP2P VDD VSS RST CAP3P SI SCL INSERT: 1 pc SIP_SOCKET_SMD_1X20_2.54MM 2 pc SIP_SOCKET_SMD_1X3_2.54MM NC(C1-) NC(C3-) CAP1P A0 CAP2N VOUT CAP1N VSS V0 VDD2 CS1B V3 V4 V1 LCD LCD1 DOGM128W-6_NO_CON 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 LV_SPI_SCK LV_SPI_MOSI LV_SPI_MISO HV_SPI_MISO HV_SPI_MOSI HV_SPI_SCK LV_SDCARD_CS LV_3.3V_EN GND VCCA 1A1 1A2 2DIR 2A1 2A2 2OE 1B1 2B1 VCCB 2B2 1DIR 1OE GND 1B2 U401 SN74AVC4T245 1 2 3 4 5 6 7 8 HV_SDCARD_CS HV_SPI_MOSI HV_SPI_SCK HV_SPI_MISO VDD N/A GND N/A CS DI/MOSI DO/MISO SCLK MicroSD SPI-Mode J601 MICROSD-SPI 1 2 C605 C_1U_0805_X7R_K_16 1 2 C604 C_1U_0805_X7R_K_16 1 2 C607 C_1U_0805_X7R_K_16 1 2 C609 C_1U_0805_X7R_K_16 1 2 C608 C_1U_0805_X7R_K_16 1 2 C602 C_1U_0805_X7R_K_16 1 2 C603 C_1U_0805_X7R_K_16 1 2 C610 C_1U_0805_X7R_K_16 2 1 R602 R_10K_0402_F 2 1 R614 R_0_0603 1 2 C613 C_100N_0402_X5R_K_10 1 2 R601 R_10K_0402_F 1 2 C408 C_100N_0402_X5R_K_10 1 2 R612 R_10K_0402_F 1 2 C407 C_100N_0402_X5R_K_10 1 2 R13 R_10K_0402_F 1 2 3 LV_3.3V_EN LV_3.3V_EN Q2 2N7002F 1 2 C405 C_100N_0402_X5R_K_10 2 1 R606 R_0_0603 1 2 3 P3 SIP_SOCKET_SMD_1X3_2.54MM 2 1 R615 R_0_0603 1 2 C606 C_1U_0805_X7R_K_16 1 2 C406 C_100N_0402_X5R_K_10 2 1 R603 R_39_0603 2 1 R604 R_39_0603 2 1 R605 R_39_0603 1 2 3 P4 SIP_SOCKET_SMD_1X3_2.54MM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 HV_SPI_MOSI HV_SPI_SCK HV_LCD_MODE HV_LCD_RESET HV_LCD_CS P2 SIP_SOCKET_SMD_1X20_2.54MM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 LV_LCD_RESET LV_LCD_CS LV_LCD_MODE LV_SDCARD_CS HV_SDCARD_CS HV_LCD_MODE HV_LCD_CS HV_LCD_RESET LV_3.3V_EN LV_3.3V_EN GND VCCA 1A1 1A2 2DIR 2A1 2A2 2OE 1B1 2B1 VCCB 2B2 1DIR 1OE GND 1B2 U402 SN74AVC4T245 TP16 Testpoint_Circle_40mils TP14 Testpoint_Circle_40mils TP15 Testpoint_Circle_40mils High Voltage Peripherals ISSUED SCALE SHEET 6(7) DWG NO. REV. DWG COMPANY NAME SIZE FSCM NO. CONTRACT NO. Texas Instruments A3 SmartRF06EB - LCD DRAWN LEVEL SHIFTERS TRANSLATION : MICROSD 13/07/12 13/07/12 U401: LO HI 1A1 --> 1B1 1A2 --> 1B2 2A1 <-- 2B1 2A2 <-- 2B2 U402: LO HI 1A1 --> 1B1 1A2 --> 1B2 2A1 --> 2B1 2A2 --> 2B2 12/07/12 MAW 1.2.1 APPROVALS DATE LEVEL SHIFTERS CHECKED LV_ALS_OUT LO_VDD LO_VDD 1 2 3 4 5 6 7 8 9 10 11 12 LV_SPI_MISO LV_SPI_MOSI LV_ACC_INT1 LV_ACC_INT2 LV_ACC_PWR LV_ACC_CS LV_SPI_SCK INT1 VDDIO BMA250 NC VDD GNDIO INT2 SDx PS CSB SCx 3-AXIS Accelerometer GND SDO U602 BMA250 1 2 C614 C_100N_0402_X5R_K_10 1 2 LV_ACC_PWR C612 C_100N_0402_X5R_K_10 1 2 C615 C_100N_0402_X5R_K_10 1 2 LV_LED_1 D601 LED_EL19-21SRC 1 2 LV_LED_4 D604 LED_EL19-21SURC 1 2 LV_LED_3 D603 LED_EL19-21SYGC 1 2 3 4 LV_ALS_PWR Iout GND GND VDD LS601 LIGHT_SENSOR_SFH5711 1 2 3 4 S601 LV_BTN_LEFT PUSH_BUTTON_SKRAAK 1 2 3 4 LV_BTN_RIGHT S602 PUSH_BUTTON_SKRAAK 1 2 3 4 LV_BTN_SELECT S603 PUSH_BUTTON_SKRAAK 1 2 3 4 LV_BTN_UP S604 PUSH_BUTTON_SKRAAK 1 2 3 4 S605 LV_BTN_DOWN PUSH_BUTTON_SKRAAK 1 2 R613 R_22K_0603_G 1 2 LV_LED_2 D602 LED_EL19-21UYC_A2 2 1 R608 R_680_0402_G 2 1 R609 R_680_0402_G 2 1 R610 R_680_0402_G 2 1 R607 R_820_0402_G BUTTONS Low Voltage Peripherals ISSUED AMBIENT LIGHT SENSOR SmartRF06EB - YELLOW GREEN RED ACCELEROMETER SCALE SHEET DWG NO. REV. DWG COMPANY NAME SIZE FSCM NO. CONTRACT NO. Texas Instruments A3 LEDS RED-ORANGE 7(7) Accelerometer DRAWN RECOMMENDED 2.3V-5.5V Needs from 1.62V-3.6V 13/07/12 13/07/12 12/07/12 MAW 1.2.1 APPROVALS DATE CHECKED EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions: The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES. Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. REGULATORY COMPLIANCE INFORMATION As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules. For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. General Statement for EVMs including a radio User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization. For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant Caution This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. FCC Interference Statement for Class A EVM devices This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. FCC Interference Statement for Class B EVM devices This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: • Reorient or relocate the receiving antenna. • Increase the separation between the equipment and receiver. • Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. • Consult the dealer or an experienced radio/TV technician for help. For EVMs annotated as IC – INDUSTRY CANADA Compliant This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. Concerning EVMs including radio transmitters This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Concerning EVMs including detachable antennas Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada. Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l'utilisateur pour actionner l'équipement. Concernant les EVMs avec appareils radio Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. Concernant les EVMs avec antennes détachables Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur. SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER 【Important Notice for Users of this Product in Japan】 This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product: 1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan, 2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or 3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan. Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan http://www.tij.co.jp 【ご使用にあたっての注】 本開発キットは技術基準適合証明を受けておりません。 本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。 2. 実験局の免許を取得後ご使用いただく。 3. 技術基準適合証明を取得後ご使用いただく。 なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。    上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル http://www.tij.co.jp SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product. Your Sole Responsibility and Risk. You acknowledge, represent and agree that: 1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes. 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. 3. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected. 4. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials. Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs. Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected. Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated CC Debugger User’s Guide SWRU197G SWRU197G January 2014 2/23 Table of Contents 1 Introduction ................................................................................................................................. 3 2 Abbreviations and Acronyms .................................................................................................... 3 3 Box Contents .............................................................................................................................. 4 4 Operating Conditions of the CC Debugger .............................................................................. 4 5 Initial Steps .................................................................................................................................. 5 5.1 Installing the USB driver ........................................................................................................... 5 5.2 Supported PC Tools .................................................................................................................. 5 6 Connecting the CC Debugger to the Device ............................................................................ 6 6.1 Target Connector Details .......................................................................................................... 6 6.2 Connecting the CC Debugger to a System on Chip ................................................................. 8 6.2.1 Minimum connection for debugging ....................................................................................................................... 8 6.2.2 Minimum connection for SmartRF Studio .............................................................................................................. 8 6.2.3 Minimum connection for SmartRF Packet Sniffer .................................................................................................. 9 6.3 Connecting the CC Debugger to a Transceiver ...................................................................... 10 6.4 Connecting the CC Debugger to a CC85xx ............................................................................ 12 7 Using the CC Debugger ........................................................................................................... 13 7.1 Understanding the LED ........................................................................................................... 13 8 Updating the Firmware ............................................................................................................. 14 8.1 Updating the firmware automatically in SmartRF Studio ........................................................ 14 8.2 Updating the firmware manually in SmartRF Flash Programmer ........................................... 16 8.3 Forced boot recovery mode .................................................................................................... 17 8.4 Resurrecting the CC Debugger ............................................................................................... 17 9 Troubleshooting ....................................................................................................................... 20 10 Schematics ................................................................................................................................ 21 11 References ................................................................................................................................ 21 12 Document History ..................................................................................................................... 22 SWRU197G January 2014 3/23 1 Introduction The CC Debugger is primarily used for flash programming and debugging software running on CCxxxx 8051-based System-on-Chip (SoC) devices from Texas Instruments. The PC tools available for these purposes are the SmartRF™ Flash Programmer [9] from Texas Instruments and IAR Embedded Workbench® for 8051 from IAR Systems [15]. When connected to the debugger, the SoC devices can be controlled directly from SmartRF™ Studio [8]. SmartRF Studio will also be able to control supported CCxxxx RF transceivers (CC2520, CC2500, CC110x, CC11xL, CC112x, CC120x) when they are connected to the debugger as explained in chapter 6.3. In addition, CC Debugger is used for configuring the CC85xx devices with PurePath Wireless Configurator [12] and controlling them with PurePath Wireless Commander [13]. 2 Abbreviations and Acronyms CSn Chip Select (active low) DC Debug Clock DD Debug Data DUT Device Under Test GND Ground LED Light Emitting Diode MISO Master In Slave Out MOSI Master Out Slave In RF Radio Frequency SCLK Serial Clock SoC System on Chip SPI Serial Peripheral Interface USB Universal Serial Bus Vdd Positive voltage on target SWRU197G January 2014 4/23 3 Box Contents  1 x CC Debugger  1 x USB-A to Mini-B USB cable  1 x 10-pin flat cable with 2x5 2.54 mm connector  1 x 10-pin flat cable with 2x5 1.27 mm connector  1 x Converter board 2.54 mm – 1.27 mm connector  Documentation 4 Operating Conditions of the CC Debugger Minimum target voltage: 1.2 Volt Maximum target voltage: 3.6 Volt Operating temperature: 0C to 85C Regulated voltage on CC Debugger: 3.3 Volt Maximum target current (*): 200 mA (*) Supported Operating Systems: Microsoft® Windows® 2000 Windows XP SP2/SP3 (32 bit versions) Windows Vista® (32 & 64 bit) Windows 7 (32 & 64 bit) (*) Only applicable if the target is powered from the CC Debugger Figure 1 - CC Debugger connected to a SoC Battery Board with a CC2530EM SWRU197G January 2014 5/23 5 Initial Steps 5.1 Installing the USB driver To get the required USB driver for the CC Debugger, it is necessary to install one of the tools listed below:  SmartRF Studio www.ti.com/tool/smartrftm-studio  SmartRF Flash Programmer www.ti.com/tool/flash-programmer  SmartRF Packet Sniffer www.ti.com/tool/packet-sniffer  PurePath Wireless Configurator www.ti.com/tool/purepath-wl-cfg  PurePath Wireless Commander www.ti.com/tool/purepath-wl-cmd Alternatively, you can download “Cebal – CCxxxx Development Tools USB Driver for Windows x86 and x64” [4] which is a standalone installer including only the device driver. After having installed the driver, connect the CC Debugger to the PC. The USB driver will be installed automatically. You can quickly check that the debugger has been associated correctly with the USB device driver by opening the Windows Device Manager. The debugger should appear as a “Cebal controlled device”. Figure 2 - Verify correct driver installation For further details or troubleshooting the driver installation process, please refer to “DN304 – CCxxxx Development Tools USB Driver Installation Guide” [5]. 5.2 Supported PC Tools Currently, the CC Debugger can be used together with the following PC Tools  IAR Embedded Workbench for 8051 In circuit debugging of system-on-chips  SmartRF Flash Programmer Flash programming of system-on-chips  SmartRF Studio RF testing of radio devices (transceivers and SoCs)  SmartRF Packet Sniffer Packet sniffing with selected radio devices  PurePath Wireless Configurator Programming of CC85xx devices  PurePath Wireless Commander Advanced control of CC85xx devices The debugger will operate as the interface between the RF device and the tools listed above. Please ensure correct connection between the device and CC Debugger before starting to use the tools. The connection of the device to the CC Debugger will be covered in the next chapter. SWRU197G January 2014 6/23 6 Connecting the CC Debugger to the Device 6.1 Target Connector Details The target connector, located on the lateral side of the debugger, is a 10-pin 2x5 2.54 mm pitch connector with a direction coded plastic guide. Suggested matching (male) surface mounted headers would be 95278-101A10LF from FCI or BB02-HP from GradConn. Figure 3 - Placement of Target Connector Pins The adapter board, which has a 10-pin 2x5 1.27 mm pitch connector, has the same pin placement. Suggested matching (male) surface mounted headers would be 20021121-000-10C4LF from FCI or FTS-105-01-F-DV from Samtec. Figure 4 - Placement of Target Connector Pins on Adapter Board The pin-out of the target connector is shown in Figure 5. Note that not all of these pins need to be connected to the target device for programming and debugging. Only Vdd, GND, DD, DC and RESET are required for System on Chips. The other pins are optional and/or for special features. Pin 1 Pin 2 Pin 1 Pin 2 SWRU197G January 2014 7/23 1 2 3 4 5 6 7 8 9 10 GND DC (Debug Clock) CSn (SPI Chip Select) RESETn 3.3V (from debugger) Target Voltage Sense DD (Debug Data) SCLK (SPI Clock) MOSI (SPI Data Out) MISO (SPI Data In) Figure 5 - Target Connector Pin-out Please note the concept with the target voltage sense signal. This signal is used by the level converters on the CC Debugger to handle different voltage levels on the target board and the debugger. Pin 2 on the target connector must be connected to Vdd on the target board. USB Controller Level Converter Vdd from target CC Debugger Vdd (local) TARGET Target Connector Figure 6 - Voltage from target to CC Debugger Alternatively, it is possible to power the target by connecting pin 9 to Vdd on the target. In that case, the CC Debugger will supply 3.3V to the target. SWRU197G January 2014 8/23 6.2 Connecting the CC Debugger to a System on Chip 6.2.1 Minimum connection for debugging For successful debugging of a TI 8051-based RF System on Chip, connect the two debug signals Debug Data (DD) and Debug Clock (DC) and the reset signal RESETn to the device. Note that DD is a bidirectional signal. In addition, the CC Debugger must be connected to GND and Vdd on the board. Vdd is used as an input to the level shifters on the CC Debugger, thus allowing a different operating voltage on the target than internally on the debugger. For CC111x, CC251x, CC243x, CC253x and CC254x, except CC2544 and CC2545, connect the DD signal to pin P2.1 and DC to pin P2.2. For CC2544, connect the DD signal to P1.3 and DC to P1.2. For CC2545, connect the DD signal to P1.3 and DC to P1.4. Note that it is possible to power the target board from the debugger by connecting the 3.3V signal on pin 9 on the connector to the target board. 1 2 3 4 5 6 7 8 9 10 GND DC (Debug Clock) RESETn 3.3V from debugger. Can optionally be used to power the target board DD (Debug Data) P2.2 SoC P2.1 RESETn Vdd GND Vdd CC Debugger Connector CCxxxx System-on-Chip NOTE 2 Vdd NOTE 1 10 kΩ 2.7 kΩ 1 nF Figure 7 - Minimum connection for debugging of 8051 SoC Note 1: Some early revisions of certain SoCs (CC2430, CC2510 and CC1110) needed an external pull-up to avoid unwanted transitions on the debug clock line during chip reset – thus inadvertently setting the device in debug mode. All new revisions of all SoCs now have an internal pull-up on P2.2, so this external component is not required. Note 2: The RESETn pin is sensitive to noise and can cause unintended reset of the chip. For reset lines susceptible to noise, it is recommended to add an external RC filter. Please refer to the respective SoC datasheet and reference designs for recommended RESET circuitry. The CC Debugger supports slow transitions on the reset line, using a 2 ms delay between any transition on the RESET line and other transitions on the DC and/or DD lines. 6.2.2 Minimum connection for SmartRF Studio Use the same connection as for debugging the SoC. SWRU197G January 2014 9/23 6.2.3 Minimum connection for SmartRF Packet Sniffer In order to use the packet sniffer capabilities of the CC Debugger, it is also necessary to connect the SPI bus to the SoC. The SPI interface is used by the CC Debugger for reading the captured RF packets from the SoC. 1 2 3 4 5 6 7 8 9 10 GND DC (Debug Clock) RESETn 3.3V from debugger. Can optionally be used to power the target board DD (Debug Data) P2.2 SoC P2.1 RESETn Vdd GND Vdd CC Debugger Connector CCxxxx System-on-Chip 2.7 kΩ 1 nF CSn SCLK MOSI MISO P1.7 P1.6 P1.5 P1.4 Figure 8 - Connection to SoC to enable Packet Sniffing Note that the packet sniffer will overwrite the flash on the SoC with special packet capture firmware. Note concerning the SPI interface to the SoC used for packet sniffing All of the current TI RF SoCs can be configured to operate as SPI slaves, with the SPI signals (CS, SCLK, MISO and MOSI) going to one of the USART peripherals. The packet sniffer application will program the SoC with firmware that configures one of the USART peripherals in order to communicate with the CC Debugger. The firmware can use any of the four possible pin configurations (USART 0 or 1, pin out alternative 1 or 2). However, only a subset is currently supported: USART0, alt 1 USART0, alt 2 USART1, alt 1 USART1, alt 2 CC243x - - - OK CC253x/CC254x - - - OK CC111x OK - - OK CC251x OK - - OK Table 1 - Supported SPI connections (marked OK) USART0, alt 1 USART1, alt 2 SCLK P0.5 P1.5 CS P0.4 P1.4 MOSI P0.3 P1.6 MISO P0.2 P1.7 Table 2 - USART pin out details In case of multiple supported interfaces, the Packet Sniffer application will let you choose which interface to use. SWRU197G January 2014 10/23 6.3 Connecting the CC Debugger to a Transceiver The SPI interface on the CC Debugger can be used to interface many of the CCxxxx transceivers and control them from SmartRF Studio. The transceivers/transmitters/receivers currently supported are:  CC1100  CC1101  CC1120  CC1121  CC1125  CC1175  CC110L  CC113L  CC115L  CC1200  CC1201  CC2500  CC2520 Note that the CC Debugger operates as the SPI Master. In a multi master system, it is necessary to make sure the debugger output signals (DC, DD, CSn, SCLK, MOSI and RESETn) do not interfere with the other SPI master on the board. The other SPI master would typically be the microcontroller on the board. The connection diagrams below show the interconnection between the debugger and the various supported transceivers. 1 2 3 4 5 6 7 8 9 10 GND DC RESETn 3.3V from debugger. Can optionally be used to power the target board DD GPIO3 VREG_EN RESETn Vdd GND Vdd CC Debugger Connector CC2520 CSn SCLK MOSI MISO SO SI SCLK CSn Figure 9 - CC Debugger connected to CC2520 SWRU197G January 2014 11/23 1 2 3 4 5 6 7 8 9 10 GND DC RESETn 3.3V from debugger. Can optionally be used to power the target board DD GPIO2 GPIO0 RESETn Vdd GND Vdd CC Debugger Connector CC112x CC1175 CC120x CSn SCLK MOSI MISO SO SI SCLK CSn Figure 10 - CC Debugger connected to CC112x/CC1175/CC120x 1 2 3 4 5 6 7 8 9 10 GND DC 3.3V from debugger. Can optionally be used to power the target board DD GDO2 GDO0 Vdd GND Vdd CC Debugger Connector CC110x CC11xL CC2500 CSn SCLK MOSI MISO SO SI SCLK CSn Figure 11 - CC Debugger connected to CC110x/CC11xL/CC2500 SWRU197G January 2014 12/23 6.4 Connecting the CC Debugger to a CC85xx In order to configure the CC85xx devices (i.e. program the flash on the device) with PurePath Wireless Configurator, the device’s SPI interface must be connected to the CC Debugger as shown in the figure below. 1 2 3 4 5 6 7 8 9 10 GND RESETn 3.3V from debugger. Can optionally be used to power the target board RESETn Vdd GND Vdd CC Debugger Connector CC85XX CSn SCLK MOSI MISO MISO MOSI SCLK CSn Figure 12 - CC Debugger connected to CC85XX SWRU197G January 2014 13/23 7 Using the CC Debugger After having connected the debugger to the target device, the debugger can be powered up by plugging in the USB cable. The debugger will immediately start a device detection process, looking for all known devices. If no devices are detected, the LED will be RED. If a device is detected, the LED will be GREEN. If the LED is GREEN, it is possible to start using the debugger together with one of the supported PC tools. 7.1 Understanding the LED OFF The debugger has no power or there is no valid firmware on the debugger. Make sure the debugger is properly powered via the USB cable or try to resurrect the debugger using the method described in chapter 8.4. AMBER (BOTH LEDS ON) The debugger is powered, but there is no valid firmware. Try to resurrect the debugger using the method described in chapter 8.4. RED LED BLINKING The Debugger is in Boot Recovery Mode. The debugger will briefly enter this state while the firmware is being upgraded (see chapter 8). The board might also enter this state if the firmware is corrupt or if the user has manually forced to board to start up in the special “boot recovery mode” (section 8.3). To go out of the state, reset the debugger by pressing the “Reset” button or by power-cycling the device. If the LED is still blinking, reprogram the unit by using the Flash Programmer Application. RED LED ON No device detected. This might be due to old firmware on the CC Debugger. New devices might not be supported with the current firmware on the debugger. Please refer to chapter 8 for the firmware upgrade procedure. There might also be a problem with the hardware connection. Check the connection to device and make sure the target board is properly powered and that Vdd on the target board is connected to pin 2 on the debug connector. Press and release the reset button to retry the target device detection GREEN LED ON The target device has been properly detected. It is possible to start using the supported tools (see chapter 5.2). SWRU197G January 2014 14/23 8 Updating the Firmware In order to make sure the CC Debugger works seamlessly with your device, it is important that it has the latest and greatest firmware. This chapter will describe how you can upgrade the firmware automatically from SmartRF Studio or manually from SmartRF Flash Programmer. The chapter will also describe how to resurrect a seemingly broken debugger. 8.1 Updating the firmware automatically in SmartRF Studio Updating the firmware on the CC Debugger can be done automatically by SmartRF Studio. Please follow the few steps described below. 1. Start SmartRF Studio. 2. Disconnect the debugger from any target board, and connect it to the PC via the USB cable. The debugger will appear in the list of connected devices in the lower part of the SmartRF Studio startup panel. Figure 13 - Auto FW upgrade 3. Double click on the item in the list, and a new window will appear. SWRU197G January 2014 15/23 Figure 14 - Auto FW upgrade 4. Click "Yes" and let SmartRF Studio do the rest. Figure 15 - Auto FW upgrade 5. Click "Done" and you're good to go. The device should appear in the list of connected devices, now showing the new firmware revision. SWRU197G January 2014 16/23 8.2 Updating the firmware manually in SmartRF Flash Programmer You can also update the firmware manually using SmartRF Flash Programmer. You can use this method if you like to have full control of the firmware image to be programmed on the controller of the debugger (i.e. programming custom firmware or old firmware revisions). 1. Start SmartRF Flash Programmer and select the tab called “EB application (USB)”. This tab will let you program compatible firmware on the CC Debugger (or evaluation boards) via the USB interface (i.e. no external programming device required). 2. Disconnect the debugger from any target board, and connect it to the PC via the USB cable. The debugger will appear in the list of connected devices. Chip type will be listed as N/A. 3. Select the flash image you want to program on the debugger. Normally, you would select: C:\Program Files (x86)\Texas Instruments\SmartRF Tools\Firmware\CC Debugger\cebal_fw_srf05dbg.hex1 4. Select the action “Erase, program and verify” 5. Click the “Perform actions” buttons. The programming procedure will start. Note that this will take several seconds. 6. The CC Debugger will reappear in the list of connected devices, now showing the new firmware revision in the device list. 7. Done! 1 Assuming default installation path of SmartRF Flash Programmer. 1 2 4 5 3 SWRU197G January 2014 17/23 8.3 Forced boot recovery mode If, for some reason, the firmware update fails and the CC Debugger appears to be non responsive, there is a way to force the board to only run the bootloader and stop all further execution. In this mode, no attempts will be made to start the firmware, and the board will only allow the user to perform a new firmware upgrade over USB. Disconnect the debugger from any power source and open the plastic enclosure. Figure 16 - Internal view of CC Debugger Short circuit the pins as depicted in Figure 17: P1.6 on the CC2511 must be connected to GND during the power-on reset to enter boot recovery mode. Figure 17 - Short-circuit pins for boot recovery mode When reconnecting the USB cable, the LED will start to blink with a RED light. This indicates that the bootloader is running and that the debugger is in boot recovery mode. At this point, follow the same firmware programming steps as describe at the beginning of this chapter. Please also note that the boot recovery mode can be used as a check to verify that the bootloader on the debugger is working. 8.4 Resurrecting the CC Debugger If the CC Debugger appears to be completely dead when applying power, there is a way to “unbrick” the board. The method consists of reprogramming the bootloader on the debugger using the debug connector inside the box. This will require an extra programming device. When opening the box, locate the debug connector header next to the target connector. Connect this header to another CC Debugger (see Figure 18) or to a SmartRF05EB (see Figure 19). When using SWRU197G January 2014 18/23 SmartRF05EB, connect a 10-pin flat cable from the “Ext SoC Debug” plug (P3) on the EB to the “USB Debug” plug (P2) on the CC Debugger. The dead debugger needs power, so connect the USB cable. Turn on the SmartRF05EB or debugger - it should detect the USB Controller (CC2511) on the debugger. Figure 18 - Programming the bootloader on the CC Debugger using another CC Debugger Figure 19 - Programming the bootloader on the CC Debugger using SmartRF05EB Next, use the SmartRF Flash Programmer to program the bootloader on the debugger. Follow these five steps (illustrated in Figure 20 below): SWRU197G January 2014 19/23 1. After starting the application, first select “Program Evaluation Board” in the “What do you want to program?” drop down box, then select the “EB Bootloader” tab. 2. In the upper left corner, select device: Use SmartRF05EB regardless of the device being used to program the debugger. I.e. select SmartRF05EB both when you are using a CC Debugger and when you are using a SmartRF05EB for the resurrection. 3. Next, select which flash image to program. The bootloader image is included when installing the flash programmer and it is usually located at “C:\Program Files (x86)\Texas Instruments\SmartRF Tools\Firmware\CC Debugger”. 4. It is also necessary to give the debugger a unique ID number – any 4 digit number will work. This number is used by the driver on the PC to uniquely identify devices if more than one debugger is connected at the same time. 5. Select “Erase, program and verify” 6. Press the “Perform Actions” buttons. The firmware upgrade takes a few seconds. Figure 20 - SmartRF Flash Programmer - Updating the bootloader Once the bootloader is programmed, you might be asked to install a USB driver on the PC. Just follow the same procedure as when the debugger was connected to the PC the first time (see chapter 5). The RED LED on the debugger should now be blinking, indicating that the bootloader is running but that no application has been loaded. If the RED LED is off, there is probably something wrong with the hardware. The debugger firmware can now be programmed directly over USB by following the procedure in either chapter 8.1 or 8.2. 1 2 4 5 6 3 SWRU197G January 2014 20/23 9 Troubleshooting Q1 Help! The debugger does not detect the SoC. What should I do? A1 There are several things to check. Upgrade the firmware. Many CC Debuggers have old firmware that will not automatically detect newer devices, like CC2543/44/45. Refer to chapter 8 for further instructions. Check that the cable is oriented correctly and that the pins are connected to the right signals on the debugger. Check that the debugger gets power from the target (i.e proper connection of the Target Voltage Sense signal). This is required in order for the level converters on the debugger to work. Check that ground on the target is connected to ground on the debugger. This is normally achieved through the target connector. Note that since the ground planes are the same, please be aware of any adverse effects caused by different ground planes on the target and on the PC (grounded via USB cable). Check that the cable is not broken. Especially the small flat cable is prone to stop working if handled a lot or being bent and stretched beyond normal operating conditions. Q2 Does IAR EW8051 support the CC Debugger as debugging device? A2 Yes – but make sure you have an up to date version of IAR with the new debug driver plug-in from Texas Instruments. You will need version 7.51A or higher. Q3 Can the debugger be used as an interface to the RF device for packet sniffing? A3 Yes, this is supported for selected devices. Use the same interconnection as in the diagrams in chapter 6. Q4 Is there a way to remove the plastic casing without damaging it? A4 Yes, there is. Hold the bottom piece of the plastic in one hand. With your other hand, take a firm grip on the long lateral sides of the upper part of the plastic and squeeze while moving the upper part away from the bottom. The two parts should separate from each other. To reassemble the plastic, just click the two pieces together. Q5 Is this a Mini or a Micro USB plug? A5 Mini USB type A. Q6 I have two CC Debuggers with the same EB ID, and I’m unable to use them together. What do I do? A6 Two EBs with the same EB ID cause a driver conflict. The solution is to resurrect one of the CC Debuggers and give it a new EB ID. 1. Connect one CC Debugger to your computer 2. Connect the CC Debugger you want to resurrect to a separate power source (e.g. another computer or a USB charger). 3. Follow the steps for resurrecting the CC Debugger, described in section 8.4. SWRU197G January 2014 21/23 10 Schematics See last page or refer to the complete bundle including gerber files, schematics and layout here [3]. 11 References [1] CC-Debugger product web site www.ti.com/tool/cc-debugger [2] CC-Debugger Quick Start Guide www.ti.com/lit/swru196 [3] CC-Debugger Layout and Schematics www.ti.com/lit/zip/swrr105 [4] Cebal – CCxxxx Development Tools USB Driver for Windows x86 and x64 www.ti.com/lit/zip/swrc212 [5] DN304 – CCxxxx Development Tools USB Driver Installation Guide www.ti.com/lit/swra366 [6] Texas Instruments Support support.ti.com [7] Texas Instruments Low Power RF Online Community www.ti.com/lprf-forum [8] SmartRF Studio www.ti.com/tool/smartrftm-studio [9] SmartRF Flash Programmer www.ti.com/tool/flash-programmer [10] SmartRF Packet Sniffer www.ti.com/tool/packet-sniffer [11] SmartRF Flash Programmer User Manual www.ti.com/lit/swru069 [12] PurePath Wireless Configurator www.ti.com/tool/purepath-wl-cfg [13] PurePath Wireless Commander www.ti.com/tool/purepath-wl-cmd [14] SoC Battery Board product web site www.ti.com/tool/soc-bb [15] IAR Embedded Workbench for 8051 www.iar.com/ew8051 SWRU197G January 2014 22/23 12 Document History Revision Date Description/Changes G 2013-01-15 Chapter 9: Added how to solve problem with CC Debuggers having the same EB ID. F 2013-06-20 CC1100, CC1101, CC2500, and CC1200 are now also supported by the debugger. Corrected typo in chapter 6.2.1: DD to pin P2.1 (not P2.2) and DC to pin P2.2 (not P2.1) for all SoCs except CC2544 and CC2545. Added debug pin-out for CC2545. Corrected pin-out in figure 10 and 11 (DC to GPIO2/GDO2, DD to GPIO0/GDO0). Added link to layout and gerber files. E 2012-03-01 Corrected typo in chapter 6.2.1. Special debug pin-out for CC2544, not CC2543. D 2012-02-22 Added information about connections for programming of CC85xx devices. Updated info about connections for supported transceivers. Updated driver installation information and added more details about firmware upgrade. Describe what it means when the LED is amber. Updated reference links. C 2010-09-19 Added more information about how to upgrade the firmware. B 2010-02-25 Fixed erroneous description of interconnection between CC Debugger and CC2520. The VREG_EN signal shall be connected to pin 4 on the target connector, not pin 3. A 2010-02-11 Added more details about the powering options. Added more information about connection options. - 2009-05-05 First revision. EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions: The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES. Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. REGULATORY COMPLIANCE INFORMATION As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules. For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. General Statement for EVMs including a radio User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization. For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant Caution This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. FCC Interference Statement for Class A EVM devices This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. FCC Interference Statement for Class B EVM devices This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: • Reorient or relocate the receiving antenna. • Increase the separation between the equipment and receiver. • Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. • Consult the dealer or an experienced radio/TV technician for help. For EVMs annotated as IC – INDUSTRY CANADA Compliant This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment. Concerning EVMs including radio transmitters This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Concerning EVMs including detachable antennas Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada. Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l'utilisateur pour actionner l'équipement. Concernant les EVMs avec appareils radio Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. Concernant les EVMs avec antennes détachables Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur. SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER 【Important Notice for Users of EVMs for RF Products in Japan】 This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product: 1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan, 2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or 3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan. Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan http://www.tij.co.jp 【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 本開発キットは技術基準適合証明を受けておりません。 本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。 2. 実験局の免許を取得後ご使用いただく。 3. 技術基準適合証明を取得後ご使用いただく。 なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。    上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル http://www.tij.co.jp SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER SPACER EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product. Your Sole Responsibility and Risk. You acknowledge, represent and agree that: 1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes. 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. 3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL, CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected. 4. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials. Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs. Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected. Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated Material Safety Data Sheet A-4 Hardener 1 1. Chemical Product and Company Identification Product Name: A-4 Hardener Product Description: Liquid Epoxy Hardener Company: Cast-Coat, Inc. 354 West Street W. Bridgewater, MA 02379 Telephone: 1-800-527-4502 or 1-508-587-4502 Emergency Contact: Chemtrec: (domestic) 1-800-424-9300 (international) 1-703-527-3887 2. Composition / Information on Ingredients Components CAS # % 3,3’-oxybis(ethyleneoxy)bis(propylamine) 4246-51-9  98 2-(2-(3-aminopropoxy)ethoxy)ethanol 112-33-4 1 3. Hazards Identification Eye Contact: Corrosive to the eyes and may cause severe damage, including blindness. Vapors may be irritating. Skin Contact: Corrosive to the skin. May cause skin sensitization. May be toxic if absorbed through the skin. Inhalation: Vapors / mists may be corrosive to the upper respiratory tract. Repeated or prolonged exposure can result in lung damage. Ingestion: Not expected to be a relevant route of exposure, however, corrosive and may cause severe and permanent damage to the mouth, throat and stomach. Aggravated Medical Conditions: Pre-existing eye, skin and respiratory disorders may be aggravated by exposure to this product. Pre-existing respiratory and skin allergies may be increased from exposure to this product. 4. First Aid Measures General Advise: Good practice requires that gross amounts of any chemical be removed from the skin as soon as practical, especially before eating or smoking. Eye Contact: Immediately flush eyes with water for at least 30 minutes. Seek medical attention. Skin Contact: Remove contaminated clothing and wipe excess from skin. Promptly wash with soap and water for 15 minutes. Seek medical attention if irritation persists. Inhalation: Move to fresh air and provide oxygen if necessary. Ingestion: Rinse mouth with water. If conscious, give small quantities of water to drink. Do not induce vomiting. If vomiting occurs, keep victim’s head below hips to prevent vomit from entering lungs. Seek medical attention. Material Safety Data Sheet A-4 Hardener 2 5. Fire-Fighting Measures Flashpoint: 139’ C Autoignition Temperature: 260’ C Flammability limits in air - lower: 1.1 % (V) Flammability limits in air – upper: 4.5 % (V) Extinguishing Media: Carbon dioxide (CO2), dry chemical, water fog or “alcohol foam“ Protective Equipment: Do not enter confined space without full bunker gear (helmet with face shield, bunker coats, gloves and rubber boots). Use self contained, positive pressure breathing apparatus. Specific Hazards: Decomposition and combustion products may be toxic. Containers exposed to intense heat should be cooled with water to avoid vapor pressure buildup. 6. Accidental Release Measures Personal Protection: Eyes - Wear splash proof chemical goggles. Skin - Wear impervious gloves and protective clothing to prevent skin contact. Inhalation: Use NIOSH approved respirator suitable for organic vapors. Environmental Concerns: Construct a dike to prevent from entering sewers, rivers and waterways. Clean Up: Soak up residue with absorbent material and shovel into non leaking containers. 7. Handling and Storage Handling: Good practice requires that gross amounts of any chemical be removed from the skin as soon as practical, especially before eating or smoking. Wear splash proof chemical goggles, impervious gloves and protective clothing to prevent skin contact. Emergency eye wash stations should be readily accessible. Ventilation: Provide effective mechanical exhaust. Wear NIOSH approved respirator suitable for organic vapors in the absence of ventilation. Storage: Store in a cool, dry location in tightly sealed containers. Keep away from open flame and high temperatures. Do not pressurize containers to empty them. Material Safety Data Sheet A-4 Hardener 3 8. Exposure Controls/Personal Protection Engineering Controls: Provide effective mechanical exhaust to ensure concentration levels are below exposure limits. Respiratory Protection: Wear NIOSH approved air purifying respirator in the absence of ventilation. Eye Protection: Wear safety goggles or safety glasses with side shields. Emergency eye wash stations should be readily accessible. Skin Protection: Wear chemical resistant impervious gloves and protective clothing such as an apron to prevent skin contact. 9. Physical and Chemical Properties Appearance: Liquid Color: Clear to Amber Odor: Amine Specific Gravity: 0.98 Vapor Pressure: < 1.00 mmHg at 20’ C Solubility in Water: Miscible Flashpoint: 139’ C VOC Content: < 0.1% by weight 10. Stability and Reactivity Stability: Stable under normal conditions. Materials to Avoid: Avoid heat, flame and strong oxidizing agents. Hazardous Decomposition Products: Carbon monoxide, Carbon dioxide, Nitrous oxide. Comments: Hazardous polymerization will not occur. 11. Toxicological Information 3,3’-oxybis(ethyleneoxy)bis(propylamine), 2-(2-(3-aminopropoxy)ethoxy)ethanol: Oral: LD50 3,160 mg / kg species: rat Dermal: LD50 > 2,150 mg / kg species: rat Material Safety Data Sheet A-4 Hardener 4 12. Ecological Information Inherent Biodegradability: Zahn-Wellens - < 20 % (Difficult to eliminate) Golden Orfe, Static 96 hour LC50 - 220-460 mg / L (Practically nontoxic) Daphnid, Static 48 hour EC50 - 220 mg / L (Practically nontoxic) Acute algal toxicity, 72 hour EC50 - 69 mg / L (Test rating not found) Toxicity to bacteria - EC50, (17H) 220 mg / L (Test rating not found) 13. Disposal Considerations Comments: Dispose of in accordance with federal, state and local regulations. Incinerate or bury in a RCRA licensed facility. Do not discharge into drains, waterways, sewers, or groundwater. RCRA: D002 14. Transportation Information DOT: UN 2735 Amines, Liquid, Corrosive, N.O.S. (Trioxatridecanediamine) 8, II ERG - 153 IMDG: UN 2735 Amines, liquid, Corrosive, N.O.S. (Trioxatridecanediamine) 8, II IATA: UN 2735 Amines, Liquid, Corrosive, N.O.S. (Trioxatridecanediamine) 8, II 15. Regulatory Information TSCA : All ingredients are listed or exempt HSC Classification: Irritating material, Sensitizing material, Corrosive material Sara Section 312 Hazard Classification: Chronic health hazard, Acute health hazard Sara Section 313: None California prop. 65: None Hazard Ratings: Health Fire Reactivity 3 1 0 WHMIS Classification: D-2A, D-2B, Class E – Corrosive material Material Safety Data Sheet A-4 Hardener 5 16. Other Information All information appearing herein is based upon data obtained from the manufacturer and / or recognized technical sources. While the information is believed to be accurate, Cast-Coat makes no representations as to its accuracy or sufficiency. Conditions of use are beyond the control of Cast-Coat and therefore users are responsible to verify this data under their own operating conditions to determine whether the product is suitable for their purposes. Cast-Coat, Inc. assumes no responsibility for injury from the use of the product described herein. Prepared by: Robert S. Lothrop Title: Technical Director Revision: 04/18/2012 1 / 5 Revision Date November 2011 Revision 3 SDS No. 16447 SAFETY DATA SHEET ARALDITE FUSION HARDENER SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1. Product identifier Product name ARALDITE FUSION HARDENER Product No. 808300, 808409, 808416, 808423 1.2. Relevant identified uses of the substance or mixture and uses advised against 1.3. Details of the supplier of the safety data sheet Supplier BOSTIK LIMITED COMMON ROAD STAFFORD STAFFORDSHIRE ST16 3EH +44 1785 272625 sds.uk@bostik.com 1.4. Emergency telephone number SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture Classification (1999/45/EEC) Xi;R36/38. 2.2. Label elements Labelling Irritant Risk Phrases R36/38 Irritating to eyes and skin. Safety Phrases S2 Keep out of the reach of children. S24/25 Avoid contact with skin and eyes. S26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. S36/37/39 Wear suitable protective clothing, gloves and eye/face protection. S46 If swallowed, seek medical advice immediately and show this container or label. S56 Dispose of this material and its container to hazardous or special waste collection point. 2.3. Other hazards SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS 3.2. Mixtures 2 / 5 SDS No. 16447 ARALDITE FUSION HARDENER 1,8-DIAZABICYCLO[5.4.0]UNDEC-7-ENE 1-5% CAS-No.: 6674-22-2 EC No.: 229-713-7 Classification (67/548/EEC) Xn;R22. C;R34. R52/53. Classification (EC 1272/2008) Not classified. BIS(2-DIMETHYLAMINOETHYL)ETHER 1-5% CAS-No.: 3033-62-3 EC No.: 221-220-5 Classification (67/548/EEC) T;R23/24. Xn;R22. C;R35. Classification (EC 1272/2008) Not classified. TRIETHYLENETETRAMINE, PROPOXYLATED 5-10% CAS-No.: 26950-63-0 EC No.: 500-055-5 Classification (67/548/EEC) Xi;R38,R41. Classification (EC 1272/2008) Not classified. The Full Text for all R-Phrases and Hazard Statements are Displayed in Section 16. SECTION 4: FIRST AID MEASURES 4.1. Description of first aid measures Inhalation Remove victim immediately from source of exposure. Move the exposed person to fresh air at once. Get medical attention. Ingestion DO NOT induce vomiting. Get medical attention immediately. Skin contact Promptly wash contaminated skin with soap or mild detergent and water. Promptly remove clothing if soaked through and wash as above. Get medical attention if irritation persists after washing. Eye contact Rinse the eye with water immediately. Continue to rinse for at least 15 minutes and get medical attention. 4.2. Most important symptoms and effects, both acute and delayed 4.3. Indication of any immediate medical attention and special treatment needed SECTION 5: FIREFIGHTING MEASURES 5.1. Extinguishing media Extinguishing media This product is not flammable. Use fire-extinguishing media appropriate for surrounding materials. Use: Foam, carbon dioxide or dry powder. 5.2. Special hazards arising from the substance or mixture 5.3. Advice for firefighters SECTION 6: ACCIDENTAL RELEASE MEASURES 6.1. Personal precautions, protective equipment and emergency procedures 6.2. Environmental precautions 6.3. Methods and material for containment and cleaning up 3 / 5 SDS No. 16447 ARALDITE FUSION HARDENER Absorb in vermiculite, dry sand or earth and place into containers. 6.4. Reference to other sections SECTION 7: HANDLING AND STORAGE 7.1. Precautions for safe handling Avoid spilling, skin and eye contact. 7.2. Conditions for safe storage, including any incompatibilities Store at moderate temperatures in dry, well ventilated area. 7.3. Specific end use(s) SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION 8.1. Control parameters Ingredient Comments WEL = Workplace Exposure Limits 8.2. Exposure controls Protective equipment Engineering measures Provide adequate ventilation. Respiratory equipment If ventilation is insufficient, suitable respiratory protection must be provided. Hand protection Protective gloves must be used if there is a risk of direct contact or splash. Eye protection Wear splash-proof eye goggles to prevent any possibility of eye contact. Hygiene measures Wash promptly if skin becomes contaminated. Wash at the end of each work shift and before eating, smoking and using the toilet. SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES 9.1. Information on basic physical and chemical properties Appearance Liquid Colour Light (or pale). Yellow. Odour Slight odour. Solubility Insoluble in water Relative density 1.14 Flash point (°C) 145 PM Closed cup. 9.2. Other information SECTION 10: STABILITY AND REACTIVITY 10.1. Reactivity 10.2. Chemical stability Stable under normal temperature conditions. 10.3. Possibility of hazardous reactions 10.4. Conditions to avoid 10.5. Incompatible materials 10.6. Hazardous decomposition products 4 / 5 SDS No. 16447 ARALDITE FUSION HARDENER SECTION 11: TOXICOLOGICAL INFORMATION 11.1. Information on toxicological effects Skin contact Irritating to skin. Eye contact Irritating to eyes. SECTION 12: ECOLOGICAL INFORMATION Ecotoxicity Not regarded as dangerous for the environment. 12.1. Toxicity 12.2. Persistence and degradability 12.3. Bioaccumulative potential 12.4. Mobility in soil 12.5. Results of PBT and vPvB assessment 12.6. Other adverse effects SECTION 13: DISPOSAL CONSIDERATIONS 13.1. Waste treatment methods Dispose of waste and residues in accordance with local authority requirements. SECTION 14: TRANSPORT INFORMATION General The product is not covered by international regulation on the transport of dangerous goods (IMDG, IATA, ADR/RID). 14.1. UN number Not applicable. 14.2. UN proper shipping name Not applicable. 14.3. Transport hazard class(es) Transport Labels No transport warning sign required. 14.4. Packing group Not applicable. 14.5. Environmental hazards Environmentally Hazardous Substance/Marine Pollutant No. 14.6. Special precautions for user Not applicable. 14.7. Transport in bulk according to Annex II of MARPOL73/78 and the IBC Code Not applicable. SECTION 15: REGULATORY INFORMATION 15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture Statutory Instruments The Chemicals (Hazard Information and Packaging for Supply) Regulations 2009 (S.I 2009 No. 716). Control of Substances Hazardous to Health. 5 / 5 SDS No. 16447 ARALDITE FUSION HARDENER Approved Code Of Practice Safety Data Sheets for Substances and Preparations. Classification and Labelling of Substances and Preparations Dangerous for Supply. Guidance Notes Workplace Exposure Limits EH40. Introduction to Local Exhaust Ventilation HS(G)37. CHIP for everyone HSG(108). 15.2. Chemical Safety Assessment SECTION 16: OTHER INFORMATION General information This product should be used as directed by Bostik Ltd. For further information consult the product data sheet or contact Technical Services. Information Sources This safety data sheet was compiled using current safety information supplied by distributor of raw materials. Revision Comments NOTE: Lines within the margin indicate significant changes from the previous revision. This safety data sheet supersedes all previous issues and users are cautioned to ensure that it is current. Destroy all previous data sheets and if in doubt contact Bostik Limited. Issued By Approved LJ Revision Date November 2011 Revision 3 Date September 2007 Risk Phrases In Full R34 Causes burns. R35 Causes severe burns. R22 Harmful if swallowed. R52/53 Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. R38 Irritating to skin. R41 Risk of serious damage to eyes. R23/24 Toxic by inhalation and in contact with skin. ICOMP VCOMP VADJ Q1 Q2 L 10μH C1 10μF C10 10μF R1 40mΩ adaptateur secteur R2 20mΩ R4 2.2Ω R5 100K R8 130k 1% R9 10.2k, 1% C2 0.1μF C4 0.1μF C3 1μF 6.8nF C9 1μF C8 0.1μF ISL6251 ISL6251A C5 10nF flottant 4.2V/CELL R6 10k C7 1μF R10 4.7Ω BATSCL SDL Une entrée / D GND entrée de 5.15A limites actuelles 3 cellules hôte R11, R12, R13 10k D1 en option VDDP D2 D3 R7: 100Ω CSIP RCID BOOT UGATE PHASE LGATE PGND CSOP Cson cellules GND C11 3300pF D4 SYSTÈME DE CHARGE DCIN ACSET VDDP VDD ACPRN Chlim FR ICM ACLIM VREF ICOMP VCOMP VADJ R3: 18Ω C6 ISL6251 ISL6251A batterie paquet BAT + SCL SDL Temp BATBattery BATVCC sortie Sortie D / A Une entrée / D DIGITAL contribution AVDD / VREF CSIP RCID BOOT UGATE PHASE LGATE PGND CSOP Cson cellules GND FIGURE 13. ISL6251, ISL6251A circuit d'application typique avec micro-contrôleur ISL6251, ISL6251A 12 FN9202.2 10 mai 2006 Principe de fonctionnement introduction Le ISL6251, ISL6251A comprend toutes les fonctions nécessaire de charger 2 à 4 cellules Li-Ion et Li-polymère batteries. Une haute efficacité convertisseur abaisseur synchrone est utilisé pour contrôler la tension et le courant jusqu'à Charing Charing Les taux de 10A. Le ISL6251, ISL6251A a courant de limitation d'entrée et entrées analogiques pour régler le courant de charge et de la charge tension; Chlim entrées sont utilisées pour contrôler le courant de charge VADJ et les intrants sont utilisés pour contrôler la tension de charge. Le ISL6251, ISL6251A charger la batterie avec une constante courant de charge, fixé par Chlim entrée, jusqu'à ce que la tension de la batterie se dresse à la tension de charge programmé fixé par entrée VADJ; puis le chargeur commence à fonctionner à une tension constante de façon responsable. L'entrée EN permet l'arrêt du chargeur à travers le commande à partir du micro-contrôleur. Il utilise également un taux SÉCURITÉ Lorsque le chargeur de batterie est en arrêt extrêmement chaud Conditions. Le montant de la personnalisation de la visite actuelle est sur ​​le Sortie de l'ICM. La figure 11 montre le bloc fonctionnel IC organigramme. Le convertisseur abaisseur synchrone utilise à canal N externe MOSFET à convertir la tension d'entrée à l'requis courant Charing Charing et de la tension. La figure 12 montre l' ISL6251, ISL6251A circuit typique d'application de Charing Charing courant et tension fixe à des valeurs spécifiques. la circuit typique d'application de la figure 13 montre les ISL6251, ISL6251A circuit typique de l'application qui utilise la Réglez le micro-contrôleur de courant Charing fixé par Chlim entrée. La tension aux Chlim et la valeur de R1 définit le courant Charing. Le convertisseur DC / DC génère l' des signaux de commande pour entraîner deux MOSFET à canal N à l'extérieur course la tension et courant défini par le ACLIM, Chlim, Cellules et entrées VADJ. Le ISL6251, ISL6251A dispose la boucle de régulation de tension (VCOMP) et deux boucles de régulation de courant (ICOMP). la Boucle de régulation de la tension de VCOMP Moniteur Cson pour assurer que sa tension ne dépasse jamais la tension et régule l' tension de charge de la batterie fixé par VADJ. Le ICOMP courant boucles de régulation de course le courant batterie Charing Livré à la batterie pour s'assurer qu'elle ne dépasse jamais la Charing limites actuelles fixées par Chlim; et le courant ICOMP des boucles de régulation de course également le courant d'entrée tiré à partir de l'adaptateur secteur afin de s'assurer qu'il ne dépasse jamais l'entrée limite actuelle fixée par ACLIM, et évaluer la panne du système de pré-vente et AC de surcharge de l'adaptateur. contrôle PWM Le ISL6251, ISL6251A emploie le PWM à fréquence fixe Architecture de courant de commande de mode avec la charge d'alimentation vers l'avant fonction. La fonction de feed-forward maintient constant l' gain de modulateur de 11 pour réaliser la régulation de ligne rapide cum Buck tension d'entrée change. Lorsque la charge de la batterie tension s'approche de la tension d'entrée, le convertisseur DC / DC décrochage fonctionne à la mode, où il est la minuterie de prévente la fréquence de tomber dans la fréquence audible gamme. Il peut atteindre cyclique jusqu'à 99,6%. Taux de pré-amplification de la tension de bus de système, la batterie Lorsque chargé d'opérer dans la norme mode-Buck CSOPCSON DROPS ci-dessous 4.25mV. Une fois en mode buck-standard, hystérésis n'autorise pas le fonctionnement synchrone de la Convertisseur DC / DC jusqu'à Rises CSOP-dessus Cson 12.5mV. En route gâté adaptatif système est utilisé pour contrôler les morts temps entre deux Switcher. Les morts circuit de commande de temps Surveillez la sortie de LGATE et empêche la face supérieure MOSFET de Turning jusqu'à LGATE est entièrement éteint, la prévention croix-conduction et flèche à l'. Pour les morts circuit de temps pour travailler correctement, il doit être le faible résistance, faible chemin de l'inductance du conducteur de MOSFET LGATE corrompu, et à partir de la source de MOSFET à PGND. la diode Schottky externe est entre les broches et BOOT VDDP pings à garder le condensateur d'amorçage partagée. Réglage de la tension de la batterie règlement Le ISL6251, ISL6251A utilise la haute précision garni d'intervalle de bande de référence de tension à la batterie de Charing de course tension. L'entrée VADJ Régler la tension de sortie du chargeur, et la tension de commande de VADJ peut varier de 0 à VREF, fournir la plage de réglage de 10% (de 4,2 V-5% de taux 4.2V +5%) sur le régulateur de tension Cson. Dans l'ensemble, la tension précision meilleure que 0,5% est atteint. La tension de terminaison de la batterie par des cellules est la fonction de l' Basseterre chimie. Consultez le taux des fabricants de batteries déterminer cette tension. • Float VADJ pour régler la tension de la batterie = 4.2V × VCSON nombre de cellules, • Connectez-vous à VREF VADJ de mettre 4.41V nombre de × de cellules, • Brancher à la masse à mettre en VADJ 3.99V nombre de × de la cellules. Jump, la tension maximale de la batterie de 17.6V peut être atteint. Notez que l'autre tension de charge de la batterie peut être réglée par Raccordement du diviseur résistif de VREF à la terre. la diviseur à résistances doivent être dimensionnés pour attirer plus au nord que 100μA de VREF; ou connectez la source de tension à basse impédance comme Le convertisseur N / A dans le micro-contrôleur. le programmée tension de la batterie par la cellule peut être déterminé par ce qui suit équation: Le diviseur de résistance externe de VREF définit la tension au VADJ selon: VCELL VVADJ = 0175 + 3.99V VVADJ VREF Rbot_VADJ | | 514k Rtop_VADJ | | + 514k Rbot_VADJ | | 514k = × ------------------------------------------------ ------------------------------------------------- ISL6251, ISL6251A 13 FN9202.2 10 mai 2006 Où Rbot_VADJ et Rtop_VADJ sont des résistances externes à VADJ. Précision Taux de minimiser la perte due à l'interaction avec Diviseur de résistance interne de VADJ, S'assurer que la résistance en courant alternatif En regardant en arrière dans le diviseur de résistance externe est inférieure à 25k. Connectez cellules cum présentés dans le tableau 1 pour charger 2, 3 ou 4 + cellules. Lorsque Charing autres chimies cellulaires, utiliser des cellules à sélectionner la plage de tension de sortie du chargeur. le interne gm1 amplificateur d'erreur maintient la régulation de tension. la tension amplificateur d'erreur est compensée à VCOMP. le composant valeurs indiquées dans la figure 12 du fournisseur approprié pour tableaux de bord la plupart des applications. La rémunération individuelle de la tension réglementation et des boucles de courant régulation permet de optimale compensation. Réglage de la limite de courant de charge de batterie L'entrée de Chlim règle le courant maximum de Charing. la courant défini par la résistance de détection de courant relie entre CSOP et Cson. La tension différentielle à grande échelle entre les CSOP et Cson est 165mV pour Chlim = 3,3 V, le saut Charing courant maximal est 4.125A pour un 40mΩ Sensing résistance. Autre charge de la batterie seuil de détection de courant valeurs peuvent être définies par le diviseur résistif de Connexion VREF à la masse ou 3,3 V, ou en connectant la faible impédance source de tension comme un convertisseur N / A dans le micro-contrôleur. Contrairement VADJ et ACLIM, Chlim n'a pas le interne réseau diviseur à résistances. Le courant seuil de limite de charge est proposée par: Pour régler le courant de charge d'entretien pour le chargeur muet, le résistance en série avec les interrupteurs T3 (figure 12) commandé par Le micro-contrôleur est connecté à la broche de terre Chlim. Le courant de charge de maintien est déterminé par: Lorsque la tension est inférieure à 88mV Chlim (typique), il ll désactiver le chargeur de batterie. Au moment de choisir le courant résistance de détection, notez que la chute de tension dans la Causes outre la détection résistance dissipation de puissance, réduisant efficacité. Cependant, pour réduire la Chlim de réglage de tension tension à travers la résistance de détection de courant R1 Will dégradé précision en raison du signal plus faible à l'entrée du courant Amplificateur de lecture. Il est le compromis entre précision et dissipation de puissance. Un filtre passe-bas est recommandé de Mise à éliminer le bruit. Connecter la résistance à la CSOP broches au lieu de les pings Cson, cum la broche CSOP a faible courant de polarisation et moins d'influence sur le courant-sens Précision La précision et le régulateur de tension. Réglage de l'entrée limites actuelles Le courant total d'entrée de l'adaptateur secteur, ou d'un autre DC la source, est fonction du courant d'alimentation du système et de la courant par batterie Charing. L'entrée actuelle limites régulateur le courant d'entrée en réduisant le courant de Charing, Lorsque le courant d'entrée dépasse l'entrée imparti point actuel. Actuelle du système varie normalement usure sperme du système sont alimentés vers le haut ou vers le bas. Sans réglementation actuelle d'entrée, la source doit être capable de fournir le maximum du système et le courant maximal d'entrée du chargeur simultanément. En utilisant le courant d'entrée limité, le courant Capacité de l'adaptateur secteur peut être réduit, ce qui réduit le coût du système. Le ISL6251, ISL6251A limite le courant de charge de la batterie Lorsque le seuil de limitation du courant d'entrée est dépassée, assurant le chargeur de batterie ne se charge pas en bas de l'adaptateur secteur tension. Ce règlement courant d'entrée constante permet à l' adapter entièrement dans le système d'alimentation et de la pré-AC adaptateur de surcharge et de s'écraser le bus système. L'amplificateur interne compare la tension entre gm3 CSIP et RCID au courant d'entrée tension de seuil limite fixé par ACLIM. Connectez taux ACLIM REF, Float et GND pour la pleine échelle tension d'entrée de seuil limite de 100 mV, 75mV et 50mV, respectivement, ou utiliser le diviseur résistif de VREF à la masse pour définir la limite de courant d'entrée cum la suivante équation: Le diviseur de résistance externe de VREF définit la tension au ACLIM de fonction: Où Rbot_ACLIM et Rtop_ACLIM sont des résistances externes à ACLIM. Précision Taux de minimiser la perte due à l'interaction avec Diviseur de résistance interne de ACLIM, S'assurer que la résistance en courant alternatif En regardant en arrière dans le diviseur de résistance externe est inférieure à 25k. Lors du choix de la résistance de détection de courant, noter que la chute de tension dans cette résistance provoque plus de puissance la dissipation, ce qui réduit l'efficacité. Le courant de l'adaptateur secteur Précision sincère est très important. Utilisez la tolérance de 1% résistance de détection de courant. La plus grande précision de ± 3% est obtenue avec 100 mV de mesure du courant pour la tension de seuil ACLIM = VREF, mais il a la dissipation de puissance la plus élevée. pour exemple, il a 400mW dissipation de puissance nominale pour 4A AC la personnalisation et 1W Sensing maillage de résistance doivent être utilisés. ± 4% et ± 6% La précision peut être obtenue avec 75mV et 50mV sens de courant tension de seuil pour ACLIM = flottant et ACLIM = GND, respectivement. Programmation du nombre de cellules TABLEAU 1. NOMBRE cellules CELL DMV 4 GND 3 float 2 ICHG 165mV R1 ------------------- VCHLIM 3.3V = --------------------- ICHG 165mV R1 ------------------- VCHLIM, filet 3.3V = --------------------------------------- ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ = V + 0,050 VREF 0,05 R I 1 ACLIM 2 contribution VACLIM VREF Rbot_ACLIM | | 152k Rtop_ACLIM | | 152k + Rbot_ACLIM | | 152k = × ------------------------------------------------------------------------------------------------------ ISL6251, ISL6251A 14 FN9202.2 10 mai 2006 Un filtre passe-bas est d'éliminer la commutation suggéré bruit. Connecter la résistance à RCID broches au lieu de broches CSIP parce RCID a pings inférieurs courant Bias et moins influents sur la précision de mesure du courant. Personnalisation de détection AC Connectez la tension de l'adaptateur secteur à travers la résistance diviseur de ACSET Lorsque l'alimentation secteur est disponible pour détecter, cum montre Figure 12. ACPRN est une sortie à drain ouvert est élevée et lorsque ACSET est inférieure à Vth, RISE, et est actif bas Quand ACSET ci-dessus Ve, tomber. Ve, RISE et Ve, automne sont donnés par: Où est l'entrée de courant et de l'hystérésis Bias Ihys ACSET VACSET = 1.24V (min), 1.26V (typ) et 1.28V (max). la hystérésis est IhysR8, Où Ihys = 2.2μA (min), 3.4μA (typ) et 4.4μA (max). mesure de courant Utilisez ICM pour contrôler le courant d'entrée détecté Être travers CSIP et RCID. La plage de tension de sortie est de 0 à 2,5 V. la Tension de ICM est proportionnelle à la chute de tension aux bornes de CSIP et RCID, et est donnée par l'équation suivante: de INPUT Où est le courant continu tirée de l'adaptateur secteur. ICM a ± 3% Précision. Un filtre passe-bas connecté à l'ICM est utilisé pour délivrer en sortie du filtre Le bruit de commutation. Régulateur LDO 5.075V VDD la tension d'alimentation du fournisseur de la LDO interne Régulateur de DCIN et peut fournir jusqu'à 30mA de courant. Les pilotes MOSFET sont alimentés par VDDP, qui doit être connecté à VDDP cum le montre la figure 12. VDDP connecte à travers la résistance externe à la DMV. Bypass VDD et VDDP avec le 1μF condensateur. fermeture Le ISL6251, ISL6251A dispose la veille à faible consommation mode. Conduite EN bas arrête le chargeur. Dans l'arrêt, Le convertisseur DC / DC est désactivé, et VCOMP et ICOMP sont tirés à la terre. L'ICM, sorties ACPRN continuer à fonction. FR peut être entraîné par la thermistance Autoriser automatique arrêt Lorsque la batterie est chaude. Souvent, les NTC thermistance est inclus à l'intérieur de la batterie pour mesurer son Température. Lorsqu'il est connecté au chargeur, la thermistance forme le diviseur de tension résistif avec le pull-up à la VREF. La tension de seuil de 1.06V avec 60mV hystérésis est EN. La thermistance peut être sélectionnée pour que le rapport de la résistance Température caractéristique qui diminue brutalement au-dessus de l' Température critique. Cette ferme automatiquement arrangement Lorsque la batterie le chargeur est au-dessus de la critique Température. Une autre méthode pour inhiber taux Charing est Chlim force ci-dessous 88mV (typ). Short Circuit Protection et 0V Batterie Charing Le courant de charge sur le chargeur de batterie Will course les limites fixées par Chlim, il a automatiquement court-circuit protection et est en mesure de charger le fournisseur actuel WAKE taux en batterie extrêmement déchargée. Protection contre la surchauffe Si la température de la filière dépasse 150 ° C, il s'arrête Charing. Une fois que l' DROPS meurent température inférieure à 125 ° C, Charing va recommencer. Renseignements sur la demande La conception de chargeur de batterie qui suit fait référence à la typique Circuit d'application de la figure 12, où la batterie typique de configuration 4S2P est utilisé. Cette section décrit comment Sélectionnez les composants externes, y compris l'inducteur, entrée et des condensateurs de sortie, MOSFET de commutation et de courant Sentant résistances. sélection d'inductance La sélection de l'inducteur a compromis entre le coût, la taille et efficacité. Par exemple, l'inductance de l'abaisser, l' la plus petite taille, mais est courant supérieur d'ondulation. C'est ce qui ressort également des pertes supérieur AC dans le noyau magnétique et les enroulements, qui réduisent l'efficacité du système. D'autre part, Les résultats d'inductance plus élevés dans l'ondulation inférieure actuelle et un filtrage plus petites condensateurs de sortie, mais elle a supérieur DCR (DC résistance de l'inducteur) perte, et a transitoire lent réponse. Sauter, la conception pratique de l'inducteur est basée sur l' inductance ondulation de courant Etre ± (15-20)% du maximum en cours de fonctionnement à courant continu à la tension d'entrée maximale. la inductance nécessaire peut être calculée à partir de: Où VIN, MAX, VBAT, et FS sont l'entrée maximale tension, la tension de la batterie et de la fréquence de commutation respectivement. Le courant ΔI inductance d'ondulation se trouve de: Lorsque le courant maximal crête-à-crête d'ondulation est de 30% le courant de charge maximum est utilisé. Pour VIN, MAX = 19V, VBAT = 16.8V, TABI, MAX = 2.6A, et FS = 300kHz, l'inductance calculée est 8.3μH. Choisir La valeur standard Placard donne L = 10μH. Noyaux de ferrite sont souvent le meilleur choix, car ils sont à taux Optimisé 300kHz ACSET 9 8 e, hausse de 1 V R • ⎟ V R ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + ACSET hys 8 9 8 e, Fall 1 V I R R R V - • ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + ICM = 19,9 de INPUT • • R2 IN, MAX s BAT L IN, MAX BAT V f V je V V L Δ - = Δ IL = 30% ⋅ TABI, MAX ISL6251, ISL6251A 15 FN9202.2 10 mai 2006 Opération de 600kHz avec une faible perte de base. Le noyau doit être honoré PAS assez pour saturer au courant de bobine crête IPeak: Sélection de condensateur de sortie CONDENSATEUR La sortie en parallèle avec la batterie est utilisée pour suce l'ondulation de courant à haute fréquence et de commutation lisser la tension de sortie. La valeur efficace de la sortie ondulation Ieff est donné par: Lorsque le rapport cyclique D est le rapport de la tension de sortie (tension de batterie) sur la tension d'entrée continue pour Le fonctionnement en mode de conduction qui est typique pour la batterie téléchargés. Au cours de la période de charge de la batterie, la tension de sortie varie à partir de sa tension de batterie à la batterie initiale classé tension. Sauter, le rapport cyclique peut être modifié dans la plage de entre 0,53 et 0,88 pour la tension de batterie minimale de 10V (2.5V/Cell) et la tension maximale de la batterie de 16.8V. Pour VIN, MAX = 19V, VBAT = 16.8V, L = 10μH, et FS = 300kHz, le courant maximal RMS est 0.19A. Un typique CONDENSATEUR 10F céramique est un bon choix pour ce suce courant et a également de très petite taille. Le condensateur au tantale Ormerod Connu mécanismes de défaillance Lorsqu'il est soumis à une grande Courant de choc. Considérations EMI marquent généralement souhaitable de minimiser ondulation du courant dans les câbles de la batterie. Perles eBay maille ajoutée dans série avec la batterie à l'augmentation de la batterie impédance à 300kHz Fréquence de commutation. ondulation de commutation splits de courant entre la batterie et le condensateur de sortie en fonction de l'ESR de la production et de la batterie CONDENSATEUR impédance. Si l'ESR du condensateur de sortie est 10M et l'impédance de la batterie est élevée à 2Ω avec le talon, alors que 0,5% du courant d'ondulation dans la batterie 'vais couler. sélection de MOSFET Le chargeur de batterie pour ordinateur portable synchrone avec convertisseur abaisseur a la tension d'entrée à partir de la sortie de l'adaptateur AC. la tension de sortie maximum de l'adaptateur secteur ne dépasse pas 25V. Par conséquent, la logique MOSFET 30V doit être utilisé. Le MOSFET côté haut doit être capable de dissiper la les pertes de conduction, plus les pertes de commutation. Pour la batterie application chargée, la tension d'entrée de l'synchrone convertisseur abaisseur est égale à la tension de sortie de l'adaptateur, qui est relativement constante. L'efficacité maximale est réalisé par Sélection du MOSFET côté haute qui a le les pertes de conduction correspondant aux pertes de commutation. Assurez-vous que ISL6251, ISL6251A LGATE gâté conducteur peut fournir suffisamment taux actuel périssables prévente à partir de conduction, qui est due à le courant injecté dans le parasite drain-source en condensateur (Miller CONDENSATEUR CGD), et causée par la tension phase ascendante de la rareté au noeud à l'instant de la high-side Transformer un MOSFET; Sinon, des problèmes inter-conduction maille se produisent. Ralentissement raisonnable tourner sur la vitesse de la MOSFET côté en connectant la résistance entre le Goupille de BOOT et la source d'alimentation du variateur gâté, et le haut de cinq Capacité actuelle du pilote de MOSFET côté bas gâtée aide réduire la possibilité de cross-conduction. Pour le MOSFET côté, le pire des cas conduction les pertes se produisent à la tension d'entrée minimum: L'efficacité optimale lorsqu'on les pertes de commutation égaler les pertes de conduction. Cependant, il est difficile d' calculer les pertes de commutation dans le MOSFET côté car il doit permettre facteur difficile à quantifier que influent sur ​​la tour-et temps turn-off. Ce facteur Impliquer la résistance interne MOSFET gâté, gâté charge, tension de seuil, l'inductance parasite, pull-up et pull-down résistance du conducteur gâté. La perte de commutation suivante estimations de calcul approximatif du fournisseur. Où Qgd: drainer à périssable charge, Qrr: recouvrement inverse totale Charge de la diode de corps MOSFET côté bas, ILV: inductance actuelle vallée, ILP: courant de crête d'inductance, IG, et cinq IG, la source de pointe sont la source gâtée lecteur / cinq cours du 1er trimestre, respectivement. Pour atteindre les pertes de commutation faible, il nécessite peu d'drain-périssables charge Qgd. Généralement, plus la charge entre drain et périssable, Le supérieur de la sur-résistance. Par conséquent, il est le compromis entre la résistance et sur ​​la charge de vidange à périssable. bon Sélection de MOSFET est basée sur le facteur de mérite (FORM), qui est le produit de la charge totale et la détérioration sur-résistance. Habituellement, plus la valeur de la forme, le plus le rendement pour la même application. Pour le MOSFET côté bas, la dissipation de puissance pire des cas se produit à la tension de batterie minimale et maximale d'entrée tension: Choisissez le MOSFET côté bas qui a le plus bas possible sur la résistance avec le paquet de taille moyenne comme le SO-8 et est d'un prix raisonnable. Les pertes de commutation sont notés sur émettre pour le MOSFET côté bas, car il fonctionne à zéro de commutation de tension. Choisir la diode Schottky en parallèle avec le transistor MOSFET du côté bas Q2 avec la chute de tension assez basse pour la prévente bas-côté MOSFET corps diode de Q2 lors d'un virage sur la temps mort. Cela réduit également la perte de puissance dans le haut-côté MOSFET associés à la récupération inverse de la bas-côté corps MOSFET diode Q2. BAT Peak, MAX IL 2 I = 1 + Δ D (1 D) 12 L f V je s IN, MAX RMS = - DSON 2 BAT EN août Q1, je conduction R V V P = EN rr s g, k péché gd EN LP s g, la source gd Q1, commutation de LV Q V de f je Q I f V 2 1 je Q I f V 2 P = 1 + + DSON 2 BAT EN août Q2 I R V V 1 P ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ = - ISL6251, ISL6251A 16 FN9202.2 10 mai 2006 En règle générale, sélectionnez la diode avec DC Note courant égal à un tiers du courant de charge. Une option est de choisir le combiné avec la diode Schottky dans le MOSFET GaGa emballage. Les ensembles intégrés maille travail mieux pratiquer parce qu'il ya moins inductance parasite en raison de la courte connexion. Cette diode Schottky est facultative et mesh eBay Suppression hyphes perte d'efficacité peut être tolérée. En outre, Veiller à ce que le courant d'entraînement requis totale gâté pour la MOSFET sélectionné doit être inférieur à 24mA. Jump, le total charge périssables pour les high-side et low-side MOSFET est limité par l'équation suivante: Où IGATE est le courant d'attaque totale et gâté Si eBay moins de 24mA. En substituant IGATE = 24mA et FS = 300kHz dans les rendements de l'équation ci-dessus que le périssables de la charge totale doit être inférieure à 80nC. Par conséquent, la ISL6251, ISL6251A entraîne facilement le courant de charge de la batterie jusqu'à 10 bis. Sélection de condensateur d'entrée Le condensateur d'entrée absorbe le courant d'ondulation de la Convertisseur de puissance synchrone, qui est donnée par: Cette RMS ondulation de courant doit être inférieure aux évaluée de RMS courant dans le condensateur de fiche technique. Chimies Nom-tantale (céramique, aluminium, ou OSCON) sont préférés en raison de leur résistance à la mise sous tension des courants de surtension Lorsque l'adaptateur secteur est branché sur le chargeur de batterie. Pour la batterie d'ordinateur portable applications chargées, il est recommandé que céramique condensateurs ou des condensateurs en polymère de Sanyo eBay utilisés pour un duo leur petite taille et de coût raisonnable. Le tableau 2 montre les listes de composants pour l'application typique circuit de la figure 12. Compensation de boucle de conception ISL6251, ISL6251A utilise le mode courant de fréquence constante contrôler l'architecture de la boucle pour atteindre une réponse transitoire rapide. Dans résistance PRÉCIS en série avec la sortie de courant de détection inducteur est utilisé pour la course du courant de charge, et l' signal de courant détecté est injectée dans le taux de la boucle de tension ATTEINDRE mode actuelle pour simplifier la boucle de régulation conception de la rémunération. L'inducteur est pas considéré comme un variables d'état pour le contrôle en mode courant et le système GaGa devient payable système. Il est beaucoup plus facile de concevoir la Compensateur pour stabiliser la tension de la boucle de tension de mode contrôle. La figure 14 montre le petit modèle de signal de l' synchrone régulateur abaisseur. PWM comparateur Gain Fm: Le gain PWM comparateur Fm pour le pic de contrôle en mode courant est donné par: Fonctions Power Stage de transfert La fonction de transfert F1 (S) de contrôle de tension de sortie est: Lorsque, La fonction de transfert F2 (S) de commande de courant de l'inductance est la suivante: , Où. LISTE COMPOSANTS TABLEAU 2. CHIFFRES ET PIECES fabricant C1, C10 10μF/25V condensateur céramique, Taiyo Yuden TMK325 MJ106MY X5R (3.2x2.5x1.9mm) C2, C4, C8 0.1μF/50V condensateur céramique C3, C7, C9 1μF/10V condensateur céramique, Taiyo Yuden LMK212BJ105MG C5 CONDENSATEUR 10nF céramique C6 6.8nF condensateur céramique 3300pF condensateur céramique C11 Diode Schottky D1 30V/3A, EC31QS03L (facultatif) D2, D3 diode Schottky 100mA/30V, Central Semiconductor D4 8A/30V Schottky redresseur, STPS8L30B (facultatif) L 10μH/3.8A/26mΩ, Sumida, CDRH104R-100 Q1, Q2 30V/35mΩ, FDS6912A, Fairchild. s porte GATE f je Q ≤ () EN En août BAT V RMS V V V I I. - = Signal Q3 à canal N MOSFET, 2N7002 R1 40mΩ, ± 1%, LRC-LR2512-01-R040-F, IRC R2 20mΩ, ± 1%, LRC-LR2010-01-R020-F, IRC R3 18Ω, ± 5%, (0805) R4 2.2Ω, ± 5%, (0805) R5 100kΩ, ± 5%, (0805) R6 10k, ± 5%, (0805) R7 100Ω ± 5%, (0805) R8, R11 130 K, ± 1%, (0805) R9 10.2kΩ, ± 1%, (0805) R10 4.7Ω, ± 5%, (0805) R12 20kΩ, ± 1%, (0805) R13 1.87kΩ, ± 1%, (0805) LISTE COMPOSANTS TABLEAU 2. (Suite) CHIFFRES ET PIECES fabricant M 11 VIN = ---------. () 1 Q S S 1 S V de v F S 2 o p o 2 ESR dans o 1 + + + == ω ω ω , R C 1 c o ωesr = L C Q R o p ≈ o o o LC ω = 1 () 1 Q S S 1 S R R V de je F S 2 o p o 2 z o L L en 2 + + + + == ω ω ω o o z R C ω ≈ 1 ISL6251, ISL6251A 17 FN9202.2 10 mai 2006 Gain de boucle de courant Ti (S) est le sperme impressionné suivante équation: où RT est la trans-résistance dans la boucle de courant. RT est généralement égal au produit du courant de détection Charing la résistance et le gain de l'amplificateur de détection de courant, CA2. Pour ISL6251, ISL6251A, RT = 20R1. Le gain en tension de la boucle de courant est ouvert: Lorsque, VFB est la tension de contre-réaction de la tension l'amplificateur d'erreur. Le gain de la boucle de tension de la boucle de courant fermée est donnée par: Cum DM Petit (S) >> 1, alors il peut être simplifié suit: De l'équation ci-dessus, il est démontré que le système est le système de commande de GaGa, qui a le pôle de noisette situé à Avant la moitié de la fréquence de commutation. Par conséquent, franc de type II Compensateur peut être facilement utilisé pour stabiliser le système. La figure 15 montre le compensateur de boucle de tension, et son fonction de transfert est cum impressionné suit: où Objectif de conception du compensateur: • haut gain DC • boucle de bande passante FC: • La marge de gain:> 10dB • La marge de phase: 40 ° La procédure de conception du compensateur est cum suit: . 1 Putt Compensateur zéro à: 2. Compensateur Mettez un pôle à la fréquence zéro pour atteindre DC gain élevé, et Putt autre pôle du compensateur à répétitions ESR fréquence nulle ou demi-fréquence de commutation valeur la plus faible. Le gain Tv (S) de la boucle à fréquence de croisement FC de l'unité a gagner. Par conséquent, la résistance R1 est Compensateur déterminé par: Lorsque MM est la trans-conductance de l'erreur de la boucle de tension amplificateur. Compensateur condensateur C1 est alors donnée par: Exemple: Vin = 19V, Vo = 16.8V, 2.6A = nght, FS = 300kHz, Co = 10μF/10mΩ, L = 10μH, GM = 250μs, RT = 0.8Ω, VFB = 2,1 V, FC = 20 kHz, alors Compensateur résistance R1 = 10kO. Choisissez R1 = 10kO. Mettez le compensateur zéro à 1,5 kHz. Le compensateur est condensateur C1 = 6.5nF. Par conséquent, Choisissez tension boucle compensateur: R1 = 10k, C1 = 6.5nF. Petit (S) = 0,25 RTF2 (S) M Tv (S) = KM F1 (S) AV (S) o FB V V K = () 1 T (S) T S L (S) je v v + = LV (S) 4VFB VO -------------- (RO + RL) RT ----------------------------- 1 S ωesr + ------------ 1 Sω P + ------- ------------------------ AV (S) ωP 1 ROCO =, ≈ ----------------- ωp FIGURE 14. MODEL PETIT SIGNAL DE synchrone BUCK REGULATEUR de devenir de ville iin L + 1: D + IL Cie. rc ro -Av (S) de Vcomp RT 11/Vin + Petit (S) Q valeur Tv (S) - VCA2 0.25VCA2 VindILdin () Caroline du Sud 1 S sol v v S 1 CZ je FB échantillon v ω + == R C 1 1 1 ωcz = - + R1 C1 VREF VFB VO GM VCOMP FIGURE 15. LOOP tension Compensateur FS 20 1 5 1 ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - () o o CZ R C ω = 1 à 3 jan R1 8πfCVOCORT gmVFB = --------------------------------------- 1 CZ R 1 C 1 ω = ISL6251, ISL6251A 18 FN9202.2 10 mai 2006 Aspects de l'agencement PCB Secteur et signal couches placement sur ​​le PCB En règle générale, les couches d'alimentation doivent être rapprochés, répète sur le haut ou le bas de la carte, avec des couches de signaux sur le côté opposé de la carte. Comme exemple, la couche Agencement sur un panneau 4-couche est indiqué ci-dessous: . 1 Top Layer: les lignes de signaux, ou demi-pension pour les lignes de signaux et L'autre demi-pension pour les lignes électriques 2. Signal Ground . 3 couches de puissance: Puissance sol . 4 Couche inférieure: MOSFET de puissance, inductances et autres traces de puissance Séparer la tension d'alimentation et le chemin de circulation de courant à partir de le chemin de signal de contrôle et de niveau logique. Le contrôleur IC rester sur la couche de signal, qui est isolée par le signal terre pour les traces de signal de puissance. Placement de composants Le MOSFET de puissance devrait être proche de l'IC que le saut signaux gâté d'entraînement, le LGATE, UGATE, PHASE, et BOOT, traces peuvent être à court. Une telle place les composants de la façon que l'aire sous la IC a moins de bruit retrace avec de hauts DVD / dt et de dire / dt, tel cum signaux gâtés et les signaux de noeuds de phase. Signal Ground et Ground Power Connection. Au moins, la vaste zone raisonnable de cuivre, qui Protégez autre couplage de bruit à travers le CI, devrait être utilisé masse du signal cum sous le IC. Le meilleur lien entre les points la masse du signal et la masse de l'alimentation est au négatif CONDENSATEUR de chaque côté de la face de sortie, où il existe peu de bruit; La trace bruyant sous la CI n'est pas recommandé. GND et VDD PIN Au moins une haute qualité en céramique bouchon de découplage Si eBay utilisé pour franchir ces deux Pins. Le bouchon de découplage peut être mis près de l'IC. LGATE PIN C'est le butin du signal de commande pour le MOSFET bas Buck Converter. Le signal passant par cette trace est à la fois élevés DVD / dt et ladite haute / dt, et le pic et Charing courant de décharge est très élevé. Ces deux traces Si eBay court, large, et loin d'autres traces. S'il n'y a pas D'autres traces en parallèle avec ces traces sur une couche. PGND PIN Si les repères eBay PGND prévue sur le côté négatif de la bouchon de sortie pertinente avec des traces distinctes. Le côté négatif de la capacité de production doit être proche du noeud source de le transistor MOSFET de fond. Cette trace est le chemin de LGATE de retour. PIN PHASE Cette trace doit être court, et positionné à l'écart des autres faibles traces de signal. Ce nœud a la très grande dvds / dt avec le excursion de tension de la tension d'entrée à la masse. n ° trace devrait être en parallèle avec elle. Cette trace est également le trajet de retour pour UGATE. Connectez cette broche à la MOSFET côté la source. UGATE PIN Cette broche a la forme carrée de forme d'onde avec de hauts DVD / dt. il Fournisseur gâché le courant d'attaque pour charger et décharger le haut MOSFET à haute voix / dt. Cette trace devrait être large, Bref, et loin des autres traces semblables à la LGATE. PIN BOOT Disons / dt de cette broche est la cum cum UGATE élevé; Par conséquent, cette trace doit être court cum cum réalisable. CSOP, Cson Pins La résistance de détection de courant connecte à l'Cson et l' CSOP Pins à travers le filtre passe-bas. La broche est également Cson AS utilisé les évaluations de tension de la batterie. Les traces Si eBay loin de la haute DVD / dt et dire / dit Pins comme PHASE, BOOT Pins. En général, la résistance de détection de courant doit être proche à l'IC. D'autres dispositions de mise en page doit être ajustée en conséquence. EN PIN Cet axe reste à haute et basse au ralenti permettent la mode et de la mode est relativement robuste. Activer signaux doivent se référer au signal sol. DCIN PIN Cet axe se connecte à AC tension de sortie de l'adaptateur, et devrait eBay moins sensible au bruit. Taille du cuivre pour le noeud de phase La capacité de phase devrait être aussi des taux très bas minimiser sonner. Il serait préférable de limiter la taille de la Noeud CUIVRE PHASE en stricte conformité avec le courant et la gestion thermique de l'application. Identifier le terrain secteur et signal Les condensateurs des convertisseurs d'entrée et de sortie, la source terminale de la commutation MOSFET bas Si PGND connecter à la terre électrique. Les autres composants doivent connecter à la masse du signal. Signal et masse de l'alimentation sont tiède ensemble à un moment donné. Serrage condensateur pour MOSFET de commutation Il est recommandé que les bouchons en céramique utilisés eBay étroitement reliée au drain du MOSFET côté, et la la source du MOSFET côté bas. Cela réduit la capacité le bruit et la perte du MOSFET de puissance. ISL6251, ISL6251A 19 FN9202.2 10 mai 2006 ISL6251, ISL6251A Quad Flat No-Lead paquet en plastique (QFN) Micro Cadre de plomb paquet en plastique (MLFP) INDEX D1 / 2 D1 D / 2 ré E1 / 2 E / 2 E A 2x 0,15 B C 0,10 M C A B A N plan SIÈGES N 6 3 2 23 et 1 1 0,08 TERMINAL POUR ODD / SIDE POUR TERMINAL Même / SIDE C C SECTION "C-C" NX b A1 C 2x 0,15 C 0,15 2x B 0 REF. (ND-1) Xe (NRE-E1F) X. et 5 A1 4x P A C C 4x P B 2x 0,15 C A A2 A3 D2 D2 E2 E2 / 2 TYPE TERMINAL VUE DE CÔTÉ VUE DE DESSUS 7 VUE DU BAS 7 5 CL CL et e E1 2 NX k NX b 8 NX L 8 8 9 ZONE 9 4x / / C 0,10 9 (La référence B) (Donnée A) INDEX 6 ZONE N 9 CORNER Options 4x L1 L 10 l1 L 10 L28.5x5 28 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE (COMPLIANT TO JEDEC MO-220VHHD-1 ISSUE I) SYMBOL MILLIMETERS MIN NOMINAL MAX NOTES A 0.80 0.90 1.00 - A1 - 0.02 0.05 - A2 - 0.65 1.00 9 A3 0.20 REF 9 b 0.18 0.25 0.30 5,8 D 5.00 BSC - D1 4.75 BSC 9 D2 2.95 3.10 3.25 7,8 E 5.00 BSC - E1 4.75 BSC 9 E2 2.95 3.10 3.25 7,8 e 0.50 BSC - k 0.20 - - - L 0.50 0.60 0.75 8 N 28 2 Nd 7 3 Ne 7 3 P - - 0.60 9 θ - - 12 9 Rev1 11/04 NOTES: 1. Dimensioning and tolerancing conform to ASME Y14.5-1994. 2. N is the number of terminals. 3. Nd and Ne refer to the number of terminals on each D and E. 4. All dimensions are in millimeters. Angles are in degrees. 5. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature. 7. Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance. 8. Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389. 9. Features and dimensions A2, A3, D1, E1, P & θ are present when Anvil singulation method is used and not present for saw singulation. 20 All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN9202.2 May 10, 2006 ISL6251, ISL6251A Shrink Small Outline Plastic Packages (SSOP) Quarter Size Outline Plastic Packages (QSOP) NOTES: 1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. Dimension “B” does not include dambar protrusion. Allowable dambar protrusion shall be 0.10mm (0.004 inch) total in excess of “B” dimension at maximum material condition. 10. Controlling dimension: INCHES. Converted millimeter dimensions are not necessarily exact. α INDEX AREA E D N 1 2 3 -B- 0.17(0.007) M C A B S e -AB M -CA1 A SEATING PLANE 0.10(0.004) h x 45° C H 0.25(0.010) M B M L 0.25 0.010 GAUGE PLANE A2 M24.15 24 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE (0.150” WIDE BODY) SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A 0.053 0.069 1.35 1.75 - A1 0.004 0.010 0.10 0.25 - A2 - 0.061 - 1.54 - B 0.008 0.012 0.20 0.30 9 C 0.007 0.010 0.18 0.25 - D 0.337 0.344 8.55 8.74 3 E 0.150 0.157 3.81 3.98 4 e 0.025 BSC 0.635 BSC - H 0.228 0.244 5.80 6.19 - h 0.0099 0.0196 0.26 0.49 5 L 0.016 0.050 0.41 1.27 6 N 24 24 7 α 0° 8° 0° 8° - Rev2 6/04 1 ® FN3282.13 DG411, DG412, DG413 Monolithic Quad SPST, CMOS Analog Switches The DG411 series monolithic CMOS analog switches are drop-in replacements for the popular DG211 and DG212 series devices. They include four independent single pole throw (SPST) analog switches, and TTL and CMOS compatible digital inputs. These switches feature lower analog ON-resistance (<35Ω) and faster switch time (tON<175ns) compared to the DG211 or DG212. Charge injection has been reduced, simplifying sample and hold applications. The improvements in the DG411 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44V maximum voltage range permits controlling 40VP-P signals. Power supplies may be single-ended from +5V to 44V, or split from ±5V to ±20V. The four switches are bilateral, equally matched for AC or bidirectional signals. The ON-resistance variation with analog signals is quite low over a ±15V analog input range. la switches in the DG411 and DG412 are identical, differing only in the polarity of the selection logic. Two of the switches in the DG413 (#2 and #3) use the logic of the DG211 and DG411 (i.e., a logic “0” turns the switch ON) and the other two switches use DG212 and DG412 positive logic. This permits independent control of turn-on and turn-off times for SPDT configurations, permitting “break-before-make” or “makebefore- break” operation with a minimum of external logic. Features • ON-Resistance (Max). . . . . . . . . . . . . . . . . . . . . . . . .35Ω • Low Power Consumption (PD) . . . . . . . . . . . . . . . . . .<35μW • Fast Switching Action - tON (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175ns - tOFF (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145ns • Low Charge Injection • Upgrade from DG211, DG212 • TTL, CMOS Compatible • Single or Split Supply Operation • Pb-Free Plus Anneal Available (RoHS Compliant) Applications • Audio Switching • Battery Operated Systems • Data Acquisition • Hi-Rel Systems • Sample and Hold Circuits • Communication Systems • Automatic Test Equipment Data Sheet June 20, 2007 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 1993, 1994, 1997, 1999, 2002, 2004-2007. All Rights Reserved All other trademarks mentioned are the property of their respective owners. 2 FN3282.13 June 20, 2007 Pinout DG411, DG412, DG413 (16 LD PDIP, SOIC, TSSOP) TOP VIEW Ordering Information PART NUMBER PART MARKING TEMP. RANGE (°C) PACKAGE PKG. DWG. # DG411DJ DG411DJ -40 to +85 16 Ld PDIP E16.3 DG411DJZ (Note) DG411DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3 DG411DY* DG411DY -40 to +85 16 Ld SOIC (150 mil) M16.15 DG411DYZ* (Note) DG411DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15 DG411DVZ* (Note) DG411 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173 DG412DJ DG412DJ -40 to +85 16 Ld PDIP E16.3 DG412DJZ (Note) DG412DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3 DG412DY* DG412DY -40 to +85 16 Ld SOIC (150 mil) M16.15 DG412DYZ* (Note) DG412DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15 DG412DVZ* (Note) DG412 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173 DG413DJ DG413DJ -40 to +85 16 Ld PDIP E16.3 DG413DJZ (Note) DG413DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3 DG413DY* DG413DY -40 to +85 16 Ld SOIC (150 mil) M16.15 DG413DYZ* (Note) DG413DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15 DG413DVZ* (Note) DG413 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173 *Add “-T” suffix for tape and reel. **Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications. NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. TRUTH TABLE LOGIC DG411 DG412 DG413 SWITCH SWITCH SWITCH 1, 4 SWITCH 2, 3 0 On Off Off On 1 Off On On Off NOTE: Logic “0” ≤0.8V. Logic “1” ≥2.4V. 14 15 16 9 13 12 11 10 1 2 3 4 5 7 6 8 IN1 D1 S1 VGND S4 IN4 D4 IN2 S2 V+ VL S3 D3 IN3 D2 Pin Descriptions PIN SYMBOL DESCRIPTION 1 IN1 Logic Control for Switch 1. 2 D1 Drain (Output) Terminal for Switch 1. 3 S1 Source (Input) Terminal for Switch 1. 4 V- Negative Power Supply Terminal. 5 GND Ground Terminal (Logic Common). 6 S4 Source (Input) Terminal for Switch 4. 7 D4 Drain (Output) Terminal for Switch 4. 8 IN4 Logic Control for Switch 4. 9 IN3 Logic Control for Switch 3. 10 D3 Drain (Output) Terminal for Switch 3. 11 S3 Source (Input) Terminal for Switch 3. 12 VL Logic Reference Voltage. 13 V+ Positive Power Supply Terminal (Substrate). 14 S2 Source (Input) Terminal for Switch 2. 15 D2 Drain (Output) Terminal for Switch 2. 16 IN2 Logic Control for Switch 2. DG411, DG412, DG413 3 FN3282.13 June 20, 2007 Functional Diagrams Four SPST Switches per Package Switches Shown for Logic “1” Input Schematic Diagram (1 Channel) S1 D1 S2 D2 S3 D3 S4 D4 DG411 S1 D1 S2 D2 S3 D3 S4 D4 IN1 DG412 IN2 IN3 IN4 S1 D1 S2 D2 S3 D3 S4 D4 IN1 DG413 IN2 IN3 IN4 IN2 IN3 IN4 IN1 S V+ INX GND VVVL ré V+ DG411, DG412, DG413 4 FN3282.13 June 20, 2007 Absolute Maximum Ratings Thermal Information V+ to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44V GND to V-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25V VL. . . . . . . . . . . . . . . . . .............(GND -0.3V) to (V+) +0.3V Digital Inputs, VS, VD (Note 1). . . . . (V-) -2V to (V+) + 2V or 30mA, Whichever Occurs First Continuous Current (Any Terminal) . . . . . . . . . . . . . . . . . . . . . 30mA Peak Current, S or D (Pulsed 1ms, 10% Duty Cycle Max) . . 100mA Operating Conditions Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20V (Max) Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C Input Low Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8V (Max) Input High Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4V (Min) Input Rise and Fall Time ..................... .... ...≤20ns Thermal Resistance (Typical, Note 2) θJA (°C/W) PDIP Package* ............................ 90 SOIC Package ................. . . . . . . . . . . . . 110 TSSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . .150 Maximum Junction Temperature (Plastic Packages). . . . . . .+150°C Maximum Storage Temperature Range. . . . . . . . ..-65°C to +150°C Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . ..see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp (SOIC and TSSOP - Lead Tips Only) *Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications. CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 1. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings. 2. θJA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details. Electrical Specifications Test Conditions: V+ = +15V, V- = -15V, VL = 5V, VIN = 2.4V, 0.8V (Note 3), Unless Otherwise Specified. PARAMETER TEST CONDITIONS TEMP (°C) MIN (Note 4) TYP (Note 5) MAX (Note 4) UNITS DYNAMIC CHARACTERISTICS Turn-ON Time, tON RL = 300Ω, CL = 35pF, VS = ±10V (Figure 1) 25 - 110 175 ns 85 - - 220 ns Turn-OFF Time, tOFF 25 - 100 145 ns 85 - - 160 ns Break-Before-Make Time Delay DG413 Only, RL = 300Ω, CL = 35pF (Figure 2) 25 - 25 - ns Charge Injection, Q (Figure 3) CL = 10nF, VG = 0V, RG = 0Ω 25 - 5 - pC OFF Isolation (Figure 5) RL = 50Ω, CL = 5pF, f = 1MHz 25 - 68 - dB Crosstalk (Channel-to-Channel), (Figure 4) 25 - -85 - dB Source OFF Capacitance, CS(OFF) f = 1MHz (Figure 6) 25 - 9 - pF Drain OFF Capacitance, CD(OFF) 25 - 9 - pF Channel ON Capacitance, CD(ON) + CS(ON) 25 - 35 - pF DIGITAL INPUT CHARACTERISTICS Input Current VIN Low, IIL VIN Under Test = 0.8V, All Others = 2.4V Full -0.5 0.005 0.5 μA Input Current VIN High, IIH VIN Under Test = 2.4V, All Others = 0.8V Full -0.5 0.005 0.5 μA ANALOG SWITCH CHARACTERISTICS Analog Signal Range, VANALOG IS = 10mA Full -15 - 15 V Drain-Source ON Resistance, rDS(ON) IS = 10mA, VD = ±8.5V, V+ = 13.5V, V- = -13.5V 25 - 25 35 Ω Full - - 45 Ω ± ± DG411, DG412, DG413 5 FN3282.13 June 20, 2007 Source OFF Leakage Current, IS(OFF) V+ = 16.5V, V- = -16.5V, VD = ±15.5V, VS = 15.5V 25 -0.25 ±0.1 0.25 nA Full -5 - +5 nA Drain OFF Leakage Current, ID(OFF) 25 -0.25 ±0.1 0.25 nA Full -5 - +5 nA Channel ON Leakage Current, ID(ON) + IS(ON) V+ = 16.5V, V- = -16.5V, VS = VD = ±15.5V 25 -0.4 ±0.1 0.4 nA Full -10 - +10 nA POWER SUPPLY CHARACTERISTICS Positive Supply Current, I+ V+ = 16.5V, V- = -16.5V, VIN = 0V or 5V 25 - 0.0001 1 μA 85 - - 5 μA Negative Supply Current, I- 25 -1 -0.0001 - μA 85 -5 - - μA Logic Supply Current, IL 25 - 0.0001 1 μA 85 - - 5 μA Ground Current, IGND 25 -1 -0.0001 - μA 85 -5 - - μA Electrical Specifications (Single Supply) Test Conditions: V+ = +12V, V- = 0V, VL = 5V, VIN = 2.4V, 0.8V (Note 3), Unless Otherwise Specified. PARAMETER TEST CONDITIONS TEMP (°C) MIN (Note 4) TYP (Note 5) MAX (Note 4) UNITS DYNAMIC CHARACTERISTICS Turn-ON Time, tON RL = 300Ω, CL = 35pF, VS = 8V, (Figure 1) 25 - 175 250 ns 85 - - 315 ns Turn-OFF Time, tOFF 25 - 95 125 ns 85 - - 140 ns Break-Before-Make Time Delay DG413 Only, RL = 300Ω, CL = 35pF, VS = 8V 25 - 25 - ns Charge Injection, Q CL = 10nF, VG = 6.0V, RG = 0Ω 25 - 25 - pC ANALOG SWITCH CHARACTERISTICS Analog Signal Range, VANALOG Full 0 - 12 V Drain-Source ON-Resistance, rDS(ON) IS = -10mA, VD = 3V, 8V V+ = 10.8V 25 - 40 80 Ω Full - - 100 Ω Electrical Specifications Test Conditions: V+ = +15V, V- = -15V, VL = 5V, VIN = 2.4V, 0.8V (Note 3), Unless Otherwise Specified. (Continued) PARAMETER TEST CONDITIONS TEMP (°C) MIN (Note 4) TYP (Note 5) MAX (Note 4) UNITS ± DG411, DG412, DG413 6 FN3282.13 June 20, 2007 POWER SUPPLY CHARACTERISTICS Positive Supply Current, I+ V+ = 13.2V, V- = 0V VIN = 0V or 5V 25 - 0.0001 1 μA 85 - - 5 μA Negative Supply Current, I- 25 -1 -0.0001 - μA 85 -5 - - μA Logic Supply Current, IL 25 - 0.0001 1 μA 85 - - 5 μA Ground Current, IGND 25 -1 -0.0001 - μA 85 -5 - - μA NOTES: 3. VIN = input voltage to perform proper function. 4. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. 5. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. Test Circuits and Waveforms VO is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform. NOTE: Logic input waveform is inverted for switches that have the opposite logic sense. FIGURE 1A. MEASUREMENTS POINTS Repeat test for all IN and S. For load conditions, see Specifications. CL includes fixture and stray capacitance. FIGURE 1B. TEST CIRCUIT FIGURE 1. SWITCHING TIMES FIGURE 2A. MEASUREMENT POINTS FIGURE 2B. TEST CIRCUITS FIGURE 2. BREAK-BEFORE-MAKE TIME Electrical Specifications (Single Supply) Test Conditions: V+ = +12V, V- = 0V, VL = 5V, VIN = 2.4V, 0.8V (Note 3), Unless Otherwise Specified. (Continued) PARAMETER TEST CONDITIONS TEMP (°C) MIN (Note 4) TYP (Note 5) MAX (Note 4) UNITS 50% tr < 20ns tf < 20ns tOFF 90% 3V 0V VS 0V tON VO LOGIC INPUT SWITCH INPUT SWITCH OUTPUT 90% VO VS RL RL + rDS(ON) = ------------------------------------ SWITCH INPUT LOGIC INPUT S1 IN1 V+ D1 RL CL VO GND VVL +5V +15V SWITCH OUTPUT -15V tD 3V 0V VS1 0V tD LOGIC INPUT SWITCH OUTPUT SWITCH OUTPUT 90% 0V VS2 (V01) VO2 90% S1 IN1, IN2 V+ D1 RL1 CL1 VO1 GND VVL VS1 = 10V 300Ω +5V +15V S2 D2 35pF RL2 CL2 VO2 VS2 = 10V 300Ω 35pF -15V LOGIC INPUT CL includes fixture and stray capacitance. DG411, DG412, DG413 7 FN3282.13 June 20, 2007 FIGURE 3A. TEST CIRCUIT NOTE: INX dependent on switch configuration, input polarity determined by sense of switch. FIGURE 3B. MEASUREMENT POINTS FIGURE 3. CHARGE INJECTION FIGURE 4. CROSSTALK TEST CIRCUIT FIGURE 5. OFF ISOLATION TEST CIRCUIT FIGURE 6. SOURCE/DRAIN CAPACITANCES TEST CIRCUIT Test Circuits and Waveforms (Continued) V+ D1 CL VO GND VVIN = 3V RG VG SWITCH ΔVO INX OFF ON INX OFF OFF OFF ON Q = ΔVO x CL OUTPUT 0V, 2.4V ANALYZER +15V C V+ 0dBm VS SIGNAL GENERATOR RL GND IN1 VD IN2 50Ω 0V, 2.4V NC V- -15V C VD ANALYZER RL +15V 0dBm SIGNAL GENERATOR C V+ V- -15V C 0V, 2.4V VS VD INX GND +15V C V+ GND VS VD INX V- -15V C IMPEDANCE ANALYZER f = 1MHz 0V, 2.4V DG411, DG412, DG413 8 FN3282.13 June 20, 2007 Application Information Single Supply Operation The DG411, DG412, DG413 can be operated with unipolar supplies from 5V to 44V. These devices are characterized and tested for single supply operation at 12V to facilitate the majority of applications. To function properly, 12V is tied to Pins 13 and 0V is tied to Pin 4. Pin 12 still requires 5V for TTL compatible switching. Summing Amplifier When driving a high impedance, high capacitance load such as shown in Figure 7, where the inputs to the summing amplifier have some noise filtering, it is necessary to have shunt switches for rapid discharge of the filter capacitor, thus preventing offsets from occurring at the output. VIN1 R1 R2 VOUT + - C1 VIN2 R3 R4 C2 DG413 R5 R6 FIGURE 7. SUMMING AMPLIFIER DG411, DG412, DG413 9 FN3282.13 June 20, 2007 Typical Performance Curves FIGURE 8. ON RESISTANCE vs VD AND POWER SUPPLY VOLTAGE FIGURE 9. SWITCHING TIME vs TEMPERATURE FIGURE 10. LEAKAGE CURRENTS vs ANALOG VOLTAGE FIGURE 11. SUPPLY CURRENT vs INPUT SWITCHING FREQUENCY FIGURE 12. CHARGE INJECTION vs SOURCE VOLTAGE FIGURE 13. CHARGE INJECTION vs DRAIN VOLTAGE TA = +25°C 50 A: ±5V B: ±8V C: ±10V D: ±12V E: ±15V F: ±20V 45 40 35 30 25 20 15 10 5 0 -20 -15 -10 -5 0 5 10 15 20 A B C ré E fa DRAIN VOLTAGE (V) rDS(ON) (Ω) V+ = 15V, V- = -15V VL = 5V, VS = 10V tON tOFF -55 -15 5 25 45 65 85 105 125 TEMPERATURE (°C) -35 0 240 210 180 150 120 90 60 30 tON, tOFF (ns) V+ = 15V, V- = -15V VL = 5V, TA = +25°C -15 -5 0 5 10 15 VS, VD (V) -10 -60 20 10 0 -10 -20 -30 -40 -50 IS, ID (pA) IS(OFF) ID(OFF) 30 40 ID(ON) + IS(ON) ISUPPLY 100mA 1mA 100μA 10μA 1μA 100nA 10nA 10mA 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) IL I+, I- 1SW 1SW 4SW 4SW V+ = 15V, V- = -15V VL = 5V CL = 10nF CL = 1nF -15 -5 0 5 10 15 VS (V) -10 -60 60 40 20 0 -20 -40 Q (pC) 80 100 V+ = 15V, V- = -15V VL = 5V CL = 10nF CL = 1nF -15 -5 0 5 10 15 VD (V) -10 -60 60 40 20 0 -20 -40 Q (pC) 100 140 120 80 V+ = 15V, V- = -15V VL = 5V DG411, DG412, DG413 10 FN3282.13 June 20, 2007 Die Characteristics DIE DIMENSIONS: 2760mm x 1780mm x 485mm METALLIZATION: Type: SiAl Thickness: 12kÅ ±1kÅ PASSIVATION: Type: Nitride Thickness: 8kÅ ±1kÅ WORST CASE CURRENT DENSITY: 1.5 x 105 A/cm2 Metallization Mask Layout DG411, DG412, DG413 S1 (3) V- (4) GND (5) S4 (6) D1 IN1 IN2 (11) S3 (12) VL (13) V+ SUBSTRATE (14) S2 (15) D2 (2) (1) (16) D4 IN4 IN3 D3 (7) (8) (9) (10) DG411, DG412, DG413 11 FN3282.13 June 20, 2007 DG411, DG412, DG413 Thin Shrink Small Outline Plastic Packages (TSSOP) NOTES: 1. These package dimensions are within allowable dimensions of JEDEC MO-153-AB, Issue E. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E1” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.15mm (0.006 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall be 0.08mm (0.003 inch) total in excess of “b” dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm (0.0027 inch). 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. (Angles in degrees) α INDEX AREA E1 ré N 1 2 3 -B- 0.10(0.004) M C A B S et -Ab M -CA1 A SEATING PLANE 0.10(0.004) c E 0.25(0.010) M B M L 0.25 0.010 GAUGE PLANE A2 0.05(0.002) M16.173 16 LEAD THIN SHRINK SMALL OUTLINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A - 0.043 - 1.10 - A1 0.002 0.006 0.05 0.15 - A2 0.033 0.037 0.85 0.95 - b 0.0075 0.012 0.19 0.30 9 c 0.0035 0.008 0.09 0.20 - D 0.193 0.201 4.90 5.10 3 E1 0.169 0.177 4.30 4.50 4 e 0.026 BSC 0.65 BSC - E 0.246 0.256 6.25 6.50 - L 0.020 0.028 0.50 0.70 6 N 16 16 7 a 0o 8o 0o 8o - Rev1 2/02 12 FN3282.13 June 20, 2007 DG411, DG412, DG413 Dual-In-Line Plastic Packages (PDIP) NOTES: 1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication No. 95. 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3. 5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm). 6. E and are measured with the leads constrained to be perpendicular to datum . 7. eB and eC are measured at the lead tips with the leads unconstrained. eC must be zero or greater. 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm). 9. N is the maximum number of terminal positions. 10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm). eA -CCL E eA C eB eC -BE1 INDEX 1 2 3 N/2 N AREA SEATING BASE PLANE PLANE -CD1 B1 B et ré D1 A2 A L A1 -A- 0.010 (0.25) M C A B S E16.3 (JEDEC MS-001-BB ISSUE D) 16 LEAD DUAL-IN-LINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A - 0.210 - 5.33 4 A1 0.015 - 0.39 - 4 A2 0.115 0.195 2.93 4.95 - B 0.014 0.022 0.356 0.558 - B1 0.045 0.070 1.15 1.77 8, 10 C 0.008 0.014 0.204 0.355 - D 0.735 0.775 18.66 19.68 5 D1 0.005 - 0.13 - 5 E 0.300 0.325 7.62 8.25 6 E1 0.240 0.280 6.10 7.11 5 e 0.100 BSC 2.54 BSC - eA 0.300 BSC 7.62 BSC 6 eB - 0.430 - 10.92 7 L 0.115 0.150 2.93 3.81 4 N 16 16 9 Rev0 12/93 13 All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN3282.13 June 20, 2007 DG411, DG412, DG413 Small Outline Plastic Packages (SOIC) NOTES: 1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch). 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. INDEX AREA E ré N 1 2 3 -B- 0.25(0.010) M C A B S et -AL B M -CA1 A SEATING PLANE 0.10(0.004) h x 45° C H 0.25(0.010) M B M α M16.15 (JEDEC MS-012-AC ISSUE C) 16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A 0.0532 0.0688 1.35 1.75 - A1 0.0040 0.0098 0.10 0.25 - B 0.013 0.020 0.33 0.51 9 C 0.0075 0.0098 0.19 0.25 - D 0.3859 0.3937 9.80 10.00 3 E 0.1497 0.1574 3.80 4.00 4 e 0.050 BSC 1.27 BSC - H 0.2284 0.2440 5.80 6.20 - h 0.0099 0.0196 0.25 0.50 5 L 0.016 0.050 0.40 1.27 6 N 16 16 7 α 0° 8° 0° 8° - Rev1 6/05 1 ® July 2004 HIP4081A 80V/2.5A Peak, High Frequency Full Bridge FET Driver The HIP4081A is a high frequency, medium voltage Full Bridge N-Channel FET driver IC, available in 20 lead plastic SOIC and DIP packages. The HIP4081A can drive every possible switch combination except those which would cause a shoot-through condition. The HIP4081A can switch at frequencies up to 1MHz and is well suited to driving Voice Coil Motors, high-frequency switching power amplifiers, and power supplies. For example, the HIP4081A can drive medium voltage brush motors, and two HIP4081As can be used to drive high performance stepper motors, since the short minimum “on-time” can provide fine micro-stepping capability. Short propagation delays of approximately 55ns maximizes control loop crossover frequencies and dead-times which can be adjusted to near zero to minimize distortion, resulting in rapid, precise control of the driven load. A similar part, the HIP4080A, includes an on-chip input comparator to create a PWM signal from an external triangle wave and to facilitate “hysteresis mode” switching. The Application Note for the HIP4081A is the AN9405. Features • Independently Drives 4 N-Channel FET in Half Bridge or Full Bridge Configurations • Bootstrap Supply Max Voltage to 95VDC • Drives 1000pF Load at 1MHz in Free Air at 50°C with Rise and Fall Times of Typically 10ns • User-Programmable Dead Time • On-Chip Charge-Pump and Bootstrap Upper Bias Supplies • DIS (Disable) Overrides Input Control • Input Logic Thresholds Compatible with 5V to 15V Logic Levels • Very Low Power Consumption • Undervoltage Protection • Pb-free Available Applications • Medium/Large Voice Coil Motors • Full Bridge Power Supplies • Switching Power Amplifiers • High Performance Motor Controls • Noise Cancellation Systems • Battery Powered Vehicles • Peripherals • U.P.S. Pinout HIP4081A (PDIP, SOIC) TOP VIEW Ordering Information PART NUMBER TEMP RANGE (°C) PACKAGE PKG. DWG. # HIP4081AIP -40 to 85 20 Ld PDIP E20.3 HIP4081AIPZ (Note) -40 to 85 20 Ld PDIP (Pb-free) E20.3 HIP4081AIB -40 to 85 20 Ld SOIC (W) M20.3 HIP4081AIBZ (Note) -40 to 85 20 Ld SOIC (W) (Pb-free) M20.3 NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which is compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J Std-020B. 11 12 13 14 15 16 17 18 20 19 10 9 8 7 6 5 4 3 2 BHB 1 BHI DIS VSS BLI ALI HDEL AHI LDEL AHB BHO BLO BLS VDD BHS VCC ALS ALO AHS AHO Data Sheet FN3659.7 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Harris Corporation. Copyright Intersil Americas Inc. 2003, 2004. All Rights Reserved All other trademarks mentioned are the property of their respective owners. 2 HIP4081A Application Block Diagram Functional Block Diagram (1/2 HIP4081A) 80V GND LOAD HIP4081A GND 12V AHI ALI BLI BHI BLO BHS BHO ALO AHS AHO CHARGE PUMP VDD AHI DIS ALI HDEL LDEL VSS TURN-ON DELAY TURN-ON DELAY DRIVER DRIVER AHB AHO AHS VCC ALO ALS CBF TO VDD (PIN 16) CBS DBS HIGH VOLTAGE BUS ≤ 80VDC +12VDC LEVEL SHIFT AND LATCH 14 10 11 12 15 13 16 7 3 6 8 9 4 BIAS SUPPLY UNDERVOLTAGE 3 Typical Application (PWM Mode Switching) 11 12 13 14 15 16 17 18 20 19 10 9 8 7 6 5 4 3 2 1 BHB BHI DIS VSS BLI ALI HDEL AHI LDEL AHB BHO BLO BLS VDD BHS VCC ALS ALO AHS AHO 80V 12V + - 12V DIS GND 6V GND TO OPTIONAL CURRENT CONTROLLER PWM LOAD INPUT HIP4081/HIP4081A HIP4081A 4 HIP4081A Absolute Maximum Ratings Thermal Information Supply Voltage, VDD and VCC . . . . . . . . . . . . . . . . . . . .-0.3V to 16V Logic I/O Voltages . . . . . . . . . . . . . . . . . . . . . . .-0.3V to VDD +0.3V Voltage on AHS, BHS . . .-6.0V (Transient) to 80V (25°C to 125°C) Voltage on AHS, BHS . . .-6.0V (Transient) to 70V (-55°C to 125°C) Voltage on ALS, BLS . . . . . . .-2.0V (Transient) to +2.0V (Transient) Voltage on AHB, BHB . . . . . . . .VAHS, BHS -0.3V to VAHS, BHS +VDD Voltage on ALO, BLO . . . . . . . . . . . ..VALS, BLS -0.3V to VCC +0.3V Voltage on AHO, BHO . . . . . . .VAHS, BHS -0.3V to VAHB, BHB +0.3V Input Current, HDEL and LDEL . . . . . . . . . . . . . . . . . .-5mA to 0mA Phase Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20V/ns NOTE: All Voltages relative to VSS, unless otherwise specified. Thermal Resistance (Typical, Note 1) θJA (°C/W) SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 DIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 Storage Temperature Range. . . . . . . . . . . . . . . . . . .-65°C to 150°C Operating Max.Junction Temperature . . . . . . . . . . . . . . . . . .125°C Lead Temperature (Soldering 10s)). . . . . . . . . . . . . . . . . ....300°C (For SOIC - Lead Tips Only Operating Conditions Supply Voltage, VDD and VCC . . . . . . . . . . . . . . . . . . +9.5V to +15V Voltage on ALS, BLS ................... .... ..-1.0V to +1.0V Voltage on AHB, BHB . . . . . . . . .VAHS, BHS +5V to VAHS, BHS +15V Input Current, HDEL and LDEL . . . . . . . . . . . . . . ..-500μA to -50μA Operating Ambient Temperature Range . . . . . . . . . ..-40°C to 85°C CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. θJA is measured with the component mounted on an evaluation PC board in free air. Electrical Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS TJ = 25°C TJS = -40°C TO 125°C MIN TYP MAX MIN MAX UNITS SUPPLY CURRENTS AND CHARGE PUMPS VDD Quiescent Current IDD All inputs = 0V 8.5 10.5 14.5 7.5 14.5 mA VDD Operating Current IDDO Outputs switching f = 500kHz 9.5 12.5 15.5 8.5 15.5 mA VCC Quiescent Current ICC All Inputs = 0V, IALO = IBLO = 0 - 0.1 10 - 20 μA VCC Operating Current ICCO f = 500kHz, No Load 1 1.25 2.0 0.8 3 mA AHB, BHB Quiescent Current - Qpump Output Current IAHB, IBHB All Inputs = 0V, IAHO = IBHO = 0 VDD = VCC = VAHB = VBHB = 10V -50 -30 -11 -60 -10 μA AHB, BHB Operating Current IAHBO, IBHBO f = 500kHz, No Load 0.6 1.2 1.5 0.5 1.9 mA AHS, BHS, AHB, BHB Leakage Current IHLK VBHS = VAHS = 80V, VAHB = VBHB = 93V - 0.02 1.0 - 10 μA AHB-AHS, BHB-BHS Qpump Output Voltage VAHB-VAHS VBHB-VBHS IAHB = IAHB = 0, No Load 11.5 12.6 14.0 10.5 14.5 V INPUT PINS: ALI, BLI, AHI, BHI, AND DIS Low Level Input Voltage VIL Full Operating Conditions - - 1.0 - 0.8 V High Level Input Voltage VIH Full Operating Conditions 2.5 - - 2.7 - V Input Voltage Hysteresis - 35 - - - mV Low Level Input Current IIL VIN = 0V, Full Operating Conditions -130 -100 -75 -135 -65 μA High Level Input Current IIH VIN = 5V, Full Operating Conditions -1 - +1 -10 +10 μA TURN-ON DELAY PINS: LDEL AND HDEL LDEL, HDEL Voltage VHDEL, VLDEL IHDEL = ILDEL = -100μA 4.9 5.1 5.3 4.8 5.4 V GATE DRIVER OUTPUT PINS: ALO, BLO, AHO, AND BHO Low Level Output Voltage VOL IOUT = 100mA 0.7 0.85 1.0 0.5 1.1 V High Level Output Voltage VCC-VOH IOUT = -100mA 0.8 0.95 1.1 0.5 1.2 V Peak Pullup Current IO+ VOUT = 0V 1.7 2.6 3.8 1.4 4.1 A 5 HIP4081A Peak Pulldown Current IO- VO UT = 12V 1.7 2.4 3.3 1.3 3.6 A Undervoltage, Rising Threshold UV+ 8.1 8.8 9.4 8.0 9.5 V Undervoltage, Falling Threshold UV- 7.6 8.3 8.9 7.5 9.0 V Undervoltage, Hysteresis HYS 0.25 0.4 0.65 0.2 0.7 V Switching Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K, CL = 1000pF. PARAMETER SYMBOL TEST CONDITIONS TJ = 25°C TJS = -40°C TO 125°C MIN TYP MAX MIN MAX UNITS Lower Turn-off Propagation Delay (ALI-ALO, BLI-BLO) TLPHL - 30 60 - 80 ns Upper Turn-off Propagation Delay (AHI-AHO, BHI-BHO) THPHL - 35 70 - 90 ns Lower Turn-on Propagation Delay (ALI-ALO, BLI-BLO) TLPLH RHDEL = RLDEL = 10K - 45 70 - 90 ns Upper Turn-on Propagation Delay (AHI-AHO, BHI-BHO) THPLH RHDEL = RLDEL = 10K - 60 90 - 110 ns Rise Time TR - 10 25 - 35 ns Fall Time TF - 10 25 - 35 ns Turn-on Input Pulse Width TPWIN-ON RHDEL = RLDEL = 10K 50 - - 50 - ns Turn-off Input Pulse Width TPWIN-OFF RHDEL = RLDEL = 10K 40 - - 40 - ns Turn-on Output Pulse Width TPWOUT-ON RHDEL = RLDEL = 10K 40 - - 40 - ns Turn-off Output Pulse Width TPWOUT-OFF RHDEL = RLDEL = 10K 30 - - 30 - ns Disable Turn-off Propagation Delay (DIS - Lower Outputs) TDISLOW - 45 75 - 95 ns Disable Turn-off Propagation Delay (DIS - Upper Outputs) TDISHIGH - 55 85 - 105 ns Disable to Lower Turn-on Propagation Delay (DIS - ALO and BLO) TDLPLH - 40 70 - 90 ns Refresh Pulse Width (ALO and BLO) TREF-PW 240 410 550 200 600 ns Disable to Upper Enable (DIS - AHO and BHO) TUEN - 450 620 - 690 ns TRUTH TABLE INPUT OUTPUT ALI, BLI AHI, BHI U/V DIS ALO, BLO AHO, BHO X X X 1 0 0 1 X 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 X X 1 X 0 0 NOTE: X signifies that input can be either a “1” or “0”. Electrical Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified (Continued) PARAMETER SYMBOL TEST CONDITIONS TJ = 25°C TJS = -40°C TO 125°C MIN TYP MAX MIN MAX UNITS 6 HIP4081A Pin Descriptions PIN NUMBER SYMBOL DESCRIPTION 1 BHB B High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap diode and positive side of bootstrap capacitor to this pin. Internal charge pump supplies 30μA out of this pin to maintain bootstrap supply. Internal circuitry clamps the bootstrap supply to approximately 12.8V. 2 BHI B High-side Input. Logic level input that controls BHO driver (Pin 20). BLI (Pin 5) high level input overrides BHI high level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 3) high level input overrides BHI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 3 DIS DISable input. Logic level input that when taken high sets all four outputs low. DIS high overrides all other inputs. When DIS is taken low the outputs are controlled by the other inputs. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 4 VSS Chip negative supply, generally will be ground. 5 BLI B Low-side Input. Logic level input that controls BLO driver (Pin 18). If BHI (Pin 2) is driven high or not connected externally then BLI controls both BLO and BHO drivers, with dead time set by delay currents at HDEL and LDEL (Pin 8 and 9). DIS (Pin 3) high level input overrides BLI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 6 ALI A Low-side Input. Logic level input that controls ALO driver (Pin 13). If AHI (Pin 7) is driven high or not connected externally then ALI controls both ALO and AHO drivers, with dead time set by delay currents at HDEL and LDEL (Pin 8 and 9). DIS (Pin 3) high level input overrides ALI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 7 AHI A High-side Input. Logic level input that controls AHO driver (Pin 11). ALI (Pin 6) high level input overrides AHI high level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 3) high level input overrides AHI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 8 HDEL High-side turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the turn-on delay of both high-side drivers. The low-side drivers turn-off with no adjustable delay, so the HDEL resistor guarantees no shoot-through by delaying the turn-on of the high-side drivers. HDEL reference voltage is approximately 5.1V. 9 LDEL Low-side turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the turn-on delay of both low-side drivers. The high-side drivers turn-off with no adjustable delay, so the LDEL resistor guarantees no shoot-through by delaying the turn-on of the low-side drivers. LDEL reference voltage is approximately 5.1V. 10 AHB A High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap diode and positive side of bootstrap capacitor to this pin. Internal charge pump supplies 30μA out of this pin to maintain bootstrap supply. Internal circuitry clamps the bootstrap supply to approximately 12.8V. 11 AHO A High-side Output. Connect to gate of A High-side power MOSFET. 12 AHS A High-side Source connection. Connect to source of A High-side power MOSFET. Connect negative side of bootstrap capacitor to this pin. 13 ALO A Low-side Output. Connect to gate of A Low-side power MOSFET. 14 ALS A Low-side Source connection. Connect to source of A Low-side power MOSFET. 15 VCC Positive supply to gate drivers. Must be same potential as VDD (Pin 16). Connect to anodes of two bootstrap diodes. 16 VDD Positive supply to lower gate drivers. Must be same potential as VCC (Pin 15). De-couple this pin to VSS (Pin 4). 17 BLS B Low-side Source connection. Connect to source of B Low-side power MOSFET. 18 BLO B Low-side Output. Connect to gate of B Low-side power MOSFET. 19 BHS B High-side Source connection. Connect to source of B High-side power MOSFET. Connect negative side of bootstrap capacitor to this pin. 20 BHO B High-side Output. Connect to gate of B High-side power MOSFET. 7 HIP4081A Timing Diagrams FIGURE 1. INDEPENDENT MODE FIGURE 2. BISTATE MODE FIGURE 3. DISABLE FUNCTION U/V = DIS = 0 XLI XHI XLO XHO TLPHL THPHL THPLH TLPLH TR (10% - 90%) TF (10% - 90%) X = A OR B, A AND B HALVES OF BRIDGE CONTROLLER ARE INDEPENDENT U/V = DIS = 0 XLI XHI = HI OR NOT CONNECTED XLO XHO (10% - 90%) (10% - 90%) U/V OR DIS XLI XHI XLO XHO TDLPLH TDIS TUEN TREF-PW 8 HIP4081A Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified FIGURE 4. QUIESCENT IDD SUPPLY CURRENT vs VDD SUPPLY VOLTAGE FIGURE 5. IDDO, NO-LOAD IDD SUPPLY CURRENT vs FREQUENCY (kHz) FIGURE 6. SIDE A, B FLOATING SUPPLY BIAS CURRENT vs FREQUENCY (LOAD = 1000pF) FIGURE 7. ICCO, NO-LOAD ICC SUPPLY CURRENT vs FREQUENCY (kHz) TEMPERATURE FIGURE 8. IAHB, IBHB, NO-LOAD FLOATING SUPPLY BIAS CURRENT vs FREQUENCY FIGURE 9. ALI, BLI, AHI, BHI LOW LEVEL INPUT CURRENT IIL vs TEMPERATURE 6 8 10 12 14 2.0 4.0 6.0 8.0 10.0 12.0 14.0 IDD SUPPLY CURRENT (mA) VDD SUPPLY VOLTAGE (V) 0 100 200 300 400 500 600 700 800 900 1000 8.0 8.5 9.0 9.5 10.0 10.5 11.0 IDD SUPPLY CURRENT (mA) SWITCHING FREQUENCY (kHz) 0 100 200 300 400 500 600 700 800 900 1000 0.0 5.0 10.0 15.0 20.0 25.0 30.0 FLOATING SUPPLY BIAS CURRENT (mA) SWITCHING FREQUENCY (kHz) 0 100 200 300 400 500 600 700 800 900 1000 0.0 1.0 2.0 3.0 4.0 5.0 ICC SUPPLY CURRENT (mA) SWITCHING FREQUENCY (kHz) 75°C 25°C 125°C -40°C 0°C 0.5 1 1.5 2 2.5 0 200 400 600 800 1000 FLOATING SUPPLY BIAS CURRENT (mA) SWITCHING FREQUENCY (kHz) -50 -25 0 25 50 75 100 125 -120 -110 -100 -90 LOW LEVEL INPUT CURRENT (μA) JUNCTION TEMPERATURE (°C) 9 HIP4081A Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K and TA = 25°C, Unless Otherwise Specified FIGURE 10. AHB - AHS, BHB - BHS NO-LOAD CHARGE PUMP VOLTAGE vs TEMPERATURE FIGURE 11. UPPER DISABLE TURN-OFF PROPAGATION DELAY TDISHIGH vs TEMPERATURE FIGURE 12. DISABLE TO UPPER ENABLE, TUEN, PROPAGATION DELAY vs TEMPERATURE FIGURE 13. LOWER DISABLE TURN-OFF PROPAGATION DELAY TDISLOW vs TEMPERATURE FIGURE 14. TREF-PW REFRESH PULSE WIDTH vs TEMPERATURE FIGURE 15. DISABLE TO LOWER ENABLE TDLPLH PROPAGATION DELAY vs TEMPERATURE -40 -20 0 20 40 60 80 100 120 10.0 11.0 12.0 13.0 14.0 15.0 NO-LOAD FLOATING CHARGE PUMP VOLTAGE (V) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) 425 450 475 500 525 -50 -25 0 25 50 75 100 125 150 JUNCTION TEMPERATURE (°C) PROPAGATION DELAY (ns) -40 -20 0 20 40 60 80 100 120 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) 350 375 400 425 450 -50 -25 0 25 50 75 100 125 150 REFRESH PULSE WIDTH (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) 10 HIP4081A FIGURE 16. UPPER TURN-OFF PROPAGATION DELAY THPHL vs TEMPERATURE FIGURE 17. UPPER TURN-ON PROPAGATION DELAY THPLH vs TEMPERATURE FIGURE 18. LOWER TURN-OFF PROPAGATION DELAY TLPHL vs TEMPERATURE FIGURE 19. LOWER TURN-ON PROPAGATION DELAY TLPLH vs TEMPERATURE FIGURE 20. GATE DRIVE FALL TIME TF vs TEMPERATURE FIGURE 21. GATE DRIVE RISE TIME TR vs TEMPERATURE Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K and TA = 25°C, Unless Otherwise Specified (Continued) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 8.5 9.5 10.5 11.5 12.5 13.5 GATE DRIVE FALL TIME (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 8.5 9.5 10.5 11.5 12.5 13.5 TURN-ON RISE TIME (ns) JUNCTION TEMPERATURE (°C) 11 HIP4081A Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified FIGURE 22. VLDEL, VHDEL VOLTAGE vs TEMPERATURE FIGURE 23. HIGH LEVEL OUTPUT VOLTAGE VCC - VOH vs BIAS SUPPLY AND TEMPERATURE AT 100mA FIGURE 24. LOW LEVEL OUTPUT VOLTAGE VOL vs BIAS SUPPLY AND TEMPERATURE AT 100mA FIGURE 25. PEAK PULLDOWN CURRENT IO vs BIAS SUPPLY VOLTAGE FIGURE 26. PEAK PULLUP CURRENT IO+ vs BIAS SUPPLY VOLTAGE FIGURE 27. LOW VOLTAGE BIAS CURRENT IDD (LESS QUIESCENT COMPONENT) vs FREQUENCY AND GATE LOAD CAPACITANCE -40 -20 0 20 40 60 80 100 120 4.0 4.5 5.0 5.5 6.0 HDEL, LDEL INPUT VOLTAGE (V) JUNCTION TEMPERATURE (°C) 10 12 14 0 250 500 750 1000 1250 1500 VCC - VOH (mV) BIAS SUPPLY VOLTAGE (V) 75°C 25°C 125°C -40°C 0°C 12 14 0 250 500 750 1000 1250 1500 VOL (mV) BIAS SUPPLY VOLTAGE (V) 10 75°C 25°C 125°C -40°C 0°C 6 7 8 9 10 11 12 13 14 15 16 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 GATE DRIVE SINK CURRENT (A) VDD, VCC, VAHB, VBHB (V) 6 7 8 9 10 11 12 13 14 15 16 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 GATE DRIVE SINK CURRENT (A) VDD, VCC, VAHB, VBHB (V) 1 2 5 10 20 50 100 200 500 1000 0.1 1 10 100 500 50 5 0.5 200 20 2 0.2 LOW VOLTAGE BIAS CURRENT (mA) SWITCHING FREQUENCY (kHz) 100pF 1,000pF 10,000pF 3,000pF 12 HIP4081A FIGURE 28. HIGH VOLTAGE LEVEL-SHIFT CURRENT vs FREQUENCY AND BUS VOLTAGE FIGURE 29. UNDERVOLTAGE LOCKOUT vs TEMPERATURE FIGURE 30. MINIMUM DEAD-TIME vs DEL RESISTANCE Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified (Continued) 10 20 50 100 200 500 1000 10 100 1000 20 50 200 500 LEVEL-SHIFT CURRENT (μA) SWITCHING FREQUENCY (kHz) 8.2 8.4 8.6 8.8 9.0 50 25 0 25 50 75 100 125 150 UV+ UVTEMPERATURE (°C) BIAS SUPPLY VOLTAGE, VDD (V) 10 50 100 150 200 250 0 30 60 90 120 150 HDEL/LDEL RESISTANCE (kΩ) DEAD-TIME (ns) 13 HIP4081A 1 2 3 1 2 3 1 2 3 5 6 1 2 3 1 2 13 12 1 2 3 11 10 1 2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L1 R21 Q1 Q3 Q4 R22 L2 R23 C1 C3 JMPR1 R24 R30 R31 C2 R34 C4 CR2 CR1 Q2 JMPR5 JMPR3 JMPR2 JMPR4 R33 C5 C6 CX CY C8 U1 CW CW + B+ IN2 IN1 BO OUT/BLI IN-/AHI COM IN+/ALI +12V +12V BLS AO HEN/BHI ALS CD4069UB CD4069UB CD4069UB CD4069UB HIP4080A/81A SECTION CONTROL LOGIC POWER SECTION DRIVER SECTION AHB AHO LDEL AHS HDEL ALO IN-/AHI ALS IN+/ALI VCC OUT/BLI VDD VSS BLS DIS BLO HEN/BHI BHS BHB BHO R29 U2 U2 U2 U2 3 4 9 8 R32 je O O CD4069UB CD4069UB ENABLE IN U2 U2 NOTES: 1. DEVICE CD4069UB PIN 7 = COM, PIN 14 = +12V. 2. COMPONENTS L1, L2, C1, C2, CX, CY, R30, R31, NOT SUPPLIED. REFER TO APPLICATION NOTE FOR DESCRIPTION OF INPUT LOGIC OPERATION TO DETERMINE JUMPER LOCATIONS FOR JMPR1 - JMPR4. FIGURE 31. HIP4081A EVALUATION PC BOARD SCHEMATIC 14 HIP4081A R22 1 Q3 L1 JMPR2 JMPR5 R31 R33 CR2 R23 R24 R27 R28 R26 1 Q4 1 JMPR3 Q2 U1 R21 GND L2 C3 C4 JMPR4 JMPR1 R30 CR1 U2 R34 R32 je O C8 R29 C7 C6 C5 CY CX 1 Q1 COM +12V B+ IN1 IN2 AHO BHO ALO BLO BLS BLS LDEL HDEL DIS ALS ALS O + + HIP4080/81 FIGURE 32. HIP4081A EVALUATION BOARD SILKSCREEN 15 HIP4081A Dual-In-Line Plastic Packages (PDIP) NOTES: 1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication No. 95. 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3. 5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm). 6. E and are measured with the leads constrained to be perpendicular to datum . 7. eB and eC are measured at the lead tips with the leads unconstrained. eC must be zero or greater. 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm). 9. N is the maximum number of terminal positions. 10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm). eA -CCL E eA C eB eC -BE1 INDEX 1 2 3 N/2 N AREA SEATING BASE PLANE PLANE -CD1 B1 B et ré D1 A2 A L A1 -A- 0.010 (0.25) M C A B S E20.3 (JEDEC MS-001-AD ISSUE D) 20 LEAD DUAL-IN-LINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A - 0.210 - 5.33 4 A1 0.015 - 0.39 - 4 A2 0.115 0.195 2.93 4.95 - B 0.014 0.022 0.356 0.558 - B1 0.045 0.070 1.55 1.77 8 C 0.008 0.014 0.204 0.355 - D 0.980 1.060 24.89 26.9 5 D1 0.005 - 0.13 - 5 E 0.300 0.325 7.62 8.25 6 E1 0.240 0.280 6.10 7.11 5 e 0.100 BSC 2.54 BSC - eA 0.300 BSC 7.62 BSC 6 eB - 0.430 - 10.92 7 L 0.115 0.150 2.93 3.81 4 N 20 20 9 Rev0 12/93 16 All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com HIP4081A Small Outline Plastic Packages (SOIC) NOTES: 1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch) 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. INDEX AREA E ré N 1 2 3 -B- 0.25(0.010) M C A B S et -AL B M -CA1 A SEATING PLANE 0.10(0.004) h x 45o C H μ 0.25(0.010) M B M α M20.3 (JEDEC MS-013-AC ISSUE C) 20 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A 0.0926 0.1043 2.35 2.65 - A1 0.0040 0.0118 0.10 0.30 - B 0.014 0.019 0.35 0.49 9 C 0.0091 0.0125 0.23 0.32 - D 0.4961 0.5118 12.60 13.00 3 E 0.2914 0.2992 7.40 7.60 4 e 0.050 BSC 1.27 BSC - H 0.394 0.419 10.00 10.65 - h 0.010 0.029 0.25 0.75 5 L 0.016 0.050 0.40 1.27 6 N 20 20 7 α 0o 8o 0o 8o - Rev1 1/02 http://www.farnell.com/datasheets/32553.pdf 1 ® FN3663.5 HFA3101 Gilbert Cell UHF Transistor Array The HFA3101 is an all NPN transistor array configured as a Multiplier Cell. Based on Intersil’s bonded wafer UHF-1 SOI process, this array achieves very high fT (10GHz) while maintaining excellent hFE and VBE matching characteristics that have been maximized through careful attention to circuit design and layout, making this product ideal for communication circuits. For use in mixer applications, the cell provides high gain and good cancellation of 2nd order distortion terms. Pinout HFA3101(SOIC) TOP VIEW Features •Pb-free Available as an Option •High Gain Bandwidth Product (fT) . . . . . . . . . . . . .10GHz •High Power Gain Bandwidth Product. . . . . . . . . . . .5GHz •Current Gain (hFE). . . . . . . . . . . . . . . . . . . . . . . . . . . ..70 •Low Noise Figure (Transistor) . . . . . . . . . . . . . . . . .3.5dB •Excellent hFE and VBE Matching •Low Collector Leakage Current . . . . . . . . . . . . . .<0.01nA •Pin to Pin Compatible to UPA101 Applications •Balanced Mixers •Multipliers •Demodulators/Modulators •Automatic Gain Control Circuits •Phase Detectors •Fiber Optic Signal Processing •Wireless Communication Systems •Wide Band Amplification Stages •Radio and Satellite Communications •High Performance Instrumentation Ordering Information PART NUMBER (BRAND) TEMP. RANGE (°C) PACKAGE PKG. DWG. # HFA3101B (H3101B) -40 to 85 8 Ld SOIC M8.15 HFA3101BZ (H3101B) (Note) -40 to 85 8 Ld SOIC (Pb-free) M8.15 HFA3101B96 (H3101B) -40 to 85 8 Ld SOIC Tape and Reel M8.15 HFA3101BZ96 (H3101B) (Note) -40 to 85 8 Ld SOIC Tape and Reel (Pb-free) M8.15 NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which is compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020C. 12348765Q5Q6Q1Q2Q3Q4NOTE: Q5 and Q6 - 2 Paralleled 3μm x 50μm Transistors Q1, Q2, Q3, Q4 - Single 3μm x 50μm Transistors Data Sheet September 2004 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 1998, 2004. All Rights Reserved All other trademarks mentioned are the property of their respective owners. 2 Absolute Maximum Ratings Thermal Information VCEO, Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . .8.0V VCBO, Collector to Base Voltage. . . . . . . . . . . . . . . . . . . . . . .12.0V VEBO, Emitter to Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . .5.5V IC, Collector Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30mA Operating Conditions Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . .-40oC to 85oC Thermal Resistance (Typical, Note 1)θJA (oC/W) SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185 Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . ..175oC Maximum Junction Temperature (Plastic Package). . . . . . . ..150oC Maximum Storage Temperature Range. . . . . . . . . .-65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . ..300oC (SOIC - Lead Tips Only) CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. θJA is measured with the component mounted on an evaluation PC board in free air. Electrical SpecificationsTA = 25oC PARAMETER TEST CONDITIONS (NOTE 2) TEST LEVEL MIN TYP MAX UNITS Collector to Base Breakdown Voltage, V(BR)CBO, Q1 thru Q6 IC = 100μA, IE = 0 A 12 18 - V Collector to Emitter Breakdown Voltage, V(BR)CEO, Q5 and Q6 IC = 100μA, IB = 0 A 8 12 - V Emitter to Base Breakdown Voltage, V(BR)EBO, Q1 thru Q6 IE = 10μA, IC = 0 A 5.5 6 - V Collector Cutoff Current, ICBO, Q1 thru Q4 VCB = 8V, IE = 0 A - 0.1 10 nA Emitter Cutoff Current, IEBO, Q5 and Q6 VEB = 1V, IC = 0 A - - 200 nA DC Current Gain, hFE, Q1 thru Q6 IC = 10mA, VCE = 3V A 40 70 - Collector to Base Capacitance, CCB Q1 thru Q4 VCB = 5V, f = 1MHz C - 0.300 - pF Q5 and Q6 - 0.600 - pF Emitter to Base Capacitance, CEB Q1 thru Q4 VEB = 0, f = 1MHz B - 0.200 - pF Q5 and Q6 - 0.400 - pF Current Gain-Bandwidth Product, fT Q1 thru Q4 IC = 10mA, VCE = 5V C - 10 - GHz Q5 and Q6 IC = 20mA, VCE = 5V C - 10 - GHz Power Gain-Bandwidth Product, fMAX Q1 thru Q4 IC = 10mA, VCE = 5V C - 5 - GHz Q5 and Q6 IC = 20mA, VCE = 5V C - 5 - GHz Available Gain at Minimum Noise Figure, GNFMIN, Q5 and Q6 IC = 5mA, VCE = 3V f = 0.5GHz C - 17.5 - dB f = 1.0GHz C - 11.9 - dB Minimum Noise Figure, NFMIN, Q5 and Q6 IC = 5mA, VCE = 3V f = 0.5GHz C - 1.7 - dB f = 1.0GHz C - 2.0 - dB 50Ω Noise Figure, NF50Ω, Q5 and Q6 IC = 5mA, VCE = 3V f = 0.5GHz C - 2.25 - dB f = 1.0GHz C - 2.5 - dB DC Current Gain Matching, hFE1/hFE2, Q1 and Q2, Q3 and Q4, and Q5 and Q6 IC = 10mA, VCE = 3V A 0.9 1.0 1.1 Input Offset Voltage, VOS, (Q1 and Q2), (Q3 and Q4), (Q5 and Q6) IC = 10mA, VCE = 3V A - 1.5 5 mV Input Offset Current, IC, (Q1 and Q2), (Q3 and Q4), (Q5 and Q6) IC = 10mA, VCE = 3V A - 5 25 μA Input Offset Voltage TC, dVOS/dT, (Q1 and Q2, Q3 and Q4, Q5 and Q6) IC = 10mA, VCE = 3V C - 0.5 - μV/oC Collector to Collector Leakage, ITRENCH-LEAKAGE ΔVTEST = 5V B - 0.01 - nA NOTE: 2. Test Level: A. Production Tested, B. Typical or Guaranteed Limit Based on Characterization, C. Design Typical for Information Only. HFA3101 3-3 PSPICE Model for a 3 μm x 50μm Transistor .Model NUHFARRY NPN + (IS = 1.840E-16 XTI = 3.000E+00 EG = 1.110E+00 VAF = 7.200E+01 + VAR = 4.500E+00 BF = 1.036E+02 ISE = 1.686E-19 NE = 1.400E+00 + IKF = 5.400E-02 XTB = 0.000E+00 BR = 1.000E+01 ISC = 1.605E-14 + NC = 1.800E+00 IKR = 5.400E-02 RC = 1.140E+01 CJC = 3.980E-13 + MJC = 2.400E-01 VJC = 9.700E-01 FC = 5.000E-01 CJE = 2.400E-13 + MJE = 5.100E-01 VJE = 8.690E-01 TR = 4.000E-09 TF = 10.51E-12 + ITF = 3.500E-02 XTF = 2.300E+00 VTF = 3.500E+00 PTF = 0.000E+00 + XCJC = 9.000E-01 CJS = 1.689E-13 VJS = 9.982E-01 MJS = 0.000E+00 + RE = 1.848E+00 RB = 5.007E+01 RBM = 1.974E+00 KF = 0.000E+00 + AF = 1.000E+00) Common Emitter S-Parameters of 3 μm x 50μm Transistor FREQ. (Hz) |S11| PHASE(S11) |S12| PHASE(S12) |S21| PHASE(S21) |S22| PHASE(S22) VCE = 5V and IC = 5mA 1.0E+08 0.83 -11.78 1.41E-02 78.88 11.07 168.57 0.97 -11.05 2.0E+08 0.79 -22.82 2.69E-02 68.63 10.51 157.89 0.93 -21.35 3.0E+08 0.73 -32.64 3.75E-02 59.58 9.75 148.44 0.86 -30.44 4.0E+08 0.67 -41.08 4.57E-02 51.90 8.91 140.36 0.79 -38.16 5.0E+08 0.61 -48.23 5.19E-02 45.50 8.10 133.56 0.73 -44.59 6.0E+08 0.55 -54.27 5.65E-02 40.21 7.35 127.88 0.67 -49.93 7.0E+08 0.50 -59.41 6.00E-02 35.82 6.69 123.10 0.62 -54.37 8.0E+08 0.46 -63.81 6.27E-02 32.15 6.11 119.04 0.57 -58.10 9.0E+08 0.42 -67.63 6.47E-02 29.07 5.61 115.57 0.53 -61.25 1.0E+09 0.39 -70.98 6.63E-02 26.45 5.17 112.55 0.50 -63.96 1.1E+09 0.36 -73.95 6.75E-02 24.19 4.79 109.91 0.47 -66.31 1.2E+09 0.34 -76.62 6.85E-02 22.24 4.45 107.57 0.45 -68.37 1.3E+09 0.32 -79.04 6.93E-02 20.53 4.15 105.47 0.43 -70.19 1.4E+09 0.30 -81.25 7.00E-02 19.02 3.89 103.57 0.41 -71.83 1.5E+09 0.28 -83.28 7.05E-02 17.69 3.66 101.84 0.40 -73.31 1.6E+09 0.27 -85.17 7.10E-02 16.49 3.45 100.26 0.39 -74.66 1.7E+09 0.25 -86.92 7.13E-02 15.41 3.27 98.79 0.38 -75.90 1.8E+09 0.24 -88.57 7.17E-02 14.43 3.10 97.43 0.37 -77.05 1.9E+09 0.23 -90.12 7.19E-02 13.54 2.94 96.15 0.36 -78.12 2.0E+09 0.22 -91.59 7.21E-02 12.73 2.80 94.95 0.35 -79.13 2.1E+09 0.21 -92.98 7.23E-02 11.98 2.68 93.81 0.35 -80.09 2.2E+09 0.20 -94.30 7.25E-02 11.29 2.56 92.73 0.34 -80.99 2.3E+09 0.20 -95.57 7.27E-02 10.64 2.45 91.70 0.34 -81.85 2.4E+09 0.19 -96.78 7.28E-02 10.05 2.35 90.72 0.33 -82.68 2.5E+09 0.18 -97.93 7.29E-02 9.49 2.26 89.78 0.33 -83.47 2.6E+09 0.18 -99.05 7.30E-02 8.96 2.18 88.87 0.33 -84.23 2.7E+09 0.17 -100.12 7.31E-02 8.47 2.10 88.00 0.33 -84.97 HFA3101 4 2.8E+09 0.17 -101.15 7.31E-02 8.01 2.02 87.15 0.33 -85.68 2.9E+09 0.16 -102.15 7.32E-02 7.57 1.96 86.33 0.33 -86.37 3.0E+09 0.16 -103.11 7.32E-02 7.16 1.89 85.54 0.33 -87.05 VCE = 5V and IC = 10mA 1.0E+08 0.72 -16.43 1.27E-02 75.41 15.12 165.22 0.95 -14.26 2.0E+08 0.67 -31.26 2.34E-02 62.89 13.90 152.04 0.88 -26.95 3.0E+08 0.60 -43.76 3.13E-02 52.58 12.39 141.18 0.79 -37.31 4.0E+08 0.53 -54.00 3.68E-02 44.50 10.92 132.57 0.70 -45.45 5.0E+08 0.47 -62.38 4.05E-02 38.23 9.62 125.78 0.63 -51.77 6.0E+08 0.42 -69.35 4.31E-02 33.34 8.53 120.37 0.57 -56.72 7.0E+08 0.37 -75.26 4.49E-02 29.47 7.62 116.00 0.51 -60.65 8.0E+08 0.34 -80.36 4.63E-02 26.37 6.86 112.39 0.47 -63.85 9.0E+08 0.31 -84.84 4.72E-02 23.84 6.22 109.36 0.44 -66.49 1.0E+09 0.29 -88.83 4.80E-02 21.75 5.69 106.77 0.41 -68.71 1.1E+09 0.27 -92.44 4.86E-02 20.00 5.23 104.51 0.39 -70.62 1.2E+09 0.25 -95.73 4.90E-02 18.52 4.83 102.53 0.37 -72.28 1.3E+09 0.24 -98.75 4.94E-02 17.25 4.49 100.75 0.35 -73.76 1.4E+09 0.22 -101.55 4.97E-02 16.15 4.19 99.16 0.34 -75.08 1.5E+09 0.21 -104.15 4.99E-02 15.19 3.93 97.70 0.33 -76.28 1.6E+09 0.20 -106.57 5.01E-02 14.34 3.70 96.36 0.32 -77.38 1.7E+09 0.20 -108.85 5.03E-02 13.60 3.49 95.12 0.31 -78.41 1.8E+09 0.19 -110.98 5.05E-02 12.94 3.30 93.96 0.31 -79.37 1.9E+09 0.18 -113.00 5.06E-02 12.34 3.13 92.87 0.30 -80.27 2.0E+09 0.18 -114.90 5.07E-02 11.81 2.98 91.85 0.30 -81.13 2.1E+09 0.17 -116.69 5.08E-02 11.33 2.84 90.87 0.30 -81.95 2.2E+09 0.17 -118.39 5.09E-02 10.89 2.72 89.94 0.29 -82.74 2.3E+09 0.16 -120.01 5.10E-02 10.50 2.60 89.06 0.29 -83.50 2.4E+09 0.16 -121.54 5.11E-02 10.13 2.49 88.21 0.29 -84.24 2.5E+09 0.16 -122.99 5.12E-02 9.80 2.39 87.39 0.29 -84.95 2.6E+09 0.15 -124.37 5.12E-02 9.49 2.30 86.60 0.29 -85.64 2.7E+09 0.15 -125.69 5.13E-02 9.21 2.22 85.83 0.29 -86.32 2.8E+09 0.15 -126.94 5.13E-02 8.95 2.14 85.09 0.29 -86.98 2.9E+09 0.15 -128.14 5.14E-02 8.71 2.06 84.36 0.29 -87.62 3.0E+09 0.14 -129.27 5.15E-02 8.49 1.99 83.66 0.29 -88.25 Common Emitter S-Parameters of 3 μm x 50 μm Transistor (Continued) FREQ. (Hz) |S11| PHASE(S11) |S12| PHASE(S12) |S21| PHASE(S21) |S22| PHASE(S22) HFA3101 3-5 Application Information The HFA3101 array is a very versatile RF Building block. It has been carefully laid out to improve its matching properties, bringing the distortion due to area mismatches, thermal distribution, betas and ohmic resistances to a minimum. The cell is equivalent to two differential stages built as two “variable transconductance multipliers” in parallel, with their outputs cross coupled. This configuration is well known in the industry as a Gilbert Cell which enables a four quadrant multiplication operation. Due to the input dynamic range restrictions for the input levels at the upper quad transistors and lower tail transistors, the HFA3101 cell has restricted use as a linear four quadrant multiplier. However, its configuration is well suited for uses where its linear response is limited to one of the inputs only, as in modulators or mixer circuit applications. Examples of these circuits are up converters, down converters, frequency doublers and frequency/phase detectors. Although linearization is still an issue for the lower pair input, emitter degeneration can be used to improve the dynamic range and consequent linearity. The HFA3101 has the lower pair emitters brought to external pins for this purpose. In modulators applications, the upper quad transistors are used in a switching mode where the pairs Q1/Q2 and Q3/Q4 act as non saturating high speed switches. These switches are controlled by the signal often referred as the carrier input. The signal driving the lower pair Q5/Q6 is commonly used as the modulating input. This signal can be linearly transferred to the output by either the use of low signal levels (Well below the thermal voltage of 26mV) or by the use of emitter degeneration. The chopped waveform appearing at the output of the upper pair (Q1 to Q4) resembles a signal that is multiplied by +1 or -1 at every half cycle of the switching waveform. Figure 1 shows the typical input waveforms where the frequency of the carrier is higher than the modulating signal. The output waveform shows a typical suppressed carrier output of an up converter or an AM signal generator. Carrier suppression capability is a property of the well known Balanced modulator in which the output must be zero when one or the other input (carrier or modulating signal) is equal to zero. however, at very high frequencies, high frequency mismatches and AC offsets are always present and the suppression capability is often degraded causing carrier and modulating feedthrough to be present. Being a frequency translation circuit, the balanced modulator has the properties of translating the modulating frequency (ωM) to the carrier frequency (ωC), generating the two side bands ωU = ωC + ωM and ωL = ωC - ωM. Figure 2 shows some translating schemes being used by balanced mixers. CARRIER SIGNALMODULATING SIGNALDIFFERENTIAL OUTPUT+1-1FIGURE 1. TYPICAL MODULATOR SIGNALS FIGURE 2A. UP CONVERSION OR SUPPRESSED CARRIER AM FIGURE 2B. DOWN CONVERSION FIGURE 2C. ZERO IF OR DIRECT DOWN CONVERSION FIGURE 2. MODULATOR FREQUENCY SPECTRUM ωC + ωMωC - ωMωC IF (ωC - ωM)FOLDED BACKωMωC BASEBANDωCωM HFA3101 6 The use of the HFA3101 as modulators has several advantages when compared to its counterpart, the diode doublebalanced mixer, in which it is required to receive enough energy to drive the diodes into a switching mode and has also some requirements depending on the frequency range desired, of different transformers to suit specific frequency responses. The HFA3101 requires very low driving capabilities for its carrier input and its frequency response is limited by the fT of the devices, the design and the layout techniques being utilized. Up conversion uses, for UHF transmitters for example, can be performed by injecting a modulating input in the range of 45MHz to 130MHz that carries the information often called IF (Intermediate frequency) for up conversion (The IF signal has been previously modulated by some modulation scheme from a baseband signal of audio or digital information) and by injecting the signal of a local oscillator of a much higher frequency range from 600MHz to 1.2GHz into the carrier input. Using the example of a 850MHz carrier input and a 70MHz IF, the output spectrum will contain a upper side band of 920MHz, a lower side band of 780MHz and some of the carrier (850MHz) and IF (70MHz) feedthrough. A Band pass filter at the output can attenuate the undesirable signals and the 920MHz signal can be routed to a transmitter RF power amplifier. Down conversion, as the name implies, is the process used to translate a higher frequency signal to a lower frequency range conserving the modulation information contained in the higher frequency signal. One very common typical down conversion use for example, is for superheterodyne radio receivers where a translated lower frequency often referred as intermediate frequency (IF) is used for detection or demodulation of the baseband signal. Other application uses include down conversion for special filtering using frequency translation methods. An oscillator referred as the local oscillator (LO) drives the upper quad transistors of the cell with a frequency called ωC. The lower pair is driven by the RF signal of frequency ωM to be translated to a lower frequency IF. The spectrum of the IF output will contain the sum and difference of the frequencies ωC and ωM. Notice that the difference can become negative when the frequency of the local oscillator is lower than the incoming frequency and the signal is folded back as in Figure 2. NOTE: The acronyms RF, IF and LO are often interchanged in the industry depending on the application of the cell as mixers or modulators. The output of the cell also contains multiples of the frequency of the signal being fed to the upper quad pair of transistors because of the switching action equivalent to a square wave multiplication. In practice, however, not only the odd multiples in the case of a symmetrical square wave but some of the even multiples will also appear at the output spectrum due to the nature of the actual switching waveform and high frequency performance. By-products of the form M*ωC + N*ωM with M and N being positive or negative integers are also expected to be present at the output and their levels are carefully examined and minimized by the design. This distortion is considered one of the figures of merit for a mixer application. The process of frequency doubling is also understood by having the same signal being fed to both modulating and carrier ports. The output frequency will be the sum of ωC and ωM which is equivalent to the product of the input frequency by 2 and a zero Hz or DC frequency equivalent to the difference of ωC and ωM. Figure 2 also shows one technique in use today where a process of down conversion named zero IF is made by using a local oscillator with a very pure signal frequency equal to the incoming RF frequency signal that contains a baseband (audio or digital signal) modulation. Although complex, the extraction or detection of the signal is straightforward. Another useful application of the HFA3101 is its use as a high frequency phase detector where the two signals are fed to the carrier and modulation ports and the DC information is extracted from its output. In this case, both ports are utilized in a switching mode or overdrive, such that the process of multiplication takes place in a quasi digital form (2 square waves). One application of a phase detector is frequency or phase demodulation where the FM signal is split before the modulating and carrier ports. The lower input port is always 90 degrees apart from the carrier input signal through a high Q tuned phase shift network. The network, being tuned for a precise 90 degrees shift at a nominal frequency, will set the two signals 90 degrees apart and a quiescent output DC level will be present at the output. When the input signal is frequency modulated, the phase shift of the signal coming from the network will deviate from 90 degrees proportional to the frequency deviation of the FM signal and a DC variation at the output will take place, resembling the demodulated FM signal. The HFA3101 could also be used for quadrature detection, (I/Q demodulation), AGC control with limited range, low level multiplication to name a few other applications. Biasing Various biasing schemes can be employed for use with the HFA3101. Figure 3 shows the most common schemes. The biasing method is a choice of the designer when cost, thermal dependence, voltage overheads and DC balancing properties are taken into consideration. Figure 3A shows the simplest form of biasing the HFA3101. The current source required for the lower pair is set by the voltage across the resistor RBIAS less a VBE drop of the lower transistor. To increase the overhead, collector resistors are substituted by an RF choke as the upper pair functions as a current source for AC signals. The bases of the upper and lower transistors are biased by RB1 and RB2 respectively. The voltage drop across the resistor R2 must be higher than a VBE with an increase sufficient to assure that the collector to base junctions of the lower pair are always reverse biased. Notice that this same voltage also sets the VCE of operation of the lower pair which is important for the optimization of gain. Resistors REE are nominally zero for applications where the input signals are well below 25mV peak. Resistors REE are used to increase the linearity HFA3101 3-7 of the circuit upon higher level signals. The drop across REE must be taken into consideration when setting the current source value. Figure 3B depicts the use of a common resistor sharing the current through the cell which is used for temperature compensation as the lower pair VBE drop at the rate of -2mV/oC. Figure 3C uses a split supply. Design Example: Down Converter Mixer Figure 4 shows an example of a low cost mixer for cellular applications. The design flexibility of the HFA3101 is demonstrated by a low cost, and low voltage mixer application at the 900MHz range. The choice of good quality chip components with their self resonance outside the boundaries of the application are important. The design has been optimized to accommodate the evaluation of the same layout for various quiescent current values and lower supply voltages. The choice of RE became important for the available overhead and also for maintaining an AC true impedance for high frequency signals. The value of 27Ω has been found to be the optimum minimum for the application. The input impedances of the HFA3101 base input ports are high enough to permit their termination with 50Ω resistors. Notice the AC termination by decoupling the bias circuit through good quality capacitors. The choice of the bias has been related to the available power supply voltage with the values of R1, R2 and RBIAS splitting the voltages for optimum VCE values. For evaluation of the cell quiescent currents, the voltage at the emitter resistor RE has been recorded. The gain of the circuit, being a function of the load and the combined emitter resistances at high frequencies have been kept to a maximum by the use of an output match network. The high output impedance of the HFA3101 permits FIGURE 3A. FIGURE 3B. FIGURE 3C. FIGURE 3. VCCRB1R1R2RBIASREREEREELCH12348765Q5Q6Q1Q2Q3Q4RB2 VCCRB1R1R2RBIASREREEREE12348765Q5Q6Q1Q2Q3Q4RB2RCLCH VEERB1R1RBIASREREEREE12348765Q5Q6Q1Q2Q3Q4RB2VCCLCHR2 27LCH12348765Q5Q6Q1Q2Q3Q4VCC390nH0.010.011102200.1VCC3V75MHz2K5p TO 12pLO IN51825MHz51900MHzIF OUTRF IN0.010.010.01330FIGURE 4. 3V DOWN CONVERTER APPLICATION HFA3101 8 broadband match if so desired at 50Ω (RL = 50Ω to 2kΩ) as well as with tuned medium Q matching networks (L, T etc.). Stability The cell, by its nature, has very high gain and precautions must be taken to account for the combination of signal reflections, gain, layout and package parasitics. The rule of thumb of avoiding reflected waves must be observed. It is important to assure good matching between the mixer stage and its front end. Laboratory measurements have shown some susceptibility for oscillation at the upper quad transistors input. Any LO prefiltering has to be designed such the return loss is maintained within acceptable limits specially at high frequencies. Typical off the shelf filters exhibits very poor return loss for signals outside the passband. It is suggested that a “pad” or a broadband resistive network be used to interface the LO port with a filter. The inclusion of a parallel 2K resistor in the load decreases the gain slightly which improves the stability factor and also improves the distortion products (output intermodulation or 3rd order intercept). The employment of good RF techniques shall suffice the stability requirements. Evaluation The evaluation of the HFA3101 in a mixer configuration is presented in Figures 6 to 11, Table 1 and Table 2. The layout is depicted in Figure 5. The output matching network has been designed from data taken at the output port at various test frequencies with the setup as in Table 1. S22 characterization is enough to assure the calculation of L, T or transmission line matching networks. FIGURE 5. UP/DOWN CONVERTER LAYOUT, 400%; MATERIAL G10, 0.031 TABLE 1. S22 PARAMETERS FOR DOWN CONVERSION, LCH = 10μH FREQUENCY RESISTANCE REACTANCE 10MHz 265Ω 615Ω 45MHz 420Ω - 735Ω 75MHz 122Ω - 432Ω 100MHz 67Ω - 320Ω TABLE 2. TYPICAL PARAMETERS FOR DOWN CONVERSION, LCH = 10μH PARAMETER LO LEVEL VCC = 3V, IBIAS = 8mA Power Gain -6dBm 8.5dB TOI Output -6dBm 11.5dBm NF SSB -6dBm 14.5dB Power Gain 0dBm 8.6dB TOI Output 0dBm 11dBm NF SSB 0dBm 15dB PARAMETER LO LEVEL VCC = 4V, IBIAS = 19mA Power Gain -6dBm 10dB TOI Output -6dBm 13dBm NF SSB -6dBm 20dB Power Gain 0dBm 11dB TOI Output 0dBm 12.5dBm NF SSB 0dBm 24dB TABLE 3. TYPICAL VALUES OF S22 FOR THE OUTPUT PORT. LCH = 390nH IBIAS = 8mA (SET UP OF FIGURE 11) FREQUENCY RESISTANCE REACTANCE 300MHz 22Ω -115Ω 600MHz 7.5Ω -43Ω 900MHz 5.2Ω -14Ω 1.1GHz 3.9Ω 0Ω TABLE 4. TYPICAL VALUES OF S22. LCH = 390nH, IBIAS = 18mA FREQUENCY RESISTANCE REACTANCE 300MHz 23.5Ω -110Ω 600MHz 10.3Ω -39Ω 900MHz 8.7Ω -14Ω 1.1GHz 8Ω 0Ω HFA3101 3-9 Up Converter Example An application for a up converter as well as a frequency multiplier can be demonstrated using the same layout, with an addition of matching components. The output port S22 must be characterized for proper matching procedures and depending on the frequency desired for the output, transmission line transformations can be designed. The return loss of the input ports maintain acceptable values in excess of 1.2GHz which can permit the evaluation of a frequency doubler to 2.4GHz if so desired. The addition of the resistors REE can increase considerably the dynamic range of the up converter as demonstrated at Figure 13. The evaluation results depicted in Table 5 have been obtained by a triple stub tuner as a matching network for the output due to the layout constraints. Based on the evaluation results it is clear that the cell requires a higher Bias current for overall performance. FIGURE 6. OUTPUT PORT S22 TEST SET UP FIGURE 7. LO PORT RETURN LOSS FIGURE 8. RF PORT RETURN LOSS FIGURE 9. IF PORT RETURN LOSS, WITH MATCHING NETWORK FIGURE 10. TYPICAL IN BAND OUTPUT SPECTRUM, VCC = 3V FIGURE 11. TYPICAL OUT OF BAND OUTPUT SPECTRUM VCC 3V0.1LCH12348765Q5Q6Q1Q2Q3Q42K S110dB5dB/DIV100MHz1.1GHzLOG MAG3V4V 0dB10dB/DIV100MHz1.1GHzS11LOG MAG 0dB5dB/DIV10MHzS22LOG MAG110MHz 76MHz64M11*LO - 10RF88M12RF - 13LOIFSPAN40MHzLO = 825MHz -6dBmRF = 901MHz - 25dBm-17dBm10dB/DIV 67575082590097510dB/DIVLO + 2RFSPAN500MHzLO - 2RF-26dBm-36dBm-58dBm-53dBmLO = 825MHz -6dBmRF = 900MHz -25dBm HFA3101 10 Design Example: Up Converter Mixer Figure 12 shows an example of an up converter for cellular applications. Conclusion The HFA3101 offers the designer a number of choices and different applications as a powerful RF building block. Although isolation is degraded from the theoretical results for the cell due to the unbalanced, nondifferential input schemes being used, a number of advantages can be taken into consideration like cost, flexibility, low power and small outline when deciding for a design. TABLE 5. TYPICAL PARAMETERS FOR THE UP CONVERTER EXAMPLE PARAMETER VCC = 3V, IBIAS = 8mA VCC = 4V, IBIAS = 18mA Power Gain, LO = -6dBm 3dB 5.5dBm Power Gain, LO = 0dBm 4dB 7.2dB RF Isolation, LO = 0dBm 15dBc 22dBc LO Isolation, LO = 0dBm 28dBc 28dBc FIGURE 12. UP CONVERTER FIGURE 13. TYPICAL SPECTRUM PERFORMANCE OF UP CONVERTER RF IN0.01390nH900MHz5.2nHVCC 3V0.112348765Q5Q6Q1Q2Q3Q411p0.0175MHz27220REEREE51LO INVCC0.010.011103303V825MHz0.010.015147-100pF 9019128902LO - 10RF12RFOUTPUT WITHOUT EMITTER DEGENERATIONRF = 76MHzLO = 825MHzSPAN50MHzOUTPUT WITH EMITTER DEGENERATION REE = 4.7Ω825900976EXPANDED SPECTRUM REE = 4.7Ω HFA3101 3-11 Typical Performance Curves for Transistors FIGURE 14. IC vs VCE FIGURE 15. HFE vs IC FIGURE 16. GUMMEL PLOT FIGURE 17. fT vs IC FIGURE 18. GAIN AND NOISE FIGURE vs FREQUENCY NOTE: Figures 14 through 18 are only for Q5 and Q6. VCE (V)IC (mA)02.06.04.0070605040302010IB = 800μAIB = 1mAIB = 200μAIB = 400μAIB = 600μA hFEIC ( A)10-1010-810-610-410-2100140120100806040200VCE = 5V VBE (V)IC AND IB (A)10-1010-810-610-410-210010-120.200.400.600.801.0VCE = 3V IC (A)fT (GHz)12108642010-410-310-210-1 20181614121046NOISE FIGURE ( dB)FREQUENCY (GHz)|S21| (dB)0.51.51.02.002.53.04.84.64.44.24.03.83.63.43.28 HFA3101 12 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com Die Characteristics PROCESS UHF-1 DIE DIMENSIONS: 53 mils x 52 mils x 14 mils 1340μm x 1320μm x 355.6μm METALLIZATION: Type: Metal 1: AlCu(2%)/TiW Thickness: Metal 1: 8kÅ ±0.5kÅ Type: Metal 2: AlCu(2%) Thickness: Metal 2: 16kÅ ±0.8kÅ PASSIVATION: Type: Nitride Thickness: 4kÅ ±0.5kÅ SUBSTRATE POTENTIAL (Powered Up): Floating Metallization Mask Layout HFA31011122334455667788 HFA3101 16-Bit Low Power Sigma-Delta ADC Data Sheet AD7171 RevA Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use.Specifications subject to change without notice. Non. license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2009–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com FEATURES Output data rate: 125 Hz Pin-programmable power-down and reset Status function Internal clock oscillator Current: 135 μA Power supply: 2.7 V to 5.25 V –40°C to +105°C temperature range Package: 10-lead 3 mm x 3 mm LFCSP INTERFACE 2-wire serial (read-only device) SPI compatible Schmitt trigger on SCLK APPLICATIONS Weigh scales Pressure measurement Industrial process control Portable instrumentation FUNCTIONAL BLOCK DIAGRAM 16-BIT Σ-ΔADCAD7171GNDINTERNALCLOCKVDDREFIN(+)AIN(+)AIN(–)REFIN(–)DOUT/RDYSCLKPDRST08417-001 Figure 1. Table 1. VREF = VDD RMS Noise P-P Noise P-P Resolution ENOB 5 V 11.5 μV 76 μV 16 bits 16 bits 3 V 6.9 μV 45 μV 16 bits 16 bits GENERAL DESCRIPTION The AD7171 is a very low power 16-bit analog-to-digital converter (ADC). It contains a precision 16-bit sigma-delta (Σ-Δ) ADC and an on-chip oscillator. Consuming only 135 μA, the AD7171 is particularly suitable for portable or battery operated products where very low power is a requirement. The AD7171 also has a power-down mode in which the device consumes 5 μA, thus increasing the battery life of the product. For ease-of-use, all the features of the AD7171 are controlled by dedicated pins. Each time a data read occurs, eight status bits are appended to the 16-bit conversion. These status bits contain a pattern sequence that can be used to confirm the validity of the serial transfer. The output data rate of the AD7171 is 125 Hz, whereas the settling time is 24 ms. The AD7171 has one differential input and a gain of 1. This is useful in applications where the user needs to use an external amplifier to implement system-specific filtering or gain requirements. The AD7171 operates with a power supply from 2.7 V to 5.25 V. It is available in a 10-lead LFCSP package. The AD7170 is a 12-bit version of the AD7171. It has the same feature set as the AD7171 and is pin-for-pin compatible. 1 Low-Noise 24-bit Delta Sigma ADC ISL26132, ISL26134 The ISL26132 and ISL26134 are complete analog front ends for high resolution measurement applications. These 24-bit Delta-Sigma Analog-to-Digital Converters include a very low-noise amplifier and are available as either two or four differential multiplexer inputs. The devices offer the same pinout as the ADS1232 and ADS1234 devices and are functionally compatible with these devices. The ISL26132 and ISL26134 offer improved noise performance at 10Sps and 80Sps conversion rates. The on-chip low-noise programmable-gain amplifier provides gains of 1x/2x/64x/128x. The 128x gain setting provides an input range of ±9.766mVFS when using a 2.5V reference. la high input impedance allows direct connection of sensors such as load cell bridges to ensure the specified measurement accuracy without additional circuitry. The inputs accept signals 100mV outside the supply rails when the device is set for unity gain. The Delta-Sigma ADC features a third order modulator providing up to 21.6-bit noise-free performance. The device can be operated from an external clock source, crystal (4.9152MHz typical), or the on-chip oscillator. The two channel ISL26132 is available in a 24 Ld TSSOP package and the four channel ISL26134 is available in a 28 Ld TSSOP package. Both are specified for operation over the automotive temperature range (-40°C to +105°C). Features • Up to 21.6 Noise-free bits. • Low Noise Amplifier with Gains of 1x/2x/64x/128x • RMS noise: 10.2nV @ 10Sps (PGA = 128x) • Linearity Error: 0.0002% FS • Simultaneous rejection of 50Hz and 60Hz (@ 10Sps) • Two (ISL26132) or four (ISL26134) channel differential input multiplexer • On-chip temperature sensor (ISL26132) • Automatic clock source detection • Simple interface to read conversions • +5V Analog, +5 to +2.7V Digital Supplies • Pb-Free (RoHS Compliant) • TSSOP packages: ISL26132, 24 pin; ISL26134, 28 pin Applications • Weigh Scales • Temperature Monitors and Controls • Industrial Process Control • Pressure Sensors ADC PGA 1x/2x/64x/ 128x INTERNAL CLOCK SDO/RDY SCLK AVDD DVDD AGND DGND XTALIN/CLOCK VREF+ EXTERNAL OSCILLATOR XTALOUT A0 A1/TEMP VREFAIN1+ AIN1- AIN2+ AIN2- AIN3+ AIN3- AIN4+ AIN4- INPUT MULTIPLEXER ISL26134 Only CAP CAP GAIN0 GAIN1 PWDN SPEED DGND DGND NOTE for A1/TEMP pin: Functions as A1 on ISL26134; Functions as TEMP on ISL26132 FIGURE 1. BLOCK DIAGRAM September 9, 2011 FN6954.1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. All other trademarks mentioned are the property of their respective owners. ISL26132, ISL26134 2 FN6954.1 September 9, 2011 Ordering Information PART NUMBER (Notes 2, 3) PART MARKING TEMPERATURE RANGE (°C) PACKAGE (Pb-free) PKG. DWG NUMBER ISL26132AVZ 26132 AVZ -40 to +105 24 Ld TSSOP M24.173 ISL26132AVZ-T (Note 1) 26132 AVZ -40 to +105 24 Ld TSSOP (Tape & Reel) M24.173 ISL26132AVZ-T7A (Note 1) 26132 AVZ -40 to +105 24 Ld TSSOP (Tape & Reel) M24.173 ISL26134AVZ 26134 AVZ -40 to +105 28 Ld TSSOP M28.173 ISL26134AVZ-T (Note 1) 26134 AVZ -40 to +105 28 Ld TSSOP (Tape & Reel) M28.173 ISL26134AVZ-T7A (Note 1) 26134 AVZ -40 to +105 28 Ld TSSOP (Tape & Reel) M28.173 ISL26134AV28EV1Z Evaluation Board NOTES: 1. Please refer to TB347 for details on reel specifications. 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL26132, ISL26134. For more information on MSL please see techbrief TB363. TABLE 1. KEY DIFFERENCES OF PARTS PART NUMBER NUMBER OF CHANNELS ON-CHIP TEMPERATURE SENSOR NUMBER OF PINS ISL26132 2 YES 24 ISL26134 4 NO 28 Pin Configurations ISL26132 (24 LD TSSOP) TOP VIEW ISL26134 (28 LD TSSOP) TOP VIEW 1 2 3 4 5 6 7 8 9 10 11 12 16 17 18 19 20 21 22 23 24 15 14 13 DVDD DGND XTALIN/CLOCK XTALOUT DGND DGND TEMP A0 CAP CAP AIN1+ AIN1- SDO/RDY PDWN SPEED GAIN1 GAIN0 AGND VREFAIN2+ AIN2- SCLK AVDD VREF+ 28 27 26 25 24 23 22 21 20 19 18 17 16 15 DVDD DGND XTALIN/CLOCK XTALOUT DGND DGND A1 A0 CAP CAP AIN1+ AIN1- AIN3+ AIN3- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SDO/RDY PDWN SPEED GAIN1 GAIN0 AGND VREFAIN2+ AIN2- AIN4+ AIN4- SCLK AVDD VREF+ ISL26132, ISL26134 3 FN6954.1 September 9, 2011 Pin Descriptions NAME PIN NUMBER ANALOG/DIGITAL ISL26132 ISL26134 INPUT/OUTPUT DESCRIPTION DVDD 1 1 Digital Digital Power Supply (2.7V to 5.25V) DGND 2, 5, 6 2, 5, 6 Digital Digital Ground XTALIN/CLOCK 3 3 Digital/Digital Input External Clock Input: typically 4.9152MHz. Tie low to activate internal oscillator. Can also use external crystal across XTALIN/CLOCK and XTALOUT pins. XTALOUT 4 4 Digital External Crystal connection TEMP 7 - Digital Input On-chip Temperature Diode Enable A1 A0 - 8 7 8 Digital Input CAP 9, 10 9, 10 Analog PGA Filter Capacitor AIN1+ 11 11 Analog Input Positive Analog Input Channel 1 AIN1- 12 12 Analog Input Negative Analog Input Channel 1 AIN3+ - 13 Analog Input Positive Analog Input Channel 3 AIN3- - 14 Analog Input Negative Analog Input Channel 3 AIN4- - 15 Analog Input Negative Analog Input Channel 4 AIN4+ - 16 Analog Input Positive Analog Input Channel 4 AIN2- 13 17 Analog Input Negative Analog Input Channel 2 AIN2+ 14 18 Analog Input Positive Analog Input Channel 2 VREF- 15 19 Analog Input Negative Reference Input VREF+ 16 20 Analog Input Positive Reference Input AGND 17 21 Analog Analog Ground AVDD 18 22 Analog Analog Power Supply 4.75V to 5.25V GAIN0 GAIN1 19 20 23 24 Digital Input TABLE 2. INPUT MULTIPLEXER SELECT ISL26134 ISL26132 A1 A0 CHANNEL 0 0 AIN1 0 1 AIN2 1 0 AIN3 1 1 AIN4 TABLE 3. GAIN SELECT GAIN1 GAIN0 GAIN 0 0 1 0 1 2 1 0 64 1 1 128 ISL26132, ISL26134 4 FN6954.1 September 9, 2011 Circuit Description The ISL26132 (2-channel) and ISL26134 (4-channel) devices are very low noise 24-bit delta-sigma ADCs that include a programmable gain amplifier and an input multiplexer. la ISL26132 offers an on-chip temperature measurement capability. The ISL26132, ISL26134 provide pin compatibility and output data compatibility with the ADS1232/ADS1234, and offer the same conversion rates of 10Sps and 80Sps. All the features of the ISL26132, ISL26134 are pin-controllable, while offset calibration, standby mode, and output conversion data are accessible through a simple 2-wire interface. The clock can be selected to come from an internal oscillator, an external clock signal, or crystal (4.9152MHz typical). SPEED 21 25 Digital Input PDWN 22 26 Digital Input Power-Down: Holding this pin low powers down the entire converter and resets the ADC. SCLK 23 27 Digital Input Serial Clock: Clock out data on the rising edge. Also used to initiate Offset Calibration and Sleep modes. See “Serial Clock Input (SCLK)” on page 14 for more details. SDO/RDY 24 28 Digital Output Dual-Purpose Output: Data Ready: Indicate valid data by going low. Data Output: Outputs data, MSB first, on the first rising edge of SCLK. Pin Descriptions (Continued) NAME PIN NUMBER ANALOG/DIGITAL ISL26132 ISL26134 INPUT/OUTPUT DESCRIPTION TABLE 4. DATA RATE SELECT SPEED DATA RATE 0 10Sps 1 80Sps ISL26132, ISL26134 5 FN6954.1 September 9, 2011 Absolute Maximum Ratings Thermal Information AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to +0.3V Analog In to AGND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3 to AVDD+0.3V Digital In to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3 to DVDD+0.3V Input Current Momentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100mA Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10mA ESD Rating Human Body Model (Per MIL-STD-883 Method 3015.7) . . . . . . . . . . . ..7.5kV Machine Model (Per JESD22-A115). . . . . . . . . . . . . . . . . . . . . . . . . .450V Charged Device Model (Per JESD22-C101) . . . . . . . . . . . . . . . . . . . . . . . .2kV Latch-up (Per JEDEC JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100mA @ Room and Hot (+105°C) Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W) 24 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . .65 18 28 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . .63 18 Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80mW Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . ..+150°C Maximum Storage Temperature Range . . . . . . . . . . . . ..-65°C to +150°C Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp Operating Conditions Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-40°C to +105°C AVDD to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..4.75V to 5.25V DVDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7V to 5.25V CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details. 5. For θJC, the “case temp” location is taken at the package top center. Electrical Specifications VREF+ = 5V, VREF- = 0V, AVDD = 5V, DVDD = 5V, AGND = DGND = 0V, MCLK = 4.9152MHz, and TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C SYMBOL PARAMETER TEST LEVEL or NOTES MIN (Note 6) TYP MAX (Note 6) UNITS ANALOG INPUTS Differential Input Voltage Range ±0.5VREF/ Gain V Common Mode Input Voltage gamme Gain = 1, 2 AGND - 0.1 AVDD + 0.1 V Gain = 64, 128 AGND+1.5 AVDD - 1.5 V Differential Input Current Gain = 1 ±20 nA Gain = 2 ±40 nA Gain = 64, 128 ±1 nA SYSTEM PERFORMANCE Resolution No Missing Codes 24 Bits Data Rate Internal Osc. SPEED = High 80 SPS Internal Osc. SPEED = Low 10 SPS External Osc. SPEED = High fCLK/61440 SPS External Osc. SPEED = Low fCLK/49152 0 SPS Digital Filter Settling Time Full Setting 4 Conversions INL Integral Nonlinearity Differential Input Gain = 1, 2 ±0.0002 ±0.001 % of FSR (Note 7) Differential Input Gain = 64, 128 ±0.0004 % of FSR (Note 7) Input Offset Error Gain = 1 ±0.4 ppm of FS Gain = 128 ±1.5 ppm of FS Input Offset Drift Gain = 1 0.3 μV/°C Gain = 128 10 nV/°C Gain Error (Note 8) Gain = 1 ±0.007 ±0.02 % Gain = 128 ±0.02 % Gain Drift Gain = 1 0.5 ppm/°C Gain = 128 7 ppm/°C ISL26132, ISL26134 6 FN6954.1 September 9, 2011 CMRR Common Mode Rejection At DC, Gain = 1, ΔV = 1V 85 100 dB At DC, Gain = 128, ΔV = 0.1V 100 dB 50Hz/60Hz Rejection (Note 9) External 4.9152MHz Clock 130 dB PSRR Power Supply Rejection At DC, Gain = 1, ΔV = 1V 82 100 dB At DC, Gain = 128, ΔV = 0.1V 100 105 dB Input Referred Noise See “Typical Characteristics” beginning on page 8 Noise Free Bits See “Typical Characteristics” beginning on page 8 VOLTAGE REFERENCE INPUT VREF Voltage Reference Input VREF = VREF+ - VREF- 1.5 AVDD AVDD + 0.1 V VREF- Negative Reference Input AGND - 0.1 VREF+ - 1.5 V VREF+ Positive Reference Input VREF- + 1.5 AVDD + 0.1 V IREF Voltage Reference Input Current ±350 nA POWER SUPPLY REQUIREMENTS AVDD Analog Supply Voltage 4.75 5.0 5.25 V DVDD Digital Supply Voltage 2.7 3.3 5.25 V AIDD Analog Supply Current Normal Mode, AVDD = 5, Gain = 1, 2 7 8.5 mA Normal Mode, AVDD = 5, Gain = 64, 128 9 12 mA Standby Mode 0.2 3 μA Power-Down 0.2 2.5 μA DIDD Digital Supply Current Normal Mode, AVDD = 5, Gain = 1, 2 750 950 μA Normal Mode, AVDD = 5, Gain = 64, 128 750 950 μA Standby Mode 1.5 26 μA Power-Down 1 26 μA PD Power Dissipation, Total Normal Mode, AVDD = 5, Gain = 1, 2 49.6 mW Normal Mode, AVDD = 5, Gain = 64, 128 68 mW Standby Mode 0.14 mW Power-Down 0.14 mW DIGITAL INPUTS VIH 0.7 DVDD V VIL 0.2 DVDD V VOH IOH = -1mA DVDD - 0.4 V VOL IOL = 1mA 0.2 DVDD V Input Leakage Current ±10 μA External Clock Input Frequency 0.3 4.9152 MHz Serial Clock Input Frequency 1 MHz NOTE: 6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. 7. FSR = Full Scale Range = VREF/Gain 8. Gain accuracy is calibrated at the factory (AVDD = +5V). 9. Specified for word rate equal to 10Sps. Electrical Specifications VREF+ = 5V, VREF- = 0V, AVDD = 5V, DVDD = 5V, AGND = DGND = 0V, MCLK = 4.9152MHz, and TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C (Continued) SYMBOL PARAMETER TEST LEVEL or NOTES MIN (Note 6) TYP MAX (Note 6) UNITS ISL26132, ISL26134 7 FN6954.1 September 9, 2011 Noise Performance The ISL26132 and ISL26134 provide excellent noise performance. The noise performance on each of the gain settings of the PGA at the selected word rates is shown in Tables 5 and 6. Resolution in bits decreases by 1-bit if the ADC is operated as a single-ended input device. Noise measurements are input-referred, taken with bipolar inputs under the specified operating conditions, with fCLK = 4.9152MHz. TABLE 5. AVDD = 5V, VREF = 5V, DATA RATE = 10Sps GAIN RMS NOISE (nV) PEAK-TO-PEAK NOISE (nV) (Note 10) NOISE-FREE BITS (Note 11) 1 243 1604 21.6 2 148 977 21.3 64 10.8 71 20.1 128 10.2 67 19.1 TABLE 6. AVDD = 5V, VREF = 5V, DATA RATE = 80Sps GAIN RMS NOISE (nV) PEAK-TO-PEAK NOISE (nV) (Note 10) NOISE-FREE BITS (Note 11) 1 565 3730 20.4 2 285 1880 20.3 64 28.3 187 18.7 128 27 178 17.7 NOTES: 10. The peak-to-peak noise number is 6.6 times the rms value. This encompasses 99.99% of the noise excursions that may occur. This value best represents the worst case noise that could occur in the output conversion words from the converter. 11. Noise-Free Bits is defined as: Noise-Free Bits = ln(FSR/peak-to-peak noise)/ln(2) where FSR is the full scale range of the converter, VREF/Gain. ISL26132, ISL26134 8 FN6954.1 September 9, 2011 Typical Characteristics FIGURE 2. NOISE AT GAIN = 1, 10Sps FIGURE 3. NOISE HISTOGRAM AT GAIN = 1, 10Sps FIGURE 4. NOISE AT GAIN = 2, 10Sps FIGURE 5. NOISE HISTOGRAM AT GAIN = 2, 10Sps FIGURE 6. NOISE AT GAIN = 64, 10Sps FIGURE 7. NOISE HISTOGRAM AT GAIN = 64, 10Sps -10 -5 0 5 10 0 200 400 600 800 1000 GAIN = 1 RATE = 10Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 50 100 150 200 250 300 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 OUTPUT CODE (LSB) GAIN = 1, N = 1024 RATE = 10Sps STD DEV = 1.635 LSB VREF = 2.5V COUNTS - 10 -5 0 5 10 0 200 400 600 800 1000 TIME (SAMPLES) OUTPUT CODE (LSB) GAIN = 2 RATE = 10Sps 0 50 100 150 200 250 -8 -6 -4 -2 0 2 4 6 8 GAIN = 2, N = 1024 RATE = 10Sps STD DEV = 1.989 LSB VREF = 2.5V OUTPUT CODE (LSB) COUNTS -15 -10 -5 0 5 10 15 20 0 200 400 600 800 1000 TIME (SAMPLES) OUTPUT CODE (LSB) GAIN = 64 RATE = 10Sps 0 20 40 60 80 100 120 -20 -15 -10 -5 0 5 10 15 20 GAIN = 64, N = 1024 RATE = 10Sps STD DEV = 4.627 LSB VREF = 2.5V OUTPUT CODE (LSB) COUNTS ISL26132, ISL26134 9 FN6954.1 September 9, 2011 FIGURE 8. NOISE AT GAIN = 128, 10Sps FIGURE 9. NOISE HISTOGRAM AT GAIN = 128, 10Sps FIGURE 10. NOISE AT GAIN = 1, 80Sps FIGURE 11. NOISE HISTOGRAM AT GAIN = 1, 80Sps FIGURE 12. NOISE AT GAIN = 2, 80Sps FIGURE 13. NOISE HISTOGRAM AT GAIN = 2, 80Sps Typical Characteristics (Continued) -50 -30 -10 10 30 50 0 200 400 600 800 1000 GAIN = 128 RATE = 10Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 10 20 30 40 50 60 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 OUTPUT CODE (LSB) COUNTS GAIN = 128, N = 1024 RATE = 10Sps STD DEV = 8.757 LSB VREF = 2.5V -25 -20 -15 -10 -5 0 5 10 15 20 25 0 200 400 600 800 1000 GAIN = 1 RATE = 80Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 20 40 60 80 100 120 -15 -10 -5 0 5 10 15 OUTPUT CODE (LSB) COUNTS GAIN = 1, N = 1024 RATE = 80Sps STD DEV = 3.791 LSB VREF = 2.5V -25 -15 -5 5 15 25 0 200 400 600 800 1000 GAIN = 2 RATE = 80Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 20 40 60 80 100 120 -15 -10 -5 0 5 10 15 OUTPUT CODE (LSB) COUNTS GAIN = 2, N = 1024 RATE = 80Sps STD DEV = 3.831 LSB VREF = 2.5V ISL26132, ISL26134 10 FN6954.1 September 9, 2011 FIGURE 14. NOISE AT GAIN = 64, 80Sps FIGURE 15. NOISE HISTOGRAM AT GAIN = 64, 80Sps FIGURE 16. NOISE AT GAIN = 128, 80Sps FIGURE 17. NOISE HISTOGRAM AT GAIN = 128, 80Sps FIGURE 18. ANALOG CURRENT vs TEMPERATURE FIGURE 19. DIGITAL CURRENT vs TEMPERATURE Typical Characteristics (Continued) -100 -50 0 50 100 0 200 400 600 800 1000 GAIN = 64 RATE = 80Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 10 20 30 40 50 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 OUTPUT CODE (LSB) COUNTS GAIN = 64, N = 1024 RATE = 80Sps STD DEV = 12.15 LSB VREF = 2.5V -200 -160 -120 -80 -40 0 40 80 120 160 0 200 400 600 800 1000 GAIN = 128 RATE = 80Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 5 10 15 20 25 30 -80 -60 -40 -20 0 20 40 60 80 OUTPUT CODE (LSB) COUNTS GAIN = 128, N = 1024 RATE = 80Sps STD DEV = 23.215 LSB VREF = 2.5V 0 2 4 6 8 10 -40 -10 20 50 80 110 TEMPERATURE (°C) CURRENT (mA) NORMAL MODE, PGA = 64.128 NORMAL MODE, PGA = 1, 2 1 10 100 1000 10000 -40 -10 20 50 80 110 TEMPERATURE (°C) CURRENT (μA) NORMAL MODE, ALL PGA GAINS POWERDOWN MODE ISL26132, ISL26134 11 FN6954.1 September 9, 2011 FIGURE 20. TYPICAL WORD RATE vs TEMPERATURE USING INTERNAL OSCILLATOR FIGURE 21. NOISE DENSITY vs FREQUENCY AT GAIN = 1, 80Sps FIGURE 22. NOISE DENSITY vs FREQUENCY AT GAIN = 128, 80Sps Typical Characteristics (Continued) 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 -40 -10 20 50 80 110 TEMPERATURE (°C) DATA RATE (Sps) WORD RATE = 10Sps 10 100 1000 10000 0.01 0.1 1 10 FREQUENCY (Hz) NOISE (nV/√Hz) GAIN = 1, 80Sps 64k FFT 25 AVERAGES 1 10 100 0.01 0.1 1 10 FREQUENCY (Hz) NOISE (nV/√Hz) GAIN = 128, 80Sps 64k FFT 25 AVERAGES ISL26132, ISL26134 12 FN6954.1 September 9, 2011 Functional Description Analog Inputs The analog signal inputs to the ISL26132 connect to a 2-Channel differential multiplexer and the ISL26134 connect to a 4-Channel differential multiplexer (Mux). The multiplexer connects a pair of inputs to the positive and negative inputs (AINx+, AINx-), selected by the Channel Select Pins A0 and A1 (ISL26134 only). Input channel selection is shown in Table 7. On the ISL26132, the TEMP pin is used to select the Temperature Sensor function. Whenever the MUX channel is changed (i.e. if any one of the following inputs - A0/A1, Gain1/0, SPEED is changed), the digital logic will automatically restart the digital filter and will cause SDO/RDY to go low only when the output is fully settled. But if the input itself is suddenly changed, then the user needs to ignore first four RDY pulses (going low) to get an accurate measurement of the input signal. The input span of the ADC is ±0.5 VREF/GAIN. For a 5V VREF and a gain of 1x, the input span will be 5VP-P fully differential as shown in Figure 23. Note that input voltages that exceed the supply rails by more than 100mV will turn on the ESD protection diodes and degrade measurement accuracy. If the differential input exceeds well above the +VE or the -VE FS (by ~1.5x times) the output code will clip to the corresponding FS value. Under such conditions, the output data rate will become 1/4th of the original value as the Digital State Machine will RESET the Delta-Sigma Modulator and the Decimation Filter. Temperature Sensor (ISL26132 only) When the TEMP pin of the ISL26132 is set High, the input multiplexer is connected to a pair of diodes, which are scaled in both size and current. The voltage difference measured between them corresponds to the temperature of the die according to Equation 1: Note: Valid only for GAIN = 1x or 2x Where T is the temperature of the die, and Gain = the PGA Gain Setting. At a temperature of +25°C, the measured voltage will be approximately 111.7mV. Note that this measurement indicates only the temperature of the die itself. Applying the result to correct for the temperature drift of a device external to the package requires that thermal coupling between the sensor and the die be taken into account. Low-Noise Programmable Gain Amplifier (PGA) The chopper-stabilized programmable gain amplifier features a variety of gain settings to achieve maximum dynamic range and measurement accuracy from popular sensor types with excellent low noise performance, input offset error, and low drift, and with minimal external parts count. The GAIN0 and GAIN1 pins allow the user to select gain settings of 1x, 2x, 64x, or 128x. A block diagram is shown in Figure 24. The differential input stage provides a gain of 64, which is bypassed when the lower gain settings are selected. The lower gain settings (1 and 2) will accept inputs with common mode voltages up to 100mV outside the rails, allowing the device to accept ground-referred signals. At gain settings of 64 or 128 the common mode voltage at the inputs is limited to 1.5V inside the supply rails while maintaining specified measurement accuracy. TABLE 7. INPUT CHANNEL SELECTION CHANNEL SELECT PINS ANALOG INPUT PINS SELECTED A1 A0 AIN+ AIN- 0 0 AIN1+ AIN1- 0 1 AIN2+ AIN2- 1 0 AIN3+ AIN3- 1 1 AIN4+ AIN4- 3.75 2.50 1.25 1.25V INPUT VOLTAGE RANGE = ±0.5VREF/GAIN VREF = 5V, GAIN = 1X 3.75 2.50 1.25 AIN+ AIN- 2.50V FIGURE 23. DIFFERENTIAL INPUT FOR VREF = 5V, GAIN = 1X V= 102.2mV + (379μV∗T(°C))∗Gain (EQ. 1) ISL26132, ISL26134 13 FN6954.1 September 9, 2011 Filtering PGA Output Noise The programmable gain amplifier, as shown in Figure 24, includes a passive RC filter on its output. The resistors are located inside the chip on the outputs of the differential amplifier stages. The capacitor (nominally a 100nF C0G ceramic or a PPS film (Polyphenylene sulfide)) for the filter is connected to the two CAP pins of the chip. The outputs of the differential amplifier stages of the PGA are filtered before their signals are presented to the delta-sigma modulator. This filter reduces the amount of noise by limiting the signal bandwidth and filters the chopping artifacts of the chopped PGA stage. Voltage Reference Inputs (VREF+, VREF-) The voltage reference for the ADC is derived from the difference in the voltages presented to the VREF+ and VREF- pins; VREF = (VREF+ - VREF-). The ADCs are specified with a voltage reference value of 5V, but a voltage reference as low as 1.5V can be used. For proper operation, the voltage on the VREF+ pin should not be greater than AVDD + 0.1V and the voltage on the VREF- pin should not be more negative than AGND - 0.1V. Clock Sources The ISL26132, ISL26134 can operate from an internal oscillator, an external clock source, or from a crystal connected between the XTALIN/CLOCK and XTALOUT pins. See the block diagram of the clock system in Figure 25. When the ADC is powered up, the CLOCK DETECT block determines if an external clock source is present. If a clock greater than 300kHz is present on the XTALIN/CLOCK pin, the circuitry will disable the internal oscillator on the chip and use the external clock as the clock to drive the chip circuitry. If the ADC is to be operated from the internal oscillator, the XTALIN/CLOCK pin should be grounded. If the ADC is to be operated from a crystal, it should be located close to the package pins of the ADC. Note that external loading capacitors for the crystal are not required as there are loading capacitors built into the silicon, although the capacitor values are optimized for operation with a 4.9152MHz crystal. The XTALOUT pin is not intended to drive external circuits. Digital Filter Characteristics The digital filter inside the ADC is a fourth-order Siinc filter. Figures 26 and 27 illustrate the filter response for the ADC when it is operated from a 4.9152MHz crystal. The internal oscillator is factory trimmed so the frequency response for the filter will be much the same when using the internal oscillator. The figures illustrate that when the converter is operated at 10Sps the digital filter provides excellent rejection of 50Hz and 60Hz line interference. FIGURE 24. SIMPLIFIED PROGRAMMABLE GAIN AMPLIFIER BLOCK DIAGRAM + - A1 - + A2 AINx- AINx+ ADC RINT RINT R1 RF1 RF2 CAP CAP FIGURE 25. CLOCK BLOCK DIAGRAM XTALIN/ CRYSTAL OSCILLATOR XTALOUT TO ADC INTERNAL OSCILLATOR CLOCK DETECT MUX EN CLOCK ISL26132, ISL26134 14 FN6954.1 September 9, 2011 Serial Clock Input (SCLK) The serial clock input is provided with hysteresis to minimize false triggering. Nevertheless, care should be taken to ensure reliable clocking. Filter Settling Time and ADC Latency Whenever the analog signal into the ISL26132, ISL26134 converters is changed, the effects of the digital filter must be taken into account. The filter takes four data ready periods for the output code to fully reflect a new value at the analog input. DM the multiplexer control input is changed, the modulator and the digital filter are reset, and the device uses four data ready periods to fully settle to yield a digital code that accurately represents the analog input. Therefore, from the time the control inputs for the multiplexer are changed until the SDO/RDY goes low, four data ready periods will elapse. The settling time delay after a multiplexer channel change is listed in Table 8 for the converter operating in continuous conversion mode. 0 -50 -100 -150 0 10 20 30 40 50 60 70 80 90 100 FREQUENCY (Hz) GAIN (dB) DDAATTAA RRAATTEE == 1100 SSpPsS FIGURE 26. 10Sps: FREQUENCY RESPONSE OUT TO 100Hz -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 45 50 55 60 65 FREQUENCY (Hz) GAIN (dB) DATA RATE = 10Sps FIGURE 27. 10Sps: 50/60Hz NOISE REJECTION, 45Hz TO 65Hz TABLE 8. SETTLING TIME PARAMETER DESCRIPTION (fCLK = 4.9152MHz) MIN MAX UNITS tS A0, A1, SPEED, Gain1, Gain0 change set-up time 40 50 μs t1 Settling time SPEED = 1 54 55 ms SPEED = 0 404 405 ms FIGURE 28. SDO/RDY DELAY AFTER MULTIPLEXER CHANGE SDO/RDY tS t1 A0, A1, SPEED, Gain1, Gain0 ISL26132, ISL26134 15 FN6954.1 September 9, 2011 Conversion Data Rate The SPEED pin is used to select between the 10Sps and 80Sps conversion rates. The 10Sps rate (SPEED = Low) is preferred in applications requiring 50/60Hz noise rejection. Note that the sample rate is directly related to the oscillator frequency, as 491,520 clocks are required to perform a conversion at the 10Sps rate, and 61,440 clocks at the 80Sps rate. Output Data Format The 24-bit converter output word is delivered in two’s complement format. Input exceeding full scale results in a clipped output which will not return to in-range values until after the input signal has returned to the specified allowable voltage range and the digital filter has settled as discussed previously. Reading Conversion Data from the Serial Data Output/Ready SDO/RDY Pin When the ADC is powered, it will automatically begin doing conversions. The SDO/RDY signal will go low to indicate the completion of a conversion. After the SDO/RDY signal goes low, the MSB data bit of the conversion word will be output from the SDO/RDY pin after SCLK is transitioned from a low to a high. Each subsequent new data bit is also output on the rising edge of SCLK (see Figure 30). The receiving device should use the falling edge of SCLK to latch the data bits. After the 24th SCLK, the SDO/RDY output will remain in the state of the LSB data bit until a new conversion is completed. At this time, the SDO/RDY will go high if low and then go low to indicate that a new conversion word is available. If not all data bits are read from the SDO/RDY pin prior to the completion of a new conversion, they will be overwritten. SCLK should be low during time t6, as shown in Figure 30, when SDO/RDY is high. If the user wants the SDO/RDY signal to go high after reading the 24 bits of the conversion data word, a 25th SCLK can be issued. The 25th SCLK will force the SDO/RDY signal to go high and remain high until it falls to signal that a new conversion word is available. Figure 31 illustrates the behavior of the SDO/RDY signal when a 25th SCLK is used. FIGURE 29. SDO/RDY DELAY AFTER MULTIPLEXER CHANGE SDO/RDY TABLE 9. OUTPUT CODES CORRESPONDING TO INPUT INPUT SIGNAL OUTPUT CODE (HEX) ≥ + 0.5VREF/GAIN 7FFFFF (+0.5VREF/GAIN)/(223 - 1) 000001 0 000000 (-0.5VREF/GAIN)/(223 - 1) FFFFFF ≤ - 0.5VREF/GAIN 800000 FIGURE 30. OUTPUT DATA WAVEFORMS USING 24 SCLKS TO READ CONVERSION DATA SDO/RDY DATA READY DATA MSB LSB NEW DATA READY 23 22 21 0 SCLK t4 t2 1 t3 24 t5 t6 t3 t7 ISL26132, ISL26134 16 FN6954.1 September 9, 2011 Offset Calibration Control The offset internal to the ADC can be removed by performing an offset calibration operation. Offset calibration can be initiated immediately after reading a conversion word with 24 SCLKs by issuing two additional SCLKs. The offset calibration operation will begin immediately after the 26th SCLK occurs. Figure 32 illustrates the timing details for the offset calibration operation. During offset calibration, the analog inputs are shorted internally and a regular conversion is performed. This conversion generates a conversion word that represents the offset error. This value is stored and used to digitally remove the offset error from future conversion words. The SDO/RDY output will fall to indicate the completion of the offset calibration operation. TABLE 10. INTERFACE TIMING CHARACTERISTICS PARAMETER DESCRIPTION MIN TYP MAX UNITS t2 SDO/RDY Low to first SLK 0 ns t3 SCLK pulsewidth, Low or High 100 ns t4 SCLK High to Data Valid 50 ns t5 Data Hold after SCLK High 0 ns t6 Register Update Time 39 μs t7 Conversion Period SPEED = 1 12.5 ms SPEED = 0 100 ms FIGURE 31. OUTPUT DATA WAVEFORMS FOR SDO/RDY POLLING DATA READY NEW DATA READY SDO/RDY SCLK 23 22 21 0 1 24 25 DATA 25TH SCLK FORCES SDO/RDY HIGH FIGURE 32. OFFSET CALIBRATION WAVEFORMS DATA READY AFTER CALIBRATION CALIBRATION BEGINS SDO/RDY SCLK 23 22 21 0 23 1 24 25 26 t8 FIGURE 33. STANDBY MODE WAVEFORMS DATA READY START CONVERSION STANDBY MODE SDO/RDY SCLK 23 22 21 0 1 24 t10 t11 t9 23 TABLE 11. SDO/RDY DELAY AFTER CALIBRATION PARAMETER MIN MAX UNITS t8 SPEED = 1 108 109 ms SPEED = 0 808 809 ms ISL26132, ISL26134 17 FN6954.1 September 9, 2011 Standby Mode Operation The ADC can be put into standby mode to save power. Standby mode reduces the power to all circuits in the device except the crystal oscillator amplifier. To enter the standby mode, take the SCLK signal high and hold it high after SDO/RDY falls. la converter will remain in standby mode as long as SCLK is held high. To return to normal operation, take SCLK back low and wait for the SDO/RDY to fall to indicate that a new conversion has completed. Figure 33 and Table 12 illustrate the details of standby mode. Supply currents are equal in Standby and Power-down modes unless a Crystal is used. If the Crystal is used, the Crystal amplifier is turned ON, even in the standby mode. Performing Offset Calibration After Standby mode To perform an offset calibration automatically upon returning from standby, deliver 2 or more additional SCLKs following a data read cycle, and then set and hold SCLK high. The device will remain in Standby as long as SCLK remains high. A calibration cycle will begin once SCLK is brought low again to resume normal operation. Additional time will be required to perform the calibration after returning from Standby. Figure 34 and Table 13 illustrate the details of performing offset calibration after standby mode. TABLE 12. STANDBY MODE TIMING PARAMETER DESCRIPTION MIN MAX UNITS t9 SCLK High after SDO/RDY Low SPEED = 1 0 12.44 ms SPEED = 0 0 99.94 t10 Standby Mode Delay SPEED = 1 12.5 SPEED = 0 100 t11 SDO/RDY falling edge after SCLK Low SPEED = 1 50 60 SPEED = 0 400 410 TABLE 13. OFFSET CALIBRATION TIMING AFTER STANDY PARAMETER DESCRIPTION MIN MAX UNITS t12 SDO/RDY Low after SCLK Low SPEED = 1 108 113 ms SPEED = 0 808 813 ms FIGURE 34. OFFSET CALIBRATION WAVEFORMS AFTER STANDBY SDO/RDY SCLK 23 22 21 0 1 24 25 STANDBY MODE DATA READY AFTER CALIBRATION BEGIN 23 CALIBRATION t10 t12 ISL26132, ISL26134 18 FN6954.1 September 9, 2011 Operation of PDWN PDWN must transition from low to high after both power supplies have settled to specified levels in order to initiate a correct power-up reset (Figure 35). This can be implemented by an external controller or a simple RC delay circuit, as shown in Figure 36. In order to reduce power consumption, the user can assert the Power-down mode by bringing PDWN Low as shown in Figure 37. All circuitry is shut down in this mode, including the Crystal Oscillator. After PDWN is brought High to resume operation, the reset delay varies depending on the clock source used. While an external clock source will resume operation immediately, a circuit utilizing a crystal will incur about a 20 millisecond delay due to the inherent start-up time of this type of oscillator. FIGURE 35. POWER-DOWN TIMING RELATIVE TO SUPPLIES ≥10μs AVDD DVDD PDWN FIGURE 36. PDWNDELAY CIRCUIT DVDD 1kΩ 2.2nF CONNECT TO PDWN PIN FIGURE 37. POWER-DOWN MODE WAVEFORMS SDO/RDY SCLK t11 PDWN POWER-DOWN MODE START CONVERSION DATA CLK READY SOURCE WAKEUP t13 tt1144 TABLE 14. POWER-DOWN RECOVERY TIMING PARAMETER DESCRIPTION TYP UNITS t13 Clock Recovery after PDWN High Internal Oscillator 7.95 μs External Clock Source 0.16 μs 4.9152MHz Crystal Oscillator 5.6 ms t14 PDWN Pulse Duration 26 μs (min) ISL26132, ISL26134 19 FN6954.1 September 9, 2011 Applications Information Power-up Sequence – Initialization and Configuration The sequence to properly power-up and initialize the device are as follows. For details on individual functions, refer to their descriptions. 1. AVDD, DVDD ramp to specified levels 2. Apply External Clock 3. Pull PDWN High to initiate Reset 4. Device begins conversion 5. SDO/RDY goes low at end of first conversion OPTIONAL ACTIONS • Perform Offset Calibration • Place device in Standby • Return device from Standby • Read on-chip Temperature (applicable to ISL26132 only) Application Examples WEIGH SCALE SYSTEM Figure 38 illustrates the ISL26132 connected to a load cell. la A/D converter is configured for a gain of 128x and a sample rate of 10Sps. If a load cell with 2mV/V sensitivity is used, the full scale output from the load cell will be 10mV. On a gain of 128x and sample rate of 10Sps, the converter noise is 67nVP-P. la converter will achieve 10mV/67nVP-P = 149,250 noise free counts across its 10mV input signal. This equates to 14,925 counts per mV of input signal. If five output words are averaged together this can be improved by √5 to yield √5*14925 counts = 33,370 counts per mV of input signal with an effective update rate of 2 readings per second. THERMOCOUPLE MEASUREMENT Figure 39 illustrates the ISL26132 in a thermocouple application. As shown, the 4.096V reference combined with the PGA gain set to 128x sets the input span of the converter to ±16mV. This supports the K type thermocouple measurement for temperatures from -270°C at -6.485mV to +380°C at about 16mV. If a higher temperature is preferred, the PGA can be set to 64x to provide a converter span of ±32mV. The will allow the converter to support temperature measurement with the K type thermocouple up to about +765°C. In the circuit shown, the thermocouple is referenced to a voltage dictated by the resistor divider from the +5V supply to ground. These set the common mode voltage at about 2.5V. The 5M resistors provide a means for detection of an open thermocouple. If the thermocouple fails open or is not connected, the bias through the 5M resistors will cause the input to the PGA to go to full scale. AVDD VREF+ CAP CAP AIN+1 AIN-1 AIN+2 AIN-2 VREFAGND DGND TEMP A0 SPEED XTALOUT PDWN SCLK SDO/RDY GAIN0 GAIN1 DVDD ISL26132 XTALIN/CLOCK - + 0.1μF VDD MICRO CONTROLLER GND 16 9 10 11 12 14 13 15 17 2, 5, 6 7 8 21 3 4 22 23 24 19 20 GAIN = 128 5V 3V 0.1μF 18 1 FIGURE 38. WEIGH SCALE APPLICATION ISL26132, ISL26134 20 FN6954.1 September 9, 2011 PCB Board Layout and System Configuration The ISL26132,ISL26134 ADC is a very low noise converter. taux achieve the full performance available from the device will require attention to the printed circuit layout of the circuit board. Care should be taken to have a full ground plane without impairments (traces running through it) directly under the chip on the back side of the circuit board. The analog input signals should be laid down adjacent (AIN+ and AIN- for each channel) to achieve good differential signal practice and routed away from any traces carrying active digital signals. The connections from the CAP pins to the off-chip filter capacitor should be short, and without any digital signals nearby. The crystal, if used should be connected with relatively short leads. No active digital signals should be routed near or under the crystal case or near the traces, which connect it to the ADC. The AGND and DGND pins of the ADC should be connected to a common solid ground plane. All digital signals to the chip should be powered from the same supply, as that used for DVDD (do not allow digital signals to be active high unless the DVDD supply to the chip is alive). Route all active digital signals in a way to keep distance from any analog pin on the device (AIN, VREF, CAP, AVDD). Power on the AVDD supply should be active before the VREF voltage is present. PCB layout patterns for the chips (ISL26132 and ISL26134) are found on the respective package outline drawings on pages 22, and 23. AVDD VREF+ AIN+1 AIN-1 AIN+2 AIN-2 VREFAGND DGND TEMP A0 SPEED XTALOUT PDWN SCLK SDO/RDY GAIN0 GAIN1 DVDD XTALIN/CLOCK MICRO CONTROLLER 16 11 12 14 13 15 17 2, 5, 6 7 8 21 3 4 22 23 24 19 20 +5V +3V 0.1μF 18 1 FIGURE 39. THERMOCOUPLE MEASUREMENT APPLICATION 4.9152 MHz ISL21009 4.096V 10nF 1μF 10k 10k 0.1μF TYPE K 5M 5M ISL26132, ISL26134 21 Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN6954.1 September 9, 2011 For additional products, see www.intersil.com/product_tree Products Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families. For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL26132, ISL26134 To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff FITs are available from our website at http://rel.intersil.com/reports/search.php Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev. DATE REVISION CHANGE 09/08/11 FN6954.1 Power Supply Requirements on page 6 - AIDD - Analog Supply Current - Normal Mode, AVDD = 5, Gain = 1,2 changed TYP and MAX from “6, 7.3” to “7, 8.5” Power Dissipation, Total Normal Mode, AVDD = 5, Gain = 1, 2 changed from “43.3” to “49.6” mW (Max) 08/22/11 FN6954.0 Initial Release. ISL26132, ISL26134 22 FN6954.1 September 9, 2011 Package Outline Drawing M24.173 24 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) Rev 1, 5/10 DETAIL "X" TYPICAL RECOMMENDED LAND PATTERN TOP VIEW SIDE VIEW END VIEW Dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 per side. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side. Dimensions are measured at datum plane H. Dimensioning and tolerancing per ASME Y14.5M-1994. Dimension does not include dambar protrusion. Allowable protrusion shall be 0.08mm total in excess of dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm. Dimension in ( ) are for reference only. Conforms to JEDEC MO-153. 6. 3. 5. 4. 2. Une. NOTES: 7. 5 SEATING PLANE C H 2 3 1 24 B 12 1 3 13 A PLANE GAUGE 0.05 MIN 0.15 MAX 0°-8° 0.60± 0.15 0.90 1.00 REF 0.25 SEE DETAIL "X" 0.15 0.25 (0.65 TYP) (5.65) (0.35 TYP) (1.45) 6.40 4.40 ±0.10 0.65 1.20 MAX PIN #1 I.D. MARK 7.80 ±0.10 +0.05 -0.06 -0.06 +0.05 -0.10 +0.15 0.20 C B A 0.10 C - 0.05 0.10 M C B A ISL26132, ISL26134 23 FN6954.1 September 9, 2011 Package Outline Drawing M28.173 28 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) Rev 1, 5/10 DETAIL "X" TYPICAL RECOMMENDED LAND PATTERN TOP VIEW SIDE VIEW END VIEW Dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 per side. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side. Dimensions are measured at datum plane H. Dimensioning and tolerancing per ASME Y14.5M-1994. Dimension does not include dambar protrusion. Allowable protrusion shall be 0.08mm total in excess of dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm. Dimension in ( ) are for reference only. Conforms to JEDEC MO-153. 6. 3. 5. 4. 2. Une. NOTES: 7. 5 SEATING PLANE C H 2 3 1 28 B 14 1 3 15 A PLANE GAUGE 0.05 MIN 0.15 MAX 0°-8° 0.60 ±0.15 0.90 1.00 REF 0.25 SEE DETAIL "X" 0.25 (0.65 TYP) (5.65) (0.35 TYP) (1.45) 6.40 4.40 ± 0.10 0.65 1.20 MAX PIN #1 I.D. MARK 9.70± 0.10 -0.06 0.15 +0.05 -0.10 +0.15 -0.06 +0.05 0.20 C B A 0.10 C - 0.05 0.10 M C B A Both, the Deltabell® E and Plus feature engineer friendly features such as the unique levelling mechanism and modular components that make simple sounder installations a reality. Both external sounders incorporate the same features that are described overleaf. However, the Deltabell® Plus has a fully back-light option, which enables around the clock visual deterrent to maximise your security. The Deltabell® E and Plus are available in a variety of different colours: Low power external sounder with strobe Low power external sounder with strobe and back-light Available Base Colours: Red, Green, White, Amber, Blue and Black Available Lid Colours: Red, White, Yellow, Black*, Blue* and Chrome* *Not recommended for Deltabell® Plus 2012 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. Other cover colour options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity. RMKT090001-7 © 2009 Pyronix Ltd. Pyronix and the Pyronix Blades device are trademarks of Pyronix Ltd. As part of our continued development programme specifications of the V2 TEL and V2 GSM may change. RMKT090057-1 © 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. RMKT080064-4 © 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. RMKT090057-1 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 2010 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. Other cover colour options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity. RMKT090150 www.pyronix.com marketing@pyronix.com 01709 700100Current consumption feature Deltabell® Plus only The Deltabell® incorporates a LDR (Light Dependant Resistor) circuit which turns the Light off during daylight hours when it is not needed, saving on the product current consumption. When the day turns from dusk to dark the Lightbox illuminates so that your external visual deterrent can be seen on the darkest of nights. Visual alarm warning feature Deltabell® Plus only In addition to the strobe which is present on all of the Deltabell® models, the Deltabell® PLUS has the added feature that the illuminated cover will strobe when the alarm is activated, giving you the added peace of mind that your alarm will be seen in ‘alarm mode’ from a much greater distance than standard sounders that do not have back lighting facilities. Security and peace of mind The Deltabell® has front and rear tamper protection and in the event of a potential sabotage attack, the 104dBA sounder provides a distinctive audible warning. The electronic elements on the printed circuit board are protected by a fully sealed unit with a rubber gasket providing added protection in harsh environments and giving your customer peace of mind that the Deltabell® will always sound in the event of an alarm activation. 104 dBA sounder Piezo sounder with high decibel output.   Engineer hold-off facility The Deltabell® engineer hold-off facility means that when initially powered with the tamper switch open, the sounder will not activate. Remote engineer hold-off facility There is also the capability for remote engineer hold-off which is invaluable when you are servicing the system enabling easy maintenance. It can be turned on at any time by applying 0V to this dedicated terminal which will then disable the tamper. Unique levelling mechanism A spirit level is supplied so that you can easily mount the Deltabell®. In addition, to make the installation as simple as possible, revolving guide holes are used to save time lining up screw and drill holes. SCB/SAB Mode Self Contained Bell or Self Activating Bell mode. Hinged cover The Deltabell® has a hinged cover that locks into place so that both your hands are free to work on the sounder. Fully back-lit cover The Deltabell® low power modular unit back-lights the cover (Deltabell® Plus only)  Electrical specification Operating Voltage Supply: 9-16 V DC (13.5 nominal) Protected: Reverse polarity protected Current Consumption Quiescent Current: < 60 mA Alarm Current: < 300 mA Strobe Strobe Duration: 100 ms Strobe Frequency: 1Hz Dimensions [W] 290 mm [H] 285 mm [D] 50 mm Compliance Europe. Suitable for use in EN50131-1 systems Security grade 2 or 3, Environmental class IV [H] [W] [D] Packing information Minimum quantity: 10 Minimum order for screen print: 40 Warranty: 2 years Designed: UK   Dummy bases also available 2012 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. Other cover colour options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity. RMKT090001-7 © 2009 Pyronix Ltd. Pyronix and the Pyronix Blades device are trademarks of Pyronix Ltd. As part of our continued development programme specifications of the V2 TEL and V2 GSM may change. RMKT090057-1 © 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. RMKT080064-4 © 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. RMKT090057-1 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 2010 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. Other cover colour options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity. RMKT090150 www.pyronix.com marketing@pyronix.com 01709 700100 Serial File Transfer Cables The cables feature either the traditional 25 D type RS232 connector or the now more commonly fitted 9 D type serial connector. As the serial port on most PCs is a plug or male the most common interface cable tends to be a socket to socket (female to female). Caractéristiques: • Multi-headed cable allows either 9 D or 25 D connection - providing complete serial port flexibility • Both serial port configurations (Pt Nos 4070 & 4062) available from stock • High quality moulded cables manufactured using foil screened cable • Custom lengths can be made up upon request • Now recognised as conforming to the most standard file transfer wiring configuration 4070 Stock No Description PC AT to PC AT 4070 DB9F to DB9F Null Modem Cable 2Mtr 4070-3 DB9F to DB9F Null Modem Cable 3Mtr 4070-5 DB9F to DB9F Null Modem Cable 5Mtr 4070-10 DB9F to DB9F Null Modem Cable 10Mtr 4070-15 DB9F to DB9F Null Modem Cable 15Mtr PC XT to PC XT 4062 DB25F to DB25F Null Modem Cable 2Mtr 4062-3 DB25F to DB25F Null Modem Cable 3Mtr 4062-5 DB25F to DB25F Null Modem Cable 5Mtr 4062-10 DB25F to DB25F Null Modem Cable 10Mtr PC XT to PC AT 4063 DB9F to DB25F Null Modem Cable 2Mtr 4063-3 9DS TO 25DS NULL MODEM 3M 4063-5 9DS TO 25DS NULL MODEM 5M 4063-10 9DS TO 25DS NULL MODEM 10M Multi-head Serial Cables 4090 DB9F+DB25F to DB9F+DB25F Null Modem Cable 2Mtr 4090-3 DB9F+DB25F to DB9F+DB25F Null Modem Cable 3Mtr 4090-5 DB9F+DB25F to DB9F+DB25F Null Modem Cable 5Mtr Amplifier Internet Radio Terrestrial Tuner Features Feature Description vols Sources 6 – Internet Radio, MP3, CD, Terrestrial Radio, Auxiliary Input. Portable Yes, two part system. The Internet Radio is completely portable receiving all data and audio over a wireless link from the transmitter part connected to the PC USB port. LCD Display 20 character 5 x 7 dot matrix display with icons, EL blue backlight. Power Source 8 x C size 1.5 volt alkaline battery or AC mains – 220 - 240 volt Europe, 110 volt US. Operation Time Approx 30 hours continuous play at mid volume on one set of alkaline batteries. Feature Description Output Power (RMS) 2 x 2.2 watts Total Power 4.4 watts Music Power 2 x 4.4 watts PMPO 65 watts Feature Description Radio presets 6 with station name display Feature Description Digital Tuner bands FM Stereo Tuner presets 6 for each band Antenna FM YesLoudspeaker Connections Wireless Link Dimensions Frequency Display Yes, 4 digit Feature Description No. of way speaker system 1 – way full range driver Impedance 2 x 8 ohm Rated Power (RMS) 2 x 6 watts Size 67 mm x 106 mm, Elliptical Magnetic Shielding Yes Feature Description stéréo headphone Yes Auxiliary Input Yes, 2 x phono socket Auxiliary Output Yes, 2 x phono socket USB connection Yes, transmitter connects to PC USB port with 1.5 metre cable Feature Description Stereo Audio Channel Europe 863 MHz 10 mW erp, USA 925 MHz 10 mW erp, user selectable band switching to avoid interference. Data Channel Europe + USA, 433 MHz , bi-directional, user selectable band switching to avoid interference. Feature Description Radio Remote Module Front to Back 155mm (6.1"), Side to Side 283mm (11.1"), Height 150mm (5.9") USB Base Module Front to Back 120mm (4.7"), Side to Side 135mm (5.3"), Height 41mm (1.6") 1 / 5 Date de révision November 2011 Révision 3 No FDS 16447 FICHE DE DONNEES DE SECURITE ARALDITE FUSION HARDENER SECTION 1: IDENTIFICATION DE LA SUBSTANCE/DU MÉLANGE ET DE LA SOCIÉTÉ/L’ENTREPRISE 1.1. Identificateur de produit Nom commercial ARALDITE FUSION HARDENER No du produit 808300, 808409, 808416, 808423 1.2. Utilisations identifiées pertinentes de la substance ou du mélange et utilisations déconseillées 1.3. Renseignements concernant le fournisseur de la fiche de données de sécurité Distributeur BOSTIK LIMITED COMMON ROAD STAFFORD STAFFORDSHIRE ST16 3EH UNITED KINGDOM +44 1785 255141 +44 1785 272650 (24Hour Emergency) sds.uk@bostik.com 1.4. Numéro d’appel d’urgence SECTION 2: IDENTIFICATION DES DANGERS 2.1. Classification de la substance ou du mélange Classification (1999/45/CEE) Xi;R36/38. 2.2. Éléments d’étiquetage Étiquetage Irritant Phrases De Risque R36/38 Irritant pour les yeux et la peau. Conseils De Prudence S2 Conserver hors de la portée des enfants. S24/25 Éviter le contact avec la peau et les yeux. S26 En cas de contact avec les yeux, laver immédiatement et abondamment avec de l'eau et consulter un spécialiste. S36/37/39 Porter un vêtement de protection approprié, des gants et un appareil de protection des yeux/ du visage. S46 En cas d'ingestion, consulter immédiatement un médecin et lui montrer l'emballage ou l'étiquette. S56 Éliminer ce produit et son récipient dans un centre de collecte des déchets dangereux ou spéciaux. 2.3. Autres dangers SECTION 3: COMPOSITION/INFORMATIONS SUR LES COMPOSANTS 3.2. Mélanges 2 / 5 No FDS 16447 ARALDITE FUSION HARDENER 1,8-DIAZABICYCLO[5.4.0]UNDEC-7-ENE 1-5% No CAS : 6674-22-2 No CE : 229-713-7 Classification (67/548/CEE) Xn;R22. C;R34. R52/53. Classification (CE 1272/2008) Non classé. BIS(2-DIMETHYLAMINOETHYL)ETHER 1-5% No CAS : 3033-62-3 No CE : 221-220-5 Classification (67/548/CEE) T;R23/24. Xn;R22. C;R35. Classification (CE 1272/2008) Non classé. TRIETHYLENETETRAMINE, PROPOXYLATED 5-10% No CAS : 26950-63-0 No CE : 500-055-5 Classification (67/548/CEE) Xi;R38,R41. Classification (CE 1272/2008) Non classé. L'intégralité du texte des phrases de risque et des mentions de danger figure à la Section 16. SECTION 4: PREMIERS SECOURS 4.1. Description des premiers secours Inhalation Éloigner immédiatement la victime de la source d'exposition. Emmener immédiatement à l'air frais la personne exposée. Consulter un médecin. Ingestion NE PAS faire vomir. Consulter immédiatement un médecin. Contact avec la peau Rincer rapidement la peau contaminée avec du savon ou un détergent doux et de l'eau. Enlever rapidement les vêtements imbibés et les laver comme indiqué ci-dessus. Consulter un médecin si l'irritation persiste après le lavage. Contact avec les yeux Rincer immédiatement les yeux avec de l'eau. Continuer à rincer pendant au moins 15 minutes et consulter un médecin. 4.2. Principaux symptômes et effets, aigus et différés 4.3. Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires SECTION 5: MESURES DE LUTTE CONTRE L’INCENDIE 5.1. Moyens d’extinction Moyens d'extinction Ce produit est ininflammable. Choisir le moyen d'extinction d'incendie en tenant compte d'autres produits chimiques éventuels. Utiliser : Mousse, dioxyde de carbone ou poudre sèche. 5.2. Dangers particuliers résultant de la substance ou du mélange 5.3. Conseils aux pompiers SECTION 6: MESURES À PRENDRE EN CAS DE DISPERSION ACCIDENTELLE 6.1. Précautions individuelles, équipement de protection et procédures d’urgence 6.2. Précautions pour la protection de l’environnement 3 / 5 No FDS 16447 ARALDITE FUSION HARDENER 6.3. Méthodes et matériel de confinement et de nettoyage Absorber avec de la vermiculite, du sable sec ou de la terre, puis placer en récipient. 6.4. Référence à d’autres sections SECTION 7: MANIPULATION ET STOCKAGE 7.1. Précautions à prendre pour une manipulation sans danger Faire très attention de ne pas renverser la matière et éviter du contact avec la peau et les yeux. 7.2. Conditions d’un stockage sûr, y compris d’éventuelles incompatibilités Entreposer à une température modérée dans un endroit sec et bien aéré. 7.3. Utilisation(s) finale(s) particulière(s) SECTION 8: CONTRÔLES DE L’EXPOSITION/PROTECTION INDIVIDUELLE 8.1. Paramètres de contrôle Description Des Ingrédients WEL = Workplace Exposure Limits 8.2. Contrôles de l’exposition Équipements de protection Mesures d'ingénierie Assurer une ventilation efficace. Protection respiratoire Si la ventilation est insuffisante, une protection respiratoire appropriée doit être disponible. Protection des mains Porter des gants de protection en cas de risque de contact direct ou d'éclaboussures. Protection des yeux Porter des lunettes de sécurité lunettes anti-éclaboussures pour éviter tout contact avec les yeux. Mesures d'hygiène Se laver rapidement en cas de contamination de la peau. Se laver après le travail et avant de manger, de fumer et avant d'aller aux toilettes. SECTION 9: PROPRIÉTÉS PHYSIQUES ET CHIMIQUES 9.1. Informations sur les propriétés physiques et chimiques essentielles Aspect Liquide Couleur Clair (ou pâle). Jaune. Odeur Odeur faible. Solubilité Insoluble dans l'eau Densité relative 1.14 Point d'éclair (°C) 145 Creuset fermé Pensky-Martens. 9.2. Autres informations SECTION 10: STABILITÉ ET RÉACTIVITÉ 10.1. Réactivité 10.2. Stabilité chimique Stable aux températures normales. 10.3. Possibilité de réactions dangereuses 10.4. Conditions à éviter 4 / 5 No FDS 16447 ARALDITE FUSION HARDENER 10.5. Matières incompatibles 10.6. Produits de décomposition dangereux SECTION 11: INFORMATIONS TOXICOLOGIQUES 11.1. Informations sur les effets toxicologiques Contact avec la peau Irritant pour la peau. Contact avec les yeux Irritant pour les yeux. SECTION 12: INFORMATIONS ÉCOLOGIQUES Écotoxicité Non reconnu comme dangereux pour l'environnement. 12.1. Toxicité 12.2. Persistance et dégradabilité 12.3. Potentiel de bioaccumulation 12.4. Mobilité dans le sol 12.5. Résultats des évaluations PBT et vPvB 12.6. Autres effets néfastes SECTION 13: CONSIDÉRATIONS RELATIVES À L’ÉLIMINATION 13.1. Méthodes de traitement des déchets Éliminer les déchets et résidus conformément aux règlements municipaux. SECTION 14: INFORMATIONS RELATIVES AU TRANSPORT Généralités Le produit n'est pas soumis à la réglementation internationale sur le transport des marchandises dangereuses (IMDG, ICAO/IATA, ADR/RID). 14.1. Numéro ONU Non applicable. 14.2. Nom d’expédition des Nations unies Non applicable. 14.3. Classe(s) de danger pour le transport Étiquettes De Transport Aucun panneau d'avertissement de transport requis. 14.4. Groupe d’emballage Non applicable. 14.5. Dangers pour l’environnement Substance Dangereuse Pour L'Environnement/Polluant Marin Non. 14.6. Précautions particulières à prendre par l’utilisateur Non applicable. 14.7. Transport en vrac conformément à l’annexe II de la convention Marpol 73/78 et au recueil IBC Non applicable. SECTION 15: INFORMATIONS RÉGLEMENTAIRES 5 / 5 No FDS 16447 ARALDITE FUSION HARDENER 15.1. Réglementations/législation particulières à la substance ou au mélange en matière de sécurité, de santé et d’ environnement 15.2. Évaluation de la sécurité chimique SECTION 16: AUTRES INFORMATIONS Informations générales This product should be used as directed by Bostik Ltd.For further information consult the product data sheet or contact Technical Services. Références Littéraires This safety data sheet was compiled using current safety information supplied by distributor of raw materials. Commentaires De Mise À Jour OBS: Lignes en marges signifient des corrections importantes par rapport à la version précédente. This safety data sheet supersedes all previous issues and users are cautioned to ensure that it is current. Destroy all previous data sheets and if in doubt contact Bostik Limited. Émise Par Approved LJ Date de révision November 2011 Révision 3 Date September 2007 Phrases - R (Texte Intégral) R34 CAUSE DES BRÛLURES. R38 Irritant pour la peau. R22 Nocif en cas d’ingestion. Nocif pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. R52/53 R35 Provoque de graves brûlures. R41 Risque de lésions oculaires graves. R23/24 Toxique par inhalation et par contact avec la peau. October 2011 Araldite® Fusion Page 1 of 3 Huntsman Advanced Materials DIY Adhesives AralditeÒ Fusion Two component very fast epoxy adhesive Other commercial names • Araldite® Super Glue + • Araldite® Instant Clear • Araldite® Instant • Araldite® 90 Segundos Fusion • Araldite® 90 seconds Fusion • Araldite® 90 seconds Key properties • Very fast curing at room temperature • Transparent / pale coloured • 1 : 1 mixing • Solvent free Description Araldite® Fusion is a two part transparent epoxy adhesive gelling in 90 seconds. The product may be used to bond metals, ceramics and many common plastics. Product data Property Araldite® Fusion / Resin Araldite® Fusion / Hardener Araldite® Fusion / mixed Colour (visual) transparent pale yellow pale yellow Specific gravity 1.15 – 1.2 1.1 – 1.2 ca. 1.2 Viscosity at 25°C (Pa.s) 50 - 75 10 - 20 30 - 50 Pot Life (100 g at 25°C) - - 90 seconds Processing Pretreatment The strength and durability of a bonded joint are dependant on proper treatment of the surfaces to be bonded. At the very least, joint surfaces should be cleaned with a good degreasing agent such as acetone, iso-propanol (for plastics) or proprietary degreasing agent in order to remove all traces of oil, grease and dirt. Low grade alcohol, gasoline (petrol) or paint thinners should never be used. The strongest and most durable joints are obtained by either mechanically abrading or chemically etching (“pickling”) the degreased surfaces. Abrading should be followed by a second degreasing treatment. Mix ratio Parts by weight Parts by volume Araldite® Fusion / Resin 100 100 Araldite® Fusion / Hardener 100 100 October 2011 Araldite® Fusion Page 2 of 3 Huntsman Advanced Materials Application of adhesive The resin/hardener mix is applied directly or with a spatula to the pretreated and dry joint surfaces. A layer of adhesive 0.05 to 0.10 mm thick will normally impart the greatest lap shear strength to the joint. Huntsman stresses that proper adhesive joint design is also critical for a durable bond. The joint components should be assembled and secured in a fix position as soon as the adhesive has been applied. Equipment maintenance All tools should be cleaned with hot water and soap before adhesives residues have had time to cure. The removal of cured residues is a difficult and time-consuming operation. If solvents such as acetone are used for cleaning, operatives should take the appropriate precautions and, in addition, avoid skin and eye contact. Times to minimum shear strength Temperature °C 23 Cure time to reach hours LSS > 1MPa minutes 5 Cure time to reach hours LSS > 10MPa minutes 90 LSS = Lap shear strength. Typical cured properties Average lap shear strengths of typical joints (ISO 4587) Cured for 16 hours at 40°C and tested at 23°C. Pre-treatment: plastics abraded and degreased, metals sandblasted and degreased. 0 2 4 6 8 10 12 14 16 18 20 Aluminium Steel 37/11 Stainless steel V4A Copper SMC ABS PVC Polycarbonate Polyamides PMMA PC MPa October 2011 Araldite® Fusion Page 3 of 3 Huntsman Advanced Materials Lap shear strength versus temperature (ISO 4587) (typical average values) Carried out on sandblasted and degreased aluminium, cure 16 hours at 40°C 0 5 10 15 20 -40 -20 0 20 40 60 80 100 °C MPa Storage Araldite® Fusion may be stored for up to 2 years at room temperature provided the components are stored in sealed containers. Handling precautions Caution Our products are generally quite harmless to handle provided that certain precautions normally taken when handling chemicals are observed. The uncured materials must not, for instance, be allowed to come into contact with foodstuffs or food utensils, and measures should be taken to prevent the uncured materials from coming in contact with the skin, since people with particularly sensitive skin may be affected. The wearing of impervious rubber or plastic gloves will normally be necessary; likewise the use of eye protection. The skin should be thoroughly cleaned at the end of each working period by washing with soap and warm water. The use of solvents is to be avoided. Disposable paper - not cloth towels - should be used to dry the skin. Adequate ventilation of the working area is recommended. These precautions are described in greater detail in the Material Safety Data sheets for the individual products and should be referred to for fuller information. Huntsman Advanced Materials warrants only that its products meet the specifications agreed with the buyer. Typical properties, where stated, are to be considered as representative of current production and should not be treated as specifications. The manufacture of materials is the subject of granted patents and patent applications; freedom to operate patented processes is not implied by this publication. While all the information and recommendations in this publication are, to the best of our knowledge, information and belief, accurate at the date of publication, NOTHING HEREIN IS TO BE CONSTRUED AS A WARRANTY, EXPRESS OR OTHERWISE. IN ALL CASES, IT IS THE RESPONSIBILITY OF THE USER TO DETERMINE THE APPLICABILITY OF SUCH INFORMATION AND RECOMMENDATIONS AND THE SUITABILITY OF ANY PRODUCT FOR ITS OWN PARTICULAR PURPOSE. The behaviour of the products referred to in this publication in manufacturing processes and their suitability in any given end-use environment are dependent upon various conditions such as chemical compatibility, temperature, and other variables, which are not known to Huntsman Advanced Materials. It is the responsibility of the user to evaluate the manufacturing circumstances and the final product under actual end-use requirements and to adequately advise and warn purchasers and users thereof. Products may be toxic and require special precautions in handling. The user should obtain Safety Data Sheets from Huntsman Advanced Materials containing detailed information on toxicity, together with proper shipping, handling and storage procedures, and should comply with all applicable safety and environmental standards. Hazards, toxicity and behaviour of the products may differ when used with other materials and are dependent on manufacturing circumstances or other processes. Such hazards, toxicity and behaviour should be determined by the user and made known to handlers, processors and end users. Except where explicitly agreed otherwise, the sale of products referred to in this publication is subject to the general terms and conditions of sale of Huntsman Advanced Materials LLC or of its affiliated companies including without limitation, Huntsman Advanced Materials (Europe) BVBA, Huntsman Advanced Materials Americas Inc., and Huntsman Advanced Materials (Hong Kong) Ltd. Huntsman Advanced Materials is an international business unit of Huntsman Corporation. Huntsman Advanced Materials trades through Huntsman affiliated companies in different countries including but not limited to Huntsman Advanced Materials LLC in the USA and Huntsman Advanced Materials (Europe) BVBA in Europe. Araldite® is a registered trademark of Huntsman Corporation or an affiliate thereof. Copyright © 2011 Huntsman Corporation or an affiliate thereof. All rights reserved. Huntsman Advanced Materials (Switzerland) GmbH Klybeckstrasse 200 4057 Basel Switzerland Tel: +41 (0)61 299 11 11 www.go-araldite.com Emergency number : + 32 35 751 234 ARALDITE FUSION IDENTIFICATION DE LA SUBSTANCE/PRÉPARATION ET DE LA SOCIÉTÉ/ENTREPRISE FICHE DE DONNÉES DE SÉCURITÉ Nom du produit ARALDITE FUSION Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France 1. Numéro de téléphone d'appel d'urgence : Fournisseur : : Identification de la substance ou de la préparation Type de produit : Liquide. Pour toutes questions de Sécurité, Hygiène et Environnement relatives à ce document ou son contenu, veuillez contacter: E-Mail: global_product_ehs_admat@huntsman.com Utilisation de la substance/préparation : Système adhésif bi-composants EUROPE: +32 35 75 1234 France ORFILA: +33(0)145425959 ASIA: +65 6336-6011 China: +86 20 39377888 Australia: 1800 786 152 New Zealand: 0800 767 437 USA: +1/800/424.9300 Huntsman Advanced Materials (Europe)BVBA Everslaan 45 3078 Everberg / Belgium Tel.: +41 61 299 20 41 Fax: +41 61 299 20 40 Description du produit : Working pack (preparation) 2. IDENTIFICATION DES DANGERS Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. 3. COMPOSITION/INFORMATIONS SUR LES COMPOSANTS Substance/préparation : Working pack (preparation) Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. 4. PREMIERS SECOURS Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. 5. MESURES DE LUTTE CONTRE L'INCENDIE Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. 6. MESURES À PRENDRE EN CAS DE REJET ACCIDENTEL Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. Date d'édition/Date de révision : 11/13/2009. 1/6 ARALDITE FUSION Manipulation MANIPULATION ET STOCKAGE Stockage 7. Revêtir un équipement de protection individuelle approprié (voir Section 8). Il est interdit de manger, boire ou fumer dans les endroits où ce produit est manipulé, entreposé ou mis en oeuvre. Il est recommandé au personnel de se laver les mains et la figure avant de manger, boire ou fumer. Les personnes ayant des antécédents de sensibilisation cutanée ne doivent pas intervenir dans les processus utilisant ce produit. Ne pas mettre en contact avec les yeux, la peau ou les vêtements. Ne pas ingérer. Éviter de respirer les vapeurs ou le brouillard. Éviter le rejet dans l'environnement. Consulter les instructions spéciales/la fiche de données de sécurité. Garder dans le conteneur d'origine ou dans un autre conteneur de substitution homologué fabriqué à partir d'un matériau compatible et tenu hermétiquement clos lorsqu'il n'est pas utilisé. Les conteneurs vides retiennent des résidus de produit et peuvent présenter un danger. Ne pas réutiliser ce conteneur. Matériaux d'emballage Stocker conformément à la réglementation locale. Stocker dans le récipient d'origine à l'abri de la lumière directe du soleil dans un endroit sec, frais et bien ventilé à l'écart des matériaux incompatibles (cf. la section 10). Garder le récipient hermétiquement fermé lorsque le produit n'est pas utilisé. Les récipients ayant été ouverts doivent être refermés avec soin et maintenus en position verticale afin d'éviter les fuites. Ne pas stocker dans des conteneurs non étiquetés. Utiliser un récipient approprié pour éviter toute contamination du milieu ambiant. : : Recommandé : Utiliser le récipient d'origine. Température de stockage : Stocker conformément à la réglementation locale. Stocker dans le récipient d'origine à l'abri de la lumière directe du soleil dans un endroit sec, frais et bien ventilé à l'écart des matériaux incompatibles (cf. la section 10). Garder le récipient hermétiquement fermé lorsque le produit n'est pas utilisé. Les récipients ayant été ouverts doivent être refermés avec soin et maintenus en position verticale afin d'éviter les fuites. Ne pas stocker dans des conteneurs non étiquetés. Utiliser un récipient approprié pour éviter toute contamination du milieu ambiant. Stocker entre les températures suivantes: 2 à 40°C (35.6 à 104°F). Classe de danger de stockage Huntsman Advanced Materials : Classe de stockage 10, Liquide nocif pour l'ambience Nom des composants Limites d'exposition professionnelle Valeurs limites d'exposition 8. CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE Aucune valeur de limite d'exposition connue. Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. PROPRIÉTÉS PHYSIQUES ET CHIMIQUES État physique Liquide. Point d'éclair Coupe fermée: >145°C (>293°F) [DIN 51758 EN 22719 (Pensky-Martens Closed Cup)] 9. : : Informations générales Aspect Informations importantes relatives à la santé, à la sécurité et à l'environnement Masse volumique : 1.15 g/cm3 [20°C (68°F)] Solubilité dans l'eau : Insoluble Date d'édition/Date de révision : 11/13/2009. 2/6 ARALDITE FUSION STABILITÉ 10. ET RÉACTIVITÉ Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. 11. INFORMATIONS TOXICOLOGIQUES Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. 12. INFORMATIONS ÉCOLOGIQUES Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail. 13. CONSIDÉRATIONS RELATIVES À L'ÉLIMINATION 070208 Catalogue Européen des Déchets : Déchets Dangereux : Il se peut que la classification du produit satisfasse les critères de déchets dangereux. Il est recommandé d'éviter ou réduire autant que possible la production de déchets. Les conteneurs vides ou les saches internes peuvent retenir des restes de produit. Ne se débarrasser de ce produit et de son récipient qu'en prenant toutes précautions d'usage. Élimination des produits excédentaires et non recyclables par une entreprise autorisée de collecte des déchets. La mise au rebut de ce produit, des solutions et des sous-produits devra en permanence respecter les exigences légales en matière de protection de l'environnement et de mise au rebut des déchets ainsi que les exigences de toutes les autorités locales. Évitez la dispersion des matériaux déversés, ainsi que leur écoulement et tout contact avec le sol, les cours d'eau, les égouts et conduits d'évacuation. Méthodes d'élimination des : déchets 07 02 08* autres résidus de réaction et résidus de distillation Il faut dans tous les cas appliquer toutes les lois locales régionales et nationales ainsi que les directives européennes. Il appartient à l'utilisateur final de déterminer le code des déchets spécifique à chaque secteur industriel en utilisant le code Européen approprié du catalogue européen des déchets. Il est recommandé que tous les détails soient indiqués par le responsable des déchets. 14. Réglementation internationale du transport INFORMATIONS RELATIVES AU TRANSPORT Nom d'expédition ADR : Matière dangereuse du point de vue de l'environnement, liquide, n.s.a. BISPHENOL A/F EPOXY RESIN IMDG : Environmentally hazardous substance, liquid, n.o.s. (BISPHENOL A/F EPOXY RESIN) IATA : Environmentally hazardous substance, liquid, n.o.s. (BISPHENOL A/F EPOXY RESIN) Informations réglementaires Numéro ONU Classes Groupe d'emballage Étiquette Autres informations 9 Classe ADR/RID UN3082 9 III Classe IMDG UN3082 9 III 9 Emergency schedules (EmS) F-A, S-F Code de classificationM6 Numéro d'identification du danger 90 Date d'édition/Date de révision : 11/13/2009. 3/6 ARALDITE FUSION 14. INFORMATIONS RELATIVES AU TRANSPORT Passenger and Cargo Aircraft Quantity limitation: 450 L Packaging instructions: 914 Cargo Aircraft OnlyQuantity limitation: 450 L Packaging instructions: 914 9 Classe IATA UN3082 9 III 15. INFORMATIONS RÉGLEMENTAIRES Conseils de prudence S24- Éviter le contact avec la peau. S37/39- Porter des gants appropriés et un appareil de protection des yeux/du visage. S61- Éviter le rejet dans l'environnement. Consulter les instructions spéciales/la fiche de données de sécurité. R36/38- Irritant pour les yeux et la peau. R43- Peut entraîner une sensibilisation par contact avec la peau. R51/53- Toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. Symbole(s) de danger Phrases de risque Réglementations de l'Union Européenne Réglementations nationales Contient du (de la) : : : : Phrases d'avertissement supplémentaire : Non applicable. Irritant, Dangereux pour l'environnement produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids moléculaire moyen < 700) résine époxidique à base de bisphénol F Déterminés en accord avec les directives de l'UE 67/548/EEC et 1999/45/EC (y compris les amendements), la classification et l'étiquetage prennent en compte l'usage prévu du produit. Surveillance médicale renforcée : Arrêté du 11 Juillet 1977 fixant la liste des travaux nécessitant une surveillance médicale renforcée: non concerné Réglementations Internationales Listes internationales : Inventaire des substances chimiques d'Australie (AICS): Tous les composants sont répertoriés ou exclus. Inventaire des substances chimiques existantes en Chine (IECSC): Tous les composants sont répertoriés ou exclus. Inventaire du Japon (ENCS): Un composant au moins n'est pas répertorié. Inventaire du Japon (ISHL): Indéterminé. Inventaire de Corée (KECI): Tous les composants sont répertoriés ou exclus. Inventaire néo-zélandais des substances chimiques (NZIoC): Indéterminé. Inventaire des substances chimiques des Philippines (PICCS): Un composant au moins n'est pas répertorié. Inventaire des États-Unis (TSCA 8b): Tous les composants sont répertoriés ou exclus. Inventaire d'Europe: Tous les composants sont répertoriés ou exclus. Inventaire du Canada: Tous les composants sont répertoriés ou exclus. Xi, N Etiquetage exceptionnel pour préparations spéciales : Contient des composés époxydiques. Voir les informations transmises par le fabricant. Date d'édition/Date de révision : 11/13/2009. 4/6 ARALDITE FUSION AUTRES DONNÉES 11/13/2009. Historique 16. Date d'impression Date d'édition/ Date de révision Version Avis au lecteur Date de la précédente édition : : : : R23/24- Toxique par inhalation et par contact avec la peau. R22- Nocif en cas d'ingestion. R35- Provoque de graves brûlures. R41- Risque de lésions oculaires graves. R38- Irritant pour la peau. R36/38- Irritant pour les yeux et la peau. R43- Peut entraîner une sensibilisation par contact avec la peau. R50/53- Très toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. R51/53- Toxique pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour l'environnement aquatique. R53- Peut entraîner des effets néfastes à long terme pour l'environnement aquatique. Texte complet des phrases : R citées dans les sections 2 et 3 - France Référence du texte complet des classifications se trouvant dans les Sections 2 et 3 - France : T - Toxique C - Corrosif Xn - Nocif Xi - Irritant N - Dangereux pour l'environnement Indique quels renseignements ont été modifiés depuis la version précédente. 11/13/2009. Aucune validation antérieure. 1 Epoxy Resins and Curing Agents; Toxicology, Health, Safety and Environmental Aspects (Plastics Europe, May 2006) Les informations et recommandations figurant dans cette publication sont fondées sur notre expérience générale et sont fournies de bonne foi au mieux de nos connaissances actuelles, MAIS RIEN DANS LES PRESENTES NE DOIT ÊTRE INTERPRETE COMME CONSTITUANT UNE GARANTIE OU UNE DECLARATION, EXPRESSE, IMPLICITE OU AUTRE. DANS TOUS LES CAS, IL INCOMBE A L'UTILISATEUR DE DETERMINER ET DE VERIFIER L'EXACTITUDE, AINSI QUE LE CARACTERE SUFFISANT ET APPLICABLE DE TELLES INFORMATIONS ET RECOMMANDATIONS, DE MEME QUE L'ADEQUATION ET L'ADAPTATION D'UN QUELCONQUE PRODUIT A UNE UTILISATION SPECIFIQUE OU DANS UN BUT PARTICULIER. LES PRODUITS MENTIONNES PEUVENT PRESENTER DES RISQUES INCONNUS ET DOIVENT ETRE UTILISES AVEC PRECAUTION. MEME SI CERTAINS RISQUES SONT DECRITS DANS CETTE PUBLICATION, IL N'EXISTE AUCUNE GARANTIE QU'IL S'AGIT DES SEULS RISQUES EXISTANTS. Les risques, la toxicité et le comportement des produits peuvent différer lorsque ceux-ci sont utilisés avec d'autres matériaux et dépendent des conditions de fabrication et d'autres processus. Ces risques, cette toxicité et ces comportements doivent être déterminés par l'utilisateur et portés à la connaissance des personnes ou entités chargés du transport ou de la manutention, du traitement ou de la transformation, ainsi que de tous utilisateurs finaux. Pour toute demande, contactez le bureau commercial Huntsman Sales le plus proche ou directement Huntsman (Belgium) BVBA, Everslaan 45, B-3078 Everberg, Belgique. Tél. +32 2 758 9211 - Fax +32 758 9946. Huntsman Belgium (BVBA) Everslaan 45 B-3078 Everberg Belgium Tel.:+32-(0)2-758-9211 Références Date d'édition/Date de révision : 11/13/2009. 5/6 ARALDITE FUSION 16. AUTRES DONNÉES NO PERSON OR ORGANIZATION EXCEPT A DULY AUTHORIZED HUNTSMAN EMPLOYEE IS AUTHORIZED TO PROVIDE OR MAKE AVAILABLE DATA SHEETS FOR HUNTSMAN PRODUCTS. DATA SHEETS FROM UNAUTHORIZED SOURCES MAY CONTAIN INFORMATION THAT IS NO LONGER CURRENT OR ACCURATE. NO PART OF THIS DATA SHEET MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM, OR BY ANY MEANS, WITHOUT PERMISSION IN WRITING FROM HUNTSMAN. ALL REQUESTS FOR PERMISSION TO REPRODUCE MATERIAL FROM THIS DATA SHEET SHOULD BE DIRECTED TO HUNTSMAN, MANAGER, PRODUCT SAFETY AT THE ABOVE ADDRESS. Date d'édition/Date de révision : 11/13/2009. 6/6 FICHE DE DONNÉES DE SÉCURITÉ Section 1: Identification de la substance/du mélange et de la société/l’entreprise Identificateur de produit Nom commercial ou désignation du mélange Contralube 770 Numéro - d'enregistrement Synonymes Aucun(e)(s). Code de produit Contralube 770 Date de la première publication le 06-04-06 Numéro de version 12 le 17-02-11 le 06-01-11 Date de révision Date d'entrée en vigueur de la nouvelle version Utilisations identifiées pertinentes de la substance ou du mélange et utilisations déconseillées Utilisations identifiées Non disponible. Utilisations déconseillées Aucun connu. Renseignements concernant le fournisseur de la fiche de données de sécurité Newgate Simms Ltd. Broughton Mills Road, Bretton Chester, CH4 0BY, United Kingdom info@newgatesimms.co.uk Section 2: Identification des dangers Classification de la substance ou du mélange Les dangers physiques, sanitaires et environnementaux du mélange ont été évalués et/ou testés, et la classification suivante s'applique. Classification selon la directive 67/548/CEE ou 1999/45/CEE et ses amendements Cette préparation ne répond pas aux critères de classification de la directive 1999/45/CE et ses amendements. Classification selon le règlement (CE) n° 1272/2008 et ses amendements Ce mélange ne répond pas aux critères de classification du règlement (CE) 1272/2008 et ses amendements. Résumé des dangers Risques physiques Pas de classification pour les dangers physiques. Risques pour la santé Pas de classification pour les dangers sanitaires. Dangers pour l’environnement Pas de classification pour les dangers pour l'environnement. Risques particuliers Non disponible. Principaux symptômes Non disponible. Éléments d’étiquetage Étiquettage selon le règlement (CE) n° 1272/2008 et ses amendements Numéro d'identification - Mentions de danger La substance ne répond pas aux critères de classification. Conseils de prudence Prévention Non disponible. Réaction Non disponible. Stockage Non disponible. Élimination Non disponible. Informations supplémentaires de l'étiquette Sans objet. Autres dangers Non affecté. Nom de la matière: Contralube 770 FDS n° Contralube 770 N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 1 / 7 SDS FRANCE Section 3: Composition/informations sur les composants Mélange Les composants ne sont pas dangereux ou sont en dessous des limites de déclaration légales. Section 4: Premiers secours Description des premiers secours Inhalation Si des symptômes se développent, éloigner la personne touchée de la source d'exposition et la sortir au grand air. Consulter immédiatement un médecin. Contact avec la peau Laver avec de l'eau et du savon. Consulter un médecin en cas de symptômes. Laver séparément les vêtements avant réutilisation. Contact avec les yeux Laver immédiatement les yeux à grande eau pendant au moins 15 minutes. Consulter immédiatement un médecin. Ingestion Du fait de la nature physique de ce matériau, il est improbable qu'une ingestion ne se produise. S'il se produit tout de même l'ingestion d'une grande quantité, solliciter des soins médicaux. S'il se produit tout de même l'ingestion d'une grande quantité, Ne pas faire vomir sans l'avis d'un médecin. Si le vomissement se produit naturellement, incliner la victime vers l'avant pour réduire le risque d'aspiration. Ne jamais faire avaler quelque chose à une victime inconsciente ou souffrant de convulsions. Principaux symptômes et effets, aigus et différés Non disponible. Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires Non disponible. Section 5: Mesures de lutte contre l’incendie Risques d'incendie généraux Ce produit est ininflammable. Moyens d’extinction Moyen d'extinction approprié Brouillard d’eau. Mousse. Dioxyde de carbone (CO2). Produit chimique sec. Moyens d’extinction inappropriés Eau. En cas d'incendie ne pas utiliser de jet d'eau car celà dispersera le feu. Dangers particuliers résultant de la substance ou du mélange Non disponible. Conseils aux pompiers Equipements de protection particuliers des pompiers Porter un équipement de protection adéquat. Procédures spéciales de lutte contre l'incendie Porter des vêtements de protection complets, y compris un casque, un appareil autonome de respiration à pression positive ou à demande de pression, des vêtements de protection et un masque anti-poussière. Éloigner les contenants de la zone de feu si cela peut se faire sans risque. Éloigner les récipients de l'incendie si cela peut se faire sans risque. Section 6: Mesures à prendre en cas de dispersion accidentelle Précautions individuelles, équipement de protection et procédures d’urgence Pour les non-secouristes Tenir à l’écart le personnel superflu. Prévenir les autorités locales si des fuites significatives ne peuvent pas être contenues. Ne pas toucher les récipients endommagés ou le produit déversé à moins d'être vêtu d'une tenue protectrice appropriée. Garder les personnes à l'écart de l'endroit de l'écoulement/de la fuite et contre le vent. Observer les précautions indiquées dans les autres sections. Pour les secouristes Non disponible. Précautions pour la protection de l’environnement Empêcher l'infiltration dans les cours d'eau, les égouts, les sous-sols ou les endroits clos. Nom de la matière: Contralube 770 FDS n° Contralube 770 N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 2 / 7 SDS FRANCE Méthodes et matériel de confinement et de nettoyage Déversements importants : Arrêter le débit de matière, si ceci est sans risque. Enlever avec un absorbant inerte. Endiguer le matériau renversé si cela est possible. Couvrir d'une bâche de plastique pour éviter la dispersion. Absorber avec de la vermiculite, du sable sec ou de la terre, puis placer en récipient. Nettoyer soigneusement la surface contaminée. Après avoir récupéré le produit, rincer la zone à l'eau. Déversements mineurs : Essuyer avec une matière absorbante (p.ex. tissu, laine). Nettoyer à fond la surface pour éliminer toute contamination résiduelle. Ne jamais réintroduire le produit répandu dans son récipient d'origine en vue d'une réutilisation. Pour les conseils relatifs à l'élimination, voir la rubrique 13. Ne pas toucher les containers endommagés ou la matière répandue. Il se peut que les dégâts au container extérieur aient été sans conséquences pour le container interne. Si le container interne est endommagé et fuit, le couvrir avec une serviette ou un ch Le produit ramassé ainsi que les chiffons de nettoyage seront jetés dans les containers prévus à cet effet. Référence à d'autres sections Pour les conseils relatifs à l'élimination, voir la rubrique 13. Section 7: Manipulation et stockage Précautions à prendre pour une manipulation sans danger NE PAS mettre sous pression, couper, chauffer ou souder les récipients. Les récipients vides peuvent contenir des résidus du produit. Éviter tout contact prolongé ou répété de la peau avec ce matériau. Ne pas manipuler ou stocker à proximité d'une flamme nue, d'une source de chaleur ou toute autre source d'ignition. Éviter de respirer les gaz/vapeurs/brouillards/fumées. Ne pas ingérer. Ne pas goûter ni avaler. Éviter le contact avec les yeux. Se laver soigneusement après manipulation. Conditions d’un stockage sûr, y compris d’éventuelles incompatibilités Tenir à l'écart de la chaleur et des sources d'ignition. Entreposer dans un endroit frais. Conserver dans un récipient fermé, à l'écart des matières incompatibles. Utilisation(s) finale(s) particulière(s) Non disponible. Section 8: Contrôles de l’exposition/protection individuelle Paramètres de contrôle Valeurs limites d’exposition professionnelle Il n'y a pas de limites d'exposition pour ce ou ces ingrédients. Valeurs limites biologiques Il n'y a pas de limites d'exposition biologique pour ce ou ces ingrédients. Procédures de suivi actuellement recommandées Non disponible. DNEL Non disponible. PNEC Non disponible. Contrôles de l’exposition Contrôles techniques appropriés Porter des gants thermorésistants, étanches, et des vêtements de protection pour éviter tout contact avec la peau. Mesures de protection individuelle, telles que les équipements de protection individuelle Généralités Non disponible. Protection des yeux/du visage Portez des lunettes de sécurité ou des lunettes de protection contre les substances chimiques (en cas de risque de projection). Protection de la peau - Protection des mains Non nécessaire en général. - Divers Porter un vêtement de protection approprié. Porter des gants en nitrile, néoprène, PVC ou en viton. Choisir l'équipement de protection conformément aux normes CEN en vigueur et en coopération avec le fournisseur de l'équipement de protection. Protection respiratoire Aucun équipement de protection respiratoire individuel n'est normalement nécessaire. Un appareil respiratoire purificateur d'air doté d'une cartouche de vapeur organique peut être utilisé dans certains cas l'où on s'attend à ce que les concentrations aéroportées dépassent les limites d'exposition, ou en cas d'irritation ou d'apparition de symptômes. Risques thermiques Non disponible. Mesures d'hygiène Lors de l'utilisation, ne pas manger, boire ou fumer. Se laver soigneusement les mains après manipulation. Laver les vêtements contaminés avant de les porter à nouveau. Contrôles d’exposition liés à la protection de l’environnement Non disponible. Section 9: Propriétés physiques et chimiques Informations sur les propriétés physiques et chimiques essentielles État physique Liquide. Nom de la matière: Contralube 770 FDS n° Contralube 770 N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 3 / 7 SDS FRANCE Forme Liquide. Semi solide Couleur Clair Odeur Légère Seuil olfactif Non disponible. pH Sans objet. Point de fusion/point de congélation Non disponible. Point d'ébullition, point d'ébullition initial et gamme d'ébullition Non disponible. Point d'éclair Sans objet. Température d’autoignition Sans objet. Inflammabilité (solide, gaz) Non disponible. Limite d'inflammabilité - inférieure (%) Non disponible. Limite d'inflammabilité - supérieure (%) Non disponible. Propriétés comburantes Sans objet. Propriétés explosives Sans objet. Limite d'explosivité Sans objet. Pression de vapeur Sans objet. Densité de vapeur Sans objet. Taux d’évaporation Sans objet. Densité relative Non disponible. Densité 0,92 g/cm³ Solubilité (dans l'eau) Non disponible. Coefficient de partition (n-octanol/eau) Non disponible. Température de décomposition Non disponible. Viscosité Non disponible. Fraction volatile Non disponible. Autres informations Aucune information pertinente supplémentaire n'est disponible. Section 10: Stabilité et réactivité Réactivité Aucun connu. Stabilité chimique Ce produit est stable dans des conditions normales. Stable. Possibilité de réactions dangereuses Non disponible. Conditions à éviter Chaleur, flammes et étincelles. Matières incompatibles Acides forts, alcalis et agents d'oxydation. Produits de décomposition dangereux Monoxyde de carbone, dioxyde de carbone et/ou hydrocarbures à faible poids moléculaire. Section 11: Informations toxicologiques Généralités Non disponible. Informations sur les voies d’exposition probables Ingestion Non disponible. Inhalation Non disponible. Contact avec la peau Non disponible. Contact avec les yeux Non disponible. Symptômes Non disponible. Informations sur les effets toxicologiques Toxicité aiguë Non disponible. Corrosion ou irritation de la peau Nom de la matière: Contralube 770 FDS n° Contralube 770 N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 4 / 7 SDS FRANCE Blessure ou irritation grave des yeux Non disponible. Sensibilisation respiratoire Non disponible. Sensibilisation cutanée Non disponible. Mutagénicité des cellules germinales Non disponible. Cancérogénicité Ce produit ne contient aucune substance carcinogène ou substance potentiellement carcinogène selon la liste du CIRC. Toxicité pour la reproduction Non disponible. Toxicité spécifique au niveau de l'organe cible suite à une exposition unique Non disponible. Toxicité spécifique au niveau de l'organe cible suite des expositions répétées Non disponible. Risque en cas d’inhalation Non disponible. Informations sur les mélanges et informations sur les substances Non disponible. Autres informations Ce produit n'est associé à aucun effet négatif connu sur la santé de l'homme. Section 12: Informations écologiques Toxicité Il n'y a pas de données de toxicité pour ce ou ces ingrédients. Persistance et dégradabilité Aucune donnée n’est disponible sur la biodégradabilité du produit. Potentiel de bioaccumulation Non disponible. Mobilité Non disponible. Devenir dans l’environnement - Coefficient de partage Non disponible. Mobilité dans le sol Non disponible. Résultats des évaluations PBT et VPVB Non disponible. Autres effets néfastes Non disponible. Section 13: Considérations relatives à l’élimination Méthodes de traitement des déchets Déchets résiduaires Non disponible. Emballages contaminés Les conteneurs vides doivent être acheminés vers un site agréé pour le traitement des déchets à des fins de recyclage ou d'élimination. Code de déchet européen Non disponible. Sent out for translation Recueillir et réutiliser ou éliminer dans des récipients scellés dans un centre de collecte de déchets agréés. Élimination des contenus/contenants conformément aux dispositions locales / régionales /nationales / internationales en vigueur. Section 14: Informations relatives au transport ADR Non réglementé comme une marchandise dangereuse. RID Non réglementé comme une marchandise dangereuse. ADN Non réglementé comme une marchandise dangereuse. IATA Non réglementé comme une marchandise dangereuse. Nom de la matière: Contralube 770 FDS n° Contralube 770 N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 5 / 7 SDS FRANCE IMDG Non réglementé comme une marchandise dangereuse. Transport en vrac conformément à l’annexe II de la convention Marpol 73/78 et au recueil IBC Pas d'information disponible. Section 15: Informations réglementaires Réglementations/législation particulières à la substance ou au mélange en matière de sécurité, de santé et d’environnement Réglementations de l’UE Règlement (CE) nº 2037/2000 relatif à des substances qui appauvrissent la couche d'ozone, Annexe I N'est pas listé. Règlement (CE) nº 2037/2000 relatif à des substances qui appauvrissent la couche d'ozone, Annexe II N'est pas listé. Règlement (CE) n° 850/2004 concernant les polluants organiques persistants, Annexe I N'est pas listé. Règlement (CE) no 689/2008 concernant les exportations et importations de produits chimiques dangereux, Annexe I, Partie 1 N'est pas listé. Règlement (CE) no 689/2008 concernant les exportations et importations de produits chimiques dangereux, Annexe I, Partie 2 N'est pas listé. Règlement (CE) no 689/2008 concernant les exportations et importations de produits chimiques dangereux, Annexe I, Partie 3 N'est pas listé. Règlement (CE) no 689/2008 concernant les exportations et importations de produits chimiques dangereux, Annexe V N'est pas listé. Directive 96/61/CEE relative à la prévention et à la réduction intégrées de la pollution (IPPC) : Article 15, registre européen des émissions polluantes (EPER) N'est pas listé. Règlement (CE) n° 1907/2006, Article 59(1). Liste candidate N'est pas listé. Autres réglementations Le produit ne nécessite pas d'étiquetage conformément aux directives de la CE et aux réglementations nationales du pays concerné. Cette fiche de données de sécurité est conforme aux exigences de la Directive 2001/58/CE. Cette fiche de données de sécurité est conforme aux spécifications du Règlement (CE) N° 1907/2006. Réglementations nationales Non disponible. Évaluation de la sécurité chimique Aucune évaluation de sécurité chimique n'a été mise en oeuvre. Section 16: Autres informations Liste des abréviations Non disponible. Références Non disponible. Informations sur la méthode d'évaluation utilisée pour classer le mélange Non disponible. Texte intégral des avertissements ou phrases R et H en Sections 2 à 15 Aucun(e)(s). Informations de révision Identification du produit et de l'entreprise : Identification du produit et de l'entreprise Section 5: Mesures de lutte contre l’incendie: Equipements de protection particuliers des pompiers Section 5: Mesures de lutte contre l’incendie: Risques d'incendie généraux Section 6: Mesures à prendre en cas de dispersion accidentelle: Référence à d'autres sections Section 8: Contrôles de l’exposition/protection individuelle: - Divers Informations de formation Non disponible. Édité par Ralph Patrizio Avis de non-responsabilité Les informations fournies dans cette fiche technique de sécurité sont à notre connaissance exactes et fiables à la date de leur publication. Les informations fournies sont uniquement des conseils pour la manutention, l’utilisation, le traitement, le stockage, le transport, l’évacuation et le rejet du produit en toute sécurité. Newgate Simms Ltd. ne fournit aucune garantie quant aux informations mises à disposition et exclut toute responsabilité à cet égard. Les informations contenues dans cette fiche sont exactes dans l'état actuel des connaissances et reposent sur les données disponibles au moment de la préparation du document. Nom de la matière: Contralube 770 FDS n° N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 6 / 7 SDS FRANCE Date d'émission le 17-02-11 Date de révision le 17-02-11 Date d'impression le 17-02-11 Nom de la matière: NYOGEL 760G FDS n° NYOGEL 760G N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 7 / 7 SDS FRANCE CRC Industries France SAS 6, Avenue du Marais – B.P. 90028 F-95102 Argenteuil Cedex. - France Tél.: + 33 (0)1 34 11 20 00 Fax.:+ 33 (0)1 34 11 09 96 S.A au capital de 1.936.667 € - R.C.S. Pontoise B 391 513 314 – APE 515 L www.crcind.com 1/2 Protection 1. Description générale Spécialement étudié pour décaper le vernis KF1280 ND, ce produit permet d’enlever la plupart des vernis modifiés acryliques existants (frais ou polymérisés depuis plusieurs années) des circuits imprimés et cela sans altérer les composants électroniques. 2. Caractéristiques  Liquide incolore à base de solvants oxygénés  Faible odeur  Bonne compatibilité avec les composants électroniques.  N’altère pas les circuits imprimés dans des conditions normales d’utilisation. Il est toutefois recommandé de faire des essais préalablement.  Évaporation relativement rapide accéléré par l’usage d’air comprimé ou d’un dépoussiérant « Aero Clean X Force ». 3. Applications Electronique, Aéronautique, électricité. Décapage du vernis KF1280 ND (réf. 1141 & 2046) sur les circuits imprimés ou autres matériels électroniques. Permet de réaliser des interventions de remises en état ou d’amélioration sur des circuits imprimés protégés par des vernis durs et résistants. 4. Mode d’emploi Au pinceau/ au pistolet / en trempage: Enduire ou pulvériser soigneusement les surfaces à traiter. Afin d’éliminer les résidus de vernis, faire ruisseler du produit sur l’ensemble du circuit et laisser sécher. Accélérer l’évaporation par l’utilisation d’air comprimé ou d’un dépoussiérant Aero Clean X force. Selon l’équipement disponible à l’utilisateur, celui peut déterminer l’utilisation par sa propre expérience. Une fiche de données de sécurité (FDS) conforme à la reglementation EC N° 1907/2006 Art.31 et amendements est disponible pour tous les produits KF. Décapant KF 1280 ND Pour vernis CRC Industries France SAS 6, Avenue du Marais – B.P. 90028 F-95102 Argenteuil Cedex. - France Tél.: + 33 (0)1 34 11 20 00 Fax.:+ 33 (0)1 34 11 09 96 S.A au capital de 1.936.667 € - R.C.S. Pontoise B 391 513 314 – APE 515 L www.crcind.com 2/2 Protection 5. Caractéristiques typiques du produit Aspect : incolore Odeur : légère Faible viscosité Densité : 0,913 Point éclair : > 64 °C Ne contient pas d’aromatiques polycycliques, ni des métaux lourds, ni de composés chlorés Recouvrable par un nouveau vernis : après séchage complet 6. Conditionnement Réf. : 2045 - Bidon de 5 L Carton de 2 bidons Toutes les données dans cette publication sont basées sur l'expérience et les tests de laboratoire. Vu l’importante variété des conditions et des appareillages employés, ainsi que des facteurs humains imprévisibles qui peuvent avoir une influence importante sur les résultats de l’application, nous vous conseillons de vérifier la compatibilité du produit avant son utilisation. Toutes ces informations sont données suivant la plus grande objectivité, mais sans garantie de notre part exprimée ou implicite. Cette fiche technique peut déjà, à ce moment précis, être révisée pour des raisons liées à la législation, à la disponibilité des composants, ou à des expériences nouvellement acquises. La dernière version de cette fiche technique, qui est la seule valable, vous sera envoyée sur simple demande, ou peut être trouvée sur notre site Internet: www.crcind.com. Nous vous recommandons de vous enregistrer sur notre site Internet pour ce produit, afin de recevoir automatiquement chaque dernière version future. Version: 0 02 1204 01 Date: 20 mars 2012 Pour vernis Décapant KF 1280 ND Manufactured by : CRC Industries Europe BVBA Touwslagerstraat 1 – 9240 Zele – Belgium Tel (32) (0) 52/45.60.11 Fax (32) (0) 52/45.00.34 www.crcind.com FICHE TECHNIQUE 1/2 CRC HANDCLEANER Nettoyant mains Réf. :10535 1. DESCRIPTION GENERALE Nettoyant pour les mains, contenant de la lanoline. S’emploi sans eau. La formule du Nettoyant Mains CRC permet de répondre aux exigences sévères des professionnels dans l’industrie et est axée principalement sur le nettoyage des mains. Elle est à base de solvants hydrocarbonés doux et de surfactants biodégradables. Le Nettoyant Mains CRC peut être employé sans eau; il est donc idéal pour les travaux, tant à l'intérieur qu'à l'extérieur, aux endroits où l’on ne dispose pas d'eau. 2. CARACTERISTIQUES • Enlève la plupart des saletés et des salissures tenaces. • Extrêmement efficace sur la graisse, les peintures ordinaires, les encres, les ciment-colles, les bitumes, le carbone et bien d'autres composants chimiques. • Peut être utilisé avec ou sans eau. • Nettoie rapidement. • Contient de la lanoline pour protéger la peau. • Ses agents antiseptiques réduisent les risques d'infection bactérienne. • Sans abrasifs. • Après traitement, la peau des mains reste douce. • Biodégradable. 3. UTILISATIONS Pour débarrasser les mains de: • huiles et graisses • dépôts et salissures, • ciment et colles, • bitumes et goudrons • peintures et encres ordinaires Remplace les savons ordinaires: • dans les usines • dans les mines, • dans les fermes, • sur les chantiers de construction, • à domicile. 4. INSTRUCTIONS • Ne pas mouiller les mains. • Appliquer suffisamment de nettoyant (environ une cuillère à thé) sur les mains souillées sèches. • Bien frotter jusqu'à ce que les salissures soient complètement liquéfiées et détachées. • Il suffit d'essuyer les mains avec du papier ménager, ou un chiffon. Eventuellement rincer à l'eau et essuyer. • Eviter le contact avec les yeux. Tenir hors de portée des enfants. • Une fiche de sécurité (MSDS) selon EU93/112 est disponible pour tous les produits CRC. Manufactured by : CRC Industries Europe BVBA Touwslagerstraat 1 – 9240 Zele – Belgium Tel (32) (0) 52/45.60.11 Fax (32) (0) 52/45.00.34 www.crcind.com FICHE TECHNIQUE 2/2 CRC HANDCLEANER Nettoyant mains Réf. :10535 5. DONNEES TYPIQUES DU PRODUIT (sans le gaz propulseur) Aspect : crème semi-solide, Couleur : blanc cassé Odeur : typique, parfum peu prononcé Densité (à 20°C) : 1 ± 0,1 pH (à 5% dans de l'eau) : 6,25 – 6,75 Viscosité : 8000 – 9000 cp Teneur en matières solides (6 h à 100°C) : 12,0% Stabilité thermique 48 h à 45°C : bonne 48 h à 0°C : bonne Caractéristiques du solvant hydrocarboné Intervalle de distillation : 195-245°C Point éclair (en vase fermée) : 73°C Teneur en composants aromatiques : < 0,1% pds 6. CONDITIONNEMENT Tube 12 x 150 ml Bidon 6 x 2,5 l Un distributeur et un support pour le bidon de 2,5 litres sont disponibles. Toutes les données dans cette publication sont basées sur l'expérience et les tests de laboratoire. Vu l’importante variété des conditions et des appareillages employés, ainsi que des facteurs humains imprévisibles qui peuvent avoir une influence importante sur les résultats de l’application, nous vous conseillons de vérifier la compatibilité du produit avant son utilisation. Toutes ces informations sont données suivant la plus grande objectivité, mais sans garantie de notre part exprimée ou implicite. Cette fiche technique peut déjà, à ce moment précis, être révisée pour des raisons liées à la législation, à la disponibilité des composants, ou à des expériences nouvellement acquises. La dernière version de cette fiche technique, qui est la seule valable, vous sera envoyée sur simple demande, ou peut être trouvée sur notre site Internet : www.crcind.com. Nous vous recommandons de vous enregistrer sur notre site Internet pour ce produit, afin de recevoir automatiquement chaque dernière version future. Version : 10535 02 1200 03 Date : 29 september 2003 CRC Industries Europe BVBA Touwslagerstraat 1 – 9240 Zele - Belgium Tel (32) (0) 52/45.60.11 Fax (32) (0) 52/45.00.34 www.crcind.com FICHE TECHNIQUE 1/3 Dusters Dust Off 67, Dust Off 360, Jet Clean 360, Dust Off HF Ref. : 20575; 20576; 20812; 20855, 1. DESCRIPTION GENERALE Grâce à un jet de gaz pressurisé, sec et inerte ces produits sèchent et dépoussièrent. 2. CARACTERISTOQUES Les produits sont un mélange de gaz liquides sous pression, qui fonctionne à la fois comme propulseur et produit actif. Le jet de gaz sec et inerte, agit comme de l’air comprimé. Il enlève rapidement poussières et autres contaminants secs d’instruments délicats, d’endroits d’accès difficile ou d’équipement électrique et électronique. Les produits éliminent les pannes dues à l’humidité (eau; huile,…) incluse dans la poussière et la saleté. Ces dépoussiérants sont essentiels pour les opérations de nettoyage où les nettoyants à base de solvants ne sont pas conseillés. Ils nettoient rapidement et sans danger, n’attaquent ni matières plastiques, ni composants sensitifs. Ne laissent ni résidu, ni condensation. Remplacent avantageusement, où possible, le nettoyage laborieux et coûteux à l’air comprimé. Les dépoussiérants peuvent être employés pour écarter les poussières, là où les méthodes conventionnelles ne conviennent pas : équipement électrique, PCB’s, connections de câbles, équipement de traitement de données et de communication, ensembles micro-miniaturisés, horloges et instruments de précision, vidéo & caméras, dispositifs optiques et lentes, … 3. UTILISATIONS Dust Off 67  Dépoussiérant universel.  Equipé d’une valve normale, bouton-poussoir et tube-rallonge.  L’aérosol doit être tenu droit.  Disponible en 200 ml net (270 ml brut) et 400 ml net (520 ml brut). Dust Off 360  Dépoussiérant universel, peut être employé tête en bas.  Equipé d’une valve normale, bouton-poussoir et tube-rallonge.  L’aérosol peut être utilisé en position droite mais également renversé.  Disponible en 200 ml net (520 ml brut). Jet Clean 360  Dépoussiérant pour emploi renversé, pour une application précise.  Muni d’une valve spécial avec embout fileté.  Une valve spéciale pour un jet précis est également disponible comme pièce détachée.  L’aérosol peut être utilisé dans une position droite ou renversée.  Disponible en 200 ml net (520 ml brut) Dust Off HF  Dépoussiérant grand débit, conçu pour des applications haute performance.  Equipé d’une valve/boutton-poussoir qui permet un soufflement très puissant.  L’aérosol ne peut être employé qu’en position droite.  Disponible en 300 ml net (520 ml brut). CRC Industries Europe BVBA Touwslagerstraat 1 – 9240 Zele - Belgium Tel (32) (0) 52/45.60.11 Fax (32) (0) 52/45.00.34 www.crcind.com FICHE TECHNIQUE 2/3 Dusters Dust Off 67, Dust Off 360, Jet Clean 360, Dust Off HF Ref. : 20575; 20855, 20574, 20576 4. INSTRUCTIONS Instruction Generale: Vaporiser le gaz sur les objets et surfaces à nettoyer. Le meilleur résultat est obtenu par pressions brèves. Après une utilisation continue, attendre quelques minutes, afin de rétablir la pression interne dans l’aérosol et continuer l’application. Ne pas secouer ou remuer l’aérosol pendant l’application. Dust Off 67 Utiliser le tube-rallonge pour les endroits d’accès difficile. Tenir l’aérosol droit durant l’application (ne pas incliner de plus de 30°). Dust Off 360 Utiliser le tube-rallonge pour les endroits d’accès difficile. Vaporiser en position droite ou tête en bas (ne pas utiliser horizontalement). Jet Clean 360 Ajuster le pistolet de précision (peut être obtenu comme pièce détachée). Vaporiser en position droite ou tête en bas (ne pas utiliser horizontalement). Dust Off HF Tenir l’aérosol droit durant l’application (ne pas incliner de plus de 30°). Une fiche de sécurité selon la directive EU 91/155/EEC et ses amendements est disponible pour tous les produits CRC. 5. DONNEES TYPIQUES DU PRODUIT (sans le gaz propulseur) Densité @ 20°C Aérosol (gaz liquéfié) : 1,01 g/cm 3 Test d’extension de flamme (FEA 607) : Négative (**) Fl amabilité ( FEA x 610 200 L) : Convient (> 60s) (**) Pression @ 20°C : 420 kPa Débit Dust Off 67 : 17,1 g/10s Dust Off 360 : 17,1 g/10s Jet Clean 360 : 19,1 g/10s Dust Off HF : 94,4 g/10s CRC Industries Europe BVBA Touwslagerstraat 1 – 9240 Zele - Belgium Tel (32) (0) 52/45.60.11 Fax (32) (0) 52/45.00.34 www.crcind.com FICHE TECHNIQUE 3/3 Dusters Dust Off 67, Dust Off 360, Jet Clean 360, Dust Off HF Ref. : 20575; 20855, 20574, 20576 6. CONDITIONNEMENT Uniquement en aérosol, voir page précédente : données typique et applications. ** Le produit liquide contient max 7 % de matières inflammable, mais le mélange des vapeurs est ininflammable celons les méthodes de tests indiquées. Toutes les données dans cette publication sont basées sur l'expérience et les tests de laboratoire. Vu l’importante variété des conditions et des appareillages employés, ainsi que des facteurs humains imprévisibles qui peuvent avoir une influence importante sur les résultats de l’application, nous vous conseillons de vérifier la compatibilité du produit avant son utilisation. Toutes ces informations sont données suivant la plus grande objectivité, mais sans garantie de notre part exprimée ou implicite. Cette fiche technique peut déjà, à ce moment précis, être révisée pour des raisons liées à la législation, à la disponibilité des composants, ou à des expériences nouvellement acquises. La dernière version de cette fiche technique, qui est la seule valable, vous sera envoyée sur simple demande, ou peut être trouvée sur notre site Internet : www.crcind.com. Nous vous recommandons de vous enregistrer sur notre site Internet pour ce produit, afin de recevoir automatiquement chaque dernière version future. Version : 20575 02 1003 01 Date : 23 August 2006 Pa rt of Ant Group Ltd Silica Gel MSDS Order Now www.antistat.co.uk t +44 (0) 1473 836 200 Component Packaging Silica Gel Silica-gel is a high-activity sorbing material, the outcome of chemical reaction of sodium silicate and sulfuric acid, ageing and sour bathing process. Silica-gel is an amorphous substance. It’s molecular formula is mSiO2.nH2O. It features a stable chemical property and never reacts with any substance except strong alkali and hydrofuoric acid. PROPERTY PARAMETERS QUALITY ITEMS CRITERIA (Test methods JIS-Z0701) A: Bulk density >750g/L B: Loss on drying <3% C: Moisture absorption rate RH=20% >8% RH=40% >20% RH=80% >30% PH 4--8 Specific resistance Ohm* cm >3000 INGREDIENTS NAME PERCENTAGE (%) SiO2 99.6 Na2O 0.17 Fe2O3 0.02 MgO 0.01 CaO 0.04 A12O3 0.16 HARMFUL ELEMENTS RATE Cd <2ppm Pb <2ppm Hg <2ppm Cr(VI) <2ppm PBBS <5ppm PBDES <5ppm DOSAGE VOLUME MIN DOSAGE 0.1------1L 1------2g 1------10L 2------20g 10------100L 20------200g 100------1000L 200------1600g PACKAGING Weight Packs are available from 1g to 1kg. Packaging materials Non-woven fabrics PRINTING The packages are printed in Chinese, English, Japanese and French. STORAGE Silica-gel should be kept sealed when not in use. 1.0 REV 2014-03-24 DATE SSt BY CSo CHECKED Würth Elektronik eiSos GmbH & Co. KG EMC & Inductive Solutions Max-Eyth-Str. 1 74638 Waldenburg Germany Tel. +49 (0) 79 42 945 - 0 www.we-online.com eiSos@we-online.com DESCRIPTION WE-WPCC Wireless Power Charging Receiver Coil Order.- No. 760308102210 SIZE A4 Size: 3737 A Dimensions: [mm] B Recommended hole pattern: [mm] C Schematic: D Electrical Properties: Properties Inductance Q-factor Rated current Saturation current DC Resistance DC Resistance Self resonant frequency Test conditions 125 kHz/ 10 mA 125 kHz/ 10 mA ΔT = 40 K @ 20°C @ 20°C L Q IR Isat RDC RDC fres Value 7.5 50 3.0 6.0 0.15 0.2 22 Unit μH A A Ω Ω MHz Tol. ±10% typ. max. typ. typ. max. E General information: It is recommended that the temperature of the part does not exceed +105°C under worst case conditions. •Storage Temperature: -20°C to 60°C •Operating Temperature: -20°C to 105°C •Test conditions of Electrical Properties: 20°C, 33% RH if not specified differently This electronic component has been designed and developed for usage in general electronic equipment only. This product is not authorized for use in equipment where a higher safety standard and reliability standard is especially required or where a failure of the product is reasonably expected to cause severe personal injury or death, unless the parties have executed an agreement specifically governing such use. Moreover Würth Elektronik eiSos GmbH & Co KG products are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network etc.. Würth Elektronik eiSos GmbH & Co KG must be informed about the intent of such usage before the design-in stage. In addition, sufficient reliability evaluation checks for safety must be performed on every electronic component which is used in electrical circuits that require high safety and reliability functions or performance. ARALDITE® 2014-1 SAFETY DATA SHEET Product name ARALDITE® 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) : 1.1 Product identifier 1.3 Details of the supplier of the safety data sheet e-mail address of person responsible for this SDS : Global_Product_EHS_AdMat@huntsman.com Product description : Not available. 1.2 Relevant identified uses of the substance or mixture and uses advised against SECTION 1: Identification of the substance/mixture and of the company/undertaking Product code : 00057058 1.4 Emergency telephone number Supplier Telephone number : EUROPE: +32 35 75 1234 France ORFILA: +33(0)145425959 ASIA: +65 6336-6011 China: +86 20 39377888 Australia: 1800 786 152 New Zealand: 0800 767 437 USA: +1/800/424.9300 2-Component Product use : adhesive system Supplier : Huntsman Advanced Materials (Europe)BVBA Everslaan 45 3078 Everberg / Belgium Tel.: +41 61 299 20 41 Fax: +41 61 299 20 40 Classification Xi; R41, R38 R43 N; R51/53 : Human health hazards : Risk of serious damage to eyes. Irritating to skin. May cause sensitisation by skin contact. Environmental hazards : Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. See Section 11 for more detailed information on health effects and symptoms. SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Product definition : Working pack (preparation) See Section 16 for the full text of the R phrases or H statements declared above. Classification according to Directive 1999/45/EC [DPD] The product is classified as dangerous according to Directive 1999/45/EC and its amendments. 2.2 Label elements Hazard symbol or symbols : Date of issue / Date of revision : 3 August 2011 1/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 2/17 SECTION 2: Hazards identification Other hazards which do : not result in classification Not available. Containers to be fitted with child-resistant fastenings Not applicable. Tactile warning of danger Not applicable. : : Special packaging requirements Safety phrases S26- In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. S39- Wear eye/face protection. S61- Avoid release to the environment. Refer to special instructions/safety data sheet. R41- Risk of serious damage to eyes. R38- Irritating to skin. R43- May cause sensitisation by skin contact. R51/53- Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Risk phrases Hazardous ingredients : : : Irritant, Dangerous for the environment reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) bisphenol F-epoxy resin butanedioldiglycidyl ether N(3-dimethylaminopropyl)-1,3-propylenediamine Indication of danger : 2.3 Other hazards Supplemental label elements : Contains epoxy constituents. See information supplied by the manufacturer. Substance/mixture : Working pack (preparation) Product/ingredient Identifiers 67/548/EEC name SECTION 3: Composition/information on ingredients reaction product: bisphenol A- (epichlorhydrin); epoxy resin (number average molecular weight < 700) REACH #: 01- 2119456619-26 CAS: 25068-38-6 13 - 30 Xi; R36/38 R43 N; R51/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411 [1] bisphenol F-epoxy resin REACH #: 01- 2119454392-40 CAS: 9003-36-5 3 - 7 Xi; R36/38 R43 N; R51/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411 [1] butanedioldiglycidyl ether REACH #: 01- 2119494060-45 CAS: 2425-79-8 1 - 3 Xn; R20/21 Xi; R36/38 R43 R52/53 Acute Tox. 4, H312 Acute Tox. 4, H332 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 [1] N(3- dimethylaminopropyl)- 1,3-propylenediamine CAS: 10563-29-8 1 - 3 Xn; R21/22 C; R34 R43 Acute Tox. 4, H302 Acute Tox. 4, H312 Skin Corr. 1B, H314 Eye Dam. 1, H318 [1] % Regulation (EC) No. Type 1272/2008 [CLP] Classification Date of issue / Date of revision : 3 August 2011 2/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 3/17 SECTION 3: Composition/information on ingredients Occupational exposure limits, if available, are listed in Section 8. There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section. Skin Sens. 1, H317 terephthalic acid diglycidylester CAS: 7195-44-0 0.1 - 1 Xi; R36/38 R43 N; R51/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411 [1] trimellitic acid triglycidylester CAS: 7237-83-4 0.1 - 1 Xi; R36/38 R43 N; R51/53 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Aquatic Chronic 2, H411 [1] See section 16 for the full text of the Rphrases declared above See Section 16 for the full text of the H statements declared above. [1] Substance classified with a health or environmental hazard [2] Substance with a workplace exposure limit [3] Substance meets the criteria for PBT according to Regulation (EC) No. 1907/2006, Annex XIII [4] Substance meets the criteria for vPvB according to Regulation (EC) No. 1907/2006, Annex XIII Type Wash out mouth with water. Remove dentures if any. Remove victim to fresh air and keep at rest in a position comfortable for breathing. If material has been swallowed and the exposed person is conscious, give small quantities of water to drink. Stop if the exposed person feels sick as vomiting may be dangerous. Do not induce vomiting unless directed to do so by medical personnel. If vomiting occurs, the head should be kept low so that vomit does not enter the lungs. Get medical attention if adverse health effects persist or are severe. Never give anything by mouth to an unconscious person. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband. Skin contact Get medical attention immediately. Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 10 minutes. Chemical burns must be treated promptly by a physician. Flush contaminated skin with plenty of water. Remove contaminated clothing and shoes. Wash contaminated clothing thoroughly with water before removing it, or wear gloves. Continue to rinse for at least 10 minutes. Get medical attention. In the event of any complaints or symptoms, avoid further exposure. Wash clothing before reuse. Clean shoes thoroughly before reuse. 4.1 Description of first aid measures Remove victim to fresh air and keep at rest in a position comfortable for breathing. If not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Get medical attention if adverse health effects persist or are severe. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband. In case of inhalation of decomposition products in a fire, symptoms may be delayed. The exposed person may need to be kept under medical surveillance for 48 hours. Ingestion Inhalation Eye contact : : : : SECTION 4: First aid measures Date of issue / Date of revision : 3 August 2011 3/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 4/17 SECTION 4: First aid measures Notes to physician In case of inhalation of decomposition products in a fire, symptoms may be delayed. The exposed person may need to be kept under medical surveillance for 48 hours. : Specific treatments Protection of first-aiders : No action shall be taken involving any personal risk or without suitable training. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Wash contaminated clothing thoroughly with water before removing it, or wear gloves. 4.2 Most important symptoms and effects, both acute and delayed Potential acute health effects Inhalation : Exposure to decomposition products may cause a health hazard. Serious effects may be delayed following exposure. Irritating to Ingestion : mouth, throat and stomach. Skin contact : Irritating to skin. May cause sensitisation by skin contact. Eye contact : Severely irritating to eyes. Risk of serious damage to eyes. Over-exposure signs/symptoms Skin contact Ingestion Inhalation No specific data. No specific data. Adverse symptoms may include the following: irritation redness : : : Eye contact : Adverse symptoms may include the following: pain or irritation watering redness 4.3 Indication of any immediate medical attention and special treatment needed : Symptomatic treatment and supportive therapy as indicated. Following severe exposure the patient should be kept under medical review for at least 48 hours. Hazardous thermal decomposition products Hazards from the substance or mixture Decomposition products may include the following materials: carbon dioxide carbon monoxide nitrogen oxides sulfur oxides metal oxide/oxides In a fire or if heated, a pressure increase will occur and the container may burst. Use an extinguishing agent suitable for the surrounding fire. 5.1 Extinguishing media : : None known. Suitable extinguishing media : Unsuitable extinguishing media : SECTION 5: Firefighting measures 5.2 Special hazards arising from the substance or mixture 5.3 Advice for firefighters Date of issue / Date of revision : 3 August 2011 4/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 5/17 SECTION 5: Firefighting measures Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training. This material is toxic to aquatic organisms. Fire water contaminated with this material must be contained and prevented from being discharged to any waterway, sewer or drain. Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode. Clothing for fire-fighters (including helmets, protective boots and gloves) conforming to European standard EN 469 will provide a basic level of protection for chemical incidents. Special protective equipment for fire-fighters : Special precautions for fire-fighters : 6.2 Environmental precautions Stop leak if without risk. Move containers from spill area. Approach the release from upwind. Prevent entry into sewers, water courses, basements or confined areas. Wash spillages into an effluent treatment plant or proceed as follows. Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations. Dispose of via a licensed waste disposal contractor. Contaminated absorbent material may pose the same hazard as the spilt product. Avoid dispersal of spilt material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air). Water polluting material. May be harmful to the environment if released in large quantities. Large spill : Stop leak if without risk. Move containers from spill area. Dilute with water and mop up if water-soluble. Alternatively, or if water-insoluble, absorb with an inert dry material and place in an appropriate waste disposal container. Dispose of via a licensed waste disposal contractor. Small spill : 6.3 Methods and materials for containment and cleaning up SECTION 6: Accidental release measures 6.1 Personal precautions, protective equipment and emergency procedures For non-emergency personnel : For emergency responders : 6.4 Reference to other sections See Section 1 for emergency contact information. See Section 8 for information on appropriate personal protective equipment. See Section 13 for additional waste treatment information. No action shall be taken involving any personal risk or without suitable training. Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. Do not touch or walk through spilt material. Avoid breathing vapour or mist. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment. If specialised clothing is required to deal with the spillage, take note of any information in Section 8 on suitable and unsuitable materials. See also Section 8 for additional information on hygiene measures. : : SECTION 7: Handling and storage The information in this section contains generic advice and guidance. The list of Identified Uses in Section 1 should be consulted for any available use-specific information provided in the Exposure Scenario(s). 7.1 Precautions for safe handling Protective measures : Put on appropriate personal protective equipment (see Section 8). Persons with a history of skin sensitization problems should not be employed in any process in which this product is used. Do not get in eyes or on skin or clothing. Do not ingest. Avoid breathing vapour or mist. Avoid release to the environment. Refer to special instructions/safety data sheet. Keep in the original container or an approved alternative made from a compatible material, kept tightly closed when not in use. Empty containers retain product residue and can be hazardous. Do not reuse container. Date of issue / Date of revision : 3 August 2011 5/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 6/17 SECTION 7: Handling and storage Store between the following temperatures: 2 to 40°C (35.6 to 104°F). Store in accordance with local regulations. Store in original container protected from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see section 10) and food and drink. Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabelled containers. Use appropriate containment to avoid environmental contamination. Advice on general occupational hygiene : 7.2 Conditions for safe storage, including any incompatibilities 7.3 Specific end use(s) Recommendations : Industrial sector specific : solutions Not available. Not available. Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. Remove contaminated clothing and protective equipment before entering eating areas. See also Section 8 for additional information on hygiene measures. : Storage hazard class Huntsman Advanced Materials : Storage class 10, Environmentally hazardous liquids Recommended monitoring procedures Occupational exposure limits If this product contains ingredients with exposure limits, personal, workplace atmosphere or biological monitoring may be required to determine the effectiveness of the ventilation or other control measures and/or the necessity to use respiratory protective equipment. Reference should be made to European Standard EN 689 for methods for the assessment of exposure by inhalation to chemical agents and national guidance documents for methods for the determination of hazardous substances. : No exposure limit value known. No DELs available. Predicted effect concentrations No PECs available. SECTION 8: Exposure controls/personal protection The information in this section contains generic advice and guidance. The list of Identified Uses in Section 1 should be consulted for any available use-specific information provided in the Exposure Scenario(s). 8.1 Control parameters Derived effect levels Workplace exposure limits (for total dust and inhalable quartz dust) must be complied with. If this is not possible, then suitable dust masks must be worn. W A R N I N G ! This product contains quartz, which has been classified by IARC as carcinogenic for humans (Group 1), and which can cause silicosis and lung cancer following exposure to respirable dust. It is therefore important to take particular care to avoid inhalation exposure when mechanically processing cured material (e.g. grinding, sanding, sawing). QUARTZ (CAS RN 14808-60-7): United Kingdom: TWA: 0.1 mg/m³ 8 hour(s). Form: respirable dust Ireland: OELV-8hr: 0.1 mg/m³ 8 hour(s). Form: respirable dust Switzerland: TWA: 0.15 mg/m³ 8 hour(s). Form: respirable dust Australia: TWA: 0.1 mg/m³ 8 hour(s) Date of issue / Date of revision : 3 August 2011 6/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 7/17 SECTION 8: Exposure controls/personal protection Hand protection In case of inadequate ventilation wear respiratory protection. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator. Chemical-resistant, impervious gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary. Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists or dusts. Eye/face protection Respiratory protection : : : Skin protection Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product. : Environmental exposure controls : Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation. In some cases, fume scrubbers, filters or engineering modifications to the process equipment will be necessary to reduce emissions to acceptable levels. Appropriate engineering controls : No special ventilation requirements. Good general ventilation should be sufficient to control worker exposure to airborne contaminants. If this product contains ingredients with exposure limits, use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure below any recommended or statutory limits. Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Contaminated work clothing should not be allowed out of the workplace. Wash contaminated clothing before reusing. Ensure that eyewash stations and safety showers are close to the workstation location. 8.2 Exposure controls Hygiene measures : Individual protection measures Body protection : Other skin protection Appropriate footwear and any additional skin protection measures should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product. Ethyl Vinyl Alcohol Laminate (EVAL), butyl rubber neoprene, Material of gloves for nitrile rubber short term/splash application (10min480min): Physical state Liquid. [Paste.] Odour Not available. Colour Not available. Odour threshold Not available. : : : : 9.1 Information on basic physical and chemical properties Appearance SECTION 9: Physical and chemical properties Date of issue / Date of revision : 3 August 2011 7/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 8/17 SECTION 9: Physical and chemical properties Not available. Melting point/freezing point Initial boiling point and boiling range Vapour pressure Relative density Vapour density Solubility(ies) Not available. Not available. Not available. Not available. pH Evaporation rate Not available. Auto-ignition temperature Flash point Not available. Closed cup: >100°C [DIN 51758 EN 22719 (Pensky-Martens Closed Cup)] Not available. Not available. Not available. Not available. Viscosity Not available. Partition coefficient: noctanol/ water Upper/lower flammability or explosive limits Explosive properties : : : : : : : : : : : : : Oxidising properties : Not available. 9.2 Other information Burning time Not applicable. Burning rate Not applicable. : : Decomposition temperature : Not available. Flammability (solid, gas) : Not available. Density : 1.4 g/cm3 [20°C (68°F)] Water solubility : 10.6 Hazardous decomposition products 10.4 Conditions to avoid No specific data. Under normal conditions of storage and use, hazardous decomposition products should not be produced. 10.2 Chemical stability The product is stable. No specific data. : : : 10.5 Incompatible materials : 10.3 Possibility of hazardous reactions : Under normal conditions of storage and use, hazardous reactions will not occur. SECTION 10: Stability and reactivity 10.1 Reactivity : No specific test data related to reactivity available for this product or its ingredients. Date of issue / Date of revision : 3 August 2011 8/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 9/17 Acute toxicity reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) LC0 Inhalation Vapour Rat - Male 0.00001 ppm 5 hours LD50 Dermal Rat - Male, Female >2000 mg/kg - LD50 Oral Rat - Female >2000 mg/kg - bisphenol F-epoxy resin LD50 Dermal Rat - Male, Female >2000 mg/kg - LD50 Oral Rat - Male, Female >5000 mg/kg - butanedioldiglycidyl ether LD50 Dermal Rat - Male, Female >2150 mg/kg - LD50 Oral Rat - Male, Female 1163 mg/kg - N(3-dimethylaminopropyl)- 1,3-propylenediamine LD50 Dermal Rabbit 1310 mg/kg - LD50 Oral Rat 1670 mg/kg - Product/ingredient name Endpoint Species Result Exposure Irritation/Corrosion reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 404 Acute Dermal Irritation/Corrosion Rabbit Mild irritant OECD 405 Acute Eye Irritation/Corrosion Rabbit Mild irritant bisphenol F-epoxy resin OECD 405 Acute Eye Irritation/Corrosion Rabbit Non-irritant. OECD 404 Acute Dermal Irritation/Corrosion Rabbit Mild irritant butanedioldiglycidyl ether OECD 404 Acute Dermal Irritation/Corrosion Rabbit Non-irritant. OECD 405 Acute Eye Irritation/Corrosion Rabbit Severe irritant Product/ingredient name Test Result Conclusion/Summary : Skin : reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700): Slightly irritating to the skin. bisphenol F-epoxy resin: Slightly irritating to the skin. butanedioldiglycidyl ether: Non-irritating to the skin. Eyes : reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700): Slightly irritating to the eyes. bisphenol F-epoxy resin: Non-irritating to the eyes. butanedioldiglycidyl ether: Severely irritating to eyes. Not available. Sensitiser reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 429 Skin Sensitisation: Local Lymph Node Assay skin Mouse Sensitising bisphenol F-epoxy resin OECD 429 Skin Sensitisation: Local Lymph Node Assay skin Mouse Sensitising butanedioldiglycidyl ether OECD 406 Skin Sensitization skin Guinea pig Sensitising Product/ingredient name Test Route of exposure Result Species SECTION 11: Toxicological information 11.1 Information on toxicological effects Species Date of issue / Date of revision : 3 August 2011 9/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 10/17 SECTION 11: Toxicological information Carcinogenicity reaction product: bisphenol A- (epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 453 Combined Chronic Toxicity/Carcinogenicity Studies Rat 2 years; 7 days per week Negative Oral - OECD 453 Combined Chronic Toxicity/Carcinogenicity Studies Rat 2 years; 5 days per week Negative Dermal - OECD 453 Combined Chronic Toxicity/Carcinogenicity Studies Mouse 2 years; 3 days per week Negative Dermal - Product/ingredient name Test Species Exposure Result Mutagenicity reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 471 Bacterial Reverse Mutation Test Positive OECD 476 In vitro Mammalian Cell Gene Mutation Test Positive OECD 478 Genetic Toxicology: Rodent Dominant Lethal Test Negative EPA OPPTS Negative bisphenol F-epoxy resin OECD 471 Bacterial Reverse Mutation Test Positive OECD 476 In vitro Mammalian Cell Gene Mutation Test Positive OECD 473 In vitro Mammalian Chromosomal Aberration Test Positive OECD 474 Mammalian Erythrocyte Micronucleus Test Negative OECD 486 Unscheduled DNA Synthesis (UDS) Test with Mammalian Liver Cells in vivo Negative butanedioldiglycidyl ether OECD 471 Bacterial Reverse Mutation Test Positive OECD 473 In vitro Mammalian Chromosomal Aberration Test Positive OECD 474 Mammalian Erythrocyte Micronucleus Test Negative Product/ingredient name Test Result Conclusion/Summary : Not available. Teratogenicity Reproductive toxicity Product/ingredient name Test Species Result/Result type Target organs reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 416 Two-Generation Reproduction Toxicity Study Rat Oral: 540 mg/kg NOEL : - bisphenol F-epoxy resin OECD 416 Two-Generation Reproduction Toxicity Study Rat Oral: 540 mg/kg NOEL : - Conclusion/Summary : Not available. Route of exposure Target organs Date of issue / Date of revision : 3 August 2011 10/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 11/17 SECTION 11: Toxicological information Potential chronic health effects Potential acute health effects Inhalation : Exposure to decomposition products may cause a health hazard. Serious effects may be delayed following exposure. Irritating to Ingestion : mouth, throat and stomach. Skin contact : Irritating to skin. May cause sensitisation by skin contact. Eye contact : Severely irritating to eyes. Risk of serious damage to eyes. reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 408 Repeated Dose 90-Day Oral Toxicity Study in Rodents NOAEL Subchronic NOAEL Oral 50 mg/kg - OECD 411 Subchronic Dermal Toxicity: 90-day Study NOEL : Subchronic NOEL : Dermal 10 mg/kg - OECD 411 Subchronic Dermal Toxicity: 90-day Study NOAEL Subchronic NOAEL Dermal 100 mg/kg - bisphenol F-epoxy resin OECD 408 Repeated Dose NOAEL Sub- 250 mg/kg - Product/ingredient name Test Result type Result Target organs reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD 414 Prenatal Developmental Toxicity Study Rat - Female >540 mg/kg NOEL : EPA CFR Rabbit - Female >300 mg/kg NOEL : OECD 414 Prenatal Developmental Toxicity Study Rabbit - Female 180 mg/kg NOAEL bisphenol F-epoxy resin EPA CFR Rabbit - Female >300 mg/kg NOEL : Product/ingredient name Test Species Result/Result type Symptoms related to the physical, chemical and toxicological characteristics Skin contact Ingestion Inhalation No specific data. No specific data. Adverse symptoms may include the following: irritation redness : : : Eye contact : Adverse symptoms may include the following: pain or irritation watering redness Information on the likely Not available. routes of exposure : Delayed and immediate effects and also chronic effects from short and long term exposure Short term exposure Long term exposure Potential immediate effects Potential delayed effects : : Potential immediate effects Potential delayed effects : : Not available. Not available. Not available. Not available. Date of issue / Date of revision : 3 August 2011 11/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 12/17 SECTION 11: Toxicological information Once sensitized, a severe allergic reaction may occur when subsequently exposed to very low levels. General : No known significant effects Carcinogenicity : or critical hazards. Mutagenicity : No known significant effects or critical hazards. Teratogenicity : No known significant effects or critical hazards. 90-Day Oral Toxicity Study in Rodents chronic NOAEL Oral butanedioldiglycidyl ether OECD 407 Repeated Dose 28-day Oral Toxicity Study in Rodents NOAEL Subchronic NOAEL Oral 200 mg/kg - Conclusion/Summary : Not available. Developmental effects : No known significant effects or critical hazards. Fertility effects : No known significant effects or critical hazards. Other information : Not available. 12.1 Toxicity reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) - Acute EC50 72 hours Static Algae 9.4 mg/L OECD 202 Daphnia sp. Acute Immobilisation Test Acute EC50 48 hours Static Daphnia 1.7 mg/L - Acute IC50 3 hours Static Bacteria >100 mg/L OECD 203 Fish, Acute Toxicity Test Acute LC50 96 hours Static Fish 1.5 mg/L OECD 211 Daphnia Magna Reproduction Test Chronic NOEC 21 days Semistatic Daphnia 0.3 mg/L bisphenol F-epoxy resin OECD 201 Alga, Growth Inhibition Test Acute EC50 72 hours Static Algae 1.8 mg/L OECD OECD 202: Part I (Daphnia sp., Acute Immobilisation test) Acute EC50 48 hours Static Daphnia 1.6 mg/L - Acute IC50 3 hours Static Bacteria >100 mg/L OECD 203 Fish, Acute Toxicity Test Acute LC50 96 hours Semistatic Fish 0.55 mg/L OECD 211 Daphnia Magna Reproduction Test Chronic NOEC 21 days Semistatic Daphnia 0.3 mg/L butanedioldiglycidyl ether OECD 202 Daphnia sp. Acute Immobilisation Test Acute EC50 24 hours Static Daphnia 75 mg/L OECD 201 Alga, Growth Inhibition Test Acute EL50 72 hours Static Algae >160 mg/L OECD 209 Activated Sludge, Respiration Inhibition Test Acute IC50 3 hours Static Bacteria >100 mg/L OECD 203 Fish, Acute Toxicity Test Acute LC50 96 hours Static Fish 24 mg/L Product/ingredient name Exposure Species Result 12.2 Persistence and degradability SECTION 12: Ecological information Test Endpoint Date of issue / Date of revision : 3 August 2011 12/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 13/17 SECTION 12: Ecological information Mobility : Not available. LogPow BCF Potential 12.3 Bioaccumulative potential 12.6 Other adverse effects No known significant effects or critical hazards. Product/ingredient name reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) 3.242 31 low bisphenol F-epoxy resin 2.7 to 3.6 - high butanedioldiglycidyl ether -0.269 - low Product/ingredient name Aquatic half-life Photolysis Biodegradability reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) Fresh water 4.83 days Fresh water 3.58 days Fresh water 7.1 days - Not readily bisphenol F-epoxy resin - - Not readily butanedioldiglycidyl ether - - Not readily reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700) OECD Derived from OECD 301F (Biodegradation Test) 28 days 5 % bisphenol F-epoxy resin EU 28 days 0 % butanedioldiglycidyl ether OECD 301F Ready Biodegradability - Manometric Respirometry Test 28 days 43 % Product/ingredient name Test Result Conclusion/Summary : reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700): Not readily biodegradable. 12.4 Mobility in soil Soil/water partition coefficient (KOC) : Not available. 12.5 Results of PBT and vPvB assessment : 12.7 Other ecological information Period Not applicable. The generation of waste should be avoided or minimised wherever possible. Significant quantities of waste product residues should not be disposed of via the foul sewer but processed in a suitable effluent treatment plant. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This Methods of disposal : SECTION 13: Disposal considerations The information in this section contains generic advice and guidance. The list of Identified Uses in Section 1 should be consulted for any available use-specific information provided in the Exposure Scenario(s). 13.1 Waste treatment methods Product Date of issue / Date of revision : 3 August 2011 13/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 14/17 SECTION 13: Disposal considerations European waste catalogue (EWC) Hazardous waste : Yes. material and its container must be disposed of in a safe way. Care should be taken when handling emptied containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues. Avoid dispersal of spilt material and runoff and contact with soil, waterways, drains and sewers. Packaging Waste code Waste designation Methods of disposal : Special precautions : 07 02 08* other still bottoms and reaction residues The generation of waste should be avoided or minimised wherever possible. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This material and its container must be disposed of in a safe way. Care should be taken when handling emptied containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues. Avoid dispersal of spilt material and runoff and contact with soil, waterways, drains and sewers. Environmentally hazardous substance, liquid, n.o.s. BISPHENOL A/F EPOXY RESIN 9 III Environmentally hazardous substance, liquid, n.o.s. (BISPHENOL A/F EPOXY RESIN) Marine pollutant (reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average molecular weight < 700), bisphenol F-epoxy resin) 9 III Environmentally hazardous substance, liquid, n.o.s. (BISPHENOL A/F EPOXY RESIN) UN3082 9 not available not available III UN3082 UN3082 Hazard identification number 90 Special provisions 274 335 601 Tunnel code E Emergency schedules (EmS) F-A, S-F Passenger and Cargo Aircraft Quantity limitation: 450 L Packaging instructions: 964 Cargo Aircraft Only Quantity limitation: 450 L Packaging SECTION 14: Transport information ADR/RID IMDG IATA 14.1 UN number 14.2 UN proper shipping name 14.3 Transport hazard class(es) 14.4 Packing group ADN/ADNR Additional information 14.5 Environmental hazards 14.6 Special precautions for user Yes. Yes. Yes. Not available. Not available. Not available. ADN/ADNR IMDG IATA ADR/RID Date of issue / Date of revision : 3 August 2011 14/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 15/17 SECTION 14: Transport information instructions: 964 14.7 Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code : Not applicable. National regulations Other EU regulations Annex XVII - Restrictions Not applicable. on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles : Europe inventory : All components are listed or exempted. Black List Chemicals : Not listed Priority List Chemicals : Not listed Integrated pollution prevention and control list (IPPC) - Air : Not listed Integrated pollution prevention and control list (IPPC) - Water : Not listed Chemical Weapons Convention List Schedule I Chemicals : Not listed Chemical Weapons Convention List Schedule II Chemicals : Not listed Chemical Weapons Convention List Schedule III Chemicals : Not listed International regulations References : The provision of Safety Data Sheets comes under Regulation 6 of CHIP (CHIP is the recognised abbreviation for the Chemicals Hazard Information and Packaging Regulations). This is an addition to the Health and Safety at Work Act 1974. SECTION 15: Regulatory information 15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture EU Regulation (EC) No. 1907/2006 (REACH) Annex XIV - List of substances subject to authorisation 15.2 Chemical Safety Assessment This product contains substances for which Chemical Safety Assessments are still required. Substances of very high concern : None of the components are listed. Date of issue / Date of revision : 3 August 2011 15/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 16/17 Date of printing : 3 August 2011 R20/21- Harmful by inhalation and in contact with skin. R21/22- Harmful in contact with skin and if swallowed. R34- Causes burns. R41- Risk of serious damage to eyes. R38- Irritating to skin. R36/38- Irritating to eyes and skin. R43- May cause sensitisation by skin contact. R51/53- Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. R52/53- Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Full text of abbreviated R : phrases C - Corrosive Xn - Harmful Xi - Irritant N - Dangerous for the environment Full text of classifications : [DSD/DPD] Indicates information that has changed from previously issued version. SECTION 16: Other information Full text of abbreviated H statements : Abbreviations and acronyms : ATE = Acute Toxicity Estimate CLP = Classification, Labelling and Packaging Regulation [Regulation (EC) No. 1272/2008] DNEL = Derived No Effect Level EUH statement = CLP-specific Hazard statement PNEC = Predicted No Effect Concentration RRN = REACH Registration Number Classification according to Regulation (EC) No. 1272/2008 [CLP/GHS] Procedure used to derive the classification according to Regulation (EC) No. 1272/2008 [CLP/GHS] Classification Justification Skin Irrit. 2, H315 Expert judgment Eye Dam. 1, H318 Expert judgment Skin Sens. 1, H317 Expert judgment Aquatic Chronic 2, H411 Expert judgment Full text of classifications [CLP/GHS] : H302 Harmful if swallowed. H312 Harmful in contact with skin. H314 Causes severe skin burns and eye damage. H315 Causes skin irritation. H317 May cause an allergic skin reaction. H318 Causes serious eye damage. H319 Causes serious eye irritation. H332 Harmful if inhaled. H411 Toxic to aquatic life with long lasting effects. Acute Tox. 4, H302 ACUTE TOXICITY: ORAL - Category 4 Acute Tox. 4, H312 ACUTE TOXICITY: SKIN - Category 4 Acute Tox. 4, H332 ACUTE TOXICITY: INHALATION - Category 4 Aquatic Chronic 2, H411 AQUATIC TOXICITY (CHRONIC) - Category 2 Eye Dam. 1, H318 SERIOUS EYE DAMAGE/ EYE IRRITATION - Category 1 Eye Irrit. 2, H319 SERIOUS EYE DAMAGE/ EYE IRRITATION - Category 2 Skin Corr. 1B, H314 SKIN CORROSION/IRRITATION - Category 1B Skin Irrit. 2, H315 SKIN CORROSION/IRRITATION - Category 2 Skin Sens. 1, H317 SKIN SENSITIZATION - Category 1 Skin Irrit. 2, H315 Eye Dam. 1, H318 Skin Sens. 1, H317 Aquatic Chronic 2, H411 MSDS no. : 00057058 Date of issue / Date of revision : 3 August 2011 16/17 ARALDITE 2014-1 Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK) Date of printing : Date of issue : 3 August 2011 3 August 2011 MSDS no. Version : : 00057058 1 17/17 SECTION 16: Other information Date of issue/ Date of revision Version Notice to reader Date of previous issue : : : 3 August 2011 No previous validation. 1 While the information and recommendations in this publication are to the best of our knowledge, information and belief accurate at the date of publication, NOTHING HEREIN IS TO BE CONSTRUED AS A WARRANTY, EXPRESS OR OTHERWISE. IN ALL CASES, IT IS THE RESPONSIBILITY OF THE USER TO DETERMINE THE APPLICABILITY OF SUCH INFORMATION AND RECOMMENDATIONS AND THE SUITABILITY OF ANY PRODUCT FOR ITS OWN PARTICULAR PURPOSE. THE PRODUCT MAY PRESENT HAZARDS AND SHOULD BE USED WITH CAUTION. WHILE CERTAIN HAZARDS ARE DESCRIBED IN THIS PUBLICATION, NO GUARANTEE IS MADE THAT THESE ARE THE ONLY HAZARDS THAT EXIST. Hazards, toxicity and behaviour of the products may differ when used with other materials and are dependent upon the manufacturing circumstances or other processes. Such hazards, toxicity and behaviour should be determined by the user and made known to handlers, processors and end users. ARALDITE® is a registered trademark of Huntsman Corporation or an affiliate thereof in one or more countries, but not all countries. NO PERSON OR ORGANIZATION EXCEPT A DULY AUTHORIZED HUNTSMAN EMPLOYEE IS AUTHORIZED TO PROVIDE OR MAKE AVAILABLE DATA SHEETS FOR HUNTSMAN PRODUCTS. DATA SHEETS FROM UNAUTHORIZED SOURCES MAY CONTAIN INFORMATION THAT IS NO LONGER CURRENT OR ACCURATE. NO PART OF THIS DATA SHEET MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM, OR BY ANY MEANS, WITHOUT PERMISSION IN WRITING FROM HUNTSMAN. ALL REQUESTS FOR PERMISSION TO REPRODUCE MATERIAL FROM THIS DATA SHEET SHOULD BE DIRECTED TO HUNTSMAN, MANAGER, PRODUCT SAFETY AT THE ABOVE ADDRESS. Date of issue / Date of revision : 3 August 2011 17/17 1 ® CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2002-2005. All Rights Reserved All other trademarks mentioned are the property of their respective owners. 8-Digit, Microprocessor-Compatible, LED Display Decoder Driver The Intersil ICM7228 display driver interfaces microprocessors to an 8-digit, 7-segment, numeric LED display. Included on chip are two types of 7-segment decoder, multiplex scan circuitry, LED display segment drivers, LED display digit drivers and an 8-byte static memory as display RAM. Data can be written to the ICM7228A and ICM7228B’s display RAM in sequential 8-digit update or in single-digit update format. Data is written to the ICM7228C display RAM in parallel random access format. The ICM7228A and ICM7228C drive common anode displays. The ICM7228B drives common cathode displays. All versions can display the RAM data as either Hexadecimal or Code B format. The ICM7228A and ICM7228B incorporate a No Decode mode allowing each bit of each digit's RAM word to drive individual display segments resulting in independent control of all display segments. As a result, bargraph and other irregular display segments and formats can be driven directly by this chip. The Intersil ICM7228 is an alternative to both the Maxim ICM7218 and the Intersil ICM7218 display drivers. Notice that the ICM7228A/B has an additional single digit access mode. This could make the Intersil ICM7218A/B software incompatible with ICM7228A/B operation. Features • Pb-Free Plus Anneal Available (RoHS Compliant) • Improved 2nd Source to Maxim ICM7218 • Fast Write Access Time of 200ns • Multiple Microprocessor Compatible Versions • Hexadecimal, Code B and No Decode Modes • Individual Segment Control with “No Decode” Feature • Digit and Segment Drivers On-Chip • Non-Overlapping Digits Drive • Common Anode and Common Cathode LED Versions • Low Power CMOS Architecture • Single 5V Supply Applications • Instrumentation • Test Equipment • Hand Held Instruments • Bargraph Displays • Numeric and Non-Numeric Panel Displays • High and Low Temperature Environments where LCD Display Integrity is Compromised Ordering Information PART NUMBER PART MARKING DATA ENTRY PROTOCOL DISPLAY TYPE TEMP. RANGE (oC) PACKAGE PKG. DWG. # ICM7228AIBI ICM7228AIBI Sequential Common Anode -40 to 85 28 Ld SOIC M28.3 ICM7228AIBIZ (Note) 7228AIBIZ Sequential Common Anode -40 to 85 28 Ld SOIC (Pb-free) M28.3 ICM7228AIPI ICM7228AIPI Sequential Common Anode -40 to 85 28 Ld PDIP E28.6 ICM7228AIPIZ (Note) ICM7228AIPI Sequential Common Anode -40 to 85 28 Ld PDIP* (Pb-free) E28.6 ICM7228BIBI ICM7228BIBI Sequential Common Cathode -40 to 85 28 Ld SOlC M28.3 ICM7228BIBIZ (Note) ICM7228BIBIZ Sequential Common Cathode -40 to 85 28 Ld SOlC (Pb-free) M28.3 ICM7228BIPI ICM7228BIPI Sequential Common Cathode -40 to 85 28 Ld PDIP E28.6 ICM7228BIPIZ (Note) ICM7228BIPIZ Sequential Common Cathode -40 to 85 28 Ld PDIP (Pb-free) E28.6 ICM7228CIBI ICM7228CIBI Random Common Anode -40 to 85 28 Ld SOlC M28.3 ICM7228CIBIZ (Note) ICM7228CIBIZ Random Common Anode -40 to 85 28 Ld SOlC (Pb-free) M28.3 ICM7228CIPI ICM7228CIPI Random Common Anode -40 to 85 28 Ld PDIP E28.6 ICM7228CIPIZ (Note) ICM7228CIPI Random Common Anode -40 to 85 28 Ld PDIP (Pb-free) E28.6 *Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications. NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. Data Sheet December 6, 2005 FN3160.8 ICM7228 2 ICM7228 Pinouts ICM7228A (PDIP, SOIC) COMMON ANODE TOP VIEW ICM7228B (PDIP, SOIC) COMMON CATHODE TOP VIEW ICM7228C (PDIP, SOIC) COMMON ANODE TOP VIEW SEG c SEG e SEG b DP ID6 (HEXA/CODE B) ID5 (DECODE) ID7 (DATA COMING) WRITE MODE ID4 (SHUTDOWN) ID1 ID0 ID2 ID3 VSS SEG g SEG d SEG f DIGIT 3 DIGIT 7 VDD DIGIT 8 DIGIT 5 DIGIT 2 DIGIT 1 SEG a DIGIT 6 DIGIT 4 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 DIGIT 4 DIGIT 6 DIGIT 3 DIGIT 1 ID6 (HEXA/CODE B) ID5 (DECODE) ID7 (DATA COMING) WRITE MODE ID4 (SHUTDOWN) ID1 ID0 ID2 ID3 VSS DIGIT 5 DIGIT 2 DIGIT 8 SEG g SEG e VDD SEG d SEG b SEG a DP DIGIT 7 SEG f SEG c 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SEG c SEG e SEG b DP DA0 (DIGIT ADDRESS 0) DA1 (DIGIT ADDRESS 1) ID7 (INPUT DP) WRITE HEXA/CODE B/SHUTDOWN DA2 (DIGIT ADDRESS 2) ID1 ID0 ID2 ID3 VSS SEG g SEG d SEG f DIGIT 3 DIGIT 7 VDD DIGIT 8 DIGIT 5 DIGIT 2 DIGIT 1 SEG a DIGIT 6 DIGIT 4 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 3 ICM7228 Functional Block Diagram 8 SEGMENT DRIVERS 8 DIGIT DRIVERS DECODE NO-DECODE 8-BYTE STATIC RAM HEXADECIMAL/ CODE B DECODER MULTIPLEX OSCILLATOR WRITE ADDRESS COUNTER CONTROL LOGIC READ ADDRESS, DIGIT MULTIPLEXER ICM7228A, ICM7228B ID0 - ID7 INPUT DATA ID4 - ID7 CONTROL INPUTS MODE WRITE SHUTDOWN HEXA/CODE B DECODE INTERDIGIT BLANKING DECIMAL POINT 8 8 4 1 1 1 1 4 7 7 7 8 8 8 1 1 3 8 1 1 7 1 8 SEGMENT DRIVERS 8 DIGIT DRIVERS 8-BYTE STATIC RAM HEXADECIMAL/ CODE B DECODER MULTIPLEX OSCILLATOR WRITE ADDRESS COUNTER THREE LEVEL INPUT LOGIC READ ADDRESS MULTIPLEXER ICM7228C WRITE SHUTDOWN INTERDIGIT BLANKING DECIMAL POINT 1 5 1 1 4 7 8 8 8 5 8 1 1 1 DA0 - DA2 3 DIGIT ADDRESS ID0 - ID3 ID7 DATA INPUT HEXADECIMAL/ CODE B/ SHUTDOWN 4 ICM7228 Absolute Maximum Ratings Thermal Information Supply Voltage (VDD - VSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6V Digit Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500mA Segment Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA Input Voltage (Note 1) (Any Terminal) . . (VSS-0.3V)>1, then it can be simplified as follows: From the above equation, it is shown that the system is a single order system, which has a single pole located at before the half switching frequency. Therefore, simple type II compensator can be easily used to stabilize the system. Figure 15 shows the voltage loop compensator, and its transfer function is expressed as follows: where Compensator design goal: • High DC gain • Loop bandwidth fc: • Gain margin: >10dB • Phase margin: 40° The compensator design procedure is as follows: 1. Put compensator zero at: 2. Put one compensator pole at zero frequency to achieve high DC gain, and put another compensator pole at either ESR zero frequency or half switching frequency, whichever is lower. The loop gain Tv(S) at cross over frequency of fc has unity gain. Therefore, the compensator resistance R1 is determined by: where gm is the trans-conductance of the voltage loop error amplifier. Compensator capacitor C1 is then given by: Example: Vin = 19V, Vo = 16.8V, Io = 2.6A, fs = 300kHz, Co = 10μF/10mΩ, L = 10μH, gm = 250μs, RT = 0.8Ω, VFB = 2.1V, fc = 20kHz, then compensator resistance R1 = 10kΩ. Choose R1 = 10kΩ. Put the compensator zero at 1.5kHz. The compensator capacitor is C1 = 6.5nF. Therefore, choose voltage loop compensator: R1 = 10k, C1 = 6.5nF. Ti(S) = 0.25 RTF2(S)M Tv(S) = KM F1(S)AV(S) o FB V V K = ( ) 1 T (S) T S L (S) i v v + = LV(S) 4VFB VO -------------- (RO + RL) RT ----------------------------- 1 S ωesr + ------------ 1 Sω P + ------- ------------------------AV(S) ωP 1 ROCO = , ≈ ----------------- ωp FIGURE 14. SMALL SIGNAL MODEL OF SYNCHRONOUS BUCK REGULATOR dˆ Vin dˆ vˆIL iˆin L + 1:D + iˆL Co Rc Ro -Av(S) dˆ vˆcomp RT 11/Vin + Ti(S) K vˆo Tv(S) - VCA2 0.25VCA2 VindILdin ( ) SC 1 S g vˆ vˆ A S 1 cz m FB comp v ω + = = R C 1 1 1 ωcz = - + R1 C1 VREF VFB Vo gm VCOMP FIGURE 15. VOLTAGE LOOP COMPENSATOR fs 20 1 5 1 ⎟⎠ ⎞ ⎜⎝ ⎛ − ( ) o o cz R C ω = 1 − 3 1 R1 8πfCVOCORT gmVFB = --------------------------------------- 1 cz 1 R C 1 ω = ISL6251, ISL6251A 18 FN9202.2 May 10, 2006 PCB Layout Considerations Power and Signal Layers Placement on the PCB As a general rule, power layers should be close together, either on the top or bottom of the board, with signal layers on the opposite side of the board. As an example, layer arrangement on a 4-layer board is shown below: 1. Top Layer: signal lines, or half board for signal lines and the other half board for power lines 2. Signal Ground 3. Power Layers: Power Ground 4. Bottom Layer: Power MOSFET, Inductors and other Power traces Separate the power voltage and current flowing path from the control and logic level signal path. The controller IC will stay on the signal layer, which is isolated by the signal ground to the power signal traces. Component Placement The power MOSFET should be close to the IC so that the gate drive signal, the LGATE, UGATE, PHASE, and BOOT, traces can be short. Place the components in such a way that the area under the IC has less noise traces with high dv/dt and di/dt, such as gate signals and phase node signals. Signal Ground and Power Ground Connection. At minimum, a reasonably large area of copper, which will shield other noise couplings through the IC, should be used as signal ground beneath the IC. The best tie-point between the signal ground and the power ground is at the negative side of the output capacitor on each side, where there is little noise; a noisy trace beneath the IC is not recommended. GND and VDD Pin At least one high quality ceramic decoupling cap should be used to cross these two pins. The decoupling cap can be put close to the IC. LGATE Pin This is the gate drive signal for the bottom MOSFET of the buck converter. The signal going through this trace has both high dv/dt and high di/dt, and the peak charging and discharging current is very high. These two traces should be short, wide, and away from other traces. There should be no other traces in parallel with these traces on any layer. PGND Pin PGND pin should be laid out to the negative side of the relevant output cap with separate traces. The negative side of the output capacitor must be close to the source node of the bottom MOSFET. This trace is the return path of LGATE. PHASE Pin This trace should be short, and positioned away from other weak signal traces. This node has a very high dv/dt with a voltage swing from the input voltage to ground. No trace should be in parallel with it. This trace is also the return path for UGATE. Connect this pin to the high-side MOSFET source. UGATE Pin This pin has a square shape waveform with high dv/dt. It provides the gate drive current to charge and discharge the top MOSFET with high di/dt. This trace should be wide, short, and away from other traces similar to the LGATE. BOOT Pin This pin’s di/dt is as high as the UGATE; therefore, this trace should be as short as possible. CSOP, CSON Pins The current sense resistor connects to the CSON and the CSOP pins through a low pass filter. The CSON pin is also used as the battery voltage feedback. The traces should be away from the high dv/dt and di/di pins like PHASE, BOOT pins. In general, the current sense resistor should be close to the IC. Other layout arrangements should be adjusted accordingly. EN Pin This pin stays high at enable mode and low at idle mode and is relatively robust. Enable signals should refer to the signal ground. DCIN Pin This pin connects to AC adapter output voltage, and should be less noise sensitive. Copper Size for the Phase Node The capacitance of PHASE should be kept very low to minimize ringing. It would be best to limit the size of the PHASE node copper in strict accordance with the current and thermal management of the application. Identify the Power and Signal Ground The input and output capacitors of the converters, the source terminal of the bottom switching MOSFET PGND should connect to the power ground. The other components should connect to signal ground. Signal and power ground are tied together at one point. Clamping Capacitor for Switching MOSFET It is recommended that ceramic caps be used closely connected to the drain of the high-side MOSFET, and the source of the low-side MOSFET. This capacitor reduces the noise and the power loss of the MOSFET. ISL6251, ISL6251A 19 FN9202.2 May 10, 2006 ISL6251, ISL6251A Quad Flat No-Lead Plastic Package (QFN) Micro Lead Frame Plastic Package (MLFP) INDEX D1/2 D1 D/2 D E1/2 E/2 E A 2X 0.15 B C 0.10 M C A B A N SEATING PLANE N 6 3 2 23 e 1 1 0.08 FOR ODD TERMINAL/SIDE FOR EVEN TERMINAL/SIDE C C SECTION "C-C" NX b A1 C 2X 0.15 C 0.15 2X B 0 REF. (Nd-1)Xe (NRe-E1F)X. e 5 A1 4X P A C C 4X P B 2X 0.15 C A A2 A3 D2 D2 E2 E2/2 TERMINAL TIP SIDE VIEW TOP VIEW 7 BOTTOM VIEW 7 5 CL CL e e E1 2 NX k NX b 8 NX L 8 8 9 AREA 9 4X / / 0.10 C 9 (DATUM B) (DATUM A) INDEX 6 AREA N 9 CORNER OPTION 4X L1 L 10 L1 L 10 L28.5x5 28 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE (COMPLIANT TO JEDEC MO-220VHHD-1 ISSUE I) SYMBOL MILLIMETERS MIN NOMINAL MAX NOTES A 0.80 0.90 1.00 - A1 - 0.02 0.05 - A2 - 0.65 1.00 9 A3 0.20 REF 9 b 0.18 0.25 0.30 5,8 D 5.00 BSC - D1 4.75 BSC 9 D2 2.95 3.10 3.25 7,8 E 5.00 BSC - E1 4.75 BSC 9 E2 2.95 3.10 3.25 7,8 e 0.50 BSC - k 0.20 - - - L 0.50 0.60 0.75 8 N 28 2 Nd 7 3 Ne 7 3 P - - 0.60 9 θ - - 12 9 Rev. 1 11/04 NOTES: 1. Dimensioning and tolerancing conform to ASME Y14.5-1994. 2. N is the number of terminals. 3. Nd and Ne refer to the number of terminals on each D and E. 4. All dimensions are in millimeters. Angles are in degrees. 5. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature. 7. Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance. 8. Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389. 9. Features and dimensions A2, A3, D1, E1, P & θ are present when Anvil singulation method is used and not present for saw singulation. 20 All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN9202.2 May 10, 2006 ISL6251, ISL6251A Shrink Small Outline Plastic Packages (SSOP) Quarter Size Outline Plastic Packages (QSOP) NOTES: 1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. Dimension “B” does not include dambar protrusion. Allowable dambar protrusion shall be 0.10mm (0.004 inch) total in excess of “B” dimension at maximum material condition. 10. Controlling dimension: INCHES. Converted millimeter dimensions are not necessarily exact. α INDEX AREA E D N 1 2 3 -B- 0.17(0.007) M C A B S e -AB M -CA1 A SEATING PLANE 0.10(0.004) h x 45° C H 0.25(0.010) M B M L 0.25 0.010 GAUGE PLANE A2 M24.15 24 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE (0.150” WIDE BODY) SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A 0.053 0.069 1.35 1.75 - A1 0.004 0.010 0.10 0.25 - A2 - 0.061 - 1.54 - B 0.008 0.012 0.20 0.30 9 C 0.007 0.010 0.18 0.25 - D 0.337 0.344 8.55 8.74 3 E 0.150 0.157 3.81 3.98 4 e 0.025 BSC 0.635 BSC - H 0.228 0.244 5.80 6.19 - h 0.0099 0.0196 0.26 0.49 5 L 0.016 0.050 0.41 1.27 6 N 24 24 7 α 0° 8° 0° 8° - Rev. 2 6/04 1 ® FN3282.13 DG411, DG412, DG413 Monolithic Quad SPST, CMOS Analog Switches The DG411 series monolithic CMOS analog switches are drop-in replacements for the popular DG211 and DG212 series devices. They include four independent single pole throw (SPST) analog switches, and TTL and CMOS compatible digital inputs. These switches feature lower analog ON-resistance (<35Ω) and faster switch time (tON<175ns) compared to the DG211 or DG212. Charge injection has been reduced, simplifying sample and hold applications. The improvements in the DG411 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44V maximum voltage range permits controlling 40VP-P signals. Power supplies may be single-ended from +5V to 44V, or split from ±5V to ±20V. The four switches are bilateral, equally matched for AC or bidirectional signals. The ON-resistance variation with analog signals is quite low over a ±15V analog input range. The switches in the DG411 and DG412 are identical, differing only in the polarity of the selection logic. Two of the switches in the DG413 (#2 and #3) use the logic of the DG211 and DG411 (i.e., a logic “0” turns the switch ON) and the other two switches use DG212 and DG412 positive logic. This permits independent control of turn-on and turn-off times for SPDT configurations, permitting “break-before-make” or “makebefore- break” operation with a minimum of external logic. Features • ON-Resistance (Max). . . . . . . . . . . . . . . . . . . . . . . . . 35Ω • Low Power Consumption (PD) . . . . . . . . . . . . . . . . . . <35μW • Fast Switching Action - tON (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175ns - tOFF (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145ns • Low Charge Injection • Upgrade from DG211, DG212 • TTL, CMOS Compatible • Single or Split Supply Operation • Pb-Free Plus Anneal Available (RoHS Compliant) Applications • Audio Switching • Battery Operated Systems • Data Acquisition • Hi-Rel Systems • Sample and Hold Circuits • Communication Systems • Automatic Test Equipment Data Sheet June 20, 2007 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 1993, 1994, 1997, 1999, 2002, 2004-2007. All Rights Reserved All other trademarks mentioned are the property of their respective owners. 2 FN3282.13 June 20, 2007 Pinout DG411, DG412, DG413 (16 LD PDIP, SOIC, TSSOP) TOP VIEW Ordering Information PART NUMBER PART MARKING TEMP. RANGE (°C) PACKAGE PKG. DWG. # DG411DJ DG411DJ -40 to +85 16 Ld PDIP E16.3 DG411DJZ (Note) DG411DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3 DG411DY* DG411DY -40 to +85 16 Ld SOIC (150 mil) M16.15 DG411DYZ* (Note) DG411DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15 DG411DVZ* (Note) DG411 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173 DG412DJ DG412DJ -40 to +85 16 Ld PDIP E16.3 DG412DJZ (Note) DG412DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3 DG412DY* DG412DY -40 to +85 16 Ld SOIC (150 mil) M16.15 DG412DYZ* (Note) DG412DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15 DG412DVZ* (Note) DG412 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173 DG413DJ DG413DJ -40 to +85 16 Ld PDIP E16.3 DG413DJZ (Note) DG413DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3 DG413DY* DG413DY -40 to +85 16 Ld SOIC (150 mil) M16.15 DG413DYZ* (Note) DG413DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15 DG413DVZ* (Note) DG413 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173 *Add “-T” suffix for tape and reel. **Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications. NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. TRUTH TABLE LOGIC DG411 DG412 DG413 SWITCH SWITCH SWITCH 1, 4 SWITCH 2, 3 0 On Off Off On 1 Off On On Off NOTE: Logic “0” ≤0.8V. Logic “1” ≥2.4V. 14 15 16 9 13 12 11 10 1 2 3 4 5 7 6 8 IN1 D1 S1 VGND S4 IN4 D4 IN2 S2 V+ VL S3 D3 IN3 D2 Pin Descriptions PIN SYMBOL DESCRIPTION 1 IN1 Logic Control for Switch 1. 2 D1 Drain (Output) Terminal for Switch 1. 3 S1 Source (Input) Terminal for Switch 1. 4 V- Negative Power Supply Terminal. 5 GND Ground Terminal (Logic Common). 6 S4 Source (Input) Terminal for Switch 4. 7 D4 Drain (Output) Terminal for Switch 4. 8 IN4 Logic Control for Switch 4. 9 IN3 Logic Control for Switch 3. 10 D3 Drain (Output) Terminal for Switch 3. 11 S3 Source (Input) Terminal for Switch 3. 12 VL Logic Reference Voltage. 13 V+ Positive Power Supply Terminal (Substrate). 14 S2 Source (Input) Terminal for Switch 2. 15 D2 Drain (Output) Terminal for Switch 2. 16 IN2 Logic Control for Switch 2. DG411, DG412, DG413 3 FN3282.13 June 20, 2007 Functional Diagrams Four SPST Switches per Package Switches Shown for Logic “1” Input Schematic Diagram (1 Channel) S1 D1 S2 D2 S3 D3 S4 D4 DG411 S1 D1 S2 D2 S3 D3 S4 D4 IN1 DG412 IN2 IN3 IN4 S1 D1 S2 D2 S3 D3 S4 D4 IN1 DG413 IN2 IN3 IN4 IN2 IN3 IN4 IN1 S V+ INX GND VVVL D V+ DG411, DG412, DG413 4 FN3282.13 June 20, 2007 Absolute Maximum Ratings Thermal Information V+ to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44V GND to V-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25V VL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (GND -0.3V) to (V+) +0.3V Digital Inputs, VS, VD (Note 1). . . . . (V-) -2V to (V+) + 2V or 30mA, Whichever Occurs First Continuous Current (Any Terminal) . . . . . . . . . . . . . . . . . . . . . 30mA Peak Current, S or D (Pulsed 1ms, 10% Duty Cycle Max) . . 100mA Operating Conditions Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20V (Max) Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C Input Low Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8V (Max) Input High Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4V (Min) Input Rise and Fall Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤20ns Thermal Resistance (Typical, Note 2) θJA (°C/W) PDIP Package* . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 TSSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Maximum Junction Temperature (Plastic Packages). . . . . . . +150°C Maximum Storage Temperature Range. . . . . . . . . .-65°C to +150°C Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp (SOIC and TSSOP - Lead Tips Only) *Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications. CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 1. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings. 2. θJA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details. Electrical Specifications Test Conditions: V+ = +15V, V- = -15V, VL = 5V, VIN = 2.4V, 0.8V (Note 3), Unless Otherwise Specified. PARAMETER TEST CONDITIONS TEMP (°C) MIN (Note 4) TYP (Note 5) MAX (Note 4) UNITS DYNAMIC CHARACTERISTICS Turn-ON Time, tON RL = 300Ω, CL = 35pF, VS = ±10V (Figure 1) 25 - 110 175 ns 85 - - 220 ns Turn-OFF Time, tOFF 25 - 100 145 ns 85 - - 160 ns Break-Before-Make Time Delay DG413 Only, RL = 300Ω, CL = 35pF (Figure 2) 25 - 25 - ns Charge Injection, Q (Figure 3) CL = 10nF, VG = 0V, RG = 0Ω 25 - 5 - pC OFF Isolation (Figure 5) RL = 50Ω, CL = 5pF, f = 1MHz 25 - 68 - dB Crosstalk (Channel-to-Channel), (Figure 4) 25 - -85 - dB Source OFF Capacitance, CS(OFF) f = 1MHz (Figure 6) 25 - 9 - pF Drain OFF Capacitance, CD(OFF) 25 - 9 - pF Channel ON Capacitance, CD(ON) + CS(ON) 25 - 35 - pF DIGITAL INPUT CHARACTERISTICS Input Current VIN Low, IIL VIN Under Test = 0.8V, All Others = 2.4V Full -0.5 0.005 0.5 μA Input Current VIN High, IIH VIN Under Test = 2.4V, All Others = 0.8V Full -0.5 0.005 0.5 μA ANALOG SWITCH CHARACTERISTICS Analog Signal Range, VANALOG IS = 10mA Full -15 - 15 V Drain-Source ON Resistance, rDS(ON) IS = 10mA, VD = ±8.5V, V+ = 13.5V, V- = -13.5V 25 - 25 35 Ω Full - - 45 Ω ± ± DG411, DG412, DG413 5 FN3282.13 June 20, 2007 Source OFF Leakage Current, IS(OFF) V+ = 16.5V, V- = -16.5V, VD = ±15.5V, VS = 15.5V 25 -0.25 ±0.1 0.25 nA Full -5 - +5 nA Drain OFF Leakage Current, ID(OFF) 25 -0.25 ±0.1 0.25 nA Full -5 - +5 nA Channel ON Leakage Current, ID(ON) + IS(ON) V+ = 16.5V, V- = -16.5V, VS = VD = ±15.5V 25 -0.4 ±0.1 0.4 nA Full -10 - +10 nA POWER SUPPLY CHARACTERISTICS Positive Supply Current, I+ V+ = 16.5V, V- = -16.5V, VIN = 0V or 5V 25 - 0.0001 1 μA 85 - - 5 μA Negative Supply Current, I- 25 -1 -0.0001 - μA 85 -5 - - μA Logic Supply Current, IL 25 - 0.0001 1 μA 85 - - 5 μA Ground Current, IGND 25 -1 -0.0001 - μA 85 -5 - - μA Electrical Specifications (Single Supply) Test Conditions: V+ = +12V, V- = 0V, VL = 5V, VIN = 2.4V, 0.8V (Note 3), Unless Otherwise Specified. PARAMETER TEST CONDITIONS TEMP (°C) MIN (Note 4) TYP (Note 5) MAX (Note 4) UNITS DYNAMIC CHARACTERISTICS Turn-ON Time, tON RL = 300Ω, CL = 35pF, VS = 8V, (Figure 1) 25 - 175 250 ns 85 - - 315 ns Turn-OFF Time, tOFF 25 - 95 125 ns 85 - - 140 ns Break-Before-Make Time Delay DG413 Only, RL = 300Ω, CL = 35pF, VS = 8V 25 - 25 - ns Charge Injection, Q CL = 10nF, VG = 6.0V, RG = 0Ω 25 - 25 - pC ANALOG SWITCH CHARACTERISTICS Analog Signal Range, VANALOG Full 0 - 12 V Drain-Source ON-Resistance, rDS(ON) IS = -10mA, VD = 3V, 8V V+ = 10.8V 25 - 40 80 Ω Full - - 100 Ω Electrical Specifications Test Conditions: V+ = +15V, V- = -15V, VL = 5V, VIN = 2.4V, 0.8V (Note 3), Unless Otherwise Specified. (Continued) PARAMETER TEST CONDITIONS TEMP (°C) MIN (Note 4) TYP (Note 5) MAX (Note 4) UNITS ± DG411, DG412, DG413 6 FN3282.13 June 20, 2007 POWER SUPPLY CHARACTERISTICS Positive Supply Current, I+ V+ = 13.2V, V- = 0V VIN = 0V or 5V 25 - 0.0001 1 μA 85 - - 5 μA Negative Supply Current, I- 25 -1 -0.0001 - μA 85 -5 - - μA Logic Supply Current, IL 25 - 0.0001 1 μA 85 - - 5 μA Ground Current, IGND 25 -1 -0.0001 - μA 85 -5 - - μA NOTES: 3. VIN = input voltage to perform proper function. 4. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. 5. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. Test Circuits and Waveforms VO is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform. NOTE: Logic input waveform is inverted for switches that have the opposite logic sense. FIGURE 1A. MEASUREMENTS POINTS Repeat test for all IN and S. For load conditions, see Specifications. CL includes fixture and stray capacitance. FIGURE 1B. TEST CIRCUIT FIGURE 1. SWITCHING TIMES FIGURE 2A. MEASUREMENT POINTS FIGURE 2B. TEST CIRCUITS FIGURE 2. BREAK-BEFORE-MAKE TIME Electrical Specifications (Single Supply) Test Conditions: V+ = +12V, V- = 0V, VL = 5V, VIN = 2.4V, 0.8V (Note 3), Unless Otherwise Specified. (Continued) PARAMETER TEST CONDITIONS TEMP (°C) MIN (Note 4) TYP (Note 5) MAX (Note 4) UNITS 50% tr < 20ns tf < 20ns tOFF 90% 3V 0V VS 0V tON VO LOGIC INPUT SWITCH INPUT SWITCH OUTPUT 90% VO VS RL RL + rDS(ON) = ------------------------------------ SWITCH INPUT LOGIC INPUT S1 IN1 V+ D1 RL CL VO GND VVL +5V +15V SWITCH OUTPUT -15V tD 3V 0V VS1 0V tD LOGIC INPUT SWITCH OUTPUT SWITCH OUTPUT 90% 0V VS2 (V01) VO2 90% S1 IN1, IN2 V+ D1 RL1 CL1 VO1 GND VVL VS1 = 10V 300Ω +5V +15V S2 D2 35pF RL2 CL2 VO2 VS2 = 10V 300Ω 35pF -15V LOGIC INPUT CL includes fixture and stray capacitance. DG411, DG412, DG413 7 FN3282.13 June 20, 2007 FIGURE 3A. TEST CIRCUIT NOTE: INX dependent on switch configuration, input polarity determined by sense of switch. FIGURE 3B. MEASUREMENT POINTS FIGURE 3. CHARGE INJECTION FIGURE 4. CROSSTALK TEST CIRCUIT FIGURE 5. OFF ISOLATION TEST CIRCUIT FIGURE 6. SOURCE/DRAIN CAPACITANCES TEST CIRCUIT Test Circuits and Waveforms (Continued) V+ D1 CL VO GND VVIN = 3V RG VG SWITCH ΔVO INX OFF ON INX OFF OFF OFF ON Q = ΔVO x CL OUTPUT 0V, 2.4V ANALYZER +15V C V+ 0dBm VS SIGNAL GENERATOR RL GND IN1 VD IN2 50Ω 0V, 2.4V NC V- -15V C VD ANALYZER RL +15V 0dBm SIGNAL GENERATOR C V+ V- -15V C 0V, 2.4V VS VD INX GND +15V C V+ GND VS VD INX V- -15V C IMPEDANCE ANALYZER f = 1MHz 0V, 2.4V DG411, DG412, DG413 8 FN3282.13 June 20, 2007 Application Information Single Supply Operation The DG411, DG412, DG413 can be operated with unipolar supplies from 5V to 44V. These devices are characterized and tested for single supply operation at 12V to facilitate the majority of applications. To function properly, 12V is tied to Pins 13 and 0V is tied to Pin 4. Pin 12 still requires 5V for TTL compatible switching. Summing Amplifier When driving a high impedance, high capacitance load such as shown in Figure 7, where the inputs to the summing amplifier have some noise filtering, it is necessary to have shunt switches for rapid discharge of the filter capacitor, thus preventing offsets from occurring at the output. VIN1 R1 R2 VOUT + - C1 VIN2 R3 R4 C2 DG413 R5 R6 FIGURE 7. SUMMING AMPLIFIER DG411, DG412, DG413 9 FN3282.13 June 20, 2007 Typical Performance Curves FIGURE 8. ON RESISTANCE vs VD AND POWER SUPPLY VOLTAGE FIGURE 9. SWITCHING TIME vs TEMPERATURE FIGURE 10. LEAKAGE CURRENTS vs ANALOG VOLTAGE FIGURE 11. SUPPLY CURRENT vs INPUT SWITCHING FREQUENCY FIGURE 12. CHARGE INJECTION vs SOURCE VOLTAGE FIGURE 13. CHARGE INJECTION vs DRAIN VOLTAGE TA = +25°C 50 A: ±5V B: ±8V C: ±10V D: ±12V E: ±15V F: ±20V 45 40 35 30 25 20 15 10 5 0 -20 -15 -10 -5 0 5 10 15 20 A B C D E F DRAIN VOLTAGE (V) rDS(ON) (Ω) V+ = 15V, V- = -15V VL = 5V, VS = 10V tON tOFF -55 -15 5 25 45 65 85 105 125 TEMPERATURE (°C) -35 0 240 210 180 150 120 90 60 30 tON, tOFF (ns) V+ = 15V, V- = -15V VL = 5V, TA = +25°C -15 -5 0 5 10 15 VS, VD (V) -10 -60 20 10 0 -10 -20 -30 -40 -50 IS, ID (pA) IS(OFF) ID(OFF) 30 40 ID(ON) + IS(ON) ISUPPLY 100mA 1mA 100μA 10μA 1μA 100nA 10nA 10mA 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) IL I+, I- 1SW 1SW 4SW 4SW V+ = 15V, V- = -15V VL = 5V CL = 10nF CL = 1nF -15 -5 0 5 10 15 VS (V) -10 -60 60 40 20 0 -20 -40 Q (pC) 80 100 V+ = 15V, V- = -15V VL = 5V CL = 10nF CL = 1nF -15 -5 0 5 10 15 VD (V) -10 -60 60 40 20 0 -20 -40 Q (pC) 100 140 120 80 V+ = 15V, V- = -15V VL = 5V DG411, DG412, DG413 10 FN3282.13 June 20, 2007 Die Characteristics DIE DIMENSIONS: 2760mm x 1780mm x 485mm METALLIZATION: Type: SiAl Thickness: 12kÅ ±1kÅ PASSIVATION: Type: Nitride Thickness: 8kÅ ±1kÅ WORST CASE CURRENT DENSITY: 1.5 x 105 A/cm2 Metallization Mask Layout DG411, DG412, DG413 S1 (3) V- (4) GND (5) S4 (6) D1 IN1 IN2 (11) S3 (12) VL (13) V+ SUBSTRATE (14) S2 (15) D2 (2) (1) (16) D4 IN4 IN3 D3 (7) (8) (9) (10) DG411, DG412, DG413 11 FN3282.13 June 20, 2007 DG411, DG412, DG413 Thin Shrink Small Outline Plastic Packages (TSSOP) NOTES: 1. These package dimensions are within allowable dimensions of JEDEC MO-153-AB, Issue E. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E1” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.15mm (0.006 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall be 0.08mm (0.003 inch) total in excess of “b” dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm (0.0027 inch). 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. (Angles in degrees) α INDEX AREA E1 D N 1 2 3 -B- 0.10(0.004) M C A B S e -Ab M -CA1 A SEATING PLANE 0.10(0.004) c E 0.25(0.010) M B M L 0.25 0.010 GAUGE PLANE A2 0.05(0.002) M16.173 16 LEAD THIN SHRINK SMALL OUTLINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A - 0.043 - 1.10 - A1 0.002 0.006 0.05 0.15 - A2 0.033 0.037 0.85 0.95 - b 0.0075 0.012 0.19 0.30 9 c 0.0035 0.008 0.09 0.20 - D 0.193 0.201 4.90 5.10 3 E1 0.169 0.177 4.30 4.50 4 e 0.026 BSC 0.65 BSC - E 0.246 0.256 6.25 6.50 - L 0.020 0.028 0.50 0.70 6 N 16 16 7 a 0o 8o 0o 8o - Rev. 1 2/02 12 FN3282.13 June 20, 2007 DG411, DG412, DG413 Dual-In-Line Plastic Packages (PDIP) NOTES: 1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication No. 95. 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3. 5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm). 6. E and are measured with the leads constrained to be perpendicular to datum . 7. eB and eC are measured at the lead tips with the leads unconstrained. eC must be zero or greater. 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm). 9. N is the maximum number of terminal positions. 10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm). eA -CCL E eA C eB eC -BE1 INDEX 1 2 3 N/2 N AREA SEATING BASE PLANE PLANE -CD1 B1 B e D D1 A2 A L A1 -A- 0.010 (0.25) M C A B S E16.3 (JEDEC MS-001-BB ISSUE D) 16 LEAD DUAL-IN-LINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A - 0.210 - 5.33 4 A1 0.015 - 0.39 - 4 A2 0.115 0.195 2.93 4.95 - B 0.014 0.022 0.356 0.558 - B1 0.045 0.070 1.15 1.77 8, 10 C 0.008 0.014 0.204 0.355 - D 0.735 0.775 18.66 19.68 5 D1 0.005 - 0.13 - 5 E 0.300 0.325 7.62 8.25 6 E1 0.240 0.280 6.10 7.11 5 e 0.100 BSC 2.54 BSC - eA 0.300 BSC 7.62 BSC 6 eB - 0.430 - 10.92 7 L 0.115 0.150 2.93 3.81 4 N 16 16 9 Rev. 0 12/93 13 All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN3282.13 June 20, 2007 DG411, DG412, DG413 Small Outline Plastic Packages (SOIC) NOTES: 1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch). 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. INDEX AREA E D N 1 2 3 -B- 0.25(0.010) M C A B S e -AL B M -CA1 A SEATING PLANE 0.10(0.004) h x 45° C H 0.25(0.010) M B M α M16.15 (JEDEC MS-012-AC ISSUE C) 16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A 0.0532 0.0688 1.35 1.75 - A1 0.0040 0.0098 0.10 0.25 - B 0.013 0.020 0.33 0.51 9 C 0.0075 0.0098 0.19 0.25 - D 0.3859 0.3937 9.80 10.00 3 E 0.1497 0.1574 3.80 4.00 4 e 0.050 BSC 1.27 BSC - H 0.2284 0.2440 5.80 6.20 - h 0.0099 0.0196 0.25 0.50 5 L 0.016 0.050 0.40 1.27 6 N 16 16 7 α 0° 8° 0° 8° - Rev. 1 6/05 1 ® July 2004 HIP4081A 80V/2.5A Peak, High Frequency Full Bridge FET Driver The HIP4081A is a high frequency, medium voltage Full Bridge N-Channel FET driver IC, available in 20 lead plastic SOIC and DIP packages. The HIP4081A can drive every possible switch combination except those which would cause a shoot-through condition. The HIP4081A can switch at frequencies up to 1MHz and is well suited to driving Voice Coil Motors, high-frequency switching power amplifiers, and power supplies. For example, the HIP4081A can drive medium voltage brush motors, and two HIP4081As can be used to drive high performance stepper motors, since the short minimum “on-time” can provide fine micro-stepping capability. Short propagation delays of approximately 55ns maximizes control loop crossover frequencies and dead-times which can be adjusted to near zero to minimize distortion, resulting in rapid, precise control of the driven load. A similar part, the HIP4080A, includes an on-chip input comparator to create a PWM signal from an external triangle wave and to facilitate “hysteresis mode” switching. The Application Note for the HIP4081A is the AN9405. Features • Independently Drives 4 N-Channel FET in Half Bridge or Full Bridge Configurations • Bootstrap Supply Max Voltage to 95VDC • Drives 1000pF Load at 1MHz in Free Air at 50°C with Rise and Fall Times of Typically 10ns • User-Programmable Dead Time • On-Chip Charge-Pump and Bootstrap Upper Bias Supplies • DIS (Disable) Overrides Input Control • Input Logic Thresholds Compatible with 5V to 15V Logic Levels • Very Low Power Consumption • Undervoltage Protection • Pb-free Available Applications • Medium/Large Voice Coil Motors • Full Bridge Power Supplies • Switching Power Amplifiers • High Performance Motor Controls • Noise Cancellation Systems • Battery Powered Vehicles • Peripherals • U.P.S. Pinout HIP4081A (PDIP, SOIC) TOP VIEW Ordering Information PART NUMBER TEMP RANGE (°C) PACKAGE PKG. DWG. # HIP4081AIP -40 to 85 20 Ld PDIP E20.3 HIP4081AIPZ (Note) -40 to 85 20 Ld PDIP (Pb-free) E20.3 HIP4081AIB -40 to 85 20 Ld SOIC (W) M20.3 HIP4081AIBZ (Note) -40 to 85 20 Ld SOIC (W) (Pb-free) M20.3 NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which is compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J Std-020B. 11 12 13 14 15 16 17 18 20 19 10 9 8 7 6 5 4 3 2 BHB 1 BHI DIS VSS BLI ALI HDEL AHI LDEL AHB BHO BLO BLS VDD BHS VCC ALS ALO AHS AHO Data Sheet FN3659.7 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Harris Corporation. Copyright Intersil Americas Inc. 2003, 2004. All Rights Reserved All other trademarks mentioned are the property of their respective owners. 2 HIP4081A Application Block Diagram Functional Block Diagram (1/2 HIP4081A) 80V GND LOAD HIP4081A GND 12V AHI ALI BLI BHI BLO BHS BHO ALO AHS AHO CHARGE PUMP VDD AHI DIS ALI HDEL LDEL VSS TURN-ON DELAY TURN-ON DELAY DRIVER DRIVER AHB AHO AHS VCC ALO ALS CBF TO VDD (PIN 16) CBS DBS HIGH VOLTAGE BUS ≤ 80VDC +12VDC LEVEL SHIFT AND LATCH 14 10 11 12 15 13 16 7 3 6 8 9 4 BIAS SUPPLY UNDERVOLTAGE 3 Typical Application (PWM Mode Switching) 11 12 13 14 15 16 17 18 20 19 10 9 8 7 6 5 4 3 2 1 BHB BHI DIS VSS BLI ALI HDEL AHI LDEL AHB BHO BLO BLS VDD BHS VCC ALS ALO AHS AHO 80V 12V + - 12V DIS GND 6V GND TO OPTIONAL CURRENT CONTROLLER PWM LOAD INPUT HIP4081/HIP4081A HIP4081A 4 HIP4081A Absolute Maximum Ratings Thermal Information Supply Voltage, VDD and VCC . . . . . . . . . . . . . . . . . . . . -0.3V to 16V Logic I/O Voltages . . . . . . . . . . . . . . . . . . . . . . . -0.3V to VDD +0.3V Voltage on AHS, BHS . . . -6.0V (Transient) to 80V (25°C to 125°C) Voltage on AHS, BHS . . . -6.0V (Transient) to 70V (-55°C to 125°C) Voltage on ALS, BLS . . . . . . . -2.0V (Transient) to +2.0V (Transient) Voltage on AHB, BHB . . . . . . . . VAHS, BHS -0.3V to VAHS, BHS +VDD Voltage on ALO, BLO . . . . . . . . . . . . .VALS, BLS -0.3V to VCC +0.3V Voltage on AHO, BHO . . . . . . . VAHS, BHS -0.3V to VAHB, BHB +0.3V Input Current, HDEL and LDEL . . . . . . . . . . . . . . . . . . -5mA to 0mA Phase Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V/ns NOTE: All Voltages relative to VSS, unless otherwise specified. Thermal Resistance (Typical, Note 1) θJA (°C/W) SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 DIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Storage Temperature Range. . . . . . . . . . . . . . . . . . . -65°C to 150°C Operating Max. Junction Temperature . . . . . . . . . . . . . . . . . . 125°C Lead Temperature (Soldering 10s)). . . . . . . . . . . . . . . . . . . . . 300°C (For SOIC - Lead Tips Only Operating Conditions Supply Voltage, VDD and VCC . . . . . . . . . . . . . . . . . . +9.5V to +15V Voltage on ALS, BLS . . . . . . . . . . . . . . . . . . . . . . . . . -1.0V to +1.0V Voltage on AHB, BHB . . . . . . . . . VAHS, BHS +5V to VAHS, BHS +15V Input Current, HDEL and LDEL . . . . . . . . . . . . . . . .-500μA to -50μA Operating Ambient Temperature Range . . . . . . . . . . .-40°C to 85°C CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. θJA is measured with the component mounted on an evaluation PC board in free air. Electrical Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS TJ = 25°C TJS = -40°C TO 125°C MIN TYP MAX MIN MAX UNITS SUPPLY CURRENTS AND CHARGE PUMPS VDD Quiescent Current IDD All inputs = 0V 8.5 10.5 14.5 7.5 14.5 mA VDD Operating Current IDDO Outputs switching f = 500kHz 9.5 12.5 15.5 8.5 15.5 mA VCC Quiescent Current ICC All Inputs = 0V, IALO = IBLO = 0 - 0.1 10 - 20 μA VCC Operating Current ICCO f = 500kHz, No Load 1 1.25 2.0 0.8 3 mA AHB, BHB Quiescent Current - Qpump Output Current IAHB, IBHB All Inputs = 0V, IAHO = IBHO = 0 VDD = VCC = VAHB = VBHB = 10V -50 -30 -11 -60 -10 μA AHB, BHB Operating Current IAHBO, IBHBO f = 500kHz, No Load 0.6 1.2 1.5 0.5 1.9 mA AHS, BHS, AHB, BHB Leakage Current IHLK VBHS = VAHS = 80V, VAHB = VBHB = 93V - 0.02 1.0 - 10 μA AHB-AHS, BHB-BHS Qpump Output Voltage VAHB-VAHS VBHB-VBHS IAHB = IAHB = 0, No Load 11.5 12.6 14.0 10.5 14.5 V INPUT PINS: ALI, BLI, AHI, BHI, AND DIS Low Level Input Voltage VIL Full Operating Conditions - - 1.0 - 0.8 V High Level Input Voltage VIH Full Operating Conditions 2.5 - - 2.7 - V Input Voltage Hysteresis - 35 - - - mV Low Level Input Current IIL VIN = 0V, Full Operating Conditions -130 -100 -75 -135 -65 μA High Level Input Current IIH VIN = 5V, Full Operating Conditions -1 - +1 -10 +10 μA TURN-ON DELAY PINS: LDEL AND HDEL LDEL, HDEL Voltage VHDEL, VLDEL IHDEL = ILDEL = -100μA 4.9 5.1 5.3 4.8 5.4 V GATE DRIVER OUTPUT PINS: ALO, BLO, AHO, AND BHO Low Level Output Voltage VOL IOUT = 100mA 0.7 0.85 1.0 0.5 1.1 V High Level Output Voltage VCC-VOH IOUT = -100mA 0.8 0.95 1.1 0.5 1.2 V Peak Pullup Current IO+ VOUT = 0V 1.7 2.6 3.8 1.4 4.1 A 5 HIP4081A Peak Pulldown Current IO- VO UT = 12V 1.7 2.4 3.3 1.3 3.6 A Undervoltage, Rising Threshold UV+ 8.1 8.8 9.4 8.0 9.5 V Undervoltage, Falling Threshold UV- 7.6 8.3 8.9 7.5 9.0 V Undervoltage, Hysteresis HYS 0.25 0.4 0.65 0.2 0.7 V Switching Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K, CL = 1000pF. PARAMETER SYMBOL TEST CONDITIONS TJ = 25°C TJS = -40°C TO 125°C MIN TYP MAX MIN MAX UNITS Lower Turn-off Propagation Delay (ALI-ALO, BLI-BLO) TLPHL - 30 60 - 80 ns Upper Turn-off Propagation Delay (AHI-AHO, BHI-BHO) THPHL - 35 70 - 90 ns Lower Turn-on Propagation Delay (ALI-ALO, BLI-BLO) TLPLH RHDEL = RLDEL = 10K - 45 70 - 90 ns Upper Turn-on Propagation Delay (AHI-AHO, BHI-BHO) THPLH RHDEL = RLDEL = 10K - 60 90 - 110 ns Rise Time TR - 10 25 - 35 ns Fall Time TF - 10 25 - 35 ns Turn-on Input Pulse Width TPWIN-ON RHDEL = RLDEL = 10K 50 - - 50 - ns Turn-off Input Pulse Width TPWIN-OFF RHDEL = RLDEL = 10K 40 - - 40 - ns Turn-on Output Pulse Width TPWOUT-ON RHDEL = RLDEL = 10K 40 - - 40 - ns Turn-off Output Pulse Width TPWOUT-OFF RHDEL = RLDEL = 10K 30 - - 30 - ns Disable Turn-off Propagation Delay (DIS - Lower Outputs) TDISLOW - 45 75 - 95 ns Disable Turn-off Propagation Delay (DIS - Upper Outputs) TDISHIGH - 55 85 - 105 ns Disable to Lower Turn-on Propagation Delay (DIS - ALO and BLO) TDLPLH - 40 70 - 90 ns Refresh Pulse Width (ALO and BLO) TREF-PW 240 410 550 200 600 ns Disable to Upper Enable (DIS - AHO and BHO) TUEN - 450 620 - 690 ns TRUTH TABLE INPUT OUTPUT ALI, BLI AHI, BHI U/V DIS ALO, BLO AHO, BHO X X X 1 0 0 1 X 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 X X 1 X 0 0 NOTE: X signifies that input can be either a “1” or “0”. Electrical Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified (Continued) PARAMETER SYMBOL TEST CONDITIONS TJ = 25°C TJS = -40°C TO 125°C MIN TYP MAX MIN MAX UNITS 6 HIP4081A Pin Descriptions PIN NUMBER SYMBOL DESCRIPTION 1 BHB B High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap diode and positive side of bootstrap capacitor to this pin. Internal charge pump supplies 30μA out of this pin to maintain bootstrap supply. Internal circuitry clamps the bootstrap supply to approximately 12.8V. 2 BHI B High-side Input. Logic level input that controls BHO driver (Pin 20). BLI (Pin 5) high level input overrides BHI high level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 3) high level input overrides BHI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 3 DIS DISable input. Logic level input that when taken high sets all four outputs low. DIS high overrides all other inputs. When DIS is taken low the outputs are controlled by the other inputs. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 4 VSS Chip negative supply, generally will be ground. 5 BLI B Low-side Input. Logic level input that controls BLO driver (Pin 18). If BHI (Pin 2) is driven high or not connected externally then BLI controls both BLO and BHO drivers, with dead time set by delay currents at HDEL and LDEL (Pin 8 and 9). DIS (Pin 3) high level input overrides BLI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 6 ALI A Low-side Input. Logic level input that controls ALO driver (Pin 13). If AHI (Pin 7) is driven high or not connected externally then ALI controls both ALO and AHO drivers, with dead time set by delay currents at HDEL and LDEL (Pin 8 and 9). DIS (Pin 3) high level input overrides ALI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 7 AHI A High-side Input. Logic level input that controls AHO driver (Pin 11). ALI (Pin 6) high level input overrides AHI high level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 3) high level input overrides AHI high level input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD). 8 HDEL High-side turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the turn-on delay of both high-side drivers. The low-side drivers turn-off with no adjustable delay, so the HDEL resistor guarantees no shoot-through by delaying the turn-on of the high-side drivers. HDEL reference voltage is approximately 5.1V. 9 LDEL Low-side turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the turn-on delay of both low-side drivers. The high-side drivers turn-off with no adjustable delay, so the LDEL resistor guarantees no shoot-through by delaying the turn-on of the low-side drivers. LDEL reference voltage is approximately 5.1V. 10 AHB A High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap diode and positive side of bootstrap capacitor to this pin. Internal charge pump supplies 30μA out of this pin to maintain bootstrap supply. Internal circuitry clamps the bootstrap supply to approximately 12.8V. 11 AHO A High-side Output. Connect to gate of A High-side power MOSFET. 12 AHS A High-side Source connection. Connect to source of A High-side power MOSFET. Connect negative side of bootstrap capacitor to this pin. 13 ALO A Low-side Output. Connect to gate of A Low-side power MOSFET. 14 ALS A Low-side Source connection. Connect to source of A Low-side power MOSFET. 15 VCC Positive supply to gate drivers. Must be same potential as VDD (Pin 16). Connect to anodes of two bootstrap diodes. 16 VDD Positive supply to lower gate drivers. Must be same potential as VCC (Pin 15). De-couple this pin to VSS (Pin 4). 17 BLS B Low-side Source connection. Connect to source of B Low-side power MOSFET. 18 BLO B Low-side Output. Connect to gate of B Low-side power MOSFET. 19 BHS B High-side Source connection. Connect to source of B High-side power MOSFET. Connect negative side of bootstrap capacitor to this pin. 20 BHO B High-side Output. Connect to gate of B High-side power MOSFET. 7 HIP4081A Timing Diagrams FIGURE 1. INDEPENDENT MODE FIGURE 2. BISTATE MODE FIGURE 3. DISABLE FUNCTION U/V = DIS = 0 XLI XHI XLO XHO TLPHL THPHL THPLH TLPLH TR (10% - 90%) TF (10% - 90%) X = A OR B, A AND B HALVES OF BRIDGE CONTROLLER ARE INDEPENDENT U/V = DIS = 0 XLI XHI = HI OR NOT CONNECTED XLO XHO (10% - 90%) (10% - 90%) U/V OR DIS XLI XHI XLO XHO TDLPLH TDIS TUEN TREF-PW 8 HIP4081A Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified FIGURE 4. QUIESCENT IDD SUPPLY CURRENT vs VDD SUPPLY VOLTAGE FIGURE 5. IDDO, NO-LOAD IDD SUPPLY CURRENT vs FREQUENCY (kHz) FIGURE 6. SIDE A, B FLOATING SUPPLY BIAS CURRENT vs FREQUENCY (LOAD = 1000pF) FIGURE 7. ICCO, NO-LOAD ICC SUPPLY CURRENT vs FREQUENCY (kHz) TEMPERATURE FIGURE 8. IAHB, IBHB, NO-LOAD FLOATING SUPPLY BIAS CURRENT vs FREQUENCY FIGURE 9. ALI, BLI, AHI, BHI LOW LEVEL INPUT CURRENT IIL vs TEMPERATURE 6 8 10 12 14 2.0 4.0 6.0 8.0 10.0 12.0 14.0 IDD SUPPLY CURRENT (mA) VDD SUPPLY VOLTAGE (V) 0 100 200 300 400 500 600 700 800 900 1000 8.0 8.5 9.0 9.5 10.0 10.5 11.0 IDD SUPPLY CURRENT (mA) SWITCHING FREQUENCY (kHz) 0 100 200 300 400 500 600 700 800 900 1000 0.0 5.0 10.0 15.0 20.0 25.0 30.0 FLOATING SUPPLY BIAS CURRENT (mA) SWITCHING FREQUENCY (kHz) 0 100 200 300 400 500 600 700 800 900 1000 0.0 1.0 2.0 3.0 4.0 5.0 ICC SUPPLY CURRENT (mA) SWITCHING FREQUENCY (kHz) 75°C 25°C 125°C -40°C 0°C 0.5 1 1.5 2 2.5 0 200 400 600 800 1000 FLOATING SUPPLY BIAS CURRENT (mA) SWITCHING FREQUENCY (kHz) -50 -25 0 25 50 75 100 125 -120 -110 -100 -90 LOW LEVEL INPUT CURRENT (μA) JUNCTION TEMPERATURE (°C) 9 HIP4081A Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K and TA = 25°C, Unless Otherwise Specified FIGURE 10. AHB - AHS, BHB - BHS NO-LOAD CHARGE PUMP VOLTAGE vs TEMPERATURE FIGURE 11. UPPER DISABLE TURN-OFF PROPAGATION DELAY TDISHIGH vs TEMPERATURE FIGURE 12. DISABLE TO UPPER ENABLE, TUEN, PROPAGATION DELAY vs TEMPERATURE FIGURE 13. LOWER DISABLE TURN-OFF PROPAGATION DELAY TDISLOW vs TEMPERATURE FIGURE 14. TREF-PW REFRESH PULSE WIDTH vs TEMPERATURE FIGURE 15. DISABLE TO LOWER ENABLE TDLPLH PROPAGATION DELAY vs TEMPERATURE -40 -20 0 20 40 60 80 100 120 10.0 11.0 12.0 13.0 14.0 15.0 NO-LOAD FLOATING CHARGE PUMP VOLTAGE (V) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) 425 450 475 500 525 -50 -25 0 25 50 75 100 125 150 JUNCTION TEMPERATURE (°C) PROPAGATION DELAY (ns) -40 -20 0 20 40 60 80 100 120 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) 350 375 400 425 450 -50 -25 0 25 50 75 100 125 150 REFRESH PULSE WIDTH (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) 10 HIP4081A FIGURE 16. UPPER TURN-OFF PROPAGATION DELAY THPHL vs TEMPERATURE FIGURE 17. UPPER TURN-ON PROPAGATION DELAY THPLH vs TEMPERATURE FIGURE 18. LOWER TURN-OFF PROPAGATION DELAY TLPHL vs TEMPERATURE FIGURE 19. LOWER TURN-ON PROPAGATION DELAY TLPLH vs TEMPERATURE FIGURE 20. GATE DRIVE FALL TIME TF vs TEMPERATURE FIGURE 21. GATE DRIVE RISE TIME TR vs TEMPERATURE Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K and TA = 25°C, Unless Otherwise Specified (Continued) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 20 30 40 50 60 70 80 PROPAGATION DELAY (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 8.5 9.5 10.5 11.5 12.5 13.5 GATE DRIVE FALL TIME (ns) JUNCTION TEMPERATURE (°C) -40 -20 0 20 40 60 80 100 120 8.5 9.5 10.5 11.5 12.5 13.5 TURN-ON RISE TIME (ns) JUNCTION TEMPERATURE (°C) 11 HIP4081A Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified FIGURE 22. VLDEL, VHDEL VOLTAGE vs TEMPERATURE FIGURE 23. HIGH LEVEL OUTPUT VOLTAGE VCC - VOH vs BIAS SUPPLY AND TEMPERATURE AT 100mA FIGURE 24. LOW LEVEL OUTPUT VOLTAGE VOL vs BIAS SUPPLY AND TEMPERATURE AT 100mA FIGURE 25. PEAK PULLDOWN CURRENT IO vs BIAS SUPPLY VOLTAGE FIGURE 26. PEAK PULLUP CURRENT IO+ vs BIAS SUPPLY VOLTAGE FIGURE 27. LOW VOLTAGE BIAS CURRENT IDD (LESS QUIESCENT COMPONENT) vs FREQUENCY AND GATE LOAD CAPACITANCE -40 -20 0 20 40 60 80 100 120 4.0 4.5 5.0 5.5 6.0 HDEL, LDEL INPUT VOLTAGE (V) JUNCTION TEMPERATURE (°C) 10 12 14 0 250 500 750 1000 1250 1500 VCC - VOH (mV) BIAS SUPPLY VOLTAGE (V) 75°C 25°C 125°C -40°C 0°C 12 14 0 250 500 750 1000 1250 1500 VOL (mV) BIAS SUPPLY VOLTAGE (V) 10 75°C 25°C 125°C -40°C 0°C 6 7 8 9 10 11 12 13 14 15 16 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 GATE DRIVE SINK CURRENT (A) VDD, VCC, VAHB, VBHB (V) 6 7 8 9 10 11 12 13 14 15 16 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 GATE DRIVE SINK CURRENT (A) VDD, VCC, VAHB, VBHB (V) 1 2 5 10 20 50 100 200 500 1000 0.1 1 10 100 500 50 5 0.5 200 20 2 0.2 LOW VOLTAGE BIAS CURRENT (mA) SWITCHING FREQUENCY (kHz) 100pF 1,000pF 10,000pF 3,000pF 12 HIP4081A FIGURE 28. HIGH VOLTAGE LEVEL-SHIFT CURRENT vs FREQUENCY AND BUS VOLTAGE FIGURE 29. UNDERVOLTAGE LOCKOUT vs TEMPERATURE FIGURE 30. MINIMUM DEAD-TIME vs DEL RESISTANCE Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and TA = 25°C, Unless Otherwise Specified (Continued) 10 20 50 100 200 500 1000 10 100 1000 20 50 200 500 LEVEL-SHIFT CURRENT (μA) SWITCHING FREQUENCY (kHz) 8.2 8.4 8.6 8.8 9.0 50 25 0 25 50 75 100 125 150 UV+ UVTEMPERATURE (°C) BIAS SUPPLY VOLTAGE, VDD (V) 10 50 100 150 200 250 0 30 60 90 120 150 HDEL/LDEL RESISTANCE (kΩ) DEAD-TIME (ns) 13 HIP4081A 1 2 3 1 2 3 1 2 3 5 6 1 2 3 1 2 13 12 1 2 3 11 10 1 2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 L1 R21 Q1 Q3 Q4 R22 L2 R23 C1 C3 JMPR1 R24 R30 R31 C2 R34 C4 CR2 CR1 Q2 JMPR5 JMPR3 JMPR2 JMPR4 R33 C5 C6 CX CY C8 U1 CW CW + B+ IN2 IN1 BO OUT/BLI IN-/AHI COM IN+/ALI +12V +12V BLS AO HEN/BHI ALS CD4069UB CD4069UB CD4069UB CD4069UB HIP4080A/81A SECTION CONTROL LOGIC POWER SECTION DRIVER SECTION AHB AHO LDEL AHS HDEL ALO IN-/AHI ALS IN+/ALI VCC OUT/BLI VDD VSS BLS DIS BLO HEN/BHI BHS BHB BHO R29 U2 U2 U2 U2 3 4 9 8 R32 I O O CD4069UB CD4069UB ENABLE IN U2 U2 NOTES: 1. DEVICE CD4069UB PIN 7 = COM, PIN 14 = +12V. 2. COMPONENTS L1, L2, C1, C2, CX, CY, R30, R31, NOT SUPPLIED. REFER TO APPLICATION NOTE FOR DESCRIPTION OF INPUT LOGIC OPERATION TO DETERMINE JUMPER LOCATIONS FOR JMPR1 - JMPR4. FIGURE 31. HIP4081A EVALUATION PC BOARD SCHEMATIC 14 HIP4081A R22 1 Q3 L1 JMPR2 JMPR5 R31 R33 CR2 R23 R24 R27 R28 R26 1 Q4 1 JMPR3 Q2 U1 R21 GND L2 C3 C4 JMPR4 JMPR1 R30 CR1 U2 R34 R32 I O C8 R29 C7 C6 C5 CY CX 1 Q1 COM +12V B+ IN1 IN2 AHO BHO ALO BLO BLS BLS LDEL HDEL DIS ALS ALS O + + HIP4080/81 FIGURE 32. HIP4081A EVALUATION BOARD SILKSCREEN 15 HIP4081A Dual-In-Line Plastic Packages (PDIP) NOTES: 1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication No. 95. 4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3. 5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25mm). 6. E and are measured with the leads constrained to be perpendicular to datum . 7. eB and eC are measured at the lead tips with the leads unconstrained. eC must be zero or greater. 8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm). 9. N is the maximum number of terminal positions. 10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm). eA -CCL E eA C eB eC -BE1 INDEX 1 2 3 N/2 N AREA SEATING BASE PLANE PLANE -CD1 B1 B e D D1 A2 A L A1 -A- 0.010 (0.25) M C A B S E20.3 (JEDEC MS-001-AD ISSUE D) 20 LEAD DUAL-IN-LINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A - 0.210 - 5.33 4 A1 0.015 - 0.39 - 4 A2 0.115 0.195 2.93 4.95 - B 0.014 0.022 0.356 0.558 - B1 0.045 0.070 1.55 1.77 8 C 0.008 0.014 0.204 0.355 - D 0.980 1.060 24.89 26.9 5 D1 0.005 - 0.13 - 5 E 0.300 0.325 7.62 8.25 6 E1 0.240 0.280 6.10 7.11 5 e 0.100 BSC 2.54 BSC - eA 0.300 BSC 7.62 BSC 6 eB - 0.430 - 10.92 7 L 0.115 0.150 2.93 3.81 4 N 20 20 9 Rev. 0 12/93 16 All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com HIP4081A Small Outline Plastic Packages (SOIC) NOTES: 1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of Publication Number 95. 2. Dimensioning and tolerancing per ANSI Y14.5M-1982. 3. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006 inch) per side. 4. Dimension “E” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm (0.010 inch) per side. 5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area. 6. “L” is the length of terminal for soldering to a substrate. 7. “N” is the number of terminal positions. 8. Terminal numbers are shown for reference only. 9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61mm (0.024 inch) 10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. INDEX AREA E D N 1 2 3 -B- 0.25(0.010) M C A B S e -AL B M -CA1 A SEATING PLANE 0.10(0.004) h x 45o C H μ 0.25(0.010) M B M α M20.3 (JEDEC MS-013-AC ISSUE C) 20 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE SYMBOL INCHES MILLIMETERS MIN MAX MIN MAX NOTES A 0.0926 0.1043 2.35 2.65 - A1 0.0040 0.0118 0.10 0.30 - B 0.014 0.019 0.35 0.49 9 C 0.0091 0.0125 0.23 0.32 - D 0.4961 0.5118 12.60 13.00 3 E 0.2914 0.2992 7.40 7.60 4 e 0.050 BSC 1.27 BSC - H 0.394 0.419 10.00 10.65 - h 0.010 0.029 0.25 0.75 5 L 0.016 0.050 0.40 1.27 6 N 20 20 7 α 0o 8o 0o 8o - Rev. 1 1/02 http://www.farnell.com/datasheets/32553.pdf 1 ® FN3663.5 HFA3101 Gilbert Cell UHF Transistor Array The HFA3101 is an all NPN transistor array configured as a Multiplier Cell. Based on Intersil’s bonded wafer UHF-1 SOI process, this array achieves very high fT (10GHz) while maintaining excellent hFE and VBE matching characteristics that have been maximized through careful attention to circuit design and layout, making this product ideal for communication circuits. For use in mixer applications, the cell provides high gain and good cancellation of 2nd order distortion terms. Pinout HFA3101(SOIC) TOP VIEW Features •Pb-free Available as an Option •High Gain Bandwidth Product (fT) . . . . . . . . . . . . . 10GHz •High Power Gain Bandwidth Product. . . . . . . . . . . . 5GHz •Current Gain (hFE). . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 •Low Noise Figure (Transistor) . . . . . . . . . . . . . . . . . 3.5dB •Excellent hFE and VBE Matching •Low Collector Leakage Current . . . . . . . . . . . . . . <0.01nA •Pin to Pin Compatible to UPA101 Applications •Balanced Mixers •Multipliers •Demodulators/Modulators •Automatic Gain Control Circuits •Phase Detectors •Fiber Optic Signal Processing •Wireless Communication Systems •Wide Band Amplification Stages •Radio and Satellite Communications •High Performance Instrumentation Ordering Information PART NUMBER (BRAND) TEMP. RANGE (°C) PACKAGE PKG. DWG. # HFA3101B (H3101B) -40 to 85 8 Ld SOIC M8.15 HFA3101BZ (H3101B) (Note) -40 to 85 8 Ld SOIC (Pb-free) M8.15 HFA3101B96 (H3101B) -40 to 85 8 Ld SOIC Tape and Reel M8.15 HFA3101BZ96 (H3101B) (Note) -40 to 85 8 Ld SOIC Tape and Reel (Pb-free) M8.15 NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which is compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020C. 12348765Q5Q6Q1Q2Q3Q4NOTE: Q5 and Q6 - 2 Paralleled 3μm x 50μm Transistors Q1, Q2, Q3, Q4 - Single 3μm x 50μm Transistors Data Sheet September 2004 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 1998, 2004. All Rights Reserved All other trademarks mentioned are the property of their respective owners. 2 Absolute Maximum Ratings Thermal Information VCEO, Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . 8.0V VCBO, Collector to Base Voltage. . . . . . . . . . . . . . . . . . . . . . . 12.0V VEBO, Emitter to Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V IC, Collector Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30mA Operating Conditions Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC Thermal Resistance (Typical, Note 1)θJA (oC/W) SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . . .175oC Maximum Junction Temperature (Plastic Package). . . . . . . . .150oC Maximum Storage Temperature Range. . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300oC (SOIC - Lead Tips Only) CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. θJA is measured with the component mounted on an evaluation PC board in free air. Electrical SpecificationsTA = 25oC PARAMETER TEST CONDITIONS (NOTE 2) TEST LEVEL MIN TYP MAX UNITS Collector to Base Breakdown Voltage, V(BR)CBO, Q1 thru Q6 IC = 100μA, IE = 0 A 12 18 - V Collector to Emitter Breakdown Voltage, V(BR)CEO, Q5 and Q6 IC = 100μA, IB = 0 A 8 12 - V Emitter to Base Breakdown Voltage, V(BR)EBO, Q1 thru Q6 IE = 10μA, IC = 0 A 5.5 6 - V Collector Cutoff Current, ICBO, Q1 thru Q4 VCB = 8V, IE = 0 A - 0.1 10 nA Emitter Cutoff Current, IEBO, Q5 and Q6 VEB = 1V, IC = 0 A - - 200 nA DC Current Gain, hFE, Q1 thru Q6 IC = 10mA, VCE = 3V A 40 70 - Collector to Base Capacitance, CCB Q1 thru Q4 VCB = 5V, f = 1MHz C - 0.300 - pF Q5 and Q6 - 0.600 - pF Emitter to Base Capacitance, CEB Q1 thru Q4 VEB = 0, f = 1MHz B - 0.200 - pF Q5 and Q6 - 0.400 - pF Current Gain-Bandwidth Product, fT Q1 thru Q4 IC = 10mA, VCE = 5V C - 10 - GHz Q5 and Q6 IC = 20mA, VCE = 5V C - 10 - GHz Power Gain-Bandwidth Product, fMAX Q1 thru Q4 IC = 10mA, VCE = 5V C - 5 - GHz Q5 and Q6 IC = 20mA, VCE = 5V C - 5 - GHz Available Gain at Minimum Noise Figure, GNFMIN, Q5 and Q6 IC = 5mA, VCE = 3V f = 0.5GHz C - 17.5 - dB f = 1.0GHz C - 11.9 - dB Minimum Noise Figure, NFMIN, Q5 and Q6 IC = 5mA, VCE = 3V f = 0.5GHz C - 1.7 - dB f = 1.0GHz C - 2.0 - dB 50Ω Noise Figure, NF50Ω, Q5 and Q6 IC = 5mA, VCE = 3V f = 0.5GHz C - 2.25 - dB f = 1.0GHz C - 2.5 - dB DC Current Gain Matching, hFE1/hFE2, Q1 and Q2, Q3 and Q4, and Q5 and Q6 IC = 10mA, VCE = 3V A 0.9 1.0 1.1 Input Offset Voltage, VOS, (Q1 and Q2), (Q3 and Q4), (Q5 and Q6) IC = 10mA, VCE = 3V A - 1.5 5 mV Input Offset Current, IC, (Q1 and Q2), (Q3 and Q4), (Q5 and Q6) IC = 10mA, VCE = 3V A - 5 25 μA Input Offset Voltage TC, dVOS/dT, (Q1 and Q2, Q3 and Q4, Q5 and Q6) IC = 10mA, VCE = 3V C - 0.5 - μV/oC Collector to Collector Leakage, ITRENCH-LEAKAGE ΔVTEST = 5V B - 0.01 - nA NOTE: 2. Test Level: A. Production Tested, B. Typical or Guaranteed Limit Based on Characterization, C. Design Typical for Information Only. HFA3101 3-3 PSPICE Model for a 3 μm x 50μm Transistor .Model NUHFARRY NPN + (IS = 1.840E-16 XTI = 3.000E+00 EG = 1.110E+00 VAF = 7.200E+01 + VAR = 4.500E+00 BF = 1.036E+02 ISE = 1.686E-19 NE = 1.400E+00 + IKF = 5.400E-02 XTB = 0.000E+00 BR = 1.000E+01 ISC = 1.605E-14 + NC = 1.800E+00 IKR = 5.400E-02 RC = 1.140E+01 CJC = 3.980E-13 + MJC = 2.400E-01 VJC = 9.700E-01 FC = 5.000E-01 CJE = 2.400E-13 + MJE = 5.100E-01 VJE = 8.690E-01 TR = 4.000E-09 TF = 10.51E-12 + ITF = 3.500E-02 XTF = 2.300E+00 VTF = 3.500E+00 PTF = 0.000E+00 + XCJC = 9.000E-01 CJS = 1.689E-13 VJS = 9.982E-01 MJS = 0.000E+00 + RE = 1.848E+00 RB = 5.007E+01 RBM = 1.974E+00 KF = 0.000E+00 + AF = 1.000E+00) Common Emitter S-Parameters of 3 μm x 50μm Transistor FREQ. (Hz) |S11| PHASE(S11) |S12| PHASE(S12) |S21| PHASE(S21) |S22| PHASE(S22) VCE = 5V and IC = 5mA 1.0E+08 0.83 -11.78 1.41E-02 78.88 11.07 168.57 0.97 -11.05 2.0E+08 0.79 -22.82 2.69E-02 68.63 10.51 157.89 0.93 -21.35 3.0E+08 0.73 -32.64 3.75E-02 59.58 9.75 148.44 0.86 -30.44 4.0E+08 0.67 -41.08 4.57E-02 51.90 8.91 140.36 0.79 -38.16 5.0E+08 0.61 -48.23 5.19E-02 45.50 8.10 133.56 0.73 -44.59 6.0E+08 0.55 -54.27 5.65E-02 40.21 7.35 127.88 0.67 -49.93 7.0E+08 0.50 -59.41 6.00E-02 35.82 6.69 123.10 0.62 -54.37 8.0E+08 0.46 -63.81 6.27E-02 32.15 6.11 119.04 0.57 -58.10 9.0E+08 0.42 -67.63 6.47E-02 29.07 5.61 115.57 0.53 -61.25 1.0E+09 0.39 -70.98 6.63E-02 26.45 5.17 112.55 0.50 -63.96 1.1E+09 0.36 -73.95 6.75E-02 24.19 4.79 109.91 0.47 -66.31 1.2E+09 0.34 -76.62 6.85E-02 22.24 4.45 107.57 0.45 -68.37 1.3E+09 0.32 -79.04 6.93E-02 20.53 4.15 105.47 0.43 -70.19 1.4E+09 0.30 -81.25 7.00E-02 19.02 3.89 103.57 0.41 -71.83 1.5E+09 0.28 -83.28 7.05E-02 17.69 3.66 101.84 0.40 -73.31 1.6E+09 0.27 -85.17 7.10E-02 16.49 3.45 100.26 0.39 -74.66 1.7E+09 0.25 -86.92 7.13E-02 15.41 3.27 98.79 0.38 -75.90 1.8E+09 0.24 -88.57 7.17E-02 14.43 3.10 97.43 0.37 -77.05 1.9E+09 0.23 -90.12 7.19E-02 13.54 2.94 96.15 0.36 -78.12 2.0E+09 0.22 -91.59 7.21E-02 12.73 2.80 94.95 0.35 -79.13 2.1E+09 0.21 -92.98 7.23E-02 11.98 2.68 93.81 0.35 -80.09 2.2E+09 0.20 -94.30 7.25E-02 11.29 2.56 92.73 0.34 -80.99 2.3E+09 0.20 -95.57 7.27E-02 10.64 2.45 91.70 0.34 -81.85 2.4E+09 0.19 -96.78 7.28E-02 10.05 2.35 90.72 0.33 -82.68 2.5E+09 0.18 -97.93 7.29E-02 9.49 2.26 89.78 0.33 -83.47 2.6E+09 0.18 -99.05 7.30E-02 8.96 2.18 88.87 0.33 -84.23 2.7E+09 0.17 -100.12 7.31E-02 8.47 2.10 88.00 0.33 -84.97 HFA3101 4 2.8E+09 0.17 -101.15 7.31E-02 8.01 2.02 87.15 0.33 -85.68 2.9E+09 0.16 -102.15 7.32E-02 7.57 1.96 86.33 0.33 -86.37 3.0E+09 0.16 -103.11 7.32E-02 7.16 1.89 85.54 0.33 -87.05 VCE = 5V and IC = 10mA 1.0E+08 0.72 -16.43 1.27E-02 75.41 15.12 165.22 0.95 -14.26 2.0E+08 0.67 -31.26 2.34E-02 62.89 13.90 152.04 0.88 -26.95 3.0E+08 0.60 -43.76 3.13E-02 52.58 12.39 141.18 0.79 -37.31 4.0E+08 0.53 -54.00 3.68E-02 44.50 10.92 132.57 0.70 -45.45 5.0E+08 0.47 -62.38 4.05E-02 38.23 9.62 125.78 0.63 -51.77 6.0E+08 0.42 -69.35 4.31E-02 33.34 8.53 120.37 0.57 -56.72 7.0E+08 0.37 -75.26 4.49E-02 29.47 7.62 116.00 0.51 -60.65 8.0E+08 0.34 -80.36 4.63E-02 26.37 6.86 112.39 0.47 -63.85 9.0E+08 0.31 -84.84 4.72E-02 23.84 6.22 109.36 0.44 -66.49 1.0E+09 0.29 -88.83 4.80E-02 21.75 5.69 106.77 0.41 -68.71 1.1E+09 0.27 -92.44 4.86E-02 20.00 5.23 104.51 0.39 -70.62 1.2E+09 0.25 -95.73 4.90E-02 18.52 4.83 102.53 0.37 -72.28 1.3E+09 0.24 -98.75 4.94E-02 17.25 4.49 100.75 0.35 -73.76 1.4E+09 0.22 -101.55 4.97E-02 16.15 4.19 99.16 0.34 -75.08 1.5E+09 0.21 -104.15 4.99E-02 15.19 3.93 97.70 0.33 -76.28 1.6E+09 0.20 -106.57 5.01E-02 14.34 3.70 96.36 0.32 -77.38 1.7E+09 0.20 -108.85 5.03E-02 13.60 3.49 95.12 0.31 -78.41 1.8E+09 0.19 -110.98 5.05E-02 12.94 3.30 93.96 0.31 -79.37 1.9E+09 0.18 -113.00 5.06E-02 12.34 3.13 92.87 0.30 -80.27 2.0E+09 0.18 -114.90 5.07E-02 11.81 2.98 91.85 0.30 -81.13 2.1E+09 0.17 -116.69 5.08E-02 11.33 2.84 90.87 0.30 -81.95 2.2E+09 0.17 -118.39 5.09E-02 10.89 2.72 89.94 0.29 -82.74 2.3E+09 0.16 -120.01 5.10E-02 10.50 2.60 89.06 0.29 -83.50 2.4E+09 0.16 -121.54 5.11E-02 10.13 2.49 88.21 0.29 -84.24 2.5E+09 0.16 -122.99 5.12E-02 9.80 2.39 87.39 0.29 -84.95 2.6E+09 0.15 -124.37 5.12E-02 9.49 2.30 86.60 0.29 -85.64 2.7E+09 0.15 -125.69 5.13E-02 9.21 2.22 85.83 0.29 -86.32 2.8E+09 0.15 -126.94 5.13E-02 8.95 2.14 85.09 0.29 -86.98 2.9E+09 0.15 -128.14 5.14E-02 8.71 2.06 84.36 0.29 -87.62 3.0E+09 0.14 -129.27 5.15E-02 8.49 1.99 83.66 0.29 -88.25 Common Emitter S-Parameters of 3 μm x 50 μm Transistor (Continued) FREQ. (Hz) |S11| PHASE(S11) |S12| PHASE(S12) |S21| PHASE(S21) |S22| PHASE(S22) HFA3101 3-5 Application Information The HFA3101 array is a very versatile RF Building block. It has been carefully laid out to improve its matching properties, bringing the distortion due to area mismatches, thermal distribution, betas and ohmic resistances to a minimum. The cell is equivalent to two differential stages built as two “variable transconductance multipliers” in parallel, with their outputs cross coupled. This configuration is well known in the industry as a Gilbert Cell which enables a four quadrant multiplication operation. Due to the input dynamic range restrictions for the input levels at the upper quad transistors and lower tail transistors, the HFA3101 cell has restricted use as a linear four quadrant multiplier. However, its configuration is well suited for uses where its linear response is limited to one of the inputs only, as in modulators or mixer circuit applications. Examples of these circuits are up converters, down converters, frequency doublers and frequency/phase detectors. Although linearization is still an issue for the lower pair input, emitter degeneration can be used to improve the dynamic range and consequent linearity. The HFA3101 has the lower pair emitters brought to external pins for this purpose. In modulators applications, the upper quad transistors are used in a switching mode where the pairs Q1/Q2 and Q3/Q4 act as non saturating high speed switches. These switches are controlled by the signal often referred as the carrier input. The signal driving the lower pair Q5/Q6 is commonly used as the modulating input. This signal can be linearly transferred to the output by either the use of low signal levels (Well below the thermal voltage of 26mV) or by the use of emitter degeneration. The chopped waveform appearing at the output of the upper pair (Q1 to Q4) resembles a signal that is multiplied by +1 or -1 at every half cycle of the switching waveform. Figure 1 shows the typical input waveforms where the frequency of the carrier is higher than the modulating signal. The output waveform shows a typical suppressed carrier output of an up converter or an AM signal generator. Carrier suppression capability is a property of the well known Balanced modulator in which the output must be zero when one or the other input (carrier or modulating signal) is equal to zero. however, at very high frequencies, high frequency mismatches and AC offsets are always present and the suppression capability is often degraded causing carrier and modulating feedthrough to be present. Being a frequency translation circuit, the balanced modulator has the properties of translating the modulating frequency (ωM) to the carrier frequency (ωC), generating the two side bands ωU = ωC + ωM and ωL = ωC - ωM. Figure 2 shows some translating schemes being used by balanced mixers. CARRIER SIGNALMODULATING SIGNALDIFFERENTIAL OUTPUT+1-1FIGURE 1. TYPICAL MODULATOR SIGNALS FIGURE 2A. UP CONVERSION OR SUPPRESSED CARRIER AM FIGURE 2B. DOWN CONVERSION FIGURE 2C. ZERO IF OR DIRECT DOWN CONVERSION FIGURE 2. MODULATOR FREQUENCY SPECTRUM ωC + ωMωC - ωMωC IF (ωC - ωM)FOLDED BACKωMωC BASEBANDωCωM HFA3101 6 The use of the HFA3101 as modulators has several advantages when compared to its counterpart, the diode doublebalanced mixer, in which it is required to receive enough energy to drive the diodes into a switching mode and has also some requirements depending on the frequency range desired, of different transformers to suit specific frequency responses. The HFA3101 requires very low driving capabilities for its carrier input and its frequency response is limited by the fT of the devices, the design and the layout techniques being utilized. Up conversion uses, for UHF transmitters for example, can be performed by injecting a modulating input in the range of 45MHz to 130MHz that carries the information often called IF (Intermediate frequency) for up conversion (The IF signal has been previously modulated by some modulation scheme from a baseband signal of audio or digital information) and by injecting the signal of a local oscillator of a much higher frequency range from 600MHz to 1.2GHz into the carrier input. Using the example of a 850MHz carrier input and a 70MHz IF, the output spectrum will contain a upper side band of 920MHz, a lower side band of 780MHz and some of the carrier (850MHz) and IF (70MHz) feedthrough. A Band pass filter at the output can attenuate the undesirable signals and the 920MHz signal can be routed to a transmitter RF power amplifier. Down conversion, as the name implies, is the process used to translate a higher frequency signal to a lower frequency range conserving the modulation information contained in the higher frequency signal. One very common typical down conversion use for example, is for superheterodyne radio receivers where a translated lower frequency often referred as intermediate frequency (IF) is used for detection or demodulation of the baseband signal. Other application uses include down conversion for special filtering using frequency translation methods. An oscillator referred as the local oscillator (LO) drives the upper quad transistors of the cell with a frequency called ωC. The lower pair is driven by the RF signal of frequency ωM to be translated to a lower frequency IF. The spectrum of the IF output will contain the sum and difference of the frequencies ωC and ωM. Notice that the difference can become negative when the frequency of the local oscillator is lower than the incoming frequency and the signal is folded back as in Figure 2. NOTE: The acronyms RF, IF and LO are often interchanged in the industry depending on the application of the cell as mixers or modulators. The output of the cell also contains multiples of the frequency of the signal being fed to the upper quad pair of transistors because of the switching action equivalent to a square wave multiplication. In practice, however, not only the odd multiples in the case of a symmetrical square wave but some of the even multiples will also appear at the output spectrum due to the nature of the actual switching waveform and high frequency performance. By-products of the form M*ωC + N*ωM with M and N being positive or negative integers are also expected to be present at the output and their levels are carefully examined and minimized by the design. This distortion is considered one of the figures of merit for a mixer application. The process of frequency doubling is also understood by having the same signal being fed to both modulating and carrier ports. The output frequency will be the sum of ωC and ωM which is equivalent to the product of the input frequency by 2 and a zero Hz or DC frequency equivalent to the difference of ωC and ωM. Figure 2 also shows one technique in use today where a process of down conversion named zero IF is made by using a local oscillator with a very pure signal frequency equal to the incoming RF frequency signal that contains a baseband (audio or digital signal) modulation. Although complex, the extraction or detection of the signal is straightforward. Another useful application of the HFA3101 is its use as a high frequency phase detector where the two signals are fed to the carrier and modulation ports and the DC information is extracted from its output. In this case, both ports are utilized in a switching mode or overdrive, such that the process of multiplication takes place in a quasi digital form (2 square waves). One application of a phase detector is frequency or phase demodulation where the FM signal is split before the modulating and carrier ports. The lower input port is always 90 degrees apart from the carrier input signal through a high Q tuned phase shift network. The network, being tuned for a precise 90 degrees shift at a nominal frequency, will set the two signals 90 degrees apart and a quiescent output DC level will be present at the output. When the input signal is frequency modulated, the phase shift of the signal coming from the network will deviate from 90 degrees proportional to the frequency deviation of the FM signal and a DC variation at the output will take place, resembling the demodulated FM signal. The HFA3101 could also be used for quadrature detection, (I/Q demodulation), AGC control with limited range, low level multiplication to name a few other applications. Biasing Various biasing schemes can be employed for use with the HFA3101. Figure 3 shows the most common schemes. The biasing method is a choice of the designer when cost, thermal dependence, voltage overheads and DC balancing properties are taken into consideration. Figure 3A shows the simplest form of biasing the HFA3101. The current source required for the lower pair is set by the voltage across the resistor RBIAS less a VBE drop of the lower transistor. To increase the overhead, collector resistors are substituted by an RF choke as the upper pair functions as a current source for AC signals. The bases of the upper and lower transistors are biased by RB1 and RB2 respectively. The voltage drop across the resistor R2 must be higher than a VBE with an increase sufficient to assure that the collector to base junctions of the lower pair are always reverse biased. Notice that this same voltage also sets the VCE of operation of the lower pair which is important for the optimization of gain. Resistors REE are nominally zero for applications where the input signals are well below 25mV peak. Resistors REE are used to increase the linearity HFA3101 3-7 of the circuit upon higher level signals. The drop across REE must be taken into consideration when setting the current source value. Figure 3B depicts the use of a common resistor sharing the current through the cell which is used for temperature compensation as the lower pair VBE drop at the rate of -2mV/oC. Figure 3C uses a split supply. Design Example: Down Converter Mixer Figure 4 shows an example of a low cost mixer for cellular applications. The design flexibility of the HFA3101 is demonstrated by a low cost, and low voltage mixer application at the 900MHz range. The choice of good quality chip components with their self resonance outside the boundaries of the application are important. The design has been optimized to accommodate the evaluation of the same layout for various quiescent current values and lower supply voltages. The choice of RE became important for the available overhead and also for maintaining an AC true impedance for high frequency signals. The value of 27Ω has been found to be the optimum minimum for the application. The input impedances of the HFA3101 base input ports are high enough to permit their termination with 50Ω resistors. Notice the AC termination by decoupling the bias circuit through good quality capacitors. The choice of the bias has been related to the available power supply voltage with the values of R1, R2 and RBIAS splitting the voltages for optimum VCE values. For evaluation of the cell quiescent currents, the voltage at the emitter resistor RE has been recorded. The gain of the circuit, being a function of the load and the combined emitter resistances at high frequencies have been kept to a maximum by the use of an output match network. The high output impedance of the HFA3101 permits FIGURE 3A. FIGURE 3B. FIGURE 3C. FIGURE 3. VCCRB1R1R2RBIASREREEREELCH12348765Q5Q6Q1Q2Q3Q4RB2 VCCRB1R1R2RBIASREREEREE12348765Q5Q6Q1Q2Q3Q4RB2RCLCH VEERB1R1RBIASREREEREE12348765Q5Q6Q1Q2Q3Q4RB2VCCLCHR2 27LCH12348765Q5Q6Q1Q2Q3Q4VCC390nH0.010.011102200.1VCC3V75MHz2K5p TO 12pLO IN51825MHz51900MHzIF OUTRF IN0.010.010.01330FIGURE 4. 3V DOWN CONVERTER APPLICATION HFA3101 8 broadband match if so desired at 50Ω (RL = 50Ω to 2kΩ) as well as with tuned medium Q matching networks (L, T etc.). Stability The cell, by its nature, has very high gain and precautions must be taken to account for the combination of signal reflections, gain, layout and package parasitics. The rule of thumb of avoiding reflected waves must be observed. It is important to assure good matching between the mixer stage and its front end. Laboratory measurements have shown some susceptibility for oscillation at the upper quad transistors input. Any LO prefiltering has to be designed such the return loss is maintained within acceptable limits specially at high frequencies. Typical off the shelf filters exhibits very poor return loss for signals outside the passband. It is suggested that a “pad” or a broadband resistive network be used to interface the LO port with a filter. The inclusion of a parallel 2K resistor in the load decreases the gain slightly which improves the stability factor and also improves the distortion products (output intermodulation or 3rd order intercept). The employment of good RF techniques shall suffice the stability requirements. Evaluation The evaluation of the HFA3101 in a mixer configuration is presented in Figures 6 to 11, Table 1 and Table 2. The layout is depicted in Figure 5. The output matching network has been designed from data taken at the output port at various test frequencies with the setup as in Table 1. S22 characterization is enough to assure the calculation of L, T or transmission line matching networks. FIGURE 5. UP/DOWN CONVERTER LAYOUT, 400%; MATERIAL G10, 0.031 TABLE 1. S22 PARAMETERS FOR DOWN CONVERSION, LCH = 10μH FREQUENCY RESISTANCE REACTANCE 10MHz 265Ω 615Ω 45MHz 420Ω - 735Ω 75MHz 122Ω - 432Ω 100MHz 67Ω - 320Ω TABLE 2. TYPICAL PARAMETERS FOR DOWN CONVERSION, LCH = 10μH PARAMETER LO LEVEL VCC = 3V, IBIAS = 8mA Power Gain -6dBm 8.5dB TOI Output -6dBm 11.5dBm NF SSB -6dBm 14.5dB Power Gain 0dBm 8.6dB TOI Output 0dBm 11dBm NF SSB 0dBm 15dB PARAMETER LO LEVEL VCC = 4V, IBIAS = 19mA Power Gain -6dBm 10dB TOI Output -6dBm 13dBm NF SSB -6dBm 20dB Power Gain 0dBm 11dB TOI Output 0dBm 12.5dBm NF SSB 0dBm 24dB TABLE 3. TYPICAL VALUES OF S22 FOR THE OUTPUT PORT. LCH = 390nH IBIAS = 8mA (SET UP OF FIGURE 11) FREQUENCY RESISTANCE REACTANCE 300MHz 22Ω -115Ω 600MHz 7.5Ω -43Ω 900MHz 5.2Ω -14Ω 1.1GHz 3.9Ω 0Ω TABLE 4. TYPICAL VALUES OF S22. LCH = 390nH, IBIAS = 18mA FREQUENCY RESISTANCE REACTANCE 300MHz 23.5Ω -110Ω 600MHz 10.3Ω -39Ω 900MHz 8.7Ω -14Ω 1.1GHz 8Ω 0Ω HFA3101 3-9 Up Converter Example An application for a up converter as well as a frequency multiplier can be demonstrated using the same layout, with an addition of matching components. The output port S22 must be characterized for proper matching procedures and depending on the frequency desired for the output, transmission line transformations can be designed. The return loss of the input ports maintain acceptable values in excess of 1.2GHz which can permit the evaluation of a frequency doubler to 2.4GHz if so desired. The addition of the resistors REE can increase considerably the dynamic range of the up converter as demonstrated at Figure 13. The evaluation results depicted in Table 5 have been obtained by a triple stub tuner as a matching network for the output due to the layout constraints. Based on the evaluation results it is clear that the cell requires a higher Bias current for overall performance. FIGURE 6. OUTPUT PORT S22 TEST SET UP FIGURE 7. LO PORT RETURN LOSS FIGURE 8. RF PORT RETURN LOSS FIGURE 9. IF PORT RETURN LOSS, WITH MATCHING NETWORK FIGURE 10. TYPICAL IN BAND OUTPUT SPECTRUM, VCC = 3V FIGURE 11. TYPICAL OUT OF BAND OUTPUT SPECTRUM VCC 3V0.1LCH12348765Q5Q6Q1Q2Q3Q42K S110dB5dB/DIV100MHz1.1GHzLOG MAG3V4V 0dB10dB/DIV100MHz1.1GHzS11LOG MAG 0dB5dB/DIV10MHzS22LOG MAG110MHz 76MHz64M11*LO - 10RF88M12RF - 13LOIFSPAN40MHzLO = 825MHz -6dBmRF = 901MHz - 25dBm-17dBm10dB/DIV 67575082590097510dB/DIVLO + 2RFSPAN500MHzLO - 2RF-26dBm-36dBm-58dBm-53dBmLO = 825MHz -6dBmRF = 900MHz -25dBm HFA3101 10 Design Example: Up Converter Mixer Figure 12 shows an example of an up converter for cellular applications. Conclusion The HFA3101 offers the designer a number of choices and different applications as a powerful RF building block. Although isolation is degraded from the theoretical results for the cell due to the unbalanced, nondifferential input schemes being used, a number of advantages can be taken into consideration like cost, flexibility, low power and small outline when deciding for a design. TABLE 5. TYPICAL PARAMETERS FOR THE UP CONVERTER EXAMPLE PARAMETER VCC = 3V, IBIAS = 8mA VCC = 4V, IBIAS = 18mA Power Gain, LO = -6dBm 3dB 5.5dBm Power Gain, LO = 0dBm 4dB 7.2dB RF Isolation, LO = 0dBm 15dBc 22dBc LO Isolation, LO = 0dBm 28dBc 28dBc FIGURE 12. UP CONVERTER FIGURE 13. TYPICAL SPECTRUM PERFORMANCE OF UP CONVERTER RF IN0.01390nH900MHz5.2nHVCC 3V0.112348765Q5Q6Q1Q2Q3Q411p0.0175MHz27220REEREE51LO INVCC0.010.011103303V825MHz0.010.015147-100pF 9019128902LO - 10RF12RFOUTPUT WITHOUT EMITTER DEGENERATIONRF = 76MHzLO = 825MHzSPAN50MHzOUTPUT WITH EMITTER DEGENERATION REE = 4.7Ω825900976EXPANDED SPECTRUM REE = 4.7Ω HFA3101 3-11 Typical Performance Curves for Transistors FIGURE 14. IC vs VCE FIGURE 15. HFE vs IC FIGURE 16. GUMMEL PLOT FIGURE 17. fT vs IC FIGURE 18. GAIN AND NOISE FIGURE vs FREQUENCY NOTE: Figures 14 through 18 are only for Q5 and Q6. VCE (V)IC (mA)02.06.04.0070605040302010IB = 800μAIB = 1mAIB = 200μAIB = 400μAIB = 600μA hFEIC ( A)10-1010-810-610-410-2100140120100806040200VCE = 5V VBE (V)IC AND IB (A)10-1010-810-610-410-210010-120.200.400.600.801.0VCE = 3V IC (A)fT (GHz)12108642010-410-310-210-1 20181614121046NOISE FIGURE ( dB)FREQUENCY (GHz)|S21| (dB)0.51.51.02.002.53.04.84.64.44.24.03.83.63.43.28 HFA3101 12 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com Die Characteristics PROCESS UHF-1 DIE DIMENSIONS: 53 mils x 52 mils x 14 mils 1340μm x 1320μm x 355.6μm METALLIZATION: Type: Metal 1: AlCu(2%)/TiW Thickness: Metal 1: 8kÅ ±0.5kÅ Type: Metal 2: AlCu(2%) Thickness: Metal 2: 16kÅ ±0.8kÅ PASSIVATION: Type: Nitride Thickness: 4kÅ ±0.5kÅ SUBSTRATE POTENTIAL (Powered Up): Floating Metallization Mask Layout HFA31011122334455667788 HFA3101 16-Bit Low Power Sigma-Delta ADC Data Sheet AD7171 Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2009–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com FEATURES Output data rate: 125 Hz Pin-programmable power-down and reset Status function Internal clock oscillator Current: 135 μA Power supply: 2.7 V to 5.25 V –40°C to +105°C temperature range Package: 10-lead 3 mm x 3 mm LFCSP INTERFACE 2-wire serial (read-only device) SPI compatible Schmitt trigger on SCLK APPLICATIONS Weigh scales Pressure measurement Industrial process control Portable instrumentation FUNCTIONAL BLOCK DIAGRAM 16-BIT Σ-ΔADCAD7171GNDINTERNALCLOCKVDDREFIN(+)AIN(+)AIN(–)REFIN(–)DOUT/RDYSCLKPDRST08417-001 Figure 1. Table 1. VREF = VDD RMS Noise P-P Noise P-P Resolution ENOB 5 V 11.5 μV 76 μV 16 bits 16 bits 3 V 6.9 μV 45 μV 16 bits 16 bits GENERAL DESCRIPTION The AD7171 is a very low power 16-bit analog-to-digital converter (ADC). It contains a precision 16-bit sigma-delta (Σ-Δ) ADC and an on-chip oscillator. Consuming only 135 μA, the AD7171 is particularly suitable for portable or battery operated products where very low power is a requirement. The AD7171 also has a power-down mode in which the device consumes 5 μA, thus increasing the battery life of the product. For ease-of-use, all the features of the AD7171 are controlled by dedicated pins. Each time a data read occurs, eight status bits are appended to the 16-bit conversion. These status bits contain a pattern sequence that can be used to confirm the validity of the serial transfer. The output data rate of the AD7171 is 125 Hz, whereas the settling time is 24 ms. The AD7171 has one differential input and a gain of 1. This is useful in applications where the user needs to use an external amplifier to implement system-specific filtering or gain requirements. The AD7171 operates with a power supply from 2.7 V to 5.25 V. It is available in a 10-lead LFCSP package. The AD7170 is a 12-bit version of the AD7171. It has the same feature set as the AD7171 and is pin-for-pin compatible. 1 Low-Noise 24-bit Delta Sigma ADC ISL26132, ISL26134 The ISL26132 and ISL26134 are complete analog front ends for high resolution measurement applications. These 24-bit Delta-Sigma Analog-to-Digital Converters include a very low-noise amplifier and are available as either two or four differential multiplexer inputs. The devices offer the same pinout as the ADS1232 and ADS1234 devices and are functionally compatible with these devices. The ISL26132 and ISL26134 offer improved noise performance at 10Sps and 80Sps conversion rates. The on-chip low-noise programmable-gain amplifier provides gains of 1x/2x/64x/128x. The 128x gain setting provides an input range of ±9.766mVFS when using a 2.5V reference. The high input impedance allows direct connection of sensors such as load cell bridges to ensure the specified measurement accuracy without additional circuitry. The inputs accept signals 100mV outside the supply rails when the device is set for unity gain. The Delta-Sigma ADC features a third order modulator providing up to 21.6-bit noise-free performance. The device can be operated from an external clock source, crystal (4.9152MHz typical), or the on-chip oscillator. The two channel ISL26132 is available in a 24 Ld TSSOP package and the four channel ISL26134 is available in a 28 Ld TSSOP package. Both are specified for operation over the automotive temperature range (-40°C to +105°C). Features • Up to 21.6 Noise-free bits. • Low Noise Amplifier with Gains of 1x/2x/64x/128x • RMS noise: 10.2nV @ 10Sps (PGA = 128x) • Linearity Error: 0.0002% FS • Simultaneous rejection of 50Hz and 60Hz (@ 10Sps) • Two (ISL26132) or four (ISL26134) channel differential input multiplexer • On-chip temperature sensor (ISL26132) • Automatic clock source detection • Simple interface to read conversions • +5V Analog, +5 to +2.7V Digital Supplies • Pb-Free (RoHS Compliant) • TSSOP packages: ISL26132, 24 pin; ISL26134, 28 pin Applications • Weigh Scales • Temperature Monitors and Controls • Industrial Process Control • Pressure Sensors ADC PGA 1x/2x/64x/ 128x INTERNAL CLOCK SDO/RDY SCLK AVDD DVDD AGND DGND XTALIN/CLOCK VREF+ EXTERNAL OSCILLATOR XTALOUT A0 A1/TEMP VREFAIN1+ AIN1- AIN2+ AIN2- AIN3+ AIN3- AIN4+ AIN4- INPUT MULTIPLEXER ISL26134 Only CAP CAP GAIN0 GAIN1 PWDN SPEED DGND DGND NOTE for A1/TEMP pin: Functions as A1 on ISL26134; Functions as TEMP on ISL26132 FIGURE 1. BLOCK DIAGRAM September 9, 2011 FN6954.1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. All other trademarks mentioned are the property of their respective owners. ISL26132, ISL26134 2 FN6954.1 September 9, 2011 Ordering Information PART NUMBER (Notes 2, 3) PART MARKING TEMPERATURE RANGE (°C) PACKAGE (Pb-free) PKG. DWG NUMBER ISL26132AVZ 26132 AVZ -40 to +105 24 Ld TSSOP M24.173 ISL26132AVZ-T (Note 1) 26132 AVZ -40 to +105 24 Ld TSSOP (Tape & Reel) M24.173 ISL26132AVZ-T7A (Note 1) 26132 AVZ -40 to +105 24 Ld TSSOP (Tape & Reel) M24.173 ISL26134AVZ 26134 AVZ -40 to +105 28 Ld TSSOP M28.173 ISL26134AVZ-T (Note 1) 26134 AVZ -40 to +105 28 Ld TSSOP (Tape & Reel) M28.173 ISL26134AVZ-T7A (Note 1) 26134 AVZ -40 to +105 28 Ld TSSOP (Tape & Reel) M28.173 ISL26134AV28EV1Z Evaluation Board NOTES: 1. Please refer to TB347 for details on reel specifications. 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL26132, ISL26134. For more information on MSL please see techbrief TB363. TABLE 1. KEY DIFFERENCES OF PARTS PART NUMBER NUMBER OF CHANNELS ON-CHIP TEMPERATURE SENSOR NUMBER OF PINS ISL26132 2 YES 24 ISL26134 4 NO 28 Pin Configurations ISL26132 (24 LD TSSOP) TOP VIEW ISL26134 (28 LD TSSOP) TOP VIEW 1 2 3 4 5 6 7 8 9 10 11 12 16 17 18 19 20 21 22 23 24 15 14 13 DVDD DGND XTALIN/CLOCK XTALOUT DGND DGND TEMP A0 CAP CAP AIN1+ AIN1- SDO/RDY PDWN SPEED GAIN1 GAIN0 AGND VREFAIN2+ AIN2- SCLK AVDD VREF+ 28 27 26 25 24 23 22 21 20 19 18 17 16 15 DVDD DGND XTALIN/CLOCK XTALOUT DGND DGND A1 A0 CAP CAP AIN1+ AIN1- AIN3+ AIN3- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SDO/RDY PDWN SPEED GAIN1 GAIN0 AGND VREFAIN2+ AIN2- AIN4+ AIN4- SCLK AVDD VREF+ ISL26132, ISL26134 3 FN6954.1 September 9, 2011 Pin Descriptions NAME PIN NUMBER ANALOG/DIGITAL ISL26132 ISL26134 INPUT/OUTPUT DESCRIPTION DVDD 1 1 Digital Digital Power Supply (2.7V to 5.25V) DGND 2, 5, 6 2, 5, 6 Digital Digital Ground XTALIN/CLOCK 3 3 Digital/Digital Input External Clock Input: typically 4.9152MHz. Tie low to activate internal oscillator. Can also use external crystal across XTALIN/CLOCK and XTALOUT pins. XTALOUT 4 4 Digital External Crystal connection TEMP 7 - Digital Input On-chip Temperature Diode Enable A1 A0 - 8 7 8 Digital Input CAP 9, 10 9, 10 Analog PGA Filter Capacitor AIN1+ 11 11 Analog Input Positive Analog Input Channel 1 AIN1- 12 12 Analog Input Negative Analog Input Channel 1 AIN3+ - 13 Analog Input Positive Analog Input Channel 3 AIN3- - 14 Analog Input Negative Analog Input Channel 3 AIN4- - 15 Analog Input Negative Analog Input Channel 4 AIN4+ - 16 Analog Input Positive Analog Input Channel 4 AIN2- 13 17 Analog Input Negative Analog Input Channel 2 AIN2+ 14 18 Analog Input Positive Analog Input Channel 2 VREF- 15 19 Analog Input Negative Reference Input VREF+ 16 20 Analog Input Positive Reference Input AGND 17 21 Analog Analog Ground AVDD 18 22 Analog Analog Power Supply 4.75V to 5.25V GAIN0 GAIN1 19 20 23 24 Digital Input TABLE 2. INPUT MULTIPLEXER SELECT ISL26134 ISL26132 A1 A0 CHANNEL 0 0 AIN1 0 1 AIN2 1 0 AIN3 1 1 AIN4 TABLE 3. GAIN SELECT GAIN1 GAIN0 GAIN 0 0 1 0 1 2 1 0 64 1 1 128 ISL26132, ISL26134 4 FN6954.1 September 9, 2011 Circuit Description The ISL26132 (2-channel) and ISL26134 (4-channel) devices are very low noise 24-bit delta-sigma ADCs that include a programmable gain amplifier and an input multiplexer. The ISL26132 offers an on-chip temperature measurement capability. The ISL26132, ISL26134 provide pin compatibility and output data compatibility with the ADS1232/ADS1234, and offer the same conversion rates of 10Sps and 80Sps. All the features of the ISL26132, ISL26134 are pin-controllable, while offset calibration, standby mode, and output conversion data are accessible through a simple 2-wire interface. The clock can be selected to come from an internal oscillator, an external clock signal, or crystal (4.9152MHz typical). SPEED 21 25 Digital Input PDWN 22 26 Digital Input Power-Down: Holding this pin low powers down the entire converter and resets the ADC. SCLK 23 27 Digital Input Serial Clock: Clock out data on the rising edge. Also used to initiate Offset Calibration and Sleep modes. See “Serial Clock Input (SCLK)” on page 14 for more details. SDO/RDY 24 28 Digital Output Dual-Purpose Output: Data Ready: Indicate valid data by going low. Data Output: Outputs data, MSB first, on the first rising edge of SCLK. Pin Descriptions (Continued) NAME PIN NUMBER ANALOG/DIGITAL ISL26132 ISL26134 INPUT/OUTPUT DESCRIPTION TABLE 4. DATA RATE SELECT SPEED DATA RATE 0 10Sps 1 80Sps ISL26132, ISL26134 5 FN6954.1 September 9, 2011 Absolute Maximum Ratings Thermal Information AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +0.3V Analog In to AGND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to AVDD+0.3V Digital In to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to DVDD+0.3V Input Current Momentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA ESD Rating Human Body Model (Per MIL-STD-883 Method 3015.7) . . . . . . . . . . . . .7.5kV Machine Model (Per JESD22-A115). . . . . . . . . . . . . . . . . . . . . . . . . . 450V Charged Device Model (Per JESD22-C101) . . . . . . . . . . . . . . . . . . . . . . . . 2kV Latch-up (Per JEDEC JESD-78B; Class 2, Level A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA @ Room and Hot (+105°C) Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W) 24 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . . 65 18 28 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . . 63 18 Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80mW Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp Operating Conditions Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +105°C AVDD to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.75V to 5.25V DVDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.25V CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details. 5. For θJC, the “case temp” location is taken at the package top center. Electrical Specifications VREF+ = 5V, VREF- = 0V, AVDD = 5V, DVDD = 5V, AGND = DGND = 0V, MCLK = 4.9152MHz, and TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C SYMBOL PARAMETER TEST LEVEL or NOTES MIN (Note 6) TYP MAX (Note 6) UNITS ANALOG INPUTS Differential Input Voltage Range ±0.5VREF/ Gain V Common Mode Input Voltage Range Gain = 1, 2 AGND - 0.1 AVDD + 0.1 V Gain = 64, 128 AGND+1.5 AVDD - 1.5 V Differential Input Current Gain = 1 ±20 nA Gain = 2 ±40 nA Gain = 64, 128 ±1 nA SYSTEM PERFORMANCE Resolution No Missing Codes 24 Bits Data Rate Internal Osc. SPEED = High 80 SPS Internal Osc. SPEED = Low 10 SPS External Osc. SPEED = High fCLK/61440 SPS External Osc. SPEED = Low fCLK/49152 0 SPS Digital Filter Settling Time Full Setting 4 Conversions INL Integral Nonlinearity Differential Input Gain = 1, 2 ±0.0002 ±0.001 % of FSR (Note 7) Differential Input Gain = 64, 128 ±0.0004 % of FSR (Note 7) Input Offset Error Gain = 1 ±0.4 ppm of FS Gain = 128 ±1.5 ppm of FS Input Offset Drift Gain = 1 0.3 μV/°C Gain = 128 10 nV/°C Gain Error (Note 8) Gain = 1 ±0.007 ±0.02 % Gain = 128 ±0.02 % Gain Drift Gain = 1 0.5 ppm/°C Gain = 128 7 ppm/°C ISL26132, ISL26134 6 FN6954.1 September 9, 2011 CMRR Common Mode Rejection At DC, Gain = 1, ΔV = 1V 85 100 dB At DC, Gain = 128, ΔV = 0.1V 100 dB 50Hz/60Hz Rejection (Note 9) External 4.9152MHz Clock 130 dB PSRR Power Supply Rejection At DC, Gain = 1, ΔV = 1V 82 100 dB At DC, Gain = 128, ΔV = 0.1V 100 105 dB Input Referred Noise See “Typical Characteristics” beginning on page 8 Noise Free Bits See “Typical Characteristics” beginning on page 8 VOLTAGE REFERENCE INPUT VREF Voltage Reference Input VREF = VREF+ - VREF- 1.5 AVDD AVDD + 0.1 V VREF- Negative Reference Input AGND - 0.1 VREF+ - 1.5 V VREF+ Positive Reference Input VREF- + 1.5 AVDD + 0.1 V IREF Voltage Reference Input Current ±350 nA POWER SUPPLY REQUIREMENTS AVDD Analog Supply Voltage 4.75 5.0 5.25 V DVDD Digital Supply Voltage 2.7 3.3 5.25 V AIDD Analog Supply Current Normal Mode, AVDD = 5, Gain = 1, 2 7 8.5 mA Normal Mode, AVDD = 5, Gain = 64, 128 9 12 mA Standby Mode 0.2 3 μA Power-Down 0.2 2.5 μA DIDD Digital Supply Current Normal Mode, AVDD = 5, Gain = 1, 2 750 950 μA Normal Mode, AVDD = 5, Gain = 64, 128 750 950 μA Standby Mode 1.5 26 μA Power-Down 1 26 μA PD Power Dissipation, Total Normal Mode, AVDD = 5, Gain = 1, 2 49.6 mW Normal Mode, AVDD = 5, Gain = 64, 128 68 mW Standby Mode 0.14 mW Power-Down 0.14 mW DIGITAL INPUTS VIH 0.7 DVDD V VIL 0.2 DVDD V VOH IOH = -1mA DVDD - 0.4 V VOL IOL = 1mA 0.2 DVDD V Input Leakage Current ±10 μA External Clock Input Frequency 0.3 4.9152 MHz Serial Clock Input Frequency 1 MHz NOTE: 6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. 7. FSR = Full Scale Range = VREF/Gain 8. Gain accuracy is calibrated at the factory (AVDD = +5V). 9. Specified for word rate equal to 10Sps. Electrical Specifications VREF+ = 5V, VREF- = 0V, AVDD = 5V, DVDD = 5V, AGND = DGND = 0V, MCLK = 4.9152MHz, and TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C (Continued) SYMBOL PARAMETER TEST LEVEL or NOTES MIN (Note 6) TYP MAX (Note 6) UNITS ISL26132, ISL26134 7 FN6954.1 September 9, 2011 Noise Performance The ISL26132 and ISL26134 provide excellent noise performance. The noise performance on each of the gain settings of the PGA at the selected word rates is shown in Tables 5 and 6. Resolution in bits decreases by 1-bit if the ADC is operated as a single-ended input device. Noise measurements are input-referred, taken with bipolar inputs under the specified operating conditions, with fCLK = 4.9152MHz. TABLE 5. AVDD = 5V, VREF = 5V, DATA RATE = 10Sps GAIN RMS NOISE (nV) PEAK-TO-PEAK NOISE (nV) (Note 10) NOISE-FREE BITS (Note 11) 1 243 1604 21.6 2 148 977 21.3 64 10.8 71 20.1 128 10.2 67 19.1 TABLE 6. AVDD = 5V, VREF = 5V, DATA RATE = 80Sps GAIN RMS NOISE (nV) PEAK-TO-PEAK NOISE (nV) (Note 10) NOISE-FREE BITS (Note 11) 1 565 3730 20.4 2 285 1880 20.3 64 28.3 187 18.7 128 27 178 17.7 NOTES: 10. The peak-to-peak noise number is 6.6 times the rms value. This encompasses 99.99% of the noise excursions that may occur. This value best represents the worst case noise that could occur in the output conversion words from the converter. 11. Noise-Free Bits is defined as: Noise-Free Bits = ln(FSR/peak-to-peak noise)/ln(2) where FSR is the full scale range of the converter, VREF/Gain. ISL26132, ISL26134 8 FN6954.1 September 9, 2011 Typical Characteristics FIGURE 2. NOISE AT GAIN = 1, 10Sps FIGURE 3. NOISE HISTOGRAM AT GAIN = 1, 10Sps FIGURE 4. NOISE AT GAIN = 2, 10Sps FIGURE 5. NOISE HISTOGRAM AT GAIN = 2, 10Sps FIGURE 6. NOISE AT GAIN = 64, 10Sps FIGURE 7. NOISE HISTOGRAM AT GAIN = 64, 10Sps -10 -5 0 5 10 0 200 400 600 800 1000 GAIN = 1 RATE = 10Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 50 100 150 200 250 300 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 OUTPUT CODE (LSB) GAIN = 1, N = 1024 RATE = 10Sps STD DEV = 1.635 LSB VREF = 2.5V COUNTS - 10 -5 0 5 10 0 200 400 600 800 1000 TIME (SAMPLES) OUTPUT CODE (LSB) GAIN = 2 RATE = 10Sps 0 50 100 150 200 250 -8 -6 -4 -2 0 2 4 6 8 GAIN = 2, N = 1024 RATE = 10Sps STD DEV = 1.989 LSB VREF = 2.5V OUTPUT CODE (LSB) COUNTS -15 -10 -5 0 5 10 15 20 0 200 400 600 800 1000 TIME (SAMPLES) OUTPUT CODE (LSB) GAIN = 64 RATE = 10Sps 0 20 40 60 80 100 120 -20 -15 -10 -5 0 5 10 15 20 GAIN = 64, N = 1024 RATE = 10Sps STD DEV = 4.627 LSB VREF = 2.5V OUTPUT CODE (LSB) COUNTS ISL26132, ISL26134 9 FN6954.1 September 9, 2011 FIGURE 8. NOISE AT GAIN = 128, 10Sps FIGURE 9. NOISE HISTOGRAM AT GAIN = 128, 10Sps FIGURE 10. NOISE AT GAIN = 1, 80Sps FIGURE 11. NOISE HISTOGRAM AT GAIN = 1, 80Sps FIGURE 12. NOISE AT GAIN = 2, 80Sps FIGURE 13. NOISE HISTOGRAM AT GAIN = 2, 80Sps Typical Characteristics (Continued) -50 -30 -10 10 30 50 0 200 400 600 800 1000 GAIN = 128 RATE = 10Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 10 20 30 40 50 60 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 OUTPUT CODE (LSB) COUNTS GAIN = 128, N = 1024 RATE = 10Sps STD DEV = 8.757 LSB VREF = 2.5V -25 -20 -15 -10 -5 0 5 10 15 20 25 0 200 400 600 800 1000 GAIN = 1 RATE = 80Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 20 40 60 80 100 120 -15 -10 -5 0 5 10 15 OUTPUT CODE (LSB) COUNTS GAIN = 1, N = 1024 RATE = 80Sps STD DEV = 3.791 LSB VREF = 2.5V -25 -15 -5 5 15 25 0 200 400 600 800 1000 GAIN = 2 RATE = 80Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 20 40 60 80 100 120 -15 -10 -5 0 5 10 15 OUTPUT CODE (LSB) COUNTS GAIN = 2, N = 1024 RATE = 80Sps STD DEV = 3.831 LSB VREF = 2.5V ISL26132, ISL26134 10 FN6954.1 September 9, 2011 FIGURE 14. NOISE AT GAIN = 64, 80Sps FIGURE 15. NOISE HISTOGRAM AT GAIN = 64, 80Sps FIGURE 16. NOISE AT GAIN = 128, 80Sps FIGURE 17. NOISE HISTOGRAM AT GAIN = 128, 80Sps FIGURE 18. ANALOG CURRENT vs TEMPERATURE FIGURE 19. DIGITAL CURRENT vs TEMPERATURE Typical Characteristics (Continued) -100 -50 0 50 100 0 200 400 600 800 1000 GAIN = 64 RATE = 80Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 10 20 30 40 50 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 OUTPUT CODE (LSB) COUNTS GAIN = 64, N = 1024 RATE = 80Sps STD DEV = 12.15 LSB VREF = 2.5V -200 -160 -120 -80 -40 0 40 80 120 160 0 200 400 600 800 1000 GAIN = 128 RATE = 80Sps TIME (SAMPLES) OUTPUT CODE (LSB) 0 5 10 15 20 25 30 -80 -60 -40 -20 0 20 40 60 80 OUTPUT CODE (LSB) COUNTS GAIN = 128, N = 1024 RATE = 80Sps STD DEV = 23.215 LSB VREF = 2.5V 0 2 4 6 8 10 -40 -10 20 50 80 110 TEMPERATURE (°C) CURRENT (mA) NORMAL MODE, PGA = 64.128 NORMAL MODE, PGA = 1, 2 1 10 100 1000 10000 -40 -10 20 50 80 110 TEMPERATURE (°C) CURRENT (μA) NORMAL MODE, ALL PGA GAINS POWERDOWN MODE ISL26132, ISL26134 11 FN6954.1 September 9, 2011 FIGURE 20. TYPICAL WORD RATE vs TEMPERATURE USING INTERNAL OSCILLATOR FIGURE 21. NOISE DENSITY vs FREQUENCY AT GAIN = 1, 80Sps FIGURE 22. NOISE DENSITY vs FREQUENCY AT GAIN = 128, 80Sps Typical Characteristics (Continued) 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 -40 -10 20 50 80 110 TEMPERATURE (°C) DATA RATE (Sps) WORD RATE = 10Sps 10 100 1000 10000 0.01 0.1 1 10 FREQUENCY (Hz) NOISE (nV/√Hz) GAIN = 1, 80Sps 64k FFT 25 AVERAGES 1 10 100 0.01 0.1 1 10 FREQUENCY (Hz) NOISE (nV/√Hz) GAIN = 128, 80Sps 64k FFT 25 AVERAGES ISL26132, ISL26134 12 FN6954.1 September 9, 2011 Functional Description Analog Inputs The analog signal inputs to the ISL26132 connect to a 2-Channel differential multiplexer and the ISL26134 connect to a 4-Channel differential multiplexer (Mux). The multiplexer connects a pair of inputs to the positive and negative inputs (AINx+, AINx-), selected by the Channel Select Pins A0 and A1 (ISL26134 only). Input channel selection is shown in Table 7. On the ISL26132, the TEMP pin is used to select the Temperature Sensor function. Whenever the MUX channel is changed (i.e. if any one of the following inputs - A0/A1, Gain1/0, SPEED is changed), the digital logic will automatically restart the digital filter and will cause SDO/RDY to go low only when the output is fully settled. But if the input itself is suddenly changed, then the user needs to ignore first four RDY pulses (going low) to get an accurate measurement of the input signal. The input span of the ADC is ±0.5 VREF/GAIN. For a 5V VREF and a gain of 1x, the input span will be 5VP-P fully differential as shown in Figure 23. Note that input voltages that exceed the supply rails by more than 100mV will turn on the ESD protection diodes and degrade measurement accuracy. If the differential input exceeds well above the +VE or the -VE FS (by ~1.5x times) the output code will clip to the corresponding FS value. Under such conditions, the output data rate will become 1/4th of the original value as the Digital State Machine will RESET the Delta-Sigma Modulator and the Decimation Filter. Temperature Sensor (ISL26132 only) When the TEMP pin of the ISL26132 is set High, the input multiplexer is connected to a pair of diodes, which are scaled in both size and current. The voltage difference measured between them corresponds to the temperature of the die according to Equation 1: Note: Valid only for GAIN = 1x or 2x Where T is the temperature of the die, and Gain = the PGA Gain Setting. At a temperature of +25°C, the measured voltage will be approximately 111.7mV. Note that this measurement indicates only the temperature of the die itself. Applying the result to correct for the temperature drift of a device external to the package requires that thermal coupling between the sensor and the die be taken into account. Low-Noise Programmable Gain Amplifier (PGA) The chopper-stabilized programmable gain amplifier features a variety of gain settings to achieve maximum dynamic range and measurement accuracy from popular sensor types with excellent low noise performance, input offset error, and low drift, and with minimal external parts count. The GAIN0 and GAIN1 pins allow the user to select gain settings of 1x, 2x, 64x, or 128x. A block diagram is shown in Figure 24. The differential input stage provides a gain of 64, which is bypassed when the lower gain settings are selected. The lower gain settings (1 and 2) will accept inputs with common mode voltages up to 100mV outside the rails, allowing the device to accept ground-referred signals. At gain settings of 64 or 128 the common mode voltage at the inputs is limited to 1.5V inside the supply rails while maintaining specified measurement accuracy. TABLE 7. INPUT CHANNEL SELECTION CHANNEL SELECT PINS ANALOG INPUT PINS SELECTED A1 A0 AIN+ AIN- 0 0 AIN1+ AIN1- 0 1 AIN2+ AIN2- 1 0 AIN3+ AIN3- 1 1 AIN4+ AIN4- 3.75 2.50 1.25 1.25V INPUT VOLTAGE RANGE = ±0.5VREF/GAIN VREF = 5V, GAIN = 1X 3.75 2.50 1.25 AIN+ AIN- 2.50V FIGURE 23. DIFFERENTIAL INPUT FOR VREF = 5V, GAIN = 1X V= 102.2mV + (379μV∗T(°C))∗Gain (EQ. 1) ISL26132, ISL26134 13 FN6954.1 September 9, 2011 Filtering PGA Output Noise The programmable gain amplifier, as shown in Figure 24, includes a passive RC filter on its output. The resistors are located inside the chip on the outputs of the differential amplifier stages. The capacitor (nominally a 100nF C0G ceramic or a PPS film (Polyphenylene sulfide)) for the filter is connected to the two CAP pins of the chip. The outputs of the differential amplifier stages of the PGA are filtered before their signals are presented to the delta-sigma modulator. This filter reduces the amount of noise by limiting the signal bandwidth and filters the chopping artifacts of the chopped PGA stage. Voltage Reference Inputs (VREF+, VREF-) The voltage reference for the ADC is derived from the difference in the voltages presented to the VREF+ and VREF- pins; VREF = (VREF+ - VREF-). The ADCs are specified with a voltage reference value of 5V, but a voltage reference as low as 1.5V can be used. For proper operation, the voltage on the VREF+ pin should not be greater than AVDD + 0.1V and the voltage on the VREF- pin should not be more negative than AGND - 0.1V. Clock Sources The ISL26132, ISL26134 can operate from an internal oscillator, an external clock source, or from a crystal connected between the XTALIN/CLOCK and XTALOUT pins. See the block diagram of the clock system in Figure 25. When the ADC is powered up, the CLOCK DETECT block determines if an external clock source is present. If a clock greater than 300kHz is present on the XTALIN/CLOCK pin, the circuitry will disable the internal oscillator on the chip and use the external clock as the clock to drive the chip circuitry. If the ADC is to be operated from the internal oscillator, the XTALIN/CLOCK pin should be grounded. If the ADC is to be operated from a crystal, it should be located close to the package pins of the ADC. Note that external loading capacitors for the crystal are not required as there are loading capacitors built into the silicon, although the capacitor values are optimized for operation with a 4.9152MHz crystal. The XTALOUT pin is not intended to drive external circuits. Digital Filter Characteristics The digital filter inside the ADC is a fourth-order Siinc filter. Figures 26 and 27 illustrate the filter response for the ADC when it is operated from a 4.9152MHz crystal. The internal oscillator is factory trimmed so the frequency response for the filter will be much the same when using the internal oscillator. The figures illustrate that when the converter is operated at 10Sps the digital filter provides excellent rejection of 50Hz and 60Hz line interference. FIGURE 24. SIMPLIFIED PROGRAMMABLE GAIN AMPLIFIER BLOCK DIAGRAM + - A1 - + A2 AINx- AINx+ ADC RINT RINT R1 RF1 RF2 CAP CAP FIGURE 25. CLOCK BLOCK DIAGRAM XTALIN/ CRYSTAL OSCILLATOR XTALOUT TO ADC INTERNAL OSCILLATOR CLOCK DETECT MUX EN CLOCK ISL26132, ISL26134 14 FN6954.1 September 9, 2011 Serial Clock Input (SCLK) The serial clock input is provided with hysteresis to minimize false triggering. Nevertheless, care should be taken to ensure reliable clocking. Filter Settling Time and ADC Latency Whenever the analog signal into the ISL26132, ISL26134 converters is changed, the effects of the digital filter must be taken into account. The filter takes four data ready periods for the output code to fully reflect a new value at the analog input. If the multiplexer control input is changed, the modulator and the digital filter are reset, and the device uses four data ready periods to fully settle to yield a digital code that accurately represents the analog input. Therefore, from the time the control inputs for the multiplexer are changed until the SDO/RDY goes low, four data ready periods will elapse. The settling time delay after a multiplexer channel change is listed in Table 8 for the converter operating in continuous conversion mode. 0 -50 -100 -150 0 10 20 30 40 50 60 70 80 90 100 FREQUENCY (Hz) GAIN (dB) DDAATTAA RRAATTEE == 1100 SSpPsS FIGURE 26. 10Sps: FREQUENCY RESPONSE OUT TO 100Hz -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 45 50 55 60 65 FREQUENCY (Hz) GAIN (dB) DATA RATE = 10Sps FIGURE 27. 10Sps: 50/60Hz NOISE REJECTION, 45Hz TO 65Hz TABLE 8. SETTLING TIME PARAMETER DESCRIPTION (fCLK = 4.9152MHz) MIN MAX UNITS tS A0, A1, SPEED, Gain1, Gain0 change set-up time 40 50 μs t1 Settling time SPEED = 1 54 55 ms SPEED = 0 404 405 ms FIGURE 28. SDO/RDY DELAY AFTER MULTIPLEXER CHANGE SDO/RDY tS t1 A0, A1, SPEED, Gain1, Gain0 ISL26132, ISL26134 15 FN6954.1 September 9, 2011 Conversion Data Rate The SPEED pin is used to select between the 10Sps and 80Sps conversion rates. The 10Sps rate (SPEED = Low) is preferred in applications requiring 50/60Hz noise rejection. Note that the sample rate is directly related to the oscillator frequency, as 491,520 clocks are required to perform a conversion at the 10Sps rate, and 61,440 clocks at the 80Sps rate. Output Data Format The 24-bit converter output word is delivered in two’s complement format. Input exceeding full scale results in a clipped output which will not return to in-range values until after the input signal has returned to the specified allowable voltage range and the digital filter has settled as discussed previously. Reading Conversion Data from the Serial Data Output/Ready SDO/RDY Pin When the ADC is powered, it will automatically begin doing conversions. The SDO/RDY signal will go low to indicate the completion of a conversion. After the SDO/RDY signal goes low, the MSB data bit of the conversion word will be output from the SDO/RDY pin after SCLK is transitioned from a low to a high. Each subsequent new data bit is also output on the rising edge of SCLK (see Figure 30). The receiving device should use the falling edge of SCLK to latch the data bits. After the 24th SCLK, the SDO/RDY output will remain in the state of the LSB data bit until a new conversion is completed. At this time, the SDO/RDY will go high if low and then go low to indicate that a new conversion word is available. If not all data bits are read from the SDO/RDY pin prior to the completion of a new conversion, they will be overwritten. SCLK should be low during time t6, as shown in Figure 30, when SDO/RDY is high. If the user wants the SDO/RDY signal to go high after reading the 24 bits of the conversion data word, a 25th SCLK can be issued. The 25th SCLK will force the SDO/RDY signal to go high and remain high until it falls to signal that a new conversion word is available. Figure 31 illustrates the behavior of the SDO/RDY signal when a 25th SCLK is used. FIGURE 29. SDO/RDY DELAY AFTER MULTIPLEXER CHANGE SDO/RDY TABLE 9. OUTPUT CODES CORRESPONDING TO INPUT INPUT SIGNAL OUTPUT CODE (HEX) ≥ + 0.5VREF/GAIN 7FFFFF (+0.5VREF/GAIN)/(223 - 1) 000001 0 000000 (-0.5VREF/GAIN)/(223 - 1) FFFFFF ≤ - 0.5VREF/GAIN 800000 FIGURE 30. OUTPUT DATA WAVEFORMS USING 24 SCLKS TO READ CONVERSION DATA SDO/RDY DATA READY DATA MSB LSB NEW DATA READY 23 22 21 0 SCLK t4 t2 1 t3 24 t5 t6 t3 t7 ISL26132, ISL26134 16 FN6954.1 September 9, 2011 Offset Calibration Control The offset internal to the ADC can be removed by performing an offset calibration operation. Offset calibration can be initiated immediately after reading a conversion word with 24 SCLKs by issuing two additional SCLKs. The offset calibration operation will begin immediately after the 26th SCLK occurs. Figure 32 illustrates the timing details for the offset calibration operation. During offset calibration, the analog inputs are shorted internally and a regular conversion is performed. This conversion generates a conversion word that represents the offset error. This value is stored and used to digitally remove the offset error from future conversion words. The SDO/RDY output will fall to indicate the completion of the offset calibration operation. TABLE 10. INTERFACE TIMING CHARACTERISTICS PARAMETER DESCRIPTION MIN TYP MAX UNITS t2 SDO/RDY Low to first SLK 0 ns t3 SCLK pulsewidth, Low or High 100 ns t4 SCLK High to Data Valid 50 ns t5 Data Hold after SCLK High 0 ns t6 Register Update Time 39 μs t7 Conversion Period SPEED = 1 12.5 ms SPEED = 0 100 ms FIGURE 31. OUTPUT DATA WAVEFORMS FOR SDO/RDY POLLING DATA READY NEW DATA READY SDO/RDY SCLK 23 22 21 0 1 24 25 DATA 25TH SCLK FORCES SDO/RDY HIGH FIGURE 32. OFFSET CALIBRATION WAVEFORMS DATA READY AFTER CALIBRATION CALIBRATION BEGINS SDO/RDY SCLK 23 22 21 0 23 1 24 25 26 t8 FIGURE 33. STANDBY MODE WAVEFORMS DATA READY START CONVERSION STANDBY MODE SDO/RDY SCLK 23 22 21 0 1 24 t10 t11 t9 23 TABLE 11. SDO/RDY DELAY AFTER CALIBRATION PARAMETER MIN MAX UNITS t8 SPEED = 1 108 109 ms SPEED = 0 808 809 ms ISL26132, ISL26134 17 FN6954.1 September 9, 2011 Standby Mode Operation The ADC can be put into standby mode to save power. Standby mode reduces the power to all circuits in the device except the crystal oscillator amplifier. To enter the standby mode, take the SCLK signal high and hold it high after SDO/RDY falls. The converter will remain in standby mode as long as SCLK is held high. To return to normal operation, take SCLK back low and wait for the SDO/RDY to fall to indicate that a new conversion has completed. Figure 33 and Table 12 illustrate the details of standby mode. Supply currents are equal in Standby and Power-down modes unless a Crystal is used. If the Crystal is used, the Crystal amplifier is turned ON, even in the standby mode. Performing Offset Calibration After Standby Mode To perform an offset calibration automatically upon returning from standby, deliver 2 or more additional SCLKs following a data read cycle, and then set and hold SCLK high. The device will remain in Standby as long as SCLK remains high. A calibration cycle will begin once SCLK is brought low again to resume normal operation. Additional time will be required to perform the calibration after returning from Standby. Figure 34 and Table 13 illustrate the details of performing offset calibration after standby mode. TABLE 12. STANDBY MODE TIMING PARAMETER DESCRIPTION MIN MAX UNITS t9 SCLK High after SDO/RDY Low SPEED = 1 0 12.44 ms SPEED = 0 0 99.94 t10 Standby Mode Delay SPEED = 1 12.5 SPEED = 0 100 t11 SDO/RDY falling edge after SCLK Low SPEED = 1 50 60 SPEED = 0 400 410 TABLE 13. OFFSET CALIBRATION TIMING AFTER STANDY PARAMETER DESCRIPTION MIN MAX UNITS t12 SDO/RDY Low after SCLK Low SPEED = 1 108 113 ms SPEED = 0 808 813 ms FIGURE 34. OFFSET CALIBRATION WAVEFORMS AFTER STANDBY SDO/RDY SCLK 23 22 21 0 1 24 25 STANDBY MODE DATA READY AFTER CALIBRATION BEGIN 23 CALIBRATION t10 t12 ISL26132, ISL26134 18 FN6954.1 September 9, 2011 Operation of PDWN PDWN must transition from low to high after both power supplies have settled to specified levels in order to initiate a correct power-up reset (Figure 35). This can be implemented by an external controller or a simple RC delay circuit, as shown in Figure 36. In order to reduce power consumption, the user can assert the Power-down mode by bringing PDWN Low as shown in Figure 37. All circuitry is shut down in this mode, including the Crystal Oscillator. After PDWN is brought High to resume operation, the reset delay varies depending on the clock source used. While an external clock source will resume operation immediately, a circuit utilizing a crystal will incur about a 20 millisecond delay due to the inherent start-up time of this type of oscillator. FIGURE 35. POWER-DOWN TIMING RELATIVE TO SUPPLIES ≥10μs AVDD DVDD PDWN FIGURE 36. PDWNDELAY CIRCUIT DVDD 1kΩ 2.2nF CONNECT TO PDWN PIN FIGURE 37. POWER-DOWN MODE WAVEFORMS SDO/RDY SCLK t11 PDWN POWER-DOWN MODE START CONVERSION DATA CLK READY SOURCE WAKEUP t13 tt1144 TABLE 14. POWER-DOWN RECOVERY TIMING PARAMETER DESCRIPTION TYP UNITS t13 Clock Recovery after PDWN High Internal Oscillator 7.95 μs External Clock Source 0.16 μs 4.9152MHz Crystal Oscillator 5.6 ms t14 PDWN Pulse Duration 26 μs (min) ISL26132, ISL26134 19 FN6954.1 September 9, 2011 Applications Information Power-up Sequence – Initialization and Configuration The sequence to properly power-up and initialize the device are as follows. For details on individual functions, refer to their descriptions. 1. AVDD, DVDD ramp to specified levels 2. Apply External Clock 3. Pull PDWN High to initiate Reset 4. Device begins conversion 5. SDO/RDY goes low at end of first conversion OPTIONAL ACTIONS • Perform Offset Calibration • Place device in Standby • Return device from Standby • Read on-chip Temperature (applicable to ISL26132 only) Application Examples WEIGH SCALE SYSTEM Figure 38 illustrates the ISL26132 connected to a load cell. The A/D converter is configured for a gain of 128x and a sample rate of 10Sps. If a load cell with 2mV/V sensitivity is used, the full scale output from the load cell will be 10mV. On a gain of 128x and sample rate of 10Sps, the converter noise is 67nVP-P. The converter will achieve 10mV/67nVP-P = 149,250 noise free counts across its 10mV input signal. This equates to 14,925 counts per mV of input signal. If five output words are averaged together this can be improved by √5 to yield √5*14925 counts = 33,370 counts per mV of input signal with an effective update rate of 2 readings per second. THERMOCOUPLE MEASUREMENT Figure 39 illustrates the ISL26132 in a thermocouple application. As shown, the 4.096V reference combined with the PGA gain set to 128x sets the input span of the converter to ±16mV. This supports the K type thermocouple measurement for temperatures from -270°C at -6.485mV to +380°C at about 16mV. If a higher temperature is preferred, the PGA can be set to 64x to provide a converter span of ±32mV. The will allow the converter to support temperature measurement with the K type thermocouple up to about +765°C. In the circuit shown, the thermocouple is referenced to a voltage dictated by the resistor divider from the +5V supply to ground. These set the common mode voltage at about 2.5V. The 5M resistors provide a means for detection of an open thermocouple. If the thermocouple fails open or is not connected, the bias through the 5M resistors will cause the input to the PGA to go to full scale. AVDD VREF+ CAP CAP AIN+1 AIN-1 AIN+2 AIN-2 VREFAGND DGND TEMP A0 SPEED XTALOUT PDWN SCLK SDO/RDY GAIN0 GAIN1 DVDD ISL26132 XTALIN/CLOCK - + 0.1μF VDD MICRO CONTROLLER GND 16 9 10 11 12 14 13 15 17 2, 5, 6 7 8 21 3 4 22 23 24 19 20 GAIN = 128 5V 3V 0.1μF 18 1 FIGURE 38. WEIGH SCALE APPLICATION ISL26132, ISL26134 20 FN6954.1 September 9, 2011 PCB Board Layout and System Configuration The ISL26132,ISL26134 ADC is a very low noise converter. To achieve the full performance available from the device will require attention to the printed circuit layout of the circuit board. Care should be taken to have a full ground plane without impairments (traces running through it) directly under the chip on the back side of the circuit board. The analog input signals should be laid down adjacent (AIN+ and AIN- for each channel) to achieve good differential signal practice and routed away from any traces carrying active digital signals. The connections from the CAP pins to the off-chip filter capacitor should be short, and without any digital signals nearby. The crystal, if used should be connected with relatively short leads. No active digital signals should be routed near or under the crystal case or near the traces, which connect it to the ADC. The AGND and DGND pins of the ADC should be connected to a common solid ground plane. All digital signals to the chip should be powered from the same supply, as that used for DVDD (do not allow digital signals to be active high unless the DVDD supply to the chip is alive). Route all active digital signals in a way to keep distance from any analog pin on the device (AIN, VREF, CAP, AVDD). Power on the AVDD supply should be active before the VREF voltage is present. PCB layout patterns for the chips (ISL26132 and ISL26134) are found on the respective package outline drawings on pages 22, and 23. AVDD VREF+ AIN+1 AIN-1 AIN+2 AIN-2 VREFAGND DGND TEMP A0 SPEED XTALOUT PDWN SCLK SDO/RDY GAIN0 GAIN1 DVDD XTALIN/CLOCK MICRO CONTROLLER 16 11 12 14 13 15 17 2, 5, 6 7 8 21 3 4 22 23 24 19 20 +5V +3V 0.1μF 18 1 FIGURE 39. THERMOCOUPLE MEASUREMENT APPLICATION 4.9152 MHz ISL21009 4.096V 10nF 1μF 10k 10k 0.1μF TYPE K 5M 5M ISL26132, ISL26134 21 Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com FN6954.1 September 9, 2011 For additional products, see www.intersil.com/product_tree Products Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families. For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL26132, ISL26134 To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff FITs are available from our website at http://rel.intersil.com/reports/search.php Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev. DATE REVISION CHANGE 09/08/11 FN6954.1 Power Supply Requirements on page 6 - AIDD - Analog Supply Current - Normal Mode, AVDD = 5, Gain = 1,2 changed TYP and MAX from “6, 7.3” to “7, 8.5” Power Dissipation, Total Normal Mode, AVDD = 5, Gain = 1, 2 changed from “43.3” to “49.6” mW (Max) 08/22/11 FN6954.0 Initial Release. ISL26132, ISL26134 22 FN6954.1 September 9, 2011 Package Outline Drawing M24.173 24 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) Rev 1, 5/10 DETAIL "X" TYPICAL RECOMMENDED LAND PATTERN TOP VIEW SIDE VIEW END VIEW Dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 per side. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side. Dimensions are measured at datum plane H. Dimensioning and tolerancing per ASME Y14.5M-1994. Dimension does not include dambar protrusion. Allowable protrusion shall be 0.08mm total in excess of dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm. Dimension in ( ) are for reference only. Conforms to JEDEC MO-153. 6. 3. 5. 4. 2. 1. NOTES: 7. 5 SEATING PLANE C H 2 3 1 24 B 12 1 3 13 A PLANE GAUGE 0.05 MIN 0.15 MAX 0°-8° 0.60± 0.15 0.90 1.00 REF 0.25 SEE DETAIL "X" 0.15 0.25 (0.65 TYP) (5.65) (0.35 TYP) (1.45) 6.40 4.40 ±0.10 0.65 1.20 MAX PIN #1 I.D. MARK 7.80 ±0.10 +0.05 -0.06 -0.06 +0.05 -0.10 +0.15 0.20 C B A 0.10 C - 0.05 0.10 M C B A ISL26132, ISL26134 23 FN6954.1 September 9, 2011 Package Outline Drawing M28.173 28 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) Rev 1, 5/10 DETAIL "X" TYPICAL RECOMMENDED LAND PATTERN TOP VIEW SIDE VIEW END VIEW Dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 per side. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side. Dimensions are measured at datum plane H. Dimensioning and tolerancing per ASME Y14.5M-1994. Dimension does not include dambar protrusion. Allowable protrusion shall be 0.08mm total in excess of dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07mm. Dimension in ( ) are for reference only. Conforms to JEDEC MO-153. 6. 3. 5. 4. 2. 1. NOTES: 7. 5 SEATING PLANE C H 2 3 1 28 B 14 1 3 15 A PLANE GAUGE 0.05 MIN 0.15 MAX 0°-8° 0.60 ±0.15 0.90 1.00 REF 0.25 SEE DETAIL "X" 0.25 (0.65 TYP) (5.65) (0.35 TYP) (1.45) 6.40 4.40 ± 0.10 0.65 1.20 MAX PIN #1 I.D. MARK 9.70± 0.10 -0.06 0.15 +0.05 -0.10 +0.15 -0.06 +0.05 0.20 C B A 0.10 C - 0.05 0.10 M C B A Both, the Deltabell® E and Plus feature engineer friendly features such as the unique levelling mechanism and modular components that make simple sounder installations a reality. Both external sounders incorporate the same features that are described overleaf. However, the Deltabell® Plus has a fully back-light option, which enables around the clock visual deterrent to maximise your security. The Deltabell® E and Plus are available in a variety of different colours: Low power external sounder with strobe Low power external sounder with strobe and back-light Available Base Colours: Red, Green, White, Amber, Blue and Black Available Lid Colours: Red, White, Yellow, Black*, Blue* and Chrome* *Not recommended for Deltabell® Plus 2012 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. Other cover colour options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity. RMKT090001-7 © 2009 Pyronix Ltd. Pyronix and the Pyronix Blades device are trademarks of Pyronix Ltd. As part of our continued development programme specifications of the V2 TEL and V2 GSM may change. RMKT090057-1 © 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. RMKT080064-4 © 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. RMKT090057-1 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 2010 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. Other cover colour options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity. RMKT090150 www.pyronix.com marketing@pyronix.com 01709 700100Current consumption feature Deltabell® Plus only The Deltabell® incorporates a LDR (Light Dependant Resistor) circuit which turns the Light off during daylight hours when it is not needed, saving on the product current consumption. When the day turns from dusk to dark the Lightbox illuminates so that your external visual deterrent can be seen on the darkest of nights. Visual alarm warning feature Deltabell® Plus only In addition to the strobe which is present on all of the Deltabell® models, the Deltabell® PLUS has the added feature that the illuminated cover will strobe when the alarm is activated, giving you the added peace of mind that your alarm will be seen in ‘alarm mode’ from a much greater distance than standard sounders that do not have back lighting facilities. Security and peace of mind The Deltabell® has front and rear tamper protection and in the event of a potential sabotage attack, the 104dBA sounder provides a distinctive audible warning. The electronic elements on the printed circuit board are protected by a fully sealed unit with a rubber gasket providing added protection in harsh environments and giving your customer peace of mind that the Deltabell® will always sound in the event of an alarm activation. 104 dBA sounder Piezo sounder with high decibel output. Engineer hold-off facility The Deltabell® engineer hold-off facility means that when initially powered with the tamper switch open, the sounder will not activate. Remote engineer hold-off facility There is also the capability for remote engineer hold-off which is invaluable when you are servicing the system enabling easy maintenance. It can be turned on at any time by applying 0V to this dedicated terminal which will then disable the tamper. Unique levelling mechanism A spirit level is supplied so that you can easily mount the Deltabell®. In addition, to make the installation as simple as possible, revolving guide holes are used to save time lining up screw and drill holes. SCB/SAB Mode Self Contained Bell or Self Activating Bell mode. Hinged cover The Deltabell® has a hinged cover that locks into place so that both your hands are free to work on the sounder. Fully back-lit cover The Deltabell® low power modular unit back-lights the cover (Deltabell® Plus only) Electrical specification Operating Voltage Supply: 9-16 V DC (13.5 nominal) Protected: Reverse polarity protected Current Consumption Quiescent Current: < 60 mA Alarm Current: < 300 mA Strobe Strobe Duration: 100 ms Strobe Frequency: 1Hz Dimensions [W] 290 mm [H] 285 mm [D] 50 mm Compliance Europe. Suitable for use in EN50131-1 systems Security grade 2 or 3, Environmental class IV [H] [W] [D] Packing information Minimum quantity: 10 Minimum order for screen print: 40 Warranty: 2 years Designed: UK Dummy bases also available 2012 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. Other cover colour options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity. RMKT090001-7 © 2009 Pyronix Ltd. Pyronix and the Pyronix Blades device are trademarks of Pyronix Ltd. As part of our continued development programme specifications of the V2 TEL and V2 GSM may change. RMKT090057-1 © 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. RMKT080064-4 © 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. RMKT090057-1 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 www.pyronix.com marketing@pyronix.com 01709 700100 2010 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd. UK Registered Design. As part of our continued development programme specifications may change. Other cover colour options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity. RMKT090150 www.pyronix.com marketing@pyronix.com 01709 700100 Serial File Transfer Cables The cables feature either the traditional 25 D type RS232 connector or the now more commonly fitted 9 D type serial connector. As the serial port on most PCs is a plug or male the most common interface cable tends to be a socket to socket (female to female). Features: • Multi-headed cable allows either 9 D or 25 D connection - providing complete serial port flexibility • Both serial port configurations (Pt Nos 4070 & 4062) available from stock • High quality moulded cables manufactured using foil screened cable • Custom lengths can be made up upon request • Now recognised as conforming to the most standard file transfer wiring configuration 4070 Stock No Description PC AT to PC AT 4070 DB9F to DB9F Null Modem Cable 2Mtr 4070-3 DB9F to DB9F Null Modem Cable 3Mtr 4070-5 DB9F to DB9F Null Modem Cable 5Mtr 4070-10 DB9F to DB9F Null Modem Cable 10Mtr 4070-15 DB9F to DB9F Null Modem Cable 15Mtr PC XT to PC XT 4062 DB25F to DB25F Null Modem Cable 2Mtr 4062-3 DB25F to DB25F Null Modem Cable 3Mtr 4062-5 DB25F to DB25F Null Modem Cable 5Mtr 4062-10 DB25F to DB25F Null Modem Cable 10Mtr PC XT to PC AT 4063 DB9F to DB25F Null Modem Cable 2Mtr 4063-3 9DS TO 25DS NULL MODEM 3M 4063-5 9DS TO 25DS NULL MODEM 5M 4063-10 9DS TO 25DS NULL MODEM 10M Multi-head Serial Cables 4090 DB9F+DB25F to DB9F+DB25F Null Modem Cable 2Mtr 4090-3 DB9F+DB25F to DB9F+DB25F Null Modem Cable 3Mtr 4090-5 DB9F+DB25F to DB9F+DB25F Null Modem Cable 5Mtr Amplifier Internet Radio Terrestrial Tuner Features Feature Description Audio Sources 6 – Internet Radio, MP3, CD, Terrestrial Radio, Auxiliary Input. Portable Yes, two part system. The Internet Radio is completely portable receiving all data and audio over a wireless link from the transmitter part connected to the PC USB port. LCD Display 20 character 5 x 7 dot matrix display with icons, EL blue backlight. Power Source 8 x C size 1.5 volt alkaline battery or AC mains – 220 - 240 volt Europe, 110 volt US. Operation Time Approx 30 hours continuous play at mid volume on one set of alkaline batteries. Feature Description Output Power (RMS) 2 x 2.2 watts Total Power 4.4 watts Music Power 2 x 4.4 watts PMPO 65 watts Feature Description Radio presets 6 with station name display Feature Description Digital Tuner bands FM Stereo Tuner presets 6 for each band Antenna FM YesLoudspeaker Connections Wireless Link Dimensions Frequency Display Yes, 4 digit Feature Description No. of way speaker system 1 – way full range driver Impedance 2 x 8 ohm Rated Power (RMS) 2 x 6 watts Size 67 mm x 106 mm, Elliptical Magnetic Shielding Yes Feature Description Stereo headphone Yes Auxiliary Input Yes, 2 x phono socket Auxiliary Output Yes, 2 x phono socket USB connection Yes, transmitter connects to PC USB port with 1.5 metre cable Feature Description Stereo Audio Channel Europe 863 MHz 10 mW erp, USA 925 MHz 10 mW erp, user selectable band switching to avoid interference. Data Channel Europe + USA, 433 MHz , bi-directional, user selectable band switching to avoid interference. Feature Description Radio Remote Module Front to Back 155mm (6.1"), Side to Side 283mm (11.1"), Height 150mm (5.9") USB Base Module Front to Back 120mm (4.7"), Side to Side 135mm (5.3"), Height 41mm (1.6") maxon motor control Document ID: rel3149 ESCON Servo Controllers Edition: September 2012 1 Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice. ESCON Feature Comparison Chart The ESCON servo controllers are small-sized, powerful 4-quadrant PWM servo controller for the highly efficient control of permanent magnet-activated DC motors. The featured operating modes – speed control (closed loop), speed control (open loop), and current control – meet the highest requirements. The ESCON servo controllers are designed being commanded by an analog set value and features extensive analog and digital I/O functionality and are being configured via USB interface using the graphical user interface «ESCON Studio» for Windows PCs. Legend: ()* = only in use with DC Tacho or Encoder / nnnnnn = order number / O = optional Feature ESCON 36/2 DC (403112) ESCON 36/3 EC (414533) ESCON 50/5 (409510) Product image Motors DC motors up to 72 W — 250 W EC motors up to — 97 W 250 W Sensors Digital Incremental Encoder (2 channel with or without Line Driver)  —  DC Tacho  —  Without sensor (DC motors)  —  Digital Hall Sensors (EC motors) —   Electrical Data Nominal operating voltage Vcc 10…36 VDC 10…36 VDC 10…50 VDC Max. output voltage 0.98 x Vcc 0.98 x Vcc 0.98 x Vcc Max. output current 4 A (<60 s) 9 A (<4 s) 15 A (<20 s) Continuous output current 2 A 2.7 A 5 A Pulse Width Modulation frequency 53.6 kHz maxon motor control Document ID: rel3149 ESCON Servo Controllers Edition: September 2012 2 Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice. Sampling rate PI current controller 53.6 kHz Sampling rate PI speed controller 5.36 kHz Max. efficiency 95% 95% 95% Max. speed (DC) limited by max. permissible speed (motor) and max. output voltage (controller) — limited by max. permissible speed (motor) and max. output voltage (controller) Max. speed (EC; 1 pole pair) — 150'000 rpm 150'000 rpm Built-in motor choke 300 μH; 2 A 3 x 47 μH; 2.7 A 3 x 30 μH; 5 A Inputs / Outputs Hall sensor signals — H1, H2, H3 H1, H2, H3 Encoder signals A,A\,B,B\ — A,A\,B,B\ Max. encoder input frequency differential (single-ended) 1 MHz (100 kHz) — 1 MHz (100 kHz) Potentiometers 1 1 2 Digital inputs 2 Digital inputs/outputs 2 Analog inputs 2 Resolution 12-bit Range –10…+10 V Circuit differential Analog outputs 2 Resolution 12-bit Range –4…+4 V Auxiliary voltage output +5 VDC (IL ≤10 mA) Hall sensor supply voltage — +5 VDC (IL ≤30 mA) +5 VDC (IL ≤30 mA) Encoder supply voltage +5 VDC (IL ≤70 mA) — +5 VDC (IL ≤70 mA) Status Indicators Operation: green LED / Error: red LED Connections J1 Power Pin header (2 mm), 2 poles Pin header (2 mm), 2 poles Pluggable screw-type terminal block (3.5 mm), 2 poles J2 Motor Motor / Hall sensors Pin header (2 mm), 3 poles Mini module pin header, 8 poles Pluggable screw-type terminal block (3.5 mm), 4 poles J2A Motor Motor / Hall sensors Spring-loaded contacts, 2 poles Spring-loaded contacts, 8 poles — Feature ESCON 36/2 DC (403112) ESCON 36/3 EC (414533) ESCON 50/5 (409510) maxon motor control Document ID: rel3149 ESCON Servo Controllers Edition: September 2012 3 Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice. J3 Hall sensors — — Pluggable screw-type terminal block (3.5 mm), 5 poles J4 Encoder Pin header (2.54 mm), 5 x 2 poles — Pin header (2.54 mm), 5 x 2 poles J4A Encoder Pin header (1.27 mm), 5 x 2 poles — — J5 Digital I/O Pin header (2 mm), 6 poles Pin header (2 mm), 6 poles Pluggable screw-type terminal block (3.5 mm), 6 poles J6 Analog I/O Pin header (2 mm), 7 poles Pin header (2 mm), 7 poles Pluggable screw-type terminal block (3.5 mm), 7 poles J7 USB USB Type micro B female Mechanical Data Weight (approximate) 30 g 36 g 204 g Dimensions (L x W x H) 55 x 40 x 16.1 mm 55 x 40 x 19.8 mm 115 x 75.5 x 24 mm Mounting holes for screws M2.5 for screws M2.5 for screws M4 Environmental Conditions Temperature – Operation –30…+45°C Temperature – Extended range +45…+81°C; Derating: –0.056 A/°C +45…+78°C; Derating: –0.082 A/°C +45…+85°C; Derating: –0.113 A/°C Temperature – Storage –40…+85°C Humidity (condensation not permitted) 20…80% Functionality Operating Mode Current controller (torque control)    Speed controller (closed loop)    with encoder feedback  —  with DC Tacho feedback  —  with Hall sensor feedback —   Speed controller (open loop)    with static IxR Compensation    with adaptive IxR Compensation ()*   Feature ESCON 36/2 DC (403112) ESCON 36/3 EC (414533) ESCON 50/5 (409510) maxon motor control Document ID: rel3149 ESCON Servo Controllers Edition: September 2012 4 Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice. Set Value Analog set value  PWM set value  Fixed set value  2 fixed set values  Digital I/O Functionality Enable  Enable CW  Enable CCW  Enable CW + CCW  Enable + Direction  Stop  Ready  Speed Comparator  Commutation frequency —   Monitoring Outputs Monitor Current  Monitor Speed  Analog Settings Set value  Current limit  Offset adjust set value  Speed ramp (using potentiometer)  Current gain (using potentiometer)  Speed gain (using potentiometer)  IxR Factor (using potentiometer)  Feature ESCON 36/2 DC (403112) ESCON 36/3 EC (414533) ESCON 50/5 (409510) maxon motor control Document ID: rel3149 ESCON Servo Controllers Edition: September 2012 5 Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice. Protection Overcurrent  Current limiter (adjustable)  Thermal overload  Undervoltage  Overvoltage  Voltage transients  Short-circuit of motor winding  Software Installation Program ESCON Setup Graphical User Interface ESCON Studio Startup Wizard  Regulation Tuning  Diagnostic  Firmware Update  Controller Monitor  Parameters  Data Recording  Online Help  Language German, English, French, Italian, Spanish, Japanese, Chinese Operating System Windows 7, Windows XP SP3 Communication interface USB 2.0 (full speed) Feature ESCON 36/2 DC (403112) ESCON 36/3 EC (414533) ESCON 50/5 (409510) maxon motor control Document ID: rel3149 ESCON Servo Controllers Edition: September 2012 6 Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice. Accessories (not included in delivery) 404404 ESCON 36/2 DC Connector Set  — — 425255 ESCON 36/3 EC Connector Set —  — 403964 ESCON Analog I/O Cable   — 403962 ESCON DC Motor Cable  — — 403965 ESCON Digital I/O Cable   — 275934 ESCON Encoder Cable O — O 403957 ESCON Power Cable   — 403968 USB 2.0 Type A micro-B Cable    418719 Adapter BLACK (for flexprint cable (FPC), 11 poles) —  — 418723 Adapter BLUE (for flexprint cable (FPC), 8 poles) —  — 418721 Adapter GREEN (for flexprint cable (FPC), 8 poles) —  — 409286 ESCON USB Stick    Feature ESCON 36/2 DC (403112) ESCON 36/3 EC (414533) ESCON 50/5 (409510) maxon motor control ESCON Servo Controllers Document ID: rel2547 1 Feature Comparison Chart Edition: March 2012 © 2012 maxon motor. Subject to change without prior notice. ESCON Feature Comparison Chart The ESCON servo controllers are small-sized, powerful 4-quadrant PWM servo controller for the highly efficient control of permanent magnet-activated DC motors. The featured operating modes – speed control (closed loop), speed control (open loop), and current control – meet the highest requirements. The ESCON servo controllers are designed being commanded by an analog set value and features extensive analog and digital I/O functionality and are being configured via USB interface using the graphical user interface «ESCON Studio» for Windows PCs. Legend: ()* = only in use with DC Tacho or Encoder / nnnnnn = order number / O = optional Feature ESCON 36/2 DC (403112) ESCON 50/5 (409510) Product image Motors DC motors up to 72 W 250 W EC motors up to — 250 W Sensors Digital Incremental Encoder (2 channel with or without Line Driver)   DC Tacho   Without sensor (DC motors)   Digital Hall Sensors (EC motors) —  Electrical Data Nominal operating voltage Vcc 10…36 VDC 10…50 VDC Max. output voltage 0.98 x Vcc 0.98 x Vcc Max. output current 4 A (<60 s) 15 A (<20 s) Continuous output current 2 A 5 A Pulse Width Modulation frequency 53.6 kHz Sampling rate PI current controller 53.6 kHz Sampling rate PI speed controller 5.36 kHz Max. efficiency 95% 95% Max. speed (DC) limited by max. permissible speed (motor) and max. output voltage (controller) Max. speed (EC; 1 pole pair) — 150'000 rpm Built-in motor choke 300 μH; 2 A 3 x 30 μH; 5 A Inputs / Outputs Hall sensor signals — H1, H2, H3 Encoder signals A,A\,B,B\ Max. encoder input frequency differential (singleended) 1 MHz (100 kHz) Potentiometers 1 2 maxon motor control 2 Document ID: rel2547 ESCON Servo Controllers Edition: March 2012 Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice. Digital inputs 2 Digital inputs/outputs 2 Analog inputs 2 Resolution 12-bit Range –10…+10 V Circuit differential Analog outputs 2 Resolution 12-bit Range –4…+4 V Auxiliary voltage output +5 VDC (IL ≤10 mA) Hall sensor supply voltage — +5 VDC (IL ≤30 mA) Encoder supply voltage +5 VDC (IL ≤70 mA) Status Indicators Operation: green LED / Error: red LED Connections J1 Power Pin header (2 mm), 2 poles Pluggable screw-type terminal block (3.5 mm), 2 poles J2 Motor Pin header (2 mm), 3 poles Pluggable screw-type terminal block (3.5 mm), 4 poles J2A Motor Spring-loaded contacts, 2 poles — J3 Hall sensors — Pluggable screw-type terminal block (3.5 mm), 5 poles J4 Encoder Pin header (2.54 mm), 5 x 2 poles J4A Encoder Pin header (1.27 mm), 5 x 2 poles — J5 Digital I/O Pin header (2 mm), 6 poles Pluggable screw-type terminal block (3.5 mm), 6 poles J6 Analog I/O Pin header (2 mm), 7 poles Pluggable screw-type terminal block (3.5 mm), 7 poles J7 USB USB Type micro B female Mechanical Data Weight (approximate) 30 g 204 g Dimensions (L x W x H) 55 x 40 x 16.1 mm 115 x 75.5 x 24 mm Mounting holes for screws M2.5 for screws M4 Environmental Conditions Temperature – Operation –30…+45°C Temperature – Extended range +45…+81°C; Derating: –0.056 A/°C +45…+85°C; Derating: –0.113 A/°C Temperature – Storage –40…+85°C Humidity (condensation not permitted) 20…80% Functionality Operating Mode Current controller (torque control)  Speed controller (closed loop)  with encoder feedback  with DC Tacho feedback  with Hall sensor feedback —  Feature ESCON 36/2 DC (403112) ESCON 50/5 (409510) maxon motor control ESCON Servo Controllers Document ID: rel2547 3 Feature Comparison Chart Edition: March 2012 © 2012 maxon motor. Subject to change without prior notice. Speed controller (open loop)  with static IxR Compensation  with adaptive IxR Compensation ()*  Set Value Analog set value  PWM set value  Fixed set value  2 fixed set values  Digital I/O Functionality Enable  Enable CW  Enable CCW  Enable CW + CCW  Enable + Direction  Stop  Ready  Speed Comparator  Commutation frequency —  Monitoring Outputs Monitor Current  Monitor Speed  Analog Settings Set value  Current limit  Offset adjust set value  Speed ramp (using potentiometer)  Current gain (using potentiometer)  Speed gain (using potentiometer)  IxR Factor (using potentiometer)  Protection Overcurrent  Current limiter (adjustable)  Thermal overload  Undervoltage  Overvoltage  Voltage transients  Short-circuit of motor winding  Feature ESCON 36/2 DC (403112) ESCON 50/5 (409510) maxon motor control 4 Document ID: rel2547 ESCON Servo Controllers Edition: March 2012 Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice. Software Installation Program ESCON Setup Graphical User Interface ESCON Studio Startup Wizard  Regulation Tuning  Diagnostic  Firmware Update  Controller Monitor  Parameters  Data Recording  Online Help  Language German, English, French, Italian, Spanish Operating System Windows 7, Windows XP SP3 Communication interface USB 2.0 (full speed) Accessories (not included in delivery) 404404 ESCON 36/2 DC Connector Set  — 403964 ESCON Analog I/O Cable  — 403962 ESCON DC Motor Cable  — 403965 ESCON Digital I/O Cable  — 275934 ESCON Encoder Cable O O 403957 ESCON Power Cable  — 403968 USB 2.0 Type A micro-B Cable   409286 ESCON USB Stick   Feature ESCON 36/2 DC (403112) ESCON 50/5 (409510) Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ EV (AEV) ASCTB233E 201209-T ORDERING INFORMATION Capsule contact Mechanism and High-capacity Cut-off Compact Relay EV RELAYS (AEV) 10A 80A 200A 300A 120A 20A New RoHS compliant FEATURES • Compact and lightweight Charged with hydrogen gas for high arc cooling capacity, short gap cutoff has been achieved at high DC voltages. • Safety High safety achieved with construction that prevents explosions by keeping the arc from leaking. • High contact reliability Since the contact portion is sealed in hydrogen gas, there is no contact oxidation. It is also dustproof and waterproof. TYPICAL APPLICATIONS High DC voltage applications such as • Electric vehicle • Hybrid vehicle • Fuel-cell vehicle • Battery charge and discharge systems • Construction equipment Contact arrangement 1: 1 Form A (Screw terminal, 10A TM, with terminal protection cover) 5: 1 Form A (20A TM type) AEV 0 Contact rating 1: 10 A 2: 20 A 8: 80 A 4: 120 A 7: 200 A 9: 300 A Coil terminal structure Nil: 2: Plug-in (Faston) (for 20 A type), Connector (for 80 A, 120 A and 300 A), Lead wire (for 200 A) Plug-in (Faston) (for 10 A type with terminal protection cover) Coil voltage 12: 12V DC 24: 24V DC Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ LQ (ALQ) ASCTB92E 201206-T ORDERING INFORMATION TYPES Standard packing: Carton 100 pcs., Case 500 pcs. 1 Form A/1 Form C 10A Small power relays LQ RELAYS (ALQ) Nominal coil voltage 1 Form A 1 Form C Part No. Part No. 5V DC ALQ305 ALQ105 6V DC ALQ306 ALQ106 9V DC ALQ309 ALQ109 12V DC ALQ312 ALQ112 18V DC ALQ318 ALQ118 24V DC ALQ324 ALQ124 * Protective construction: Flux-resistant type RoHS compliant FEATURES 1. Miniature size and small: 10(W) × 20(L) × 16(H) mm .394(W) × .787(L) × .630(H) inch 2. Compact with high capacity: 1 Form A and 1 Form C, 10 A 3. Ambient temperature: –40°C to +85°C –40°F to 185°F 4. High surge voltage: 8,000 V between contacts and coil 5. High breakdown voltage: 4,000 V between contacts and coil TYPICAL APPLICATIONS 1. Household appliances Air conditioners, Refrigerators, Fan heaters, Microwave ovens, Inverter and Hot water units New Contact arrangement 1: 1 Form C 3: 1 Form A ALQ Coil insulation class Nil: F: Class B insulation Class F insulation Nominal coil voltage (DC) 05: 5V, 06: 6V, 09: 9V, 12: 12V, 18: 18V, 24: 24VPanasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ LQ (ALQ) ASCTB92E 201206-T RATING 1. Coil data 2. Specifications * Specifications will vary with foreign standards certification ratings. Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. *2. Wave is standard shock voltage of ±1.2×50µs according to JEC-212-1981 *3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage conditions in NOTES. *4. When using relays in a high ambient temperature, consider the pick-up voltage rise due to the high temperature (a rise of approx. 0.4% V for each 1°C 33.8°F with 20°C 68°F as a reference) and use a coil impressed voltage that is within the maximum applied voltage range. Contact arrangement Nominal coil voltage Pick-up voltage (at 20°C 68°F) Drop-out voltage (at 20°C 68°F) Nominal operating current [±10%] (at 20°C 68°F) Coil resistance [±10%] (at 20°C 68°F) Nominal operating power (at 20°C 68°F) Max. applied voltage 1 Form A 5V DC 75%V or less of nominal voltage (Initial) 5%V or more of nominal voltage (Initial) 40.0mA 125 Ω 200mW 180% of nominal voltage (at 20°C 68°F) 130% of nominal voltage (at 85°C 185°F)*4 6V DC 33.3mA 180 Ω 9V DC 22.2mA 405 Ω 12V DC 16.7mA 720 Ω 18V DC 11.1mA 1,620 Ω 24V DC 8.3mA 2,880 Ω 1 Form C 5V DC 75%V or less of nominal voltage (Initial) 5%V or more of nominal voltage (Initial) 80.0mA 62.5Ω 400mW 150% of nominal voltage (at 20°C 68°F) 110% of nominal voltage (at 85°C 185°F)*4 6V DC 66.7mA 90 Ω 9V DC 44.4mA 202.5Ω 12V DC 33.3mA 360 Ω 18V DC 22.2mA 810 Ω 24V DC 16.7mA 1,440 Ω Characteristics Item Specifications Contact Arrangement 1 Form A 1 Form C Contact resistance (Initial) Max. 100mΩ (By voltage drop 6 V DC 1 A) Contact material AgNi type Rating Nominal switching capacity (resistive load) 5 A 30 V DC, 10 A 125 V AC, 5 A 250 V AC N.O. side: 10 A 125 V AC, 5 A 250 V AC, 5 A 30 V DC N.C. side: 3 A 125 V AC, 2 A 250 V AC, 1 A 30 V DC Max. switching power (resistive load) 150 W, 1,250 VA N.O. side: 150 W, 1,250 VA N.C. side: 30 W, 500 VA Max. switching voltage 250 V AC Max. switching current N.O.: 10 A (125V AC), N.C.: 3 A (125V AC) Nominal operating power 200 mW 400 mW Min. switching capacity (reference value)*1 100 mA, 5 V DC Electrical characteristics Insulation resistance (Initial) Min. 1,000 MΩ (at 500 V DC) Measurement at same location as “Breakdown voltage” section. Breakdown voltage (Initial) Between open contacts 1,000 Vrms for 1 min. (Detection current: 10 mA) 750 Vrms for 1 min. (Detection current: 10 mA) Between contact and coil 4,000 Vrms for 1 min. (Detection current: 10 mA) Temperature rise (coil)*4 Max. 45°C 113°F (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 10A, at 85°C 185°F) Surge breakdown voltage*2 (Between contact and coil) 8,000 V (Initial) Operate time (at nominal voltage) (at 20°C 68°F) Max. 20 ms (excluding contact bounce time.) (Initial) Release time (at nominal voltage) (at 20°C 68°F) Max. 20 ms (excluding contact bounce time, with diode) (Initial) Mechanical characteristics Shock resistance Functional 1 Form A: 294 m/s2, 1 Form C: 196 m/s2 (Half-wave pulse of sine wave: 11 ms; detection time: 10µs.) Destructive 980 m/s2 (Half-wave pulse of sine wave: 6 ms.) Vibration resistance Functional 10 to 55 Hz at double amplitude of 1.6 mm (Detection time: 10µs.) Destructive 10 to 55 Hz at double amplitude of 2.0 mm Expected life Mechanical Min. 107 (at 180 times/min.) Conditions Conditions for operation, transport and storage*3 Ambient temperature: –40°C to +85°C –40°F to +185°F Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature) Max. operating speed 20 times/min. (at nominal switching capacity) Unit weight Approx. 7 g .25 ozPanasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ LQ (ALQ) ASCTB92E 201206-T 3. Expected electrical life Condition: Resistive load, at 20°C 68°F, at 20 times/min., with diode REFERENCE DATA Type Switching capacity No. of operations 1 Form A (at 20 times/min.) 10 A 125 V AC 5 A 250 V AC 5 A 30 V DC 5×104 5×104 105 1 Form C (at 20 times/min.) N.O. 10 A 125 V AC 5 A 250 V AC 5 A 30 V DC 5×104 5×104 105 N.C. 3 A 125 V AC 2 A 250 V AC 1 A 30 V DC 2×105 2×105 105 1.-(1) Max. switching capacity (1 Form A type) 1.-(2) Max. switching capacity (1 Form C type) 2. Life curve Ambient temperature: room temperature 1,000 AC resistive load 10010 250 100 10 5 1 Contact voltage, V Contact current, A 1,00025010010 100 10 5 3 2 1 Contact voltage, V Contact current, A AC resistive load N.O. side AC resistive load N.C. side 125V AC resistive load 250V AC resistive load 1086420 100 10 1 Contact current, A Life, ×104 3.-(1) Coil temperature rise (1 Form A type) Contact carrying current: 5 A, 10 A Measured portion: Inside the coil 3.-(2) Coil temperature rise (1 Form C type) Contact carrying current: 5 A, 10 A Measured portion: Inside the coil 4.-(1) Ambient temperature characteristics (1 Form A type) Contact carrying current: 5 A, 10 A 180160140120100 Coil applied voltage, %V 70 60 50 40 30 20 10 0 Te mperature rise, °C 10 A at 70°C 5 A at 70°C 5 A at 85°C 10 A at 85°C 160150140130120110100 Coil applied voltage, %V 70 60 50 40 30 20 10 0 Temperature rise, °C 10 A at 70°C 10 A at 85°C 5 A at 85°C 5 A at 70°C 0 20 30 40 50 60 70 80 90 Ambient temperature, °C 400 300 200 100 Coil applied voltage, %V 1 2 3 5 4 6 7 4.-(2) Ambient temperature characteristics (1 Form C type) Contact carrying current: 5 A, 10 A 1Allowable ambient temperature against % coil voltage (max. inside the coil temperature set as 130°C 266°F) (Carrying current: 5 A) 2Allowable ambient temperature against % coil voltage (max. inside the coil temperature set as 130°C 266°F) (Carrying current: 10 A) 3Allowable ambient temperature against % coil voltage (max. inside the coil temperature set as 115°C 239°F) (Carrying current: 5 A) 4Allowable ambient temperature against % coil voltage (max. inside the coil temperature set as 115°C 239°F) (Carrying current: 10 A) 5Pick-up voltage with a hot-start condition of 100%V on the coil (Carrying current: 10 A) 6Pick-up voltage with a hot-start condition of 100%V on the coil (Carrying current: 5 A) 7Pick-up voltage 0 20 30 40 50 60 70 80 90 Ambient temperature, °C 400 300 200 100 Coil applied voltage, %V 1 2 3 4 5 6 7Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ LQ (ALQ) ASCTB92E 201206-T DIMENSIONS (mm inch) SAFETY STANDARDS Note) CSA standard: Certified by C-UL Item UL/C-UL (Recognized) VDE (Certified) File No. Contact rating File No. Contact rating 1 Form A E43028 10A 125V AC 5A 277V AC 5A 30V DC 4FLA/4LRA 277V AC 1/6 HP 125V AC 1/6 HP 277V AC 40032836 5A 250V AC (cosφ=1.0) 10A 250V AC (cosφ=1.0) 10A 250V AC (cosφ=0.4) 5A 30V DC (0ms) 1 Form C E43028 10A 125V AC 5A 277V AC 5A 30V DC 4FLA/4LRA 277V AC 1/6 HP 125V AC 1/6 HP 277V AC 3A 125V AC 2A 277V AC 1A 30V DC 40032836 5A 250V AC (cosφ=1.0) 10A 250V AC (cosφ=1.0) 10A 250V AC (cosφ=0.4) 5A 30V DC (0ms) 3A 250V AC (cosφ=0.4) The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/ External dimensions 1 Form A 1 Form C 20 .787 10.16 .400 7.62 .300 7.62 .300 10 .394 7.62 .300 15.6 .614 4.2 .165 0.4 .016 0.5 dia. .020 dia. 0.3 .012 0.3 .012 0.8 .031 20 .787 10.16 .400 5.08 .200 10 .394 7.62 .300 15.6 .614 4.2 .165 0.4 .016 0.5 dia. .020 dia. 0.3 .012 0.3 .012 0.3 .012 2.54 .100 7.62 .300 0.8 .031 0.8 .031 Schematic (Bottom view) 1 Form A 1 Form C Coil COM N.O. Coil COM N.O. N.C. PC board pattern (Bottom view) 1 Form A 1FormC Tolerance: ±0.1 ±.004 4-1.3 dia. 7.62 7.62 10.16 4-.051 dia. .300 .300 .400 5-1.3 dia. 7.62 7.62 10.16 2.54 5-.051 dia. .300 .300 .400 .100 CAD Data Dimension: Less than 1mm .039inch: Min. 1mm .039inch less than 5mm .197 inch: Min. 5mm .197 inch: General tolerance ±0.2 ±.008 ±0.3 ±.012 ±0.4 ±.016Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/ LQ (ALQ) ASCTB92E 201206-T NOTES  Usage, transport and storage conditions 1) Temperature: –40 to +85°C –40 to +185°F 2) Humidity: 5 to 85% RH (Avoid freezing and condensation.) The humidity range varies with the temperature. Use within the range indicated in the graph below. 3) Atmospheric pressure: 86 to 106 kPa Temperature and humidity range for usage, transport, and storage 4) Condensation Condensation forms when there is a sudden change in temperature under high temperature and high humidity conditions. Condensation will cause deterioration of the relay insulation. 5) Freezing Condensation or other moisture may freeze on the relay when the temperatures is lower than 0°C 32°F. This causes problems such as sticking of movable parts or operational time lags. 6) Low temperature, low humidity environments The plastic becomes brittle if the relay is exposed to a low temperature, low humidity environment for long periods of time.  Solder and cleaning conditions 1) Please obey the following conditions when soldering automatically. (1) Preheating: Within 120°C 248°F (solder surface terminal portion) and within 120 seconds (2) Soldering iron: 260°C±5°C 500°F±41°F (solder temperature) and within 6 seconds (soldering time) 2) Do not use ultrasonic cleaning. This will adversely affect relay characteristics. When cleaning the relay, please use alcoholic solvents.  Cautions for use 1) For precautions regarding use and explanations of technical terminology, please refer to our web site. (panasonic-electric-works.net/ac) 2) To ensure good operation, please keep the voltage on the coil ends to ±5% (at 20°C 68°F) of the rated coil operation voltage. Also, please be aware that the pick-up voltage and drop-out voltage may change depending on the temperature and conditions of use. 3) Keep the ripple rate of the nominal coil voltage below 5%. 4) The cycle lifetime is defined under the standard test condition specified in the JIS C 5442 standard (temperature 15 to 35°C 59 to 95°F, humidity 25 to 75%). Check this with the real device as it is affected by coil driving circuit, load type, activation frequency, activation phase, ambient conditions and other factors. Also, be especially careful of loads such as those listed below. (1) When used for AC load-operating and the operating phase is synchronous. Rocking and fusing can easily occur due to contact shifting. (2) Highly frequent load-operating When highly frequent opening and closing of the relay is performed with a load that causes arcs at the contacts, nitrogen and oxygen in the air is fused by the arc energy and HNO3 is formed. This can corrode metal materials. Three countermeasures for these are listed here. • Incorporate an arc-extinguishing circuit. • Lower the operating frequency • Lower the ambient humidity 5) This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. 6) Heat, smoke, and even a fire may occur if the relay is used in conditions outside of the allowable ranges for the coil ratings, contact ratings, operating cycle lifetime, and other specifications. Therefore, do not use the relay if these ratings are exceeded. 7) If the relay has been dropped, the appearance and characteristics should always be checked before use. 8) Incorrect wiring may cause unexpected events or the generation of heat or flames. 85 5 Humidity, %RH Tolerance range (Avoid condensation when used at temperatures higher than 0°C 32°F) (Avoid freezing when used at temperatures lower than 0°C 32°F) 850–40 +185+32–40 Temperature, °C °F 74AC00, 74ACT00 — Quad 2-Input NAND Gate ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 January 2008 74AC00, 74ACT00 Quad 2-Input NAND Gate Features ■ I CC reduced by 50% ■ Outputs source/sink 24mA ■ ACT00 has TTL-compatible inputs General Description The AC00/ACT00 contains four, 2-input NAND gates. Ordering Information Device also available in Tape and Reel. Specify by appending suffix letter “X” to the ordering number. All packages are lead free per JEDEC: J-STD-020B standard. Connection Diagram Pin Description Logic Symbol IEEE/IEC Order Number Package Number Package Description 74AC00SC M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow 74AC00SJ M14D 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide 74AC00MTC MTC14 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide 74AC00PC N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide 74ACT00SC M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow 74ACT00SJ M14D 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide 74ACT00MTC MTC14 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide 74ACT00PC N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Pin Names Description A n , B n Inputs O n Outputs ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 2 74AC00, 74ACT00 — Quad 2-Input NAND Gate Absolute Maximum Ratings Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Recommended Operating Conditions The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings. Symbol Parameter Rating V CC Supply Voltage –0.5V to +7.0V I IK DC Input Diode Current V I = –0.5V –20mA V I = V CC + 0.5 +20mA V I DC Input Voltage –0.5V to V CC + 0.5V I OK DC Output Diode Current V O = –0.5V –20mA V O = V CC + 0.5V +20mA V O DC Output Voltage –0.5V to V CC + 0.5V I O DC Output Source or Sink Current ±50mA I CC or I GND DC V CC or Ground Current per Output Pin ±50mA T STG Storage Temperature –65°C to +150°C T J Junction Temperature 140°C Symbol Parameter Rating V CC Supply Voltage AC 2.0V to 6.0V ACT 4.5V to 5.5V V I Input Voltage 0V to V CC V O Output Voltage 0V to V CC T A Operating Temperature –40°C to +85°C Δ V / Δ t Minimum Input Edge Rate, AC Devices: V IN from 30% to 70% of V CC , V CC @ 3.3V, 4.5V, 5.5V 125mV/ns Δ V / Δ t Minimum Input Edge Rate, ACT Devices: V IN from 0.8V to 2.0V, V CC @ 4.5V, 5.5V 125mV/ns ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 3 74AC00, 74ACT00 — Quad 2-Input NAND Gate DC Electrical Characteristics for AC Notes: 1. All outputs loaded; thresholds on input associated with output under test. 2. Maximum test duration 2.0ms, one output loaded at a time. 3. I IN and I CC @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V CC . Symbol Parameter V CC (V) Conditions T A = +25°C T A = –40°C to +85°C Typ. Guaranteed Limits Units V IH Minimum HIGH Level Input Voltage 3.0 V OUT = 0.1V or V CC – 0.1V 1.5 2.1 2.1 V 4.5 2.25 3.15 3.15 5.5 2.75 3.85 3.85 V IL Maximum LOW Level Input Voltage 3.0 V OUT = 0.1V or V CC – 0.1V 1.5 0.9 0.9 V 4.5 2.25 1.35 1.35 5.5 2.75 1.65 1.65 V OH Minimum HIGH Level Output Voltage 3.0 I OUT = –50μA 2.99 2.9 2.9 V 4.5 4.49 4.4 4.4 5.5 5.49 5.4 5.4 3.0 V IN = V IL or V IH , I OH = –12mA 2.56 2.46 4.5 V IN = V IL or V IH , I OH = –24mA 3.86 3.76 5.5 V IN = V IL or V IH , I OH = –24mA (1) 4.86 4.76 V OL Maximum LOW Level Output Voltage 3.0 I OUT = 50μA 0.002 0.1 0.1 V 4.5 0.001 0.1 0.1 5.5 0.001 0.1 0.1 3.0 V IN = V IL or V IH , I OL = 12mA 0.36 0.44 4.5 V IN = V IL or V IH , I OL = 24mA 0.36 0.44 5.5 V IN = V IL or V IH , I OL = 24mA (1) 0.36 0.44 I IN (3) Maximum Input Leakage Current 5.5 V I = V CC , GND ±0.1 ±1.0 μA I OLD Minimum Dynamic Output Current (2) 5.5 V OLD = 1.65V Max. 75 mA IOHD 5.5 VOHD = 3.85V Min. –75 mA ICC (3) Maximum Quiescent Supply Current 5.5 VIN = VCC or GND 2.0 20.0 μA ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 4 74AC00, 74ACT00 — Quad 2-Input NAND Gate DC Electrical Characteristics for ACT Notes: 4. All outputs loaded; thresholds on input associated with output under test. 5. Maximum test duration 2.0ms, one output loaded at a time. Symbol Parameter VCC (V) Conditions TA = +25°C TA = –40°C to +85°C Typ. Guaranteed Limits Units VIH Minimum HIGH Level Input Voltage 4.5 VOUT = 0.1V or VCC – 0.1V 1.5 2.0 2.0 V 5.5 1.5 2.0 2.0 VIL Maximum LOW Level Input Voltage 4.5 VOUT = 0.1V or VCC – 0.1V 1.5 0.8 0.8 V 5.5 1.5 0.8 0.8 VOH Minimum HIGH Level Output Voltage 4.5 IOUT = –50μA 4.49 4.4 4.4 V 5.5 5.49 5.4 5.4 4.5 VIN = VIL or VIH, IOH = –24mA 3.86 3.76 5.5 VIN = VIL or VIH, IOH = –24mA(4) 4.86 4.76 VOL Maximum LOW Level Output Voltage 4.5 IOUT = 50μA 0.001 0.1 0.1 V 5.5 0.001 0.1 0.1 4.5 VIN = VIL or VIH, IOL = 24mA 0.36 0.44 5.5 VIN = VIL or VIH, IOL= 24mA(4) 0.36 0.44 IIN Maximum Input Leakage Current 5.5 VI = VCC, GND ±0.1 ±1.0 μA ICCT Maximum ICC/Input 5.5 VI = VCC – 2.1V 0.6 1.5 mA IOLD Minimum Dynamic Output Current(5) 5.5 VOLD = 1.65V Max. 75 mA IOHD 5.5 VOHD = 3.85V Min. –75 mA ICC Maximum Quiescent Supply Current 5.5 VIN = VCC or GND 2.0 20.0 μA ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 5 74AC00, 74ACT00 — Quad 2-Input NAND Gate AC Electrical Characteristics for AC Note: 6. Voltage range 3.3 is 3.3V ± 0.3V. Voltage range 5.0 is 5.0V ± 0.5V. AC Electrical Characteristics for ACT Note: 7. Voltage Range 5.0 is 5.0V ± 0.5V. Capacitance Symbol Parameter VCC (V)(6) TA = +25°C, CL = 50pF TA = –40°C to +85°C, CL = 50pF Min. Typ. Max. Min. Max. Units tPLH Propagation Delay 3.3 2.0 7.0 9.5 2.0 10.0 ns 5.0 1.5 6.0 8.0 1.5 8.5 tPHL Propagation Delay 3.3 1.5 5.5 8.0 1.0 8.5 ns 5.0 1.5 4.5 6.5 1.0 7.0 Symbol Parameter VCC (V)(7) TA = +25°C, CL = 50pF TA = –40°C to +85°C, CL = 50pF Min. Typ. Max. Min. Max. Units tPLH Propagation Delay 5.0 1.5 5.5 9.0 1.0 9.5 ns tPHL Propagation Delay 5.0 1.5 4.0 7.0 1.0 8.0 ns Symbol Parameter Conditions Typ. Units CIN Input Capacitance VCC = OPEN 4.5 pF CPD Power Dissipation Capacitance VCC = 5.0V 30.0 pF ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 6 74AC00, 74ACT00 — Quad 2-Input NAND Gate Physical Dimensions Figure 1. 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ LAND PATTERN RECOMMENDATION NOTES: UNLESS OTHERWISE SPECIFIED A) THIS PACKAGE CONFORMS TO JEDEC MS-012, VARIATION AB, ISSUE C, B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS. D) LANDPATTERN STANDARD: SOIC127P600X145-14M E) DRAWING CONFORMS TO ASME Y14.5M-1994 F) DRAWING FILE NAME: M14AREV13 PIN ONE INDICATOR 8° 0° SEATING PLANE DETAIL A SCALE: 20:1 GAGE PLANE 0.25 X 45° 1 0.10 C C C B A 7 M 14 B A 8 SEE DETAIL A 5.60 0.65 1.70 1.27 8.75 8.50 7.62 6.00 4.00 3.80 (0.33) 1.27 0.51 0.35 1.75 MAX 1.50 1.25 0.25 0.10 0.25 0.19 (1.04) 0.90 0.50 0.36 R0.10 R0.10 0.50 0.25 ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 7 74AC00, 74ACT00 — Quad 2-Input NAND Gate Physical Dimensions (Continued) Figure 2. 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 8 74AC00, 74ACT00 — Quad 2-Input NAND Gate Physical Dimensions (Continued) Figure 3. 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS F. DRAWING FILE NAME: MTC14REV6 R0.09 min 12.00°TOP & BOTTOM 0.43 TYP 1.00 D. DIMENSIONING AND TOLERANCES PER ANSI Y14.5M, 1982 R0.09min E. LANDPATTERN STANDARD: SOP65P640X110-14M 0.65 6.10 1.65 0.45 A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6 B. DIMENSIONS ARE IN MILLIMETERS ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 9 74AC00, 74ACT00 — Quad 2-Input NAND Gate Physical Dimensions (Continued) Figure 4. 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ 14 8 1 7 NOTES: UNLESS OTHERWISE SPECIFIED A) THIS PACKAGE CONFORMS TO JEDEC MS-001 VARIATION BA B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. D) DIMENSIONS AND TOLERANCES PER ASME Y14.5-1994 E) DRAWING FILE NAME: MKT-N14AREV7 6.60 6.09 8.12 7.62 0.35 0.20 19.56 18.80 3.56 3.30 5.33 MAX 0.38 MIN 1.77 1.14 0.58 0.35 2.54 3.81 3.17 8.82 (1.74) ©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com 74AC00, 74ACT00 Rev. 1.4.1 10 TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. ACEx® Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® EZSWITCH™ * ™ ® Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FlashWriter® * FPS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® ® PDP-SPM™ Power220® Power247® POWEREDGE® Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ ® The Power Franchise® TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ * EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TOMAKE CHANGESWITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THEWARRANTY THEREIN,WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMSWITHOUT THE EXPRESSWRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Form First Production ative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only. Rev. I32 74AC00, 74ACT00 — Quad 2-Input NAND Gate S1A - S1M — General Purpose Rectifiers © 2010 Fairchild Semiconductor Corporation www.fairchildsemi.com S1A - S1M Rev. 1.1.2 1 October 2013 S1A - S1M General Purpose Rectifiers Features • 1 AIF(AV) Current Rating • Glass Passivated • Low Leakage: - 1 μA Maximum at 25°C - 50 μA Maximum at 125°C • Fast Response: 1.8 μs (Typical) • 30 A Surge Rating • 50 to 1000 V Reverse Voltage Ratings • 6.6 pF Typical Capacitance • RoHS Compliant Ordering Information Part Number Marking Package Packing Method S1A S1A DO-214AC Tape and Reel S1B S1B DO-214AC Tape and Reel S1D S1D DO-214AC Tape and Reel S1G S1G DO-214AC Tape and Reel S1J S1J DO-214AC Tape and Reel S1K S1K DO-214AC Tape and Reel S1M S1M DO-214AC Tape and Reel SMA/DO-214AC COLOR BAND DENOTES CATHODE Description In the world of commodity rectifiers, Fairchild Semiconductor’s S1 family of 1 A, P-I-N, SMA rectifiers stand out for their optimized low leakage, low capacitance, and fast response time. This was achieved while maintaining the industry standard VF max of 1.1 V at 1 A and a 30 A surge rating. In today’s world, where system power efficiency is a critical differentiating feature, these advantages can be leveraged to support those higher efficiency goals. S1A - S1M — General Purpose Rectifiers © 2010 Fairchild Semiconductor Corporation www.fairchildsemi.com S1A - S1M Rev. 1.1.2 2 Absolute Maximum Ratings(1) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at TA = 25°C unless otherwise noted. Note: 1. These ratings are limiting values above which the serviceability of any semiconductor device maybe impaired. Thermal Characteristics Notes: 2. Device mounted on FR-4 PCB, land pattern size: 25 mm² (5 x 5 mm). 3. Device mounted on FR-4 PCB, land pattern size: 4.6375 mm² (2.65 x 1.75 mm). Electrical Characteristics Values are at TA = 25°C unless otherwise noted. Symbol Parameter Value Units 1A 1B 1D 1G 1J 1K 1M VRRM Maximum Repetitive Reverse Voltage 50 100 200 400 600 800 1000 V IF(AV) Average Rectified Forward Current at TA = 100°C 1.0 A IFSM Non-Repetitive Peak Forward Surge Current 8.3 ms Single Half-Sine-Wave 30 A TSTG Storage Temperature Range -55 to +150 °C TJ Operating Junction Temperature -55 to +150 °C Symbol Parameter Max. Units PD Power Dissipation 1.4 W RθJA Thermal Resistance, Junction to Ambient(2) 85 °C/W RθJA Thermal Resistance, Junction to Ambient(3) 170 °C/W Ψjl Junction-Lead thermal characteristics(3) 25 °C/W Symbol Parameter Test Condition Typ. Max. Units VF Forward Voltage IF = 1.0 A 1.1 V trr Reverse Recovery Time IF = 0.5 A, IR = 1.0 A, Irr = 0.25 A 1.8 μs IR Reverse Current at Rated VR TA = 25°C 1.0 μA TA =125°C 50 μA CT Junction Capacitance VR = 4.0 V, f = 1.0MHz 6.6 pF S1A - S1M — General Purpose Rectifiers © 2010 Fairchild Semiconductor Corporation www.fairchildsemi.com S1A - S1M Rev. 1.1.2 3 Typical Performance Characteristics Figure 1. Forward Current Derating Curve Figure 2. Forward Voltage Characteristics Figure 3. Non-Repetitive Surge Current Figure 4. Reverse Current vs. Reverse Voltage Figure 5. Total Capacitance Figure 6. Thermal Impedance Characteristics 0 25 50 75 100 125 150 175 0 1 2 Average Rectified Forward Current, IF [A] Lead Temperature, [OC] Percent of Rated Peak Reverse Voltage (%) S1A - S1M — General Purpose Rectifiers © 2010 Fairchild Semiconductor Corporation www.fairchildsemi.com S1A - S1M Rev. 1.1.2 4 Physical Dimension Figure 7. 2-LEAD, SMA, JEDEC DO-214, VARIATION AC Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/dwg/DO/DO214AC.pdf. 1.75 2.65 4.30 2.70 MAX 2.20 1.90 0.30 0.05 2.05 1.95 B 0.203 0.050 A 0.13 M C B A C 2.95 2.50 B 1.65 1.20 B 5.60 4.80 B 4.75 4.00 B 0.13 M C B A A 0.41 0.15 1.52 0.75 R0.15 4X 8° 0° 0.45 0 -8° DETAIL A SCALE 20 : 1 LAND PATTERN RECOMMENDATION GAUGE PLANE NOTES: A. EXCEPT WHERE NOTED CONFORMS TO JEDEC DO214 VARIATION AC. B DOES NOT COMPLY JEDEC STD. VALUE. C. ALL DIMENSIONS ARE IN MILLIMETERS. D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS. E. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994. F. LAND PATTERN STD. DIOM5025X231M. G. DRAWING FILE NAME: DO214ACREV1 DO-214AC © Fairchild Semiconductor Corporation www.fairchildsemi.com TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. AccuPower AX-CAP®* BitSiC Build it Now CorePLUS CorePOWER CROSSVOLT CTL Current Transfer Logic DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax ESBC Fairchild® Fairchild Semiconductor® FACT Quiet Series FACT® FAST® FastvCore FETBench FPS F-PFS FRFET® Global Power ResourceSM GreenBridge Green FPS Green FPS e-Series Gmax GTO IntelliMAX ISOPLANAR Making Small Speakers Sound Louder and Better™ MegaBuck MICROCOUPLER MicroFET MicroPak MicroPak2 MillerDrive MotionMax mWSaver® OptoHiT OPTOLOGIC® OPTOPLANAR® ® PowerTrench® PowerXS™ Programmable Active Droop QFET® QS Quiet Series RapidConfigure  Saving our world, 1mW/W/kW at a time™ SignalWise SmartMax SMART START Solutions for Your Success SPM® STEALTH SuperFET® SuperSOT-3 SuperSOT-6 SuperSOT-8 SupreMOS® SyncFET Sync-Lock™ ®* TinyBoost® TinyBuck® TinyCalc TinyLogic® TINYOPTO TinyPower TinyPWM TinyWire TranSiC TriFault Detect TRUECURRENT®* SerDes UHC® Ultra FRFET UniFET VCX VisualMax VoltagePlus XS™ * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I66 ® http://www.farnell.com/datasheets/1766308.pdf 2N7002DW — N-Channel Enhancement Mode Field Effect Transistor © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 2N7002DW Rev. A 1 October 2007 2N7002DW N-Channel Enhancement Mode Field Effect Transistor Features •Dual N-Channel MOSFET •Low On-Resistance •Low Gate Threshold Voltage •Low Input Capacitance •Fast Switching Speed •Low Input/Output Leakage •Ultra-Small Surface Mount Package •Lead Free/RoHS Compliant Absolute Maximum Ratings * Ta = 25°C unless otherwise noted * These ratings are limiting values above which the serviceability of any semiconductor device may by impaired. Thermal Characteristics * Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch, Minimun land pad size, Symbol Parameter Value Units VDSS Drain-Source Voltage 60 V VDGR Drain-Gate Voltage RGS ≤ 1.0MΩ 60 V VGSS Gate-Source Voltage Continuous Pulsed ±20 ±40 V ID Drain Current Continuous Continuous @ 100°C Pulsed 115 73 800 mA TJ , TSTG Junction and Storage Temperature Range -55 to +150 °C Symbol Parameter Value Units PD Total Device Dissipation Derating above TA = 25°C 200 1.6 mW mW/°C RθJA Thermal Resistance, Junction to Ambient * 625 °C/W 1SC70-6 (SOT363)Marking : 2N1 2N7002DW — N-Channel Enhancement Mode Field Effect Transistor © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 2N7002DW Rev. A 2 Electrical Characteristics TC = 25°C unless otherwise noted Off Characteristics (Note1) On Characteristics (Note1) Dynamic Characteristics Switching Characteristics Note1 : Short duration test pulse used to minimize self-heating effect. Symbol Parameter Test Condition MIN TYP MAX Units BVDSS Drain-Source Breakdown Voltage VGS= 0V, ID=10uA 60 78 - V IDSS Zero Gate Voltage Drain Current VDS= 60V, VGS= 0V VDS= 60V, VGS= 0V, @TC = 125°C - 0.001 7 1.0 500 uA IGSS Gate-Body Leakage VGS= ±20V, VDS= 0V - 0.2 ±10 nA VGS(th) Gate Threshold Voltage VDS = VGS, ID = 250uA 1.0 1.76 2.0 V RDS(ON) Satic Drain-Source On-Resistance VGS = 5V, ID = 0.05A, VGS = 10V, ID = 0.5A, @Tj = 125°C - - 1.6 2.53 7.5 13.5 Ω ID(ON) On-State Drain Current VGS = 10V, VDS= 7.5V 0.5 1.43 - A gFS Forward Transconductance VDS = 10V, ID = 0.2A 80 356.5 - mS Ciss Input Capacitance VDS = 25V, VGS= 0V, f = 1.0MHz - 37.8 50 pF Coss Output Capacitance - 12.4 25 pF Crss Reverse Transfer Capacitance - 6.5 7.0 pF tD(ON) Turn-On Delay Time VDD = 30V, ID = 0.2A, VGEN= 10V RL = 150Ω, RGEN = 25Ω - 5.85 20 ns tD(OFF) Turn-Off Delay Time - 12.5 20 2N7002DW — N-Channel Enhancement Mode Field Effect Transistor © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 2N7002DW Rev. A 3 Typical Performance Characteristics Figure 1. On-Region Characteristics Figure 2. On-Resistance Variation with Gate Voltage and Drain Current Figure 3. On-Resistance Variation with Temperature Figure 4. On-Resistance Variation with Gate-Source Voltage Figure 5. Transfer Characteristics Figure 6. Gate Threshold Variation with Temperature 0123456789100.00.20.40.60.81.01.21.41.62V3V4V5VVGS = 10VID. DRAIN-SOURCE CURRENT(A)VDS. DRAIN-SOURCE VOLTAGE (V) 0.00.20.40.60.81.01.01.52.02.53.0(Ω)9V8V5V6V10V7V4V4.5VVGS = 3VRDS(on), DRANI-SOURCE ON-RESISTANCEID. DRAIN-SOURCE CURRENT(A) -500501001500.51.01.52.02.53.0(Ω)VGS = 10VID = 500 mARDS(on) DRANI-SOURCE ON-RESISTANCETJ. JUNCTION TEMPERATURE(oC) 2468101.01.52.02.53.0ID = 500 mA(Ω)ID = 50 mARDS(on), DRANI-SOURCE ON-RESISTANCEVGS. GATE-SOURCE VOLTAGE ( V) 234560.00.20.40.60.81.0VDS = 10V75oC125oC150oC25oCTJ = -25oCID. DRAIN-SOURCE CURRENT(A)VGS. GATE-SOURCE VOLTAGE (V) -500501001501.01.52.02.5ID = 0.25 mAID = 1 mAVGS = VDSVth, Gate-Source Threshold Voltage ( V)TJ. JUNCTION TEMPERATURE(oC) 2N7002DW — N-Channel Enhancement Mode Field Effect Transistor © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 2N7002DW Rev. A 4 Typical Performance Characteristics Figure 7. Reverse Drain Current Variation with Diode Forward Voltage and Temperature Figure 8. Power Derating 1101000.00.20.40.60.81.0-55oCVGS = 0 V150oC25oCVSD, Body Diode Forward Voltage [V]IS Reverse Drain Current, [mA] 025507510012515017504080120160200240280 PC[mW], POWER DISSIPATIONTa[oC], AMBIENT TEMPERATURE 2N7002DW — N-Channel Enhancement Mode Field Effect Transistor © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 2N7002DW Rev. A 5 Package DimensionsSC70-6 ( SOT-363 ) 2N7002DW N-Channel Enhancement Mode Field Effect Transistor TRADEMARKS The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms ACEx® Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FPS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® ® PDP-SPM™ Power220® Power247® POWEREDGE® Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ The Power Franchise® TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™ UHC® UniFET™ VCX™ Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. I30 © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 2N7002DW Rev. A 6 QRE1113, QRE1113GR — Minature Reflective Object Sensor ©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com QRE1113, QRE1113GR Rev. 1.7.1 August 2011 QRE1113, QRE1113GR Minature Reflective Object Sensor Features ■ Phototransistor output ■ No contact surface sensing ■ Miniature package ■ Lead form style: Gull Wing ■ Two leadform options: Through hole (QRE1113) SMT gullwing (QRE1113GR) ■ Two packaging options: Tube (QRE1113) Tape and reel (QRE1113GR) QRE1113GR Package Dimensions 2.90 2.50 3.60 0.94 3.20 1.80 0.60 1.00 C L C L 0.40 0.94 1.70 1.50 4.80 4.40 1.10 0.90 1 2 4 3 30° 0.40 Notes: 1. Dimensions for all drawings are in millimeters. 2. Tolerance of ±0.15mm on all non-nominal dimensions 0.120 ©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com QRE1113, QRE1113GR Rev. 1.7.1 2 QRE1113, QRE1113GR — Minature Reflective Object Sensor QRE1113 Package Dimensions Schematic 2.90 2.50 10.4 0.94 8.4 1.80 0.60 1.00 C L C L 0.40 0.94 1.70 0~20° 0~20° 1.50 1 2 4 3 4.20 3.80 0.40 3.60 3.20 Notes: 1. Dimensions for all drawings are in millimeters. 2. Tolerance of ±0.15mm on all non-nominal dimensions 1 Pin 1: Anode Pin 2: Cathode Pin 3: Collector Pin 4: Emitter 2 34 ©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com QRE1113, QRE1113GR Rev. 1.7.1 3 QRE1113, QRE1113GR — Minature Reflective Object Sensor Absolute Maximum Ratings (T A = 25°C unless otherwise specified) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Electrical/Optical Characteristics (T A = 25°C unless otherwise specified) Notes: 1. Derate power dissipation linearly 1.00mW/°C above 25°C. 2. RMA flux is recommended. 3. Methanol or isopropyl alcohols are recommended as cleaning agents. 4. Soldering iron 1/16" (1.6mm) from housing. 5. Pulse conditions: tp = 100µs; T = 10ms. 6. Measured using an aluminum alloy mirror at d = 1mm. 7. No reflective surface at close proximity. Symbol Parameter Rating Units T OPR Operating Temperature -40 to +85 °C T STG Storage Temperature -40 to +90 °C T SOL-I Soldering Temperature (Iron) (2,3,4) 240 for 5 sec °C T SOL-F Soldering Temperature (Flow) (2,3) 260 for 10 sec °C EMITTER I F Continuous Forward Current 50 mA V R Reverse Voltage 5 V I FP Peak Forward Current (5) 1 A P D Power Dissipation (1) 75 mW SENSOR V CEO Collector-Emitter Voltage 30 V V ECO Emitter-Collector Voltage 5 V I C Collector Current 20 mA P D Power Dissipation (1) 50 mW Symbol Parameter Test Conditions Min. Typ. Max. Units INPUT DIODE V F Forward Voltage I F = 20mA 1.2 1.6 V I R Reverse Leakage Current V R = 5V 10 µA λ PE Peak Emission Wavelength I F = 20mA 940 nm OUTPUT TRANSISTOR I D Collector-Emitter Dark Current I F = 0mA, V CE = 20V 100 nA COUPLED I C(ON) On-State Collector Current I F = 20mA, V CE = 5V (6) 0.10 0.40 mA I CX Cross-Talk Collector Current I F = 20mA, V CE = 5V (7) 1 µA V CE (SAT) Saturation Voltage 0.3 V t r Rise Time V CC = 5V, I C(ON) = 100µA, R L = 1k Ω 20 µs t f Fall Time 20 ©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com QRE1113, QRE1113GR Rev. 1.7.1 4 QRE1113, QRE1113GR — Minature Reflective Object Sensor Typical Performance Curves Fig. 1 Normalized Collector Current vs. Distance between device and reflector d-DISTANCE (mm) 012345 IC (ON) - NORMALIZED COLLECTOR CURRENT 0.0 0.2 0.4 0.6 0.8 1.0 IF = 10 mA VCE = 5 V TA = 25˚C Mirror Sensing Object: White Paper (90% reflective) d 0 Fig. 2 Collector Current vs. Forward Current IF - FORWARD CURRENT (mA) 0 4 8 12 16 20 IC (ON) - COLLECTOR CURRENT (mA) 0.0 0.2 0.4 0.6 0.8 1.0 Fig. 3 Normalized Collector Current vs. Collector to Emitter Voltage VCE - COLLECTOR EMITTER VOLTAGE (V) 0.1 1 10 C (ON) I - NORMALIZ ED COLLECT OR CURRENT 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 IF = 25mA IF =20mA IF =10mA IF =15mA IF =5mA d = 1 mm, 90% reflection TA = 25˚C Fig. 4 Collector Emitter Dark Current (Normalized) vs. Ambient Temperature TA - Ambient Temperature (˚C) ICEO - NORMALIZ ED DARK CURRENT 25 40 55 70 85 10-2 10-1 100 101 102 Normalized to: VCE = 10 V TA = 25˚C VCE = 10 V VCE = 5 V ©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com QRE1113, QRE1113GR Rev. 1.7.1 5 QRE1113, QRE1113GR — Minature Reflective Object Sensor Typical Performance Curves (Continued) Fig. 6 Forward Current vs. Forward Voltage VF - FORWARD VOLTAGE (V) VF - FORWARD VOLTAGE (V) IF - FORWARD CURRENT (mA) 1.0 1.1 1.2 1.3 1.4 1.5 0 10 20 30 40 50 TA = 25˚C Fig. 7 Rise and Fall Time vs. Load Resistance RL - LOAD RESIST ANGULAR DISPLACEMENT ANCE (KΩ) 0.1 1 10 0.6 0.6 0.4 0.2 0 0.2 0.4 R RELATIVE RADIAN T INTENSITY ISE AND FALL TIME (us) 1 10 1.0 0.9 0.8 0.7 100 VCC = 10 V tpw = 100 us T=1ms TA = 25˚C IC = 0.3 mA IC = 1 mA tf tf tr tr Fig. 8 Forward Voltage vs. Ambient Temperature Fig. 8 Radiation Diagram 0.0 0.5 1.0 1.5 2.0 2.5 3.0 IF = 50 mA IF = 10 mA IF = 20 mA TA - AMBIENT TEMPERATURE (˚C) -40 -20 0 20 40 60 80 ©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com QRE1113, QRE1113GR Rev. 1.7.1 6 QRE1113, QRE1113GR — Minature Reflective Object Sensor Recommended Solder Screen Pattern for GR option (for reference only) Taping Dimensions for GR option Dimensions in mm 1.0 1.1 2.8 LED (+) 0.8 2.0±0.05 4.0 0.25 5.5±0.05 12.0±0.3 8.0 3.73 4.75 1.98 ø1.5 1.75 Progressive Direction General tolerance ±0.1 Dimensions in mm ©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com QRE1113, QRE1113GR Rev. 1.7.1 7 QRE1113, QRE1113GR — Minature Reflective Object Sensor Reel Dimensions Reflow Profile ø13.0 ± 0.5 2.2 ± 0.5 9.0 ± 0.5 12.0 ± 0.15 ø60.0 ± 0.5 ø178.0 ± 1.0 Time (seconds) Te mperature (°C) 1°C to 5°C/sec 1°C to 5°C/sec 260°C max. for 10 sec. max. 260°C 120 sec. max. 60 sec. max. above 220°C Pre-heating 180°C to 200°C Note: Reflow soldering should not be done more than twice. 220°C © Fairchild Semiconductor Corporation www.fairchildsemi.com TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. 2Cool AccuPower AX-CAP® * BitSiC Build it Now CorePLUS CorePOWER CROSSVOLT CTL Current Transfer Logic DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax ESBC Fairchild® Fairchild Semiconductor® FACT Quiet Series FACT® FAST® FastvCore FETBench FPS F-PFS FRFET® Global Power ResourceSM GreenBridge Green FPS Green FPS e-Series Gmax GTO IntelliMAX ISOPLANAR Making Small Speakers Sound Louder and Better™ MegaBuck MICROCOUPLER MicroFET MicroPak MicroPak2 MillerDrive MotionMax mWSaver OptoHiT OPTOLOGIC® OPTOPLANAR® ® PowerTrench® PowerXS™ Programmable Active Droop QFET® QS Quiet Series RapidConfigure  Saving our world, 1mW/W/kW at a time™ SignalWise SmartMax SMART START Solutions for Your Success SPM® STEALTH SuperFET® SuperSOT-3 SuperSOT-6 SuperSOT-8 SupreMOS® SyncFET Sync-Lock™ ®* TinyBoost TinyBuck TinyCalc TinyLogic® TINYOPTO TinyPower TinyPWM TinyWire TranSiC TriFault Detect TRUECURRENT® * SerDes UHC® Ultra FRFET UniFET VCX VisualMax VoltagePlus XS™ * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I64 ® ©2007 Fairchild Semiconductor Corporation 1 www.fairchildsemi.com ES1F - ES1J Rev. A ES1F - ES1J Fast Rectifiers July 2007 ES1F - ES1J Fast Rectifiers Features •For surface mount applications. •Glass passivated junction. •Low profile package. •Easy pick and place. •Built-in strain relief. •Superfast recovery times for high efficiency. Absolute Maximum Ratings * Ta = 25°C unless otherwise noted * These ratings are limiting values above which the serviceability of any semiconductor device may by impaired. Thermal Characteristics * P. C. B mounted on 0.2’’ x 0.2’’( 5 x 5 mm) copper Pad Area. Electrical Characteristics TC = 25°C unless otherwise noted Symbol Parameter Value Units ES1F ES1G ES1H ES1J VRRM Maximum Repetitive Reverse Voltage 300 400 500 600 V IF(AV) Average Rectified Forward Current 1.0 A IFSM Non-repetitive Peak Forward Surge Current 8.3 ms Single Half-Sine-Wave (JEDEC method) 30 A TJ Junction Temperature 150 °C TSTG Storage Temperature Range -55 to 150 °C PD Power Dissipation 1.47 W Symbol Parameter Value Units RθJA Thermal Resistance, Junction to Ambient * 85 °C/W RθJL Thermal Resistance, Junction to Lead * 35 °C/W Symbol Parameter Value Units VF Maximum Forward Voltage @ IF = 1.0 A 1.3 1.7 V Trr Maximum Reverse Recovery Time IF = 0.5 A, IR = 1.0 A, IRR = 0.25 A 35 ns IR Maximum Reverse Current @ rated VR TA = 25°C TA = 100°C 5.0 100 uA Cj Typical Junction Capacitance VR = 4.0 V, f = 1.0 MHz 10.0 8.0 pF Color Band Denotes CathodeSMA(DO-214AC) 2 www.fairchildsemi.com ES1F - ES1J Rev. A ES1F - ES1J Fast Rectifiers Typical Performance Characteristics FIG.2- MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT PEAK FORWARD SURGE CURRENT. (A) 1 10 100 30 20 10 5.0 25 15 NUMBER OF CYCLES AT 60Hz 8.3ms Single Half Sine Wave (JEDEC Method) at TL=120 C o FIG.3- TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS INSTANTANEOUS FORWARD CURRENT. (A) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0.01 1 10 50 0.1 FORWARD VOLTAGE. (V) ES1A - D ES1F - 1G Tj=25 C PULSE WIDTH-300 S 1% DUTY CYCLE 0 FIG.1- MAXIMUM FORWARD CURRENT DERATING CURVE AVERAGE FORWARD CURRENT. (A) 80 90 100 110 120 130 140 150 0 0.2 0.6 0.8 1.2 1.0 0.4 LEAD TEMPERATURE. ( C) o RESISTIVE OR INDUCTIVE LOAD 0.2X0.2"(5.0X5.0mm) COPPER PAD AREAS FIG.4- TYPICAL REVERSE CHARACTERISTICS 0 20 40 60 80 100 120 140 10 100 1000 1 0.1 0.01 PERCENT OF RATED PEAK REVERSE VOLTAGE. (%) Tj=125 C 0 Tj=85 C 0 Tj=25 C 0 0 1 0 10 100 14 10 6.0 4.0 2.0 12 8.0 FIG.5- TYPICAL JUNCTION CAPACITANCE JUNCTION CAPACITANCE.(pF) REVERSE VOLTAGE. (V) ES1 F - G ES1 H -J Tj=25 C f=1.0MHz Vsig=50mVp-p 0 INSTANTANEOUS REVERSE CURRENT. ( A) ES1H - 1J 0.01 0.1 1 10 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Tj=25 oC PULSE WIDTH 300uS 1% DUTY CYCLE ES1F-1G ES1H-1J 3 www.fairchildsemi.com ES1F - ES1J Rev. A ES1F - ES1J Fast Rectifiers Package Dimensions Dimensions in Millimeters SMA / DO - 214AC TRADEMARKS The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms ACEx® Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FPS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® ® PDP-SPM™ Power220® Power247® POWEREDGE® Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ The Power Franchise® TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™ UHC® UniFET™ VCX™ Datasheet IdentificationProduct StatusDefinition Advance InformationFormative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. PreliminaryFirst Production This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification NeededFull Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. ObsoleteNot In Production This datasheet contains specifications on a product that has been discontin- ued by Fairchild semiconductor. The datasheet is printed for reference infor- mation only. Rev. I30 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 — Small Signal Diode © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Rev. 1.1.1 1 April 2013 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Small Signal Diode Absolute Maximum Ratings(1) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at TA = 25°C unless otherwise noted. Note: 1. These ratings are limiting values above which the serviceability of the diode may be impaired. Thermal Characteristics Symbol Parameter Value Units VRRM Maximum Repetitive Reverse Voltage 100 V IO Average Rectified Forward Current 200 mA IF DC Forward Current 300 mA If Recurrent Peak Forward Current 400 mA IFSM Non-repetitive Peak Forward Surge Current Pulse Width = 1.0 s 1.0 A Pulse Width = 1.0 μs 4.0 A TSTG Storage Temperature Range -65 to +200 °C TJ Operating Junction Temperature 175 °C Symbol Parameter Max. Units 1N/FDLL 914/A/B / 4148 / 4448 PD Power Dissipation 500 mW RθJA Thermal Resistance, Junction to Ambient 300 °C/W LL-34 THE PLACEMENT OF THE EXPANSION GAP HAS NO RELATIONSHIP TO THE LOCATION OF THE CATHODE TERMINAL LL-34 COLOR BAND MARKING DEVICE 1ST BAND DO-35 FDLL914 BLACK FDLL914A BLACK FDLL914B BLACK Cathode is denoted with a black band FDLL4148 BLACK FDLL4448 BLACK -1st band denotes cathode terminal and has wider width SOD80 Cathode Band 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 — Small Signal Diode © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Rev. 1.1.1 2 Electrical Characteristics(2) Values are at TA = 25°C unless otherwise noted. Note: 2. Non-recurrent square wave PW= 8.3 ms. Symbol Parameter Test Conditions Min. Max. Units VR Breakdown Voltage IR= 100 μA 100 V IR= 5.0 μA 75 V VF Forward Voltage 1N914B / 4448 IF= 5.0 mA 0.62 0.72 V 1N916B IF= 5.0 mA 0.63 0.73 V 1N914 / 916 / 4148 IF= 10 mA 1.0 V 1N914A / 916A IF= 20 mA 1.0 V 1N916B IF= 20 mA 1.0 V 1N914B / 4448 IF= 100 mA 1.0 V IR Reverse Leakage VR= 20 V 0.025 μA VR= 20 V, TA= 150°C 50 μA VR= 75 V 5.0 μA CT Total Capacitance 1N916A/B/4448 VR = 0, f = 1.0 MHz 2.0 pF 1N914A/B/4148 VR = 0, f = 1.0 MHz 4.0 pF trr Reverse Recovery Time IF = 10 mA, VR = 6.0 V (600 mA) Irr = 1.0 mA, RL = 100 Ω 4.0 ns 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 — Small Signal Diode © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Rev. 1.1.1 3 Typical Performance Characteristics Figure 1. Reverse Voltage vs. Reverse Current BV - 1.0 to 100 μA Figure 2. Reverse Current vs. Reverse Voltage IR - 10 to 100 V Figure 3. Forward Voltage vs. Forward Current VF - 1 to 100 μA Figure 4. Forward Voltage vs. Forward Current VF - 0.1 to 10 mA Figure 5. Forward Voltage vs. Forward Current VF - 10 to 800 mA Figure 6. Forward Voltage vs. Ambient Temperature VF - 0.01 - 20 mA (- 40 to +65°C) 110 120 130 140 150 160 Ta=25 oC 1 2 3 5 10 20 30 50 100 Reverse Voltage, V R [V] Reverse Current, IR [uA] 0 20 40 60 80 100 120 10 20 30 50 70 100 Ta= 25 oC Reverse Current, I R [nA] Reverse Voltage, VR [V] GENERAL RULE: The Reverse Current of a diode will approximately double for every ten (10) Degree C increase in Temperature 250 300 350 400 450 500 550 1 2 3 5 10 20 30 50 100 Ta= 25 oC Forward Voltage, V R [mV] Forward Current, IF [uA] 450 500 550 600 650 700 750 0.1 0.2 0.3 0.5 1 2 3 5 10 Ta= 25 oC Forward Voltage, V F [mV] Forward Current, IF [mA] 0.6 0.8 1.0 1.2 1.4 1.6 10 20 30 50 100 200 300 500 800 Ta= 25 oC Forward Voltage, V F [mV] Forward Current, IF [mA] 0.01 0.1 1 10 300 400 500 600 700 800 900 0.03 0.3 3 Typical Ta= -40 oC Ta= 25 oC Ta= +65 oC Forward Voltage, V F [mV] Forward Current, IF [mA] 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 — Small Signal Diode © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Rev. 1.1.1 4 Typical Performance Characteristics (Continued) Figure 7. Total Capacitance Figure 8. Reverse Recovery Time vs Reverse Recovery Current Figure 9. Average Rectified Current (IF(AV)) vs Ambient Temperature (TA) Figure 10. Power Derating Curve 0 2 4 6 8 10 12 14 0.75 0.80 0.85 0.90 TA = 25 oC Total Capacitance (pF) REVERSE VOLTAGE (V) 10 20 30 40 50 60 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Ta = 25 oC Reverse Recovery Time, t rr [ns] Reverse Recovery Current, Irr [mA] IF = 10mA , IRR = 1.0 mA , Rloop = 100 Ohms 0 50 100 150 0 100 200 300 400 500 IF(AV) - AVERAGE RECTIFIED CURRENT - mA Current (mA) Ambient Temperature ( oC) 0 50 100 150 200 0 100 200 300 400 500 DO-35 SOT-23 Power Dissipation, PD [mW] Temperature [ oC] 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 — Small Signal Diode © 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com 1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Rev. 1.1.1 5 Physical Dimensions Figure 11. 2-TERMINAL, SOD-80, JEDEC DO-213AC, MINI-MELF Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/. For current tape and reel specifications, visit Fairchild Semiconductor’s online packaging area: http://www.fairchildsemi.com/packaging/tr/SOD80A_tnr.pdf. 1.50 1.30 C R0.30 0.20 0.50 2.64 REF 0.30 3.60 3.30 NOTES: UNLESS OTHERWISE SPECIFIED A) PACKAGE STANDARD REFERENCE: JEDEC DO-213, VARIATION AC. B) ALL DIMENSIONS ARE IN MILLIMETERS. C CORNER RADIUS IS OPTIONAL. D) DRAWING FILE NAME: SOD80A REV01 SOD-80 © Fairchild Semiconductor Corporation www.fairchildsemi.com TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. 2Cool􀂥 AccuPower􀂥 AX-CAP®* BitSiC􀂥 Build it Now􀂥 CorePLUS􀂥 CorePOWER􀂥 CROSSVOLT􀂥 CTL􀂥 Current Transfer Logic􀂥 DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax􀂥 ESBC􀂥 Fairchild® Fairchild Semiconductor® FACT Quiet Series􀂥 FACT® FAST® FastvCore􀂥 FETBench􀂥 FPS􀂥 F-PFS􀂥 FRFET® Global Power ResourceSM GreenBridge􀂥 Green FPS􀂥 Green FPS􀂥 e-Series􀂥 Gmax􀂥 GTO􀂥 IntelliMAX􀂥 ISOPLANAR􀂥 Making Small Speakers Sound Louder and Better™ MegaBuck􀂥 MICROCOUPLER􀂥 MicroFET􀂥 MicroPak􀂥 MicroPak2􀂥 MillerDrive􀂥 MotionMax􀂥 mWSaver􀂥 OptoHiT􀂥 OPTOLOGIC® OPTOPLANAR® ® PowerTrench® PowerXS™ Programmable Active Droop􀂥 QFET® QS􀂥 Quiet Series􀂥 RapidConfigure􀂥 􀂥 Saving our world, 1mW/W/kW at a time™ SignalWise􀂥 SmartMax􀂥 SMART START􀂥 Solutions for Your Success􀂥 SPM® STEALTH􀂥 SuperFET® SuperSOT􀂥-3 SuperSOT􀂥-6 SuperSOT􀂥-8 SupreMOS® SyncFET􀂥 Sync-Lock™ ®* TinyBoost􀂥 TinyBuck􀂥 TinyCalc􀂥 TinyLogic® TINYOPTO􀂥 TinyPower􀂥 TinyPWM􀂥 TinyWire􀂥 TranSiC􀂥 TriFault Detect􀂥 TRUECURRENT®* 􀁐SerDes􀂥 UHC® Ultra FRFET􀂥 UniFET􀂥 VCX􀂥 VisualMax􀂥 VoltagePlus􀂥 XS™ * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I64 ® 1N4148WS / 1N4448WS / 1N91 4BWS — Small Signal Diodes © 2012 Fairchild Semiconductor Corporation www.fairchildsemi.com 1N4148WS / 1N4448WS / 1N914BWS Rev. B0 1 April 2012 1N4148WS / 1N4448WS / 1N914BWS Small Signal Diodes Features • General Purpose Diodes • Fast Switching Device (TRR < 4.0ns) • Very Small and Thin SMD Package • Moisture Level Sensitivity 1 • Pb-free Version and RoHS Compliant • Matte Tin (Sn) Lead Finish • Green Mold Compound Absolute Maximum Ratings* Ta = 25°C unless otherwise noted * These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. The factory should be consulted on applications involving pulsed or low duty cycle operations. Thermal Characteristics * Device mounted on FR-4 PCB minimum land pad. Electrical Characteristics Ta = 25°C unless otherwise noted Symbol Parameter Value Units VRSM Non-Repetitive Peak Reverse Voltage 100 V VRRM Repetitive Peak Reverse Voltage 75 V IFRM Repetitive Peak Forward Current 300 mA IO Continuous Forward Current 150 mA TJ Operating Junction Temperature +150 °C TSTG Storage Temperature Range -55 to +150 °C Symbol Parameter Value Units PD Power Dissipation (TC = 25°C) 200 mW RθJA Thermal Resistance, Junction to Ambient * 500 °C/W Symbol Parameter Test Conditions Min. Typ. Max. Units BVR Breakdown Voltage IR = 100 μA IR = 5 μA 100 75 V V IR Reverse Current VR = 20 V VR = 75 V 25 5 nA μA VF Forward Voltage 1N4448WS/914BWS 1N4148WS 1N4448WS/914BWS IF = 5 mA IF = 10 mA IF = 100 mA 0.62 0.72 1 1 V V V CO Diode Capacitance VR = 0, f = 1 MHz 4 pF TRR Reverse Recovery Time IF = 10 mA, IR = 60 mA, IRR = 1 mA, RL = 100 Ω 4 ns Band Indicates Cathode 1. Cathode ELECTRICAL SYMBOL 2. Anode SOD-323 Flat Lead Device Marking Code Device Type Device Marking 1N4148WS S1 1N4448WS S2 1N914BWS S3 2 11N4148WS / 1N4448WS / 1N91 4BWS — Small Signal Diodes © 2012 Fairchild Semiconductor Corporation www.fairchildsemi.com 1N4148WS / 1N4448WS / 1N914BWS Rev. B0 2 Typical Performance Characteristics Figure 1. Total Capacitance Figure 2. Forward Voltage vs. Ambient Temperature Figure 3. Power Derating Curve Figure 4. Reverse Current vs. Reverse Voltage Figure 5. Reverse Voltage vs. Reverse Current Reverse Voltage (V) 0 2 4 6 8 10 12 14 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 TA=25°C Capacitance [pF] Forward Current, IF [mA] 0.01 0.1 1 10 100 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Ta=-40°C Ta=25°C Ta=150°C Typical VF- Forward Voltage [V] Temperature [°C] 0 25 50 75 100 125 150 175 0 50 100 150 200 250 PD - Power Dissipation [mW] Reverse Voltage, VR[V] 10 20 30 40 50 60 70 80 90 100 10-1 100 101 102 103 104 105 Ta=150°C Ta=25°C Ta=-40°C Reverse Current [nA] VR - Reverse Voltage Reverse Current, IR[µA] 1 10 100 140 150 160 170 Ta=25°C1N4148WS / 1N4448WS / 1N91 4BWS — Small Signal Diodes © 2012 Fairchild Semiconductor Corporation www.fairchildsemi.com 1N4148WS / 1N4448WS / 1N914BWS Rev. B0 3 Physical Dimensions SOD-323F Dimensions in Millimeters© Fairchild Semiconductor Corporation www.fairchildsemi.com TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. 2Cool¥ AccuPower¥ AX-CAP¥* BitSiC¥ Build it Now¥ CorePLUS¥ CorePOWER¥ CROSSVOLT¥ CTL¥ Current Transfer Logic¥ DEUXPEED® Dual Cool™ EcoSPARK® EfficientMax¥ ESBC¥ ® Fairchild® Fairchild Semiconductor® FACT Quiet Series¥ FACT® FAST® FastvCore¥ FETBench¥ FlashWriter® * FPS¥ F-PFS¥ FRFET® Global Power ResourceSM GreenBridge¥ Green FPS¥ Green FPS¥ e-Series¥ Gmax¥ GTO¥ IntelliMAX¥ ISOPLANAR¥ Making Small Speakers Sound Louder and Better™ MegaBuck¥ MICROCOUPLER¥ MicroFET¥ MicroPak¥ MicroPak2¥ MillerDrive¥ MotionMax¥ Motion-SPM¥ mWSaver¥ OptoHiT¥ OPTOLOGIC® OPTOPLANAR® ® PowerTrench® PowerXS™ Programmable Active Droop¥ QFET® QS¥ Quiet Series¥ RapidConfigure¥ ¥ Saving our world, 1mW/W/kW at a time™ SignalWise¥ SmartMax¥ SMART START¥ Solutions for Your Success¥ SPM® STEALTH¥ SuperFET® SuperSOT¥-3 SuperSOT¥-6 SuperSOT¥-8 SupreMOS® SyncFET¥ Sync-Lock™ ® * The Power Franchise® TinyBoost¥ TinyBuck¥ TinyCalc¥ TinyLogic® TINYOPTO¥ TinyPower¥ TinyPWM¥ TinyWire¥ TranSiC¥ TriFault Detect¥ TRUECURRENT® * PSerDes¥ UHC® Ultra FRFET¥ UniFET¥ VCX¥ VisualMax¥ VoltagePlus¥ XS™ * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I61 39 ALIMENTATION FIXE A DÉCOUPAGE ALF1210 12 Volts continu 120 watts 10 Ampères - Output ripple < 3mV rms. - Built in power corrector (PFC). - Output voltage adjustable from 10 to 15V. - Short circuit protection. - Temperature controlled fan cooling. - Ausgangswelligkeit < 3mV effektiv. - Eingebaute Leistungsfaktorkorrektur (PFC) - Ausgangsspannung verstellbar zwischen 10 und 15 Volt. - Schutz gegen Kurzschlüsse. - Geregelte Lüftung. Autres caractéristiques • Sécurité : Classe II, double isolation, conforme à la norme EN 61010-1 • CEM : Conforme aux normes EN 50081-1 et 50082-1 • Indice de protection : IP 30 • Alimentation : Secteur 190 à 253 Volts, 50 / 60Hz. • Entrée secteur : cordon 2 pôles double isolation. • Consommation : 170W maxi. • Facteur de puissance : 0,99 (PFC intégré). • Rigidité diélectrique : 3000V entre entrée et sortie. • Présentation : Boîtier métal avec peinture époxy. Caractéristiques techniques Tension • Sorties flottantes sur douilles de sécurité de 4mm. • Tension de sortie : ajustable de 10 à 15V linéairement • Régulation : < 2mV pour une variation de charge de 0 à 100%. < 1mV pour une variation secteur de 190V à 253V. • Ondulation : < 3mV efficace comprenant : < 5mV crête à crête du signal à 100KHz < 5mV crête à crête du signal à 100Hz < 40mV crête à crête des pics de commutations • Temps de maintien : 25ms à 50% de charge et 12ms à 100% (secteur à 190V) • Visualisation : Led verte "alimentation en fonctionnement" Led rouge “status, défaut sur la sortie” Intensité • I maxi : 10,5A au court-circuit 10A de 10 à 15V Puissance • Puissance max. de sortie : 150W. Protections • Contre les courts-circuits par limitation de courant. • Contre les surintensités sur la source, par fusible. • Contre les surtensions en sortie, par limitation de tension à 17V. - Ondulation de sortie < 3mV efficace. - Correcteur du facteur de puissance (PFC) intégré. - Tension de sortie ajustable de 10 à 15 Volts. - Protection contre les courts-circuits. - Ventilation controlée. Other specifications • Safety : Classe II, double insulation, according to EN 61010-1. • EMC : Complies with EN 50081-1 and 50082-1. • Protection level : IP 30. • Input voltage : 190 to 253 Volts, 50 / 60 Hz. • Mains input : double insulation 2 poles cable. • Power consumption : 170 W max. • Power factor : 0.99 (built in PFC). • Dielectric strength : 3000V. • Presentation : metal case with epoxy finish. Specifications Voltage • Floating outputs on 4 mm safety sockets. • Output voltage : adjustable from 10 to 15V linearly. • Regulation : < 1mV for a load change from 0 to 100%. < 1mV for a line change from 190 to 253V. • Ripple : < 3mV rms including: < 5mV peak to peak of the signal at 100 KHz < 5mV peak to peak of the signal at 100 Hz < 40mV peak to peak of switching spikes • Hold-up time : 25 ms at half load and 12 ms at full load (190V line input). • Indicator : green power-on LED indicator. "status, output fault" red LED. Current • Max I : 10,5A in short circuit condition. 10A from 10 to 15V Power • Max output power : 150W. Protection • Short circuit protection, by current regulation. • Transformer primary overcurrent protection, by fuse. • Output overload protection by voltage limiting to 17V. 38 Andere Eigenschaften • Schutz : Klasse II, schutzisoliert, entspricht den Normen EN 61010-1. • EMC : Entspricht den Normen EN 50081-1 und 50082-1. • Schutzart : IP 30. • Versorgung : Netzversorgung 190 bis 253 Volt, 50 / 60 Hz. • Netzversorgungseingang : schutzisoliertes 2-Phasen-Netzkabel. • Leistungsaufnahme : max. 170W. • Leistungsfaktor : 0,99 (PFC integriert). • Durchschlagsfestigkeit : 3000V. • Erscheinungsbild : Metallgehäuse mit Epoxid-Lackierung. Technische Daten Spannung • Ausgänge von Masse getrennt (floating) auf 4-mm-Schutzbuchsen. • Ausgangsspannung : linear verstellbar zwischen 10 und 15 V. • Regelung : < 1mV bei Laständerungen von 0 bis 100%. < 1mV bei Schwankungen der Netzversorgung zwischen 190V und 253V. • Welligkeit : < 3mV effektiv mit: < 3mV Spitze-Spitze des Signals bei 100kHz < 4mV Spitze-Spitze des Signals bei 100Hz < 12mV Spitze-Spitze von Schaltspitzen • Haltezeit : 25ms bei 50% der Last und 12ms bei 100% (Netzversorgung bei 190V). • Anzeige : Grüne LED “Versorgung bei Betrieb”. Rote LED "Status, Fehler auf Ausgang" Stromstärke • I max : 10,5A bei Kurzschluss 10A von 10 bis 15V Liestung • Max. Ausgangsleistung : 150 W. Schutzvorrichtungen • Gegen Kurzschlüsse durch Strombegrenzung. • Gegen Überströme auf dem Primärkreis des Transformators durch Sicherung . • Gegen Überspannungen am Ausgang durch Spannungsbegrenzung auf 17 V. Switching fixed power supply ALF1210 Feste Unterbrechungsfreie Versorgung ALF1210 Séries TDS1000B et TDS2000B Oscilloscope à mémoire numérique Manuel de l’utilisateur Révision B www.tektronix.com 071-1818-00 Copyright © Tektronix. Tous droits réservés. Les produits logiciels sous licence sont la propriété de Tektronix, de ses filiales ou de ses fournisseurs et sont protégés par les lois nationales sur le copyright, ainsi que par des traités internationaux. Les produits Tektronix sont protégés par des brevets américains et étrangers déjà déposés ou en cours d’obtention. Les informations contenues dans le présent document remplacent celles publiées précédemment. Les spécifications et les prix peuvent être soumis à modification. TEKTRONIX et TEK sont des marques déposées de Tektronix, Inc. OpenChoice™ est une marque déposée de Tektronix, Inc. PictBridge™ est une marque déposée de la norme CIPA DC-001-2003 Digital Photo Solutions for Imaging Devices de la Camera & Imaging Products Association. Coordonnées de Tektronix Tektronix, Inc. 14200 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 Etats-Unis Pour obtenir des informations sur le produit, la vente, les services et l’assistance technique : En Amérique du Nord, appelez le 1-800-833-9200. Pour les autres pays, visitez le site www.tektronix.com pour connaître les coordonnées locales. Oscilloscopes TDS1000B et TDS2000B Garantie 18 – Garantie limitée à la durée de vie Tektronix garantit à l’acheteur-utilisateur final d’origine (ci-après dénommé le « premier acheteur ») du produit désigné ci-dessous que ce dernier est exempt de défaut au niveau des matériaux et de la fabrication durant toute la durée de vie du produit. Dans les présentes, la « durée de vie du produit » est définie comme une période de cinq (5) années suivant la fin de la fabrication du produit par Tektronix (comme défini par Tektronix), mais la période de garantie sera d’au moins dix (10) ans à compter de la date d’achat du produit par le premier acheteur à Tektronix ou à un l’un de ses distributeurs agréés. La présente garantie limitée à la durée de vie concerne uniquement le premier acheteur et ne peut être transférée. Si une réclamation concernant la garantie intervient avant la fin de celle-ci, l’acheteur doit fournir une preuve satisfaisante de la date d’achat à Tektronix ou à un distributeur agréé et du fait qu’il est le premier acheteur. En cas de vente ou de transfert du produit par le premier acheteur à un tiers dans les trois (3) ans à compter de la date d’achat du produit par le premier acheteur, la période de garantie sera de trois (3) ans à compter de la date d’achat du produit par le premier acheteur à Tektronix ou à un distributeur agréé. Les sondes, autres accessoires, batteries et fusibles ne sont pas couverts par la garantie. Si l’un des produits Tektronix se révèle défectueux pendant ladite période de garantie, Tektronix peut au choix réparer le produit en question en prenant à sa charge les frais de main-d’oeuvre et de pièces ou bien fournir un produit de remplacement équivalent (comme établi par Tektronix) en échange du produit défectueux. Les pièces, modules et produits de remplacement utilisés par Tektronix pour des travaux sous garantie peuvent être neufs ou reconditionnés pour de nouvelles performances. Tous les produits, modules et pièces de rechange deviennent la propriété de Tektronix. Dans les présentes, le « client » est la personne ou l’entité revendiquant ses droits en vertu de la présente garantie. Pour pouvoir prétendre à la garantie, le client doit signaler le défaut à Tektronix avant l’expiration de la période de garantie applicable et effectuer les démarches correspondantes. Il appartient au client d’emballer et d’expédier le produit défectueux au centre de réparation indiqué par Tektronix, avec les frais d’expédition prépayés et une copie du certificat d’achat du premier acheteur. Tektronix prend à sa charge la réexpédition du produit au client, si le destinataire se trouve dans le pays où le centre de réparation Tektronix est implanté. Tous les frais d’expédition, droits, taxes et autres coûts afférents à la réexpédition du produit dans un autre lieu sont à la charge du client. Cette garantie est caduque en cas de défaillance, de panne ou de dommage provoqué par un accident, l’usure ou des dégradations d’éléments mécaniques, l’utilisation non conforme aux spécifications du produit, un usage impropre ou un défaut de soin ou de maintenance. Tektronix n’est pas contraint d’assurer les réparations sous garantie dans les cas suivants : a) réparations résultant de dommages provoqués par un personnel non mandaté par Tektronix ayant installé, réparé ou entretenu le produit ; b) réparations résultant d’une utilisation impropre ou d’un raccordement à des équipements incompatibles ; c) réparation de dommages ou de dysfonctionnements résultant de l’utilisation de pièces non fournies par Tektronix ; d) entretien d’un produit modifié ou intégré à d’autres produits, rendant ainsi le produit plus difficile à entretenir ou augmentant la périodicité des entretiens. LA PRESENTE GARANTIE DEFINIE PAR TEKTRONIX QUANT AU PRODUIT TIENT LIEU DE TOUTE AUTRE GARANTIE, EXPLICITE OU IMPLICITE. TEKTRONIX ET SES FOURNISSEURS NE DONNENT AUCUNE GARANTIE IMPLICITE QUANT A LA QUALITE MARCHANDE OU A L’ADEQUATION DU PRODUIT A DES USAGES PARTICULIERS. LE SEUL RECOURS DU CLIENT EN CAS DE VIOLATION DE CETTE GARANTIE EST D’EXIGER DE TEKTRONIX QU’IL REPARE OU REMPLACE LE PRODUIT DEFECTUEUX. TEKTRONIX ET SES FOURNISSEURS NE POURRONT PAR CONSEQUENT PAS ETRE TENUS POUR RESPONSABLES DES DOMMAGES INDIRECTS, SPECIAUX OU CONSECUTIFS, MEME S’ILS SONT INFORMES AU PREALABLE DE L’EVENTUALITE DES DOMMAGES EN QUESTION. Sonde P2220 Garantie 2 Tektronix garantit que ce produit est exempt de défaut au niveau des matériaux et de la fabrication, pendant une période de un (1) an à compter de la date d’expédition. Si un produit Tektronix se révèle défectueux pendant sa période de garantie, Tektronix peut soit réparer le produit en question, en prenant à sa charge les frais de main-d’oeuvre et de pièces, soit fournir un produit de remplacement en échange de celui défectueux. Les pièces, modules et produits de remplacement utilisés par Tektronix pour des travaux sous garantie peuvent être neufs ou reconditionnés pour de nouvelles performances. Tous les produits, modules et pièces de rechange deviennent la propriété de Tektronix. Pour pouvoir prétendre à la garantie, le client doit signaler le défaut à Tektronix avant l’expiration de la période de garantie et effectuer les démarches correspondantes. Il appartient au client d’emballer et d’expédier en port payé le produit défectueux au centre de réparation indiqué par Tektronix. Tektronix prend à sa charge la réexpédition du produit au client, si le destinataire se trouve dans le pays où le centre de réparation Tektronix est implanté. Tous les frais d’expédition, droits, taxes et autres coûts afférents à la réexpédition du produit dans un autre lieu sont à la charge du client. Cette garantie est caduque en cas de défaillance, de panne ou de dommage provoqué par un usage impropre ou un défaut de soin ou de maintenance. Tektronix n’est pas contraint d’assurer les réparations sous garantie dans les cas suivants : a) réparations résultant de dommages provoqués par un personnel non mandaté par Tektronix qui a installé, réparé ou entretenu le produit ; b) réparations résultant d’une utilisation impropre ou d’un raccordement à des équipements incompatibles ; c) réparation de dommages ou de dysfonctionnements résultant de l’utilisation de pièces non fournies par Tektronix ; ou d) entretien d’un produit modifié ou intégré à d’autres produits, rendant ainsi le produit plus difficile à entretenir ou augmentant la périodicité des entretiens. LA PRESENTE GARANTIE DEFINIE PAR TEKTRONIX EU EGARD AU PRODUIT TIENT LIEU DE TOUTE AUTRE GARANTIE, EXPLICITE OU IMPLICITE. TEKTRONIX ET SES FOURNISSEURS NE DONNENT AUCUNE GARANTIE IMPLICITE QUANT A LA QUALITE MARCHANDE OU A L’ADEQUATION DU PRODUIT A DES USAGES PARTICULIERS. LE SEUL RECOURS DU CLIENT EN CAS DE VIOLATION DE CETTE GARANTIE EST D’EXIGER DE TEKTRONIX QU’IL REPARE OU REMPLACE LE PRODUIT DEFECTUEUX. TEKTRONIX ET SES FOURNISSEURS NE POURRONT PAR CONSEQUENT PAS ETRE TENUS POUR RESPONSABLES DES DOMMAGES INDIRECTS, SPECIAUX OU CONSECUTIFS, MEME S’ILS SONT INFORMES AU PREALABLE DE L’EVENTUALITE DES DOMMAGES EN QUESTION. Table des matières Consignes générales de sécurité........................................ iv Environnement.......................................................... vii Préface.................................................................... ix Système d’aide ...................................................... x Mises à jour du firmware via Internet ............................ xi Conventions........................................................ xii Démarrage ................................................................ 1 Fonctions générales ................................................. 1 Installation ........................................................... 3 Test de fonctionnement ............................................. 4 Sécurité de la sonde ................................................. 5 Assistant Test de sonde de tension ................................. 5 Compensation manuelle de sonde.................................. 7 Réglage d’atténuation de la sonde ................................. 8 Mise à échelle de la sonde de courant ............................. 9 Calibrage automatique .............................................. 9 Principes de fonctionnement .......................................... 11 Zone d’affichage................................................... 11 Utilisation du système de menus ................................. 15 Réglages verticaux ................................................ 17 Réglages horizontaux ............................................. 18 Commandes de déclenchement .................................. 19 Boutons de menu et de commande............................... 20 Connecteurs d’entrée.............................................. 23 Autres éléments du panneau avant ............................... 24 Compréhension des fonctions de l’oscilloscope ..................... 25 Réglage de l’oscilloscope......................................... 25 Déclenchement .................................................... 27 Acquisition de signaux............................................ 29 Mise à l’échelle et positionnement de signaux.................. 30 Prise de mesures................................................... 35 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B i Table des matières Exemples d’application ................................................ 37 Prise de mesures simples ......................................... 38 Utilisation de la fonction de calibrage automatique (Autorange) pour examiner une série de points de test .................. 44 Mesures par curseur ............................................... 45 Analyse détaillée du signal ....................................... 50 Acquisition d’un signal monocoup .............................. 53 Mesure du retard de propagation................................. 55 Déclenchement sur une largeur d’impulsion spécifique........ 56 Déclenchement sur un signal vidéo.............................. 58 Analyse d’un signal de communication différentiel ............ 64 Affichage des modifications d’impédance sur un réseau....... 66 Fonctions mathématiques FFT ........................................ 69 Réglage du signal temporel....................................... 69 Affichage du spectre FFT......................................... 71 Sélection d’une fenêtre FFT...................................... 73 Agrandissement et positionnement d’un spectre FFT .......... 76 Mesure d’un spectre FFT à l’aide des curseurs ................. 77 Port du lecteur flash USB et port périphérique....................... 79 Port du lecteur flash USB......................................... 79 Conventions de gestion des fichiers.............................. 82 Sauvegarde et rappel de fichiers avec un lecteur flash USB ... 83 Utilisation de la fonction de sauvegarde du bouton PRINT du panneau avant ................................................ 85 Port périphérique USB............................................ 89 Installation du logiciel de communication sur un PC .......... 89 Connexion à un PC................................................ 90 Connexion à un système GPIB................................... 93 Saisie de commande............................................... 93 Connexion à une imprimante..................................... 94 Imprimer une image d’écran ..................................... 95 Référence................................................................ 97 Acquisition......................................................... 97 Calibrage Auto ................................................... 101 Réglage automatique (Autoset) ................................. 103 ii Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Table des matières Curseurs ........................................................... 107 Configuration par défaut ......................................... 109 Affichage.......................................................... 109 Aide ............................................................... 112 Horizontal ......................................................... 112 Fonctions mathématiques........................................ 115 Mesures ........................................................... 116 Imprimer .......................................................... 118 Test de sonde...................................................... 119 Menu Réf.......................................................... 119 Sauvegarder/Rappeler............................................ 120 Commandes de déclenchement ................................. 127 Utilitaire........................................................... 136 Réglages verticaux ............................................... 140 Annexe A : Spécifications ............................................ 145 Spécifications de l’oscilloscope ................................. 145 Homologations et conformité de l’oscilloscope ............... 158 Spécifications relatives à la sonde P2220 ...................... 163 Annexe B : Accessoires ............................................... 167 Annexe C : Nettoyage................................................. 171 Entretien - Généralités ........................................... 171 Nettoyage ......................................................... 171 Annexe D : Configuration par défaut ................................ 173 Annexe E : Licences de police ....................................... 177 Index Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B iii Consignes générales de sécurité Consignes générales de sécurité Veuillez lire avec attention les précautions et consignes de sécurité suivantes, afin d’éviter toute blessure et l’endommagement éventuel de cet appareil et des produits qui lui sont associés. Pour écarter tout danger, utilisez uniquement cet appareil dans les conditions spécifiées. Seul un personnel qualifié doit être autorisé à effectuer les opérations d’entretien. Pour éviter les incendies et les dommages corporels Utilisez le cordon d’alimentation spécifié. Utilisez uniquement le cordon d’alimentation prévu pour cet appareil et conforme aux normes du pays d’utilisation. Procédez aux branchements et débranchements de manière appropriée Branchez la sortie de sonde à l’instrument de mesure avant de brancher la sonde sur le circuit à tester. Branchez le fil de référence de la sonde sur le circuit à tester avant de brancher l’entrée de la sonde. Débranchez l’entrée et le fil de référence de la sonde du circuit testé avant de débrancher la sonde de l’instrument de mesure. Mettez le produit à la terre. Ce produit est raccordé à la terre au moyen du fil de masse du cordon d’alimentation. Pour éviter tout choc électrique, le fil de masse doit être connecté à une prise de terre. Avant de procéder aux branchements des bornes d’entrée et de sortie du produit, veillez à ce que celui-ci soit correctement mis à la terre. Respectez toutes les valeurs nominales des terminaux. Pour éviter tout risque d’incendie ou de choc électrique, respectez les valeurs nominales et les indications figurant sur le produit. Consultez le manuel livré avec le produit où figurent toutes les informations complémentaires avant de procéder au branchement du produit. Branchez le fil de référence de la sonde sur la terre uniquement. N’appliquez à une borne (borne commune incluse) aucun potentiel dépassant la valeur maximale de cette borne. iv Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Consignes générales de sécurité Interrupteur d’alimentation L’interrupteur d’alimentation permet de déconnecter le produit de la source d’alimentation. Consultez les instructions pour connaître l’emplacement de cet interrupteur. Ne bloquez pas l’interrupteur d’alimentation ; il doit rester accessible à tout moment. Ne mettez pas l’appareil en service sans ses capots de protection. Ne mettez pas l’appareil en service si les capots ou panneaux de protection ont été retirés. N’utilisez pas l’appareil en cas de défaillance suspecte. En cas de doute sur le bon état de cet appareil, faites-le inspecter par un technicien qualifié. Evitez tout circuit exposé. Ne touchez à aucun branchement ou composant exposé lorsque l’appareil est sous tension. N’utilisez pas l’appareil dans un environnement humide. N’utilisez pas l’appareil dans un environnement explosif. Maintenez les surfaces du produit propres et sèches. Assurez une ventilation adéquate. Reportez-vous aux instructions d’installation du manuel pour plus de détails sur la mise en place d’une ventilation adéquate du produit. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B v Consignes générales de sécurité Termes apparaissant dans ce manuel. Les mentions suivantes peuvent figurer dans ce manuel : AVERTISSEMENT. Les avertissements identifient des situations ou des opérations pouvant entraîner des blessures graves ou mortelles. ATTENTION. Les mises en garde identifient des situations ou des opérations susceptibles d’endommager le matériel ou d’autres équipements. Symboles et termes relatifs au produit Les mentions suivantes peuvent figurer sur le produit : La mention « DANGER » indique un risque de blessure immédiate à la lecture de l’étiquette. La mention « AVERTISSEMENT » indique un risque de blessure non immédiate à la lecture de l’étiquette. La mention « PRECAUTION » indique un risque de dommage matériel, y compris du produit. Les symboles suivants peuvent figurer sur le produit : vi Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Environnement Cette section contient des informations concernant l’impact du produit sur l’environnement. Recyclage du produit Observez la procédure ci-dessous pour le recyclage d’un instrument ou d’un composant : Recyclage de l’appareil. La fabrication du présent appareil a exigé l’extraction et l’utilisation de ressources naturelles. Il peut contenir des substances potentiellement dangereuses pour l’environnement ou la santé si elles ne sont pas correctement traitées lors de la mise au rebut de l’appareil. Pour éviter la diffusion de telles substances dans l’environnement et réduire l’utilisation des ressources naturelles, nous vous encourageons à recycler ce produit de manière appropriée, afin de garantir que la majorité des matériaux soient correctement réutilisés ou recyclés. Le symbole ci-dessous indique que ce produit respecte les exigences de l’Union européenne, conformément à la directive 2002/96/CE relative aux déchets d’équipements électriques et électroniques (DEEE). Pour plus d’informations sur les solutions de recyclage, reportez-vous à la section Assistance/Maintenance du site Web de Tektronix (www.tektronix.com). Remarque relative au mercure. Ce produit est équipé d’une lampe de rétroéclairage LCD contenant du mercure. Sa mise au rebut est soumise à la réglementation en vigueur concernant l’environnement. Pour connaître les conditions de mise au rebut ou de recyclage, contactez les autorités locales ou, pour les Etats-Unis, l’EIA (Electronics Industries Alliance, www.eiae.org). Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B vii Environnement Restriction concernant les substances dangereuses Cet appareil est considéré comme un appareil de contrôle et de surveillance, non pris en charge par la directive 2002/95/CE relative à la limitation de l’utilisation de certaines substances dangereuses dans les équipements électriques et électroniques. Ce produit contient, de manière avérée, du plomb, du cadmium, du mercure et du chrome hexavalent. viii Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Préface Préface Ce manuel contient des informations relatives au fonctionnement des oscilloscopes à mémoire numérique TDS1000B et TDS2000B. Il se compose des chapitres suivants : Le chapitre Démarrage décrit brièvement les fonctions de l’oscilloscope et fournit des instructions relatives à l’installation. Le chapitre Principes de fonctionnement explique le fonctionnement des oscilloscopes. Le chapitre Compréhension des fonctions de l’oscilloscope décrit les opérations et les fonctions de base d’un oscilloscope : configuration de l’oscilloscope, déclenchement, acquisition de données, mise à l’échelle et positionnement des signaux et prise de mesures. Le chapitre Exemples d’application fournit des exemples de solutions visant à résoudre divers problèmes de mesures. Le chapitre Fonction mathématique FFT explique comment utiliser la fonction mathématique Transformée de Fourier Rapide (FFT) pour convertir un signal temporel en ses composantes de fréquence (spectre). Le chapitre Port du lecteur flash USB et port périphérique décrit l’utilisation du port du lecteur flash USB et le raccordement de l’oscilloscope aux imprimantes et aux ordinateurs via le port périphérique USB. Le chapitre Référence décrit les sélections ou la gamme de valeurs disponibles pour chaque option. L’annexe A : Spécifications contient les spécifications électriques, environnementales et physiques de l’oscilloscope et de la sonde P2220, ainsi que des homologations et des conformités. L’annexe B : Accessoires décrit brièvement les accessoires standard et en option. L’annexe C : Nettoyage décrit comment entretenir l’oscilloscope. L’annexe D : Configuration par défaut contient la liste des menus et des commandes avec leurs configurations (d’usine) par défaut, Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B ix Préface rétablies lorsque vous appuyez sur le bouton CONF. PAR D. du panneau avant. L’annexe E : Licences de police fournit les licences permettant d’utiliser des polices asiatiques spécifiques. Système d’aide L’oscilloscope dispose d’un système d’aide doté de rubriques couvrant toutes les fonctions de l’appareil. Ce système d’aide vous permet d’afficher différents types d’informations : des informations générales portant sur la compréhension et l’utilisation de l’oscilloscope, telles que Utilisation du système de menus ; des informations portant sur les menus et les commandes spécifiques, telles que Commande de position verticale ; des conseils portant sur les problèmes que vous pouvez rencontrer lors de l’utilisation de l’oscilloscope, tels que Réduction du bruit. Le système d’aide met à votre disposition différents moyens de trouver les informations dont vous avez besoin : aide contextuelle, liens hypertexte et index. Aide contextuelle Lorsque vous appuyez sur le bouton AIDE du panneau avant, l’oscilloscope affiche des informations relatives au dernier menu affiché à l’écran. Lorsque vous visualisez les rubriques d’aide, un voyant LED s’allume à côté du bouton multifonctionnel pour indiquer que ce dernier est actif. Si la rubrique s’étend sur plus d’une page, tournez le bouton multifonctionnel pour passer d’une page à l’autre de la rubrique. x Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Préface Liens hypertexte La plupart des rubriques d’aide présentent des phrases dotées de passage entre chevrons, tels que . Il s’agit de liens vers d’autres rubriques. Tournez le bouton multifonctionnel pour sélectionner les différents liens. Appuyez sur le bouton d’option Afficher sujet pour consulter la rubrique correspondant au lien mis en surbrillance. Appuyez sur le bouton d’option Retour pour revenir à la rubrique précédente. Index Appuyez sur le bouton AIDE du panneau avant, puis appuyez sur le bouton d’option Index. Appuyez sur les boutons d’option Page précédente ou Page suivante jusqu’à ce que vous trouviez la page d’index contenant la rubrique que vous souhaitez afficher. Tournez le bouton multifonctionnel pour mettre en surbrillance la rubrique d’aide qui vous intéresse. Appuyez sur le bouton Afficher sujet pour afficher la rubrique. REMARQUE. Appuyez sur le bouton d’option Quitter ou sur un bouton de menu quelconque pour quitter l’écran d’aide affiché et revenir à l’affichage des signaux. Mises à jour du firmware via Internet Si une version plus récente du micrologiciel est disponible, vous pouvez utiliser Internet et un lecteur flash USB pour mettre à jour votre oscilloscope. Si vous ne disposez pas d’un accès à Internet, contactez Tektronix pour obtenir des informations sur les procédures de mise à jour. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B xi Préface Pour mettre à jour le micrologiciel via Internet, procédez comme suit : 1. Appuyez sur UTILITAIRE ► Etat du système et notez le numéro de version du micrologiciel de l’oscilloscope. 2. Depuis votre ordinateur, accédez au site Web www.tektronix.com et vérifiez la disponibilité d’une version plus récente du micrologiciel pour l’oscilloscope. 3. Si une version plus récente est disponible, téléchargez le fichier du micrologiciel à partir de la page Web. Vous devrez peut-être décompresser le fichier téléchargé. 4. Copiez le fichier du micrologiciel TDS1K2KB.TEK dans le dossier racine du lecteur flash USB. 5. Insérez le lecteur flash USB dans le port du lecteur flash USB situé sur le panneau avant de l’oscilloscope. 6. Sur votre oscilloscope, appuyez sur le bouton d’option UTILITAIRE ► Utilitaires Fichiers ► - suite - p. 2 de 2 ► M. à jour Firmware. La mise à jour du micrologiciel prend plusieurs minutes. Lorsque que la mise à jour du microprogramme est terminée, l’oscilloscope vous invite à appuyer sur un bouton. Vous ne devez pas retirer le lecteur flash USB ou mettre l’oscilloscope hors tension avant la fin de la mise à jour du microprogramme. Conventions Ce manuel utilise les conventions suivantes : Les boutons, molettes et connecteurs du panneau avant apparaissent en lettres majuscules. Par exemple : AIDE, PRINT. La première lettre des options de menu est en majuscules. Par exemple : Détect Créte, Zone retardée. xii Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Préface Bouton multifonctionnel Etiquettes des boutons et molettes du panneau avant : tout en majuscules Boutons d’option : première lettre de chaque mot apparaissant à l’écran en majuscules REMARQUE. Les boutons d’options peuvent également être appelés boutons d’écran, boutons du menu latéral, boutons du panneau ou touches programmables. Le délimiteur ► sert à séparer les boutons dans une séquence à réaliser. Par exemple, UTILITAIRE ► Options ► Régler date et heure signifie que vous devez appuyer sur le bouton UTILITAIRE du panneau avant, puis sur le bouton d’option Options, et enfin sur le bouton d’option Régler date et heure. Il est parfois nécessaire d’utiliser plusieurs boutons pour sélectionner l’option souhaitée. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B xiii Préface xiv Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Démarrage Les oscilloscopes à mémoire numérique TDS1000B et TDS2000B sont des oscilloscopes de table compacts et légers, que vous pouvez utiliser pour prendre des mesures référencées au sol. Ce chapitre décrit comment : installer votre produit, effectuer une brève vérification du fonctionnement, effectuer un test de sonde et compenser les sondes, faire correspondre votre facteur d’atténuation de sonde, utiliser le programme de calibrage automatique. REMARQUE. Vous pouvez sélectionner la langue affichée à l’écran lorsque vous mettez l’oscilloscope sous tension. A tout moment, vous pouvez accéder à l’option UTILITAIRE ► Language pour sélectionner la langue souhaitée. Fonctions générales Le tableau et la liste qui suivent décrivent les fonctions générales. Modèle Voies Bande passante Fréquence d’échantillonnageAffichage TDS1001B 2 40 MHz 500 éch./s Monochrome TDS1002B 2 60 MHz 1 G éch./s Monochrome TDS1012B 2 100 MHz 1 G éch./s Monochrome TDS2002B 2 60 MHz 1 G éch./s Couleur TDS2004B 4 60 MHz 1 G éch./s Couleur TDS2012B 2 100 MHz 1 G éch./s Couleur TDS2014B 4 100 MHz 1 G éch./s Couleur TDS2022B 2 200 MHz 2 G éch./s Couleur TDS2024B 4 200 MHz 2 G éch./s Couleur Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 1 Démarrage Aide contextuelle Ecran LCD couleur ou monochrome Limite de bande passante de 20 MHz sélectionnable Longueur d’enregistrement de 2 500 points pour chaque voie Réglage automatique (Autoset) Ajustement automatique Assistant Test de sonde Stockage de la configuration et du signal Port du lecteur flash USB pour stockage des fichiers Impression directe sur imprimante compatible PictBridge Communications avec l’ordinateur via le port périphérique USB doté du logiciel de communication pour PC OpenChoice Connexion à un contrôleur GPIB par un adaptateur TEK-USB-488 en option Curseurs dotés d’un affichage Mesure de la fréquence de déclenchement Onze mesures automatiques Moyenne du signal et Détect Créte Double base de temps Fonctions mathématiques : opérations +, - et × Fonction mathématique Transformée de Fourier Rapide (FFT) Fonctionnalité de déclenchement sur largeur d’impulsion Capacité de déclenchement vidéo avec déclenchement sélectionnable par ligne Déclenchement externe Affichage à persistance variable Interface utilisateur et rubriques d’aide en dix langues 2 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Démarrage Installation Cordon d’alimentation Utilisez uniquement le cordon d’alimentation fourni avec l’oscilloscope. L’Annexe B : Accessoires dresse la liste des accessoires standard et en option. Source d’alimentation Utilisez une source d’alimentation délivrant 90 à 264 V CAeff, de 45 à 66 Hz. Si vous disposez d’une source d’alimentation de 400 Hz, elle doit délivrer 90 à 132 V CAeff, de 360 à 440 Hz. Boucle de sécurité Utilisez un verrou de sécurité standard d’ordinateur portable ou faites passer un câble de sécurité par la voie de câble intégrée afin d’attacher votre oscilloscope. Voie de câble de sécurité Orifice du verrou de sécurité Cordon d’alimentation Ventilation REMARQUE. L’oscilloscope refroidit par convection. Laissez cinq centimètres de chaque côté et au-dessus de l’appareil pour permettre à l’air de circuler. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 3 Démarrage Test de fonctionnement Effectuez le test suivant pour vous assurer du bon fonctionnement de l’oscilloscope. Bouton ON/OFF 1. Mettez l’oscilloscope sous tension. Appuyez sur le bouton CONF. PAR D. Le réglage d’atténuation par défaut de l’option Sonde est 10X. CONF. PAR D., bouton COMP SONDE 2. Réglez le commutateur de la sonde P2220 sur 10X et raccordez la sonde à la voie 1 de l’oscilloscope. Pour ce faire, alignez l’emplacement du connecteur de la sonde avec la touche du connecteur BNC CH 1, appuyez pour effectuer la connexion et tournez la sonde vers la droite pour la verrouiller. Connectez l’extrémité de la sonde et le câble de référence aux bornes COMP SONDE. 3. Appuyez sur le bouton AUTOSET. Au bout de quelques secondes, une onde carrée de 5 V crête à crête à 1 kHz doit s’afficher à l’écran. Appuyez deux fois sur le bouton CH1 MENU du panneau avant pour supprimer la voie 1, appuyez sur le bouton CH2 MENU pour afficher la voie 2 et répétez les étapes 2 et 3. Pour les modèles à 4 voies, répétez la procédure pour les voies 3 et 4. 4 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Démarrage Sécurité de la sonde Vérifiez les valeurs nominales des sondes avant de les utiliser et respectez ces valeurs. Un manchon entourant le corps de la sonde P2220 protège les doigts contre tout choc électrique. Protège-doigts AVERTISSEMENT. Pour éviter tout choc électrique lors de l’utilisation de la sonde, gardez vos doigts derrière le manchon entourant le corps de la sonde. Pour éviter tout choc électrique lors de l’utilisation de la sonde, ne touchez aucune partie métallique de la tête de sonde lorsque celle-ci est branchée sur une source de tension. Raccordez la sonde à l’oscilloscope et la borne de mise à la terre à la masse avant de prendre des mesures. Assistant Test de sonde de tension L’assistant Test de sonde permet de vérifier rapidement le bon fonctionnement d’une sonde de tension. Il ne prend pas en charge les sondes de courant. L’assistant vous permet de régler la compensation des sondes de tension (généralement à l’aide d’un tournevis sur le corps ou un connecteur de la sonde) et de définir le facteur d’atténuation de chaque voie, comme dans l’option CH 1 MENU ► Sonde ► Tension ► Atténuation. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 5 Démarrage Utilisez l’assistant Test de sonde pour chaque raccordement d’une sonde de tension à une voie d’entrée. Pour utiliser l’assistant Test de sonde, appuyez sur le bouton TEST SONDE. Si la sonde de tension est correctement raccordée et compensée et si l’option Atténuation dans le menu VERTICAL de l’oscilloscope correspond bien à la sonde, l’oscilloscope indique alors PASSE en bas de l’écran. Sinon, l’oscilloscope indique la marche à suivre à l’écran pour vous permettre de résoudre ces problèmes. REMARQUE. L’assistant Test de sonde est utile pour les sondes 1X, 10X, 20X, 50X et 100X. Il ne sert pas pour les sondes 500X ou 1000X, ni pour les sondes raccordées au connecteur BNC EXTERNE. REMARQUE. Une fois le processus terminé, l’assistant Test de sonde rétablit les paramètres de l’oscilloscope (autres que l’option Sonde) à la valeur qu’ils avaient avant d’appuyer sur le bouton TEST SONDE. Pour compenser une sonde que vous envisagez d’utiliser avec l’entrée EXTERNE, procédez comme suit : 1. Raccordez la sonde au connecteur BNC d’une voie d’entrée quelconque, par exemple CH 1. 2. Appuyez sur le bouton TEST SONDE et suivez les instructions à l’écran. 3. Après avoir vérifié que la sonde fonctionne et qu’elle est correctement compensée, raccordez-la au connecteur BNC EXTERNE. 6 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Démarrage Compensation manuelle de sonde Il existe une alternative à l’assistant Test de sonde, qui consiste à effectuer manuellement ce réglage afin de faire correspondre votre sonde à la voie d’entrée. COMP SONDE Bouton AUTOSET 1. Appuyez sur CH 1 MENU ► Sonde ► Tension ► Atténuation, puis sélectionnez 10X. Réglez le commutateur de la sonde P2220 sur 10X et raccordez la sonde à la voie 1 de l’oscilloscope. Si vous utilisez un embout en crochet pour la sonde, assurez-vous que la connexion s’effectue correctement en insérant fermement l’embout dans la sonde. 2. Fixez l’extrémité de la sonde à la terminaison COMP SONDE ~5V à 1kHz et le câble de référence à la terminaison COMP SONDE du châssis. Affichez la voie, puis appuyez sur le bouton AUTOSET. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 7 Démarrage Surcompensé Sous-compensé Compensé correctement 3. Vérifiez la forme du signal affiché. 4. Au besoin, ajustez la sonde. L’illustration montre une sonde P2220. Recommencez cette étape si nécessaire. Réglage d’atténuation de la sonde Les sondes sont proposées avec divers facteurs d’atténuation qui affectent l’échelle verticale du signal. L’assistant Test de sonde vérifie que le facteur d’atténuation sélectionné dans l’oscilloscope correspond à la sonde. Au lieu d’utiliser l’assistant Test de sonde, vous pouvez sélectionner manuellement le facteur correspondant à l’atténuation de votre sonde. Par exemple, pour régler l’oscilloscope pour une sonde 10X connectée à CH 1, appuyez sur CH 1 MENU ► Sonde ► Tension ► Atténuation, puis sélectionnez 10X. REMARQUE. Le réglage par défaut de l’option Atténuation est 10X. Si vous changez le commutateur d’atténuation de la sonde P2220, vous devez changer en conséquence l’option Atténuation de l’oscilloscope. Les réglages du commutateur sont 1X et 10X. 8 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Démarrage Commutateur d’atténuation REMARQUE. Lorsque le commutateur d’atténuation est défini sur 1X, la sonde P2220 limite la bande passante de l’oscilloscope à 6 MHz. Pour utiliser toute la bande passante de l’oscilloscope, définissez le commutateur sur 10X. Mise à échelle de la sonde de courant Les sondes de courant fournissent un signal de tension proportionnel au courant. Vous devez régler l’oscilloscope en fonction de l’échelle de votre sonde de courant. L’échelle par défaut est 10 A/V. Par exemple, pour régler l’échelle d’une sonde de courant connectée à CH 1, appuyez sur CH 1 MENU ► Sonde ► Courant ► Echelle, puis sélectionnez une valeur appropriée. Calibrage automatique Le programme de calibrage automatique permet d’optimiser le chemin du signal de l’oscilloscope, afin d’obtenir une précision de mesure maximale. Vous pouvez exécuter ce programme à tout moment, mais il est conseillé de le faire si la température ambiante change de 5 °C (9 °F) ou plus. Ce programme prend environ deux minutes. Pour un calibrage précis, mettez l’oscilloscope sous tension et laissez-le chauffer pendant vingt minutes. Pour compenser le chemin du signal, déconnectez les sondes ou les câbles des connecteurs d’entrée. Ensuite, accédez à l’option UTILITAIRE ► Exécuter Auto-cal et suivez les instructions affichées à l’écran. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 9 Démarrage 10 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement Le panneau avant se compose de plusieurs zones faciles à utiliser. Ce chapitre vous propose une présentation rapide des commandes et informations affichées à l’écran. Modèle à 2 voies Modèle à 4 voies Zone d’affichage Outre l’affichage des signaux, la zone d’affichage contient de nombreuses informations relatives aux réglages du signal et de l’oscilloscope. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 11 Principes de fonctionnement REMARQUE. Pour obtenir des détails sur l’affichage de la fonction FFT, voir (Voir page 71, Affichage du spectre FFT.). 1. L’apparence de l’icône indique le mode d’acquisition. Mode Normale Mode Détect Créte Mode Moyenne 12 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement 2. L’état du déclenchement est indiqué par les icônes ci-dessous : L’oscilloscope est en train d’acquérir des données de pré-déclenchement. Dans cet état, tous les déclenchements sont ignorés. Toutes les données de pré-déclenchement ont été acquises et l’oscilloscope est prêt à accepter un déclenchement. L’oscilloscope a détecté un déclenchement et il est en train d’acquérir les données de post-déclenchement. L’oscilloscope a arrêté l’acquisition des données du signal. L’oscilloscope a terminé l’acquisition d’une séquence unique. L’oscilloscope est en mode automatique et il est en train d’acquérir des signaux en l’absence de déclenchement. L’oscilloscope est en train d’acquérir et d’afficher en continu les données du signal en mode Balayage. 3. Le marqueur indique la position horizontale de déclenchement. Tournez le bouton HORIZONTAL POSITION pour modifier la position du marqueur. 4. L’affichage indique le temps au réticule central. Le temps au déclenchement est zéro. 5. Le marqueur indique le niveau de déclenchement sur front ou sur largeur d’impulsion. 6. Les marqueurs à l’écran indiquent les points de référence de masse des signaux affichés. S’il n’existe aucun marqueur, la voie n’est pas affichée. 7. Une icône en forme de flèche indique que le signal est inversé. 8. Les facteurs d’échelle verticale des voies sont affichés. 9. Une icône BP indique que la bande passante de la voie est limitée. 10. Le réglage de la base de temps principale est affiché. 11. L’affichage indique le réglage de la base de temps de la fenêtre, si celle-ci est utilisée. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 13 Principes de fonctionnement 12. La source utilisée pour le déclenchement est affichée. 13. L’icône indique le type de déclenchement sélectionné comme suit : Déclenchement sur front pour le front montant. Déclenchement sur front pour le front descendant. Déclenchement vidéo pour l’option Synchro de ligne. Déclenchement vidéo pour l’option Synchro de trame. Déclenchement sur largeur d’impulsion, polarité positive. Déclenchement sur largeur d’impulsion, polarité négative. 14. L’affichage indique le niveau de déclenchement sur front ou sur largeur d’impulsion. 15. La zone d’affichage contient des messages utiles, dont certains s’affichent pendant 3 secondes seulement. Si vous rappelez un signal sauvegardé, des informations s’affichent à propos du signal de référence, telles que RefA 1,00 V 500 μs. 16. La date et l’heure sont affichées. 17. L’affichage indique la fréquence du déclenchement. 14 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement Zone de messages L’oscilloscope affiche en bas de l’écran une zone de message (numéro 15 dans la figure précédente) qui propose les types d’informations suivants : Instructions d’accès à un autre menu, par exemple lorsque vous appuyez sur le bouton TRIG MENU. Pour le déclenchement HOLDOFF, aller dans le MENU HORIZONTAL Les étapes que vous pouvez effectuer par la suite, par exemple lorsque vous appuyez sur le bouton MESURES. Appuyez sur un bouton de l’écran pour modifier les mesures Des informations sur l’action effectuée par l’oscilloscope, par exemple lorsque vous appuyez sur le bouton CONF. PAR D. Rappel de la configuration d’usine standard Des informations sur le signal, par exemple lorsque vous appuyez sur le bouton AUTOSET. Onde carrée ou impulsion détectée sur CH1 Utilisation du système de menus L’interface utilisateur des oscilloscopes a été conçue pour faciliter l’accès aux fonctions spécialisées par le biais d’une structure de menus. Lorsque vous appuyez sur un bouton de menu du panneau avant, l’oscilloscope affiche le menu correspondant sur le côté droit de l’écran. Le menu affiche les options disponibles lorsque vous appuyez directement sur les boutons d’option dépourvus d’inscription situés à droite de l’écran. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 15 Principes de fonctionnement L’oscilloscope utilise plusieurs méthodes pour afficher les options de menu : Sélection de la page (sous-menu) : pour certains menus, vous pouvez utiliser le bouton d’option supérieur pour choisir entre deux ou trois sous-menus. Chaque fois que vous appuyez sur le bouton supérieur, les options changent. Par exemple, lorsque vous appuyez sur le bouton supérieur dans le menu TRIGGER, l’oscilloscope passe en revue les sous-menus de déclenchement Front, Vidéo et Largeur d’impulsion. Liste circulaire : l’oscilloscope attribue une valeur différente au paramètre à chaque fois que vous appuyez sur le bouton d’option. Par exemple, vous pouvez appuyer sur le bouton CH 1 MENU, puis sur le bouton d’option supérieur pour passer en revue les options Couplage vertical (voie). Dans certaines listes, vous pouvez utiliser le bouton multifonctionnel pour sélectionner une option. Une ligne de conseil vous indique quand vous pouvez utiliser le bouton multifonctionnel ; un voyant LED à côté de ce même bouton s’allume lorsque celui-ci est actif. (Voir page 20, Boutons de menu et de commande.) Action : l’oscilloscope affiche le type d’action qui se produira dès l’instant où vous appuyez sur un bouton d’option Action. Par exemple, lorsque l’index d’aide est visible et que vous appuyez sur le bouton d’option Page suivante, l’oscilloscope affiche immédiatement la page d’entrées d’index qui suit. Radio : l’oscilloscope utilise un bouton différent pour chaque option. L’option sélectionnée est mise en surbrillance. Par exemple, l’oscilloscope affiche plusieurs options de mode d’acquisition lorsque vous appuyez sur le bouton du menu ACQUISITION. Pour sélectionner une option, appuyez sur le bouton correspondant. 16 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement Sélection de page Liste circulaire Action Radio TRIGGER CH1 AIDE ACQUISITION Type Front Couplage CC Page précédente Normale ou ou Page suivante Détect Créte TRIGGER CH1 Moyennage Type Vidéo Couplage CA ou ou TRIGGER CH1 Type Impulsion Couplage masse Réglages verticaux Tous les modèles (modèle illustré : 4 voies) POSITION (CH 1, CH 2, CH 3 & CH 4). Positionne un signal verticalement. CH 1, CH 2, CH 3 & CH 4 MENU. Permet d’afficher les sélections du menu vertical et d’activer/de désactiver l’affichage du signal de la voie. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 17 Principes de fonctionnement VOLTS/DIV (CH 1, CH 2, CH 3 & CH 4). Permet de sélectionner les facteurs d’échelles verticales. MATH MENU. Permet d’afficher le menu des opérations mathématiques du signal ; permet également d’activer ou de désactiver le signal calculé. Réglages horizontaux Modèle à 2 voies Modèle à 4 voies POSITION. Permet de régler la position horizontale de toutes les voies et de tous les signaux calculés. La résolution de ce réglage varie selon le réglage de la base de temps. (Voir page 114, Zone retardée.) REMARQUE. Pour appliquer un réglage étendu à la position horizontale, tournez la molette SEC/DIV pour définir une valeur supérieure, modifiez la position horizontale, puis tournez de nouveau la molette SEC/DIV pour revenir à la valeur précédente. HORIZ MENU. Permet d’afficher le menu Horizontal. REGLER SUR 0. Permet de régler la position horizontale sur zéro. SEC/DIV. Permet de sélectionner l’unité de temps/la division (facteur d’échelle) de la base de temps principale ou de la base de temps de la fenêtre. Lorsque la Zone retardée est activée, cette commande modifie 18 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement la largeur de la zone retardée en modifiant la base de temps de la fenêtre. (Voir page 114, Zone retardée.) Commandes de déclenchement Modèle à 4 voies Modèle à 2 voies NIVEAU. Lorsque vous utilisez un déclenchement sur front ou sur impulsion, le bouton NIVEAU détermine le niveau d’amplitude que le signal doit traverser pour acquérir un signal. TRIG MENU. Permet d’afficher le menu Déclenchement. NIVEAU A 50%. Le niveau de déclenchement est défini sur le point médian entre les crêtes du signal de déclenchement. FORCE TRIG. Permet de terminer une acquisition quel que soit l’état du signal de déclenchement. Ce bouton est sans effet si l’acquisition est déjà interrompue. TRIG VIEW. Permet d’afficher le signal de déclenchement à la place du signal de voie lorsque vous maintenez le bouton TRIG VIEW enfoncé. Utilisez cette option pour voir comment les paramètres de déclenchement affectent un signal de déclenchement, tel qu’un couplage de déclenchement. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 19 Principes de fonctionnement Boutons de menu et de commande Bouton multifonctionnel Reportez-vous au chapitre Référence pour obtenir des informations détaillées sur les commandes des menus et boutons. Bouton multifonctionnel. La fonction est déterminée par le menu affiché ou l’option de menu sélectionnée. Lorsque la fonction est active, le voyant LED correspondant s’allume. Le tableau suivant énumère les fonctions. Option ou menu actif Fonction du bouton Description Curseurs Curseur 1 ou Curseur 2 Positionne le curseur sélectionné Affichage Contraste Modifie le contraste de l’écran Aide Défilement Sélectionne des entrées dans l’index ; sélectionne des liens dans une rubrique ; affiche la page suivante ou précédente d’une rubrique Horizontal Inhibition Permet de définir la durée avant acceptation d’un autre déclenchement ;(Voir page 135, Inhibition.) Math Position Positionne le signal calculé Echelle verticale Change l’échelle du signal calculé 20 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement Option ou menu actif Fonction du bouton Description Mesures Type Sélectionne le type de mesures automatiques pour chaque source Action Affiche la transaction comme mise en mémoire ou rappel pour les fichiers de configuration, les fichiers de signal et les images d’écran Sauv./Rap Sélection de fichiers Sélectionne les fichiers de configuration, de signal ou image à enregistrer, ou sélectionne les fichiers de configuration ou de signal à rappeler Source Sélectionne la source lorsque l’option Type de déclenchement est réglée sur Front Numéro de ligne vidéo Permet de régler l’oscilloscope sur un numéro de ligne spécifique lorsque l’option Type de déclenchement est définie sur Vidéo et que l’option Synchro de déclenchement est définie sur Numéro de ligne Trigger (Déclenchement) Largeur d’impulsion Détermine la largeur de l’impulsion lorsque l’option Type de déclenchement est définie sur Impulsion Sélection de fichiers Sélectionne des fichiers à renommer ou supprimer ; (Voir page 139, Utilitaires Fichiers pour le lecteur flash USB.) Utilitaire ► Utilitaires Fichiers Saisie du nom Permet de renommer le fichier ou le dossier ; (Voir page 140, Renommer un fichier ou dossier.) Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 21 Principes de fonctionnement Option ou menu actif Fonction du bouton Description Utilitaire ► Options ► Configuration du bus GPIB ► Adresse Saisie de la valeur Définit l’adresse GPIB pour l’adaptateur TEK-USB-488 Utilitaire ► Options ► Régler date et heure Saisie de la valeur Définit la valeur de la date et de l’heure ; (Voir page 138, Réglage de la date et de l’heure.) Vertical ► Sonde ► Tension► Atténuation Saisie de la valeur Pour un menu de voie (comme CH 1 MENU), définit le facteur d’atténuation dans l’oscilloscope Vertical ► Sonde ► Courant ► Echelle Saisie de la valeur Pour un menu de voie (comme CH 1 MENU), définit l’échelle dans l’oscilloscope CALIBRAGE AUTO. Affiche le menu Calibrage Auto et active ou désactive la fonction correspondante. Lorsque la fonction est active, le voyant LED correspondant s’allume. SAUV./RAP. Permet d’afficher le menu Sauvegarde/Rappel des réglages et des signaux. MESURES. Permet d’afficher le menu des mesures automatiques. ACQUISITION. Permet d’afficher le menu Acquisition. MENU REF. Affiche le menu Référence pour afficher et cacher rapidement les signaux de référence stockés dans la mémoire non volatile de l’oscilloscope. UTILITAIRE. Permet d’afficher le menu Utilitaire. CURSEURS. Permet d’afficher le menu Curseurs. Les curseurs restent visibles (sauf si l’option Type est définie sur Désact.) une fois que vous avez quitté le menu Curseurs, mais ils ne sont plus réglables. AFFICHAGE. Permet d’afficher le menu Affichage. 22 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement AIDE. Permet d’afficher le menu Aide. CONF. PAR D. Permet de rétablir la configuration d’usine. AUTOSET. Permet de régler automatiquement les commandes de l’oscilloscope afin d’obtenir un affichage exploitable des signaux d’entrées. SEQ. UNIQUE. Permet d’acquérir un signal unique, puis de s’arrêter. RUN/STOP. Permet d’acquérir des signaux en continu ou d’interrompre l’acquisition. PRINT. Lance l’opération d’impression sur une imprimante compatible PictBridge ou effectue la fonction ENREGISTRER sur le lecteur flash USB. ENREGISTRER. Un voyant LED s’allume lorsque la touche PRINT est configurée pour enregistrer des données sur le lecteur flash USB. Connecteurs d’entrée Modèle à 2 voies Modèle à 4 voies CH 1, CH 2, CH 3 & CH 4. Connecteurs d’entrée pour l’affichage des signaux. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 23 Principes de fonctionnement EXTERNE. Connecteur d’entrée pour une source de déclenchement externe. Le menu Déclenchement permet de sélectionner la source de déclenchement Ext. ou Ext/5. Maintenez le bouton TRIG VIEW enfoncé pour voir comment les paramètres de déclenchement affectent le signal de déclenchement, tel qu’un couplage de déclenchement. Autres éléments du panneau avant port du lecteur flash USB Port du lecteur flash USB. Insérez un lecteur flash USB pour le stockage ou la récupération de données. L’oscilloscope affiche un symbole en forme d’horloge pour indiquer quand le lecteur flash est actif. Après l’enregistrement ou la récupération d’un fichier, l’oscilloscope supprime l’horloge et affiche une ligne de conseil pour vous avertir que l’opération de sauvegarde ou de rappel est terminée. Pour les lecteurs flash dotés d’un voyant LED, celui-ci clignote lors de l’enregistrement de données sur le lecteur ou de la récupération de données depuis le lecteur. Attendez que le voyant LED ne clignote plus pour retirer le lecteur. COMP SONDE. Référence de châssis et de sortie de la compensation de sonde. Permet d’établir une correspondance électrique entre une sonde de tension et le circuit d’entrée de l’oscilloscope. (Voir page 5, Assistant Test de sonde de tension.) (Voir page 7, Compensation manuelle de sonde.) 24 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope Ce chapitre contient des informations générales que vous devez connaître avant d’utiliser un oscilloscope. Pour utiliser votre oscilloscope de manière efficace, vous devez vous familiariser avec les fonctions suivantes : Réglage de l’oscilloscope Déclenchement Acquisition de signaux Mise à l’échelle et positionnement de signaux Mesure de signaux La figure ci-dessous représente un diagramme fonctionnel des différentes fonctions de l’oscilloscope et de leurs relations. Réglage de l’oscilloscope Vous devez vous familiariser avec plusieurs fonctions que vous allez utiliser souvent lors du fonctionnement de l’oscilloscope : le réglage automatique (Autoset), le calibrage automatique (Calibrage Auto), la sauvegarde d’un réglage et le rappel d’un réglage. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 25 Compréhension des fonctions de l’oscilloscope Utilisation de la fonction de réglage automatique (Autoset) Chaque fois que vous appuyez sur le bouton AUTOSET, la fonction de réglage automatique (Autoset) vous donne un affichage de signal stable. Elle permet d’ajuster automatiquement les réglages de l’échelle verticale et horizontale et du déclenchement. Le réglage automatique permet également d’afficher plusieurs mesures automatiques dans la zone du réticule, en fonction du type de signal. Utilisation de la fonction de calibrage automatique (Autorange) Le calibrage automatique est une fonction continue que vous pouvez activer ou désactiver. Cette fonction ajuste la configuration de manière à suivre un signal lorsque celui-ci présente de grandes variations ou lorsque vous déplacez physiquement la sonde. Sauvegarde d’un réglage Le réglage courant est sauvegardé si vous patientez cinq secondes après la dernière modification avant d’éteindre l’oscilloscope. A la prochaine mise sous tension, l’oscilloscope rappelle ce réglage. Le menu SAUV./RAP vous permet d’enregistrer jusqu’à dix réglages différents. Vous pouvez également enregistrer des réglages sur un lecteur flash USB. L’oscilloscope peut recevoir un lecteur flash USB pour le stockage et la récupération de données amovibles. (Voir page 79, Port du lecteur flash USB.) Rappel d’une configuration L’oscilloscope peut rappeler le dernier réglage utilisé avant sa mise hors tension, l’un des réglages que vous avez enregistrés ou le réglage par défaut. (Voir page 120, Sauvegarder/Rappeler.) Configuration par défaut Dans sa configuration définie en usine, l’oscilloscope est réglé en mode de fonctionnement normal. Il s’agit de la configuration par défaut. Pour rappeler cette configuration, appuyez sur le bouton CONF. PAR D. Pour afficher les réglages par défaut, reportez-vous à l’Annexe D : Configuration par défaut. 26 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope Déclenchement Le déclenchement permet de déterminer le moment où l’oscilloscope commence à acquérir des données et à afficher un signal. Lorsque le déclenchement est configuré correctement, l’oscilloscope convertit un signal instable ou des écrans vides en signaux significatifs. Signal déclenché Signaux sans déclenchement Pour obtenir des informations spécifiques sur l’oscilloscope, reportez-vous au chapitre Principes de fonctionnement. (Voir page 19, Commandes de déclenchement.) Reportez-vous également au chapitre Référence. (Voir page 127, Commandes de déclenchement.) Lorsque vous appuyez sur le bouton RUN/STOP ou SEQ. UNIQUE pour démarrer une acquisition, l’oscilloscope effectue les étapes suivantes : 1. Il acquiert suffisamment de données pour remplir la portion de l’enregistrement du signal située sur la gauche du point de déclenchement. Cette opération est appelée pré-déclenchement. 2. Il continue à acquérir des données en attendant le déclenchement. 3. Il détecte le déclenchement. 4. Il continue à acquérir des données jusqu’à ce que l’enregistrement du signal soit complet. 5. Il affiche le signal qui vient d’être acquis. REMARQUE. Pour les déclenchements sur front et sur impulsion, l’oscilloscope évalue la cadence à laquelle se produisent les déclenchements afin de déterminer la fréquence du déclenchement. L’oscilloscope affiche la fréquence dans le coin inférieur droit de l’écran. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 27 Compréhension des fonctions de l’oscilloscope Source Les options de source de déclenchement vous permettent de sélectionner le signal qui sera utilisé par l’oscilloscope comme déclenchement. La source peut être n’importe quel signal connecté à la ligne d’alimentation secteur (disponible uniquement avec les déclenchements sur front), à une voie BNC ou au connecteur BNC EXTERNE. Types L’oscilloscope dispose de trois types de déclenchements : sur front, vidéo et sur largeur d’impulsion. Modes Vous pouvez sélectionner le mode de déclenchement Auto ou Normal pour définir le mode d’acquisition des données par l’oscilloscope lorsque celui-ci ne détecte pas de condition de déclenchement. (Voir page 128, Options des modes.) Pour effectuer une acquisition de type séquence unique, appuyez sur le bouton SEQ. UNIQUE. Couplage Vous pouvez utiliser l’option Couplage déclenchement pour déterminer la partie du signal qui passera dans le circuit de déclenchement. Cela peut vous permettre d’obtenir un affichage du signal stable. Pour utiliser le couplage de déclenchement, appuyez sur le bouton TRIG MENU, sélectionnez un déclenchement sur front ou sur impulsion et sélectionnez une option de couplage. REMARQUE. Le couplage de déclenchement n’affecte que le signal transmis au système de déclenchement. Il n’affecte ni la bande passante, ni le couplage du signal affiché à l’écran. Pour afficher le signal conditionné transmis au circuit de déclenchement, maintenez le bouton TRIG VIEW enfoncé. Position Le réglage de la commande de position horizontale permet de représenter le temps qui s’est écoulé entre le déclenchement et le centre de l’écran. Reportez-vous aux Informations sur l’échelle horizontale 28 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope et la position horizontale et sur le pré-déclenchement pour des informations sur la façon d’utiliser cette commande afin de positionner le déclencheur. (Voir page 31, Informations sur l’échelle horizontale et la position horizontale et sur le pré-déclenchement.) Pente et Niveau Les commandes Pente et Niveau vous permettent de définir le mode de déclenchement. L’option Pente (type de déclenchement sur front uniquement) vous permet de déterminer si l’oscilloscope trouve le point de déclenchement sur le front montant ou descendant du signal. La molette TRIGGER NIVEAU permet de spécifier le point de déclenchement sur le front. Front montant Front descendant Le niveau de déclenchement peut être ajusté verticalement Le déclenchement peut être montant ou descendant Acquisition de signaux Lorsque vous faites l’acquisition d’un signal, l’oscilloscope le convertit au format numérique et affiche sa courbe. Le mode d’acquisition définit la façon dont le signal est numérisé et le réglage de la base de temps affecte la durée temporelle et le niveau de détail de l’acquisition. Modes d’acquisition Il existe trois modes d’acquisition : Normale, Détect Créte et Moyenne. Normale. Dans ce mode d’acquisition, l’oscilloscope échantillonne le signal à intervalles réguliers afin de pouvoir en donner une représentation. Ce mode permet en général de représenter avec précision les signaux. Cependant, ce mode n’acquiert pas les variations rapides qui peuvent se produire dans le signal entre les différents prélèvements d’échantillons. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 29 Compréhension des fonctions de l’oscilloscope Cela risque de provoquer un repliement du spectre ; certaines impulsions étroites risquent d’être oubliées. Si c’est le cas, vous devriez utiliser le mode Détect Créte pour acquérir les données. (Voir page 32, Repliement du spectre temporel.) Détect Créte. Dans ce mode d’acquisition, l’oscilloscope recherche les valeurs les plus élevées et les plus faibles du signal d’entrée sur chaque intervalle d’échantillonnage et les utilise pour afficher la courbe du signal. L’appareil peut ainsi acquérir et afficher les impulsions étroites, qui risqueraient d’être oubliées en mode Normale. Le bruit sera plus élevé dans ce mode. Moyenne. Dans ce mode d’acquisition, l’oscilloscope acquiert plusieurs signaux, il en fait la moyenne et affiche la courbe du signal qui en résulte. Vous pouvez utiliser ce mode pour réduire le bruit aléatoire. Base de temps L’oscilloscope numérise les signaux en faisant l’acquisition de la valeur d’un signal d’entrée à des intervalles discrets. La base de temps vous permet de contrôler la fréquence à laquelle les valeurs sont numérisées. Pour ajuster la base de temps sur une échelle horizontale correspondant à vos besoins, utilisez la molette SEC/DIV. Mise à l’échelle et positionnement de signaux Vous pouvez modifier l’affichage des signaux en ajustant l’échelle et la position. Si vous modifiez l’échelle, la taille de l’affichage du signal va augmenter ou diminuer. Si vous modifiez la position, le signal sera déplacé vers le haut, le bas, la droite ou la gauche. L’indicateur de voie (situé à gauche du réticule) permet d’identifier chacun des signaux affichés. L’indicateur pointe vers le niveau de référence de terre de l’enregistrement du signal. Vous pouvez voir la zone d’affichage et les mesures. (Voir page 11, Zone d’affichage.) Echelle et position verticales Vous pouvez modifier la position verticale des signaux en les déplaçant vers le haut ou le bas de l’affichage. Pour comparer des données, vous 30 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope pouvez aligner un signal sur un autre ou aligner des signaux les uns sur les autres. Vous pouvez modifier l’échelle verticale d’un signal. L’affichage du signal se réduit ou augmente par rapport au niveau de référence de terre. Pour obtenir des informations spécifiques sur l’oscilloscope, reportez-vous au chapitre Principes de fonctionnement. (Voir page 17, Réglages verticaux.) Reportez-vous également au chapitre Référence. (Voir page 140, Réglages verticaux.) Informations sur l’échelle horizontale et la position horizontale et sur le pré-déclenchement Vous pouvez régler la commande HORIZONTAL POSITION pour afficher les données du signal avant le déclenchement, après le déclenchement, ou les deux. Lorsque vous modifiez la position horizontale d’un signal, vous modifiez le temps qui s’écoule entre le déclenchement et le centre de l’écran (cela revient à déplacer le signal vers la droite ou la gauche de l’affichage). Par exemple, si vous souhaitez rechercher la cause d’un parasite dans votre circuit de test, vous pouvez effectuer un déclenchement sur le parasite et allonger la période de pré-déclenchement de façon à capturer les données avant le parasite. Vous pouvez alors analyser les données de pré-déclenchement et peut-être trouver la cause du parasite. Vous pouvez modifier l’échelle horizontale de tous les signaux en actionnant la molette SEC/DIV. Par exemple, vous pouvez avoir besoin de visualiser une seule période de courbe de signal pour mesurer la sur-oscillation sur le front montant. L’oscilloscope affiche l’échelle horizontale en temps par division sur le facteur d’échelle. Comme tous les signaux actifs utilisent la même base de temps, l’oscilloscope affiche uniquement une valeur pour toutes les voies actives, sauf lorsque vous utilisez la Zone retardée. Reportez-vous à la section Zone retardée pour obtenir des informations sur l’utilisation de la fonction fenêtre. (Voir page 114, Zone retardée.) Pour obtenir des informations spécifiques sur l’oscilloscope, reportez-vous au chapitre Principes de fonctionnement. (Voir page 18, POSITION.) Reportez-vous également au chapitre Référence.(Voir page 112, Horizontal.) Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 31 Compréhension des fonctions de l’oscilloscope Repliement du spectre temporel. Un repliement du spectre se produit lorsque l’oscilloscope n’échantillonne pas le signal assez rapidement pour en constituer un enregistrement exact. Lorsque cela se produit, l’oscilloscope affiche un signal dont la fréquence est plus basse que celle du signal d’entrée, ou bien déclenche et affiche un signal instable. Signal de fréquence réelle élevée Signal de fréquence apparente basse en raison du repliement du spectre Points d’échantillonnage L’oscilloscope représente les signaux de façon précise, mais il est limité par la bande passante de la sonde, celle de l’oscilloscope et la fréquence d’échantillonnage. Pour éviter le repliement du spectre, l’oscilloscope doit échantillonner le signal au moins deux fois plus vite que la composante de fréquence la plus élevée de ce signal. La fréquence la plus élevée pouvant être représentée par la fréquence d’échantillonnage de l’oscilloscope est appelée fréquence de Nyquist. La fréquence d’échantillonnage est appelée cadence de Nyquist et elle est égale à deux fois la fréquence de Nyquist. Les fréquences d’échantillonnage maximum de l’oscilloscope sont au moins dix fois supérieures à la bande passante. Ces fréquences d’échantillonnage élevées aident à réduire le risque de repliement du spectre. 32 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope Il existe plusieurs façons de contrôler le repliement du spectre : Tournez la molette SEC/DIV pour modifier l’échelle horizontale. Si la forme du signal change de manière significative, cela signifie que vous observez peut-être un repliement du spectre. Sélectionnez le mode d’acquisition Détect Créte. (Voir page 30, Détect Créte.) Ce mode échantillonne les valeurs les plus élevées et les plus faibles afin que l’oscilloscope puisse détecter les signaux les plus rapides. Si la forme du signal change de manière significative, cela signifie que vous observez peut-être un repliement du spectre. Si la fréquence du déclenchement est plus rapide que les informations affichées à l’écran, cela signifie que vous observez peut-être un repliement du spectre ou un signal qui traverse plusieurs fois le niveau de déclenchement. L’examen du signal permet de déterminer si la forme du signal autorise un déclenchement unique par cycle au niveau du déclenchement sélectionné. Si plusieurs déclenchements se produisent, sélectionnez un niveau de déclenchement ne générant qu’un seul déclenchement par cycle. Si la fréquence du déclenchement demeure plus rapide que l’affichage à l’écran, cela signifie que vous observez peut-être un repliement du spectre. Si la fréquence du déclenchement est plus lente, cela signifie que ce test est inutile. Si le signal que vous visualisez est également la source du déclenchement, utilisez le réticule ou les curseurs pour estimer la fréquence du signal affiché. Comparez ce résultat avec la mesure de la fréquence du déclenchement située dans le coin inférieur droit de l’écran. Si ces deux résultats sont très différents, cela signifie que vous observez peut-être un repliement du spectre. Le tableau suivant dresse la liste des bases de temps que vous pouvez utiliser pour éviter le repliement du spectre sur différentes fréquences, ainsi que les fréquences d’échantillonnage correspondantes. Si le bouton SEC/DIV est réglé sur la position la plus élevée, il ne devrait pas y avoir de repliement du spectre grâce aux limites de bande passante des amplificateurs d’entrée de l’oscilloscope. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 33 Compréhension des fonctions de l’oscilloscope Réglages permettant d’éviter le repliement du spectre en mode Echantillon Base de temps Echantillons par seconde Maximum 2,5 ns 2 G éch./s 200 MHz † de 5 à 250 ns 1 G éch./s ou 2 G éch./s * 200 MHz † 500 ns 500 M éch./s 200 MHz † 1 ms 250 M éch./s 125 MHz † 2,5 ms 100 M éch./s 50 MHz † 5 ms 50 M éch./s 25 MHz † 10 ms 25 M éch./s 12,5 MHz † 25 ms 10 M éch./s 5 MHz 50 ms 5 M éch./s 2,5 MHz 100 ms 2,5 M éch./s 1,25 MHz 250 ms 1 M éch./s 500 kHz 500 ms 500 k éch./s 250 kHz 1 ms 250 k éch./s 125 kHz 2,5 ms 100 k éch./s 50 kHz 5 ms 50 k éch./s 25 kHz 10 ms 25 k éch./s 12,5 kHz 25 ms 10 k éch./s 5 kHz 50 ms 5 k éch./s 2,5 kHz 100 ms 2,5 k éch./s 1,25 kHz 250 ms 1 k éch./s 500 Hz 500 ms 500 éch./s 250 Hz 1 s 250 éch/s 125 Hz 2,5 s 100 éch./s 50 Hz 5 s 50 éch./s 25 Hz 10 s 25 éch./s 12,5 Hz 25 s 10 éch./s 5 Hz 50 s 5 éch./s 2,5 Hz * En fonction du modèle d’oscilloscope. † Bande passante réduite à 6 MHz avec une sonde P2220 réglée sur 1X. 34 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope Prise de mesures L’oscilloscope trace des graphes de la tension par rapport au temps et vous aide à mesurer le signal affiché. Il existe plusieurs façons de prendre des mesures. Vous pouvez utiliser le réticule, les curseurs ou une mesure automatique. Réticule Cette méthode vous permet d’effectuer une estimation visuelle rapide. Vous pouvez par exemple examiner l’amplitude d’un signal et constater qu’elle est légèrement supérieure à 100 mV. Vous pouvez effectuer des mesures simples en comptant les divisions de réticule majeures et mineures concernées et en les multipliant par le facteur d’échelle. Ainsi, si vous comptez cinq divisions de réticule verticales majeures entre les valeurs minimale et maximale d’un signal et si le facteur d’échelle est 100 mV/division, vous pouvez alors calculer la tension crête à crête comme suit : 5 divisions x 100 mV/division = 500 mV Curseur Curseurs Cette méthode vous permet de prendre des mesures en déplaçant les curseurs, qui s’affichent toujours par paires, et en lisant les valeurs numériques correspondantes qui s’affichent à l’écran. Il existe deux types de curseurs : Amplitude et Temps. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 35 Compréhension des fonctions de l’oscilloscope Lorsque vous utilisez les curseurs, assurez-vous de définir la source en fonction du signal affiché à l’écran que vous souhaitez mesurer. Pour utiliser les curseurs, appuyez sur le bouton CURSEURS. Curseurs d’amplitude. Les curseurs d’amplitude s’affichent sous forme de lignes horizontales à l’écran et permettent de mesurer les paramètres verticaux. Les amplitudes sont référencées au niveau de référence. Pour la fonction Math FFT, ces curseurs mesurent l’amplitude. Curseurs de temps. Les curseurs de temps s’affichent sous la forme de lignes verticales à l’écran et permettent de mesurer les paramètres horizontaux et verticaux. Les temps sont référencés au point de déclenchement. Pour la fonction Math FFT, ces curseurs mesurent la fréquence. Les curseurs de temps comprennent également un affichage de l’amplitude du signal au point où celui-ci croise le curseur. Automatique Le menu MESURES peut traiter jusqu’à cinq mesures automatiques. Si vous prenez des mesures automatiques, l’oscilloscope effectue tous les calculs à votre place. Ces mesures utilisent les points qui composent l’enregistrement du signal. Elles sont donc plus précises que les mesures du réticule ou du curseur. Le résultat des mesures automatiques est affiché à l’écran. Ces mesures sont mises à jour périodiquement lorsque l’oscilloscope reçoit de nouvelles données. Pour obtenir des informations sur les mesures, reportez-vous au chapitre Référence. (Voir page 117, Prise de mesures.) 36 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Cette section présente une série d’exemples d’application. Ces exemples simplifiés mettent en évidence les fonctions de l’oscilloscope et vous expliquent comment l’utiliser pour résoudre les problèmes rencontrés lors des tests effectués. Prise de mesures simples Utilisation de la fonction de réglage automatique (Autoset) Utilisation du menu Mesures pour effectuer des mesures automatiques Mesure de deux signaux et calcul du gain Utilisation de la fonction de calibrage automatique (Autorange) pour examiner une série de points de test Prise de mesures par curseur Mesure de la fréquence et de l’amplitude d’anneau Mesure de la largeur d’impulsion Mesure du temps de montée Analyse du détail du signal Examen d’un signal bruyant Utilisation de la fonction de moyenne pour séparer un signal du bruit Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 37 Exemples d’application Acquisition d’un signal monocoup Optimisation de l’acquisition Mesure du retard de propagation Déclenchement sur une largeur d’impulsion Déclenchement sur un signal vidéo Déclenchement sur les trames et les lignes vidéo Utilisation de la fonction fenêtre pour visualiser les détails du signal Analyse d’un signal de communication différentiel avec les fonctions mathématiques Affichage des changements d’impédance dans un réseau en utilisant le mode XY et la persistance Prise de mesures simples Vous devez observer un signal dans un circuit, mais vous ne connaissez ni l’amplitude ni la fréquence de ce signal. Vous souhaitez afficher rapidement le signal et mesurer la fréquence, la période et l’amplitude crête à crête. 38 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Utilisation de la fonction de réglage automatique (Autoset) Pour afficher rapidement un signal, procédez comme suit : 1. Appuyez sur le bouton CH 1 MENU. 2. Appuyez sur Sonde ► Tension ►Atténuation ► 10X. 3. Réglez le commutateur de la sonde P2220 sur 10X. 4. Connectez l’extrémité de la sonde de voie 1 au signal. Raccordez le câble de référence au point de référence du circuit. 5. Appuyez sur le bouton AUTOSET. L’oscilloscope définit automatiquement les réglages verticaux, horizontaux et de déclenchement. Si vous souhaitez optimiser l’affichage du signal, vous pouvez ajuster manuellement ces commandes. REMARQUE. L’oscilloscope affiche les mesures automatiques adéquates dans la zone du signal de l’écran en fonction du type de signal détecté. Pour obtenir des informations spécifiques sur l’oscilloscope, reportez-vous au chapitre Référence. (Voir page 103, Réglage automatique (Autoset).) Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 39 Exemples d’application Mesures automatiques L’oscilloscope peut mesurer automatiquement la plupart des signaux affichés. REMARQUE. Si un point d’interrogation (?) apparaît dans la zone d’affichage Valeur, le signal est en dehors du champ de mesure. Réglez la molette VOLTS/DIV de façon à réduire la sensibilité de la voie appropriée ou changez le réglage de SEC/DIV. Pour mesurer la fréquence du signal, la période, l’amplitude crête à crête, le temps de montée et la largeur positive, procédez comme suit : 1. Appuyez sur le bouton MESURES pour afficher le menu correspondant. 2. Appuyez sur le bouton d’option supérieur ; le menu Mesure 1 s’affiche. 3. Appuyez sur Type ► Fréq. La zone d’affichage Valeur affiche la mesure et les mises à jour. 4. Appuyez sur le bouton d’option Retour. 5. Appuyez sur le deuxième bouton d’option en partant du haut ; le menu Mesure 2 s’affiche. 6. Appuyez sur Type ► Période. La zone d’affichage Valeur affiche la mesure et les mises à jour. 7. Appuyez sur le bouton d’option Retour. 8. Appuyez sur le bouton d’option du milieu ; le menu Mesure 3 s’affiche. 40 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application 9. Appuyez sur Type ► C-C. La zone d’affichage Valeur affiche la mesure et les mises à jour. 10. Appuyez sur le bouton d’option Retour. 11. Appuyez sur le deuxième bouton d’option en partant du bas ; le menu Mesure 4 s’affiche. 12. Appuyez sur Type ► Tps montée. La zone d’affichage Valeur affiche la mesure et les mises à jour. 13. Appuyez sur le bouton d’option Retour. 14. Appuyez sur le bouton d’option inférieur ; le menu Mesure 5 s’affiche. 15. Appuyez sur Type ► Largeur pos. La zone d’affichage Valeur affiche la mesure et les mises à jour. 16. Appuyez sur le bouton d’option Retour. CH1 Fréq. 1 000 kHz CH1 Période 1 000 ms CH1 C-C 5,04 V CH1 Tps montée 2 611 μs ? CH1 Largeur pos. 500 μs Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 41 Exemples d’application Mesure de deux signaux Si vous testez un équipement et devez mesurer le gain de l’amplificateur audio, vous aurez besoin d’un générateur audio capable d’injecter un signal de test à l’entrée de l’amplificateur. Connectez deux voies de l’oscilloscope à l’entrée et à la sortie de l’amplificateur (voir schéma). Mesurez les niveaux des deux signaux et utilisez les mesures pour calculer le gain. CH1 C-C 2,04 V CH2 C-C 206 mV CH1 Aucune CH1 Aucune CH1 Aucune 42 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Pour activer et afficher les signaux connectés aux voies 1 et 2 et sélectionner des mesures pour les deux voies, procédez comme suit : 1. Appuyez sur le bouton AUTOSET. 2. Appuyez sur le bouton MESURES pour afficher le menu correspondant. 3. Appuyez sur le bouton d’option supérieur ; le menu Mesure 1 s’affiche. 4. Appuyez sur Source ► CH1. 5. Appuyez sur Type ► C-C. 6. Appuyez sur le bouton d’option Retour. 7. Appuyez sur le deuxième bouton d’option en partant du haut ; le menu Mesure 2 s’affiche. 8. Appuyez sur Source ► CH2. 9. Appuyez sur Type ► C-C. 10. Appuyez sur le bouton d’option Retour. Lisez les amplitudes crête à crête affichées pour les deux voies. 11. Pour calculer le gain de tension de l’amplificateur, utilisez ces équations : Gain de tension = amplitude de sortie/amplitude d’entrée Gain de tension (dB) = 20 × log (Gain de tension) Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 43 Exemples d’application Utilisation de la fonction de calibrage automatique (Autorange) pour examiner une série de points de test Si votre machine fonctionne mal, vous devrez peut-être trouver la fréquence et la tension efficace de plusieurs points de test et comparer ces valeurs à des valeurs idéales. Vous ne pouvez pas accéder aux commandes du panneau avant car vous avez besoin de vos deux mains pour sonder des points de test difficiles à atteindre physiquement. 1. Appuyez sur le bouton CH 1 MENU. 2. Appuyez sur Sonde ► Tension ► Atténuation et effectuez votre réglage pour que l’atténuation corresponde à celle de la sonde connectée à la voie 1. 3. Appuyez sur le bouton CALIBRAGE AUTO pour activer l’ajustement automatique et sélectionnez l’option Vertical et Horizontal. 4. Appuyez sur le bouton MESURES pour afficher le menu correspondant. 5. Appuyez sur le bouton d’option supérieur ; le menu Mesure 1 s’affiche. 6. Appuyez sur Source ► CH1. 7. Appuyez sur Type ► Fréquence. 8. Appuyez sur le bouton d’option Retour. 9. Appuyez sur le deuxième bouton d’option en partant du haut ; le menu Mesure 2 s’affiche. 10. Appuyez sur Source ► CH1. 11. Appuyez sur Type ► Efficace. 12. Appuyez sur le bouton d’option Retour. 13. Connectez l’extrémité de la sonde et le câble de référence au premier point de test. Lisez la fréquence et la valeur efficace du cycle sur l’écran de l’oscilloscope, puis comparez ces valeurs aux valeurs idéales. 14. Répétez l’étape 13 pour chaque point de test, jusqu’à ce que vous trouviez le composant défaillant. 44 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application REMARQUE. Lorsque la fonction de calibrage automatique (Autorange) est active, chaque fois que vous déplacez la sonde vers un autre point de test, l’oscilloscope réajuste l’échelle horizontale, l’échelle verticale et le niveau de déclenchement pour vous donner un affichage utile. Mesures par curseur Vous pouvez utiliser les curseurs pour prendre rapidement des mesures d’amplitude et de temps sur un affichage. Mesure de l’amplitude et de la fréquence d’anneau Pour mesurer la fréquence d’anneau au front montant d’un signal, procédez comme suit : 1. Appuyez sur le bouton CURSEURS pour afficher le menu correspondant. 2. Appuyez sur Type ► Temps. 3. Appuyez sur Source ► CH1. 4. Appuyez sur le bouton d’option Curseur 1. 5. Tournez le bouton multifonctionnel pour placer un curseur sur la première crête de l’anneau. 6. Appuyez sur le bouton d’option Curseur 2. 7. Tournez le bouton multifonctionnel pour placer un curseur sur la seconde crête de l’anneau. Vous pouvez visualiser le temps Δ (delta) et la fréquence (fréquence d’anneau mesurée) dans le menu Curseurs. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 45 Exemples d’application Type Temps Source CH1 Δt 540 ns 1/Δt 1 852 MHz ΔV 0,44 V Curseur 1 180 ns 1,40 V Curseur 2 720 ns 0,96 V 8. Appuyez sur Type ► Amplitude. 9. Appuyez sur le bouton d’option Curseur 1. 10. Tournez le bouton multifonctionnel pour placer un curseur sur la première crête de l’anneau. 11. Appuyez sur le bouton d’option Curseur 2. 12. Tournez le bouton multifonctionnel pour placer le Curseur 2 sur le point le plus bas de l’anneau. Vous pouvez voir l’amplitude de l’anneau dans le menu Curseurs. Type Amplitude Source CH1 ΔV 640 mV Curseur 1 1,46 V Curseur 2 820 mV 46 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Mesure de la largeur d’impulsion Si vous analysez un affichage d’impulsion et que vous souhaitez connaître la largeur de l’impulsion, procédez comme suit : 1. Appuyez sur le bouton CURSEURS pour afficher le menu correspondant. 2. Appuyez sur Type ► Temps. 3. Appuyez sur Source ► CH1. 4. Appuyez sur le bouton d’option Curseur 1. 5. Tournez le bouton multifonctionnel pour placer un curseur sur le front montant de l’impulsion. 6. Appuyez sur le bouton d’option Curseur 2. 7. Tournez le bouton multifonctionnel pour placer un curseur sur le front descendant de l’impulsion. Vous pouvez accéder aux mesures suivantes dans le menu Curseurs : Le temps au Curseur 1, par rapport au déclenchement. Le temps au Curseur 2, par rapport au déclenchement. Le temps Δ (delta), à savoir la mesure de la largeur d’impulsion. Type Temps Source CH1 Δt 500 μs 1/Δt 2 000 kHz ΔV 1,38 V Curseur 1 0 s 0,98 V Curseur 2 500 μs -1 V Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 47 Exemples d’application REMARQUE. La mesure de largeur positive est exprimée sous forme de mesure automatique dans le menu Mesures. (Voir page 117, Prise de mesures.) REMARQUE. La mesure de largeur positive s’affiche également lorsque vous sélectionnez l’option Carré à simple cycle dans le menu AUTOSET. (Voir page 106, Onde ou impulsion carrée.) 48 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Mesure du temps de montée Après avoir mesuré la largeur d’impulsion, vous décidez de vérifier le temps de montée de l’impulsion. Généralement, vous mesurez le temps de montée entre les niveaux égaux à 10 % et 90 % du signal. Pour mesurer le temps de montée, procédez comme suit : 1. Tournez la molette SEC/DIV pour afficher le front montant du signal. 2. Tournez les molettes VOLTS/DIV et VERTICAL POSITION pour régler l’amplitude du signal sur cinq divisions environ. 3. Appuyez sur le bouton CH 1 MENU. 4. Appuyez sur Volts/div ► Fin. 5. Tournez la molette VOLTS/DIV pour régler l’amplitude du signal sur cinq divisions exactement. 6. Tournez la molette VERTICAL POSITION pour centrer le signal ; positionnez la ligne de base du signal à 2,5 divisions sous le réticule central. 7. Appuyez sur le bouton CURSEURS pour afficher le menu correspondant. 8. Appuyez sur Type ► Temps. 9. Appuyez sur Source ► CH1. 10. Appuyez sur le bouton d’option Curseur 1. 11. Tournez le bouton multifonctionnel pour placer un curseur sur le point de croisement du signal et de la deuxième ligne du réticule située sous le centre de l’écran. Il s’agit du niveau égal à 10 % du signal. 12. Appuyez sur le bouton d’option Curseur 2. 13. Tournez le bouton multifonctionnel pour placer un curseur sur le point de croisement du signal et de la deuxième ligne du réticule située au-dessus du centre de l’écran. Il s’agit du niveau égal à 90 % du signal. L’affichage Δt apparaissant dans le menu Curseurs est le temps de montée du signal. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 49 Exemples d’application 5 divisions Type Temps Source CH1 Δt 140 ns 1/Δt 7 143 MHz ΔV 2,08 V Curseur 1 -80 ns -1,02 V Curseur 2 60 ns 1,06 V REMARQUE. La mesure du temps de montée est exprimée sous forme de mesure automatique dans le menu Mesures. (Voir page 117, Prise de mesures.) REMARQUE. La mesure du temps de montée s’affiche également lorsque vous sélectionnez l’option Front montant dans le menu AUTOSET. (Voir page 106, Onde ou impulsion carrée.) Analyse détaillée du signal Un signal bruyant est affiché sur l’oscilloscope et vous avez besoin d’en connaître le détail. Vous suspectez que le signal contient bien plus de détails que ce qui est affiché. 50 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Examen d’un signal bruyant Le signal paraît bruyant et vous suspectez que ce bruit est à l’origine de problèmes dans votre circuit. Pour mieux analyser le bruit, procédez comme suit : 1. Appuyez sur le bouton ACQUISITION pour afficher le menu correspondant. 2. Appuyez sur le bouton d’option Détect Créte. 3. Si besoin, appuyez sur le bouton AFFICHAGE pour afficher le menu correspondant. Utilisez le bouton d’option Contraste avec le bouton multifonctionnel pour régler l’affichage et voir plus facilement le bruit. La Détect Créte déterm