Consent Manager Tag v2.0 (for TCF 2.0) -->
Farnell PDF
SmartRF06 Evaluation Board User's Guide (Rev. A) - Texas - Texas Instruments - Farnell - Farnell Element 14
SmartRF06 Evaluation Board User's Guide (Rev. A) - Texas - Texas Instruments - Farnell - Farnell Element 14
- Revenir à l'accueil
Farnell Element 14 :
See the trailer for the next exciting episode of The Ben Heck show. Check back on Friday to be among the first to see the exclusive full show on element…
Connect your Raspberry Pi to a breadboard, download some code and create a push-button audio play project.
Puce électronique / Microchip :
Sans fil - Wireless :
Texas instrument :
Ordinateurs :
Logiciels :
Tutoriels :
Autres documentations :
Farnell-SL59830-Inte..> 06-Jul-2014 10:07 1.0M
Farnell-ALF1210-PDF.htm 06-Jul-2014 10:06 4.0M
Farnell-AD7171-16-Bi..> 06-Jul-2014 10:06 1.0M
Farnell-Low-Noise-24..> 06-Jul-2014 10:05 1.0M
Farnell-ESCON-Featur..> 06-Jul-2014 10:05 938K
Farnell-74LCX573-Fai..> 06-Jul-2014 10:05 1.9M
Farnell-1N4148WS-Fai..> 06-Jul-2014 10:04 1.9M
Farnell-FAN6756-Fair..> 06-Jul-2014 10:04 850K
Farnell-Datasheet-Fa..> 06-Jul-2014 10:04 861K
Farnell-ES1F-ES1J-fi..> 06-Jul-2014 10:04 867K
Farnell-QRE1113-Fair..> 06-Jul-2014 10:03 879K
Farnell-2N7002DW-Fai..> 06-Jul-2014 10:03 886K
Farnell-FDC2512-Fair..> 06-Jul-2014 10:03 886K
Farnell-FDV301N-Digi..> 06-Jul-2014 10:03 886K
Farnell-S1A-Fairchil..> 06-Jul-2014 10:03 896K
Farnell-BAV99-Fairch..> 06-Jul-2014 10:03 896K
Farnell-74AC00-74ACT..> 06-Jul-2014 10:03 911K
Farnell-NaPiOn-Panas..> 06-Jul-2014 10:02 911K
Farnell-LQ-RELAYS-AL..> 06-Jul-2014 10:02 924K
Farnell-ev-relays-ae..> 06-Jul-2014 10:02 926K
Farnell-ESCON-Featur..> 06-Jul-2014 10:02 931K
Farnell-Amplifier-In..> 06-Jul-2014 10:02 940K
Farnell-Serial-File-..> 06-Jul-2014 10:02 941K
Farnell-Both-the-Del..> 06-Jul-2014 10:01 948K
Farnell-Videk-PDF.htm 06-Jul-2014 10:01 948K
Farnell-EPCOS-173438..> 04-Jul-2014 10:43 3.3M
Farnell-Sensorless-C..> 04-Jul-2014 10:42 3.3M
Farnell-197.31-KB-Te..> 04-Jul-2014 10:42 3.3M
Farnell-PIC12F609-61..> 04-Jul-2014 10:41 3.7M
Farnell-PADO-semi-au..> 04-Jul-2014 10:41 3.7M
Farnell-03-iec-runds..> 04-Jul-2014 10:40 3.7M
Farnell-ACC-Silicone..> 04-Jul-2014 10:40 3.7M
Farnell-Series-TDS10..> 04-Jul-2014 10:39 4.0M
Farnell-03-iec-runds..> 04-Jul-2014 10:40 3.7M
Farnell-0430300011-D..> 14-Jun-2014 18:13 2.0M
Farnell-06-6544-8-PD..> 26-Mar-2014 17:56 2.7M
Farnell-3M-Polyimide..> 21-Mar-2014 08:09 3.9M
Farnell-3M-VolitionT..> 25-Mar-2014 08:18 3.3M
Farnell-10BQ060-PDF.htm 14-Jun-2014 09:50 2.4M
Farnell-10TPB47M-End..> 14-Jun-2014 18:16 3.4M
Farnell-12mm-Size-In..> 14-Jun-2014 09:50 2.4M
Farnell-24AA024-24LC..> 23-Jun-2014 10:26 3.1M
Farnell-50A-High-Pow..> 20-Mar-2014 17:31 2.9M
Farnell-197.31-KB-Te..> 04-Jul-2014 10:42 3.3M
Farnell-1907-2006-PD..> 26-Mar-2014 17:56 2.7M
Farnell-5910-PDF.htm 25-Mar-2014 08:15 3.0M
Farnell-6517b-Electr..> 29-Mar-2014 11:12 3.3M
Farnell-A-True-Syste..> 29-Mar-2014 11:13 3.3M
Farnell-ACC-Silicone..> 04-Jul-2014 10:40 3.7M
Farnell-AD524-PDF.htm 20-Mar-2014 17:33 2.8M
Farnell-ADL6507-PDF.htm 14-Jun-2014 18:19 3.4M
Farnell-ADSP-21362-A..> 20-Mar-2014 17:34 2.8M
Farnell-ALF1210-PDF.htm 04-Jul-2014 10:39 4.0M
Farnell-ALF1225-12-V..> 01-Apr-2014 07:40 3.4M
Farnell-ALF2412-24-V..> 01-Apr-2014 07:39 3.4M
Farnell-AN10361-Phil..> 23-Jun-2014 10:29 2.1M
Farnell-ARADUR-HY-13..> 26-Mar-2014 17:55 2.8M
Farnell-ARALDITE-201..> 21-Mar-2014 08:12 3.7M
Farnell-ARALDITE-CW-..> 26-Mar-2014 17:56 2.7M
Farnell-ATMEL-8-bit-..> 19-Mar-2014 18:04 2.1M
Farnell-ATMEL-8-bit-..> 11-Mar-2014 07:55 2.1M
Farnell-ATmega640-VA..> 14-Jun-2014 09:49 2.5M
Farnell-ATtiny20-PDF..> 25-Mar-2014 08:19 3.6M
Farnell-ATtiny26-L-A..> 13-Jun-2014 18:40 1.8M
Farnell-Alimentation..> 14-Jun-2014 18:24 2.5M
Farnell-Alimentation..> 01-Apr-2014 07:42 3.4M
Farnell-Amplificateu..> 29-Mar-2014 11:11 3.3M
Farnell-An-Improved-..> 14-Jun-2014 09:49 2.5M
Farnell-Atmel-ATmega..> 19-Mar-2014 18:03 2.2M
Farnell-Avvertenze-e..> 14-Jun-2014 18:20 3.3M
Farnell-BC846DS-NXP-..> 13-Jun-2014 18:42 1.6M
Farnell-BC847DS-NXP-..> 23-Jun-2014 10:24 3.3M
Farnell-BF545A-BF545..> 23-Jun-2014 10:28 2.1M
Farnell-BK2650A-BK26..> 29-Mar-2014 11:10 3.3M
Farnell-BT151-650R-N..> 13-Jun-2014 18:40 1.7M
Farnell-BTA204-800C-..> 13-Jun-2014 18:42 1.6M
Farnell-BUJD203AX-NX..> 13-Jun-2014 18:41 1.7M
Farnell-BYV29F-600-N..> 13-Jun-2014 18:42 1.6M
Farnell-BYV79E-serie..> 10-Mar-2014 16:19 1.6M
Farnell-BZX384-serie..> 23-Jun-2014 10:29 2.1M
Farnell-Battery-GBA-..> 14-Jun-2014 18:13 2.0M
Farnell-C.A-6150-C.A..> 14-Jun-2014 18:24 2.5M
Farnell-C.A 8332B-C...> 01-Apr-2014 07:40 3.4M
Farnell-CC2560-Bluet..> 29-Mar-2014 11:14 2.8M
Farnell-CD4536B-Type..> 14-Jun-2014 18:13 2.0M
Farnell-CIRRUS-LOGIC..> 10-Mar-2014 17:20 2.1M
Farnell-CS5532-34-BS..> 01-Apr-2014 07:39 3.5M
Farnell-Cannon-ZD-PD..> 11-Mar-2014 08:13 2.8M
Farnell-Ceramic-tran..> 14-Jun-2014 18:19 3.4M
Farnell-Circuit-Note..> 26-Mar-2014 18:00 2.8M
Farnell-Circuit-Note..> 26-Mar-2014 18:00 2.8M
Farnell-Cles-electro..> 21-Mar-2014 08:13 3.9M
Farnell-Conception-d..> 11-Mar-2014 07:49 2.4M
Farnell-Connectors-N..> 14-Jun-2014 18:12 2.1M
Farnell-Construction..> 14-Jun-2014 18:25 2.5M
Farnell-Controle-de-..> 11-Mar-2014 08:16 2.8M
Farnell-Cordless-dri..> 14-Jun-2014 18:13 2.0M
Farnell-Current-Tran..> 26-Mar-2014 17:58 2.7M
Farnell-Current-Tran..> 26-Mar-2014 17:58 2.7M
Farnell-Current-Tran..> 26-Mar-2014 17:59 2.7M
Farnell-Current-Tran..> 26-Mar-2014 17:59 2.7M
Farnell-DC-Fan-type-..> 14-Jun-2014 09:48 2.5M
Farnell-DC-Fan-type-..> 14-Jun-2014 09:51 1.8M
Farnell-Davum-TMC-PD..> 14-Jun-2014 18:27 2.4M
Farnell-De-la-puissa..> 29-Mar-2014 11:10 3.3M
Farnell-Directive-re..> 25-Mar-2014 08:16 3.0M
Farnell-Documentatio..> 14-Jun-2014 18:26 2.5M
Farnell-Download-dat..> 13-Jun-2014 18:40 1.8M
Farnell-ECO-Series-T..> 20-Mar-2014 08:14 2.5M
Farnell-ELMA-PDF.htm 29-Mar-2014 11:13 3.3M
Farnell-EMC1182-PDF.htm 25-Mar-2014 08:17 3.0M
Farnell-EPCOS-173438..> 04-Jul-2014 10:43 3.3M
Farnell-EPCOS-Sample..> 11-Mar-2014 07:53 2.2M
Farnell-ES2333-PDF.htm 11-Mar-2014 08:14 2.8M
Farnell-Ed.081002-DA..> 19-Mar-2014 18:02 2.5M
Farnell-F28069-Picco..> 14-Jun-2014 18:14 2.0M
Farnell-F42202-PDF.htm 19-Mar-2014 18:00 2.5M
Farnell-FDS-ITW-Spra..> 14-Jun-2014 18:22 3.3M
Farnell-FICHE-DE-DON..> 10-Mar-2014 16:17 1.6M
Farnell-Fastrack-Sup..> 23-Jun-2014 10:25 3.3M
Farnell-Ferric-Chlor..> 29-Mar-2014 11:14 2.8M
Farnell-Fiche-de-don..> 14-Jun-2014 09:47 2.5M
Farnell-Fiche-de-don..> 14-Jun-2014 18:26 2.5M
Farnell-Fluke-1730-E..> 14-Jun-2014 18:23 2.5M
Farnell-GALVA-A-FROI..> 26-Mar-2014 17:56 2.7M
Farnell-GALVA-MAT-Re..> 26-Mar-2014 17:57 2.7M
Farnell-GN-RELAYS-AG..> 20-Mar-2014 08:11 2.6M
Farnell-HC49-4H-Crys..> 14-Jun-2014 18:20 3.3M
Farnell-HFE1600-Data..> 14-Jun-2014 18:22 3.3M
Farnell-HI-70300-Sol..> 14-Jun-2014 18:27 2.4M
Farnell-HUNTSMAN-Adv..> 10-Mar-2014 16:17 1.7M
Farnell-Haute-vitess..> 11-Mar-2014 08:17 2.4M
Farnell-IP4252CZ16-8..> 13-Jun-2014 18:41 1.7M
Farnell-Instructions..> 19-Mar-2014 18:01 2.5M
Farnell-KSZ8851SNL-S..> 23-Jun-2014 10:28 2.1M
Farnell-L-efficacite..> 11-Mar-2014 07:52 2.3M
Farnell-LCW-CQ7P.CC-..> 25-Mar-2014 08:19 3.2M
Farnell-LME49725-Pow..> 14-Jun-2014 09:49 2.5M
Farnell-LOCTITE-542-..> 25-Mar-2014 08:15 3.0M
Farnell-LOCTITE-3463..> 25-Mar-2014 08:19 3.0M
Farnell-LUXEON-Guide..> 11-Mar-2014 07:52 2.3M
Farnell-Leaded-Trans..> 23-Jun-2014 10:26 3.2M
Farnell-Les-derniers..> 11-Mar-2014 07:50 2.3M
Farnell-Loctite3455-..> 25-Mar-2014 08:16 3.0M
Farnell-Low-cost-Enc..> 13-Jun-2014 18:42 1.7M
Farnell-Lubrifiant-a..> 26-Mar-2014 18:00 2.7M
Farnell-MC3510-PDF.htm 25-Mar-2014 08:17 3.0M
Farnell-MC21605-PDF.htm 11-Mar-2014 08:14 2.8M
Farnell-MCF532x-7x-E..> 29-Mar-2014 11:14 2.8M
Farnell-MICREL-KSZ88..> 11-Mar-2014 07:54 2.2M
Farnell-MICROCHIP-PI..> 19-Mar-2014 18:02 2.5M
Farnell-MOLEX-39-00-..> 10-Mar-2014 17:19 1.9M
Farnell-MOLEX-43020-..> 10-Mar-2014 17:21 1.9M
Farnell-MOLEX-43160-..> 10-Mar-2014 17:21 1.9M
Farnell-MOLEX-87439-..> 10-Mar-2014 17:21 1.9M
Farnell-MPXV7002-Rev..> 20-Mar-2014 17:33 2.8M
Farnell-MX670-MX675-..> 14-Jun-2014 09:46 2.5M
Farnell-Microchip-MC..> 13-Jun-2014 18:27 1.8M
Farnell-Microship-PI..> 11-Mar-2014 07:53 2.2M
Farnell-Midas-Active..> 14-Jun-2014 18:17 3.4M
Farnell-Midas-MCCOG4..> 14-Jun-2014 18:11 2.1M
Farnell-Miniature-Ci..> 26-Mar-2014 17:55 2.8M
Farnell-Mistral-PDF.htm 14-Jun-2014 18:12 2.1M
Farnell-Molex-83421-..> 14-Jun-2014 18:17 3.4M
Farnell-Molex-COMMER..> 14-Jun-2014 18:16 3.4M
Farnell-Molex-Crimp-..> 10-Mar-2014 16:27 1.7M
Farnell-Multi-Functi..> 20-Mar-2014 17:38 3.0M
Farnell-NTE_SEMICOND..> 11-Mar-2014 07:52 2.3M
Farnell-NXP-74VHC126..> 10-Mar-2014 16:17 1.6M
Farnell-NXP-BT136-60..> 11-Mar-2014 07:52 2.3M
Farnell-NXP-PBSS9110..> 10-Mar-2014 17:21 1.9M
Farnell-NXP-PCA9555 ..> 11-Mar-2014 07:54 2.2M
Farnell-NXP-PMBFJ620..> 10-Mar-2014 16:16 1.7M
Farnell-NXP-PSMN1R7-..> 10-Mar-2014 16:17 1.6M
Farnell-NXP-PSMN7R0-..> 10-Mar-2014 17:19 2.1M
Farnell-NXP-TEA1703T..> 11-Mar-2014 08:15 2.8M
Farnell-Nilï¬-sk-E-..> 14-Jun-2014 09:47 2.5M
Farnell-Novembre-201..> 20-Mar-2014 17:38 3.3M
Farnell-OMRON-Master..> 10-Mar-2014 16:26 1.8M
Farnell-OSLON-SSL-Ce..> 19-Mar-2014 18:03 2.1M
Farnell-OXPCIE958-FB..> 13-Jun-2014 18:40 1.8M
Farnell-PADO-semi-au..> 04-Jul-2014 10:41 3.7M
Farnell-PBSS5160T-60..> 19-Mar-2014 18:03 2.1M
Farnell-PDTA143X-ser..> 20-Mar-2014 08:12 2.6M
Farnell-PDTB123TT-NX..> 13-Jun-2014 18:43 1.5M
Farnell-PESD5V0F1BL-..> 13-Jun-2014 18:43 1.5M
Farnell-PESD9X5.0L-P..> 13-Jun-2014 18:43 1.6M
Farnell-PIC12F609-61..> 04-Jul-2014 10:41 3.7M
Farnell-PIC18F2455-2..> 23-Jun-2014 10:27 3.1M
Farnell-PIC24FJ256GB..> 14-Jun-2014 09:51 2.4M
Farnell-PMBT3906-PNP..> 13-Jun-2014 18:44 1.5M
Farnell-PMBT4403-PNP..> 23-Jun-2014 10:27 3.1M
Farnell-PMEG4002EL-N..> 14-Jun-2014 18:18 3.4M
Farnell-PMEG4010CEH-..> 13-Jun-2014 18:43 1.6M
Farnell-Panasonic-15..> 23-Jun-2014 10:29 2.1M
Farnell-Panasonic-EC..> 20-Mar-2014 17:36 2.6M
Farnell-Panasonic-EZ..> 20-Mar-2014 08:10 2.6M
Farnell-Panasonic-Id..> 20-Mar-2014 17:35 2.6M
Farnell-Panasonic-Ne..> 20-Mar-2014 17:36 2.6M
Farnell-Panasonic-Ra..> 20-Mar-2014 17:37 2.6M
Farnell-Panasonic-TS..> 20-Mar-2014 08:12 2.6M
Farnell-Panasonic-Y3..> 20-Mar-2014 08:11 2.6M
Farnell-Pico-Spox-Wi..> 10-Mar-2014 16:16 1.7M
Farnell-Pompes-Charg..> 24-Apr-2014 20:23 3.3M
Farnell-Ponts-RLC-po..> 14-Jun-2014 18:23 3.3M
Farnell-Portable-Ana..> 29-Mar-2014 11:16 2.8M
Farnell-Premier-Farn..> 21-Mar-2014 08:11 3.8M
Farnell-Produit-3430..> 14-Jun-2014 09:48 2.5M
Farnell-Proskit-SS-3..> 10-Mar-2014 16:26 1.8M
Farnell-Puissance-ut..> 11-Mar-2014 07:49 2.4M
Farnell-Q48-PDF.htm 23-Jun-2014 10:29 2.1M
Farnell-Radial-Lead-..> 20-Mar-2014 08:12 2.6M
Farnell-Realiser-un-..> 11-Mar-2014 07:51 2.3M
Farnell-Reglement-RE..> 21-Mar-2014 08:08 3.9M
Farnell-Repartiteurs..> 14-Jun-2014 18:26 2.5M
Farnell-S-TRI-SWT860..> 21-Mar-2014 08:11 3.8M
Farnell-SB175-Connec..> 11-Mar-2014 08:14 2.8M
Farnell-SMBJ-Transil..> 29-Mar-2014 11:12 3.3M
Farnell-SOT-23-Multi..> 11-Mar-2014 07:51 2.3M
Farnell-SPLC780A1-16..> 14-Jun-2014 18:25 2.5M
Farnell-SSC7102-Micr..> 23-Jun-2014 10:25 3.2M
Farnell-SVPE-series-..> 14-Jun-2014 18:15 2.0M
Farnell-Sensorless-C..> 04-Jul-2014 10:42 3.3M
Farnell-Septembre-20..> 20-Mar-2014 17:46 3.7M
Farnell-Serie-PicoSc..> 19-Mar-2014 18:01 2.5M
Farnell-Serie-Standa..> 14-Jun-2014 18:23 3.3M
Farnell-Series-2600B..> 20-Mar-2014 17:30 3.0M
Farnell-Series-TDS10..> 04-Jul-2014 10:39 4.0M
Farnell-Signal-PCB-R..> 14-Jun-2014 18:11 2.1M
Farnell-Strangkuhlko..> 21-Mar-2014 08:09 3.9M
Farnell-Supercapacit..> 26-Mar-2014 17:57 2.7M
Farnell-TDK-Lambda-H..> 14-Jun-2014 18:21 3.3M
Farnell-TEKTRONIX-DP..> 10-Mar-2014 17:20 2.0M
Farnell-Tektronix-AC..> 13-Jun-2014 18:44 1.5M
Farnell-Telemetres-l..> 20-Mar-2014 17:46 3.7M
Farnell-Termometros-..> 14-Jun-2014 18:14 2.0M
Farnell-The-essentia..> 10-Mar-2014 16:27 1.7M
Farnell-U2270B-PDF.htm 14-Jun-2014 18:15 3.4M
Farnell-USB-Buccanee..> 14-Jun-2014 09:48 2.5M
Farnell-USB1T11A-PDF..> 19-Mar-2014 18:03 2.1M
Farnell-V4N-PDF.htm 14-Jun-2014 18:11 2.1M
Farnell-WetTantalum-..> 11-Mar-2014 08:14 2.8M
Farnell-XPS-AC-Octop..> 14-Jun-2014 18:11 2.1M
Farnell-XPS-MC16-XPS..> 11-Mar-2014 08:15 2.8M
Farnell-YAGEO-DATA-S..> 11-Mar-2014 08:13 2.8M
Farnell-ZigBee-ou-le..> 11-Mar-2014 07:50 2.4M
Farnell-celpac-SUL84..> 21-Mar-2014 08:11 3.8M
Farnell-china_rohs_o..> 21-Mar-2014 10:04 3.9M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:34 2.8M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:35 2.7M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:31 2.9M
Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32 2.9M
Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32 2.9M
Farnell-ir1150s_fr.p..> 29-Mar-2014 11:11 3.3M
Farnell-manual-bus-p..> 10-Mar-2014 16:29 1.9M
Farnell-propose-plus..> 11-Mar-2014 08:19 2.8M
Farnell-techfirst_se..> 21-Mar-2014 08:08 3.9M
Farnell-testo-205-20..> 20-Mar-2014 17:37 3.0M
Farnell-testo-470-Fo..> 20-Mar-2014 17:38 3.0M
Farnell-uC-OS-III-Br..> 10-Mar-2014 17:20 2.0M
Sefram-7866HD.pdf-PD..> 29-Mar-2014 11:46 472K
Sefram-CAT_ENREGISTR..> 29-Mar-2014 11:46 461K
Sefram-CAT_MESUREURS..> 29-Mar-2014 11:46 435K
Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46 481K
Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46 442K
Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46 422K
Sefram-SP270.pdf-PDF..> 29-Mar-2014 11:46 464K
User’s Guide
SWRU321A – May 2013
SmartRF™ is a trademark of Texas Instruments
SmartRF06 Evaluation Board
User’s Guide
User’s Guide
SWRU321A – May 2013
Page 3/32
Table of Contents
4.1 INSTALLING SMARTRF STUDIO AND USB DRIVERS ................................................................ 7
4.1.1 SmartRF Studio ................................................................................................................. 7
4.1.2 FTDI USB driver ................................................................................................................ 7
5.1 ABSOLUTE MAXIMUM RATINGS ........................................................................................... 11
6.1 XDS100V3 EMULATOR ...................................................................................................... 13
6.1.1 UART back channel ........................................................................................................ 14
6.2 POWER SOURCES ............................................................................................................. 14
6.2.1 USB Power ...................................................................................................................... 15
6.2.2 Battery Power .................................................................................................................. 15
6.2.3 External Power Supply .................................................................................................... 16
6.3 POWER DOMAINS .............................................................................................................. 17
6.3.1 XDS Domain ................................................................................................................... 17
6.3.2 EM Domain...................................................................................................................... 17
6.3.3 3.3 V Domain .................................................................................................................. 18
6.4 LCD ................................................................................................................................. 18
6.5 MICRO SD CARD SLOT ...................................................................................................... 19
6.6 ACCELEROMETER .............................................................................................................. 19
6.7 AMBIENT LIGHT SENSOR .................................................................................................... 20
6.8 BUTTONS .......................................................................................................................... 20
6.9 LEDS ............................................................................................................................... 21
6.9.1 General Purpose LEDs ................................................................................................... 21
6.9.2 XDS100v3 Emulator LEDs .............................................................................................. 21
6.10 EM CONNECTORS ............................................................................................................. 21
6.11 BREAKOUT HEADERS AND JUMPERS ................................................................................... 23
6.11.1 I/O Breakout Headers ..................................................................................................... 23
6.11.2 XDS100v3 Emulator Bypass Headers ............................................................................ 24
6.11.3 20-pin ARM JTAG Header .............................................................................................. 25
6.11.4 10-pin ARM Cortex Debug Header ................................................................................. 26
6.12 CURRENT MEASUREMENT .................................................................................................. 27
6.12.1 High-side current sensing ............................................................................................... 27
6.12.2 Current Measurement Jumper ........................................................................................ 27
7.1 20-PIN ARM JTAG HEADER .............................................................................................. 29
7.2 10-PIN ARM CORTEX DEBUG HEADER ............................................................................... 29
7.3 CUSTOM STRAPPING ......................................................................................................... 30
List of Figures
Figure 1 – Driver install: a) Update driver, b) Specify path to FTDI drivers..................................... 8
Figure 2 – Driver install: a) VCP loaded and b) drivers successfully installed ................................ 8
Figure 3 – SmartRF06EB (rev. 1.2.1) with EM connected ............................................................ 10
Figure 4 – SmartRF06EB architecture .......................................................................................... 12
Figure 5 – SmartRF06EB revision 1.2.1 front side ........................................................................ 13
Figure 6 – SmartRF06EB revision 1.2.1 reverse side ................................................................... 13
Figure 7 – Jumper mounted on J5 to enable the UART back channel ......................................... 14
Figure 8 – Main power switch (P501) and source selection switch (P502) ................................... 15
Figure 9 – SmartRF06EB power selection switch (P502) in “USB” position ................................. 15
Figure 10 – SmartRF06EB power source selection switch (P502) in “BAT” position ................... 16
Figure 11 – SmartRF06EB external power supply header (J501) ................................................ 16
Figure 12 – Power domain overview of SmartRF06EB ................................................................. 17
Figure 13 – Mount a jumper on J502 to bypass EM domain voltage regulator ............................. 18
Figure 14 – Simplified schematic of Ambient Light Sensor setup ................................................. 20
Figure 15 – SmartRF06EB EM connectors RF1 and RF2 ............................................................ 21
User’s Guide
SWRU321A – May 2013
Page 4/32
Figure 16 – SmartRF06EB I/O breakout overview ........................................................................ 23
Figure 17 – XDS100v3 Emulator Bypass Header (P408) ............................................................. 24
Figure 18 – 20-pin ARM JTAG header (P409) .............................................................................. 25
Figure 19 – 10-pin ARM Cortex Debug header (P410) ................................................................. 26
Figure 20 – Simplified schematic of high-side current sensing setup ........................................... 27
Figure 21 – Measuring current consumption using jumper J503 .................................................. 27
Figure 22 – Simplified connection diagram for different debugging scenarios ............................. 28
Figure 23 – Debugging external target using SmartRF06EB ........................................................ 29
Figure 24 – ARM JTAG header (P409) with strapping to debug external target .......................... 30
List of Tables
Table 1 – SmartRF06EB features ................................................................................................... 5
Table 2 – Supply voltage: Recommended operating conditions and absolute max. ratings ........ 11
Table 3 – Temperature: Recommended operating conditions and storage temperatures ........... 11
Table 4 – UART Back channel signal connections ....................................................................... 14
Table 5 – Power domain overview of SmartRF06EB .................................................................... 17
Table 6 – LCD signal connections ................................................................................................. 19
Table 7 – Micro SD Card signal connections ................................................................................ 19
Table 8 – Accelerometer signal connections ................................................................................. 20
Table 9 – Ambient Light Sensor signal connections ..................................................................... 20
Table 10 – Button signal connections ........................................................................................... 20
Table 11 – General purpose LED signal connections ................................................................... 21
Table 12 – EM connector RF1 pin-out........................................................................................... 22
Table 13 – EM connector RF2 pin-out........................................................................................... 22
Table 14 – SmartRF06EB I/O breakout overview ......................................................................... 24
Table 15 – 20-pin ARM JTAG header pin-out (P409) ................................................................... 25
Table 16 – 10-pin ARM Cortex Debug header pin-out (P410) ...................................................... 26
Table 17 – Debugging external target: Minimum strapping (cJTAG support) ............................... 30
Table 18 – Debugging external target: Optional strapping ............................................................ 30
User’s Guide
SWRU321A – May 2013
Page 5/32
1 Introduction
The SmartRF06 Evaluation Board (SmartRF06EB or simply EB) is the motherboard in
development kits for Low Power RF ARM Cortex®-M based System on Chips from Texas
Instruments. The board has a wide range of features, listed in Table 1 below.
Component Description
TI XDS100v3 Emulator cJTAG and JTAG emulator for easy programming and
debugging of SoCs on Evaluation Modules or external targets.
High-speed USB 2.0
interface
Easy plug and play access to full SoC control using SmartRF™
Studio PC software. Integrated serial port over USB enables
communication between the SoC via the UART back channel.
64x128 pixels serial LCD Big LCD display for demo use and user interface development.
LEDs Four general purpose LEDs for demo use or debugging.
Micro SD card slot External flash for extra storage, over-the-air upgrades and more.
Buttons Five push-buttons for demo use and user interfacing.
Accelerometer Three-axis highly configurable digital accelerometer for
application development and demo use.
Light Sensor Ambient Light Sensor for application development and demo
use.
Current measurement Current sense amplifier for high side current measurements.
Breakout pins Easy access to SoC GPIO pins for quick and easy debugging.
Table 1 – SmartRF06EB features
2 About this manual
This manual contains reference information about the SmartRF06EB.
Chapter 4 will give a quick introduction on how to get started with the SmartRF06EB. It describes
how to install SmartRF™ Studio to get the required USB drivers for the evaluation board. Chapter
5 briefly explains how the EB can be used throughout a project’s development cycle. Chapter 6
gives an overview of the various features and functionality provided by the board.
A troubleshooting guide is found in chapter 8 and Appendix A contains the schematics for
SmartRF06EB revision 1.2.1.
The PC tools SmartRF™ Studio and SmartRF™ Flash Programmer have their own user manual.
See chapter 9 for references to relevant documents and web pages.
User’s Guide
SWRU321A – May 2013
Page 6/32
3 Acronyms and Abbreviations
ALS Ambient Light Sensor
cJTAG Compact JTAG (IEEE 1149.7)
CW Continuous Wave
DK Development Kit
EB Evaluation Board
EM Evaluation Module
FPGA Field-Programmable Gate Array
I/O Input/Output
JTAG Joint Test Action Group (IEEE 1149.1)
LCD Liquid Crystal Display
LED Light Emitting Diode
LPRF Low Power RF
MCU Micro Controller
MISO Master In, Slave Out (SPI signal)
MOSI Master Out, Slave In (SPI signal)
NA Not Applicable / Not Available
NC Not Connected
RF Radio Frequency
RTS Request to Send
RX Receive
SoC System on Chip
SPI Serial Peripheral Interface
TI Texas Instruments
TP Test Point
TX Transmit
UART Universal Asynchronous Receive Transmit
USB Universal Serial Bus
VCP Virtual COM Port
User’s Guide
SWRU321A – May 2013
Page 7/32
4 Getting Started
Before connecting the SmartRF06EB to the PC via the USB cable, it is highly recommended to
perform the steps described below.
4.1 Installing SmartRF Studio and USB drivers
Before your PC can communicate with the SmartRF06EB over USB, you will need to install the
USB drivers for the EB. The latest SmartRF Studio installer [1] includes USB drivers both for
Windows x86 and Windows x64 platforms.
After you have downloaded SmartRF Studio from the web, extract the zip-file, run the installer
and follow the instructions. Select the complete installation to include the SmartRF Studio
program, the SmartRF Studio documentation and the necessary drivers needed to communicate
with the SmartRF06EB.
4.1.1 SmartRF Studio
SmartRF Studio is a PC application developed for configuration and evaluation of many RF-IC
products from Texas Instruments. The application is designed for use with SmartRF Evaluation
Boards, such as SmartRF06EB, and runs on Microsoft Windows operating systems.
SmartRF Studio lets you explore and experiment with the RF-ICs as it gives full overview and
access to the devices’ registers to configure the radio and has a control interface for simple radio
operation from the PC.
This means that SmartRF Studio will help radio system designers to easily evaluate the RF-IC at
an early stage in the design process. It also offers a flexible code export function of radio register
settings for software developers.
The latest version of SmartRF Studio can be downloaded from the Texas Instruments website [1],
where you will also find a complete user manual.
4.1.2 FTDI USB driver
SmartRF PC software such as SmartRF Studio uses a proprietary USB driver from FTDI [2] to
communicate with SmartRF06 evaluation boards. Connect your SmartRF06EB to the computer
with a USB cable and turn it on. If you did a complete install of SmartRF Studio, Windows will
recognize the device automatically and the SmartRF06EB is ready for use!
4.1.2.1 Install FTDI USB driver manually in Windows
If the SmartRF06EB was not properly recognized after plugging it into your PC, try the following
steps to install the necessary USB drivers. The steps described are for Microsoft Windows 7, but
are very similar to those in Windows XP and Windows Vista. It is assumed that you have already
downloaded and installed the latest version of SmartRF Studio 7 [1].
Open the Windows Device Manager and right click on the first “Texas Instruments XDS100v3”
found under “Other devices” as shown in Figure 1a.
Select “Update Driver Software…” and, in the appearing dialog, browse to
\Drivers\ftdi as shown in Figure 1b.
User’s Guide
SWRU321A – May 2013
Page 8/32
a)
b)
Figure 1 – Driver install: a) Update driver, b) Specify path to FTDI drivers
Press Next and wait for the driver to be installed. The selected device should now appear in the
Device Manager as “TI XDS100v3 Channel x” (x = A or B) as seen in Figure 2b. Repeat the
above steps for the second “Texas Instruments XDS100v3” listed under “Other devices”.
4.1.2.1.1 Enable XDS100v3 UART back channel on Windows
If you have both “TI XDS100v3 Channel A” and “TI XDS100v3 Channel B” listed under Universal
Serial Bus Controllers, you can proceed. Right click on “TI XDS100v3 Channel B” and select
Properties. Under the Advanced tab, make sure “Load VCP” is checked as shown in Figure 2a.
A “USB Serial Port” may be listed under “Other devices”, as seen in Figure 1a. Follow the same
steps as for the “Texas Instruments XDS100v3” devices to install the VCP driver. When the
drivers from \Drivers\ftdi is properly installed, you should see the USB Serial
Port device be listed under “Ports (COM & LPT)” as shown in Figure 2b.
The SmartRF06EB drivers are now installed correctly.
Figure 2 – Driver install: a) VCP loaded and b) drivers successfully installed
User’s Guide
SWRU321A – May 2013
Page 9/32
4.1.2.2 Install XSD100v3 UART back channel on Linux
The ports on SmartRF06EB will typically be mounted as ttyUSB0 or ttyUSB1. The UART back
channel is normally mounted as ttyUSB1.
1. Download the Linux drivers from [2].
2. Untar the ftdi_sio.tar.gz file on your Linux system.
3. Connect the SmartRF06EB to your system.
4. Install driver
a. Verify the USB Product ID (PID) and Vendor ID (VID).
The TI XDS100v3 USB VID is 0x0403 and the PID is 0xA6D1, but if you wish to
find the PID using a terminal window/shell, use
> lsusb | grep -i future
b. Install driver using modprobe
In a terminal window/shell, navigate to the ftdi_sio folder and run
> sudo modprobe ftdi_sio vendor=0x403 product=0xA6D1
SmartRF06EB should now be correctly mounted. The above steps have been tested on Fedora
and Ubuntu distributions.
If the above steps failed, try uninstalling ‘brltty’ prior to step 5 (technical note TN_101, [2]).
> sudo apt-get remove brltty
User’s Guide
SWRU321A – May 2013
Page 10/32
5 Using the SmartRF06 Evaluation Board
The SmartRF06EB is a flexible test and development platform that works together with RF
Evaluation Modules from Texas Instruments.
An Evaluation Module (EM) is a small RF module with RF chip, balun, matching filter, SMA
antenna connector and I/O connectors. The modules can be plugged into the SmartRF06EB
which lets the PC take direct control of the RF device on the EM over the USB interface.
SmartRF06EB currently supports:
- CC2538EM
SmartRF06EB is included in e.g. the CC2538 development kit.
Figure 3 – SmartRF06EB (rev. 1.2.1) with EM connected
The PC software that controls the SmartRF06EB + EM is SmartRF Studio. Studio can be used to
perform several RF tests and measurements, e.g. to set up a CW signal and send/receive
packets.
User’s Guide
SWRU321A – May 2013
Page 11/32
The EB+EM can be of great help during the whole development cycle for a new RF product.
- Perform comparative studies. Compare results obtained with EB+EM with results from
your own system.
- Perform basic functional tests of your own hardware by connecting the radio on your
board to SmartRF06EB. SmartRF Studio can be used to exercise the radio.
- Verify your own software with known good RF hardware, by simply connecting your own
microcontroller to an EM via the EB. Test the send function by transmitting packets from
your SW and receive with another board using SmartRF Studio. Then transmit using
SmartRF Studio and receive with your own software.
- Develop code for your SoC and use the SmartRF06EB as a standalone board without PC
tools.
The SmartRF06EB can also be used as a debugger interface to the SoCs from IAR Embedded
workbench for ARM or Code Composer Studio from Texas Instruments. For details on how to use
the SmartRF06EB to debug external targets, see chapter 7.
5.1 Absolute Maximum Ratings
The minimum and maximum operating supply voltages and absolute maximum ratings for the
active components onboard the SmartRF06EB are summarized in Table 2. Table 3 lists the
recommended operating temperature and storage temperature ratings. Please refer to the
respective component’s datasheet for further details.
Component
Operating voltage Absolute max. rating
Min. [V] Max. [V] Min. [V] Max. [V]
XDS100v3 Emulator1 [4] +1.8 +3.6 -0.3 +3.75
LCD [5] +3.0 +3.3 -0.3 +3.6
Accelerometer [6] +1.62 +3.6 -0.3 +4.25
Ambient light sensor [7] +2.32 +5.5 NA +6
Table 2 – Supply voltage: Recommended operating conditions and absolute max. ratings
Component
Operating temperature Storage temperature
Min. [˚C] Max. [˚C] Min. [˚C] Max. [˚C]
XDS100v3 Emulator [4] -20 +70 -50 +110
LCD [5] -20 +70 -30 +80
Accelerometer [6] -40 +85 -50 +150
Ambient light sensor [7] -40 +85 -40 +85
Table 3 – Temperature: Recommended operating conditions and storage temperatures
1 The XDS100v3 Emulator is USB powered. Values refer to the supply and I/O pin voltages of the connected target.
2 Recommended minimum operating voltage.
User’s Guide
SWRU321A – May 2013
Page 12/32
6 SmartRF06 Evaluation Board Overview
SmartRF06EB acts as the motherboard in development kits for ARM® Cortex™ based Low
Power RF SoCs from Texas Instruments. The board has several user interfaces and connections
to external interfaces, allowing fast prototyping and testing of both software and hardware. An
overview of the SmartRF06EB architecture is found in Figure 4. The board layout is found in
Figure 5 and Figure 6, while the schematics are located in Appendix A.
This chapter will give an overview of the general architecture of the board and describe the
available I/O. The following sub-sections will explain the I/O in more detail. Pin connections
between the EM and the evaluation board I/O can be found in section 6.10.
EM Domain (1.8 – 3.6 V)
XDS Domain
3.3 V Domain
EM Connectors
Light Sensor Buttons LEDs Accelerometer
XDS100v3
Emulator
XDS
LEDs
Level shifter
SD Card Reader
Load switch
20-pin
ARM JTAG
Header
Bypass Header
UART back
channel
Level shifter
10-pin
ARM Cortex
Debug Header
(c)JTAG
USB
I/O breakout headers
3.3 V Domain
Enable
LCD
I/O Breakout Headers
Figure 4 – SmartRF06EB architecture
User’s Guide
SWRU321A – May 2013
Page 13/32
EM current
measurement
testpoint and
jumper
XDS bypass
header
20-pin ARM
JTAG Header
General purpose
buttons
UART back
channel
breakout
XDS LEDs
10-pin ARM
Cortex Header
EM I/O breakout
Main power
switch
Power source
selection switch
External power
supply connector
EM reset button
Regulator
bypass jumper
Micro SD
card slot
LCD
Accelerometer
LEDs
Ambient Light
Sensor
EM connectors
UART back
channel enable
Jumper
Figure 5 – SmartRF06EB revision 1.2.1 front side
1.5 V AAA
Alkaline Battery
holder
XDS100v3
Emulator
1.5 V AAA
Alkaline Battery
holder
CR2032 coin
cell battery
holder
Figure 6 – SmartRF06EB revision 1.2.1 reverse side
6.1 XDS100v3 Emulator
The XDS100v3 Emulator from Texas Instruments has cJTAG and regular JTAG support. cJTAG
is a 2-pin extension to regular 4-pin JTAG. The XDS100v3 consists of a USB to JTAG chip from
FTDI [2] and an FPGA to convert JTAG instructions to cJTAG format.
User’s Guide
SWRU321A – May 2013
Page 14/32
In addition to regular debugging capabilities using cJTAG or JTAG, the XDS100v3 Emulator
supports a UART backchannel over a USB Virtual COM Port (VCP) to the PC. The UART back
channel supports flow control, 8-N-1 format and data rates up to 12Mbaud.
Please see the XDS100v3 emulator product page [4] for detailed information about the emulator.
The XDS100v3 Emulator is powered over USB and is switched on as long as the USB cable is
connected to the SmartRF06EB and the main power switch (S501) is in the ON position. The
XDS100v3 Emulator supports targets with operating voltages between 1.8 V and 3.6. The min
(max) operating temperature is -20 (+70) ˚C.
6.1.1 UART back channel
The mounted EM can be connected to the PC via the XDS100v3 Emulator’s UART back channel.
When connected to a PC, the XDS100v3 is enumerated as a Virtual COM Port (VCP) over USB.
The driver used is a royalty free VCP driver from FTDI, available for e.g. Microsoft Windows,
Linux and Max OS X. The UART back channel gives the mounted EM access to a four pin UART
interface, supporting 8-N-1 format at data rates up to 12 Mbaud.
To enable the SmartRF06EB UART back channel the “Enable UART over XDS100v3” jumper
(J5), located on the lower right side of the EB, must be mounted (Figure 7). Table 4 shows an
overview of the I/O signals related to UART Back Channel.
Figure 7 – Jumper mounted on J5 to enable the UART back channel
Signal name Description Probe header EM pin
RF1.7_UART_RX UART Receive (EM data in) EM_UART_RX (P412.2) RF1.7
RF1.9_UART_TX UART Transmit (EM data out) EM_UART_TX (P412.3) RF1.9
RF1.3_UART_CTS UART Clear To Send signal EM_UART_CTS (P412.4) RF1.3
RF2.18_UART_RTS UART Request To Send signal EM_UART_RTS (P412.5) RF2.18
Table 4 – UART Back channel signal connections
6.2 Power Sources
There are three ways to power the SmartRF06EB; batteries, USB bus and external power supply.
The power source can be selected using the power source selection switch (S502) seen in Figure
8. The XDS100v3 Emulator can only be powered over USB. The main power supply switch
(S501) cuts power to the SmartRF06EB.
Never connect batteries and an external power source to the SmartRF06EB at the
same time! Doing so may lead to excessive currents that may damage the batteries
or cause onboard components to break. The CR2032 coin cell battery is in particular
very sensitive to reverse currents (charging) and must never be combined with other
power sources (AAA batteries or an external power source).
User’s Guide
SWRU321A – May 2013
Page 15/32
Figure 8 – Main power switch (P501) and source selection switch (P502)
6.2.1 USB Power
When the SmartRF06EB is connected to a PC via a USB cable, it can draw power from the USB
bus. The onboard voltage regulator supplies approximately 3.3 V to the mounted EM and the EB
peripherals. To power the mounted EM and the EB peripherals from the USB bus, the power
source selection switch (S502) should be in “USB” position (Figure 9).
The maximum current consumption is limited by the regulator to 1500 mA3.
Figure 9 – SmartRF06EB power selection switch (P502) in “USB” position
6.2.2 Battery Power
The SmartRF06EB can be powered using two 1.5 V AAA alkaline batteries or a 3 V CR2032 coin
cell battery. The battery holders for the AAA batteries and the CR2032 coin cell battery are
located on the reverse side of the PCB. To power the mounted EM and the EB peripherals using
batteries, the power source selection switch (S502) should be in “BAT” position (Figure 10).
When battery powered, the EM power domain is by default regulated to 2.1 V. The voltage
regulator may be bypassed by mounting a jumper on J502. See section 6.3.2 for more details.
Do not power the SmartRF06EB using two 1.5 V AAA batteries and a 3 V CR2032
coin cell battery at the same time. Doing so may lead to excessive currents that may
damage the batteries or cause onboard components to break.
3 Note that most USB power sources are limited to 500 mA.
User’s Guide
SWRU321A – May 2013
Page 16/32
Figure 10 – SmartRF06EB power source selection switch (P502) in “BAT” position
6.2.3 External Power Supply
The SmartRF06EB can be powered using an external power supply. To power the mounted EM
and the EB peripherals using an external power supply, the power source selection switch (S502)
should be in “BAT” position (Figure 10 in section 6.2.2).
The external supply’s ground should be connected to the SmartRF06EB ground, e.g. to the
ground pad in the top left corner of the EB. Connect the positive supply connector to the external
power header J501 (Figure 11). The applied voltage must be in the range from 2.1 V to 3.6 V and
limited to max 1.5 A.
When powered by an external power supply, the EM power domain is by default regulated to
2.1 V. The voltage regulator may be bypassed by mounting a jumper on J502. See section 6.3.2
for more details.
There is a risk of damaging the onboard components if the applied voltage on the
external power connector/header is lower than -0.3 V or higher than 3.6 V
(combined absolute maximum ratings for onboard components). See section 5.1 for
further information.
Figure 11 – SmartRF06EB external power supply header (J501)
User’s Guide
SWRU321A – May 2013
Page 17/32
6.3 Power Domains
The SmartRF06EB is divided into three power domains, described in detail in the following
sections. The SmartRF06EB components, and what power domain they belong to, is shown in
Figure 12 and Table 5 below.
XDS domain
(3.3 V)
XDS100v3, XDS LEDs
EM domain
(1.8 - 3.6 V)
ACC, ALS, keys, LEDs
3.3 V domain
(3.3 V)
LCD, SD card
Power sources
USB, batteries, external supply
Level
shifters
Level
shifters
Mounted EM
Figure 12 – Power domain overview of SmartRF06EB
Component Power domain Power source
Evaluation Module EM domain (LO_VDD) USB, battery, external
General Purpose LEDs EM domain (LO_VDD) USB, battery, external
Accelerometer EM domain (LO_VDD) USB, battery, external
Ambient Light Sensor EM domain (LO_VDD) USB, battery, external
Current measurement MSP
MCU
EM domain (LO_VDD) USB, battery, external
LEDs EM domain (LO_VDD) USB, battery, external
XDS100v3 Emulator XDS domain USB
XDS100v3 LEDs XDS domain USB
SD Card Slot 3.3 V domain (HI_VDD) Same as EM domain
LCD 3.3 V domain (HI_VDD) Same as EM domain
Table 5 – Power domain overview of SmartRF06EB
6.3.1 XDS Domain
The XDS100v3 Emulator (see section 6.1) onboard the SmartRF06EB is in the XDS domain. The
XDS domain is powered over USB. The USB voltage supply (+5 V) is down-converted to +3.3 V
and +1.5 V for the different components of the XDS100v3 Emulator.
The SmartRF06EB must be connected to e.g. a PC over USB for the XDS domain to be powered
up. The domain is turned on/off by the SmartRF06EB main power switch.
6.3.2 EM Domain
The mounted EM board and most of the SmartRF06EB peripherals are powered in the EM
domain and signals in this domain (accessible by the EM), are prefixed “LV_” in the schematics.
Table 5 lists the EB peripherals that are powered in the EM domain. The domain is turned on/off
by the SmartRF06EB power switch.
User’s Guide
SWRU321A – May 2013
Page 18/32
The EM domain may be powered using various power sources; USB powered (regulated to 3.3
V), battery powered (regulated to 2.1 V or unregulated) and using an external power supply
(regulated to 2.1 V or unregulated).
When battery powered or powered by an external source, the EM power domain is by default
regulated to 2.1 V using a step down converter. The step down converter may be bypassed by
mounting a jumper on J502 (Figure 13), powering the EM domain directly from the source. When
J502 is not mounted, the EM power domain is regulated to 2.1 V. The maximum current
consumption of the EM power domain is then limited by the regulator to 410 mA.
Figure 13 – Mount a jumper on J502 to bypass EM domain voltage regulator
6.3.3 3.3 V Domain
The 3.3 V domain is a sub domain of the EM domain. The 3.3 V domain is regulated to 3.3 V
using a buck-boost converter, irrespective of the source powering the EM domain. Signals in the
3.3V domain (controlled by the EM) are prefixed “HV_” for High Voltage in the schematics.
Two EB peripherals are in the 3.3 V domain, the LCD and the SD card slot, as listed in Table 5.
These peripherals are connected to the EM domain via level shifters U401 and U402.
The 3.3 V domain may be switched on (off) completely by the mounted EM board by pulling
signal LV_3.3V_EN to a logical 1 (0). See Table 14 in section 6.11.1 for details about the
mapping between the EM and signals onboard the SmartRF06EB.
6.4 LCD
The SmartRF06EB comes with a 128x64 pixels display from Electronic Assembly (DOGM128E-6)
[4]. The LCD display is available to mounted EM via a SPI interface, enabling software
development of user interfaces and demo use. Table 6 shows an overview of the I/O signals
related to the LCD.
The recommended operating condition for the LCD display is a supply voltage between 3.0 V and
3.3 V. The LCD display is powered from the 3.3 V power domain (HI_VDD). The min (max)
operating temperature is -20 (+70) ˚C.
The LCD connector on SmartRF06EB is very tight to ensure proper contact between
the EM and the LCD. Be extremely cautious when removing the LCD to avoid the
display from breaking.
NOTE: Mounting a jumper on J502 will not have any effect if the SmartRF06EB is powered
over USB (when the power source selection switch, S502, is in “USB” position).
User’s Guide
SWRU321A – May 2013
Page 19/32
Signal name Description Probe header EM pin
LV_3.3V_EN 3.3 V domain enable signal4 RF1.15 (P407.1) RF1.15
LV_LCD_MODE LCD mode signal RF1.11 (P406.7) RF1.11
¯L¯V¯_¯L¯C¯D¯_¯R¯¯E¯S¯E¯T¯ LCD reset signal (active low) RF1.13 (P406.9) RF1.13
¯L¯V¯_¯L¯C¯D¯_¯C¯¯S LCD Chip Select (active low) RF1.17 (P407.3) RF1.17
LV_SPI_SCK SPI Clock RF1.16_SCK (P407.2) RF1.16
LV_SPI_MOSI SPI MOSI (LCD input) RF1.18_MOSI (P407.4) RF1.18
Table 6 – LCD signal connections
6.5 Micro SD Card Slot
The SmartRF06EB has a micro SD card slot for connecting external SD/MMC flash devices (flash
device not included). A connected flash device is available to the mounted EM via a SPI interface,
giving it access to extra flash, enabling over-the-air upgrades and more. Table 8 shows an
overview of I/O signals related to the micro SD card slot.
The micro SD card is powered from the 3.3 V power domain (HI_VDD).
Signal name Description Probe header EM pin
LV_3.3V_EN 3.3 V domain enable signal4 RF1.15 (P407.1) RF1.15
¯L¯V¯_¯S¯D¯C¯¯A¯R¯D¯_¯C¯¯S SD card Chip Select (active low) RF2.12 (P411.1) RF2.12
LV_SPI_SCK SPI Clock RF1.16_SCK (P407.2) RF1.16
LV_SPI_MOSI SPI MOSI (SD card input) RF1.18_MOSI (P407.4) RF1.18
LV_SPI_MISO SPI MISO (SD card output) RF1.20_MISO (P407.5) RF1.20
Table 7 – Micro SD Card signal connections
6.6 Accelerometer
The SmartRF06EB is equipped with a BMA250 digital accelerometer from Bosch Sensortech [6].
The accelerometer is available to the mounted EM via an SPI interface and has two dedicated
interrupt lines. The accelerometer is suitable for application development, prototyping and demo
use. Table 8 shows an overview of I/O signals related to the accelerometer.
The recommended operating condition for the accelerometer is a supply voltage between 1.62 V
and 3.6 V. The min (max) operating temperature is -40 (+85) ˚C.
Signal name Description Probe header EM pin
LV_ACC_PWR Acc. power enable signal RF2.8 (P407.8) RF2.8
LV_ACC_INT1 Acc. interrupt signal RF2.16 (P411.5) RF2.16
LV_ACC_INT2 Acc. interrupt signal RF2.14 (P411.3) RF2.14
¯L¯V¯_¯A¯C¯C¯¯¯C¯S¯ Acc. Chip Select (active low) RF2.10 (P407.9) RF2.10
LV_SPI_SCK SPI Clock RF1.16_SCK (P407.2) RF1.16
LV_SPI_MOSI SPI MOSI (acc. input) RF1.18_MOSI (P407.4) RF1.18
4 The LCD and SD card are both powered in the 3.3 V domain and cannot be powered on/off individually.
User’s Guide
SWRU321A – May 2013
Page 20/32
LV_SPI_MISO SPI MISO (acc. output) RF1.20_MISO (P407.5) RF1.20
Table 8 – Accelerometer signal connections
6.7 Ambient Light Sensor
The SmartRF06EB has an analog SFH 5711 ambient light sensor (ALS) from Osram [7] that is
available for the mounted EM via the EM connectors, enabling quick application development for
demo use and prototyping. Figure 14 and Table 9 shows an overview of I/O signals related to the
ambient light sensor.
The recommended operating condition for the ambient light sensor is a supply voltage between
2.3 V and 5.5 V. The min (max) operating temperature is -40 (+85) ˚C.
Ambient Light Sensor LV_ALS_OUT
LV_ALS_PWR
22 kOhm
Figure 14 – Simplified schematic of Ambient Light Sensor setup
Signal name Description Probe header EM pin
LV_ALS_PWR ALS power enable signal RF2.6 (P407.7) RF2.6
LV_ALS_OUT ALS output signal (analog) RF2.5 (P411.6) RF2.5
Table 9 – Ambient Light Sensor signal connections
6.8 Buttons
There are 6 buttons on the SmartRF06EB. Status of the LEFT, RIGHT, UP, DOWN and SELECT
buttons are available to the mounted EM. These buttons are intended for user interfacing and
development of demo applications.
The EM RESET button resets the mounted EM by pulling its reset line low (¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯).
Table 10 shows an overview of I/O signals related to the buttons.
Signal name Description Probe header EM pin
LV_BTN_LEFT Left button (active low) RF1.6 (P406.4) RF1.6
LV_BTN_RIGHT Right button (active low) RF1.8 (P406.5) RF1.8
LV_BTN_UP Up button (active low) RF1.10 (P406.6) RF1.10
LV_BTN_DOWN Down button (active low) RF1.12 (P406.8) RF1.12
LV_BTN_SELECT Select button (active low) RF1.14 (P406.10) RF1.14
¯L¯V¯_¯B¯T¯N¯_¯R¯¯E¯S¯E¯T¯ EM reset button (active low) ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ (P411.4) RF2.15
Table 10 – Button signal connections
User’s Guide
SWRU321A – May 2013
Page 21/32
6.9 LEDs
6.9.1 General Purpose LEDs
The four LEDs D601, D602, D603, D604 can be controlled from the mounted EM and are suitable
for demo use and debugging. The LEDs are active high. Table 11 shows an overview of I/O
signals related to the LEDs.
Signal name Description Probe header EM pin
LV_LED_1 LED 1 (red) RF2.11 (P407.10) RF2.11
LV_LED_2 LED 2 (yellow) RF2.13 (P411.2) RF2.13
LV_LED_3 LED 3 (green) RF1.2 (P406.1) RF1.2
LV_LED_4 LED 4 (red-orange) RF1.4 (P406.2) RF1.4
Table 11 – General purpose LED signal connections
6.9.2 XDS100v3 Emulator LEDs
The XDS100v3 emulator has two LEDs to indicate its status, D2 and D4. The LEDs are located
on the top side of the SmartRF06EB. LED D2 is lit whenever the XDS100v3 Emulator is powered,
while LED D4 (ADVANCED MODE) is lit when the XDS100v3 is in an active cJTAG debug state.
6.10 EM Connectors
The EM connectors, shown in Figure 15, are used for connecting an EM board to the
SmartRF06EB. The connectors RF1 and RF2 are the main interface and are designed to inhibit
incorrect mounting of the EM board. The pin-out of the EM connectors is given in Table 12 and
Table 13.
Figure 15 – SmartRF06EB EM connectors RF1 and RF2
User’s Guide
SWRU321A – May 2013
Page 22/32
EM pin Signal name Description
Probe
header
Breakout
header
RF1.1 GND Ground
RF1.2 RF1.2 GPIO signal to EM board P406.1 P403.1-2
RF1.3 RF1.3_UART_CTS UART back channel / GPIO P412.4 P408.15-16
RF1.4 RF1.4 GPIO signal to EM board P406.2 P403.3-4
RF1.5 RF1.5 GPIO signal to EM board P406.3 P403.5-6
RF1.6 RF1.6 GPIO signal to EM board P406.4 P403.7-8
RF1.7 RF1.7_UART_RX UART back channel (EM RX) P412.2 P408.11-12
RF1.8 RF1.8 GPIO signal to EM board P406.5 P403.9-10
RF1.9 RF1.9_UART_TX UART back channel (EM TX) P412.3 P408.13-14
RF1.10 RF1.10 GPIO signal to EM board P406.6 P403.11-12
RF1.11 RF1.11 GPIO signal to EM board P406.7 P403.13-14
RF1.12 RF1.12 GPIO signal to EM board P406.8 P403.15-16
RF1.13 RF1.13 GPIO signal to EM board P406.9 P403.17-18
RF1.14 RF1.14 GPIO signal to EM board P406.10 P403.19-20
RF1.15 RF1.15 GPIO signal to EM board P407.1 P404.1-2
RF1.16 RF1.16_SPI_SCK EM SPI Clock P407.2 P404.3-4
RF1.17 RF1.17 GPIO signal to EM board P407.3 P404.5-6
RF1.18 RF1.18_SPI_MOSI EM SPI MOSI P407.4 P404.7-8
RF1.19 GND Ground
RF1.20 RF1.20_SPI_MISO EM SPI MISO P407.5 P404.9-10
Table 12 – EM connector RF1 pin-out
EM pin Signal name Description
Probe
header
Breakout
header
RF2.1 RF2.1_JTAG_TCK JTAG Test Clock P409.9 P408.1-2
RF2.2 GND Ground
RF2.3 RF_VDD2 EM power TP10 J503.1-2
RF2.4 RF2.4_JTAG_TMS JTAG Test Mode Select P409.7 P408.3-4
RF2.5 RF2.5 GPIO signal to EM board P407.6 P404.11-12
RF2.6 RF2.6 GPIO signal to EM board P407.7 P404.13-14
RF2.7 RF_VDD1 EM power TP10 J503.1-2
RF2.8 RF2.8 GPIO signal to EM board P407.8 P404.15-16
RF2.9 RF_VDD1 EM power TP10 J503.1-2
RF2.10 RF2.10 GPIO signal to EM board P407.9 P404.17-18
RF2.11 RF2.11 GPIO signal to EM board P407.10 P404.19-20
RF2.12 RF2.12 GPIO signal to EM board P411.1 P405.1-2
RF2.13 RF2.13 GPIO signal to EM board P411.2 P405.3-4
RF2.14 RF2.14 GPIO signal to EM board P411.3 P405.5-6
RF2.15 ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ EM reset signal (active low) P411.4 P405.7-8
RF2.16 RF2.16 GPIO signal to EM board P411.5 P405.9-10
RF2.17 RF2.17_JTAG_TDI GPIO / JTAG Test Data In P409.5 P408.5-6
RF2.18 RF2.18_UART_RTS GPIO / UART Back Channel P412.5 P408.17-18
RF2.19 RF2.19_JTAG_TDO GPIO / JTAG Test Data Out P409.13 P408.7-8
RF2.20 GND Ground
Table 13 – EM connector RF2 pin-out
User’s Guide
SWRU321A – May 2013
Page 23/32
6.11 Breakout Headers and Jumpers
The SmartRF06EB has several breakout headers, giving access to all EM connector pins. An
overview of the SmartRF06EB I/O breakout headers is given in Figure 16. Probe headers P406,
P407, P411 and P412 give access to the I/O signals of the mounted EM. Breakout headers P403,
P404 and P405 allow the user to map any EM I/O signal to any peripheral on the SmartRF06EB.
The XDS bypass header (P408) makes it possible to disconnect the XDS100v3 Emulator
onboard the EB from the EM. Using the 20-pin ARM JTAG header (P409) or the 10-pin ARM
Cortex Debug Header (P410), it is possible to debug external targets using the onboard emulator.
Evaluation
Module
Peripheral
probe headers
P406, P407,
P411
I/O breakout headers
P403, P404, P405
SmartRF06EB
peripherals
ACC, ALS, keys, LCD,
LED, SD card
XDS bypass header
P408
XDS100v3
Emulator
20-pin
ARM-JTAG
Debug Header
P409
10-pin Cortex
Debug Header
P410
UART back
channel probe
header
P412
Figure 16 – SmartRF06EB I/O breakout overview
6.11.1 I/O Breakout Headers
The I/O breakout headers on SmartRF06EB consist of pin connectors P406, P407, P411 and
P412. P406, P407 and P411 are located at the top left side of SmartRF06EB. All EM signals
available on these probe headers can be connected to or disconnected from SmartRF06EB
peripherals using jumpers on headers P403, P404, P405.
Probe header P412 is located near the bottom right corner of the SmartRF06EB. The signals
available on P412 are connected to the XDS100v3 Emulator’s UART back channel using jumpers
on header P408.
The I/O breakout mapping between the SmartRF06EB and the mounted EM is given in Table 14.
The leftmost column in the below table refers to the silk print seen on the SmartRF06EB. The
rightmost column shows the corresponding CC2538 I/O pad on CC2538EM.
NOTE: By default, all jumpers are mounted on P403, P404, P405 and P408. The default
configuration is assumed in this user’s guide unless otherwise stated.
User’s Guide
SWRU321A – May 2013
Page 24/32
Probe
header
Silk print EB signal name
EM
connector
CC2538EM
I/O
P406 RF1.2 LV_LED_3 RF1.2 PC2
RF1.4 LV_LED_4 RF1.4 PC3
RF1.5 NC RF1.5 PB1
RF1.6 LV_BTN_LEFT RF1.6 PC4
RF1.8 LV_BTN_RIGHT RF1.8 PC5
RF1.10 LV_BTN_UP RF1.10 PC6
RF1.11 LV_LCD_MODE RF1.11 PB2
RF1.12 LV_BTN_DOWN RF1.12 PC7
RF1.13 ¯L¯V¯_¯L¯C¯D¯_¯R¯¯E¯S¯E¯T¯ RF1.13 PB3
RF1.14 LV_BTN_SELECT RF1.14 PA3
P407 RF1.15 LV_3.3V_EN RF1.15 PB4
RF1.16_SCK LV_SPI_SCK RF1.16 PA2
RF1.17 ¯L¯V¯_¯L¯C¯D¯_¯C¯¯S RF1.17 PB5
RF1.18_MOSI LV_SPI_MOSI RF1.18 PA4
RF1.20_MISO LV_SPI_MISO RF1.20 PA5
RF2.5 LV_ALS_OUT RF2.5 PA6
RF2.6 LV_ALS_PWR RF2.6 PA7
RF2.8 LV_ACC_PWR RF2.8 PD4
RF2.10 ¯L¯V¯_¯A¯C¯C¯¯¯C¯S¯ RF2.10 PD5
RF2.11 LV_LED_1 RF2.11 PC0
P411 RF2.12 ¯L¯V¯_¯S¯D¯C¯¯A¯R¯D¯_¯C¯¯S RF2.12 PD0
RF2.13 LV_LED_2 RF2.13 PC1
RF2.14 LV_ACC_INT2 RF2.14 PD1
RF2.15_RESET ¯L¯V¯_¯B¯T¯N¯_¯R¯¯E¯S¯E¯T¯ RF2.15 nRESET
RF2.16 LV_ACC_INT1 RF2.16 PD2
P412 EM_UART_RX RF1.7_UART_RX RF1.7 PA0
EM_UART_TX RF1.9_UART_TX RF1.9 PA1
EM_UART_CTS RF1.3_UART_CTS RF1.3 PB0
EM_UART_RTS RF2.18_UART_RTS RF2.18 PD3
Table 14 – SmartRF06EB I/O breakout overview
6.11.2 XDS100v3 Emulator Bypass Headers
The XDS100v3 Emulator bypass header, P408, is by default mounted with jumpers (Figure 17),
connecting the XDS100v3 Emulator to a mounted EM or external target. By removing the jumpers
on P408, the XDS100v3 Emulator may be disconnected from the target.
Figure 17 – XDS100v3 Emulator Bypass Header (P408)
User’s Guide
SWRU321A – May 2013
Page 25/32
6.11.3 20-pin ARM JTAG Header
The SmartRF06EB comes with a standard 20-pin ARM JTAG header [8] (Figure 18), enabling the
user to debug an external target using the XDS100v3 Emulator. The pin-out of the ARM JTAG
header is given in Table 15. Chapter 7 has more information on how to debug an external target
using the XDS100v3 Emulator onboard the SmartRF06EB.
Figure 18 – 20-pin ARM JTAG header (P409)
Pin Signal Description EB signal name
XDS
bypass
header
P409.1 VTRef Voltage reference VDD_SENSE P408.19-20
P409.2 VSupply Voltage supply NC
P409.3 nTRST Test Reset NC
P409.4 GND Ground GND
P409.5 TDI Test Data In RF2.17_JTAG_TDI P408.5-6
P409.6 GND Ground GND
P409.7 TMS Test Mode Select RF2.4_JTAG_TMS P408.3-4
P409.8 GND Ground GND
P409.9 TCK Test Clock RF2.1_JTAG_TCK P408.1-2
P409.10 GND Ground GND
P409.11 RTCK Return Clock NC
P409.12 GND Ground GND
P409.13 TDO Test Data Out RF2.19_JTAG_TDO P408.7-8
P409.14 GND Ground GND
P409.15 nSRST System Reset ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ P408.9-10
P409.16 GND Ground GND
P409.17 DBGRQ Debug Request NC
P409.18 GND Ground GND
P409.19 DBGACK Debug Acknowledge NC
P409.20 GND Ground GND
Table 15 – 20-pin ARM JTAG header pin-out (P409)
User’s Guide
SWRU321A – May 2013
Page 26/32
6.11.4 10-pin ARM Cortex Debug Header
The SmartRF06EB comes with a standard 10-pin ARM Cortex debug header [8] (Figure 19),
enabling the user to debug an external target using the XDS100v3 Emulator. The ARM Cortex
debug header is located near the right hand edge of the EB. The header pin-out is given in Table
16. Chapter 7 has more information on how to debug an external target using the XDS100v3
Emulator onboard the SmartRF06EB.
Figure 19 – 10-pin ARM Cortex Debug header (P410)
Pin Signal Description EB signal name
XDS bypass
header
P410.1 VCC Voltage reference VDD_SENSE P408.19-20
P410.2 TMS Test Mode Select RF2.4_JTAG_TMS P408.3-4
P410.3 GND Ground GND
P410.4 TCK Test Clock RF2.1_JTAG_TCK P408.1-2
P410.5 GND Ground GND
P410.6 TDO Test Data Out RF2.19_JTAG_TDO P408.7-8
P410.7 KEY Key NC
P410.8 TDI Test Data In RF2.17_JTAG_TDI P408.5-6
P410.9 GNDDetect Ground detect GND
P410.10 nRESET System Reset ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ P408.9-10
Table 16 – 10-pin ARM Cortex Debug header pin-out (P410)
User’s Guide
SWRU321A – May 2013
Page 27/32
6.12 Current Measurement
The SmartRF06EB provides two options for easy measurements of the current consumption of a
mounted EM. The following sections describe these two options in detail.
6.12.1 High-side current sensing
The SmartRF06EB comes with a current sensing unit for measuring the current consumption of
the mounted EM (Figure 20). The current sensing setup is “high-side”, that is, it measures the
current going to the mounted EM. The current is converted to a voltage, available at the
CURMEAS_OUTPUT test point (TP11), located near the right edge of the SmartRF06EB. Using
the SmartRF06EB together with for example an oscilloscope makes it easy to measure the EM
current consumption as a function of time.
The relationship between the voltage measured at CURMEAS_OUTPUT, VCURMEAS, and the EM
current consumption, IEM, is given by Equation 1 below.
15
V
I CURMEAS
EM (1)
G = 100
0.15 Ohm
To EM
IEM
VCURMEAS
Figure 20 – Simplified schematic of high-side current sensing setup
6.12.2 Current Measurement Jumper
SmartRF06EB has a current measurement header, J503, for easy measurement of EM current
consumption. Header J503 is located on the upper right hand side of the EB. By replacing the
jumper with an ammeter, as shown in Figure 21, the current consumption of the mounted EM can
be measured.
Figure 21 – Measuring current consumption using jumper J503
User’s Guide
SWRU321A – May 2013
Page 28/32
7 Debugging an external target using SmartRF06EB
You can easily use XDS100v3 Emulator onboard the SmartRF06EB to debug an external target.
It is in this chapter assumed that the target is self-powered.
When debugging an external, self-powered target using SmartRF06EB, make sure to remove the
jumper from the current measurement header (J503) as shown in the second scenario of Figure
22. In this scenario, the onboard XDS100v3 senses the target voltage of the external target. In
the left side scenario of the same figure, the XDS100v3 senses the target voltage of the EB’s EM
domain.
Having a jumper mounted on header J503 when debugging an external target will
cause a conflict between the EB’s EM domain supply voltage and the target’s supply
voltage. This may result in excess currents, damaging the onboard components of
the SmartRF06EB or the target board.
In Figure 22, the right hand side scenario shows how it is possible to debug an EM mounted on
the SmartRF06EB using an external debugger. In this scenario, all the jumpers must be removed
from the SmartRF06EB header P408 to avoid signaling conflicts between the onboard XDS100v3
Emulator and the external debugger.
XDS100v3
06EB XDS + EM
EM
(EM domain)
XDS100v3
06EB XDS + external target
Ext. target
(Target VDD)
EM
(EM domain)
XDS100v3
External debugger + EM
External
debugger
EM
(EM domain)
P408
(jumpers on)
P408
(jumpers off)
J503
(mounted)
J503
(mounted)
J503
(not mounted)
Current measurement jumper
XDS bypass header P408
(jumpers on)
Debug
header
P409/P410 P409/P410
Figure 22 – Simplified connection diagram for different debugging scenarios
User’s Guide
SWRU321A – May 2013
Page 29/32
7.1 20-pin ARM JTAG Header
The SmartRF06EB has a standard 20-pin ARM JTAG header mounted on the right hand side
(P409). Make sure all the jumpers on the XDS bypass header (P408) are mounted and that the
jumper is removed from header J503.
Connect the external board to the 20-pin ARM JTAG header (P409) using a 20-pin flat cable as
seen in Figure 23. Make sure pin 1 on P409 matches pin 1 on the external target. See sections
6.11.3 and 6.11.2 for more info about the 20-pin ARM JTAG header and the XDS bypass header,
respectively.
Figure 23 – Debugging external target using SmartRF06EB
7.2 10-pin ARM Cortex Debug Header
The SmartRF06EB has a standard 10-pin ARM Cortex Debug header mounted on the right hand
side (P410). Make sure all the jumpers on the XDS bypass header (P408) are mounted and that
the jumper is removed from header J503.
Connect the external board to the 10-pin ARM JTAG header using a 10-pin flat cable. Make sure
pin 1 on P410 matches pin 1 on the external target See sections 6.11.4 and 6.11.2 for more info
about the 10-pin ARM Cortex Debug header and the XDS bypass header, respectively.
User’s Guide
SWRU321A – May 2013
Page 30/32
7.3 Custom Strapping
If the external board does not have a 20-pin ARM JTAG connector nor a 10-pin ARM Cortex
connector, the needed signals may be strapped from the onboard XDS100v3 Emulator to the
external target board.
Make sure all the jumpers on the XDS bypass header (P408) are mounted and that the jumper is
removed from header J503. Table 17 shows the signals that must be strapped between the
SmartRF06EB and the target board. Table 18 shows additional signals that are optional or
needed for debugging using 4-pin JTAG. Figure 24 shows where the signals listed in Table 17
and Table 18 can be found on the 20-pin ARM JTAG header.
EB Signal Name
EB
Breakout
Description
VDD_SENSE P409.1 Target voltage supply
GND P409.4 Common ground for EB and external board
RF2.1_JTAG_TCK P409.9 Test Clock
RF2.4_JTAG_TMS P409.7 Test Mode Select
Table 17 – Debugging external target: Minimum strapping (cJTAG support)
EB Signal Name
EB
Breakout
Description
RF2.17_JTAG_TDI P409.5 Test Data In (optional for cJTAG)
RF2.19_JTAG_TDO P409.13 Test Data Out (optional for cJTAG)
¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ P409.15 Target reset signal (optional)
Table 18 – Debugging external target: Optional strapping
VDD_SENSE
RF2.17_JTAG_TDI
RF2.4_JTAG_TMS
RF2.1_JTAG_TCK
RF2.19_JTAG_TDO
GND
2-pin cJTAG
4-pin JTAG
Optional
+
RF2.15_RESET
Figure 24 – ARM JTAG header (P409) with strapping to debug external target
User’s Guide
SWRU321A – May 2013
Page 31/32
8 Frequently Asked Questions
Q1 Nothing happens when I power up the evaluation board. Why?
A1 Make sure you have a power source connected to the EB. Verify that the power source
selection switch (S502) is set correctly according to your power source. When powering
the EB from either batteries or an external power source, S502 should be in “BAT”
position. When powering the EB over USB, the switch should be in “USB” position. Also,
make sure the EM current measurement jumper (J503) is short circuited.
Q2 Why are there two JTAG connectors on the SmartRF06EB, which one should I use?
A2 The SmartRF06EB comes with two different standard debug connectors, the 20-pin ARM
JTAG connector (P409) and the compact 10-pin ARM Cortex debug connector (P410).
These debug connectors are there to more easily debug external targets without the
need of customized strapping. For more details on how to debug external targets using
the SmartRF06EB, see chapter 7.
Q3 Can I use the SmartRF06EB to debug an 8051 SoC such as CC2530?
A3 No, you cannot debug an 8051 SoC using the SmartRF06EB.
Q4 When connecting my SmartRF06EB to my PC, no serial port appears. Why?
A4 It may be that the virtual COM port on the SmartRF06EB’s XDS100 channel B hasn’t
been enabled. Section 4.1.2.1.1 describes how to enable the Vritual COM Port in the
USB driver.
User’s Guide
SWRU321A – May 2013
Page 32/32
9 References
[1] SmartRF Studio Product Page
http://www.ti.com/tool/smartrftm-studio
[2] FTDI USB Driver Page
http://www.ftdichip.com
[3] SmartRF Flash Programmer Product Page
http://www.ti.com/tool/flash-programmer
[4] XDS100 Emulator Product Page
http://processors.wiki.ti.com/index.php/XDS100
[5] Electronic Assembly DOGM128-6 Datasheet
http://www.lcd-module.com/eng/pdf/grafik/dogm128e.pdf
[6] Bosch Sensortec BMA250 Datasheet
http://ae-bst.resource.bosch.com/media/products/dokumente/bma250/bst-bma250-
ds002-05.pdf
[7] Osram SFH 5711
http://www.osram-os.com
[8] Cortex-M Debug Connectors
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/attached/13634/cortex_debu
g_connectors.pdf
10 Document History
Revision Date Description/Changes
SWRU321A 2013-05-21 Minor fixes to Figure 4. Fixed incorrect EM mapping in Table 11.
Added steps for installing SmartRF06EB on Linux.
SWRU321 2012-09-07 Initial version.
User’s Guide
SWRU321A – May 2013
Appendix A
Schematics
SmartRF06EB 1.2.1
LOW VOLTAGE
PERIPHERALS
XDS100v3 - FPGA
XDS100v3 - FTDI
EM INTERFACE/
LEVEL SHIFTERS POWER SUPPLY
HIGH VOLTAGE
PERIPHERALS
1
FM2
FIDUCIAL_MARK_1mm
1
FM4
FIDUCIAL_MARK_1mm
H2
HOLE_3
H3
HOLE_3
1
FM5
FIDUCIAL_MARK_1mm
H1
HOLE_3
1
FM6
FIDUCIAL_MARK_1mm
1
FM1
FIDUCIAL_MARK_1mm
H4
HOLE_3
1
FM3
FIDUCIAL_MARK_1mm
TP13
TESTPOINT_PAD
TP12
TESTPOINT_PAD
ISSUED 1(7)
SmartRF06EB - Top Level
SCALE SHEET
DWG NO. REV.
DWG
COMPANY NAME
SIZE FSCM NO.
CONTRACT NO.
Texas Instruments
A3
DRAWN
13/07/12
13/07/12
12/07/12
MAW
1.2.1
APPROVALS DATE
CHECKED
PRG_TDO
EXT_SELECT
ADV_MODE
V_USB V_USB
RESET_N
VCCPLF
T_TVD
VTARGET
UART_EN_N
P3.3VXDS
P1.8V
P3.3VXDS
P3.3VXDS +1.5V
P3.3VXDS P3.3VXDS
P3.3VXDS P3.3VXDS
P3.3VXDS P3.3VXDS
P3.3VXDS
P3.3VXDS
1
2 3
4
STANDBY VDD
OUTPUT
ASDM
GND
O1
ASDM 100.000MHZ
1
2
3
Q1
BC846
1
2
3
4
5 6
7
8
9
10
INA+
INAOUTA
OUTB
V+
INB+
OPA2363 INBVENA
ENB
U6
OPA2363
25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
GND
GND
GND
GND
GND
UART_EN_N
GND
VCCPLF
CLK_100M
P1.5V
P3.3VXDS
RESET_N
DTSA_BYP
CBL_DIS
EMU1
POD_RLS
P3.3VXDS
TVD
CLK_FAIL
SRST_OUT
RTCK
EMU0
EMU_EN
TRST
TMS
TDO
TDI
TCK
P1.5V
P3.3VXDS
SUSPEND
ALT_FUNC
PRG_TCK
PRG_TMS
PRG_TDI
PRG_TDO
PRG_TCK
PRG_TDI
PRG_TMS
P3.3VXDS
P3.3VXDS
PRG_TDO
PRG_TRST
P3.3VXDS
VTARGET
P1.5V
VTARGET
PWRGOOD
VTARGET
P1.5V
ADV_MODE
EXT_SELECT
T_DIS
VTARGET
IO32RSB0
GBC0/IO35RSB0
IO13RSB0
GAA0/IO00RSB0
GBC1/IO36RSB0
IO15RSB0
GAA1/IO01RSB0
GAC1/IO05RSB0
GBB0/IO37RSB0
IO19RSB0
GNDQ
GBA2/IO41RSB0
GBA0/IO39RSB0
GBB1/IO38RSB0
GBA1/IO40RSB0
GCC2/IO59RSB0
GBB2/IO43RSB0
GDC1/IO61RSB0
IO09RSB0
GCC1/IO51RSB0
GDC0/IO62RSB0
GCC0/IO52RSB0
VMV0
GDA1/IO65RSB0
VCCIB0
GAB1/IO03RSB0
GCA1/IO55RSB0
TDO
VCC
GBC2/IO45RSB0
VCC
VJTAG
VCC
VCCIB1
VCC
IO11RSB0
VMV1
NC
GCA0/IO56RSB0
TMS
GAC0/IO04RSB0
TRST
GDA2/IO70RSB1
IO84RSB1
TDI
VPUMP
IO87RSB1
GDB2/IO71RSB1
IO42RSB0
IO93RSB1
IO75RSB1
TCK
IO96RSB1
IO94RSB1
GDC2/IO72RSB1
IO97RSB1
IO81RSB1
GND
IO95RSB1
IO99RSB1
GCB2/IO58RSB0
GND
IO100RSB1
IO47RSB0
IO102RSB1
GEC2/IO104RSB1
GEB2/IO105RSB1
GEA2/IO106RSB1
GNDQ
VMV1
GEA0/IO107RSB1
GND
GEA1/IO108RSB1
GEB0/IO109RSB1
GEB1/IO110RSB1
GEC0/IO111RSB1
GFA2/IO120RSB1
GFA1/IO121RSB1
VCCPLF
GFA0/IO122RSB1
VCOMPLF
GFB0/IO123RSB1
GFB1/IO124RSB1
IO129RSB1
IO130RSB1
GAC2/IO131RSB1
IO132RSB1
GAA2/IO67RSB1
GND
GAB2/IO69RSB1
GND
VCCIB1
VCCIB0
GND
IO68RSB1
IO28RSB0
IO25RSB0
IO22RSB0
IO07RSB0
GAB0/IO02RSB0
A3PN125-ZVQG100
U11
A3PN125-VQFP
1
2
C23
C_4U7_0603_X5R_K_6
1
2
C27
C_4U7_0603_X5R_K_6
1
2
C26
C_4U7_0603_X5R_K_6
1
2
C24
C_100N_0402_X5R_K_10
1
2
C22
C_100N_0402_X5R_K_10
1
2
C21
C_100N_0402_X5R_K_10
1
2
C25
C_100N_0402_X5R_K_10
2
1
D1
CDBP0130L-G
2 1
R1
L_BEAD_102_0402
1
2 D4
LED_EL19-21SRC
1
2
J5
PINROW_SMD_1X2_2.54MM
1 2 T_TMS
R47 R_10K_0402_F
1 2
R50
R_1K0_0402_F
1 2
R49
R_1K0_0402_F
1 2
R27
R_1K0_0402_F
1 2
R24
R_5K1_0402_J
1 2
R54
R_5K1_0402_J
1 2
R41
R_10K_0402_F
1 2
R48
R_10K_0402_F
1 2
R46
R_10K_0402_F
2 1
PWRGOOD
R31
R_10K_0402_F
2 1
PRG_TMS
R43
R_10K_0402_F
2 1
R44
R_10K_0402_F
1 2 T_EMU4
R52 R_51_0402_G
1 2 T_EMU2
R51 R_51_0402_G
1 2 T_EMU3
R53 R_51_0402_G
1 2 T_TDI
R18 R_51_0402_G
1 2 T_RTCK
R23 R_51_0402_G
1 2 T_TRST
R19 R_51_0402_G
1 2 T_EMU5
R55 R_51_0402_G
1 2 T_TMS
R15 R_51_0402_G
1 2 T_TDO
R16 R_51_0402_G
1 2 T_TCK
R17 R_51_0402_G
1 2 CLK_100M
R33
R_51_0402_G
1 2
R30
R_120K_0402_F
2 1
R29
R_120K_0402_F
1 2
R25
R_120K_0402_F
1 2
R42
R_220_0402_J
1 2 T_EMU1
R20 R_470_0402_F
1 2 T_EMU0
R22 R_470_0402_F
1 2 T_SRST
R21 R_470_0402_F
1
2
C34
C_15N_0402_X7R_K_25
1 2
T_DIS
R12
R_0_0402
1
2
3 4
T_TVD 5
T_TDI T_TDO
T_RTCK
IO2 IO3
IO1
GND TPD4E002
IO4
TUP8D4E002
1
2
3 4
T_DIS 5
T_TRST T_EMU2
T_TMS
IO2 IO3
IO1
GND TPD4E002
IO4
TUP7D4E002
1
2
3 4
T_TCK 5
T_EMU0 T_SRST
T_EMU1
IO2 IO3
IO1
GND TPD4E002
IO4
TUP9D4E002
1
2
3 4
T_EMU5 5
T_EMU3 GND
T_EMU4
IO2 IO3
IO1
GND TPD4E002
IO4
TUP12D4E002
TP7 PRG_TRST
Testpoint_Circle_40mils
TP6 PRG_TCK
Testpoint_Circle_40mils
TP5 PRG_TDI
Testpoint_Circle_40mils
TP9
Testpoint_Circle_40mils
TP8
Testpoint_Circle_40mils
TP4 PRG_TMS
Testpoint_Circle_40mils
PRG_TDO
TP3
Testpoint_Circle_40mils
ISSUED
SmartRF06EB - XDS100v3 - FPGA
SCALE SHEET 2(7)
DWG NO. REV.
DWG
COMPANY NAME
SIZE FSCM NO.
CONTRACT NO.
Texas Instruments
A3
DRAWN
13/07/12
13/07/12
The XDS100 is connected to the EM through
connector P408. See the EM interface page
for details.
12/07/12
MAW
1.2.1
APPROVALS DATE
CHECKED
PWREN
V_USB
USBDP
EEPROM_DATA
EEPROM_CS
EEPROM_CLK
P3.3VXDS
P3.3VXDPS3.3VXDS
P3.3VXDSP3.3VXDS
P3.3VXDS
P3.3VXDS
P3.3VXDS
+1.5V
P3.3VXDS
P3.3VXDS
P3.3VXDS
+1.5V +1.5V +1.5V P1.8V P1.8V P1.8V P1.8V P3.3VXDS P3.3VXDS
VBUS
P1.8V
P1.8V
P3.3VXDS P3.3VXDS
1 2
R5
R_1K0_0402_F
1
2
3
4
5
6
7
DVBUS
D+
ID
GND
Shield
Shield
P1
USB-B_MICRO
1
2
3 4
5
6
GND
DO
CLK
93AA46B CS
VCC
DIN
U1
93AA46B
1
2
C9
C_4U7_0603_X5R_K_6
1
C15 2
C_4U7_0603_X5R_K_6
1
C19 2
C_4U7_0603_X5R_K_6
1
2
C3
C_4U7_0603_X5R_K_6
1
2
C28
C_4U7_0603_X5R_K_6
1
2
C18
C_27P_0402_NP0_J_50
1
2
C13
C_27P_0402_NP0_J_50
1
2
C29
C_100N_0402_X5R_K_10
1
2
C6
C_100N_0402_X5R_K_10
1
2
C12
C_100N_0402_X5R_K_10
1
2
C8
C_100N_0402_X5R_K_10
1
2
C17
C_100N_0402_X5R_K_10
1
2
C11
C_100N_0402_X5R_K_10
1
2
C20
C_100N_0402_X5R_K_10
1
2
C30
C_100N_0402_X5R_K_10
1
2
C5
C_100N_0402_X5R_K_10
1
2
C4
C_100N_0402_X5R_K_10
1
2
C16
C_100N_0402_X5R_K_10
1
2
C14
C_100N_0402_X5R_K_10
1
2
C31
C_100N_0402_X5R_K_10
1
2
3
4
5
6
7
8
9
10 11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
USBDM
TCK
TDI
TDO
TMS
TRST
EMU_EN
EMU0
RTCK
SRST_OUT
CLK_FAIL
TVD
POD_RLS
EMU1
CBL_DIS
DTSA_BYP
ALT_FUNC
SUSPEND
PRG_TCK
PRG_TDI
PRG_TDO
PRG_TMS
PRG_TRST
PWREN
EEPROM_DATA
EEPROM_CLK
EEPROM_CS
EECLK
EECS
RESET
REF
DP
FT2232H
DM
TEST
VREGOUT
OSCO
BCBUS7
BCBUS6
BCBUS4
BCBUS3
BCBUS2
BCBUS1
VCORE
BDBUS7
BDBUS6
VREGIN
BDBUS5
BDBUS4
BDBUS3
BDBUS2
BDBUS1
VCCIO
ACBUS7
ACBUS6
ACBUS5
ACBUS3
ADBUS7
VCORE
OSCI
ADBUS6
BCBUS5
ADBUS3
VPHY
SUSPEND
GND
GND
GND
GND
GND
GND
GND
GND
ACBUS4
AGND
EEDATA
BCBUS0
VCORE
ACBUS0
BDBUS0
ACBUS2
ADBUS2
VCCIO
VCCIO
PWREN
ADBUS4
VCCIO
ADBUS1
ADBUS5
VPLL
ACBUS1
ADBUS0
U4
FT2232HL
2 1
R8
L_BEAD_102_0402
2 1
R7
L_BEAD_102_0402
1
2 D2
LED_EL19-21SYGC
2 1
R2
R_0_0402
1 2
R3
R_1K0_0402_F
2 1
R9
R_1K0_0402_F
1 2
R4
R_1K0_0402_F
2 1
R6
R_2K7_0402_F
1 2
R10
R_12K_0402_F
1 2
R28
R_270_0402_F
1
2
3 4
5
GND
IO2
IO1
NC
VCC
TPD2E001
U3
TPD2E001
1
2
3
4
Y1
X_12.000/30/30/10/20
ISSUED 3(7)
SmartRF06EB - XDS100v3 - FTDI
SCALE SHEET
DWG NO. REV.
DWG
COMPANY NAME
SIZE FSCM NO.
CONTRACT NO.
Texas Instruments
A3
DRAWN
13/07/12
13/07/12
12/07/12
MAW
1.2.1
APPROVALS DATE
CHECKED
VDD_MEASURED
LV_SDCARD_CS
LV_LED_2
LV_BTN_RESET
LV_ACC_INT1
LV_ACC_INT2
RF2.12
RF2.13
RF2.14
RF2.15_RESET
RF_VDD1
RF_VDD2
RF1.4
RF1.5
RF1.6
RF1.8
RF1.10
RF1.11
RF1.12
RF1.13
RF1.14
RF1.16_SPI_SCK
RF1.17
RF1.18_SPI_MOSI
RF1.20_SPI_MISO
RF2.5
RF2.6
RF2.8
RF2.10
RF2.11
LV_LED_4
LV_BTN_LEFT
LV_BTN_RIGHT
LV_BTN_UP
LV_LCD_MODE
LV_BTN_DOWN
LV_LCD_RESET
LV_BTN_SELECT
LV_3.3V_EN
LV_SPI_SCK
LV_LCD_CS
LV_SPI_MOSI
LV_SPI_MISO
LV_ALS_OUT
LV_ALS_PWR
LV_ACC_PWR
LV_ACC_CS
LV_LED_1
RF1.2
RF1.4
RF1.5
RF1.6
RF1.8
RF1.10
RF1.11
RF1.12
RF1.13
RF1.14
RF1.7_UART_RX
RF1.9_UART_TX
RF1.3_UART_CTS
RF2.18_UART_RTS
VDD_MEASURED
LV_BTN_RESET
VDD_SENSE
LO_VDD
LO_VDD
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
RF2.1_JTAG_TCK GND
RF_VDD2 RF2.4_JTAG_TMS
RF2.5 RF2.6
RF_VDD1 RF2.8
RF_VDD1 RF2.10
RF2.11 RF2.12
RF2.13 RF2.14
RF2.15_RESET RF2.16
RF2.17_JTAG_TDI RF2.18_UART_RTS
RF2.19_JTAG_TDO GND
RF2
SMD_HEADER_2X10
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
LV_LED_3 RF1.2
P403
PINROW_SMD_2X10_2.54MM
1
2
3
4
5
6
7
8
9
10
P406 PINROW_1X10
1
2
3
4
5
6
P412
PINROW_1X6
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
VDD_SENSE
GND
RF2.17_JTAG_TDI GND
RF2.4_JTAG_TMS GND
RF2.1_JTAG_TCK GND
GND
RF2.19_JTAG_TDO GND
RF2.15_RESET GND
GND
GND
P409
PINROW_SMD_2X10_2.54MM
1
2
3
4
5
6
7
8
9
10
RF1.15
RF1.16_SPI_SCK
RF1.17
RF1.18_SPI_MOSI
RF1.20_SPI_MISO
RF2.5
RF2.6
RF2.8
RF2.10
RF2.11
P407
PINROW_1X10
1
2
C403
C_100N_0402_X5R_K_10
1
2
C507
C_100N_0402_X5R_K_10
1
2
C404
C_100N_0402_X5R_K_10
1
2
C508
C_100N_0402_X5R_K_10
1 2
R402
R_0_0603
1 2 3 4
S606
PUSH_BUTTON_SKRAAK
1
2
J503
PINROW_SMD_1X2_2.54MM
1 2
3 4
5 6
7 8
9 10 RF2.16
P405
PINROW_SMD_2X5_2.54MM
1 2
3 4
5 6
7 8
9 10
VDD_SENSE RF2.4_JTAG_TMS
RF2.1_JTAG_TCK
RF2.19_JTAG_TDO
RF2.17_JTAG_TDI
RF2.15_RESET
P410
PINROW_SMD_2X5_1.27MM
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
T_TCK RF2.1_JTAG_TCK
T_TMS RF2.4_JTAG_TMS
T_TDI RF2.17_JTAG_TDI
T_TDO RF2.19_JTAG_TDO
T_SRST RF2.15_RESET
T_EMU3 RF1.7_UART_RX
T_EMU2 RF1.9_UART_TX
T_EMU5 RF1.3_UART_CTS
T_EMU4 RF2.18_UART_RTS
T_TVD VDD_SENSE
P408
PINROW_SMD_2X10_2.54MM
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
GND RF1.2
RF1.3_UART_CTS RF1.4
RF1.5 RF1.6
RF1.7_UART_RX RF1.8
RF1.9_UART_TX RF1.10
RF1.11 RF1.12
RF1.13 RF1.14
RF1.15 RF1.16_SPI_SCK
RF1.17 RF1.18_SPI_MOSI
GND RF1.20_SPI_MISO
RF1
SMD_HEADER_2X10
1 2
3 4
CURMEAS_OUTPUT
R2
R1
IN-
1.6M
GND
OUT
1.6M
INA216
IN+
U504
INA216A3
1
2
C402
C_0603
1 2
R502
R_0R15_0603_F
1
2
C401
C_0805
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
RF1.15
P404
PINROW_SMD_2X10_2.54MM
1
2
3
4
5
RF2.12
RF2.13
RF2.14
RF2.15_RESET
RF2.16
P411
PINROW_1X5
TP10
Testpoint_Circle_40mils
TP11
TESTPIN_SMALL
TP20
TESTPIN_SMALL
EM Interface /
SmartRF06EB - Level Shifters
ISSUED 4(7)
EM DEBUG CONNECTION
SCALE SHEET
DWG NO. REV.
DWG
COMPANY NAME
SIZE FSCM NO.
CONTRACT NO.
Texas Instruments
A3
DRAWN
13/07/12
13/07/12
EM CONNECTORS
10-pin ARM Cortex
JTAG Connector
RESET
Optional
RC filter
EM CURRENT MEASUREMENT
12/07/12
MAW
1.2.1
APPROVALS DATE
20-pin ARM JTAG Connector
EM <--> EB BREAKOUT and PROBE HEADERS
Rshunt = 0.15 Ohm
Gain = 100
Vin = Ishunt x Rshunt
Vout = Vin x Gain
Saturation point for INA216
-----------------------------
Vout_max = LO_VDD (2.1V to 3.6V)
Vin_max = LO_VDD / 100 = 21mV to 36mV
Ishunt_max = 140mA to 240mA
Bypass jumper block for connection
between EM and XDS100v3
CHECKED
V_USB
P3.3V
V_USB
P2.1V
V_UNREG
V_UNREG
VBAT
VBUS
P3.3VXDS
VBAT
HI_VDD
P3.3VXDS
+1.5V
P3.3VXDS P3.3VXDS
LO_VDD
3
2 1
+
B503
CR2032_SOCKET
1
2
4 3
5
6
8 7
VOUT
EN
NC
VIN
GND
NR
TPS73533
GND
U2
TPS73533
1
2
C33
C_100N_0402_X5R_K_10
1 2 3
6 5 4
V_UNREG
V_USB
S501 SMD_SWITCH_DPDT
2 1
D3
BAT54J
1 2
3
V_UNREG
R11
R_0_0402_3PORT_2-3
1
2
C32
C_100N_0402_X5R_K_10
3 2 1
4 5 6
P2.1V P3.3V
S502
SMD_SWITCH_DPDT
1
2
C503
C_2U2_0402_X5R_M_6P3VDC
1
2
C502
C_2U2_0402_X5R_M_6P3VDC
1
2
C1
C_100N_0402_X5R_K_10
1
2
C501
C_2U2_0402_X5R_M_6P3VDC
1
2
+
B501
1XAAA_KEYSTONE
1
2
+
B502
1XAAA_KEYSTONE
1
2
C2
C_18N_0603_X7R_J_50
1
2
C10
C_100N_0402_X5R_K_10
2 1
L502
L_2U2_0805_N_LQM21
1
2
C7
C_4U7_0603_X5R_K_6
2 1 L501
L_2U2_0805_N_LQM21
1
2
J502
PINROW_SMD_1X2_2.54MM
1
2
J501
PINROW_SMD_1X2_2.54MM
2 1
R403
R_10K_0402_F
1
2
C504
C_2U2_0402_X5R_M_6P3VDC
1 2
V_UNREG
R501
R_47K_0402_F
2
4
1
3
LV_3.3V_EN
ON GND
VIN VOUT
U601
TPS22902
1
2
3 4
5
SUSPEND
TLV70015
NC4
VOUT
EN
GND
VIN
U5
TLV70015
1 2
R32
R_10K_0402_F
1
2
4 3
5
6
STAT
SW
GND VIN
ON/BYP
VOUT
U501
TPS62730
1
2
3
4
6 5
7
8
9
10
11
V_UNREG
LV_3.3V_EN
FB
Thermal
VINA
PS L1
GND
PGND
L2
EN VIN
VOUT
U502
TPS63031
TP2
Testpoint_Circle_40mils
TP18
Testpoint_Circle_40mils
TP1
Testpoint_Circle_40mils
TP17
Testpoint_Circle_40mils
TP19
Testpoint_Circle_40mils
OFF
MAIN ON/OFF SWITCH
2.1V
REG
ISSUED
POWER SELECT SWITCH
SmartRF06EB -
USB (5V)
ON
5(7)
Power Supply
USB TO 1.5V (FPGA)
3.3V FOR HV PERIPHERALS
3.3V
REG
USB TO 3.3V
BATTERIES
SCALE SHEET
BATTERY or
EXTERNAL
DWG NO. REV.
DWG
COMPANY NAME
BATTERY or
EXTERNAL
SIZE FSCM NO.
CONTRACT NO.
XDS 3.3V
Texas Instruments
A3
BATTERY REGULATORS
REGULATOR
BYPASS
JUMPER
DRAWN
POWERED from USB
(XDS100v3)
XDS100v3 VOLTAGE REGULATORS
BUCK (2.1V) BUCK/BOOST (3.3V)
13/07/12
13/07/12
CONNECTOR FOR
EXTERNAL POWER
POWERED from BATTERY or
External Power Supply
2.1V FOR EM and LV PERIPHERALS
USB
12/07/12
MAW
1.2.1
DATE
Software controlled switch
for enabling the "High Voltage"
domain for board peripherals.
APPROVALS
CHECKED
HV_SPI_MOSI
HV_SPI_SCK
HV_SPI_MISO
LO_VDD
HI_VDD
HI_VDD
HI_VDD
HI_VDD
HI_VDD
LO_VDD
HI_VDD
LO_VDD
LO_VDD
LO_VDD
HI_VDD
HI_VDD
HI_VDD
HI_VDD
HI_VDD
LO_VDD
LO_VDD
LO_VDD
1
2
C601
C_1U_0402_X5R_K_6P3
NC(C2-)
NC(A3+)
NC(A2+)
NC(A1+)
V2
CAP2P
VDD
VSS
RST
CAP3P
SI
SCL
INSERT:
1 pc SIP_SOCKET_SMD_1X20_2.54MM
2 pc SIP_SOCKET_SMD_1X3_2.54MM
NC(C1-)
NC(C3-)
CAP1P
A0
CAP2N
VOUT
CAP1N
VSS
V0
VDD2
CS1B
V3
V4
V1
LCD
LCD1
DOGM128W-6_NO_CON
1
2
3
4
5
6
7
8 9
10
11
12
13
14
15
16
LV_SPI_SCK
LV_SPI_MOSI
LV_SPI_MISO HV_SPI_MISO
HV_SPI_MOSI
HV_SPI_SCK
LV_SDCARD_CS
LV_3.3V_EN
GND
VCCA
1A1
1A2
2DIR
2A1
2A2
2OE
1B1
2B1
VCCB
2B2
1DIR 1OE
GND
1B2
U401
SN74AVC4T245
1
2
3
4
5
6
7
8
HV_SDCARD_CS
HV_SPI_MOSI
HV_SPI_SCK
HV_SPI_MISO
VDD
N/A
GND
N/A
CS
DI/MOSI
DO/MISO
SCLK
MicroSD
SPI-Mode
J601
MICROSD-SPI
1
2
C605
C_1U_0805_X7R_K_16
1
2
C604
C_1U_0805_X7R_K_16
1
2
C607
C_1U_0805_X7R_K_16
1
2
C609
C_1U_0805_X7R_K_16
1
2
C608
C_1U_0805_X7R_K_16
1
2
C602 C_1U_0805_X7R_K_16
1
2
C603 C_1U_0805_X7R_K_16
1
2
C610
C_1U_0805_X7R_K_16
2 1
R602
R_10K_0402_F
2 1
R614
R_0_0603
1
2
C613
C_100N_0402_X5R_K_10
1 2
R601
R_10K_0402_F
1
2
C408
C_100N_0402_X5R_K_10
1 2
R612
R_10K_0402_F
1
2
C407
C_100N_0402_X5R_K_10
1 2
R13
R_10K_0402_F
1
2
3
LV_3.3V_EN
LV_3.3V_EN
Q2
2N7002F
1
2
C405
C_100N_0402_X5R_K_10
2 1
R606
R_0_0603
1
2
3
P3
SIP_SOCKET_SMD_1X3_2.54MM
2 1
R615
R_0_0603
1
2
C606
C_1U_0805_X7R_K_16
1
2
C406
C_100N_0402_X5R_K_10
2 1
R603
R_39_0603
2 1
R604
R_39_0603
2 1
R605
R_39_0603
1
2
3
P4
SIP_SOCKET_SMD_1X3_2.54MM
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
HV_SPI_MOSI
HV_SPI_SCK
HV_LCD_MODE
HV_LCD_RESET
HV_LCD_CS
P2
SIP_SOCKET_SMD_1X20_2.54MM
1
2
3
4
5
6
7
8 9
10
11
12
13
14
15
16
LV_LCD_RESET
LV_LCD_CS
LV_LCD_MODE
LV_SDCARD_CS HV_SDCARD_CS
HV_LCD_MODE
HV_LCD_CS
HV_LCD_RESET
LV_3.3V_EN
LV_3.3V_EN
GND
VCCA
1A1
1A2
2DIR
2A1
2A2
2OE
1B1
2B1
VCCB
2B2
1DIR 1OE
GND
1B2
U402
SN74AVC4T245
TP16
Testpoint_Circle_40mils
TP14
Testpoint_Circle_40mils
TP15
Testpoint_Circle_40mils
High Voltage
Peripherals
ISSUED SCALE SHEET 6(7)
DWG NO. REV.
DWG
COMPANY NAME
SIZE FSCM NO.
CONTRACT NO.
Texas Instruments
A3
SmartRF06EB -
LCD
DRAWN
LEVEL SHIFTERS TRANSLATION :
MICROSD
13/07/12
13/07/12
U401:
LO HI
1A1 --> 1B1
1A2 --> 1B2
2A1 <-- 2B1
2A2 <-- 2B2
U402:
LO HI
1A1 --> 1B1
1A2 --> 1B2
2A1 --> 2B1
2A2 --> 2B2
12/07/12
MAW
1.2.1
APPROVALS DATE
LEVEL SHIFTERS
CHECKED
LV_ALS_OUT
LO_VDD
LO_VDD
1
2
3
4
5
6
7
8 9
10
11
12
LV_SPI_MISO
LV_SPI_MOSI
LV_ACC_INT1
LV_ACC_INT2
LV_ACC_PWR
LV_ACC_CS
LV_SPI_SCK
INT1
VDDIO
BMA250 NC
VDD
GNDIO
INT2
SDx
PS
CSB
SCx
3-AXIS
Accelerometer
GND
SDO
U602
BMA250
1
2
C614
C_100N_0402_X5R_K_10
1
2
LV_ACC_PWR
C612
C_100N_0402_X5R_K_10
1
2
C615
C_100N_0402_X5R_K_10
1
2
LV_LED_1
D601
LED_EL19-21SRC
1
2
LV_LED_4
D604
LED_EL19-21SURC
1
2
LV_LED_3
D603
LED_EL19-21SYGC
1
2 3
4
LV_ALS_PWR
Iout
GND
GND
VDD
LS601
LIGHT_SENSOR_SFH5711
1 2 3 4
S601 LV_BTN_LEFT
PUSH_BUTTON_SKRAAK
1 2 3 4
LV_BTN_RIGHT
S602
PUSH_BUTTON_SKRAAK
1 2 3 4
LV_BTN_SELECT
S603
PUSH_BUTTON_SKRAAK
1 2 3 4
LV_BTN_UP
S604
PUSH_BUTTON_SKRAAK
1 2 3 4
S605 LV_BTN_DOWN
PUSH_BUTTON_SKRAAK
1 2
R613
R_22K_0603_G
1
2
LV_LED_2
D602
LED_EL19-21UYC_A2
2 1
R608
R_680_0402_G
2 1
R609
R_680_0402_G
2 1
R610
R_680_0402_G
2 1
R607
R_820_0402_G
BUTTONS
Low Voltage
Peripherals
ISSUED
AMBIENT LIGHT SENSOR
SmartRF06EB -
YELLOW
GREEN
RED
ACCELEROMETER
SCALE SHEET
DWG NO. REV.
DWG
COMPANY NAME
SIZE FSCM NO.
CONTRACT NO.
Texas Instruments
A3
LEDS
RED-ORANGE
7(7)
Accelerometer
DRAWN
RECOMMENDED 2.3V-5.5V
Needs from 1.62V-3.6V
13/07/12
13/07/12
12/07/12
MAW
1.2.1
APPROVALS DATE
CHECKED
EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS
Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:
The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims
arising from the handling or use of the goods.
Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from
the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO
BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH
ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES.
Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This
notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety
programs, please visit www.ti.com/esh or contact TI.
No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or
combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and
therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
REGULATORY COMPLIANCE INFORMATION
As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal
Communications Commission (FCC) and Industry Canada (IC) rules.
For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT,
DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer
use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency
interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will
be required to take whatever measures may be required to correct this interference.
General Statement for EVMs including a radio
User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and
power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local
laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this
radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and
unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory
authorities, which is responsibility of user including its acceptable authorization.
For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant
Caution
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause
harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the
equipment.
FCC Interference Statement for Class A EVM devices
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial
environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the
instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to
cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment
generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause
harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If
this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and
on, the user is encouraged to try to correct the interference by one or more of the following measures:
• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.
For EVMs annotated as IC – INDUSTRY CANADA Compliant
This Class A or B digital apparatus complies with Canadian ICES-003.
Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the
equipment.
Concerning EVMs including radio transmitters
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this
device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired
operation of the device.
Concerning EVMs including detachable antennas
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain
approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should
be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.
This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum
permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain
greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.
Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.
Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de
l'utilisateur pour actionner l'équipement.
Concernant les EVMs avec appareils radio
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est
autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout
brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.
Concernant les EVMs avec antennes détachables
Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain
maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à
l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente
(p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.
Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel
d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans
cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
【Important Notice for Users of this Product in Japan】
This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan
If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:
1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and
Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of
Japan,
2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this
product, or
3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with
respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note
that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.
Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan
http://www.tij.co.jp
【ご使用にあたっての注】
本開発キットは技術基準適合証明を受けておりません。
本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。
1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。
なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。
上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。
日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル
http://www.tij.co.jp
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
EVALUATION BOARD/KIT/MODULE (EVM)
WARNINGS, RESTRICTIONS AND DISCLAIMERS
For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished
electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in
laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks
associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end
product.
Your Sole Responsibility and Risk. You acknowledge, represent and agree that:
1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug
Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees,
affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.
2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable
regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates,
contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical)
between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to
minimize the risk of electrical shock hazard.
3. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even
if the EVM should fail to perform as described or expected.
4. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials.
Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the
user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and
environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact
a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the
specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or
interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the
load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures
greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include
but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the
EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please
be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable
in electronic measurement and diagnostics normally found in development environments should use these EVMs.
Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives
harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in
connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims
arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.
Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such
as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices
which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate
Assurance and Indemnity Agreement.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated
CC Debugger
User’s Guide
SWRU197G
SWRU197G
January 2014
2/23
Table of Contents
1 Introduction ................................................................................................................................. 3
2 Abbreviations and Acronyms .................................................................................................... 3
3 Box Contents .............................................................................................................................. 4
4 Operating Conditions of the CC Debugger .............................................................................. 4
5 Initial Steps .................................................................................................................................. 5
5.1 Installing the USB driver ........................................................................................................... 5
5.2 Supported PC Tools .................................................................................................................. 5
6 Connecting the CC Debugger to the Device ............................................................................ 6
6.1 Target Connector Details .......................................................................................................... 6
6.2 Connecting the CC Debugger to a System on Chip ................................................................. 8
6.2.1 Minimum connection for debugging ....................................................................................................................... 8
6.2.2 Minimum connection for SmartRF Studio .............................................................................................................. 8
6.2.3 Minimum connection for SmartRF Packet Sniffer .................................................................................................. 9
6.3 Connecting the CC Debugger to a Transceiver ...................................................................... 10
6.4 Connecting the CC Debugger to a CC85xx ............................................................................ 12
7 Using the CC Debugger ........................................................................................................... 13
7.1 Understanding the LED ........................................................................................................... 13
8 Updating the Firmware ............................................................................................................. 14
8.1 Updating the firmware automatically in SmartRF Studio ........................................................ 14
8.2 Updating the firmware manually in SmartRF Flash Programmer ........................................... 16
8.3 Forced boot recovery mode .................................................................................................... 17
8.4 Resurrecting the CC Debugger ............................................................................................... 17
9 Troubleshooting ....................................................................................................................... 20
10 Schematics ................................................................................................................................ 21
11 References ................................................................................................................................ 21
12 Document History ..................................................................................................................... 22
SWRU197G
January 2014
3/23
1 Introduction
The CC Debugger is primarily used for flash programming and debugging software running on CCxxxx
8051-based System-on-Chip (SoC) devices from Texas Instruments. The PC tools available for these
purposes are the SmartRF™ Flash Programmer [9] from Texas Instruments and IAR Embedded
Workbench® for 8051 from IAR Systems [15].
When connected to the debugger, the SoC devices can be controlled directly from SmartRF™ Studio
[8]. SmartRF Studio will also be able to control supported CCxxxx RF transceivers (CC2520, CC2500,
CC110x, CC11xL, CC112x, CC120x) when they are connected to the debugger as explained in
chapter 6.3.
In addition, CC Debugger is used for configuring the CC85xx devices with PurePath Wireless
Configurator [12] and controlling them with PurePath Wireless Commander [13].
2 Abbreviations and Acronyms
CSn Chip Select (active low)
DC Debug Clock
DD Debug Data
DUT Device Under Test
GND Ground
LED Light Emitting Diode
MISO Master In Slave Out
MOSI Master Out Slave In
RF Radio Frequency
SCLK Serial Clock
SoC System on Chip
SPI Serial Peripheral Interface
USB Universal Serial Bus
Vdd Positive voltage on target
SWRU197G
January 2014
4/23
3 Box Contents
1 x CC Debugger
1 x USB-A to Mini-B USB cable
1 x 10-pin flat cable with 2x5 2.54 mm connector
1 x 10-pin flat cable with 2x5 1.27 mm connector
1 x Converter board 2.54 mm – 1.27 mm connector
Documentation
4 Operating Conditions of the CC Debugger
Minimum target voltage: 1.2 Volt
Maximum target voltage: 3.6 Volt
Operating temperature: 0C to 85C
Regulated voltage on CC Debugger: 3.3 Volt
Maximum target current (*): 200 mA (*)
Supported Operating Systems: Microsoft® Windows® 2000
Windows XP SP2/SP3 (32 bit versions)
Windows Vista® (32 & 64 bit)
Windows 7 (32 & 64 bit)
(*) Only applicable if the target is powered from the CC Debugger
Figure 1 - CC Debugger connected to a SoC Battery Board with a CC2530EM
SWRU197G
January 2014
5/23
5 Initial Steps
5.1 Installing the USB driver
To get the required USB driver for the CC Debugger, it is necessary to install one of the tools listed
below:
SmartRF Studio www.ti.com/tool/smartrftm-studio
SmartRF Flash Programmer www.ti.com/tool/flash-programmer
SmartRF Packet Sniffer www.ti.com/tool/packet-sniffer
PurePath Wireless Configurator www.ti.com/tool/purepath-wl-cfg
PurePath Wireless Commander www.ti.com/tool/purepath-wl-cmd
Alternatively, you can download “Cebal – CCxxxx Development Tools USB Driver for Windows x86
and x64” [4] which is a standalone installer including only the device driver.
After having installed the driver, connect the CC Debugger to the PC. The USB driver will be installed
automatically. You can quickly check that the debugger has been associated correctly with the USB
device driver by opening the Windows Device Manager. The debugger should appear as a “Cebal
controlled device”.
Figure 2 - Verify correct driver installation
For further details or troubleshooting the driver installation process, please refer to “DN304 – CCxxxx
Development Tools USB Driver Installation Guide” [5].
5.2 Supported PC Tools
Currently, the CC Debugger can be used together with the following PC Tools
IAR Embedded Workbench for 8051 In circuit debugging of system-on-chips
SmartRF Flash Programmer Flash programming of system-on-chips
SmartRF Studio RF testing of radio devices (transceivers and SoCs)
SmartRF Packet Sniffer Packet sniffing with selected radio devices
PurePath Wireless Configurator Programming of CC85xx devices
PurePath Wireless Commander Advanced control of CC85xx devices
The debugger will operate as the interface between the RF device and the tools listed above. Please
ensure correct connection between the device and CC Debugger before starting to use the tools.
The connection of the device to the CC Debugger will be covered in the next chapter.
SWRU197G
January 2014
6/23
6 Connecting the CC Debugger to the Device
6.1 Target Connector Details
The target connector, located on the lateral side of the debugger, is a 10-pin 2x5 2.54 mm pitch
connector with a direction coded plastic guide. Suggested matching (male) surface mounted headers
would be 95278-101A10LF from FCI or BB02-HP from GradConn.
Figure 3 - Placement of Target Connector Pins
The adapter board, which has a 10-pin 2x5 1.27 mm pitch connector, has the same pin placement.
Suggested matching (male) surface mounted headers would be 20021121-000-10C4LF from FCI or
FTS-105-01-F-DV from Samtec.
Figure 4 - Placement of Target Connector Pins on Adapter Board
The pin-out of the target connector is shown in Figure 5. Note that not all of these pins need to be
connected to the target device for programming and debugging. Only Vdd, GND, DD, DC and RESET
are required for System on Chips. The other pins are optional and/or for special features.
Pin 1
Pin 2
Pin 1
Pin 2
SWRU197G
January 2014
7/23
1 2
3 4
5 6
7 8
9 10
GND
DC (Debug Clock)
CSn (SPI Chip Select)
RESETn
3.3V (from debugger)
Target Voltage Sense
DD (Debug Data)
SCLK (SPI Clock)
MOSI (SPI Data Out)
MISO (SPI Data In)
Figure 5 - Target Connector Pin-out
Please note the concept with the target voltage sense signal. This signal is used by the level
converters on the CC Debugger to handle different voltage levels on the target board and the
debugger. Pin 2 on the target connector must be connected to Vdd on the target board.
USB
Controller
Level
Converter
Vdd from
target
CC Debugger Vdd (local)
TARGET
Target
Connector
Figure 6 - Voltage from target to CC Debugger
Alternatively, it is possible to power the target by connecting pin 9 to Vdd on the target. In that case,
the CC Debugger will supply 3.3V to the target.
SWRU197G
January 2014
8/23
6.2 Connecting the CC Debugger to a System on Chip
6.2.1 Minimum connection for debugging
For successful debugging of a TI 8051-based RF System on Chip, connect the two debug signals
Debug Data (DD) and Debug Clock (DC) and the reset signal RESETn to the device. Note that DD is a
bidirectional signal. In addition, the CC Debugger must be connected to GND and Vdd on the board.
Vdd is used as an input to the level shifters on the CC Debugger, thus allowing a different operating
voltage on the target than internally on the debugger.
For CC111x, CC251x, CC243x, CC253x and CC254x, except CC2544 and CC2545, connect the DD
signal to pin P2.1 and DC to pin P2.2.
For CC2544, connect the DD signal to P1.3 and DC to P1.2.
For CC2545, connect the DD signal to P1.3 and DC to P1.4.
Note that it is possible to power the target board from the debugger by connecting the 3.3V signal on
pin 9 on the connector to the target board.
1 2
3 4
5 6
7 8
9 10
GND
DC (Debug Clock)
RESETn
3.3V from debugger. Can
optionally be used to
power the target board
DD (Debug Data)
P2.2 SoC
P2.1
RESETn
Vdd
GND
Vdd
CC Debugger
Connector
CCxxxx
System-on-Chip
NOTE 2
Vdd
NOTE 1
10 kΩ
2.7 kΩ
1 nF
Figure 7 - Minimum connection for debugging of 8051 SoC
Note 1: Some early revisions of certain SoCs (CC2430, CC2510 and CC1110) needed an external
pull-up to avoid unwanted transitions on the debug clock line during chip reset – thus inadvertently
setting the device in debug mode. All new revisions of all SoCs now have an internal pull-up on P2.2,
so this external component is not required.
Note 2: The RESETn pin is sensitive to noise and can cause unintended reset of the chip. For reset
lines susceptible to noise, it is recommended to add an external RC filter. Please refer to the
respective SoC datasheet and reference designs for recommended RESET circuitry. The CC
Debugger supports slow transitions on the reset line, using a 2 ms delay between any transition on the
RESET line and other transitions on the DC and/or DD lines.
6.2.2 Minimum connection for SmartRF Studio
Use the same connection as for debugging the SoC.
SWRU197G
January 2014
9/23
6.2.3 Minimum connection for SmartRF Packet Sniffer
In order to use the packet sniffer capabilities of the CC Debugger, it is also necessary to connect the
SPI bus to the SoC. The SPI interface is used by the CC Debugger for reading the captured RF
packets from the SoC.
1 2
3 4
5 6
7 8
9 10
GND
DC (Debug Clock)
RESETn
3.3V from debugger. Can
optionally be used to
power the target board
DD (Debug Data)
P2.2 SoC
P2.1
RESETn
Vdd
GND
Vdd
CC Debugger
Connector
CCxxxx
System-on-Chip
2.7 kΩ
1 nF
CSn
SCLK
MOSI
MISO
P1.7
P1.6
P1.5
P1.4
Figure 8 - Connection to SoC to enable Packet Sniffing
Note that the packet sniffer will overwrite the flash on the SoC with special packet capture firmware.
Note concerning the SPI interface to the SoC used for packet sniffing
All of the current TI RF SoCs can be configured to operate as SPI slaves, with the SPI signals (CS,
SCLK, MISO and MOSI) going to one of the USART peripherals. The packet sniffer application will
program the SoC with firmware that configures one of the USART peripherals in order to communicate
with the CC Debugger. The firmware can use any of the four possible pin configurations (USART 0 or
1, pin out alternative 1 or 2). However, only a subset is currently supported:
USART0, alt 1 USART0, alt 2 USART1, alt 1 USART1, alt 2
CC243x - - - OK
CC253x/CC254x - - - OK
CC111x OK - - OK
CC251x OK - - OK
Table 1 - Supported SPI connections (marked OK)
USART0, alt 1 USART1, alt 2
SCLK P0.5 P1.5
CS P0.4 P1.4
MOSI P0.3 P1.6
MISO P0.2 P1.7
Table 2 - USART pin out details
In case of multiple supported interfaces, the Packet Sniffer application will let you choose which
interface to use.
SWRU197G
January 2014
10/23
6.3 Connecting the CC Debugger to a Transceiver
The SPI interface on the CC Debugger can be used to interface many of the CCxxxx transceivers and
control them from SmartRF Studio. The transceivers/transmitters/receivers currently supported are:
CC1100
CC1101
CC1120
CC1121
CC1125
CC1175
CC110L
CC113L
CC115L
CC1200
CC1201
CC2500
CC2520
Note that the CC Debugger operates as the SPI Master. In a multi master system, it is necessary to
make sure the debugger output signals (DC, DD, CSn, SCLK, MOSI and RESETn) do not interfere
with the other SPI master on the board. The other SPI master would typically be the microcontroller on
the board.
The connection diagrams below show the interconnection between the debugger and the various
supported transceivers.
1 2
3 4
5 6
7 8
9 10
GND
DC
RESETn
3.3V from debugger. Can
optionally be used to
power the target board
DD
GPIO3
VREG_EN
RESETn
Vdd
GND
Vdd
CC Debugger
Connector
CC2520
CSn
SCLK
MOSI
MISO
SO
SI
SCLK
CSn
Figure 9 - CC Debugger connected to CC2520
SWRU197G
January 2014
11/23
1 2
3 4
5 6
7 8
9 10
GND
DC
RESETn
3.3V from debugger. Can
optionally be used to
power the target board
DD
GPIO2
GPIO0
RESETn
Vdd
GND
Vdd
CC Debugger
Connector
CC112x
CC1175
CC120x
CSn
SCLK
MOSI
MISO
SO
SI
SCLK
CSn
Figure 10 - CC Debugger connected to CC112x/CC1175/CC120x
1 2
3 4
5 6
7 8
9 10
GND
DC
3.3V from debugger. Can
optionally be used to
power the target board
DD
GDO2
GDO0
Vdd
GND
Vdd
CC Debugger
Connector
CC110x
CC11xL
CC2500
CSn
SCLK
MOSI
MISO
SO
SI
SCLK
CSn
Figure 11 - CC Debugger connected to CC110x/CC11xL/CC2500
SWRU197G
January 2014
12/23
6.4 Connecting the CC Debugger to a CC85xx
In order to configure the CC85xx devices (i.e. program the flash on the device) with PurePath Wireless
Configurator, the device’s SPI interface must be connected to the CC Debugger as shown in the figure
below.
1 2
3 4
5 6
7 8
9 10
GND
RESETn
3.3V from debugger. Can
optionally be used to
power the target board
RESETn
Vdd
GND
Vdd
CC Debugger
Connector
CC85XX
CSn
SCLK
MOSI
MISO
MISO
MOSI
SCLK
CSn
Figure 12 - CC Debugger connected to CC85XX
SWRU197G
January 2014
13/23
7 Using the CC Debugger
After having connected the debugger to the target device, the debugger can be powered up by
plugging in the USB cable.
The debugger will immediately start a device detection process, looking for all known devices. If no
devices are detected, the LED will be RED. If a device is detected, the LED will be GREEN.
If the LED is GREEN, it is possible to start using the debugger together with one of the supported PC
tools.
7.1 Understanding the LED
OFF
The debugger has no power or there is no valid firmware on the debugger.
Make sure the debugger is properly powered via the USB cable or try to
resurrect the debugger using the method described in chapter 8.4.
AMBER (BOTH LEDS ON)
The debugger is powered, but there is no valid firmware. Try to resurrect
the debugger using the method described in chapter 8.4.
RED LED BLINKING
The Debugger is in Boot Recovery Mode.
The debugger will briefly enter this state while the firmware is being
upgraded (see chapter 8). The board might also enter this state if the
firmware is corrupt or if the user has manually forced to board to start up in
the special “boot recovery mode” (section 8.3).
To go out of the state, reset the debugger by pressing the “Reset” button
or by power-cycling the device. If the LED is still blinking, reprogram the
unit by using the Flash Programmer Application.
RED LED ON
No device detected. This might be due to old firmware on the CC
Debugger. New devices might not be supported with the current firmware
on the debugger. Please refer to chapter 8 for the firmware upgrade
procedure.
There might also be a problem with the hardware connection. Check the
connection to device and make sure the target board is properly powered
and that Vdd on the target board is connected to pin 2 on the debug
connector. Press and release the reset button to retry the target device
detection
GREEN LED ON
The target device has been properly detected. It is possible to start using
the supported tools (see chapter 5.2).
SWRU197G
January 2014
14/23
8 Updating the Firmware
In order to make sure the CC Debugger works seamlessly with your device, it is important that it has
the latest and greatest firmware. This chapter will describe how you can upgrade the firmware
automatically from SmartRF Studio or manually from SmartRF Flash Programmer. The chapter will
also describe how to resurrect a seemingly broken debugger.
8.1 Updating the firmware automatically in SmartRF Studio
Updating the firmware on the CC Debugger can be done automatically by SmartRF Studio. Please
follow the few steps described below.
1. Start SmartRF Studio.
2. Disconnect the debugger from any target board, and connect it to the PC via the USB cable.
The debugger will appear in the list of connected devices in the lower part of the SmartRF
Studio startup panel.
Figure 13 - Auto FW upgrade
3. Double click on the item in the list, and a new window will appear.
SWRU197G
January 2014
15/23
Figure 14 - Auto FW upgrade
4. Click "Yes" and let SmartRF Studio do the rest.
Figure 15 - Auto FW upgrade
5. Click "Done" and you're good to go. The device should appear in the list of connected devices,
now showing the new firmware revision.
SWRU197G
January 2014
16/23
8.2 Updating the firmware manually in SmartRF Flash Programmer
You can also update the firmware manually using SmartRF Flash Programmer. You can use this
method if you like to have full control of the firmware image to be programmed on the controller of the
debugger (i.e. programming custom firmware or old firmware revisions).
1. Start SmartRF Flash Programmer and select the tab called “EB application (USB)”. This tab
will let you program compatible firmware on the CC Debugger (or evaluation boards) via the
USB interface (i.e. no external programming device required).
2. Disconnect the debugger from any target board, and connect it to the PC via the USB cable.
The debugger will appear in the list of connected devices. Chip type will be listed as N/A.
3. Select the flash image you want to program on the debugger. Normally, you would select:
C:\Program Files (x86)\Texas Instruments\SmartRF Tools\Firmware\CC
Debugger\cebal_fw_srf05dbg.hex1
4. Select the action “Erase, program and verify”
5. Click the “Perform actions” buttons. The programming procedure will start. Note that this will
take several seconds.
6. The CC Debugger will reappear in the list of connected devices, now showing the new
firmware revision in the device list.
7. Done!
1 Assuming default installation path of SmartRF Flash Programmer.
1
2
4
5
3
SWRU197G
January 2014
17/23
8.3 Forced boot recovery mode
If, for some reason, the firmware update fails and the CC Debugger appears to be non responsive,
there is a way to force the board to only run the bootloader and stop all further execution. In this mode,
no attempts will be made to start the firmware, and the board will only allow the user to perform a new
firmware upgrade over USB.
Disconnect the debugger from any power source and open the plastic enclosure.
Figure 16 - Internal view of CC Debugger
Short circuit the pins as depicted in Figure 17: P1.6 on the CC2511 must be connected to GND during
the power-on reset to enter boot recovery mode.
Figure 17 - Short-circuit pins for boot recovery mode
When reconnecting the USB cable, the LED will start to blink with a RED light. This indicates that the
bootloader is running and that the debugger is in boot recovery mode.
At this point, follow the same firmware programming steps as describe at the beginning of this chapter.
Please also note that the boot recovery mode can be used as a check to verify that the bootloader on
the debugger is working.
8.4 Resurrecting the CC Debugger
If the CC Debugger appears to be completely dead when applying power, there is a way to “unbrick”
the board. The method consists of reprogramming the bootloader on the debugger using the debug
connector inside the box. This will require an extra programming device.
When opening the box, locate the debug connector header next to the target connector. Connect this
header to another CC Debugger (see Figure 18) or to a SmartRF05EB (see Figure 19). When using
SWRU197G
January 2014
18/23
SmartRF05EB, connect a 10-pin flat cable from the “Ext SoC Debug” plug (P3) on the EB to the “USB
Debug” plug (P2) on the CC Debugger. The dead debugger needs power, so connect the USB cable.
Turn on the SmartRF05EB or debugger - it should detect the USB Controller (CC2511) on the
debugger.
Figure 18 - Programming the bootloader on the CC Debugger using another CC Debugger
Figure 19 - Programming the bootloader on the CC Debugger using SmartRF05EB
Next, use the SmartRF Flash Programmer to program the bootloader on the debugger. Follow these
five steps (illustrated in Figure 20 below):
SWRU197G
January 2014
19/23
1. After starting the application, first select “Program Evaluation Board” in the “What do you want
to program?” drop down box, then select the “EB Bootloader” tab.
2. In the upper left corner, select device: Use SmartRF05EB regardless of the device being used
to program the debugger. I.e. select SmartRF05EB both when you are using a CC Debugger
and when you are using a SmartRF05EB for the resurrection.
3. Next, select which flash image to program. The bootloader image is included when installing
the flash programmer and it is usually located at “C:\Program Files (x86)\Texas
Instruments\SmartRF Tools\Firmware\CC Debugger”.
4. It is also necessary to give the debugger a unique ID number – any 4 digit number will work.
This number is used by the driver on the PC to uniquely identify devices if more than one
debugger is connected at the same time.
5. Select “Erase, program and verify”
6. Press the “Perform Actions” buttons. The firmware upgrade takes a few seconds.
Figure 20 - SmartRF Flash Programmer - Updating the bootloader
Once the bootloader is programmed, you might be asked to install a USB driver on the PC. Just follow
the same procedure as when the debugger was connected to the PC the first time (see chapter 5).
The RED LED on the debugger should now be blinking, indicating that the bootloader is running but
that no application has been loaded. If the RED LED is off, there is probably something wrong with the
hardware. The debugger firmware can now be programmed directly over USB by following the
procedure in either chapter 8.1 or 8.2.
1
2
4
5
6
3
SWRU197G
January 2014
20/23
9 Troubleshooting
Q1 Help! The debugger does not detect the SoC. What should I do?
A1 There are several things to check.
Upgrade the firmware. Many CC Debuggers have old firmware that will not automatically
detect newer devices, like CC2543/44/45. Refer to chapter 8 for further instructions.
Check that the cable is oriented correctly and that the pins are connected to the right signals
on the debugger.
Check that the debugger gets power from the target (i.e proper connection of the Target
Voltage Sense signal). This is required in order for the level converters on the debugger to
work.
Check that ground on the target is connected to ground on the debugger. This is normally
achieved through the target connector. Note that since the ground planes are the same, please
be aware of any adverse effects caused by different ground planes on the target and on the
PC (grounded via USB cable).
Check that the cable is not broken. Especially the small flat cable is prone to stop working if
handled a lot or being bent and stretched beyond normal operating conditions.
Q2 Does IAR EW8051 support the CC Debugger as debugging device?
A2 Yes – but make sure you have an up to date version of IAR with the new debug driver plug-in
from Texas Instruments. You will need version 7.51A or higher.
Q3 Can the debugger be used as an interface to the RF device for packet sniffing?
A3 Yes, this is supported for selected devices. Use the same interconnection as in the diagrams in
chapter 6.
Q4 Is there a way to remove the plastic casing without damaging it?
A4 Yes, there is. Hold the bottom piece of the plastic in one hand. With your other hand, take a
firm grip on the long lateral sides of the upper part of the plastic and squeeze while moving the
upper part away from the bottom. The two parts should separate from each other.
To reassemble the plastic, just click the two pieces together.
Q5 Is this a Mini or a Micro USB plug?
A5 Mini USB type A.
Q6 I have two CC Debuggers with the same EB ID, and I’m unable to use them together. What do
I do?
A6 Two EBs with the same EB ID cause a driver conflict. The solution is to resurrect one of the
CC Debuggers and give it a new EB ID.
1. Connect one CC Debugger to your computer
2. Connect the CC Debugger you want to resurrect to a separate power source (e.g. another
computer or a USB charger).
3. Follow the steps for resurrecting the CC Debugger, described in section 8.4.
SWRU197G
January 2014
21/23
10 Schematics
See last page or refer to the complete bundle including gerber files, schematics and layout here [3].
11 References
[1] CC-Debugger product web site
www.ti.com/tool/cc-debugger
[2] CC-Debugger Quick Start Guide
www.ti.com/lit/swru196
[3] CC-Debugger Layout and Schematics
www.ti.com/lit/zip/swrr105
[4] Cebal – CCxxxx Development Tools USB Driver for Windows x86 and x64
www.ti.com/lit/zip/swrc212
[5] DN304 – CCxxxx Development Tools USB Driver Installation Guide
www.ti.com/lit/swra366
[6] Texas Instruments Support
support.ti.com
[7] Texas Instruments Low Power RF Online Community
www.ti.com/lprf-forum
[8] SmartRF Studio
www.ti.com/tool/smartrftm-studio
[9] SmartRF Flash Programmer
www.ti.com/tool/flash-programmer
[10] SmartRF Packet Sniffer
www.ti.com/tool/packet-sniffer
[11] SmartRF Flash Programmer User Manual
www.ti.com/lit/swru069
[12] PurePath Wireless Configurator
www.ti.com/tool/purepath-wl-cfg
[13] PurePath Wireless Commander
www.ti.com/tool/purepath-wl-cmd
[14] SoC Battery Board product web site
www.ti.com/tool/soc-bb
[15] IAR Embedded Workbench for 8051
www.iar.com/ew8051
SWRU197G
January 2014
22/23
12 Document History
Revision Date Description/Changes
G 2013-01-15 Chapter 9: Added how to solve problem with CC Debuggers having the same EB ID.
F 2013-06-20
CC1100, CC1101, CC2500, and CC1200 are now also supported by the debugger.
Corrected typo in chapter 6.2.1: DD to pin P2.1 (not P2.2) and DC to pin P2.2 (not
P2.1) for all SoCs except CC2544 and CC2545. Added debug pin-out for CC2545.
Corrected pin-out in figure 10 and 11 (DC to GPIO2/GDO2, DD to GPIO0/GDO0).
Added link to layout and gerber files.
E 2012-03-01 Corrected typo in chapter 6.2.1. Special debug pin-out for CC2544, not CC2543.
D 2012-02-22
Added information about connections for programming of CC85xx devices. Updated
info about connections for supported transceivers. Updated driver installation
information and added more details about firmware upgrade. Describe what it means
when the LED is amber. Updated reference links.
C 2010-09-19 Added more information about how to upgrade the firmware.
B 2010-02-25
Fixed erroneous description of interconnection between CC Debugger and CC2520.
The VREG_EN signal shall be connected to pin 4 on the target connector, not pin 3.
A 2010-02-11
Added more details about the powering options.
Added more information about connection options.
- 2009-05-05 First revision.
EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS
Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:
The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims
arising from the handling or use of the goods.
Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from
the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO
BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH
ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES.
Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This
notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety
programs, please visit www.ti.com/esh or contact TI.
No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or
combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and
therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
REGULATORY COMPLIANCE INFORMATION
As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal
Communications Commission (FCC) and Industry Canada (IC) rules.
For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT,
DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer
use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency
interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will
be required to take whatever measures may be required to correct this interference.
General Statement for EVMs including a radio
User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and
power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local
laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this
radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and
unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory
authorities, which is responsibility of user including its acceptable authorization.
For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant
Caution
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause
harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the
equipment.
FCC Interference Statement for Class A EVM devices
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial
environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the
instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to
cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment
generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause
harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If
this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and
on, the user is encouraged to try to correct the interference by one or more of the following measures:
• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.
For EVMs annotated as IC – INDUSTRY CANADA Compliant
This Class A or B digital apparatus complies with Canadian ICES-003.
Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the
equipment.
Concerning EVMs including radio transmitters
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this
device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired
operation of the device.
Concerning EVMs including detachable antennas
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain
approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should
be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.
This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum
permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain
greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.
Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.
Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de
l'utilisateur pour actionner l'équipement.
Concernant les EVMs avec appareils radio
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est
autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout
brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.
Concernant les EVMs avec antennes détachables
Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain
maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à
l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente
(p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.
Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel
d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans
cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
【Important Notice for Users of EVMs for RF Products in Japan】
This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan
If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:
1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and
Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of
Japan,
2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this
product, or
3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with
respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note
that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.
Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan
http://www.tij.co.jp
【無線電波を送信する製品の開発キットをお使いになる際の注意事項】
本開発キットは技術基準適合証明を受けておりません。
本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。
1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。
なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。
上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。
日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル
http://www.tij.co.jp
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
EVALUATION BOARD/KIT/MODULE (EVM)
WARNINGS, RESTRICTIONS AND DISCLAIMERS
For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished
electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in
laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks
associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end
product.
Your Sole Responsibility and Risk. You acknowledge, represent and agree that:
1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug
Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees,
affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.
2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable
regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates,
contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical)
between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to
minimize the risk of electrical shock hazard.
3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL,
CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine
and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable
safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to
perform as described or expected.
4. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials.
Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the
user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and
environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact
a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the
specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or
interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the
load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures
greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include
but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the
EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please
be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable
in electronic measurement and diagnostics normally found in development environments should use these EVMs.
Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives
harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in
connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims
arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.
Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such
as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices
which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate
Assurance and Indemnity Agreement.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated
Material Safety Data Sheet
A-4 Hardener
1
1. Chemical Product and Company Identification
Product Name: A-4 Hardener
Product Description: Liquid Epoxy Hardener
Company: Cast-Coat, Inc. 354 West Street W. Bridgewater, MA 02379
Telephone: 1-800-527-4502 or 1-508-587-4502
Emergency Contact: Chemtrec: (domestic) 1-800-424-9300 (international) 1-703-527-3887
2. Composition / Information on Ingredients
Components CAS # %
3,3’-oxybis(ethyleneoxy)bis(propylamine) 4246-51-9 98
2-(2-(3-aminopropoxy)ethoxy)ethanol 112-33-4 1
3. Hazards Identification
Eye Contact: Corrosive to the eyes and may cause severe damage, including blindness. Vapors may be
irritating.
Skin Contact: Corrosive to the skin. May cause skin sensitization. May be toxic if absorbed through the skin.
Inhalation: Vapors / mists may be corrosive to the upper respiratory tract. Repeated or prolonged exposure
can result in lung damage.
Ingestion: Not expected to be a relevant route of exposure, however, corrosive and may cause severe and
permanent damage to the mouth, throat and stomach.
Aggravated Medical Conditions: Pre-existing eye, skin and respiratory disorders may be aggravated by
exposure to this product. Pre-existing respiratory and skin allergies may
be increased from exposure to this product.
4. First Aid Measures
General Advise: Good practice requires that gross amounts of any chemical be removed from the skin as
soon as practical, especially before eating or smoking.
Eye Contact: Immediately flush eyes with water for at least 30 minutes. Seek medical attention.
Skin Contact: Remove contaminated clothing and wipe excess from skin. Promptly wash with soap and
water for 15 minutes. Seek medical attention if irritation persists.
Inhalation: Move to fresh air and provide oxygen if necessary.
Ingestion: Rinse mouth with water. If conscious, give small quantities of water to drink. Do not
induce vomiting. If vomiting occurs, keep victim’s head below hips to prevent vomit from
entering lungs. Seek medical attention.
Material Safety Data Sheet
A-4 Hardener
2
5. Fire-Fighting Measures
Flashpoint: 139’ C
Autoignition Temperature: 260’ C
Flammability limits in air - lower: 1.1 % (V)
Flammability limits in air – upper: 4.5 % (V)
Extinguishing Media: Carbon dioxide (CO2), dry chemical, water fog or “alcohol foam“
Protective Equipment: Do not enter confined space without full bunker gear (helmet with
face shield, bunker coats, gloves and rubber boots). Use self
contained, positive pressure breathing apparatus.
Specific Hazards: Decomposition and combustion products may be toxic. Containers
exposed to intense heat should be cooled with water to avoid vapor
pressure buildup.
6. Accidental Release Measures
Personal Protection: Eyes - Wear splash proof chemical goggles.
Skin - Wear impervious gloves and protective clothing to prevent skin
contact.
Inhalation: Use NIOSH approved respirator suitable for organic vapors.
Environmental Concerns: Construct a dike to prevent from entering sewers, rivers and waterways.
Clean Up: Soak up residue with absorbent material and shovel into non leaking containers.
7. Handling and Storage
Handling: Good practice requires that gross amounts of any chemical be removed from the skin as soon as
practical, especially before eating or smoking. Wear splash proof chemical goggles, impervious
gloves and protective clothing to prevent skin contact. Emergency eye wash stations should be
readily accessible.
Ventilation: Provide effective mechanical exhaust. Wear NIOSH approved respirator suitable for organic
vapors in the absence of ventilation.
Storage: Store in a cool, dry location in tightly sealed containers. Keep away from open flame and high
temperatures. Do not pressurize containers to empty them.
Material Safety Data Sheet
A-4 Hardener
3
8. Exposure Controls/Personal Protection
Engineering Controls: Provide effective mechanical exhaust to ensure concentration levels are
below exposure limits.
Respiratory Protection: Wear NIOSH approved air purifying respirator in the absence of ventilation.
Eye Protection: Wear safety goggles or safety glasses with side shields. Emergency eye
wash stations should be readily accessible.
Skin Protection: Wear chemical resistant impervious gloves and protective clothing such as
an apron to prevent skin contact.
9. Physical and Chemical Properties
Appearance: Liquid
Color: Clear to Amber
Odor: Amine
Specific Gravity: 0.98
Vapor Pressure: < 1.00 mmHg at 20’ C
Solubility in Water: Miscible
Flashpoint: 139’ C
VOC Content: < 0.1% by weight
10. Stability and Reactivity
Stability: Stable under normal conditions.
Materials to Avoid: Avoid heat, flame and strong oxidizing agents.
Hazardous Decomposition Products: Carbon monoxide, Carbon dioxide, Nitrous oxide.
Comments: Hazardous polymerization will not occur.
11. Toxicological Information
3,3’-oxybis(ethyleneoxy)bis(propylamine), 2-(2-(3-aminopropoxy)ethoxy)ethanol:
Oral: LD50 3,160 mg / kg species: rat
Dermal: LD50 > 2,150 mg / kg species: rat
Material Safety Data Sheet
A-4 Hardener
4
12. Ecological Information
Inherent Biodegradability: Zahn-Wellens - < 20 % (Difficult to eliminate)
Golden Orfe, Static 96 hour LC50 - 220-460 mg / L (Practically nontoxic)
Daphnid, Static 48 hour EC50 - 220 mg / L (Practically nontoxic)
Acute algal toxicity, 72 hour EC50 - 69 mg / L (Test rating not found)
Toxicity to bacteria - EC50, (17H) 220 mg / L (Test rating not found)
13. Disposal Considerations
Comments: Dispose of in accordance with federal, state and local regulations. Incinerate or bury in a RCRA
licensed facility. Do not discharge into drains, waterways, sewers, or groundwater.
RCRA: D002
14. Transportation Information
DOT: UN 2735
Amines, Liquid, Corrosive, N.O.S.
(Trioxatridecanediamine)
8, II
ERG - 153
IMDG: UN 2735
Amines, liquid, Corrosive, N.O.S.
(Trioxatridecanediamine)
8, II
IATA: UN 2735
Amines, Liquid, Corrosive, N.O.S.
(Trioxatridecanediamine)
8, II
15. Regulatory Information
TSCA : All ingredients are listed or exempt
HSC Classification: Irritating material, Sensitizing material, Corrosive material
Sara Section 312 Hazard Classification: Chronic health hazard, Acute health hazard
Sara Section 313: None
California prop. 65: None
Hazard Ratings: Health Fire Reactivity
3 1 0
WHMIS Classification: D-2A, D-2B, Class E – Corrosive material
Material Safety Data Sheet
A-4 Hardener
5
16. Other Information
All information appearing herein is based upon data obtained from the manufacturer and / or recognized
technical sources. While the information is believed to be accurate, Cast-Coat makes no representations as to
its accuracy or sufficiency. Conditions of use are beyond the control of Cast-Coat and therefore users are
responsible to verify this data under their own operating conditions to determine whether the product is suitable
for their purposes. Cast-Coat, Inc. assumes no responsibility for injury from the use of the product described
herein.
Prepared by: Robert S. Lothrop
Title: Technical Director
Revision: 04/18/2012
1 / 5
Revision Date November 2011
Revision 3
SDS No. 16447
SAFETY DATA SHEET
ARALDITE FUSION HARDENER
SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING
1.1. Product identifier
Product name ARALDITE FUSION HARDENER
Product No. 808300, 808409, 808416, 808423
1.2. Relevant identified uses of the substance or mixture and uses advised against
1.3. Details of the supplier of the safety data sheet
Supplier BOSTIK LIMITED
COMMON ROAD
STAFFORD
STAFFORDSHIRE
ST16 3EH
+44 1785 272625
sds.uk@bostik.com
1.4. Emergency telephone number
SECTION 2: HAZARDS IDENTIFICATION
2.1. Classification of the substance or mixture
Classification (1999/45/EEC) Xi;R36/38.
2.2. Label elements
Labelling
Irritant
Risk Phrases
R36/38 Irritating to eyes and skin.
Safety Phrases
S2 Keep out of the reach of children.
S24/25 Avoid contact with skin and eyes.
S26 In case of contact with eyes, rinse immediately with plenty of water and seek
medical advice.
S36/37/39 Wear suitable protective clothing, gloves and eye/face protection.
S46 If swallowed, seek medical advice immediately and show this container or
label.
S56 Dispose of this material and its container to hazardous or special waste
collection point.
2.3. Other hazards
SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS
3.2. Mixtures
2 / 5
SDS No. 16447
ARALDITE FUSION HARDENER
1,8-DIAZABICYCLO[5.4.0]UNDEC-7-ENE 1-5%
CAS-No.: 6674-22-2 EC No.: 229-713-7
Classification (67/548/EEC)
Xn;R22.
C;R34.
R52/53.
Classification (EC 1272/2008)
Not classified.
BIS(2-DIMETHYLAMINOETHYL)ETHER 1-5%
CAS-No.: 3033-62-3 EC No.: 221-220-5
Classification (67/548/EEC)
T;R23/24.
Xn;R22.
C;R35.
Classification (EC 1272/2008)
Not classified.
TRIETHYLENETETRAMINE, PROPOXYLATED 5-10%
CAS-No.: 26950-63-0 EC No.: 500-055-5
Classification (67/548/EEC)
Xi;R38,R41.
Classification (EC 1272/2008)
Not classified.
The Full Text for all R-Phrases and Hazard Statements are Displayed in Section 16.
SECTION 4: FIRST AID MEASURES
4.1. Description of first aid measures
Inhalation
Remove victim immediately from source of exposure. Move the exposed person to fresh air at once. Get medical attention.
Ingestion
DO NOT induce vomiting. Get medical attention immediately.
Skin contact
Promptly wash contaminated skin with soap or mild detergent and water. Promptly remove clothing if soaked through and wash as above.
Get medical attention if irritation persists after washing.
Eye contact
Rinse the eye with water immediately. Continue to rinse for at least 15 minutes and get medical attention.
4.2. Most important symptoms and effects, both acute and delayed
4.3. Indication of any immediate medical attention and special treatment needed
SECTION 5: FIREFIGHTING MEASURES
5.1. Extinguishing media
Extinguishing media
This product is not flammable. Use fire-extinguishing media appropriate for surrounding materials. Use: Foam, carbon dioxide or dry
powder.
5.2. Special hazards arising from the substance or mixture
5.3. Advice for firefighters
SECTION 6: ACCIDENTAL RELEASE MEASURES
6.1. Personal precautions, protective equipment and emergency procedures
6.2. Environmental precautions
6.3. Methods and material for containment and cleaning up
3 / 5
SDS No. 16447
ARALDITE FUSION HARDENER
Absorb in vermiculite, dry sand or earth and place into containers.
6.4. Reference to other sections
SECTION 7: HANDLING AND STORAGE
7.1. Precautions for safe handling
Avoid spilling, skin and eye contact.
7.2. Conditions for safe storage, including any incompatibilities
Store at moderate temperatures in dry, well ventilated area.
7.3. Specific end use(s)
SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION
8.1. Control parameters
Ingredient Comments
WEL = Workplace Exposure Limits
8.2. Exposure controls
Protective equipment
Engineering measures
Provide adequate ventilation.
Respiratory equipment
If ventilation is insufficient, suitable respiratory protection must be provided.
Hand protection
Protective gloves must be used if there is a risk of direct contact or splash.
Eye protection
Wear splash-proof eye goggles to prevent any possibility of eye contact.
Hygiene measures
Wash promptly if skin becomes contaminated. Wash at the end of each work shift and before eating, smoking and using the toilet.
SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES
9.1. Information on basic physical and chemical properties
Appearance Liquid
Colour Light (or pale). Yellow.
Odour Slight odour.
Solubility Insoluble in water
Relative density 1.14
Flash point (°C) 145 PM Closed cup.
9.2. Other information
SECTION 10: STABILITY AND REACTIVITY
10.1. Reactivity
10.2. Chemical stability
Stable under normal temperature conditions.
10.3. Possibility of hazardous reactions
10.4. Conditions to avoid
10.5. Incompatible materials
10.6. Hazardous decomposition products
4 / 5
SDS No. 16447
ARALDITE FUSION HARDENER
SECTION 11: TOXICOLOGICAL INFORMATION
11.1. Information on toxicological effects
Skin contact
Irritating to skin.
Eye contact
Irritating to eyes.
SECTION 12: ECOLOGICAL INFORMATION
Ecotoxicity
Not regarded as dangerous for the environment.
12.1. Toxicity
12.2. Persistence and degradability
12.3. Bioaccumulative potential
12.4. Mobility in soil
12.5. Results of PBT and vPvB assessment
12.6. Other adverse effects
SECTION 13: DISPOSAL CONSIDERATIONS
13.1. Waste treatment methods
Dispose of waste and residues in accordance with local authority requirements.
SECTION 14: TRANSPORT INFORMATION
General The product is not covered by international regulation on the transport of dangerous goods (IMDG, IATA,
ADR/RID).
14.1. UN number
Not applicable.
14.2. UN proper shipping name
Not applicable.
14.3. Transport hazard class(es)
Transport Labels
No transport warning sign required.
14.4. Packing group
Not applicable.
14.5. Environmental hazards
Environmentally Hazardous Substance/Marine Pollutant
No.
14.6. Special precautions for user
Not applicable.
14.7. Transport in bulk according to Annex II of MARPOL73/78 and the IBC Code
Not applicable.
SECTION 15: REGULATORY INFORMATION
15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture
Statutory Instruments
The Chemicals (Hazard Information and Packaging for Supply) Regulations 2009 (S.I 2009 No. 716). Control of Substances Hazardous to
Health.
5 / 5
SDS No. 16447
ARALDITE FUSION HARDENER
Approved Code Of Practice
Safety Data Sheets for Substances and Preparations. Classification and Labelling of Substances and Preparations Dangerous for Supply.
Guidance Notes
Workplace Exposure Limits EH40. Introduction to Local Exhaust Ventilation HS(G)37. CHIP for everyone HSG(108).
15.2. Chemical Safety Assessment
SECTION 16: OTHER INFORMATION
General information
This product should be used as directed by Bostik Ltd. For further information consult the product data sheet or contact Technical Services.
Information Sources
This safety data sheet was compiled using current safety information supplied by distributor of raw materials.
Revision Comments
NOTE: Lines within the margin indicate significant changes from the previous revision. This safety data sheet supersedes all previous
issues and users are cautioned to ensure that it is current. Destroy all previous data sheets and if in doubt contact Bostik Limited.
Issued By Approved LJ
Revision Date November 2011
Revision 3
Date September 2007
Risk Phrases In Full
R34 Causes burns.
R35 Causes severe burns.
R22 Harmful if swallowed.
R52/53 Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.
R38 Irritating to skin.
R41 Risk of serious damage to eyes.
R23/24 Toxic by inhalation and in contact with skin.
ICOMP
VCOMP
VADJ
Q1
Q2 L
10μH
C1
10μF
C10
10μF
R1
40mΩ
adaptateur secteur
R2
20mΩ
R4
2.2Ω
R5
100K
R8
130k
1%
R9
10.2k, 1%
C2
0.1μF
C4
0.1μF
C3
1μF
6.8nF
C9
1μF
C8
0.1μF
ISL6251
ISL6251A
C5
10nF
flottant
4.2V/CELL
R6
10k
C7
1μF
R10
4.7Ω
BATSCL
SDL
Une entrée / D
GND
entrée de 5.15A
limites actuelles
3 cellules
hôte
R11, R12, R13
10k
D1
en option
VDDP
D2
D3
R7: 100Ω
CSIP
RCID
BOOT
UGATE
PHASE
LGATE
PGND
CSOP
Cson
cellules
GND
C11
3300pF
D4
SYSTÈME DE CHARGE
DCIN
ACSET
VDDP
VDD
ACPRN
Chlim
FR
ICM
ACLIM
VREF
ICOMP
VCOMP
VADJ
R3: 18Ω
C6
ISL6251
ISL6251A
batterie
paquet
BAT +
SCL
SDL
Temp
BATBattery
BATVCC
sortie
Sortie D / A
Une entrée / D
DIGITAL
contribution
AVDD / VREF
CSIP
RCID
BOOT
UGATE
PHASE
LGATE
PGND
CSOP
Cson
cellules
GND
FIGURE 13. ISL6251, ISL6251A circuit d'application typique avec micro-contrôleur
ISL6251, ISL6251A
12 FN9202.2
10 mai 2006
Principe de fonctionnement
introduction
Le ISL6251, ISL6251A comprend toutes les fonctions
nécessaire de charger 2 à 4 cellules Li-Ion et Li-polymère
batteries. Une haute efficacité convertisseur abaisseur synchrone est
utilisé pour contrôler la tension et le courant jusqu'à Charing Charing
Les taux de 10A. Le ISL6251, ISL6251A a courant de limitation d'entrée
et entrées analogiques pour régler le courant de charge et de la charge
tension; Chlim entrées sont utilisées pour contrôler le courant de charge
VADJ et les intrants sont utilisés pour contrôler la tension de charge.
Le ISL6251, ISL6251A charger la batterie avec une constante
courant de charge, fixé par Chlim entrée, jusqu'à ce que la tension de la batterie
se dresse à la tension de charge programmé fixé par entrée VADJ;
puis le chargeur commence à fonctionner à une tension constante
de façon responsable.
L'entrée EN permet l'arrêt du chargeur à travers le
commande à partir du micro-contrôleur. Il utilise également un taux SÉCURITÉ
Lorsque le chargeur de batterie est en arrêt extrêmement chaud
Conditions. Le montant de la personnalisation de la visite actuelle est sur le
Sortie de l'ICM. La figure 11 montre le bloc fonctionnel IC
organigramme.
Le convertisseur abaisseur synchrone utilise à canal N externe
MOSFET à convertir la tension d'entrée à l'requis
courant Charing Charing et de la tension. La figure 12 montre l'
ISL6251, ISL6251A circuit typique d'application de Charing
Charing courant et tension fixe à des valeurs spécifiques. la
circuit typique d'application de la figure 13 montre les
ISL6251, ISL6251A circuit typique de l'application qui utilise la
Réglez le micro-contrôleur de courant Charing fixé par Chlim
entrée. La tension aux Chlim et la valeur de R1 définit le
courant Charing. Le convertisseur DC / DC génère l'
des signaux de commande pour entraîner deux MOSFET à canal N à l'extérieur
course la tension et courant défini par le ACLIM, Chlim,
Cellules et entrées VADJ.
Le ISL6251, ISL6251A dispose la boucle de régulation de tension
(VCOMP) et deux boucles de régulation de courant (ICOMP). la
Boucle de régulation de la tension de VCOMP Moniteur Cson pour assurer
que sa tension ne dépasse jamais la tension et régule l'
tension de charge de la batterie fixé par VADJ. Le ICOMP courant
boucles de régulation de course le courant batterie Charing
Livré à la batterie pour s'assurer qu'elle ne dépasse jamais la
Charing limites actuelles fixées par Chlim; et le courant ICOMP
des boucles de régulation de course également le courant d'entrée tiré à partir de
l'adaptateur secteur afin de s'assurer qu'il ne dépasse jamais l'entrée
limite actuelle fixée par ACLIM, et évaluer la panne du système de pré-vente
et AC de surcharge de l'adaptateur.
contrôle PWM
Le ISL6251, ISL6251A emploie le PWM à fréquence fixe
Architecture de courant de commande de mode avec la charge d'alimentation vers l'avant
fonction. La fonction de feed-forward maintient constant l'
gain de modulateur de 11 pour réaliser la régulation de ligne rapide cum
Buck tension d'entrée change. Lorsque la charge de la batterie
tension s'approche de la tension d'entrée, le convertisseur DC / DC
décrochage fonctionne à la mode, où il est la minuterie de prévente
la fréquence de tomber dans la fréquence audible
gamme. Il peut atteindre cyclique jusqu'à 99,6%.
Taux de pré-amplification de la tension de bus de système, la batterie
Lorsque chargé d'opérer dans la norme mode-Buck CSOPCSON
DROPS ci-dessous 4.25mV. Une fois en mode buck-standard,
hystérésis n'autorise pas le fonctionnement synchrone de la
Convertisseur DC / DC jusqu'à Rises CSOP-dessus Cson 12.5mV.
En route gâté adaptatif système est utilisé pour contrôler les morts
temps entre deux Switcher. Les morts circuit de commande de temps
Surveillez la sortie de LGATE et empêche la face supérieure
MOSFET de Turning jusqu'à LGATE est entièrement éteint, la prévention
croix-conduction et flèche à l'. Pour les morts
circuit de temps pour travailler correctement, il doit être le faible résistance,
faible chemin de l'inductance du conducteur de MOSFET LGATE
corrompu, et à partir de la source de MOSFET à PGND. la
diode Schottky externe est entre les broches et BOOT VDDP
pings à garder le condensateur d'amorçage partagée.
Réglage de la tension de la batterie règlement
Le ISL6251, ISL6251A utilise la haute précision garni
d'intervalle de bande de référence de tension à la batterie de Charing de course
tension. L'entrée VADJ Régler la tension de sortie du chargeur,
et la tension de commande de VADJ peut varier de 0 à VREF,
fournir la plage de réglage de 10% (de 4,2 V-5% de taux
4.2V +5%) sur le régulateur de tension Cson. Dans l'ensemble, la tension
précision meilleure que 0,5% est atteint.
La tension de terminaison de la batterie par des cellules est la fonction de l'
Basseterre chimie. Consultez le taux des fabricants de batteries
déterminer cette tension.
• Float VADJ pour régler la tension de la batterie = 4.2V × VCSON
nombre de cellules,
• Connectez-vous à VREF VADJ de mettre 4.41V nombre de × de cellules,
• Brancher à la masse à mettre en VADJ 3.99V nombre de × de la
cellules.
Jump, la tension maximale de la batterie de 17.6V peut être atteint.
Notez que l'autre tension de charge de la batterie peut être réglée par
Raccordement du diviseur résistif de VREF à la terre. la
diviseur à résistances doivent être dimensionnés pour attirer plus au nord que 100μA
de VREF; ou connectez la source de tension à basse impédance comme
Le convertisseur N / A dans le micro-contrôleur. le programmée
tension de la batterie par la cellule peut être déterminé par ce qui suit
équation:
Le diviseur de résistance externe de VREF définit la tension au
VADJ selon:
VCELL VVADJ = 0175 + 3.99V
VVADJ VREF
Rbot_VADJ | | 514k
Rtop_VADJ | | + 514k Rbot_VADJ | | 514k
= × ------------------------------------------------ -------------------------------------------------
ISL6251, ISL6251A
13 FN9202.2
10 mai 2006
Où Rbot_VADJ et Rtop_VADJ sont des résistances externes à
VADJ. Précision Taux de minimiser la perte due à l'interaction avec
Diviseur de résistance interne de VADJ, S'assurer que la résistance en courant alternatif
En regardant en arrière dans le diviseur de résistance externe est inférieure à 25k.
Connectez cellules cum présentés dans le tableau 1 pour charger 2, 3 ou 4 +
cellules. Lorsque Charing autres chimies cellulaires, utiliser des cellules à
sélectionner la plage de tension de sortie du chargeur. le interne
gm1 amplificateur d'erreur maintient la régulation de tension. la tension
amplificateur d'erreur est compensée à VCOMP. le composant
valeurs indiquées dans la figure 12 du fournisseur approprié pour tableaux de bord
la plupart des applications. La rémunération individuelle de la tension
réglementation et des boucles de courant régulation permet de optimale
compensation.
Réglage de la limite de courant de charge de batterie
L'entrée de Chlim règle le courant maximum de Charing. la
courant défini par la résistance de détection de courant relie entre
CSOP et Cson. La tension différentielle à grande échelle entre les
CSOP et Cson est 165mV pour Chlim = 3,3 V, le saut
Charing courant maximal est 4.125A pour un 40mΩ Sensing
résistance. Autre charge de la batterie seuil de détection de courant
valeurs peuvent être définies par le diviseur résistif de Connexion
VREF à la masse ou 3,3 V, ou en connectant la faible impédance
source de tension comme un convertisseur N / A dans le micro-contrôleur.
Contrairement VADJ et ACLIM, Chlim n'a pas le interne
réseau diviseur à résistances. Le courant seuil de limite de charge est
proposée par:
Pour régler le courant de charge d'entretien pour le chargeur muet, le
résistance en série avec les interrupteurs T3 (figure 12) commandé par
Le micro-contrôleur est connecté à la broche de terre Chlim.
Le courant de charge de maintien est déterminé par:
Lorsque la tension est inférieure à 88mV Chlim (typique), il ll
désactiver le chargeur de batterie. Au moment de choisir le courant
résistance de détection, notez que la chute de tension dans la
Causes outre la détection résistance dissipation de puissance, réduisant
efficacité. Cependant, pour réduire la Chlim de réglage de tension
tension à travers la résistance de détection de courant R1 Will dégradé
précision en raison du signal plus faible à l'entrée du courant
Amplificateur de lecture. Il est le compromis entre précision et
dissipation de puissance. Un filtre passe-bas est recommandé de
Mise à éliminer le bruit. Connecter la résistance à la CSOP
broches au lieu de les pings Cson, cum la broche CSOP a faible
courant de polarisation et moins d'influence sur le courant-sens Précision
La précision et le régulateur de tension.
Réglage de l'entrée limites actuelles
Le courant total d'entrée de l'adaptateur secteur, ou d'un autre DC
la source, est fonction du courant d'alimentation du système et de la
courant par batterie Charing. L'entrée actuelle limites régulateur
le courant d'entrée en réduisant le courant de Charing, Lorsque le
courant d'entrée dépasse l'entrée imparti point actuel.
Actuelle du système varie normalement usure sperme du système
sont alimentés vers le haut ou vers le bas. Sans réglementation actuelle d'entrée,
la source doit être capable de fournir le maximum du système
et le courant maximal d'entrée du chargeur
simultanément. En utilisant le courant d'entrée limité, le courant
Capacité de l'adaptateur secteur peut être réduit, ce qui réduit
le coût du système.
Le ISL6251, ISL6251A limite le courant de charge de la batterie
Lorsque le seuil de limitation du courant d'entrée est dépassée, assurant
le chargeur de batterie ne se charge pas en bas de l'adaptateur secteur
tension. Ce règlement courant d'entrée constante permet à l'
adapter entièrement dans le système d'alimentation et de la pré-AC
adaptateur de surcharge et de s'écraser le bus système.
L'amplificateur interne compare la tension entre gm3
CSIP et RCID au courant d'entrée tension de seuil limite
fixé par ACLIM. Connectez taux ACLIM REF, Float et GND pour
la pleine échelle tension d'entrée de seuil limite de 100 mV,
75mV et 50mV, respectivement, ou utiliser le diviseur résistif de
VREF à la masse pour définir la limite de courant d'entrée cum la suivante
équation:
Le diviseur de résistance externe de VREF définit la tension au
ACLIM de fonction:
Où Rbot_ACLIM et Rtop_ACLIM sont des résistances externes à
ACLIM. Précision Taux de minimiser la perte due à l'interaction avec
Diviseur de résistance interne de ACLIM, S'assurer que la résistance en courant alternatif
En regardant en arrière dans le diviseur de résistance externe est inférieure à 25k.
Lors du choix de la résistance de détection de courant, noter que la
chute de tension dans cette résistance provoque plus de puissance
la dissipation, ce qui réduit l'efficacité. Le courant de l'adaptateur secteur
Précision sincère est très important. Utilisez la tolérance de 1%
résistance de détection de courant. La plus grande précision de ± 3% est
obtenue avec 100 mV de mesure du courant pour la tension de seuil
ACLIM = VREF, mais il a la dissipation de puissance la plus élevée. pour
exemple, il a 400mW dissipation de puissance nominale pour 4A AC
la personnalisation et 1W Sensing maillage de résistance doivent être utilisés. ± 4%
et ± 6% La précision peut être obtenue avec 75mV et 50mV
sens de courant tension de seuil pour ACLIM = flottant et
ACLIM = GND, respectivement.
Programmation du nombre de cellules TABLEAU 1.
NOMBRE cellules CELL
DMV 4
GND 3
float 2
ICHG
165mV
R1
-------------------
VCHLIM
3.3V
= ---------------------
ICHG
165mV
R1
-------------------
VCHLIM, filet
3.3V
= ---------------------------------------
⎟ ⎠
⎞
⎜ ⎝
⎛ = V + 0,050
VREF
0,05
R
I 1 ACLIM
2
contribution
VACLIM VREF
Rbot_ACLIM | | 152k
Rtop_ACLIM | | 152k + Rbot_ACLIM | | 152k
= × ------------------------------------------------------------------------------------------------------
ISL6251, ISL6251A
14 FN9202.2
10 mai 2006
Un filtre passe-bas est d'éliminer la commutation suggéré
bruit. Connecter la résistance à RCID broches au lieu de broches CSIP
parce RCID a pings inférieurs courant Bias et moins influents
sur la précision de mesure du courant.
Personnalisation de détection AC
Connectez la tension de l'adaptateur secteur à travers la résistance diviseur de
ACSET Lorsque l'alimentation secteur est disponible pour détecter, cum montre
Figure 12. ACPRN est une sortie à drain ouvert est élevée et lorsque
ACSET est inférieure à Vth, RISE, et est actif bas Quand ACSET
ci-dessus Ve, tomber. Ve, RISE et Ve, automne sont donnés par:
Où est l'entrée de courant et de l'hystérésis Bias Ihys ACSET
VACSET = 1.24V (min), 1.26V (typ) et 1.28V (max). la
hystérésis est IhysR8, Où Ihys = 2.2μA (min), 3.4μA (typ)
et 4.4μA (max).
mesure de courant
Utilisez ICM pour contrôler le courant d'entrée détecté Être travers
CSIP et RCID. La plage de tension de sortie est de 0 à 2,5 V. la
Tension de ICM est proportionnelle à la chute de tension aux bornes de
CSIP et RCID, et est donnée par l'équation suivante:
de INPUT Où est le courant continu tirée de l'adaptateur secteur.
ICM a ± 3% Précision.
Un filtre passe-bas connecté à l'ICM est utilisé pour délivrer en sortie du filtre
Le bruit de commutation.
Régulateur LDO
5.075V VDD la tension d'alimentation du fournisseur de la LDO interne
Régulateur de DCIN et peut fournir jusqu'à 30mA de courant.
Les pilotes MOSFET sont alimentés par VDDP, qui doit être
connecté à VDDP cum le montre la figure 12. VDDP connecte
à travers la résistance externe à la DMV. Bypass VDD et VDDP
avec le 1μF condensateur.
fermeture
Le ISL6251, ISL6251A dispose la veille à faible consommation
mode. Conduite EN bas arrête le chargeur. Dans l'arrêt,
Le convertisseur DC / DC est désactivé, et VCOMP et ICOMP
sont tirés à la terre. L'ICM, sorties ACPRN continuer à
fonction.
FR peut être entraîné par la thermistance Autoriser automatique
arrêt Lorsque la batterie est chaude. Souvent, les NTC
thermistance est inclus à l'intérieur de la batterie pour mesurer son
Température. Lorsqu'il est connecté au chargeur, la thermistance
forme le diviseur de tension résistif avec le pull-up à la VREF.
La tension de seuil de 1.06V avec 60mV hystérésis est EN.
La thermistance peut être sélectionnée pour que le rapport de la résistance
Température caractéristique qui diminue brutalement au-dessus de l'
Température critique. Cette ferme automatiquement arrangement
Lorsque la batterie le chargeur est au-dessus de la critique
Température.
Une autre méthode pour inhiber taux Charing est Chlim force
ci-dessous 88mV (typ).
Short Circuit Protection et 0V Batterie Charing
Le courant de charge sur le chargeur de batterie Will course
les limites fixées par Chlim, il a automatiquement court-circuit
protection et est en mesure de charger le fournisseur actuel WAKE taux
en batterie extrêmement déchargée.
Protection contre la surchauffe
Si la température de la filière dépasse 150 ° C, il s'arrête Charing. Une fois que l'
DROPS meurent température inférieure à 125 ° C, Charing va recommencer.
Renseignements sur la demande
La conception de chargeur de batterie qui suit fait référence à la typique
Circuit d'application de la figure 12, où la batterie typique
de configuration 4S2P est utilisé. Cette section décrit comment
Sélectionnez les composants externes, y compris l'inducteur, entrée
et des condensateurs de sortie, MOSFET de commutation et de courant
Sentant résistances.
sélection d'inductance
La sélection de l'inducteur a compromis entre le coût, la taille et
efficacité. Par exemple, l'inductance de l'abaisser, l'
la plus petite taille, mais est courant supérieur d'ondulation. C'est ce qui ressort également
des pertes supérieur AC dans le noyau magnétique et les enroulements,
qui réduisent l'efficacité du système. D'autre part,
Les résultats d'inductance plus élevés dans l'ondulation inférieure actuelle et
un filtrage plus petites condensateurs de sortie, mais elle a supérieur DCR (DC
résistance de l'inducteur) perte, et a transitoire lent
réponse. Sauter, la conception pratique de l'inducteur est basée sur l'
inductance ondulation de courant Etre ± (15-20)% du maximum
en cours de fonctionnement à courant continu à la tension d'entrée maximale. la
inductance nécessaire peut être calculée à partir de:
Où VIN, MAX, VBAT, et FS sont l'entrée maximale
tension, la tension de la batterie et de la fréquence de commutation
respectivement. Le courant ΔI inductance d'ondulation se trouve de:
Lorsque le courant maximal crête-à-crête d'ondulation est de 30%
le courant de charge maximum est utilisé.
Pour VIN, MAX = 19V, VBAT = 16.8V, TABI, MAX = 2.6A, et
FS = 300kHz, l'inductance calculée est 8.3μH. Choisir
La valeur standard Placard donne L = 10μH. Noyaux de ferrite sont
souvent le meilleur choix, car ils sont à taux Optimisé 300kHz
ACSET
9
8
e, hausse de 1 V
R
• ⎟ V R
⎟ ⎠
⎞
⎜ ⎜ ⎝
⎛
+
ACSET hys 8
9
8
e, Fall 1 V I R
R
R
V - • ⎟
⎟ ⎠
⎞
⎜ ⎜ ⎝
⎛
+
ICM = 19,9 de INPUT • • R2
IN, MAX s
BAT
L
IN, MAX BAT
V f
V
je
V V
L
Δ
-
=
Δ IL = 30% ⋅ TABI, MAX
ISL6251, ISL6251A
15 FN9202.2
10 mai 2006
Opération de 600kHz avec une faible perte de base. Le noyau doit être honoré
PAS assez pour saturer au courant de bobine crête IPeak:
Sélection de condensateur de sortie
CONDENSATEUR La sortie en parallèle avec la batterie est utilisée pour
suce l'ondulation de courant à haute fréquence et de commutation
lisser la tension de sortie. La valeur efficace de la sortie
ondulation Ieff est donné par:
Lorsque le rapport cyclique D est le rapport de la tension de sortie
(tension de batterie) sur la tension d'entrée continue pour
Le fonctionnement en mode de conduction qui est typique pour la batterie
téléchargés. Au cours de la période de charge de la batterie, la tension de sortie
varie à partir de sa tension de batterie à la batterie initiale classé
tension. Sauter, le rapport cyclique peut être modifié dans la plage de
entre 0,53 et 0,88 pour la tension de batterie minimale de
10V (2.5V/Cell) et la tension maximale de la batterie de 16.8V.
Pour VIN, MAX = 19V, VBAT = 16.8V, L = 10μH, et
FS = 300kHz, le courant maximal RMS est 0.19A. Un typique
CONDENSATEUR 10F céramique est un bon choix pour ce suce
courant et a également de très petite taille. Le condensateur au tantale
Ormerod Connu mécanismes de défaillance Lorsqu'il est soumis à une grande
Courant de choc.
Considérations EMI marquent généralement souhaitable de minimiser
ondulation du courant dans les câbles de la batterie. Perles eBay maille ajoutée dans
série avec la batterie à l'augmentation de la batterie
impédance à 300kHz Fréquence de commutation. ondulation de commutation
splits de courant entre la batterie et le condensateur de sortie
en fonction de l'ESR de la production et de la batterie CONDENSATEUR
impédance. Si l'ESR du condensateur de sortie est 10M et
l'impédance de la batterie est élevée à 2Ω avec le talon, alors que
0,5% du courant d'ondulation dans la batterie 'vais couler.
sélection de MOSFET
Le chargeur de batterie pour ordinateur portable synchrone avec convertisseur abaisseur
a la tension d'entrée à partir de la sortie de l'adaptateur AC. la
tension de sortie maximum de l'adaptateur secteur ne dépasse pas 25V.
Par conséquent, la logique MOSFET 30V doit être utilisé.
Le MOSFET côté haut doit être capable de dissiper la
les pertes de conduction, plus les pertes de commutation. Pour la batterie
application chargée, la tension d'entrée de l'synchrone
convertisseur abaisseur est égale à la tension de sortie de l'adaptateur,
qui est relativement constante. L'efficacité maximale est
réalisé par Sélection du MOSFET côté haute qui a le
les pertes de conduction correspondant aux pertes de commutation. Assurez-vous que
ISL6251, ISL6251A LGATE gâté conducteur peut fournir suffisamment
taux actuel périssables prévente à partir de conduction, qui est due à
le courant injecté dans le parasite drain-source en
condensateur (Miller CONDENSATEUR CGD), et causée par la tension
phase ascendante de la rareté au noeud à l'instant de la high-side
Transformer un MOSFET; Sinon, des problèmes inter-conduction
maille se produisent. Ralentissement raisonnable tourner sur la vitesse de la
MOSFET côté en connectant la résistance entre le
Goupille de BOOT et la source d'alimentation du variateur gâté, et le haut de cinq
Capacité actuelle du pilote de MOSFET côté bas gâtée aide
réduire la possibilité de cross-conduction.
Pour le MOSFET côté, le pire des cas conduction
les pertes se produisent à la tension d'entrée minimum:
L'efficacité optimale lorsqu'on les pertes de commutation
égaler les pertes de conduction. Cependant, il est difficile d'
calculer les pertes de commutation dans le MOSFET côté
car il doit permettre facteur difficile à quantifier que
influent sur la tour-et temps turn-off. Ce facteur
Impliquer la résistance interne MOSFET gâté, gâté charge,
tension de seuil, l'inductance parasite, pull-up et pull-down
résistance du conducteur gâté. La perte de commutation suivante
estimations de calcul approximatif du fournisseur.
Où Qgd: drainer à périssable charge, Qrr: recouvrement inverse totale
Charge de la diode de corps MOSFET côté bas, ILV: inductance
actuelle vallée, ILP: courant de crête d'inductance, IG, et cinq
IG, la source de pointe sont la source gâtée lecteur / cinq cours du 1er trimestre,
respectivement.
Pour atteindre les pertes de commutation faible, il nécessite peu d'drain-périssables
charge Qgd. Généralement, plus la charge entre drain et périssable,
Le supérieur de la sur-résistance. Par conséquent, il est le compromis
entre la résistance et sur la charge de vidange à périssable. bon
Sélection de MOSFET est basée sur le facteur de mérite (FORM),
qui est le produit de la charge totale et la détérioration
sur-résistance. Habituellement, plus la valeur de la forme, le
plus le rendement pour la même application.
Pour le MOSFET côté bas, la dissipation de puissance pire des cas
se produit à la tension de batterie minimale et maximale d'entrée
tension:
Choisissez le MOSFET côté bas qui a le plus bas possible
sur la résistance avec le paquet de taille moyenne comme le SO-8
et est d'un prix raisonnable. Les pertes de commutation sont notés sur
émettre pour le MOSFET côté bas, car il fonctionne à
zéro de commutation de tension.
Choisir la diode Schottky en parallèle avec le transistor MOSFET du côté bas
Q2 avec la chute de tension assez basse pour la prévente
bas-côté MOSFET corps diode de Q2 lors d'un virage sur la
temps mort. Cela réduit également la perte de puissance dans le haut-côté
MOSFET associés à la récupération inverse de la
bas-côté corps MOSFET diode Q2.
BAT Peak, MAX IL
2
I = 1 + Δ
D (1 D)
12 L f
V
je
s
IN, MAX
RMS = -
DSON
2
BAT
EN
août
Q1, je conduction R
V
V
P =
EN rr s
g, k péché
gd
EN LP s
g, la source
gd
Q1, commutation de LV Q V de f
je
Q
I f V
2
1
je
Q
I f V
2
P = 1 + +
DSON
2
BAT
EN
août
Q2 I R
V
V
1 P ⎟
⎟ ⎠
⎞
⎜ ⎜ ⎝
⎛
= -
ISL6251, ISL6251A
16 FN9202.2
10 mai 2006
En règle générale, sélectionnez la diode avec DC Note courant égal
à un tiers du courant de charge. Une option est de choisir le
combiné avec la diode Schottky dans le MOSFET GaGa
emballage. Les ensembles intégrés maille travail mieux
pratiquer parce qu'il ya moins inductance parasite en raison de la
courte connexion. Cette diode Schottky est facultative et mesh eBay
Suppression hyphes perte d'efficacité peut être tolérée. En outre,
Veiller à ce que le courant d'entraînement requis totale gâté pour la
MOSFET sélectionné doit être inférieur à 24mA. Jump, le total
charge périssables pour les high-side et low-side MOSFET est
limité par l'équation suivante:
Où IGATE est le courant d'attaque totale et gâté Si eBay
moins de 24mA. En substituant IGATE = 24mA et FS = 300kHz
dans les rendements de l'équation ci-dessus que le périssables de la charge totale
doit être inférieure à 80nC. Par conséquent, la ISL6251,
ISL6251A entraîne facilement le courant de charge de la batterie jusqu'à 10 bis.
Sélection de condensateur d'entrée
Le condensateur d'entrée absorbe le courant d'ondulation de la
Convertisseur de puissance synchrone, qui est donnée par:
Cette RMS ondulation de courant doit être inférieure aux évaluée de RMS
courant dans le condensateur de fiche technique. Chimies Nom-tantale
(céramique, aluminium, ou OSCON) sont préférés en raison de leur
résistance à la mise sous tension des courants de surtension Lorsque l'adaptateur secteur
est branché sur le chargeur de batterie. Pour la batterie d'ordinateur portable
applications chargées, il est recommandé que céramique
condensateurs ou des condensateurs en polymère de Sanyo eBay utilisés pour un duo
leur petite taille et de coût raisonnable.
Le tableau 2 montre les listes de composants pour l'application typique
circuit de la figure 12.
Compensation de boucle de conception
ISL6251, ISL6251A utilise le mode courant de fréquence constante
contrôler l'architecture de la boucle pour atteindre une réponse transitoire rapide.
Dans résistance PRÉCIS en série avec la sortie de courant de détection
inducteur est utilisé pour la course du courant de charge, et l'
signal de courant détecté est injectée dans le taux de la boucle de tension
ATTEINDRE mode actuelle pour simplifier la boucle de régulation
conception de la rémunération. L'inducteur est pas considéré comme un
variables d'état pour le contrôle en mode courant et le système
GaGa devient payable système. Il est beaucoup plus facile de concevoir la
Compensateur pour stabiliser la tension de la boucle de tension de mode
contrôle. La figure 14 montre le petit modèle de signal de l'
synchrone régulateur abaisseur.
PWM comparateur Gain Fm:
Le gain PWM comparateur Fm pour le pic de contrôle en mode courant
est donné par:
Fonctions Power Stage de transfert
La fonction de transfert F1 (S) de contrôle de tension de sortie est:
Lorsque,
La fonction de transfert F2 (S) de commande de courant de l'inductance est la suivante:
, Où.
LISTE COMPOSANTS TABLEAU 2.
CHIFFRES ET PIECES fabricant
C1, C10 10μF/25V condensateur céramique, Taiyo Yuden
TMK325 MJ106MY X5R (3.2x2.5x1.9mm)
C2, C4, C8 0.1μF/50V condensateur céramique
C3, C7, C9 1μF/10V condensateur céramique, Taiyo Yuden
LMK212BJ105MG
C5 CONDENSATEUR 10nF céramique
C6 6.8nF condensateur céramique
3300pF condensateur céramique C11
Diode Schottky D1 30V/3A, EC31QS03L (facultatif)
D2, D3 diode Schottky 100mA/30V, Central Semiconductor
D4 8A/30V Schottky redresseur, STPS8L30B (facultatif)
L 10μH/3.8A/26mΩ, Sumida, CDRH104R-100
Q1, Q2 30V/35mΩ, FDS6912A, Fairchild.
s
porte
GATE f
je
Q ≤
()
EN
En août
BAT V RMS
V V V
I I.
-
=
Signal Q3 à canal N MOSFET, 2N7002
R1 40mΩ, ± 1%, LRC-LR2512-01-R040-F, IRC
R2 20mΩ, ± 1%, LRC-LR2010-01-R020-F, IRC
R3 18Ω, ± 5%, (0805)
R4 2.2Ω, ± 5%, (0805)
R5 100kΩ, ± 5%, (0805)
R6 10k, ± 5%, (0805)
R7 100Ω ± 5%, (0805)
R8, R11 130 K, ± 1%, (0805)
R9 10.2kΩ, ± 1%, (0805)
R10 4.7Ω, ± 5%, (0805)
R12 20kΩ, ± 1%, (0805)
R13 1.87kΩ, ± 1%, (0805)
LISTE COMPOSANTS TABLEAU 2. (Suite)
CHIFFRES ET PIECES fabricant
M 11
VIN
= ---------.
()
1
Q
S S
1 S
V
de
v
F S
2 o p
o
2
ESR
dans
o
1
+ +
+
==
ω ω
ω
,
R C
1
c o
ωesr =
L
C
Q R o
p ≈ o
o
o
LC
ω = 1
()
1
Q
S S
1 S
R R
V
de
je
F S
2 o p
o
2
z
o L
L en
2
+ +
+
+
==
ω ω
ω
o o
z R C
ω ≈ 1
ISL6251, ISL6251A
17 FN9202.2
10 mai 2006
Gain de boucle de courant Ti (S) est le sperme impressionné suivante
équation:
où RT est la trans-résistance dans la boucle de courant. RT est
généralement égal au produit du courant de détection Charing
la résistance et le gain de l'amplificateur de détection de courant, CA2.
Pour ISL6251, ISL6251A, RT = 20R1.
Le gain en tension de la boucle de courant est ouvert:
Lorsque, VFB est la tension de contre-réaction de la tension
l'amplificateur d'erreur. Le gain de la boucle de tension de la boucle de courant
fermée est donnée par:
Cum DM Petit (S) >> 1, alors il peut être simplifié suit:
De l'équation ci-dessus, il est démontré que le système est le
système de commande de GaGa, qui a le pôle de noisette situé à
Avant la moitié de la fréquence de commutation. Par conséquent, franc de type II
Compensateur peut être facilement utilisé pour stabiliser le système.
La figure 15 montre le compensateur de boucle de tension, et son
fonction de transfert est cum impressionné suit:
où
Objectif de conception du compensateur:
• haut gain DC
• boucle de bande passante FC:
• La marge de gain:> 10dB
• La marge de phase: 40 °
La procédure de conception du compensateur est cum suit:
. 1 Putt Compensateur zéro à:
2. Compensateur Mettez un pôle à la fréquence zéro pour atteindre
DC gain élevé, et Putt autre pôle du compensateur à répétitions
ESR fréquence nulle ou demi-fréquence de commutation
valeur la plus faible.
Le gain Tv (S) de la boucle à fréquence de croisement FC de l'unité a
gagner. Par conséquent, la résistance R1 est Compensateur
déterminé par:
Lorsque MM est la trans-conductance de l'erreur de la boucle de tension
amplificateur. Compensateur condensateur C1 est alors donnée par:
Exemple: Vin = 19V, Vo = 16.8V, 2.6A = nght, FS = 300kHz,
Co = 10μF/10mΩ, L = 10μH, GM = 250μs, RT = 0.8Ω,
VFB = 2,1 V, FC = 20 kHz, alors Compensateur résistance
R1 = 10kO. Choisissez R1 = 10kO. Mettez le compensateur zéro à
1,5 kHz. Le compensateur est condensateur C1 = 6.5nF.
Par conséquent, Choisissez tension boucle compensateur: R1 = 10k,
C1 = 6.5nF.
Petit (S) = 0,25 RTF2 (S) M
Tv (S) = KM F1 (S) AV (S)
o
FB
V
V
K =
()
1 T (S)
T S
L (S)
je
v
v +
=
LV (S)
4VFB
VO
--------------
(RO + RL)
RT
-----------------------------
1 S
ωesr
+ ------------
1 Sω
P
+ -------
------------------------ AV (S) ωP
1
ROCO
=, ≈ -----------------
ωp
FIGURE 14. MODEL PETIT SIGNAL DE synchrone
BUCK REGULATEUR
de
devenir
de
ville
iin L
+
1: D
+
IL
Cie.
rc
ro
-Av (S)
de
Vcomp
RT
11/Vin
+
Petit (S)
Q
valeur
Tv (S)
-
VCA2
0.25VCA2
VindILdin ()
Caroline du Sud
1 S
sol
v
v
S
1
CZ
je
FB
échantillon
v
ω
+
==
R C
1
1 1
ωcz =
-
+
R1
C1
VREF
VFB
VO
GM
VCOMP
FIGURE 15. LOOP tension Compensateur
FS
20
1
5
1 ⎟ ⎠
⎞
⎜ ⎝
⎛ -
()
o o
CZ R C
ω = 1 à 3 jan
R1
8πfCVOCORT
gmVFB
= ---------------------------------------
1 CZ
R 1
C 1
ω
=
ISL6251, ISL6251A
18 FN9202.2
10 mai 2006
Aspects de l'agencement PCB
Secteur et signal couches placement sur le PCB
En règle générale, les couches d'alimentation doivent être rapprochés,
répète sur le haut ou le bas de la carte, avec des couches de signaux sur
le côté opposé de la carte. Comme exemple, la couche
Agencement sur un panneau 4-couche est indiqué ci-dessous:
. 1 Top Layer: les lignes de signaux, ou demi-pension pour les lignes de signaux et
L'autre demi-pension pour les lignes électriques
2. Signal Ground
. 3 couches de puissance: Puissance sol
. 4 Couche inférieure: MOSFET de puissance, inductances et autres
traces de puissance
Séparer la tension d'alimentation et le chemin de circulation de courant à partir de
le chemin de signal de contrôle et de niveau logique. Le contrôleur IC
rester sur la couche de signal, qui est isolée par le signal
terre pour les traces de signal de puissance.
Placement de composants
Le MOSFET de puissance devrait être proche de l'IC que le saut
signaux gâté d'entraînement, le LGATE, UGATE, PHASE, et BOOT,
traces peuvent être à court.
Une telle place les composants de la façon que l'aire sous la
IC a moins de bruit retrace avec de hauts DVD / dt et de dire / dt, tel cum
signaux gâtés et les signaux de noeuds de phase.
Signal Ground et Ground Power Connection.
Au moins, la vaste zone raisonnable de cuivre, qui
Protégez autre couplage de bruit à travers le CI, devrait être utilisé
masse du signal cum sous le IC. Le meilleur lien entre les points
la masse du signal et la masse de l'alimentation est au négatif
CONDENSATEUR de chaque côté de la face de sortie, où il existe peu de
bruit; La trace bruyant sous la CI n'est pas recommandé.
GND et VDD PIN
Au moins une haute qualité en céramique bouchon de découplage Si eBay
utilisé pour franchir ces deux Pins. Le bouchon de découplage peut être mis
près de l'IC.
LGATE PIN
C'est le butin du signal de commande pour le MOSFET bas
Buck Converter. Le signal passant par cette trace est à la fois
élevés DVD / dt et ladite haute / dt, et le pic et Charing
courant de décharge est très élevé. Ces deux traces Si eBay
court, large, et loin d'autres traces. S'il n'y a pas
D'autres traces en parallèle avec ces traces sur une couche.
PGND PIN
Si les repères eBay PGND prévue sur le côté négatif de la
bouchon de sortie pertinente avec des traces distinctes. Le côté négatif
de la capacité de production doit être proche du noeud source de
le transistor MOSFET de fond. Cette trace est le chemin de LGATE de retour.
PIN PHASE
Cette trace doit être court, et positionné à l'écart des autres
faibles traces de signal. Ce nœud a la très grande dvds / dt avec le
excursion de tension de la tension d'entrée à la masse. n ° trace
devrait être en parallèle avec elle. Cette trace est également le trajet de retour
pour UGATE. Connectez cette broche à la MOSFET côté
la source.
UGATE PIN
Cette broche a la forme carrée de forme d'onde avec de hauts DVD / dt. il
Fournisseur gâché le courant d'attaque pour charger et décharger le
haut MOSFET à haute voix / dt. Cette trace devrait être large,
Bref, et loin des autres traces semblables à la LGATE.
PIN BOOT
Disons / dt de cette broche est la cum cum UGATE élevé; Par conséquent, cette trace
doit être court cum cum réalisable.
CSOP, Cson Pins
La résistance de détection de courant connecte à l'Cson et l'
CSOP Pins à travers le filtre passe-bas. La broche est également Cson
AS utilisé les évaluations de tension de la batterie. Les traces Si eBay
loin de la haute DVD / dt et dire / dit Pins comme PHASE, BOOT
Pins. En général, la résistance de détection de courant doit être proche
à l'IC. D'autres dispositions de mise en page doit être ajustée
en conséquence.
EN PIN
Cet axe reste à haute et basse au ralenti permettent la mode et de la mode
est relativement robuste. Activer signaux doivent se référer au signal
sol.
DCIN PIN
Cet axe se connecte à AC tension de sortie de l'adaptateur, et devrait
eBay moins sensible au bruit.
Taille du cuivre pour le noeud de phase
La capacité de phase devrait être aussi des taux très bas
minimiser sonner. Il serait préférable de limiter la taille de la
Noeud CUIVRE PHASE en stricte conformité avec le courant
et la gestion thermique de l'application.
Identifier le terrain secteur et signal
Les condensateurs des convertisseurs d'entrée et de sortie, la source
terminale de la commutation MOSFET bas Si PGND
connecter à la terre électrique. Les autres composants doivent
connecter à la masse du signal. Signal et masse de l'alimentation sont tiède
ensemble à un moment donné.
Serrage condensateur pour MOSFET de commutation
Il est recommandé que les bouchons en céramique utilisés eBay étroitement
reliée au drain du MOSFET côté, et la
la source du MOSFET côté bas. Cela réduit la capacité
le bruit et la perte du MOSFET de puissance.
ISL6251, ISL6251A
19 FN9202.2
10 mai 2006
ISL6251, ISL6251A
Quad Flat No-Lead paquet en plastique (QFN)
Micro Cadre de plomb paquet en plastique (MLFP)
INDEX
D1 / 2
D1
D / 2
ré
E1 / 2 E / 2
E
A
2x
0,15
B
C
0,10 M C A B
A
N
plan SIÈGES
N
6
3 2
23
et
1
1
0,08
TERMINAL POUR ODD / SIDE POUR TERMINAL Même / SIDE
C C
SECTION "C-C"
NX b
A1
C
2x
0,15 C
0,15
2x
B
0
REF.
(ND-1) Xe
(NRE-E1F) X. et
5
A1
4x P
A
C
C
4x P
B
2x
0,15 C A
A2
A3
D2
D2
E2
E2 / 2
TYPE TERMINAL
VUE DE CÔTÉ
VUE DE DESSUS
7
VUE DU BAS
7
5
CL CL
et e
E1
2
NX k
NX b
8
NX L
8
8
9
ZONE
9
4x
/ / C 0,10
9
(La référence B)
(Donnée A)
INDEX
6
ZONE
N
9
CORNER
Options 4x
L1
L
10 l1
L
10
L28.5x5
28 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE
(COMPLIANT TO JEDEC MO-220VHHD-1 ISSUE I)
SYMBOL
MILLIMETERS
MIN NOMINAL MAX NOTES
A 0.80 0.90 1.00 -
A1 - 0.02 0.05 -
A2 - 0.65 1.00 9
A3 0.20 REF 9
b 0.18 0.25 0.30 5,8
D 5.00 BSC -
D1 4.75 BSC 9
D2 2.95 3.10 3.25 7,8
E 5.00 BSC -
E1 4.75 BSC 9
E2 2.95 3.10 3.25 7,8
e 0.50 BSC -
k 0.20 - - -
L 0.50 0.60 0.75 8
N 28 2
Nd 7 3
Ne 7 3
P - - 0.60 9
θ - - 12 9
Rev1 11/04
NOTES:
1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
2. N is the number of terminals.
3. Nd and Ne refer to the number of terminals on each D and E.
4. All dimensions are in millimeters. Angles are in degrees.
5. Dimension b applies to the metallized terminal and is measured
between 0.15mm and 0.30mm from the terminal tip.
6. The configuration of the pin #1 identifier is optional, but must be
located within the zone indicated. The pin #1 identifier may be
either a mold or mark feature.
7. Dimensions D2 and E2 are for the exposed pads which provide
improved electrical and thermal performance.
8. Nominal dimensions are provided to assist with PCB Land Pattern
Design efforts, see Intersil Technical Brief TB389.
9. Features and dimensions A2, A3, D1, E1, P & θ are present when
Anvil singulation method is used and not present for saw
singulation.
20
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
FN9202.2
May 10, 2006
ISL6251, ISL6251A
Shrink Small Outline Plastic Packages (SSOP)
Quarter Size Outline Plastic Packages (QSOP)
NOTES:
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2
of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusion and gate burrs shall not exceed
0.15mm (0.006 inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead
flash and protrusions shall not exceed 0.25mm (0.010 inch)
per side.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension “B” does not include dambar protrusion. Allowable dambar
protrusion shall be 0.10mm (0.004 inch) total in excess of “B”
dimension at maximum material condition.
10. Controlling dimension: INCHES. Converted millimeter dimensions
are not necessarily exact.
α
INDEX
AREA
E
D
N
1 2 3
-B-
0.17(0.007) M C A B S
e
-AB
M
-CA1
A
SEATING PLANE
0.10(0.004)
h x 45°
C
H 0.25(0.010) M B M
L
0.25
0.010
GAUGE
PLANE
A2
M24.15
24 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE
(0.150” WIDE BODY)
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A 0.053 0.069 1.35 1.75 -
A1 0.004 0.010 0.10 0.25 -
A2 - 0.061 - 1.54 -
B 0.008 0.012 0.20 0.30 9
C 0.007 0.010 0.18 0.25 -
D 0.337 0.344 8.55 8.74 3
E 0.150 0.157 3.81 3.98 4
e 0.025 BSC 0.635 BSC -
H 0.228 0.244 5.80 6.19 -
h 0.0099 0.0196 0.26 0.49 5
L 0.016 0.050 0.41 1.27 6
N 24 24 7
α 0° 8° 0° 8° -
Rev2 6/04
1
®
FN3282.13
DG411, DG412, DG413
Monolithic Quad SPST, CMOS Analog
Switches
The DG411 series monolithic CMOS analog switches are
drop-in replacements for the popular DG211 and DG212
series devices. They include four independent single pole
throw (SPST) analog switches, and TTL and CMOS
compatible digital inputs.
These switches feature lower analog ON-resistance (<35Ω)
and faster switch time (tON<175ns) compared to the DG211
or DG212. Charge injection has been reduced, simplifying
sample and hold applications.
The improvements in the DG411 series are made possible
by using a high voltage silicon-gate process. An epitaxial
layer prevents the latch-up associated with older CMOS
technologies. The 44V maximum voltage range permits
controlling 40VP-P signals. Power supplies may be
single-ended from +5V to 44V, or split from ±5V to ±20V.
The four switches are bilateral, equally matched for AC or
bidirectional signals. The ON-resistance variation with analog
signals is quite low over a ±15V analog input range. la
switches in the DG411 and DG412 are identical, differing only
in the polarity of the selection logic. Two of the switches in the
DG413 (#2 and #3) use the logic of the DG211 and DG411
(i.e., a logic “0” turns the switch ON) and the other two
switches use DG212 and DG412 positive logic. This permits
independent control of turn-on and turn-off times for SPDT
configurations, permitting “break-before-make” or “makebefore-
break” operation with a minimum of external logic.
Features
• ON-Resistance (Max). . . . . . . . . . . . . . . . . . . . . . . . .35Ω
• Low Power Consumption (PD) . . . . . . . . . . . . . . . . . .<35μW
• Fast Switching Action
- tON (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175ns
- tOFF (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145ns
• Low Charge Injection
• Upgrade from DG211, DG212
• TTL, CMOS Compatible
• Single or Split Supply Operation
• Pb-Free Plus Anneal Available (RoHS Compliant)
Applications
• Audio Switching
• Battery Operated Systems
• Data Acquisition
• Hi-Rel Systems
• Sample and Hold Circuits
• Communication Systems
• Automatic Test Equipment
Data Sheet June 20, 2007
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright Intersil Americas Inc. 1993, 1994, 1997, 1999, 2002, 2004-2007. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
2 FN3282.13
June 20, 2007
Pinout
DG411, DG412, DG413
(16 LD PDIP, SOIC, TSSOP)
TOP VIEW
Ordering Information
PART NUMBER PART MARKING TEMP. RANGE (°C) PACKAGE PKG. DWG. #
DG411DJ DG411DJ -40 to +85 16 Ld PDIP E16.3
DG411DJZ (Note) DG411DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3
DG411DY* DG411DY -40 to +85 16 Ld SOIC (150 mil) M16.15
DG411DYZ* (Note) DG411DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15
DG411DVZ* (Note) DG411 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173
DG412DJ DG412DJ -40 to +85 16 Ld PDIP E16.3
DG412DJZ (Note) DG412DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3
DG412DY* DG412DY -40 to +85 16 Ld SOIC (150 mil) M16.15
DG412DYZ* (Note) DG412DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15
DG412DVZ* (Note) DG412 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173
DG413DJ DG413DJ -40 to +85 16 Ld PDIP E16.3
DG413DJZ (Note) DG413DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3
DG413DY* DG413DY -40 to +85 16 Ld SOIC (150 mil) M16.15
DG413DYZ* (Note) DG413DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15
DG413DVZ* (Note) DG413 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173
*Add “-T” suffix for tape and reel.
**Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing
applications.
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin
plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products
are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
TRUTH TABLE
LOGIC
DG411 DG412 DG413
SWITCH SWITCH
SWITCH
1, 4
SWITCH
2, 3
0 On Off Off On
1 Off On On Off
NOTE: Logic “0” ≤0.8V. Logic “1” ≥2.4V.
14
15
16
9
13
12
11
10
1
2
3
4
5
7
6
8
IN1
D1
S1
VGND
S4
IN4
D4
IN2
S2
V+
VL
S3
D3
IN3
D2
Pin Descriptions
PIN SYMBOL DESCRIPTION
1 IN1 Logic Control for Switch 1.
2 D1 Drain (Output) Terminal for Switch 1.
3 S1 Source (Input) Terminal for Switch 1.
4 V- Negative Power Supply Terminal.
5 GND Ground Terminal (Logic Common).
6 S4 Source (Input) Terminal for Switch 4.
7 D4 Drain (Output) Terminal for Switch 4.
8 IN4 Logic Control for Switch 4.
9 IN3 Logic Control for Switch 3.
10 D3 Drain (Output) Terminal for Switch 3.
11 S3 Source (Input) Terminal for Switch 3.
12 VL Logic Reference Voltage.
13 V+ Positive Power Supply Terminal (Substrate).
14 S2 Source (Input) Terminal for Switch 2.
15 D2 Drain (Output) Terminal for Switch 2.
16 IN2 Logic Control for Switch 2.
DG411, DG412, DG413
3 FN3282.13
June 20, 2007
Functional Diagrams Four SPST Switches per Package Switches Shown for Logic “1” Input
Schematic Diagram (1 Channel)
S1
D1
S2
D2
S3
D3
S4
D4
DG411
S1
D1
S2
D2
S3
D3
S4
D4
IN1
DG412
IN2
IN3
IN4
S1
D1
S2
D2
S3
D3
S4
D4
IN1
DG413
IN2
IN3
IN4
IN2
IN3
IN4
IN1
S
V+
INX
GND
VVVL
ré
V+
DG411, DG412, DG413
4 FN3282.13
June 20, 2007
Absolute Maximum Ratings Thermal Information
V+ to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44V
GND to V-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25V
VL. . . . . . . . . . . . . . . . . .............(GND -0.3V) to (V+) +0.3V
Digital Inputs, VS, VD (Note 1). . . . . (V-) -2V to (V+) + 2V or 30mA,
Whichever Occurs First
Continuous Current (Any Terminal) . . . . . . . . . . . . . . . . . . . . . 30mA
Peak Current, S or D (Pulsed 1ms, 10% Duty Cycle Max) . . 100mA
Operating Conditions
Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20V (Max)
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C
Input Low Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8V (Max)
Input High Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4V (Min)
Input Rise and Fall Time ..................... .... ...≤20ns
Thermal Resistance (Typical, Note 2) θJA (°C/W)
PDIP Package* ............................ 90
SOIC Package ................. . . . . . . . . . . . . 110
TSSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . .150
Maximum Junction Temperature (Plastic Packages). . . . . . .+150°C
Maximum Storage Temperature Range. . . . . . . . ..-65°C to +150°C
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . ..see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
(SOIC and TSSOP - Lead Tips Only)
*Pb-free PDIPs can be used for through hole wave solder
processing only. They are not intended for use in Reflow solder
processing applications.
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and
result in failures not covered by warranty.
NOTES:
1. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
2. θJA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
Electrical Specifications Test Conditions: V+ = +15V, V- = -15V, VL = 5V, VIN = 2.4V, 0.8V (Note 3),
Unless Otherwise Specified.
PARAMETER TEST CONDITIONS
TEMP
(°C)
MIN
(Note 4)
TYP
(Note 5)
MAX
(Note 4) UNITS
DYNAMIC CHARACTERISTICS
Turn-ON Time, tON RL = 300Ω, CL = 35pF, VS = ±10V (Figure 1) 25 - 110 175 ns
85 - - 220 ns
Turn-OFF Time, tOFF 25 - 100 145 ns
85 - - 160 ns
Break-Before-Make Time Delay DG413 Only, RL = 300Ω, CL = 35pF (Figure 2) 25 - 25 - ns
Charge Injection, Q (Figure 3) CL = 10nF, VG = 0V, RG = 0Ω 25 - 5 - pC
OFF Isolation (Figure 5) RL = 50Ω, CL = 5pF, f = 1MHz 25 - 68 - dB
Crosstalk (Channel-to-Channel),
(Figure 4)
25 - -85 - dB
Source OFF Capacitance, CS(OFF) f = 1MHz (Figure 6) 25 - 9 - pF
Drain OFF Capacitance, CD(OFF) 25 - 9 - pF
Channel ON Capacitance,
CD(ON) + CS(ON)
25 - 35 - pF
DIGITAL INPUT CHARACTERISTICS
Input Current VIN Low, IIL VIN Under Test = 0.8V, All Others = 2.4V Full -0.5 0.005 0.5 μA
Input Current VIN High, IIH VIN Under Test = 2.4V, All Others = 0.8V Full -0.5 0.005 0.5 μA
ANALOG SWITCH CHARACTERISTICS
Analog Signal Range, VANALOG IS = 10mA Full -15 - 15 V
Drain-Source ON Resistance,
rDS(ON)
IS = 10mA, VD = ±8.5V, V+ = 13.5V, V- = -13.5V 25 - 25 35 Ω
Full - - 45 Ω
±
±
DG411, DG412, DG413
5 FN3282.13
June 20, 2007
Source OFF Leakage Current,
IS(OFF)
V+ = 16.5V, V- = -16.5V, VD = ±15.5V, VS = 15.5V 25 -0.25 ±0.1 0.25 nA
Full -5 - +5 nA
Drain OFF Leakage Current,
ID(OFF)
25 -0.25 ±0.1 0.25 nA
Full -5 - +5 nA
Channel ON Leakage Current,
ID(ON) + IS(ON)
V+ = 16.5V, V- = -16.5V, VS = VD = ±15.5V 25 -0.4 ±0.1 0.4 nA
Full -10 - +10 nA
POWER SUPPLY CHARACTERISTICS
Positive Supply Current, I+ V+ = 16.5V, V- = -16.5V, VIN = 0V or 5V 25 - 0.0001 1 μA
85 - - 5 μA
Negative Supply Current, I- 25 -1 -0.0001 - μA
85 -5 - - μA
Logic Supply Current, IL 25 - 0.0001 1 μA
85 - - 5 μA
Ground Current, IGND 25 -1 -0.0001 - μA
85 -5 - - μA
Electrical Specifications (Single Supply) Test Conditions: V+ = +12V, V- = 0V, VL = 5V, VIN = 2.4V, 0.8V (Note 3),
Unless Otherwise Specified.
PARAMETER TEST CONDITIONS
TEMP
(°C)
MIN
(Note 4)
TYP
(Note 5)
MAX
(Note 4) UNITS
DYNAMIC CHARACTERISTICS
Turn-ON Time, tON RL = 300Ω, CL = 35pF,
VS = 8V, (Figure 1)
25 - 175 250 ns
85 - - 315 ns
Turn-OFF Time, tOFF 25 - 95 125 ns
85 - - 140 ns
Break-Before-Make Time Delay DG413 Only, RL = 300Ω,
CL = 35pF, VS = 8V
25 - 25 - ns
Charge Injection, Q CL = 10nF, VG = 6.0V, RG = 0Ω 25 - 25 - pC
ANALOG SWITCH CHARACTERISTICS
Analog Signal Range, VANALOG Full 0 - 12 V
Drain-Source ON-Resistance,
rDS(ON)
IS = -10mA, VD = 3V, 8V
V+ = 10.8V
25 - 40 80 Ω
Full - - 100 Ω
Electrical Specifications Test Conditions: V+ = +15V, V- = -15V, VL = 5V, VIN = 2.4V, 0.8V (Note 3),
Unless Otherwise Specified. (Continued)
PARAMETER TEST CONDITIONS
TEMP
(°C)
MIN
(Note 4)
TYP
(Note 5)
MAX
(Note 4) UNITS
±
DG411, DG412, DG413
6 FN3282.13
June 20, 2007
POWER SUPPLY CHARACTERISTICS
Positive Supply Current, I+ V+ = 13.2V, V- = 0V
VIN = 0V or 5V
25 - 0.0001 1 μA
85 - - 5 μA
Negative Supply Current, I- 25 -1 -0.0001 - μA
85 -5 - - μA
Logic Supply Current, IL 25 - 0.0001 1 μA
85 - - 5 μA
Ground Current, IGND 25 -1 -0.0001 - μA
85 -5 - - μA
NOTES:
3. VIN = input voltage to perform proper function.
4. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
5. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
Test Circuits and Waveforms
VO is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing
edge of the output waveform.
NOTE: Logic input waveform is inverted for switches that have the
opposite logic sense.
FIGURE 1A. MEASUREMENTS POINTS
Repeat test for all IN and S.
For load conditions, see Specifications. CL includes fixture and stray
capacitance.
FIGURE 1B. TEST CIRCUIT
FIGURE 1. SWITCHING TIMES
FIGURE 2A. MEASUREMENT POINTS FIGURE 2B. TEST CIRCUITS
FIGURE 2. BREAK-BEFORE-MAKE TIME
Electrical Specifications (Single Supply) Test Conditions: V+ = +12V, V- = 0V, VL = 5V, VIN = 2.4V, 0.8V (Note 3),
Unless Otherwise Specified. (Continued)
PARAMETER TEST CONDITIONS
TEMP
(°C)
MIN
(Note 4)
TYP
(Note 5)
MAX
(Note 4) UNITS
50%
tr < 20ns
tf < 20ns
tOFF
90%
3V
0V
VS
0V
tON
VO
LOGIC
INPUT
SWITCH
INPUT
SWITCH
OUTPUT
90%
VO VS
RL
RL + rDS(ON)
= ------------------------------------
SWITCH
INPUT
LOGIC
INPUT
S1
IN1
V+
D1
RL CL
VO
GND
VVL
+5V +15V
SWITCH
OUTPUT
-15V
tD
3V
0V
VS1
0V
tD
LOGIC
INPUT
SWITCH
OUTPUT
SWITCH
OUTPUT
90%
0V
VS2
(V01)
VO2
90%
S1
IN1, IN2
V+
D1
RL1 CL1
VO1
GND VVL
VS1 = 10V
300Ω
+5V +15V
S2 D2 35pF
RL2 CL2
VO2
VS2 = 10V
300Ω 35pF
-15V
LOGIC
INPUT
CL includes fixture and
stray capacitance.
DG411, DG412, DG413
7 FN3282.13
June 20, 2007
FIGURE 3A. TEST CIRCUIT
NOTE: INX dependent on switch configuration, input polarity
determined by sense of switch.
FIGURE 3B. MEASUREMENT POINTS
FIGURE 3. CHARGE INJECTION
FIGURE 4. CROSSTALK TEST CIRCUIT FIGURE 5. OFF ISOLATION TEST CIRCUIT
FIGURE 6. SOURCE/DRAIN CAPACITANCES TEST CIRCUIT
Test Circuits and Waveforms (Continued)
V+
D1
CL
VO
GND
VVIN
= 3V
RG
VG
SWITCH ΔVO
INX
OFF ON
INX
OFF OFF
OFF
ON
Q = ΔVO x CL
OUTPUT
0V, 2.4V
ANALYZER
+15V
C V+
0dBm VS
SIGNAL
GENERATOR
RL
GND
IN1
VD
IN2
50Ω
0V, 2.4V
NC
V-
-15V
C
VD ANALYZER
RL
+15V
0dBm
SIGNAL
GENERATOR
C V+
V-
-15V
C
0V, 2.4V
VS
VD
INX
GND
+15V
C V+
GND
VS
VD
INX
V-
-15V
C
IMPEDANCE
ANALYZER
f = 1MHz
0V, 2.4V
DG411, DG412, DG413
8 FN3282.13
June 20, 2007
Application Information
Single Supply Operation
The DG411, DG412, DG413 can be operated with unipolar
supplies from 5V to 44V. These devices are characterized
and tested for single supply operation at 12V to facilitate the
majority of applications. To function properly, 12V is tied to
Pins 13 and 0V is tied to Pin 4.
Pin 12 still requires 5V for TTL compatible switching.
Summing Amplifier
When driving a high impedance, high capacitance load such
as shown in Figure 7, where the inputs to the summing
amplifier have some noise filtering, it is necessary to have
shunt switches for rapid discharge of the filter capacitor, thus
preventing offsets from occurring at the output.
VIN1
R1 R2
VOUT
+
-
C1
VIN2
R3 R4
C2
DG413
R5
R6
FIGURE 7. SUMMING AMPLIFIER
DG411, DG412, DG413
9 FN3282.13
June 20, 2007
Typical Performance Curves
FIGURE 8. ON RESISTANCE vs VD AND POWER SUPPLY
VOLTAGE
FIGURE 9. SWITCHING TIME vs TEMPERATURE
FIGURE 10. LEAKAGE CURRENTS vs ANALOG VOLTAGE FIGURE 11. SUPPLY CURRENT vs INPUT SWITCHING
FREQUENCY
FIGURE 12. CHARGE INJECTION vs SOURCE VOLTAGE FIGURE 13. CHARGE INJECTION vs DRAIN VOLTAGE
TA = +25°C
50
A: ±5V
B: ±8V
C: ±10V
D: ±12V
E: ±15V
F: ±20V
45
40
35
30
25
20
15
10
5
0
-20 -15 -10 -5 0 5 10 15 20
A
B
C
ré
E
fa
DRAIN VOLTAGE (V)
rDS(ON) (Ω)
V+ = 15V, V- = -15V
VL = 5V, VS = 10V
tON
tOFF
-55 -15 5 25 45 65 85 105 125
TEMPERATURE (°C)
-35
0
240
210
180
150
120
90
60
30
tON, tOFF (ns)
V+ = 15V, V- = -15V
VL = 5V, TA = +25°C
-15 -5 0 5 10 15
VS, VD (V)
-10
-60
20
10
0
-10
-20
-30
-40
-50
IS, ID (pA)
IS(OFF)
ID(OFF)
30
40
ID(ON) + IS(ON)
ISUPPLY
100mA
1mA
100μA
10μA
1μA
100nA
10nA
10mA
10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
IL
I+, I-
1SW 1SW
4SW
4SW
V+ = 15V, V- = -15V
VL = 5V
CL = 10nF
CL = 1nF
-15 -5 0 5 10 15
VS (V)
-10
-60
60
40
20
0
-20
-40
Q (pC)
80
100
V+ = 15V, V- = -15V
VL = 5V CL = 10nF
CL = 1nF
-15 -5 0 5 10 15
VD (V)
-10
-60
60
40
20
0
-20
-40
Q (pC)
100
140
120
80
V+ = 15V, V- = -15V
VL = 5V
DG411, DG412, DG413
10 FN3282.13
June 20, 2007
Die Characteristics
DIE DIMENSIONS:
2760mm x 1780mm x 485mm
METALLIZATION:
Type: SiAl
Thickness: 12kÅ ±1kÅ
PASSIVATION:
Type: Nitride
Thickness: 8kÅ ±1kÅ
WORST CASE CURRENT DENSITY:
1.5 x 105 A/cm2
Metallization Mask Layout
DG411, DG412, DG413
S1 (3)
V- (4)
GND (5)
S4 (6)
D1 IN1 IN2
(11) S3
(12) VL
(13) V+ SUBSTRATE
(14) S2
(15) D2
(2) (1) (16)
D4 IN4 IN3 D3
(7) (8) (9) (10)
DG411, DG412, DG413
11 FN3282.13
June 20, 2007
DG411, DG412, DG413
Thin Shrink Small Outline Plastic Packages (TSSOP)
NOTES:
1. These package dimensions are within allowable dimensions of
JEDEC MO-153-AB, Issue E.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusion and gate burrs shall not exceed
0.15mm (0.006 inch) per side.
4. Dimension “E1” does not include interlead flash or protrusions.
Interlead flash and protrusions shall not exceed 0.15mm (0.006
inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual
index feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension “b” does not include dambar protrusion. Allowable
dambar protrusion shall be 0.08mm (0.003 inch) total in excess
of “b” dimension at maximum material condition. Minimum space
between protrusion and adjacent lead is 0.07mm (0.0027 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions
are not necessarily exact. (Angles in degrees)
α
INDEX
AREA
E1
ré
N
1 2 3
-B-
0.10(0.004) M C A B S
et
-Ab
M
-CA1
A
SEATING PLANE
0.10(0.004)
c
E 0.25(0.010) M B M
L
0.25
0.010
GAUGE
PLANE
A2
0.05(0.002)
M16.173
16 LEAD THIN SHRINK SMALL OUTLINE PLASTIC PACKAGE
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A - 0.043 - 1.10 -
A1 0.002 0.006 0.05 0.15 -
A2 0.033 0.037 0.85 0.95 -
b 0.0075 0.012 0.19 0.30 9
c 0.0035 0.008 0.09 0.20 -
D 0.193 0.201 4.90 5.10 3
E1 0.169 0.177 4.30 4.50 4
e 0.026 BSC 0.65 BSC -
E 0.246 0.256 6.25 6.50 -
L 0.020 0.028 0.50 0.70 6
N 16 16 7
a 0o 8o 0o 8o -
Rev1 2/02
12 FN3282.13
June 20, 2007
DG411, DG412, DG413
Dual-In-Line Plastic Packages (PDIP)
NOTES:
1. Controlling Dimensions: INCH. In case of conflict between English and
Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of
Publication No. 95.
4. Dimensions A, A1 and L are measured with the package seated in JEDEC
seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions.
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
6. E and are measured with the leads constrained to be perpendicular
to datum .
7. eB and eC are measured at the lead tips with the leads unconstrained.
eC must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar
protrusions shall not exceed 0.010 inch (0.25mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).
eA
-CCL
E
eA
C
eB
eC
-BE1
INDEX 1 2 3 N/2
N
AREA
SEATING
BASE
PLANE
PLANE
-CD1
B1
B
et
ré
D1
A2 A
L
A1
-A-
0.010 (0.25) M C A B S
E16.3 (JEDEC MS-001-BB ISSUE D)
16 LEAD DUAL-IN-LINE PLASTIC PACKAGE
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A - 0.210 - 5.33 4
A1 0.015 - 0.39 - 4
A2 0.115 0.195 2.93 4.95 -
B 0.014 0.022 0.356 0.558 -
B1 0.045 0.070 1.15 1.77 8, 10
C 0.008 0.014 0.204 0.355 -
D 0.735 0.775 18.66 19.68 5
D1 0.005 - 0.13 - 5
E 0.300 0.325 7.62 8.25 6
E1 0.240 0.280 6.10 7.11 5
e 0.100 BSC 2.54 BSC -
eA 0.300 BSC 7.62 BSC 6
eB - 0.430 - 10.92 7
L 0.115 0.150 2.93 3.81 4
N 16 16 9
Rev0 12/93
13
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
FN3282.13
June 20, 2007
DG411, DG412, DG413
Small Outline Plastic Packages (SOIC)
NOTES:
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of
Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006
inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above
the seating plane, shall not exceed a maximum value of 0.61mm
(0.024 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions are
not necessarily exact.
INDEX
AREA
E
ré
N
1 2 3
-B-
0.25(0.010) M C A B S
et
-AL
B
M
-CA1
A
SEATING PLANE
0.10(0.004)
h x 45°
C
H 0.25(0.010) M B M
α
M16.15 (JEDEC MS-012-AC ISSUE C)
16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A 0.0532 0.0688 1.35 1.75 -
A1 0.0040 0.0098 0.10 0.25 -
B 0.013 0.020 0.33 0.51 9
C 0.0075 0.0098 0.19 0.25 -
D 0.3859 0.3937 9.80 10.00 3
E 0.1497 0.1574 3.80 4.00 4
e 0.050 BSC 1.27 BSC -
H 0.2284 0.2440 5.80 6.20 -
h 0.0099 0.0196 0.25 0.50 5
L 0.016 0.050 0.40 1.27 6
N 16 16 7
α 0° 8° 0° 8° -
Rev1 6/05
1
®
July 2004
HIP4081A
80V/2.5A Peak, High Frequency Full
Bridge FET Driver
The HIP4081A is a high frequency, medium voltage Full
Bridge N-Channel FET driver IC, available in 20 lead plastic
SOIC and DIP packages. The HIP4081A can drive every
possible switch combination except those which would
cause a shoot-through condition. The HIP4081A can switch
at frequencies up to 1MHz and is well suited to driving Voice
Coil Motors, high-frequency switching power amplifiers, and
power supplies.
For example, the HIP4081A can drive medium voltage brush
motors, and two HIP4081As can be used to drive high
performance stepper motors, since the short minimum
“on-time” can provide fine micro-stepping capability.
Short propagation delays of approximately 55ns maximizes
control loop crossover frequencies and dead-times which
can be adjusted to near zero to minimize distortion, resulting
in rapid, precise control of the driven load.
A similar part, the HIP4080A, includes an on-chip input
comparator to create a PWM signal from an external triangle
wave and to facilitate “hysteresis mode” switching.
The Application Note for the HIP4081A is the AN9405.
Features
• Independently Drives 4 N-Channel FET in Half Bridge or
Full Bridge Configurations
• Bootstrap Supply Max Voltage to 95VDC
• Drives 1000pF Load at 1MHz in Free Air at 50°C with Rise
and Fall Times of Typically 10ns
• User-Programmable Dead Time
• On-Chip Charge-Pump and Bootstrap Upper Bias
Supplies
• DIS (Disable) Overrides Input Control
• Input Logic Thresholds Compatible with 5V to 15V Logic
Levels
• Very Low Power Consumption
• Undervoltage Protection
• Pb-free Available
Applications
• Medium/Large Voice Coil Motors
• Full Bridge Power Supplies
• Switching Power Amplifiers
• High Performance Motor Controls
• Noise Cancellation Systems
• Battery Powered Vehicles
• Peripherals
• U.P.S.
Pinout
HIP4081A
(PDIP, SOIC)
TOP VIEW
Ordering Information
PART
NUMBER
TEMP RANGE
(°C) PACKAGE
PKG.
DWG. #
HIP4081AIP -40 to 85 20 Ld PDIP E20.3
HIP4081AIPZ
(Note)
-40 to 85 20 Ld PDIP
(Pb-free)
E20.3
HIP4081AIB -40 to 85 20 Ld SOIC (W) M20.3
HIP4081AIBZ
(Note)
-40 to 85 20 Ld SOIC (W)
(Pb-free)
M20.3
NOTE: Intersil Pb-free products employ special Pb-free material
sets; molding compounds/die attach materials and 100% matte tin
plate termination finish, which is compatible with both SnPb and
Pb-free soldering operations. Intersil Pb-free products are MSL
classified at Pb-free peak reflow temperatures that meet or exceed
the Pb-free requirements of IPC/JEDEC J Std-020B.
11
12
13
14
15
16
17
18
20
19
10
9
8
7
6
5
4
3
2
BHB 1
BHI
DIS
VSS
BLI
ALI
HDEL
AHI
LDEL
AHB
BHO
BLO
BLS
VDD
BHS
VCC
ALS
ALO
AHS
AHO
Data Sheet FN3659.7
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright Harris Corporation. Copyright Intersil Americas Inc. 2003, 2004. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
2
HIP4081A
Application Block Diagram
Functional Block Diagram (1/2 HIP4081A)
80V
GND
LOAD
HIP4081A
GND
12V
AHI
ALI
BLI
BHI BLO
BHS
BHO
ALO
AHS
AHO
CHARGE
PUMP
VDD
AHI
DIS
ALI
HDEL
LDEL
VSS
TURN-ON
DELAY
TURN-ON
DELAY
DRIVER
DRIVER
AHB
AHO
AHS
VCC
ALO
ALS
CBF
TO VDD (PIN 16)
CBS
DBS
HIGH VOLTAGE BUS ≤ 80VDC
+12VDC
LEVEL SHIFT
AND LATCH
14
10
11
12
15
13
16
7
3
6
8
9
4
BIAS
SUPPLY
UNDERVOLTAGE
3
Typical Application (PWM Mode Switching)
11
12
13
14
15
16
17
18
20
19
10
9
8
7
6
5
4
3
2
1 BHB
BHI
DIS
VSS
BLI
ALI
HDEL
AHI
LDEL
AHB
BHO
BLO
BLS
VDD
BHS
VCC
ALS
ALO
AHS
AHO
80V
12V
+
-
12V
DIS
GND
6V
GND
TO OPTIONAL
CURRENT CONTROLLER
PWM
LOAD
INPUT
HIP4081/HIP4081A
HIP4081A
4
HIP4081A
Absolute Maximum Ratings Thermal Information
Supply Voltage, VDD and VCC . . . . . . . . . . . . . . . . . . . .-0.3V to 16V
Logic I/O Voltages . . . . . . . . . . . . . . . . . . . . . . .-0.3V to VDD +0.3V
Voltage on AHS, BHS . . .-6.0V (Transient) to 80V (25°C to 125°C)
Voltage on AHS, BHS . . .-6.0V (Transient) to 70V (-55°C to 125°C)
Voltage on ALS, BLS . . . . . . .-2.0V (Transient) to +2.0V (Transient)
Voltage on AHB, BHB . . . . . . . .VAHS, BHS -0.3V to VAHS, BHS +VDD
Voltage on ALO, BLO . . . . . . . . . . . ..VALS, BLS -0.3V to VCC +0.3V
Voltage on AHO, BHO . . . . . . .VAHS, BHS -0.3V to VAHB, BHB +0.3V
Input Current, HDEL and LDEL . . . . . . . . . . . . . . . . . .-5mA to 0mA
Phase Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20V/ns
NOTE: All Voltages relative to VSS, unless otherwise specified.
Thermal Resistance (Typical, Note 1) θJA (°C/W)
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
DIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Storage Temperature Range. . . . . . . . . . . . . . . . . . .-65°C to 150°C
Operating Max.Junction Temperature . . . . . . . . . . . . . . . . . .125°C
Lead Temperature (Soldering 10s)). . . . . . . . . . . . . . . . . ....300°C
(For SOIC - Lead Tips Only
Operating Conditions
Supply Voltage, VDD and VCC . . . . . . . . . . . . . . . . . . +9.5V to +15V
Voltage on ALS, BLS ................... .... ..-1.0V to +1.0V
Voltage on AHB, BHB . . . . . . . . .VAHS, BHS +5V to VAHS, BHS +15V
Input Current, HDEL and LDEL . . . . . . . . . . . . . . ..-500μA to -50μA
Operating Ambient Temperature Range . . . . . . . . . ..-40°C to 85°C
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and
TA = 25°C, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS
TJ = 25°C
TJS = -40°C TO
125°C
MIN TYP MAX MIN MAX UNITS
SUPPLY CURRENTS AND CHARGE PUMPS
VDD Quiescent Current IDD All inputs = 0V 8.5 10.5 14.5 7.5 14.5 mA
VDD Operating Current IDDO Outputs switching f = 500kHz 9.5 12.5 15.5 8.5 15.5 mA
VCC Quiescent Current ICC All Inputs = 0V, IALO = IBLO = 0 - 0.1 10 - 20 μA
VCC Operating Current ICCO f = 500kHz, No Load 1 1.25 2.0 0.8 3 mA
AHB, BHB Quiescent Current -
Qpump Output Current
IAHB, IBHB All Inputs = 0V, IAHO = IBHO = 0
VDD = VCC = VAHB = VBHB = 10V
-50 -30 -11 -60 -10 μA
AHB, BHB Operating Current IAHBO, IBHBO f = 500kHz, No Load 0.6 1.2 1.5 0.5 1.9 mA
AHS, BHS, AHB, BHB Leakage
Current
IHLK VBHS = VAHS = 80V,
VAHB = VBHB = 93V
- 0.02 1.0 - 10 μA
AHB-AHS, BHB-BHS Qpump
Output Voltage
VAHB-VAHS
VBHB-VBHS
IAHB = IAHB = 0, No Load 11.5 12.6 14.0 10.5 14.5 V
INPUT PINS: ALI, BLI, AHI, BHI, AND DIS
Low Level Input Voltage VIL Full Operating Conditions - - 1.0 - 0.8 V
High Level Input Voltage VIH Full Operating Conditions 2.5 - - 2.7 - V
Input Voltage Hysteresis - 35 - - - mV
Low Level Input Current IIL VIN = 0V, Full Operating Conditions -130 -100 -75 -135 -65 μA
High Level Input Current IIH VIN = 5V, Full Operating Conditions -1 - +1 -10 +10 μA
TURN-ON DELAY PINS: LDEL AND HDEL
LDEL, HDEL Voltage VHDEL, VLDEL IHDEL = ILDEL = -100μA 4.9 5.1 5.3 4.8 5.4 V
GATE DRIVER OUTPUT PINS: ALO, BLO, AHO, AND BHO
Low Level Output Voltage VOL IOUT = 100mA 0.7 0.85 1.0 0.5 1.1 V
High Level Output Voltage VCC-VOH IOUT = -100mA 0.8 0.95 1.1 0.5 1.2 V
Peak Pullup Current IO+ VOUT = 0V 1.7 2.6 3.8 1.4 4.1 A
5
HIP4081A
Peak Pulldown Current IO- VO UT = 12V 1.7 2.4 3.3 1.3 3.6 A
Undervoltage, Rising Threshold UV+ 8.1 8.8 9.4 8.0 9.5 V
Undervoltage, Falling Threshold UV- 7.6 8.3 8.9 7.5 9.0 V
Undervoltage, Hysteresis HYS 0.25 0.4 0.65 0.2 0.7 V
Switching Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K,
CL = 1000pF.
PARAMETER SYMBOL TEST CONDITIONS
TJ = 25°C
TJS = -40°C
TO 125°C
MIN TYP MAX MIN MAX UNITS
Lower Turn-off Propagation Delay
(ALI-ALO, BLI-BLO)
TLPHL - 30 60 - 80 ns
Upper Turn-off Propagation Delay
(AHI-AHO, BHI-BHO)
THPHL - 35 70 - 90 ns
Lower Turn-on Propagation Delay
(ALI-ALO, BLI-BLO)
TLPLH RHDEL = RLDEL = 10K - 45 70 - 90 ns
Upper Turn-on Propagation Delay
(AHI-AHO, BHI-BHO)
THPLH RHDEL = RLDEL = 10K - 60 90 - 110 ns
Rise Time TR - 10 25 - 35 ns
Fall Time TF - 10 25 - 35 ns
Turn-on Input Pulse Width TPWIN-ON RHDEL = RLDEL = 10K 50 - - 50 - ns
Turn-off Input Pulse Width TPWIN-OFF RHDEL = RLDEL = 10K 40 - - 40 - ns
Turn-on Output Pulse Width TPWOUT-ON RHDEL = RLDEL = 10K 40 - - 40 - ns
Turn-off Output Pulse Width TPWOUT-OFF RHDEL = RLDEL = 10K 30 - - 30 - ns
Disable Turn-off Propagation Delay
(DIS - Lower Outputs)
TDISLOW - 45 75 - 95 ns
Disable Turn-off Propagation Delay
(DIS - Upper Outputs)
TDISHIGH - 55 85 - 105 ns
Disable to Lower Turn-on Propagation Delay
(DIS - ALO and BLO)
TDLPLH - 40 70 - 90 ns
Refresh Pulse Width (ALO and BLO) TREF-PW 240 410 550 200 600 ns
Disable to Upper Enable (DIS - AHO and BHO) TUEN - 450 620 - 690 ns
TRUTH TABLE
INPUT OUTPUT
ALI, BLI AHI, BHI U/V DIS ALO, BLO AHO, BHO
X X X 1 0 0
1 X 0 0 1 0
0 1 0 0 0 1
0 0 0 0 0 0
X X 1 X 0 0
NOTE: X signifies that input can be either a “1” or “0”.
Electrical Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and
TA = 25°C, Unless Otherwise Specified (Continued)
PARAMETER SYMBOL TEST CONDITIONS
TJ = 25°C
TJS = -40°C TO
125°C
MIN TYP MAX MIN MAX UNITS
6
HIP4081A
Pin Descriptions
PIN
NUMBER SYMBOL DESCRIPTION
1 BHB B High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap
diode and positive side of bootstrap capacitor to this pin. Internal charge pump supplies 30μA out of this pin to
maintain bootstrap supply. Internal circuitry clamps the bootstrap supply to approximately 12.8V.
2 BHI B High-side Input. Logic level input that controls BHO driver (Pin 20). BLI (Pin 5) high level input overrides BHI high
level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 3) high level input overrides BHI high level
input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD).
3 DIS DISable input. Logic level input that when taken high sets all four outputs low. DIS high overrides all other inputs.
When DIS is taken low the outputs are controlled by the other inputs. The pin can be driven by signal levels of 0V to
15V (no greater than VDD).
4 VSS Chip negative supply, generally will be ground.
5 BLI B Low-side Input. Logic level input that controls BLO driver (Pin 18). If BHI (Pin 2) is driven high or not connected
externally then BLI controls both BLO and BHO drivers, with dead time set by delay currents at HDEL and LDEL (Pin
8 and 9). DIS (Pin 3) high level input overrides BLI high level input. The pin can be driven by signal levels of 0V to 15V
(no greater than VDD).
6 ALI A Low-side Input. Logic level input that controls ALO driver (Pin 13). If AHI (Pin 7) is driven high or not connected
externally then ALI controls both ALO and AHO drivers, with dead time set by delay currents at HDEL and LDEL (Pin
8 and 9). DIS (Pin 3) high level input overrides ALI high level input. The pin can be driven by signal levels of 0V to 15V
(no greater than VDD).
7 AHI A High-side Input. Logic level input that controls AHO driver (Pin 11). ALI (Pin 6) high level input overrides AHI high
level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 3) high level input overrides AHI high level
input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD).
8 HDEL High-side turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the turn-on delay of
both high-side drivers. The low-side drivers turn-off with no adjustable delay, so the HDEL resistor guarantees no
shoot-through by delaying the turn-on of the high-side drivers. HDEL reference voltage is approximately 5.1V.
9 LDEL Low-side turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the turn-on delay of
both low-side drivers. The high-side drivers turn-off with no adjustable delay, so the LDEL resistor guarantees no
shoot-through by delaying the turn-on of the low-side drivers. LDEL reference voltage is approximately 5.1V.
10 AHB A High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap
diode and positive side of bootstrap capacitor to this pin. Internal charge pump supplies 30μA out of this pin to
maintain bootstrap supply. Internal circuitry clamps the bootstrap supply to approximately 12.8V.
11 AHO A High-side Output. Connect to gate of A High-side power MOSFET.
12 AHS A High-side Source connection. Connect to source of A High-side power MOSFET. Connect negative side of
bootstrap capacitor to this pin.
13 ALO A Low-side Output. Connect to gate of A Low-side power MOSFET.
14 ALS A Low-side Source connection. Connect to source of A Low-side power MOSFET.
15 VCC Positive supply to gate drivers. Must be same potential as VDD (Pin 16). Connect to anodes of two bootstrap diodes.
16 VDD Positive supply to lower gate drivers. Must be same potential as VCC (Pin 15). De-couple this pin to VSS (Pin 4).
17 BLS B Low-side Source connection. Connect to source of B Low-side power MOSFET.
18 BLO B Low-side Output. Connect to gate of B Low-side power MOSFET.
19 BHS B High-side Source connection. Connect to source of B High-side power MOSFET. Connect negative side of
bootstrap capacitor to this pin.
20 BHO B High-side Output. Connect to gate of B High-side power MOSFET.
7
HIP4081A
Timing Diagrams
FIGURE 1. INDEPENDENT MODE
FIGURE 2. BISTATE MODE
FIGURE 3. DISABLE FUNCTION
U/V = DIS = 0
XLI
XHI
XLO
XHO
TLPHL THPHL
THPLH TLPLH TR
(10% - 90%)
TF
(10% - 90%)
X = A OR B, A AND B HALVES OF BRIDGE CONTROLLER ARE INDEPENDENT
U/V = DIS = 0
XLI
XHI = HI OR NOT CONNECTED
XLO
XHO
(10% - 90%) (10% - 90%)
U/V OR DIS
XLI
XHI
XLO
XHO
TDLPLH TDIS
TUEN
TREF-PW
8
HIP4081A
Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K
and TA = 25°C, Unless Otherwise Specified
FIGURE 4. QUIESCENT IDD SUPPLY CURRENT vs VDD
SUPPLY VOLTAGE
FIGURE 5. IDDO, NO-LOAD IDD SUPPLY CURRENT vs
FREQUENCY (kHz)
FIGURE 6. SIDE A, B FLOATING SUPPLY BIAS CURRENT vs
FREQUENCY (LOAD = 1000pF)
FIGURE 7. ICCO, NO-LOAD ICC SUPPLY CURRENT vs
FREQUENCY (kHz) TEMPERATURE
FIGURE 8. IAHB, IBHB, NO-LOAD FLOATING SUPPLY BIAS
CURRENT vs FREQUENCY
FIGURE 9. ALI, BLI, AHI, BHI LOW LEVEL INPUT CURRENT IIL
vs TEMPERATURE
6 8 10 12 14
2.0
4.0
6.0
8.0
10.0
12.0
14.0
IDD SUPPLY CURRENT (mA)
VDD SUPPLY VOLTAGE (V)
0 100 200 300 400 500 600 700 800 900 1000
8.0
8.5
9.0
9.5
10.0
10.5
11.0
IDD SUPPLY CURRENT (mA)
SWITCHING FREQUENCY (kHz)
0 100 200 300 400 500 600 700 800 900 1000
0.0
5.0
10.0
15.0
20.0
25.0
30.0
FLOATING SUPPLY BIAS CURRENT (mA)
SWITCHING FREQUENCY (kHz) 0 100 200 300 400 500 600 700 800 900 1000
0.0
1.0
2.0
3.0
4.0
5.0
ICC SUPPLY CURRENT (mA)
SWITCHING FREQUENCY (kHz)
75°C
25°C
125°C
-40°C
0°C
0.5
1
1.5
2
2.5
0 200 400 600 800 1000
FLOATING SUPPLY BIAS CURRENT (mA)
SWITCHING FREQUENCY (kHz)
-50 -25 0 25 50 75 100 125
-120
-110
-100
-90
LOW LEVEL INPUT CURRENT (μA)
JUNCTION TEMPERATURE (°C)
9
HIP4081A
Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K
and TA = 25°C, Unless Otherwise Specified
FIGURE 10. AHB - AHS, BHB - BHS NO-LOAD CHARGE PUMP
VOLTAGE vs TEMPERATURE
FIGURE 11. UPPER DISABLE TURN-OFF PROPAGATION
DELAY TDISHIGH vs TEMPERATURE
FIGURE 12. DISABLE TO UPPER ENABLE, TUEN,
PROPAGATION DELAY vs TEMPERATURE
FIGURE 13. LOWER DISABLE TURN-OFF PROPAGATION
DELAY TDISLOW vs TEMPERATURE
FIGURE 14. TREF-PW REFRESH PULSE WIDTH vs
TEMPERATURE
FIGURE 15. DISABLE TO LOWER ENABLE TDLPLH
PROPAGATION DELAY vs TEMPERATURE
-40 -20 0 20 40 60 80 100 120
10.0
11.0
12.0
13.0
14.0
15.0
NO-LOAD FLOATING CHARGE PUMP VOLTAGE (V)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
425
450
475
500
525
-50 -25 0 25 50 75 100 125 150
JUNCTION TEMPERATURE (°C)
PROPAGATION DELAY (ns)
-40 -20 0 20 40 60 80 100 120
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
350
375
400
425
450
-50 -25 0 25 50 75 100 125 150
REFRESH PULSE WIDTH (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
20
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
10
HIP4081A
FIGURE 16. UPPER TURN-OFF PROPAGATION DELAY THPHL
vs TEMPERATURE
FIGURE 17. UPPER TURN-ON PROPAGATION DELAY THPLH vs
TEMPERATURE
FIGURE 18. LOWER TURN-OFF PROPAGATION DELAY TLPHL
vs TEMPERATURE
FIGURE 19. LOWER TURN-ON PROPAGATION DELAY TLPLH vs
TEMPERATURE
FIGURE 20. GATE DRIVE FALL TIME TF vs TEMPERATURE FIGURE 21. GATE DRIVE RISE TIME TR vs TEMPERATURE
Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K
and TA = 25°C, Unless Otherwise Specified (Continued)
-40 -20 0 20 40 60 80 100 120
20
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
20
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
20
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
20
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
8.5
9.5
10.5
11.5
12.5
13.5
GATE DRIVE FALL TIME (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
8.5
9.5
10.5
11.5
12.5
13.5
TURN-ON RISE TIME (ns)
JUNCTION TEMPERATURE (°C)
11
HIP4081A
Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL =
100K and TA = 25°C, Unless Otherwise Specified
FIGURE 22. VLDEL, VHDEL VOLTAGE vs TEMPERATURE FIGURE 23. HIGH LEVEL OUTPUT VOLTAGE VCC - VOH vs BIAS
SUPPLY AND TEMPERATURE AT 100mA
FIGURE 24. LOW LEVEL OUTPUT VOLTAGE VOL vs BIAS
SUPPLY AND TEMPERATURE AT 100mA
FIGURE 25. PEAK PULLDOWN CURRENT IO vs BIAS SUPPLY
VOLTAGE
FIGURE 26. PEAK PULLUP CURRENT IO+ vs BIAS SUPPLY
VOLTAGE
FIGURE 27. LOW VOLTAGE BIAS CURRENT IDD (LESS
QUIESCENT COMPONENT) vs FREQUENCY AND
GATE LOAD CAPACITANCE
-40 -20 0 20 40 60 80 100 120
4.0
4.5
5.0
5.5
6.0
HDEL, LDEL INPUT VOLTAGE (V)
JUNCTION TEMPERATURE (°C)
10 12 14
0
250
500
750
1000
1250
1500
VCC - VOH (mV)
BIAS SUPPLY VOLTAGE (V)
75°C
25°C
125°C
-40°C
0°C
12 14
0
250
500
750
1000
1250
1500
VOL (mV)
BIAS SUPPLY VOLTAGE (V)
10
75°C
25°C
125°C
-40°C
0°C
6 7 8 9 10 11 12 13 14 15 16
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
GATE DRIVE SINK CURRENT (A)
VDD, VCC, VAHB, VBHB (V)
6 7 8 9 10 11 12 13 14 15 16
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
GATE DRIVE SINK CURRENT (A)
VDD, VCC, VAHB, VBHB (V)
1 2 5 10 20 50 100 200 500 1000
0.1
1
10
100
500
50
5
0.5
200
20
2
0.2
LOW VOLTAGE BIAS CURRENT (mA)
SWITCHING FREQUENCY (kHz)
100pF
1,000pF
10,000pF
3,000pF
12
HIP4081A
FIGURE 28. HIGH VOLTAGE LEVEL-SHIFT CURRENT vs FREQUENCY AND BUS VOLTAGE
FIGURE 29. UNDERVOLTAGE LOCKOUT vs TEMPERATURE FIGURE 30. MINIMUM DEAD-TIME vs DEL RESISTANCE
Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL =
100K and TA = 25°C, Unless Otherwise Specified (Continued)
10 20 50 100 200 500 1000
10
100
1000
20
50
200
500
LEVEL-SHIFT CURRENT (μA)
SWITCHING FREQUENCY (kHz)
8.2
8.4
8.6
8.8
9.0
50 25 0 25 50 75 100 125 150
UV+
UVTEMPERATURE
(°C)
BIAS SUPPLY VOLTAGE, VDD (V)
10 50 100 150 200 250
0
30
60
90
120
150
HDEL/LDEL RESISTANCE (kΩ)
DEAD-TIME (ns)
13
HIP4081A
1
2
3
1
2
3
1
2
3
5 6
1
2
3
1 2
13 12
1
2
3
11 10
1
2
3
1
2
3
4
5
6
7
8
9
10 11
12
13
14
15
16
17
18
19
20
L1
R21
Q1
Q3
Q4
R22
L2
R23 C1
C3
JMPR1
R24
R30 R31
C2
R34
C4
CR2
CR1
Q2
JMPR5
JMPR3
JMPR2
JMPR4
R33
C5
C6
CX CY
C8
U1
CW CW
+
B+
IN2 IN1
BO
OUT/BLI
IN-/AHI
COM
IN+/ALI +12V
+12V
BLS
AO
HEN/BHI
ALS
CD4069UB
CD4069UB
CD4069UB
CD4069UB
HIP4080A/81A
SECTION
CONTROL LOGIC
POWER SECTION
DRIVER SECTION
AHB AHO
LDEL AHS
HDEL ALO
IN-/AHI ALS
IN+/ALI VCC
OUT/BLI VDD
VSS BLS
DIS BLO
HEN/BHI BHS
BHB BHO
R29
U2
U2
U2
U2
3 4
9 8
R32
je
O
O
CD4069UB
CD4069UB
ENABLE IN
U2
U2
NOTES:
1. DEVICE CD4069UB PIN 7 = COM, PIN 14 = +12V.
2. COMPONENTS L1, L2, C1, C2, CX, CY, R30, R31, NOT SUPPLIED.
REFER TO APPLICATION NOTE FOR DESCRIPTION OF INPUT
LOGIC OPERATION TO DETERMINE JUMPER LOCATIONS FOR
JMPR1 - JMPR4.
FIGURE 31. HIP4081A EVALUATION PC BOARD SCHEMATIC
14
HIP4081A
R22 1
Q3
L1
JMPR2
JMPR5
R31
R33
CR2
R23
R24
R27
R28
R26
1
Q4
1
JMPR3 Q2
U1
R21
GND
L2
C3
C4
JMPR4
JMPR1
R30
CR1
U2
R34
R32
je
O
C8
R29
C7
C6
C5
CY
CX
1
Q1
COM
+12V
B+
IN1
IN2
AHO
BHO
ALO
BLO
BLS
BLS
LDEL
HDEL
DIS
ALS
ALS
O
+ +
HIP4080/81
FIGURE 32. HIP4081A EVALUATION BOARD SILKSCREEN
15
HIP4081A
Dual-In-Line Plastic Packages (PDIP)
NOTES:
1. Controlling Dimensions: INCH. In case of conflict between English
and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2
of Publication No. 95.
4. Dimensions A, A1 and L are measured with the package seated in
JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions.
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
6. E and are measured with the leads constrained to be perpendicular
to datum .
7. eB and eC are measured at the lead tips with the leads unconstrained.
eC must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar
protrusions shall not exceed 0.010 inch (0.25mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).
eA
-CCL
E
eA
C
eB
eC
-BE1
INDEX 1 2 3 N/2
N
AREA
SEATING
BASE
PLANE
PLANE
-CD1
B1
B
et
ré
D1
A2 A
L
A1
-A-
0.010 (0.25) M C A B S
E20.3 (JEDEC MS-001-AD ISSUE D)
20 LEAD DUAL-IN-LINE PLASTIC PACKAGE
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A - 0.210 - 5.33 4
A1 0.015 - 0.39 - 4
A2 0.115 0.195 2.93 4.95 -
B 0.014 0.022 0.356 0.558 -
B1 0.045 0.070 1.55 1.77 8
C 0.008 0.014 0.204 0.355 -
D 0.980 1.060 24.89 26.9 5
D1 0.005 - 0.13 - 5
E 0.300 0.325 7.62 8.25 6
E1 0.240 0.280 6.10 7.11 5
e 0.100 BSC 2.54 BSC -
eA 0.300 BSC 7.62 BSC 6
eB - 0.430 - 10.92 7
L 0.115 0.150 2.93 3.81 4
N 20 20 9
Rev0 12/93
16
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
HIP4081A
Small Outline Plastic Packages (SOIC)
NOTES:
1. Symbols are defined in the “MO Series Symbol List” in Section
2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusion and gate burrs shall not exceed
0.15mm (0.006 inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead
flash and protrusions shall not exceed 0.25mm (0.010
inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual
index feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater
above the seating plane, shall not exceed a maximum value of
0.61mm (0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions
are not necessarily exact.
INDEX
AREA
E
ré
N
1 2 3
-B-
0.25(0.010) M C A B S
et
-AL
B
M
-CA1
A
SEATING PLANE
0.10(0.004)
h x 45o
C
H
μ
0.25(0.010) M B M
α
M20.3 (JEDEC MS-013-AC ISSUE C)
20 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A 0.0926 0.1043 2.35 2.65 -
A1 0.0040 0.0118 0.10 0.30 -
B 0.014 0.019 0.35 0.49 9
C 0.0091 0.0125 0.23 0.32 -
D 0.4961 0.5118 12.60 13.00 3
E 0.2914 0.2992 7.40 7.60 4
e 0.050 BSC 1.27 BSC -
H 0.394 0.419 10.00 10.65 -
h 0.010 0.029 0.25 0.75 5
L 0.016 0.050 0.40 1.27 6
N 20 20 7
α 0o 8o 0o 8o -
Rev1 1/02
http://www.farnell.com/datasheets/32553.pdf
1
®
FN3663.5
HFA3101
Gilbert Cell UHF Transistor Array
The HFA3101 is an all NPN transistor array configured as a Multiplier Cell. Based on Intersil’s bonded wafer UHF-1 SOI process, this array achieves very high fT (10GHz) while maintaining excellent hFE and VBE matching characteristics that have been maximized through careful attention to circuit design and layout, making this product ideal for communication circuits. For use in mixer applications, the cell provides high gain and good cancellation of 2nd order distortion terms.
Pinout
HFA3101(SOIC)
TOP VIEW
Features
•Pb-free Available as an Option
•High Gain Bandwidth Product (fT) . . . . . . . . . . . . .10GHz
•High Power Gain Bandwidth Product. . . . . . . . . . . .5GHz
•Current Gain (hFE). . . . . . . . . . . . . . . . . . . . . . . . . . . ..70
•Low Noise Figure (Transistor) . . . . . . . . . . . . . . . . .3.5dB
•Excellent hFE and VBE Matching
•Low Collector Leakage Current . . . . . . . . . . . . . .<0.01nA
•Pin to Pin Compatible to UPA101
Applications
•Balanced Mixers
•Multipliers
•Demodulators/Modulators
•Automatic Gain Control Circuits
•Phase Detectors
•Fiber Optic Signal Processing
•Wireless Communication Systems
•Wide Band Amplification Stages
•Radio and Satellite Communications
•High Performance Instrumentation
Ordering Information
PART NUMBER (BRAND)
TEMP. RANGE (°C)
PACKAGE
PKG. DWG. #
HFA3101B
(H3101B)
-40 to 85
8 Ld SOIC
M8.15
HFA3101BZ
(H3101B) (Note)
-40 to 85
8 Ld SOIC
(Pb-free)
M8.15
HFA3101B96
(H3101B)
-40 to 85
8 Ld SOIC Tape and Reel
M8.15
HFA3101BZ96
(H3101B) (Note)
-40 to 85
8 Ld SOIC Tape and Reel (Pb-free)
M8.15
NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which is compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020C.
12348765Q5Q6Q1Q2Q3Q4NOTE: Q5 and Q6 -
2
Paralleled 3μm x
50μm Transistors Q1, Q2, Q3, Q4 -
Single 3μm x
50μm Transistors
Data Sheet
September 2004
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 1998, 2004. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
2
Absolute Maximum Ratings
Thermal Information
VCEO, Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . .8.0V
VCBO, Collector to Base Voltage. . . . . . . . . . . . . . . . . . . . . . .12.0V
VEBO, Emitter to Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . .5.5V
IC, Collector Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30mA
Operating Conditions
Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . .-40oC to 85oC
Thermal Resistance (Typical, Note 1)θJA (oC/W) SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185
Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . ..175oC
Maximum Junction Temperature (Plastic Package). . . . . . . ..150oC
Maximum Storage Temperature Range. . . . . . . . . .-65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . ..300oC (SOIC - Lead Tips Only)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical SpecificationsTA = 25oC
PARAMETER
TEST CONDITIONS
(NOTE 2)
TEST LEVEL
MIN
TYP
MAX
UNITS
Collector to Base Breakdown Voltage, V(BR)CBO, Q1 thru Q6
IC = 100μA, IE = 0
A
12
18
-
V
Collector to Emitter Breakdown Voltage, V(BR)CEO,
Q5 and Q6
IC = 100μA, IB = 0
A
8
12
-
V
Emitter to Base Breakdown Voltage, V(BR)EBO, Q1 thru Q6
IE = 10μA, IC = 0
A
5.5
6
-
V
Collector Cutoff Current, ICBO, Q1 thru Q4
VCB = 8V, IE = 0
A
-
0.1
10
nA
Emitter Cutoff Current, IEBO, Q5 and Q6
VEB = 1V, IC = 0
A
-
-
200
nA
DC Current Gain, hFE, Q1 thru Q6
IC = 10mA, VCE = 3V
A
40
70
-
Collector to Base Capacitance, CCB
Q1 thru Q4
VCB = 5V, f = 1MHz
C
-
0.300
-
pF
Q5 and Q6
-
0.600
-
pF
Emitter to Base Capacitance, CEB
Q1 thru Q4
VEB = 0, f = 1MHz
B
-
0.200
-
pF
Q5 and Q6
-
0.400
-
pF
Current Gain-Bandwidth Product, fT
Q1 thru Q4
IC = 10mA, VCE = 5V
C
-
10
-
GHz
Q5 and Q6
IC = 20mA, VCE = 5V
C
-
10
-
GHz
Power Gain-Bandwidth Product, fMAX
Q1 thru Q4
IC = 10mA, VCE = 5V
C
-
5
-
GHz
Q5 and Q6
IC = 20mA, VCE = 5V
C
-
5
-
GHz
Available Gain at Minimum Noise Figure, GNFMIN,
Q5 and Q6
IC = 5mA, VCE = 3V
f = 0.5GHz
C
-
17.5
-
dB
f = 1.0GHz
C
-
11.9
-
dB
Minimum Noise Figure, NFMIN, Q5 and Q6
IC = 5mA, VCE = 3V
f = 0.5GHz
C
-
1.7
-
dB
f = 1.0GHz
C
-
2.0
-
dB
50Ω Noise Figure, NF50Ω, Q5 and Q6
IC = 5mA, VCE = 3V
f = 0.5GHz
C
-
2.25
-
dB
f = 1.0GHz
C
-
2.5
-
dB
DC Current Gain Matching, hFE1/hFE2, Q1 and Q2,
Q3 and Q4, and Q5 and Q6
IC = 10mA, VCE = 3V
A
0.9
1.0
1.1
Input Offset Voltage, VOS, (Q1 and Q2), (Q3 and Q4),
(Q5 and Q6)
IC = 10mA, VCE = 3V
A
-
1.5
5
mV
Input Offset Current, IC, (Q1 and Q2), (Q3 and Q4),
(Q5 and Q6)
IC = 10mA, VCE = 3V
A
-
5
25
μA
Input Offset Voltage TC, dVOS/dT, (Q1 and Q2, Q3 and Q4, Q5 and Q6)
IC = 10mA, VCE = 3V
C
-
0.5
-
μV/oC
Collector to Collector Leakage, ITRENCH-LEAKAGE
ΔVTEST = 5V
B
-
0.01
-
nA
NOTE:
2. Test Level: A. Production Tested, B. Typical or Guaranteed Limit Based on Characterization, C. Design Typical for Information Only.
HFA3101
3-3
PSPICE Model for a 3 μm x 50μm Transistor
.Model NUHFARRY NPN
+ (IS = 1.840E-16
XTI = 3.000E+00
EG = 1.110E+00
VAF = 7.200E+01
+ VAR = 4.500E+00
BF = 1.036E+02
ISE = 1.686E-19
NE = 1.400E+00
+ IKF = 5.400E-02
XTB = 0.000E+00
BR = 1.000E+01
ISC = 1.605E-14
+ NC = 1.800E+00
IKR = 5.400E-02
RC = 1.140E+01
CJC = 3.980E-13
+ MJC = 2.400E-01
VJC = 9.700E-01
FC = 5.000E-01
CJE = 2.400E-13
+ MJE = 5.100E-01
VJE = 8.690E-01
TR = 4.000E-09
TF = 10.51E-12
+ ITF = 3.500E-02
XTF = 2.300E+00
VTF = 3.500E+00
PTF = 0.000E+00
+ XCJC = 9.000E-01
CJS = 1.689E-13
VJS = 9.982E-01
MJS = 0.000E+00
+ RE = 1.848E+00
RB = 5.007E+01
RBM = 1.974E+00
KF = 0.000E+00
+ AF = 1.000E+00)
Common Emitter S-Parameters of 3 μm x 50μm Transistor
FREQ. (Hz)
|S11|
PHASE(S11)
|S12|
PHASE(S12)
|S21|
PHASE(S21)
|S22|
PHASE(S22)
VCE = 5V and IC = 5mA
1.0E+08
0.83
-11.78
1.41E-02
78.88
11.07
168.57
0.97
-11.05
2.0E+08
0.79
-22.82
2.69E-02
68.63
10.51
157.89
0.93
-21.35
3.0E+08
0.73
-32.64
3.75E-02
59.58
9.75
148.44
0.86
-30.44
4.0E+08
0.67
-41.08
4.57E-02
51.90
8.91
140.36
0.79
-38.16
5.0E+08
0.61
-48.23
5.19E-02
45.50
8.10
133.56
0.73
-44.59
6.0E+08
0.55
-54.27
5.65E-02
40.21
7.35
127.88
0.67
-49.93
7.0E+08
0.50
-59.41
6.00E-02
35.82
6.69
123.10
0.62
-54.37
8.0E+08
0.46
-63.81
6.27E-02
32.15
6.11
119.04
0.57
-58.10
9.0E+08
0.42
-67.63
6.47E-02
29.07
5.61
115.57
0.53
-61.25
1.0E+09
0.39
-70.98
6.63E-02
26.45
5.17
112.55
0.50
-63.96
1.1E+09
0.36
-73.95
6.75E-02
24.19
4.79
109.91
0.47
-66.31
1.2E+09
0.34
-76.62
6.85E-02
22.24
4.45
107.57
0.45
-68.37
1.3E+09
0.32
-79.04
6.93E-02
20.53
4.15
105.47
0.43
-70.19
1.4E+09
0.30
-81.25
7.00E-02
19.02
3.89
103.57
0.41
-71.83
1.5E+09
0.28
-83.28
7.05E-02
17.69
3.66
101.84
0.40
-73.31
1.6E+09
0.27
-85.17
7.10E-02
16.49
3.45
100.26
0.39
-74.66
1.7E+09
0.25
-86.92
7.13E-02
15.41
3.27
98.79
0.38
-75.90
1.8E+09
0.24
-88.57
7.17E-02
14.43
3.10
97.43
0.37
-77.05
1.9E+09
0.23
-90.12
7.19E-02
13.54
2.94
96.15
0.36
-78.12
2.0E+09
0.22
-91.59
7.21E-02
12.73
2.80
94.95
0.35
-79.13
2.1E+09
0.21
-92.98
7.23E-02
11.98
2.68
93.81
0.35
-80.09
2.2E+09
0.20
-94.30
7.25E-02
11.29
2.56
92.73
0.34
-80.99
2.3E+09
0.20
-95.57
7.27E-02
10.64
2.45
91.70
0.34
-81.85
2.4E+09
0.19
-96.78
7.28E-02
10.05
2.35
90.72
0.33
-82.68
2.5E+09
0.18
-97.93
7.29E-02
9.49
2.26
89.78
0.33
-83.47
2.6E+09
0.18
-99.05
7.30E-02
8.96
2.18
88.87
0.33
-84.23
2.7E+09
0.17
-100.12
7.31E-02
8.47
2.10
88.00
0.33
-84.97
HFA3101
4
2.8E+09
0.17
-101.15
7.31E-02
8.01
2.02
87.15
0.33
-85.68
2.9E+09
0.16
-102.15
7.32E-02
7.57
1.96
86.33
0.33
-86.37
3.0E+09
0.16
-103.11
7.32E-02
7.16
1.89
85.54
0.33
-87.05
VCE = 5V and IC = 10mA
1.0E+08
0.72
-16.43
1.27E-02
75.41
15.12
165.22
0.95
-14.26
2.0E+08
0.67
-31.26
2.34E-02
62.89
13.90
152.04
0.88
-26.95
3.0E+08
0.60
-43.76
3.13E-02
52.58
12.39
141.18
0.79
-37.31
4.0E+08
0.53
-54.00
3.68E-02
44.50
10.92
132.57
0.70
-45.45
5.0E+08
0.47
-62.38
4.05E-02
38.23
9.62
125.78
0.63
-51.77
6.0E+08
0.42
-69.35
4.31E-02
33.34
8.53
120.37
0.57
-56.72
7.0E+08
0.37
-75.26
4.49E-02
29.47
7.62
116.00
0.51
-60.65
8.0E+08
0.34
-80.36
4.63E-02
26.37
6.86
112.39
0.47
-63.85
9.0E+08
0.31
-84.84
4.72E-02
23.84
6.22
109.36
0.44
-66.49
1.0E+09
0.29
-88.83
4.80E-02
21.75
5.69
106.77
0.41
-68.71
1.1E+09
0.27
-92.44
4.86E-02
20.00
5.23
104.51
0.39
-70.62
1.2E+09
0.25
-95.73
4.90E-02
18.52
4.83
102.53
0.37
-72.28
1.3E+09
0.24
-98.75
4.94E-02
17.25
4.49
100.75
0.35
-73.76
1.4E+09
0.22
-101.55
4.97E-02
16.15
4.19
99.16
0.34
-75.08
1.5E+09
0.21
-104.15
4.99E-02
15.19
3.93
97.70
0.33
-76.28
1.6E+09
0.20
-106.57
5.01E-02
14.34
3.70
96.36
0.32
-77.38
1.7E+09
0.20
-108.85
5.03E-02
13.60
3.49
95.12
0.31
-78.41
1.8E+09
0.19
-110.98
5.05E-02
12.94
3.30
93.96
0.31
-79.37
1.9E+09
0.18
-113.00
5.06E-02
12.34
3.13
92.87
0.30
-80.27
2.0E+09
0.18
-114.90
5.07E-02
11.81
2.98
91.85
0.30
-81.13
2.1E+09
0.17
-116.69
5.08E-02
11.33
2.84
90.87
0.30
-81.95
2.2E+09
0.17
-118.39
5.09E-02
10.89
2.72
89.94
0.29
-82.74
2.3E+09
0.16
-120.01
5.10E-02
10.50
2.60
89.06
0.29
-83.50
2.4E+09
0.16
-121.54
5.11E-02
10.13
2.49
88.21
0.29
-84.24
2.5E+09
0.16
-122.99
5.12E-02
9.80
2.39
87.39
0.29
-84.95
2.6E+09
0.15
-124.37
5.12E-02
9.49
2.30
86.60
0.29
-85.64
2.7E+09
0.15
-125.69
5.13E-02
9.21
2.22
85.83
0.29
-86.32
2.8E+09
0.15
-126.94
5.13E-02
8.95
2.14
85.09
0.29
-86.98
2.9E+09
0.15
-128.14
5.14E-02
8.71
2.06
84.36
0.29
-87.62
3.0E+09
0.14
-129.27
5.15E-02
8.49
1.99
83.66
0.29
-88.25
Common Emitter S-Parameters of 3 μm x 50 μm Transistor (Continued)
FREQ. (Hz) |S11| PHASE(S11) |S12| PHASE(S12) |S21| PHASE(S21) |S22| PHASE(S22)
HFA3101
3-5
Application Information
The HFA3101 array is a very versatile RF Building block. It has been carefully laid out to improve its matching properties, bringing the distortion due to area mismatches, thermal distribution, betas and ohmic resistances to a minimum.
The cell is equivalent to two differential stages built as two “variable transconductance multipliers” in parallel, with their outputs cross coupled. This configuration is well known in the industry as a Gilbert Cell which enables a four quadrant multiplication operation.
Due to the input dynamic range restrictions for the input levels at the upper quad transistors and lower tail transistors, the HFA3101 cell has restricted use as a linear four quadrant multiplier. However, its configuration is well suited for uses where its linear response is limited to one of the inputs only, as in modulators or mixer circuit applications. Examples of these circuits are up converters, down converters, frequency doublers and frequency/phase detectors.
Although linearization is still an issue for the lower pair input, emitter degeneration can be used to improve the dynamic range and consequent linearity. The HFA3101 has the lower pair emitters brought to external pins for this purpose.
In modulators applications, the upper quad transistors are used in a switching mode where the pairs Q1/Q2 and Q3/Q4 act as non saturating high speed switches. These switches are controlled by the signal often referred as the carrier input. The signal driving the lower pair Q5/Q6 is commonly used as the modulating input. This signal can be linearly transferred to the output by either the use of low signal levels (Well below the thermal voltage of 26mV) or by the use of emitter degeneration. The chopped waveform appearing at the output of the upper pair (Q1 to Q4) resembles a signal that is multiplied by +1 or -1 at every half cycle of the switching waveform.
Figure 1 shows the typical input waveforms where the frequency of the carrier is higher than the modulating signal. The output waveform shows a typical suppressed carrier output of an up converter or an AM signal generator.
Carrier suppression capability is a property of the well known Balanced modulator in which the output must be zero when one or the other input (carrier or modulating signal) is equal to zero. however, at very high frequencies, high frequency mismatches and AC offsets are always present and the suppression capability is often degraded causing carrier and modulating feedthrough to be present.
Being a frequency translation circuit, the balanced modulator has the properties of translating the modulating frequency (ωM) to the carrier frequency (ωC), generating the two side bands ωU = ωC + ωM and ωL = ωC - ωM. Figure 2 shows some translating schemes being used by balanced mixers.
CARRIER SIGNALMODULATING SIGNALDIFFERENTIAL OUTPUT+1-1FIGURE 1. TYPICAL MODULATOR SIGNALS
FIGURE 2A. UP CONVERSION OR SUPPRESSED CARRIER AM
FIGURE 2B. DOWN CONVERSION
FIGURE 2C. ZERO IF OR DIRECT DOWN CONVERSION
FIGURE 2. MODULATOR FREQUENCY SPECTRUM
ωC + ωMωC - ωMωC
IF (ωC - ωM)FOLDED BACKωMωC
BASEBANDωCωM
HFA3101
6
The use of the HFA3101 as modulators has several advantages when compared to its counterpart, the diode doublebalanced mixer, in which it is required to receive enough energy to drive the diodes into a switching mode and has also some requirements depending on the frequency range desired, of different transformers to suit specific frequency responses. The HFA3101 requires very low driving capabilities for its carrier input and its frequency response is limited by the fT of the devices, the design and the layout techniques being utilized.
Up conversion uses, for UHF transmitters for example, can be performed by injecting a modulating input in the range of 45MHz to 130MHz that carries the information often called IF (Intermediate frequency) for up conversion (The IF signal has been previously modulated by some modulation scheme from a baseband signal of audio or digital information) and by injecting the signal of a local oscillator of a much higher frequency range from 600MHz to 1.2GHz into the carrier input. Using the example of a 850MHz carrier input and a 70MHz IF, the output spectrum will contain a upper side band of 920MHz, a lower side band of 780MHz and some of the carrier (850MHz) and IF (70MHz) feedthrough. A Band pass filter at the output can attenuate the undesirable signals and the 920MHz signal can be routed to a transmitter RF power amplifier.
Down conversion, as the name implies, is the process used to translate a higher frequency signal to a lower frequency range conserving the modulation information contained in the higher frequency signal. One very common typical down conversion use for example, is for superheterodyne radio receivers where a translated lower frequency often referred as intermediate frequency (IF) is used for detection or demodulation of the baseband signal. Other application uses include down conversion for special filtering using frequency translation methods.
An oscillator referred as the local oscillator (LO) drives the upper quad transistors of the cell with a frequency called ωC. The lower pair is driven by the RF signal of frequency ωM to be translated to a lower frequency IF. The spectrum of the IF output will contain the sum and difference of the frequencies ωC and ωM. Notice that the difference can become negative when the frequency of the local oscillator is lower than the incoming frequency and the signal is folded back as in Figure 2.
NOTE: The acronyms RF, IF and LO are often interchanged in the industry depending on the application of the cell as mixers or modulators. The output of the cell also contains multiples of the frequency of the signal being fed to the upper quad pair of transistors because of the switching action equivalent to a square wave multiplication. In practice, however, not only the odd multiples in the case of a symmetrical square wave but some of the even multiples will also appear at the output spectrum due to the nature of the actual switching waveform and high frequency performance. By-products of the form M*ωC + N*ωM with M and N being positive or negative integers are also expected to be present at the output and their levels are carefully examined and minimized by the design. This distortion is considered one of the figures of merit for a mixer application.
The process of frequency doubling is also understood by having the same signal being fed to both modulating and carrier ports. The output frequency will be the sum of ωC and ωM which is equivalent to the product of the input frequency by 2 and a zero Hz or DC frequency equivalent to the difference of ωC and ωM. Figure 2 also shows one technique in use today where a process of down conversion named zero IF is made by using a local oscillator with a very pure signal frequency equal to the incoming RF frequency signal that contains a baseband (audio or digital signal) modulation. Although complex, the extraction or detection of the signal is straightforward.
Another useful application of the HFA3101 is its use as a high frequency phase detector where the two signals are fed to the carrier and modulation ports and the DC information is extracted from its output. In this case, both ports are utilized in a switching mode or overdrive, such that the process of multiplication takes place in a quasi digital form (2 square waves). One application of a phase detector is frequency or phase demodulation where the FM signal is split before the modulating and carrier ports. The lower input port is always 90 degrees apart from the carrier input signal through a high Q tuned phase shift network. The network, being tuned for a precise 90 degrees shift at a nominal frequency, will set the two signals 90 degrees apart and a quiescent output DC level will be present at the output. When the input signal is frequency modulated, the phase shift of the signal coming from the network will deviate from 90 degrees proportional to the frequency deviation of the FM signal and a DC variation at the output will take place, resembling the demodulated FM signal.
The HFA3101 could also be used for quadrature detection, (I/Q demodulation), AGC control with limited range, low level multiplication to name a few other applications.
Biasing
Various biasing schemes can be employed for use with the HFA3101. Figure 3 shows the most common schemes. The biasing method is a choice of the designer when cost, thermal dependence, voltage overheads and DC balancing properties are taken into consideration.
Figure 3A shows the simplest form of biasing the HFA3101. The current source required for the lower pair is set by the voltage across the resistor RBIAS less a VBE drop of the lower transistor. To increase the overhead, collector resistors are substituted by an RF choke as the upper pair functions as a current source for AC signals. The bases of the upper and lower transistors are biased by RB1 and RB2 respectively. The voltage drop across the resistor R2 must be higher than a VBE with an increase sufficient to assure that the collector to base junctions of the lower pair are always reverse biased. Notice that this same voltage also sets the VCE of operation of the lower pair which is important for the optimization of gain. Resistors REE are nominally zero for applications where the input signals are well below 25mV peak. Resistors REE are used to increase the linearity
HFA3101
3-7
of the circuit upon higher level signals. The drop across REE must be taken into consideration when setting the current source value.
Figure 3B depicts the use of a common resistor sharing the current through the cell which is used for temperature compensation as the lower pair VBE drop at the rate of -2mV/oC.
Figure 3C uses a split supply.
Design Example: Down Converter Mixer
Figure 4 shows an example of a low cost mixer for cellular applications.
The design flexibility of the HFA3101 is demonstrated by a low cost, and low voltage mixer application at the 900MHz range. The choice of good quality chip components with their self resonance outside the boundaries of the application are important. The design has been optimized to accommodate the evaluation of the same layout for various quiescent current values and lower supply voltages. The choice of RE became important for the available overhead and also for maintaining an AC true impedance for high frequency signals. The value of 27Ω has been found to be the optimum minimum for the application. The input impedances of the HFA3101 base input ports are high enough to permit their termination with 50Ω resistors. Notice the AC termination by decoupling the bias circuit through good quality capacitors.
The choice of the bias has been related to the available power supply voltage with the values of R1, R2 and RBIAS splitting the voltages for optimum VCE values. For evaluation of the cell quiescent currents, the voltage at the emitter resistor RE has been recorded.
The gain of the circuit, being a function of the load and the combined emitter resistances at high frequencies have been kept to a maximum by the use of an output match network. The high output impedance of the HFA3101 permits
FIGURE 3A.
FIGURE 3B.
FIGURE 3C.
FIGURE 3.
VCCRB1R1R2RBIASREREEREELCH12348765Q5Q6Q1Q2Q3Q4RB2
VCCRB1R1R2RBIASREREEREE12348765Q5Q6Q1Q2Q3Q4RB2RCLCH
VEERB1R1RBIASREREEREE12348765Q5Q6Q1Q2Q3Q4RB2VCCLCHR2
27LCH12348765Q5Q6Q1Q2Q3Q4VCC390nH0.010.011102200.1VCC3V75MHz2K5p TO 12pLO IN51825MHz51900MHzIF OUTRF IN0.010.010.01330FIGURE 4. 3V DOWN CONVERTER APPLICATION
HFA3101
8
broadband match if so desired at 50Ω (RL = 50Ω to 2kΩ) as well as with tuned medium Q matching networks (L, T etc.).
Stability
The cell, by its nature, has very high gain and precautions must be taken to account for the combination of signal reflections, gain, layout and package parasitics. The rule of thumb of avoiding reflected waves must be observed. It is important to assure good matching between the mixer stage and its front end. Laboratory measurements have shown some susceptibility for oscillation at the upper quad transistors input. Any LO prefiltering has to be designed such the return loss is maintained within acceptable limits specially at high frequencies. Typical off the shelf filters exhibits very poor return loss for signals outside the passband. It is suggested that a “pad” or a broadband resistive network be used to interface the LO port with a filter. The inclusion of a parallel 2K resistor in the load decreases the gain slightly which improves the stability factor and also improves the distortion products (output intermodulation or 3rd order intercept). The employment of good RF techniques shall suffice the stability requirements.
Evaluation
The evaluation of the HFA3101 in a mixer configuration is presented in Figures 6 to 11, Table 1 and Table 2. The layout is depicted in Figure 5.
The output matching network has been designed from data taken at the output port at various test frequencies with the setup as in Table 1. S22 characterization is enough to assure the calculation of L, T or transmission line matching networks.
FIGURE 5. UP/DOWN CONVERTER LAYOUT, 400%; MATERIAL G10, 0.031
TABLE 1. S22 PARAMETERS FOR DOWN CONVERSION, LCH = 10μH
FREQUENCY
RESISTANCE
REACTANCE
10MHz
265Ω
615Ω
45MHz
420Ω
- 735Ω
75MHz
122Ω
- 432Ω
100MHz
67Ω
- 320Ω
TABLE 2. TYPICAL PARAMETERS FOR DOWN CONVERSION, LCH = 10μH
PARAMETER
LO LEVEL
VCC = 3V, IBIAS = 8mA
Power Gain
-6dBm
8.5dB
TOI Output
-6dBm
11.5dBm
NF SSB
-6dBm
14.5dB
Power Gain
0dBm
8.6dB
TOI Output
0dBm
11dBm
NF SSB
0dBm
15dB
PARAMETER
LO LEVEL
VCC = 4V, IBIAS = 19mA
Power Gain
-6dBm
10dB
TOI Output
-6dBm
13dBm
NF SSB
-6dBm
20dB
Power Gain
0dBm
11dB
TOI Output
0dBm
12.5dBm
NF SSB
0dBm
24dB
TABLE 3. TYPICAL VALUES OF S22 FOR THE OUTPUT PORT. LCH = 390nH IBIAS = 8mA (SET UP OF FIGURE 11)
FREQUENCY
RESISTANCE
REACTANCE
300MHz
22Ω
-115Ω
600MHz
7.5Ω
-43Ω
900MHz
5.2Ω
-14Ω
1.1GHz
3.9Ω
0Ω
TABLE 4. TYPICAL VALUES OF S22. LCH = 390nH, IBIAS = 18mA
FREQUENCY
RESISTANCE
REACTANCE
300MHz
23.5Ω
-110Ω
600MHz
10.3Ω
-39Ω
900MHz
8.7Ω
-14Ω
1.1GHz
8Ω
0Ω
HFA3101
3-9
Up Converter Example
An application for a up converter as well as a frequency multiplier can be demonstrated using the same layout, with an addition of matching components. The output port S22 must be characterized for proper matching procedures and depending on the frequency desired for the output, transmission line transformations can be designed. The return loss of the input ports maintain acceptable values in excess of 1.2GHz which can permit the evaluation of a frequency doubler to 2.4GHz if so desired.
The addition of the resistors REE can increase considerably the dynamic range of the up converter as demonstrated at Figure 13. The evaluation results depicted in Table 5 have been obtained by a triple stub tuner as a matching network for the output due to the layout constraints. Based on the evaluation results it is clear that the cell requires a higher Bias current for overall performance.
FIGURE 6. OUTPUT PORT S22 TEST SET UP
FIGURE 7. LO PORT RETURN LOSS
FIGURE 8. RF PORT RETURN LOSS
FIGURE 9. IF PORT RETURN LOSS, WITH MATCHING NETWORK
FIGURE 10. TYPICAL IN BAND OUTPUT SPECTRUM, VCC = 3V
FIGURE 11. TYPICAL OUT OF BAND OUTPUT SPECTRUM
VCC 3V0.1LCH12348765Q5Q6Q1Q2Q3Q42K
S110dB5dB/DIV100MHz1.1GHzLOG MAG3V4V
0dB10dB/DIV100MHz1.1GHzS11LOG MAG
0dB5dB/DIV10MHzS22LOG MAG110MHz
76MHz64M11*LO - 10RF88M12RF - 13LOIFSPAN40MHzLO = 825MHz -6dBmRF = 901MHz - 25dBm-17dBm10dB/DIV
67575082590097510dB/DIVLO + 2RFSPAN500MHzLO - 2RF-26dBm-36dBm-58dBm-53dBmLO = 825MHz -6dBmRF = 900MHz -25dBm
HFA3101
10
Design Example: Up Converter Mixer
Figure 12 shows an example of an up converter for cellular applications.
Conclusion
The HFA3101 offers the designer a number of choices and different applications as a powerful RF building block. Although isolation is degraded from the theoretical results for the cell due to the unbalanced, nondifferential input schemes being used, a number of advantages can be taken into consideration like cost, flexibility, low power and small outline when deciding for a design.
TABLE 5. TYPICAL PARAMETERS FOR THE UP CONVERTER EXAMPLE
PARAMETER
VCC = 3V, IBIAS = 8mA
VCC = 4V, IBIAS = 18mA
Power Gain, LO = -6dBm
3dB
5.5dBm
Power Gain, LO = 0dBm
4dB
7.2dB
RF Isolation, LO = 0dBm
15dBc
22dBc
LO Isolation, LO = 0dBm
28dBc
28dBc
FIGURE 12. UP CONVERTER
FIGURE 13. TYPICAL SPECTRUM PERFORMANCE OF UP CONVERTER
RF IN0.01390nH900MHz5.2nHVCC 3V0.112348765Q5Q6Q1Q2Q3Q411p0.0175MHz27220REEREE51LO INVCC0.010.011103303V825MHz0.010.015147-100pF
9019128902LO - 10RF12RFOUTPUT WITHOUT EMITTER DEGENERATIONRF = 76MHzLO = 825MHzSPAN50MHzOUTPUT WITH EMITTER DEGENERATION REE = 4.7Ω825900976EXPANDED SPECTRUM REE = 4.7Ω
HFA3101
3-11
Typical Performance Curves for Transistors
FIGURE 14. IC vs VCE
FIGURE 15. HFE vs IC
FIGURE 16. GUMMEL PLOT
FIGURE 17. fT vs IC
FIGURE 18. GAIN AND NOISE FIGURE vs FREQUENCY
NOTE: Figures 14 through 18 are only for Q5 and Q6.
VCE (V)IC (mA)02.06.04.0070605040302010IB = 800μAIB = 1mAIB = 200μAIB = 400μAIB = 600μA
hFEIC (
A)10-1010-810-610-410-2100140120100806040200VCE = 5V
VBE (V)IC AND IB (A)10-1010-810-610-410-210010-120.200.400.600.801.0VCE = 3V
IC (A)fT (GHz)12108642010-410-310-210-1
20181614121046NOISE FIGURE (
dB)FREQUENCY (GHz)|S21| (dB)0.51.51.02.002.53.04.84.64.44.24.03.83.63.43.28
HFA3101
12
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable.
However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Die Characteristics
PROCESS UHF-1
DIE DIMENSIONS: 53 mils x 52 mils x 14 mils
1340μm x 1320μm x 355.6μm
METALLIZATION: Type: Metal 1: AlCu(2%)/TiW
Thickness: Metal 1: 8kÅ ±0.5kÅ Type: Metal 2: AlCu(2%)
Thickness: Metal 2: 16kÅ ±0.8kÅ
PASSIVATION: Type: Nitride
Thickness: 4kÅ ±0.5kÅ
SUBSTRATE POTENTIAL (Powered Up): Floating
Metallization Mask Layout
HFA31011122334455667788
HFA3101
16-Bit Low Power Sigma-Delta ADC
Data Sheet AD7171
RevA Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use.Specifications subject to change without notice. Non.
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2009–2013 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Output data rate: 125 Hz
Pin-programmable power-down and reset
Status function
Internal clock oscillator
Current: 135 μA
Power supply: 2.7 V to 5.25 V
–40°C to +105°C temperature range
Package: 10-lead 3 mm x 3 mm LFCSP
INTERFACE
2-wire serial (read-only device)
SPI compatible
Schmitt trigger on SCLK
APPLICATIONS
Weigh scales
Pressure measurement
Industrial process control
Portable instrumentation
FUNCTIONAL BLOCK DIAGRAM
16-BIT Σ-ΔADCAD7171GNDINTERNALCLOCKVDDREFIN(+)AIN(+)AIN(–)REFIN(–)DOUT/RDYSCLKPDRST08417-001
Figure 1.
Table 1.
VREF = VDD
RMS Noise
P-P Noise
P-P Resolution
ENOB
5 V
11.5 μV
76 μV
16 bits
16 bits
3 V
6.9 μV
45 μV
16 bits
16 bits
GENERAL DESCRIPTION
The AD7171 is a very low power 16-bit analog-to-digital converter (ADC). It contains a precision 16-bit sigma-delta (Σ-Δ) ADC and an on-chip oscillator. Consuming only 135 μA, the AD7171 is particularly suitable for portable or battery operated products where very low power is a requirement. The AD7171 also has a power-down mode in which the device consumes 5 μA, thus increasing the battery life of the product.
For ease-of-use, all the features of the AD7171 are controlled by dedicated pins. Each time a data read occurs, eight status bits are appended to the 16-bit conversion. These status bits contain a pattern sequence that can be used to confirm the validity of the serial transfer.
The output data rate of the AD7171 is 125 Hz, whereas the settling time is 24 ms. The AD7171 has one differential input and a gain of 1. This is useful in applications where the user needs to use an external amplifier to implement system-specific filtering or gain requirements.
The AD7171 operates with a power supply from 2.7 V to 5.25 V. It is available in a 10-lead LFCSP package.
The AD7170 is a 12-bit version of the AD7171. It has the same feature set as the AD7171 and is pin-for-pin compatible.
1
Low-Noise 24-bit Delta Sigma ADC
ISL26132, ISL26134
The ISL26132 and ISL26134 are complete analog front ends
for high resolution measurement applications. These 24-bit
Delta-Sigma Analog-to-Digital Converters include a very
low-noise amplifier and are available as either two or four
differential multiplexer inputs. The devices offer the same
pinout as the ADS1232 and ADS1234 devices and are
functionally compatible with these devices. The ISL26132 and
ISL26134 offer improved noise performance at 10Sps and
80Sps conversion rates.
The on-chip low-noise programmable-gain amplifier provides
gains of 1x/2x/64x/128x. The 128x gain setting provides an
input range of ±9.766mVFS when using a 2.5V reference. la
high input impedance allows direct connection of sensors such
as load cell bridges to ensure the specified measurement
accuracy without additional circuitry. The inputs accept signals
100mV outside the supply rails when the device is set for unity
gain.
The Delta-Sigma ADC features a third order modulator
providing up to 21.6-bit noise-free performance.
The device can be operated from an external clock source,
crystal (4.9152MHz typical), or the on-chip oscillator.
The two channel ISL26132 is available in a 24 Ld TSSOP
package and the four channel ISL26134 is available in a 28 Ld
TSSOP package. Both are specified for operation over the
automotive temperature range (-40°C to +105°C).
Features
• Up to 21.6 Noise-free bits.
• Low Noise Amplifier with Gains of 1x/2x/64x/128x
• RMS noise: 10.2nV @ 10Sps (PGA = 128x)
• Linearity Error: 0.0002% FS
• Simultaneous rejection of 50Hz and 60Hz (@ 10Sps)
• Two (ISL26132) or four (ISL26134) channel differential
input multiplexer
• On-chip temperature sensor (ISL26132)
• Automatic clock source detection
• Simple interface to read conversions
• +5V Analog, +5 to +2.7V Digital Supplies
• Pb-Free (RoHS Compliant)
• TSSOP packages: ISL26132, 24 pin; ISL26134, 28 pin
Applications
• Weigh Scales
• Temperature Monitors and Controls
• Industrial Process Control
• Pressure Sensors
ADC
PGA
1x/2x/64x/
128x
INTERNAL
CLOCK
SDO/RDY
SCLK
AVDD DVDD
AGND DGND
XTALIN/CLOCK
VREF+
EXTERNAL
OSCILLATOR
XTALOUT
A0 A1/TEMP VREFAIN1+
AIN1-
AIN2+
AIN2-
AIN3+
AIN3-
AIN4+
AIN4-
INPUT
MULTIPLEXER
ISL26134
Only
CAP
CAP
GAIN0 GAIN1
PWDN
SPEED
DGND DGND
NOTE for A1/TEMP pin: Functions as A1 on ISL26134; Functions as TEMP on ISL26132
FIGURE 1. BLOCK DIAGRAM
September 9, 2011
FN6954.1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.
All other trademarks mentioned are the property of their respective owners.
ISL26132, ISL26134
2 FN6954.1
September 9, 2011
Ordering Information
PART NUMBER
(Notes 2, 3) PART MARKING
TEMPERATURE RANGE
(°C)
PACKAGE
(Pb-free)
PKG. DWG
NUMBER
ISL26132AVZ 26132 AVZ -40 to +105 24 Ld TSSOP M24.173
ISL26132AVZ-T (Note 1) 26132 AVZ -40 to +105 24 Ld TSSOP (Tape & Reel) M24.173
ISL26132AVZ-T7A (Note 1) 26132 AVZ -40 to +105 24 Ld TSSOP (Tape & Reel) M24.173
ISL26134AVZ 26134 AVZ -40 to +105 28 Ld TSSOP M28.173
ISL26134AVZ-T (Note 1) 26134 AVZ -40 to +105 28 Ld TSSOP (Tape & Reel) M28.173
ISL26134AVZ-T7A (Note 1) 26134 AVZ -40 to +105 28 Ld TSSOP (Tape & Reel) M28.173
ISL26134AV28EV1Z Evaluation Board
NOTES:
1. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL26132, ISL26134. For more information on MSL please see techbrief
TB363.
TABLE 1. KEY DIFFERENCES OF PARTS
PART NUMBER NUMBER OF CHANNELS ON-CHIP TEMPERATURE SENSOR NUMBER OF PINS
ISL26132 2 YES 24
ISL26134 4 NO 28
Pin Configurations
ISL26132
(24 LD TSSOP)
TOP VIEW
ISL26134
(28 LD TSSOP)
TOP VIEW
1
2
3
4
5
6
7
8
9
10
11
12
16
17
18
19
20
21
22
23
24
15
14
13
DVDD
DGND
XTALIN/CLOCK
XTALOUT
DGND
DGND
TEMP
A0
CAP
CAP
AIN1+
AIN1-
SDO/RDY
PDWN
SPEED
GAIN1
GAIN0
AGND
VREFAIN2+
AIN2-
SCLK
AVDD
VREF+
28
27
26
25
24
23
22
21
20
19
18
17
16
15
DVDD
DGND
XTALIN/CLOCK
XTALOUT
DGND
DGND
A1
A0
CAP
CAP
AIN1+
AIN1-
AIN3+
AIN3-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
SDO/RDY
PDWN
SPEED
GAIN1
GAIN0
AGND
VREFAIN2+
AIN2-
AIN4+
AIN4-
SCLK
AVDD
VREF+
ISL26132, ISL26134
3 FN6954.1
September 9, 2011
Pin Descriptions
NAME
PIN NUMBER
ANALOG/DIGITAL
ISL26132 ISL26134 INPUT/OUTPUT DESCRIPTION
DVDD 1 1 Digital Digital Power Supply (2.7V to 5.25V)
DGND 2, 5, 6 2, 5, 6 Digital Digital Ground
XTALIN/CLOCK 3 3 Digital/Digital Input External Clock Input: typically 4.9152MHz. Tie low to activate
internal oscillator. Can also use external crystal across
XTALIN/CLOCK and XTALOUT pins.
XTALOUT 4 4 Digital External Crystal connection
TEMP 7 - Digital Input On-chip Temperature Diode Enable
A1
A0
-
8
7
8
Digital Input
CAP 9, 10 9, 10 Analog PGA Filter Capacitor
AIN1+ 11 11 Analog Input Positive Analog Input Channel 1
AIN1- 12 12 Analog Input Negative Analog Input Channel 1
AIN3+ - 13 Analog Input Positive Analog Input Channel 3
AIN3- - 14 Analog Input Negative Analog Input Channel 3
AIN4- - 15 Analog Input Negative Analog Input Channel 4
AIN4+ - 16 Analog Input Positive Analog Input Channel 4
AIN2- 13 17 Analog Input Negative Analog Input Channel 2
AIN2+ 14 18 Analog Input Positive Analog Input Channel 2
VREF- 15 19 Analog Input Negative Reference Input
VREF+ 16 20 Analog Input Positive Reference Input
AGND 17 21 Analog Analog Ground
AVDD 18 22 Analog Analog Power Supply 4.75V to 5.25V
GAIN0
GAIN1
19
20
23
24
Digital Input
TABLE 2. INPUT MULTIPLEXER SELECT
ISL26134 ISL26132
A1 A0 CHANNEL
0 0 AIN1
0 1 AIN2
1 0 AIN3
1 1 AIN4
TABLE 3. GAIN SELECT
GAIN1 GAIN0 GAIN
0 0 1
0 1 2
1 0 64
1 1 128
ISL26132, ISL26134
4 FN6954.1
September 9, 2011
Circuit Description
The ISL26132 (2-channel) and ISL26134 (4-channel) devices are
very low noise 24-bit delta-sigma ADCs that include a
programmable gain amplifier and an input multiplexer. la
ISL26132 offers an on-chip temperature measurement
capability.
The ISL26132, ISL26134 provide pin compatibility and output
data compatibility with the ADS1232/ADS1234, and offer the
same conversion rates of 10Sps and 80Sps.
All the features of the ISL26132, ISL26134 are pin-controllable,
while offset calibration, standby mode, and output conversion
data are accessible through a simple 2-wire interface.
The clock can be selected to come from an internal oscillator, an
external clock signal, or crystal (4.9152MHz typical).
SPEED 21 25 Digital Input
PDWN 22 26 Digital Input Power-Down: Holding this pin low powers down the entire
converter and resets the ADC.
SCLK 23 27 Digital Input Serial Clock: Clock out data on the rising edge. Also used to
initiate Offset Calibration and Sleep modes. See “Serial Clock
Input (SCLK)” on page 14 for more details.
SDO/RDY 24 28 Digital Output Dual-Purpose Output:
Data Ready: Indicate valid data by going low.
Data Output: Outputs data, MSB first, on the first rising edge
of SCLK.
Pin Descriptions (Continued)
NAME
PIN NUMBER
ANALOG/DIGITAL
ISL26132 ISL26134 INPUT/OUTPUT DESCRIPTION
TABLE 4. DATA RATE SELECT
SPEED DATA RATE
0 10Sps
1 80Sps
ISL26132, ISL26134
5 FN6954.1
September 9, 2011
Absolute Maximum Ratings Thermal Information
AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to +0.3V
Analog In to AGND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3 to AVDD+0.3V
Digital In to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3 to DVDD+0.3V
Input Current
Momentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100mA
Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10mA
ESD Rating
Human Body Model (Per MIL-STD-883 Method 3015.7) . . . . . . . . . . . ..7.5kV
Machine Model (Per JESD22-A115). . . . . . . . . . . . . . . . . . . . . . . . . .450V
Charged Device Model (Per JESD22-C101) . . . . . . . . . . . . . . . . . . . . . . . .2kV
Latch-up (Per JEDEC JESD-78B; Class 2, Level A)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100mA @ Room and Hot (+105°C)
Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W)
24 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . .65 18
28 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . .63 18
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80mW
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . ..+150°C
Maximum Storage Temperature Range . . . . . . . . . . . . ..-65°C to +150°C
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
Operating Conditions
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-40°C to +105°C
AVDD to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..4.75V to 5.25V
DVDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7V to 5.25V
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product
reliability and result in failures not covered by warranty.
NOTES:
4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
5. For θJC, the “case temp” location is taken at the package top center.
Electrical Specifications VREF+ = 5V, VREF- = 0V, AVDD = 5V, DVDD = 5V, AGND = DGND = 0V, MCLK = 4.9152MHz, and
TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C
SYMBOL PARAMETER TEST LEVEL or NOTES
MIN
(Note 6) TYP
MAX
(Note 6) UNITS
ANALOG INPUTS
Differential Input Voltage Range ±0.5VREF/
Gain
V
Common Mode Input Voltage
gamme
Gain = 1, 2 AGND - 0.1 AVDD + 0.1 V
Gain = 64, 128 AGND+1.5 AVDD - 1.5 V
Differential Input Current
Gain = 1 ±20 nA
Gain = 2 ±40 nA
Gain = 64, 128 ±1 nA
SYSTEM PERFORMANCE
Resolution No Missing Codes 24 Bits
Data Rate
Internal Osc. SPEED = High 80 SPS
Internal Osc. SPEED = Low 10 SPS
External Osc. SPEED = High fCLK/61440 SPS
External Osc. SPEED = Low fCLK/49152
0
SPS
Digital Filter Settling Time Full Setting 4 Conversions
INL Integral Nonlinearity Differential Input Gain = 1, 2 ±0.0002 ±0.001 % of FSR (Note 7)
Differential Input Gain = 64, 128 ±0.0004 % of FSR
(Note 7)
Input Offset Error Gain = 1 ±0.4 ppm of FS
Gain = 128 ±1.5 ppm of FS
Input Offset Drift Gain = 1 0.3 μV/°C
Gain = 128 10 nV/°C
Gain Error (Note 8) Gain = 1 ±0.007 ±0.02 %
Gain = 128 ±0.02 %
Gain Drift Gain = 1 0.5 ppm/°C
Gain = 128 7 ppm/°C
ISL26132, ISL26134
6 FN6954.1
September 9, 2011
CMRR Common Mode Rejection At DC, Gain = 1, ΔV = 1V 85 100 dB
At DC, Gain = 128, ΔV = 0.1V 100 dB
50Hz/60Hz Rejection (Note 9) External 4.9152MHz Clock 130 dB
PSRR Power Supply Rejection At DC, Gain = 1, ΔV = 1V 82 100 dB
At DC, Gain = 128, ΔV = 0.1V 100 105 dB
Input Referred Noise See “Typical Characteristics” beginning
on page 8
Noise Free Bits See “Typical Characteristics” beginning
on page 8
VOLTAGE REFERENCE INPUT
VREF Voltage Reference Input VREF = VREF+ - VREF- 1.5 AVDD AVDD + 0.1 V
VREF- Negative Reference Input AGND - 0.1 VREF+ - 1.5 V
VREF+ Positive Reference Input VREF- + 1.5 AVDD + 0.1 V
IREF Voltage Reference Input Current ±350 nA
POWER SUPPLY REQUIREMENTS
AVDD Analog Supply Voltage 4.75 5.0 5.25 V
DVDD Digital Supply Voltage 2.7 3.3 5.25 V
AIDD Analog Supply Current Normal Mode, AVDD = 5, Gain = 1, 2 7 8.5 mA
Normal Mode, AVDD = 5, Gain = 64, 128 9 12 mA
Standby Mode 0.2 3 μA
Power-Down 0.2 2.5 μA
DIDD Digital Supply Current Normal Mode, AVDD = 5, Gain = 1, 2 750 950 μA
Normal Mode, AVDD = 5, Gain = 64, 128 750 950 μA
Standby Mode 1.5 26 μA
Power-Down 1 26 μA
PD Power Dissipation, Total Normal Mode, AVDD = 5, Gain = 1, 2 49.6 mW
Normal Mode, AVDD = 5, Gain = 64, 128 68 mW
Standby Mode 0.14 mW
Power-Down 0.14 mW
DIGITAL INPUTS
VIH 0.7 DVDD V
VIL 0.2 DVDD V
VOH IOH = -1mA DVDD - 0.4 V
VOL IOL = 1mA 0.2 DVDD V
Input Leakage Current ±10 μA
External Clock Input Frequency 0.3 4.9152 MHz
Serial Clock Input Frequency 1 MHz
NOTE:
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.
7. FSR = Full Scale Range = VREF/Gain
8. Gain accuracy is calibrated at the factory (AVDD = +5V).
9. Specified for word rate equal to 10Sps.
Electrical Specifications VREF+ = 5V, VREF- = 0V, AVDD = 5V, DVDD = 5V, AGND = DGND = 0V, MCLK = 4.9152MHz, and
TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C (Continued)
SYMBOL PARAMETER TEST LEVEL or NOTES
MIN
(Note 6) TYP
MAX
(Note 6) UNITS
ISL26132, ISL26134
7 FN6954.1
September 9, 2011
Noise Performance
The ISL26132 and ISL26134 provide excellent noise
performance. The noise performance on each of the gain
settings of the PGA at the selected word rates is shown in
Tables 5 and 6.
Resolution in bits decreases by 1-bit if the ADC is operated as a
single-ended input device. Noise measurements are
input-referred, taken with bipolar inputs under the specified
operating conditions, with fCLK = 4.9152MHz.
TABLE 5. AVDD = 5V, VREF = 5V, DATA RATE = 10Sps
GAIN
RMS NOISE
(nV)
PEAK-TO-PEAK NOISE
(nV) (Note 10)
NOISE-FREE BITS
(Note 11)
1 243 1604 21.6
2 148 977 21.3
64 10.8 71 20.1
128 10.2 67 19.1
TABLE 6. AVDD = 5V, VREF = 5V, DATA RATE = 80Sps
GAIN
RMS NOISE
(nV)
PEAK-TO-PEAK NOISE
(nV) (Note 10)
NOISE-FREE BITS
(Note 11)
1 565 3730 20.4
2 285 1880 20.3
64 28.3 187 18.7
128 27 178 17.7
NOTES:
10. The peak-to-peak noise number is 6.6 times the rms value. This
encompasses 99.99% of the noise excursions that may occur. This
value best represents the worst case noise that could occur in the
output conversion words from the converter.
11. Noise-Free Bits is defined as: Noise-Free Bits = ln(FSR/peak-to-peak
noise)/ln(2) where FSR is the full scale range of the converter,
VREF/Gain.
ISL26132, ISL26134
8 FN6954.1
September 9, 2011
Typical Characteristics
FIGURE 2. NOISE AT GAIN = 1, 10Sps FIGURE 3. NOISE HISTOGRAM AT GAIN = 1, 10Sps
FIGURE 4. NOISE AT GAIN = 2, 10Sps FIGURE 5. NOISE HISTOGRAM AT GAIN = 2, 10Sps
FIGURE 6. NOISE AT GAIN = 64, 10Sps FIGURE 7. NOISE HISTOGRAM AT GAIN = 64, 10Sps
-10
-5
0
5
10
0 200 400 600 800 1000
GAIN = 1
RATE = 10Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
50
100
150
200
250
300
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
OUTPUT CODE (LSB)
GAIN = 1, N = 1024
RATE = 10Sps
STD DEV = 1.635 LSB
VREF = 2.5V
COUNTS -
10
-5
0
5
10
0 200 400 600 800 1000
TIME (SAMPLES)
OUTPUT CODE (LSB)
GAIN = 2
RATE = 10Sps
0
50
100
150
200
250
-8 -6 -4 -2 0 2 4 6 8
GAIN = 2, N = 1024
RATE = 10Sps
STD DEV = 1.989 LSB
VREF = 2.5V
OUTPUT CODE (LSB)
COUNTS
-15
-10
-5
0
5
10
15
20
0 200 400 600 800 1000
TIME (SAMPLES)
OUTPUT CODE (LSB)
GAIN = 64
RATE = 10Sps
0
20
40
60
80
100
120
-20 -15 -10 -5 0 5 10 15 20
GAIN = 64, N = 1024
RATE = 10Sps
STD DEV = 4.627 LSB
VREF = 2.5V
OUTPUT CODE (LSB)
COUNTS
ISL26132, ISL26134
9 FN6954.1
September 9, 2011
FIGURE 8. NOISE AT GAIN = 128, 10Sps FIGURE 9. NOISE HISTOGRAM AT GAIN = 128, 10Sps
FIGURE 10. NOISE AT GAIN = 1, 80Sps FIGURE 11. NOISE HISTOGRAM AT GAIN = 1, 80Sps
FIGURE 12. NOISE AT GAIN = 2, 80Sps FIGURE 13. NOISE HISTOGRAM AT GAIN = 2, 80Sps
Typical Characteristics (Continued)
-50
-30
-10
10
30
50
0 200 400 600 800 1000
GAIN = 128
RATE = 10Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
10
20
30
40
50
60
-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30
OUTPUT CODE (LSB)
COUNTS
GAIN = 128, N = 1024
RATE = 10Sps
STD DEV = 8.757 LSB
VREF = 2.5V
-25
-20
-15
-10
-5
0
5
10
15
20
25
0 200 400 600 800 1000
GAIN = 1
RATE = 80Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
20
40
60
80
100
120
-15 -10 -5 0 5 10 15
OUTPUT CODE (LSB)
COUNTS
GAIN = 1, N = 1024
RATE = 80Sps
STD DEV = 3.791 LSB
VREF = 2.5V
-25
-15
-5
5
15
25
0 200 400 600 800 1000
GAIN = 2
RATE = 80Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
20
40
60
80
100
120
-15 -10 -5 0 5 10 15
OUTPUT CODE (LSB)
COUNTS
GAIN = 2, N = 1024
RATE = 80Sps
STD DEV = 3.831 LSB
VREF = 2.5V
ISL26132, ISL26134
10 FN6954.1
September 9, 2011
FIGURE 14. NOISE AT GAIN = 64, 80Sps FIGURE 15. NOISE HISTOGRAM AT GAIN = 64, 80Sps
FIGURE 16. NOISE AT GAIN = 128, 80Sps FIGURE 17. NOISE HISTOGRAM AT GAIN = 128, 80Sps
FIGURE 18. ANALOG CURRENT vs TEMPERATURE FIGURE 19. DIGITAL CURRENT vs TEMPERATURE
Typical Characteristics (Continued)
-100
-50
0
50
100
0 200 400 600 800 1000
GAIN = 64
RATE = 80Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
10
20
30
40
50
-40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40
OUTPUT CODE (LSB)
COUNTS
GAIN = 64, N = 1024
RATE = 80Sps
STD DEV = 12.15 LSB
VREF = 2.5V
-200
-160
-120
-80
-40
0
40
80
120
160
0 200 400 600 800 1000
GAIN = 128
RATE = 80Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
5
10
15
20
25
30
-80 -60 -40 -20 0 20 40 60 80
OUTPUT CODE (LSB)
COUNTS
GAIN = 128, N = 1024
RATE = 80Sps
STD DEV = 23.215 LSB
VREF = 2.5V
0
2
4
6
8
10
-40 -10 20 50 80 110
TEMPERATURE (°C)
CURRENT (mA)
NORMAL MODE, PGA = 64.128
NORMAL MODE, PGA = 1, 2
1
10
100
1000
10000
-40 -10 20 50 80 110
TEMPERATURE (°C)
CURRENT (μA)
NORMAL MODE, ALL PGA GAINS
POWERDOWN MODE
ISL26132, ISL26134
11 FN6954.1
September 9, 2011
FIGURE 20. TYPICAL WORD RATE vs TEMPERATURE USING
INTERNAL OSCILLATOR
FIGURE 21. NOISE DENSITY vs FREQUENCY AT GAIN = 1, 80Sps
FIGURE 22. NOISE DENSITY vs FREQUENCY AT GAIN = 128, 80Sps
Typical Characteristics (Continued)
9.6
9.8
10.0
10.2
10.4
10.6
10.8
11.0
-40 -10 20 50 80 110
TEMPERATURE (°C)
DATA RATE (Sps)
WORD RATE = 10Sps
10
100
1000
10000
0.01 0.1 1 10
FREQUENCY (Hz)
NOISE (nV/√Hz)
GAIN = 1, 80Sps
64k FFT
25 AVERAGES
1
10
100
0.01 0.1 1 10
FREQUENCY (Hz)
NOISE (nV/√Hz)
GAIN = 128, 80Sps
64k FFT
25 AVERAGES
ISL26132, ISL26134
12 FN6954.1
September 9, 2011
Functional Description
Analog Inputs
The analog signal inputs to the ISL26132 connect to a 2-Channel
differential multiplexer and the ISL26134 connect to a 4-Channel
differential multiplexer (Mux). The multiplexer connects a pair of
inputs to the positive and negative inputs (AINx+, AINx-), selected
by the Channel Select Pins A0 and A1 (ISL26134 only). Input
channel selection is shown in Table 7. On the ISL26132, the
TEMP pin is used to select the Temperature Sensor function.
Whenever the MUX channel is changed (i.e. if any one of the
following inputs - A0/A1, Gain1/0, SPEED is changed), the
digital logic will automatically restart the digital filter and will
cause SDO/RDY to go low only when the output is fully settled.
But if the input itself is suddenly changed, then the user needs to
ignore first four RDY pulses (going low) to get an accurate
measurement of the input signal.
The input span of the ADC is ±0.5 VREF/GAIN. For a 5V VREF and
a gain of 1x, the input span will be 5VP-P fully differential as
shown in Figure 23. Note that input voltages that exceed the
supply rails by more than 100mV will turn on the ESD protection
diodes and degrade measurement accuracy.
If the differential input exceeds well above the +VE or the -VE FS
(by ~1.5x times) the output code will clip to the corresponding FS
value. Under such conditions, the output data rate will become
1/4th of the original value as the Digital State Machine will
RESET the Delta-Sigma Modulator and the Decimation Filter.
Temperature Sensor (ISL26132 only)
When the TEMP pin of the ISL26132 is set High, the input
multiplexer is connected to a pair of diodes, which are scaled in
both size and current. The voltage difference measured between
them corresponds to the temperature of the die according to
Equation 1:
Note: Valid only for GAIN = 1x or 2x
Where T is the temperature of the die, and Gain = the PGA Gain
Setting.
At a temperature of +25°C, the measured voltage will be
approximately 111.7mV. Note that this measurement indicates
only the temperature of the die itself. Applying the result to
correct for the temperature drift of a device external to the
package requires that thermal coupling between the sensor and
the die be taken into account.
Low-Noise Programmable Gain Amplifier
(PGA)
The chopper-stabilized programmable gain amplifier features a
variety of gain settings to achieve maximum dynamic range and
measurement accuracy from popular sensor types with excellent
low noise performance, input offset error, and low drift, and with
minimal external parts count. The GAIN0 and GAIN1 pins allow the
user to select gain settings of 1x, 2x, 64x, or 128x. A block diagram
is shown in Figure 24. The differential input stage provides a gain of
64, which is bypassed when the lower gain settings are selected.
The lower gain settings (1 and 2) will accept inputs with common
mode voltages up to 100mV outside the rails, allowing the device to
accept ground-referred signals. At gain settings of 64 or 128 the
common mode voltage at the inputs is limited to 1.5V inside the
supply rails while maintaining specified measurement accuracy.
TABLE 7. INPUT CHANNEL SELECTION
CHANNEL SELECT PINS ANALOG INPUT PINS SELECTED
A1 A0 AIN+ AIN-
0 0 AIN1+ AIN1-
0 1 AIN2+ AIN2-
1 0 AIN3+ AIN3-
1 1 AIN4+ AIN4-
3.75
2.50
1.25
1.25V
INPUT VOLTAGE RANGE = ±0.5VREF/GAIN
VREF = 5V, GAIN = 1X
3.75
2.50
1.25
AIN+
AIN-
2.50V
FIGURE 23. DIFFERENTIAL INPUT FOR VREF = 5V, GAIN = 1X
V= 102.2mV + (379μV∗T(°C))∗Gain
(EQ. 1)
ISL26132, ISL26134
13 FN6954.1
September 9, 2011
Filtering PGA Output Noise
The programmable gain amplifier, as shown in Figure 24,
includes a passive RC filter on its output. The resistors are
located inside the chip on the outputs of the differential amplifier
stages. The capacitor (nominally a 100nF C0G ceramic or a PPS
film (Polyphenylene sulfide)) for the filter is connected to the two
CAP pins of the chip. The outputs of the differential amplifier
stages of the PGA are filtered before their signals are presented
to the delta-sigma modulator. This filter reduces the amount of
noise by limiting the signal bandwidth and filters the chopping
artifacts of the chopped PGA stage.
Voltage Reference Inputs (VREF+, VREF-)
The voltage reference for the ADC is derived from the difference
in the voltages presented to the VREF+ and VREF- pins;
VREF = (VREF+ - VREF-). The ADCs are specified with a voltage
reference value of 5V, but a voltage reference as low as 1.5V can
be used. For proper operation, the voltage on the VREF+ pin
should not be greater than AVDD + 0.1V and the voltage on the
VREF- pin should not be more negative than AGND - 0.1V.
Clock Sources
The ISL26132, ISL26134 can operate from an internal oscillator,
an external clock source, or from a crystal connected between
the XTALIN/CLOCK and XTALOUT pins. See the block diagram of
the clock system in Figure 25. When the ADC is powered up, the
CLOCK DETECT block determines if an external clock source is
present. If a clock greater than 300kHz is present on the
XTALIN/CLOCK pin, the circuitry will disable the internal oscillator
on the chip and use the external clock as the clock to drive the
chip circuitry. If the ADC is to be operated from the internal
oscillator, the XTALIN/CLOCK pin should be grounded.
If the ADC is to be operated from a crystal, it should be located
close to the package pins of the ADC. Note that external loading
capacitors for the crystal are not required as there are loading
capacitors built into the silicon, although the capacitor values are
optimized for operation with a 4.9152MHz crystal.
The XTALOUT pin is not intended to drive external circuits.
Digital Filter Characteristics
The digital filter inside the ADC is a fourth-order Siinc filter.
Figures 26 and 27 illustrate the filter response for the ADC when
it is operated from a 4.9152MHz crystal. The internal oscillator is
factory trimmed so the frequency response for the filter will be
much the same when using the internal oscillator. The figures
illustrate that when the converter is operated at 10Sps the digital
filter provides excellent rejection of 50Hz and 60Hz line
interference.
FIGURE 24. SIMPLIFIED PROGRAMMABLE GAIN AMPLIFIER BLOCK DIAGRAM
+
-
A1
-
+
A2
AINx-
AINx+
ADC
RINT
RINT
R1
RF1
RF2
CAP
CAP
FIGURE 25. CLOCK BLOCK DIAGRAM
XTALIN/
CRYSTAL
OSCILLATOR
XTALOUT
TO ADC
INTERNAL
OSCILLATOR
CLOCK DETECT
MUX
EN
CLOCK
ISL26132, ISL26134
14 FN6954.1
September 9, 2011
Serial Clock Input (SCLK)
The serial clock input is provided with hysteresis to minimize
false triggering. Nevertheless, care should be taken to ensure
reliable clocking.
Filter Settling Time and ADC Latency
Whenever the analog signal into the ISL26132, ISL26134
converters is changed, the effects of the digital filter must be
taken into account. The filter takes four data ready periods for
the output code to fully reflect a new value at the analog input. DM
the multiplexer control input is changed, the modulator and the
digital filter are reset, and the device uses four data ready
periods to fully settle to yield a digital code that accurately
represents the analog input. Therefore, from the time the control
inputs for the multiplexer are changed until the SDO/RDY goes
low, four data ready periods will elapse. The settling time delay
after a multiplexer channel change is listed in Table 8 for the
converter operating in continuous conversion mode.
0
-50
-100
-150
0 10 20 30 40 50 60 70 80 90 100
FREQUENCY (Hz)
GAIN (dB)
DDAATTAA RRAATTEE == 1100 SSpPsS
FIGURE 26. 10Sps: FREQUENCY RESPONSE OUT TO 100Hz
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
45 50 55 60 65
FREQUENCY (Hz)
GAIN (dB)
DATA RATE = 10Sps
FIGURE 27. 10Sps: 50/60Hz NOISE REJECTION, 45Hz TO 65Hz
TABLE 8. SETTLING TIME
PARAMETER
DESCRIPTION
(fCLK = 4.9152MHz) MIN MAX UNITS
tS A0, A1, SPEED, Gain1, Gain0 change
set-up time
40 50 μs
t1 Settling time SPEED = 1 54 55 ms
SPEED = 0 404 405 ms
FIGURE 28. SDO/RDY DELAY AFTER MULTIPLEXER CHANGE
SDO/RDY
tS
t1
A0, A1, SPEED, Gain1, Gain0
ISL26132, ISL26134
15 FN6954.1
September 9, 2011
Conversion Data Rate
The SPEED pin is used to select between the 10Sps and 80Sps
conversion rates. The 10Sps rate (SPEED = Low) is preferred in
applications requiring 50/60Hz noise rejection. Note that the
sample rate is directly related to the oscillator frequency, as
491,520 clocks are required to perform a conversion at the
10Sps rate, and 61,440 clocks at the 80Sps rate.
Output Data Format
The 24-bit converter output word is delivered in two’s
complement format. Input exceeding full scale results in a
clipped output which will not return to in-range values until after
the input signal has returned to the specified allowable voltage
range and the digital filter has settled as discussed previously.
Reading Conversion Data from the Serial
Data Output/Ready SDO/RDY Pin
When the ADC is powered, it will automatically begin doing
conversions. The SDO/RDY signal will go low to indicate the
completion of a conversion. After the SDO/RDY signal goes low,
the MSB data bit of the conversion word will be output from the
SDO/RDY pin after SCLK is transitioned from a low to a high.
Each subsequent new data bit is also output on the rising edge of
SCLK (see Figure 30). The receiving device should use the falling
edge of SCLK to latch the data bits. After the 24th SCLK, the
SDO/RDY output will remain in the state of the LSB data bit until
a new conversion is completed. At this time, the SDO/RDY will go
high if low and then go low to indicate that a new conversion
word is available. If not all data bits are read from the SDO/RDY
pin prior to the completion of a new conversion, they will be
overwritten. SCLK should be low during time t6, as shown in
Figure 30, when SDO/RDY is high.
If the user wants the SDO/RDY signal to go high after reading the
24 bits of the conversion data word, a 25th SCLK can be issued.
The 25th SCLK will force the SDO/RDY signal to go high and
remain high until it falls to signal that a new conversion word is
available. Figure 31 illustrates the behavior of the SDO/RDY
signal when a 25th SCLK is used.
FIGURE 29. SDO/RDY DELAY AFTER MULTIPLEXER CHANGE
SDO/RDY
TABLE 9. OUTPUT CODES CORRESPONDING TO INPUT
INPUT SIGNAL OUTPUT CODE (HEX)
≥ + 0.5VREF/GAIN 7FFFFF
(+0.5VREF/GAIN)/(223 - 1) 000001
0 000000
(-0.5VREF/GAIN)/(223 - 1) FFFFFF
≤ - 0.5VREF/GAIN 800000
FIGURE 30. OUTPUT DATA WAVEFORMS USING 24 SCLKS TO READ CONVERSION DATA
SDO/RDY
DATA READY
DATA
MSB LSB
NEW DATA READY
23 22 21 0
SCLK
t4
t2
1
t3
24
t5
t6
t3
t7
ISL26132, ISL26134
16 FN6954.1
September 9, 2011
Offset Calibration Control
The offset internal to the ADC can be removed by performing an
offset calibration operation. Offset calibration can be initiated
immediately after reading a conversion word with 24 SCLKs by
issuing two additional SCLKs. The offset calibration operation will
begin immediately after the 26th SCLK occurs. Figure 32
illustrates the timing details for the offset calibration operation.
During offset calibration, the analog inputs are shorted internally
and a regular conversion is performed. This conversion generates
a conversion word that represents the offset error. This value is
stored and used to digitally remove the offset error from future
conversion words. The SDO/RDY output will fall to indicate the
completion of the offset calibration operation.
TABLE 10. INTERFACE TIMING CHARACTERISTICS
PARAMETER DESCRIPTION MIN TYP MAX UNITS
t2 SDO/RDY Low to first SLK 0 ns
t3 SCLK pulsewidth, Low or High 100 ns
t4 SCLK High to Data Valid 50 ns
t5 Data Hold after SCLK High 0 ns
t6 Register Update Time 39 μs
t7 Conversion Period SPEED = 1 12.5 ms
SPEED = 0 100 ms
FIGURE 31. OUTPUT DATA WAVEFORMS FOR SDO/RDY POLLING
DATA READY NEW DATA READY
SDO/RDY
SCLK
23 22 21 0
1 24 25
DATA
25TH SCLK FORCES
SDO/RDY HIGH
FIGURE 32. OFFSET CALIBRATION WAVEFORMS
DATA READY AFTER CALIBRATION
CALIBRATION BEGINS
SDO/RDY
SCLK
23 22 21 0 23
1 24 25 26
t8
FIGURE 33. STANDBY MODE WAVEFORMS
DATA READY
START
CONVERSION
STANDBY MODE
SDO/RDY
SCLK
23 22 21 0
1 24
t10 t11
t9
23
TABLE 11. SDO/RDY DELAY AFTER CALIBRATION
PARAMETER MIN MAX UNITS
t8 SPEED = 1 108 109 ms
SPEED = 0 808 809 ms
ISL26132, ISL26134
17 FN6954.1
September 9, 2011
Standby Mode Operation
The ADC can be put into standby mode to save power. Standby
mode reduces the power to all circuits in the device except the
crystal oscillator amplifier. To enter the standby mode, take the
SCLK signal high and hold it high after SDO/RDY falls. la
converter will remain in standby mode as long as SCLK is held
high. To return to normal operation, take SCLK back low and wait
for the SDO/RDY to fall to indicate that a new conversion has
completed. Figure 33 and Table 12 illustrate the details of
standby mode.
Supply currents are equal in Standby and Power-down modes
unless a Crystal is used. If the Crystal is used, the Crystal
amplifier is turned ON, even in the standby mode.
Performing Offset Calibration After Standby
mode
To perform an offset calibration automatically upon returning
from standby, deliver 2 or more additional SCLKs following a
data read cycle, and then set and hold SCLK high. The device will
remain in Standby as long as SCLK remains high. A calibration
cycle will begin once SCLK is brought low again to resume
normal operation. Additional time will be required to perform the
calibration after returning from Standby. Figure 34 and Table 13
illustrate the details of performing offset calibration after
standby mode.
TABLE 12. STANDBY MODE TIMING
PARAMETER DESCRIPTION MIN MAX UNITS
t9 SCLK High after
SDO/RDY Low
SPEED = 1 0 12.44 ms
SPEED = 0 0 99.94
t10 Standby Mode Delay SPEED = 1 12.5
SPEED = 0 100
t11 SDO/RDY falling edge
after SCLK Low
SPEED = 1 50 60
SPEED = 0 400 410
TABLE 13. OFFSET CALIBRATION TIMING AFTER STANDY
PARAMETER DESCRIPTION MIN MAX UNITS
t12 SDO/RDY Low after
SCLK Low
SPEED = 1 108 113 ms
SPEED = 0 808 813 ms
FIGURE 34. OFFSET CALIBRATION WAVEFORMS AFTER STANDBY
SDO/RDY
SCLK
23 22 21 0
1 24 25
STANDBY MODE DATA READY AFTER CALIBRATION
BEGIN 23
CALIBRATION
t10 t12
ISL26132, ISL26134
18 FN6954.1
September 9, 2011
Operation of PDWN
PDWN must transition from low to high after both power supplies
have settled to specified levels in order to initiate a correct
power-up reset (Figure 35). This can be implemented by an
external controller or a simple RC delay circuit, as shown in
Figure 36.
In order to reduce power consumption, the user can assert the
Power-down mode by bringing PDWN Low as shown in Figure 37.
All circuitry is shut down in this mode, including the Crystal
Oscillator. After PDWN is brought High to resume operation, the
reset delay varies depending on the clock source used. While an
external clock source will resume operation immediately, a
circuit utilizing a crystal will incur about a 20 millisecond delay
due to the inherent start-up time of this type of oscillator.
FIGURE 35. POWER-DOWN TIMING RELATIVE TO SUPPLIES
≥10μs
AVDD
DVDD
PDWN
FIGURE 36. PDWNDELAY CIRCUIT
DVDD
1kΩ
2.2nF
CONNECT TO
PDWN PIN
FIGURE 37. POWER-DOWN MODE WAVEFORMS
SDO/RDY
SCLK
t11
PDWN
POWER-DOWN
MODE
START
CONVERSION
DATA
CLK READY
SOURCE
WAKEUP
t13
tt1144
TABLE 14. POWER-DOWN RECOVERY TIMING
PARAMETER DESCRIPTION TYP UNITS
t13 Clock Recovery after PDWN
High
Internal Oscillator 7.95 μs
External Clock Source 0.16 μs
4.9152MHz Crystal
Oscillator
5.6 ms
t14 PDWN Pulse Duration 26 μs (min)
ISL26132, ISL26134
19 FN6954.1
September 9, 2011
Applications Information
Power-up Sequence – Initialization and
Configuration
The sequence to properly power-up and initialize the device are
as follows. For details on individual functions, refer to their
descriptions.
1. AVDD, DVDD ramp to specified levels
2. Apply External Clock
3. Pull PDWN High to initiate Reset
4. Device begins conversion
5. SDO/RDY goes low at end of first conversion
OPTIONAL ACTIONS
• Perform Offset Calibration
• Place device in Standby
• Return device from Standby
• Read on-chip Temperature (applicable to ISL26132 only)
Application Examples
WEIGH SCALE SYSTEM
Figure 38 illustrates the ISL26132 connected to a load cell. la
A/D converter is configured for a gain of 128x and a sample rate
of 10Sps. If a load cell with 2mV/V sensitivity is used, the full
scale output from the load cell will be 10mV. On a gain of 128x
and sample rate of 10Sps, the converter noise is 67nVP-P. la
converter will achieve 10mV/67nVP-P = 149,250 noise free
counts across its 10mV input signal. This equates to 14,925
counts per mV of input signal. If five output words are averaged
together this can be improved by √5 to yield √5*14925
counts = 33,370 counts per mV of input signal with an effective
update rate of 2 readings per second.
THERMOCOUPLE MEASUREMENT
Figure 39 illustrates the ISL26132 in a thermocouple
application. As shown, the 4.096V reference combined with the
PGA gain set to 128x sets the input span of the converter to
±16mV. This supports the K type thermocouple measurement for
temperatures from -270°C at -6.485mV to +380°C at about
16mV.
If a higher temperature is preferred, the PGA can be set to 64x to
provide a converter span of ±32mV. The will allow the converter
to support temperature measurement with the K type
thermocouple up to about +765°C.
In the circuit shown, the thermocouple is referenced to a voltage
dictated by the resistor divider from the +5V supply to ground.
These set the common mode voltage at about 2.5V. The 5M
resistors provide a means for detection of an open thermocouple.
If the thermocouple fails open or is not connected, the bias
through the 5M resistors will cause the input to the PGA to go to
full scale.
AVDD
VREF+
CAP
CAP
AIN+1
AIN-1
AIN+2
AIN-2
VREFAGND
DGND
TEMP
A0
SPEED
XTALOUT
PDWN
SCLK
SDO/RDY
GAIN0
GAIN1
DVDD
ISL26132
XTALIN/CLOCK
- +
0.1μF
VDD
MICRO
CONTROLLER
GND
16
9
10
11
12
14
13
15
17 2, 5, 6
7
8
21
3
4
22
23
24
19
20
GAIN = 128
5V 3V
0.1μF 18 1
FIGURE 38. WEIGH SCALE APPLICATION
ISL26132, ISL26134
20 FN6954.1
September 9, 2011
PCB Board Layout and System
Configuration
The ISL26132,ISL26134 ADC is a very low noise converter. taux
achieve the full performance available from the device will
require attention to the printed circuit layout of the circuit board.
Care should be taken to have a full ground plane without
impairments (traces running through it) directly under the chip
on the back side of the circuit board. The analog input signals
should be laid down adjacent (AIN+ and AIN- for each channel) to
achieve good differential signal practice and routed away from
any traces carrying active digital signals. The connections from
the CAP pins to the off-chip filter capacitor should be short, and
without any digital signals nearby. The crystal, if used should be
connected with relatively short leads. No active digital signals
should be routed near or under the crystal case or near the
traces, which connect it to the ADC. The AGND and DGND pins of
the ADC should be connected to a common solid ground plane.
All digital signals to the chip should be powered from the same
supply, as that used for DVDD (do not allow digital signals to be
active high unless the DVDD supply to the chip is alive). Route all
active digital signals in a way to keep distance from any analog
pin on the device (AIN, VREF, CAP, AVDD). Power on the AVDD
supply should be active before the VREF voltage is present.
PCB layout patterns for the chips (ISL26132 and ISL26134) are
found on the respective package outline drawings on pages 22,
and 23.
AVDD
VREF+
AIN+1
AIN-1
AIN+2
AIN-2
VREFAGND
DGND
TEMP
A0
SPEED
XTALOUT
PDWN
SCLK
SDO/RDY
GAIN0
GAIN1
DVDD
XTALIN/CLOCK
MICRO
CONTROLLER
16
11
12
14
13
15
17 2, 5, 6
7
8
21
3
4
22
23
24
19
20
+5V +3V
0.1μF
18 1
FIGURE 39. THERMOCOUPLE MEASUREMENT APPLICATION
4.9152
MHz
ISL21009
4.096V
10nF
1μF
10k
10k
0.1μF
TYPE K
5M
5M
ISL26132, ISL26134
21
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted
in the quality certifications found at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
FN6954.1
September 9, 2011
For additional products, see www.intersil.com/product_tree
Products
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a
complete list of Intersil product families.
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on
intersil.com: ISL26132, ISL26134
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff
FITs are available from our website at http://rel.intersil.com/reports/search.php
Revision History
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make
sure you have the latest Rev.
DATE REVISION CHANGE
09/08/11 FN6954.1 Power Supply Requirements on page 6 - AIDD - Analog Supply Current - Normal Mode, AVDD = 5, Gain = 1,2
changed TYP and MAX from “6, 7.3” to “7, 8.5”
Power Dissipation, Total Normal Mode, AVDD = 5, Gain = 1, 2 changed from “43.3” to “49.6” mW (Max)
08/22/11 FN6954.0 Initial Release.
ISL26132, ISL26134
22 FN6954.1
September 9, 2011
Package Outline Drawing
M24.173
24 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
Rev 1, 5/10
DETAIL "X"
TYPICAL RECOMMENDED LAND PATTERN
TOP VIEW
SIDE VIEW
END VIEW
Dimension does not include mold flash, protrusions or gate burrs.
Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.
Dimension does not include interlead flash or protrusion. Interlead
flash or protrusion shall not exceed 0.25 per side.
Dimensions are measured at datum plane H.
Dimensioning and tolerancing per ASME Y14.5M-1994.
Dimension does not include dambar protrusion. Allowable protrusion
shall be 0.08mm total in excess of dimension at maximum material
condition. Minimum space between protrusion and adjacent lead
is 0.07mm.
Dimension in ( ) are for reference only.
Conforms to JEDEC MO-153.
6.
3.
5.
4.
2.
Une.
NOTES:
7.
5
SEATING PLANE
C
H
2 3
1
24
B
12
1 3
13
A
PLANE
GAUGE
0.05 MIN
0.15 MAX
0°-8°
0.60± 0.15
0.90
1.00 REF
0.25
SEE DETAIL "X"
0.15
0.25
(0.65 TYP)
(5.65)
(0.35 TYP)
(1.45)
6.40
4.40 ±0.10
0.65
1.20 MAX
PIN #1
I.D. MARK
7.80 ±0.10
+0.05
-0.06
-0.06
+0.05
-0.10
+0.15
0.20 C B A
0.10 C
- 0.05
0.10 M C B A
ISL26132, ISL26134
23 FN6954.1
September 9, 2011
Package Outline Drawing
M28.173
28 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
Rev 1, 5/10
DETAIL "X"
TYPICAL RECOMMENDED LAND PATTERN
TOP VIEW
SIDE VIEW
END VIEW
Dimension does not include mold flash, protrusions or gate burrs.
Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.
Dimension does not include interlead flash or protrusion. Interlead
flash or protrusion shall not exceed 0.25 per side.
Dimensions are measured at datum plane H.
Dimensioning and tolerancing per ASME Y14.5M-1994.
Dimension does not include dambar protrusion. Allowable protrusion
shall be 0.08mm total in excess of dimension at maximum material
condition. Minimum space between protrusion and adjacent lead
is 0.07mm.
Dimension in ( ) are for reference only.
Conforms to JEDEC MO-153.
6.
3.
5.
4.
2.
Une.
NOTES:
7.
5
SEATING PLANE
C
H
2 3
1
28
B
14
1 3
15
A
PLANE
GAUGE
0.05 MIN
0.15 MAX
0°-8°
0.60 ±0.15
0.90
1.00 REF
0.25
SEE DETAIL "X"
0.25
(0.65 TYP)
(5.65)
(0.35 TYP)
(1.45)
6.40
4.40 ± 0.10
0.65
1.20 MAX
PIN #1
I.D. MARK
9.70± 0.10
-0.06
0.15 +0.05
-0.10
+0.15
-0.06
+0.05
0.20 C B A
0.10 C
- 0.05
0.10 M C B A
Both, the Deltabell® E and Plus feature engineer friendly features such as the unique levelling mechanism and
modular components that make simple sounder installations a reality.
Both external sounders incorporate the same features that are described overleaf. However, the Deltabell® Plus
has a fully back-light option, which enables around the clock visual deterrent to maximise your security.
The Deltabell® E and Plus are available in a variety of different colours:
Low power external sounder with strobe
Low power external sounder with strobe and back-light
Available Base Colours: Red,
Green, White, Amber, Blue and Black
Available Lid Colours: Red, White,
Yellow, Black*, Blue* and Chrome*
*Not recommended for Deltabell® Plus
2012 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change. Other cover colour
options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity.
RMKT090001-7
© 2009 Pyronix Ltd. Pyronix and the Pyronix Blades device are trademarks of Pyronix Ltd.
As part of our continued development programme specifications of the V2 TEL and V2 GSM may change.
RMKT090057-1
© 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change.
RMKT080064-4
© 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change.
RMKT090057-1
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
2010 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change. Other cover colour
options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity.
RMKT090150
www.pyronix.com
marketing@pyronix.com
01709 700100Current consumption feature Deltabell® Plus only
The Deltabell® incorporates a LDR (Light Dependant Resistor)
circuit which turns the Light off during daylight hours when it is
not needed, saving on the product current consumption.
When the day turns from dusk to dark the Lightbox illuminates
so that your external visual deterrent can be seen on the
darkest of nights.
Visual alarm warning feature Deltabell® Plus only
In addition to the strobe which is present on all of the Deltabell®
models, the Deltabell® PLUS has the added feature that the
illuminated cover will strobe when the alarm is activated, giving
you the added peace of mind that your alarm will be seen in
‘alarm mode’ from a much greater distance than standard
sounders that do not have back lighting facilities.
Security and peace of mind
The Deltabell® has front and rear tamper protection and in the
event of a potential sabotage attack, the 104dBA sounder
provides a distinctive audible warning.
The electronic elements on the printed circuit board are
protected by a fully sealed unit with a rubber gasket providing
added protection in harsh environments and giving your
customer peace of mind that the Deltabell® will always sound
in the event of an alarm activation.
104 dBA sounder
Piezo sounder with high decibel output.
Engineer hold-off facility
The Deltabell® engineer hold-off facility means that when
initially powered with the tamper switch open, the sounder will
not activate.
Remote engineer hold-off facility
There is also the capability for remote engineer hold-off which
is invaluable when you are servicing the system enabling easy
maintenance. It can be turned on at any time by applying 0V
to this dedicated terminal which will then disable the tamper.
Unique levelling mechanism
A spirit level is supplied so that you can easily mount the
Deltabell®. In addition, to make the installation as simple as
possible, revolving guide holes are used to save time lining up
screw and drill holes.
SCB/SAB Mode
Self Contained Bell or Self Activating Bell mode.
Hinged cover The Deltabell® has a hinged cover that locks into place so that
both your hands are free to work on the sounder.
Fully back-lit cover
The Deltabell® low power modular unit back-lights the cover
(Deltabell® Plus only)
Electrical specification
Operating Voltage
Supply: 9-16 V DC (13.5 nominal)
Protected: Reverse polarity protected
Current Consumption
Quiescent Current: < 60 mA
Alarm Current: < 300 mA
Strobe
Strobe Duration: 100 ms
Strobe Frequency: 1Hz
Dimensions
[W] 290 mm
[H] 285 mm
[D] 50 mm
Compliance
Europe.
Suitable for use in
EN50131-1 systems
Security grade 2 or 3,
Environmental class IV
[H]
[W] [D]
Packing information
Minimum quantity: 10
Minimum order for
screen print: 40
Warranty: 2 years
Designed: UK
Dummy bases also available
2012 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change. Other cover colour
options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity.
RMKT090001-7
© 2009 Pyronix Ltd. Pyronix and the Pyronix Blades device are trademarks of Pyronix Ltd.
As part of our continued development programme specifications of the V2 TEL and V2 GSM may change.
RMKT090057-1
© 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change.
RMKT080064-4
© 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change.
RMKT090057-1
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
2010 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change. Other cover colour
options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity.
RMKT090150
www.pyronix.com
marketing@pyronix.com
01709 700100
Serial File Transfer Cables
The cables feature either the traditional 25 D type RS232 connector or the now more commonly fitted 9 D type
serial connector. As the serial port on most PCs is a plug or male the most common interface cable tends to be
a socket to socket (female to female).
Caractéristiques:
• Multi-headed cable allows either 9 D or 25 D connection - providing complete serial port flexibility
• Both serial port configurations (Pt Nos 4070 & 4062) available from stock
• High quality moulded cables manufactured using foil screened cable
• Custom lengths can be made up upon request
• Now recognised as conforming to the most standard file transfer wiring configuration
4070
Stock No Description
PC AT to PC AT
4070 DB9F to DB9F Null Modem Cable 2Mtr
4070-3 DB9F to DB9F Null Modem Cable 3Mtr
4070-5 DB9F to DB9F Null Modem Cable 5Mtr
4070-10 DB9F to DB9F Null Modem Cable 10Mtr
4070-15 DB9F to DB9F Null Modem Cable 15Mtr
PC XT to PC XT
4062 DB25F to DB25F Null Modem Cable 2Mtr
4062-3 DB25F to DB25F Null Modem Cable 3Mtr
4062-5 DB25F to DB25F Null Modem Cable 5Mtr
4062-10 DB25F to DB25F Null Modem Cable 10Mtr
PC XT to PC AT
4063 DB9F to DB25F Null Modem Cable 2Mtr
4063-3 9DS TO 25DS NULL MODEM 3M
4063-5 9DS TO 25DS NULL MODEM 5M
4063-10 9DS TO 25DS NULL MODEM 10M
Multi-head Serial Cables
4090 DB9F+DB25F to DB9F+DB25F Null Modem Cable 2Mtr
4090-3 DB9F+DB25F to DB9F+DB25F Null Modem Cable 3Mtr
4090-5 DB9F+DB25F to DB9F+DB25F Null Modem Cable 5Mtr
Amplifier
Internet Radio
Terrestrial Tuner
Features
Feature Description
vols
Sources
6 – Internet Radio, MP3, CD, Terrestrial Radio,
Auxiliary Input.
Portable
Yes, two part system. The Internet Radio is
completely portable receiving all data and audio
over a wireless link from the transmitter part
connected to the PC USB port.
LCD
Display
20 character 5 x 7 dot matrix display with icons,
EL blue backlight.
Power
Source
8 x C size 1.5 volt alkaline battery or AC mains –
220 - 240 volt Europe, 110 volt US.
Operation
Time
Approx 30 hours continuous play at mid volume
on one set of alkaline batteries.
Feature Description
Output Power (RMS) 2 x 2.2 watts
Total Power 4.4 watts
Music Power 2 x 4.4 watts
PMPO 65 watts
Feature Description
Radio presets 6 with station name display
Feature Description
Digital Tuner bands FM Stereo
Tuner presets 6 for each band
Antenna FM YesLoudspeaker
Connections
Wireless Link
Dimensions
Frequency Display Yes, 4 digit
Feature Description
No. of way speaker system 1 – way full range driver
Impedance 2 x 8 ohm
Rated Power (RMS) 2 x 6 watts
Size 67 mm x 106 mm, Elliptical
Magnetic Shielding Yes
Feature Description
stéréo
headphone Yes
Auxiliary Input Yes, 2 x phono socket
Auxiliary
Output Yes, 2 x phono socket
USB connection Yes, transmitter connects to PC USB port
with 1.5 metre cable
Feature Description
Stereo Audio
Channel
Europe 863 MHz 10 mW erp, USA 925 MHz 10
mW erp, user selectable band switching to
avoid interference.
Data
Channel
Europe + USA, 433 MHz , bi-directional, user
selectable band switching to avoid interference.
Feature Description
Radio Remote
Module
Front to Back 155mm (6.1"), Side to Side
283mm (11.1"), Height 150mm (5.9")
USB Base
Module
Front to Back 120mm (4.7"), Side to Side
135mm (5.3"), Height 41mm (1.6")
1 / 5
Date de révision November 2011
Révision 3
No FDS 16447
FICHE DE DONNEES DE SECURITE
ARALDITE FUSION HARDENER
SECTION 1: IDENTIFICATION DE LA SUBSTANCE/DU MÉLANGE ET DE LA SOCIÉTÉ/L’ENTREPRISE
1.1. Identificateur de produit
Nom commercial ARALDITE FUSION HARDENER
No du produit 808300, 808409, 808416, 808423
1.2. Utilisations identifiées pertinentes de la substance ou du mélange et utilisations déconseillées
1.3. Renseignements concernant le fournisseur de la fiche de données de sécurité
Distributeur BOSTIK LIMITED
COMMON ROAD
STAFFORD
STAFFORDSHIRE
ST16 3EH
UNITED KINGDOM
+44 1785 255141
+44 1785 272650 (24Hour Emergency)
sds.uk@bostik.com
1.4. Numéro d’appel d’urgence
SECTION 2: IDENTIFICATION DES DANGERS
2.1. Classification de la substance ou du mélange
Classification (1999/45/CEE) Xi;R36/38.
2.2. Éléments d’étiquetage
Étiquetage
Irritant
Phrases De Risque
R36/38 Irritant pour les yeux et la peau.
Conseils De Prudence
S2 Conserver hors de la portée des enfants.
S24/25 Éviter le contact avec la peau et les yeux.
S26 En cas de contact avec les yeux, laver immédiatement et abondamment
avec de l'eau et consulter un spécialiste.
S36/37/39 Porter un vêtement de protection approprié, des gants et un appareil de
protection des yeux/ du visage.
S46 En cas d'ingestion, consulter immédiatement un médecin et lui montrer
l'emballage ou l'étiquette.
S56 Éliminer ce produit et son récipient dans un centre de collecte des déchets
dangereux ou spéciaux.
2.3. Autres dangers
SECTION 3: COMPOSITION/INFORMATIONS SUR LES COMPOSANTS
3.2. Mélanges
2 / 5
No FDS 16447
ARALDITE FUSION HARDENER
1,8-DIAZABICYCLO[5.4.0]UNDEC-7-ENE 1-5%
No CAS : 6674-22-2 No CE : 229-713-7
Classification (67/548/CEE)
Xn;R22.
C;R34.
R52/53.
Classification (CE 1272/2008)
Non classé.
BIS(2-DIMETHYLAMINOETHYL)ETHER 1-5%
No CAS : 3033-62-3 No CE : 221-220-5
Classification (67/548/CEE)
T;R23/24.
Xn;R22.
C;R35.
Classification (CE 1272/2008)
Non classé.
TRIETHYLENETETRAMINE, PROPOXYLATED 5-10%
No CAS : 26950-63-0 No CE : 500-055-5
Classification (67/548/CEE)
Xi;R38,R41.
Classification (CE 1272/2008)
Non classé.
L'intégralité du texte des phrases de risque et des mentions de danger figure à la Section 16.
SECTION 4: PREMIERS SECOURS
4.1. Description des premiers secours
Inhalation
Éloigner immédiatement la victime de la source d'exposition. Emmener immédiatement à l'air frais la personne exposée. Consulter un
médecin.
Ingestion
NE PAS faire vomir. Consulter immédiatement un médecin.
Contact avec la peau
Rincer rapidement la peau contaminée avec du savon ou un détergent doux et de l'eau. Enlever rapidement les vêtements imbibés et les
laver comme indiqué ci-dessus. Consulter un médecin si l'irritation persiste après le lavage.
Contact avec les yeux
Rincer immédiatement les yeux avec de l'eau. Continuer à rincer pendant au moins 15 minutes et consulter un médecin.
4.2. Principaux symptômes et effets, aigus et différés
4.3. Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires
SECTION 5: MESURES DE LUTTE CONTRE L’INCENDIE
5.1. Moyens d’extinction
Moyens d'extinction
Ce produit est ininflammable. Choisir le moyen d'extinction d'incendie en tenant compte d'autres produits chimiques éventuels. Utiliser :
Mousse, dioxyde de carbone ou poudre sèche.
5.2. Dangers particuliers résultant de la substance ou du mélange
5.3. Conseils aux pompiers
SECTION 6: MESURES À PRENDRE EN CAS DE DISPERSION ACCIDENTELLE
6.1. Précautions individuelles, équipement de protection et procédures d’urgence
6.2. Précautions pour la protection de l’environnement
3 / 5
No FDS 16447
ARALDITE FUSION HARDENER
6.3. Méthodes et matériel de confinement et de nettoyage
Absorber avec de la vermiculite, du sable sec ou de la terre, puis placer en récipient.
6.4. Référence à d’autres sections
SECTION 7: MANIPULATION ET STOCKAGE
7.1. Précautions à prendre pour une manipulation sans danger
Faire très attention de ne pas renverser la matière et éviter du contact avec la peau et les yeux.
7.2. Conditions d’un stockage sûr, y compris d’éventuelles incompatibilités
Entreposer à une température modérée dans un endroit sec et bien aéré.
7.3. Utilisation(s) finale(s) particulière(s)
SECTION 8: CONTRÔLES DE L’EXPOSITION/PROTECTION INDIVIDUELLE
8.1. Paramètres de contrôle
Description Des Ingrédients
WEL = Workplace Exposure Limits
8.2. Contrôles de l’exposition
Équipements de protection
Mesures d'ingénierie
Assurer une ventilation efficace.
Protection respiratoire
Si la ventilation est insuffisante, une protection respiratoire appropriée doit être disponible.
Protection des mains
Porter des gants de protection en cas de risque de contact direct ou d'éclaboussures.
Protection des yeux
Porter des lunettes de sécurité lunettes anti-éclaboussures pour éviter tout contact avec les yeux.
Mesures d'hygiène
Se laver rapidement en cas de contamination de la peau. Se laver après le travail et avant de manger, de fumer et avant d'aller aux
toilettes.
SECTION 9: PROPRIÉTÉS PHYSIQUES ET CHIMIQUES
9.1. Informations sur les propriétés physiques et chimiques essentielles
Aspect Liquide
Couleur Clair (ou pâle). Jaune.
Odeur Odeur faible.
Solubilité Insoluble dans l'eau
Densité relative 1.14
Point d'éclair (°C) 145 Creuset fermé Pensky-Martens.
9.2. Autres informations
SECTION 10: STABILITÉ ET RÉACTIVITÉ
10.1. Réactivité
10.2. Stabilité chimique
Stable aux températures normales.
10.3. Possibilité de réactions dangereuses
10.4. Conditions à éviter
4 / 5
No FDS 16447
ARALDITE FUSION HARDENER
10.5. Matières incompatibles
10.6. Produits de décomposition dangereux
SECTION 11: INFORMATIONS TOXICOLOGIQUES
11.1. Informations sur les effets toxicologiques
Contact avec la peau
Irritant pour la peau.
Contact avec les yeux
Irritant pour les yeux.
SECTION 12: INFORMATIONS ÉCOLOGIQUES
Écotoxicité
Non reconnu comme dangereux pour l'environnement.
12.1. Toxicité
12.2. Persistance et dégradabilité
12.3. Potentiel de bioaccumulation
12.4. Mobilité dans le sol
12.5. Résultats des évaluations PBT et vPvB
12.6. Autres effets néfastes
SECTION 13: CONSIDÉRATIONS RELATIVES À L’ÉLIMINATION
13.1. Méthodes de traitement des déchets
Éliminer les déchets et résidus conformément aux règlements municipaux.
SECTION 14: INFORMATIONS RELATIVES AU TRANSPORT
Généralités Le produit n'est pas soumis à la réglementation internationale sur le transport des marchandises
dangereuses (IMDG, ICAO/IATA, ADR/RID).
14.1. Numéro ONU
Non applicable.
14.2. Nom d’expédition des Nations unies
Non applicable.
14.3. Classe(s) de danger pour le transport
Étiquettes De Transport
Aucun panneau d'avertissement de transport requis.
14.4. Groupe d’emballage
Non applicable.
14.5. Dangers pour l’environnement
Substance Dangereuse Pour L'Environnement/Polluant Marin
Non.
14.6. Précautions particulières à prendre par l’utilisateur
Non applicable.
14.7. Transport en vrac conformément à l’annexe II de la convention Marpol 73/78 et au recueil IBC
Non applicable.
SECTION 15: INFORMATIONS RÉGLEMENTAIRES
5 / 5
No FDS 16447
ARALDITE FUSION HARDENER
15.1. Réglementations/législation particulières à la substance ou au mélange en matière de sécurité, de santé et d’
environnement
15.2. Évaluation de la sécurité chimique
SECTION 16: AUTRES INFORMATIONS
Informations générales
This product should be used as directed by Bostik Ltd.For further information consult the product data sheet or contact Technical Services.
Références Littéraires
This safety data sheet was compiled using current safety information supplied by distributor of raw materials.
Commentaires De Mise À Jour
OBS: Lignes en marges signifient des corrections importantes par rapport à la version précédente. This safety data sheet supersedes all
previous issues and users are cautioned to ensure that it is current. Destroy all previous data sheets and if in doubt contact Bostik Limited.
Émise Par Approved LJ
Date de révision November 2011
Révision 3
Date September 2007
Phrases - R (Texte Intégral)
R34 CAUSE DES BRÛLURES.
R38 Irritant pour la peau.
R22 Nocif en cas d’ingestion.
Nocif pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour
l'environnement aquatique.
R52/53
R35 Provoque de graves brûlures.
R41 Risque de lésions oculaires graves.
R23/24 Toxique par inhalation et par contact avec la peau.
October 2011 Araldite® Fusion Page 1 of 3
Huntsman Advanced Materials
DIY Adhesives
AralditeÒ Fusion
Two component very fast epoxy adhesive
Other
commercial
names
• Araldite® Super Glue +
• Araldite® Instant Clear
• Araldite® Instant
• Araldite® 90 Segundos Fusion
• Araldite® 90 seconds Fusion
• Araldite® 90 seconds
Key properties • Very fast curing at room temperature
• Transparent / pale coloured
• 1 : 1 mixing
• Solvent free
Description Araldite® Fusion is a two part transparent epoxy adhesive gelling in 90 seconds. The product may be used to bond
metals, ceramics and many common plastics.
Product data
Property Araldite® Fusion /
Resin
Araldite® Fusion /
Hardener
Araldite® Fusion /
mixed
Colour (visual) transparent pale yellow pale yellow
Specific gravity 1.15 – 1.2 1.1 – 1.2 ca. 1.2
Viscosity at 25°C (Pa.s) 50 - 75 10 - 20 30 - 50
Pot Life (100 g at 25°C) - - 90 seconds
Processing Pretreatment
The strength and durability of a bonded joint are dependant on proper treatment of the surfaces to be bonded.
At the very least, joint surfaces should be cleaned with a good degreasing agent such as acetone, iso-propanol (for
plastics) or proprietary degreasing agent in order to remove all traces of oil, grease and dirt.
Low grade alcohol, gasoline (petrol) or paint thinners should never be used.
The strongest and most durable joints are obtained by either mechanically abrading or chemically etching (“pickling”)
the degreased surfaces. Abrading should be followed by a second degreasing treatment.
Mix ratio Parts by weight Parts by volume
Araldite® Fusion / Resin 100 100
Araldite® Fusion / Hardener 100 100
October 2011 Araldite® Fusion Page 2 of 3
Huntsman Advanced Materials
Application of adhesive
The resin/hardener mix is applied directly or with a spatula to the pretreated and dry joint surfaces.
A layer of adhesive 0.05 to 0.10 mm thick will normally impart the greatest lap shear strength to the joint. Huntsman
stresses that proper adhesive joint design is also critical for a durable bond. The joint components should be
assembled and secured in a fix position as soon as the adhesive has been applied.
Equipment maintenance
All tools should be cleaned with hot water and soap before adhesives residues have had time to cure. The removal of
cured residues is a difficult and time-consuming operation.
If solvents such as acetone are used for cleaning, operatives should take the appropriate precautions and, in addition,
avoid skin and eye contact.
Times to minimum shear strength
Temperature °C 23
Cure time to reach hours
LSS > 1MPa minutes 5
Cure time to reach hours
LSS > 10MPa minutes 90
LSS = Lap shear strength.
Typical cured
properties
Average lap shear strengths of typical joints (ISO 4587)
Cured for 16 hours at 40°C and tested at 23°C.
Pre-treatment: plastics abraded and degreased, metals sandblasted and degreased.
0 2 4 6 8 10 12 14 16 18 20
Aluminium
Steel 37/11
Stainless steel V4A
Copper
SMC
ABS
PVC
Polycarbonate
Polyamides
PMMA
PC
MPa
October 2011 Araldite® Fusion Page 3 of 3
Huntsman Advanced Materials
Lap shear strength versus temperature (ISO 4587) (typical average values)
Carried out on sandblasted and degreased aluminium, cure 16 hours at 40°C
0
5
10
15
20
-40 -20 0 20 40 60 80 100
°C
MPa
Storage Araldite® Fusion may be stored for up to 2 years at room temperature provided the components are stored in sealed
containers.
Handling
precautions
Caution
Our products are generally quite harmless to handle provided that certain precautions normally taken when handling
chemicals are observed. The uncured materials must not, for instance, be allowed to come into contact with
foodstuffs or food utensils, and measures should be taken to prevent the uncured materials from coming in contact
with the skin, since people with particularly sensitive skin may be affected. The wearing of impervious rubber or
plastic gloves will normally be necessary; likewise the use of eye protection. The skin should be thoroughly cleaned
at the end of each working period by washing with soap and warm water. The use of solvents is to be avoided.
Disposable paper - not cloth towels - should be used to dry the skin. Adequate ventilation of the working area is
recommended. These precautions are described in greater detail in the Material Safety Data sheets for the individual
products and should be referred to for fuller information.
Huntsman Advanced Materials warrants only that its products meet the specifications agreed with the buyer. Typical properties,
where stated, are to be considered as representative of current production and should not be treated as specifications.
The manufacture of materials is the subject of granted patents and patent applications; freedom to operate patented processes is
not implied by this publication.
While all the information and recommendations in this publication are, to the best of our knowledge, information and belief, accurate at the
date of publication, NOTHING HEREIN IS TO BE CONSTRUED AS A WARRANTY, EXPRESS OR OTHERWISE.
IN ALL CASES, IT IS THE RESPONSIBILITY OF THE USER TO DETERMINE THE APPLICABILITY OF SUCH INFORMATION
AND RECOMMENDATIONS AND THE SUITABILITY OF ANY PRODUCT FOR ITS OWN PARTICULAR PURPOSE.
The behaviour of the products referred to in this publication in manufacturing processes and their suitability in any given end-use
environment are dependent upon various conditions such as chemical compatibility, temperature, and other variables, which are
not known to Huntsman Advanced Materials. It is the responsibility of the user to evaluate the manufacturing circumstances and
the final product under actual end-use requirements and to adequately advise and warn purchasers and users thereof.
Products may be toxic and require special precautions in handling. The user should obtain Safety Data Sheets from Huntsman
Advanced Materials containing detailed information on toxicity, together with proper shipping, handling and storage procedures,
and should comply with all applicable safety and environmental standards.
Hazards, toxicity and behaviour of the products may differ when used with other materials and are dependent on manufacturing
circumstances or other processes. Such hazards, toxicity and behaviour should be determined by the user and made known to
handlers, processors and end users.
Except where explicitly agreed otherwise, the sale of products referred to in this publication is subject to the general terms and
conditions of sale of Huntsman Advanced Materials LLC or of its affiliated companies including without limitation, Huntsman
Advanced Materials (Europe) BVBA, Huntsman Advanced Materials Americas Inc., and Huntsman Advanced Materials (Hong
Kong) Ltd.
Huntsman Advanced Materials is an international business unit of Huntsman Corporation. Huntsman Advanced Materials trades
through Huntsman affiliated companies in different countries including but not limited to Huntsman Advanced Materials LLC in the
USA and Huntsman Advanced Materials (Europe) BVBA in Europe.
Araldite® is a registered trademark of Huntsman Corporation or an affiliate thereof.
Copyright © 2011 Huntsman Corporation or an affiliate thereof. All rights reserved.
Huntsman Advanced Materials
(Switzerland) GmbH
Klybeckstrasse 200
4057 Basel
Switzerland
Tel: +41 (0)61 299 11 11
www.go-araldite.com
Emergency number : + 32 35 751 234
ARALDITE FUSION
IDENTIFICATION DE LA SUBSTANCE/PRÉPARATION ET DE LA
SOCIÉTÉ/ENTREPRISE
FICHE DE DONNÉES DE SÉCURITÉ
Nom du produit
ARALDITE FUSION
Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France
1.
Numéro de téléphone d'appel
d'urgence
:
Fournisseur
:
:
Identification de la substance ou de la préparation
Type de produit : Liquide.
Pour toutes questions de Sécurité, Hygiène et Environnement relatives à ce document ou son
contenu, veuillez contacter:
E-Mail:
global_product_ehs_admat@huntsman.com
Utilisation de la
substance/préparation
: Système adhésif bi-composants
EUROPE: +32 35 75 1234
France ORFILA: +33(0)145425959
ASIA: +65 6336-6011
China: +86 20 39377888
Australia: 1800 786 152
New Zealand: 0800 767 437
USA: +1/800/424.9300
Huntsman Advanced Materials (Europe)BVBA
Everslaan 45
3078 Everberg / Belgium
Tel.: +41 61 299 20 41
Fax: +41 61 299 20 40
Description du produit : Working pack (preparation)
2. IDENTIFICATION DES DANGERS
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
3. COMPOSITION/INFORMATIONS SUR LES COMPOSANTS
Substance/préparation : Working pack (preparation)
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
4. PREMIERS SECOURS
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
5. MESURES DE LUTTE CONTRE L'INCENDIE
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
6. MESURES À PRENDRE EN CAS DE REJET ACCIDENTEL
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
Date d'édition/Date de
révision
: 11/13/2009. 1/6
ARALDITE FUSION
Manipulation
MANIPULATION ET STOCKAGE
Stockage
7.
Revêtir un équipement de protection individuelle approprié (voir Section 8). Il est
interdit de manger, boire ou fumer dans les endroits où ce produit est manipulé,
entreposé ou mis en oeuvre. Il est recommandé au personnel de se laver les mains
et la figure avant de manger, boire ou fumer. Les personnes ayant des antécédents
de sensibilisation cutanée ne doivent pas intervenir dans les processus utilisant ce
produit. Ne pas mettre en contact avec les yeux, la peau ou les vêtements. Ne pas
ingérer. Éviter de respirer les vapeurs ou le brouillard. Éviter le rejet dans
l'environnement. Consulter les instructions spéciales/la fiche de données de sécurité.
Garder dans le conteneur d'origine ou dans un autre conteneur de substitution
homologué fabriqué à partir d'un matériau compatible et tenu hermétiquement clos
lorsqu'il n'est pas utilisé. Les conteneurs vides retiennent des résidus de produit et
peuvent présenter un danger. Ne pas réutiliser ce conteneur.
Matériaux d'emballage
Stocker conformément à la réglementation locale. Stocker dans le récipient d'origine
à l'abri de la lumière directe du soleil dans un endroit sec, frais et bien ventilé à l'écart
des matériaux incompatibles (cf. la section 10). Garder le récipient hermétiquement
fermé lorsque le produit n'est pas utilisé. Les récipients ayant été ouverts doivent être
refermés avec soin et maintenus en position verticale afin d'éviter les fuites. Ne pas
stocker dans des conteneurs non étiquetés. Utiliser un récipient approprié pour éviter
toute contamination du milieu ambiant.
:
:
Recommandé : Utiliser le récipient d'origine.
Température de stockage : Stocker conformément à la réglementation locale. Stocker dans le récipient d'origine
à l'abri de la lumière directe du soleil dans un endroit sec, frais et bien ventilé à l'écart
des matériaux incompatibles (cf. la section 10). Garder le récipient hermétiquement
fermé lorsque le produit n'est pas utilisé. Les récipients ayant été ouverts doivent être
refermés avec soin et maintenus en position verticale afin d'éviter les fuites. Ne pas
stocker dans des conteneurs non étiquetés. Utiliser un récipient approprié pour éviter
toute contamination du milieu ambiant. Stocker entre les températures suivantes: 2 à
40°C (35.6 à 104°F).
Classe de danger de
stockage Huntsman
Advanced Materials
: Classe de stockage 10, Liquide nocif pour l'ambience
Nom des composants Limites d'exposition professionnelle
Valeurs limites d'exposition
8. CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE
Aucune valeur de limite d'exposition connue.
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
PROPRIÉTÉS PHYSIQUES ET CHIMIQUES
État physique Liquide.
Point d'éclair Coupe fermée: >145°C (>293°F) [DIN 51758 EN 22719 (Pensky-Martens Closed
Cup)]
9.
:
:
Informations générales
Aspect
Informations importantes relatives à la santé, à la sécurité et à l'environnement
Masse volumique : 1.15 g/cm3 [20°C (68°F)]
Solubilité dans l'eau : Insoluble
Date d'édition/Date de
révision
: 11/13/2009. 2/6
ARALDITE FUSION
STABILITÉ 10. ET RÉACTIVITÉ
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
11. INFORMATIONS TOXICOLOGIQUES
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
12. INFORMATIONS ÉCOLOGIQUES
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
13. CONSIDÉRATIONS RELATIVES À L'ÉLIMINATION
070208
Catalogue Européen des
Déchets
:
Déchets Dangereux : Il se peut que la classification du produit satisfasse les critères de déchets dangereux.
Il est recommandé d'éviter ou réduire autant que possible la production de déchets.
Les conteneurs vides ou les saches internes peuvent retenir des restes de produit.
Ne se débarrasser de ce produit et de son récipient qu'en prenant toutes précautions
d'usage. Élimination des produits excédentaires et non recyclables par une
entreprise autorisée de collecte des déchets. La mise au rebut de ce produit, des
solutions et des sous-produits devra en permanence respecter les exigences légales
en matière de protection de l'environnement et de mise au rebut des déchets ainsi
que les exigences de toutes les autorités locales. Évitez la dispersion des matériaux
déversés, ainsi que leur écoulement et tout contact avec le sol, les cours d'eau, les
égouts et conduits d'évacuation.
Méthodes d'élimination des :
déchets
07 02 08* autres résidus de réaction et résidus de distillation
Il faut dans tous les cas appliquer toutes les lois locales régionales et nationales ainsi
que les directives européennes. Il appartient à l'utilisateur final de déterminer le code
des déchets spécifique à chaque secteur industriel en utilisant le code Européen
approprié du catalogue européen des déchets. Il est recommandé que tous les
détails soient indiqués par le responsable des déchets.
14.
Réglementation internationale du transport
INFORMATIONS RELATIVES AU TRANSPORT
Nom d'expédition
ADR : Matière dangereuse du point de vue de l'environnement, liquide, n.s.a. BISPHENOL A/F EPOXY
RESIN
IMDG : Environmentally hazardous substance, liquid, n.o.s. (BISPHENOL A/F EPOXY RESIN)
IATA : Environmentally hazardous substance, liquid, n.o.s. (BISPHENOL A/F EPOXY RESIN)
Informations
réglementaires
Numéro
ONU
Classes Groupe
d'emballage
Étiquette Autres informations
9
Classe ADR/RID UN3082 9 III
Classe IMDG UN3082 9 III
9
Emergency schedules (EmS)
F-A, S-F
Code de classificationM6
Numéro
d'identification du
danger
90
Date d'édition/Date de
révision
: 11/13/2009. 3/6
ARALDITE FUSION
14. INFORMATIONS RELATIVES AU TRANSPORT
Passenger and Cargo Aircraft
Quantity limitation: 450 L
Packaging instructions: 914
Cargo Aircraft OnlyQuantity limitation:
450 L
Packaging instructions: 914
9
Classe IATA UN3082 9 III
15. INFORMATIONS RÉGLEMENTAIRES
Conseils de prudence S24- Éviter le contact avec la peau.
S37/39- Porter des gants appropriés et un appareil de protection des yeux/du visage.
S61- Éviter le rejet dans l'environnement. Consulter les instructions spéciales/la fiche
de données de sécurité.
R36/38- Irritant pour les yeux et la peau.
R43- Peut entraîner une sensibilisation par contact avec la peau.
R51/53- Toxique pour les organismes aquatiques, peut entraîner des effets néfastes
à long terme pour l'environnement aquatique.
Symbole(s) de danger
Phrases de risque
Réglementations de l'Union Européenne
Réglementations nationales
Contient du (de la)
:
:
:
:
Phrases d'avertissement
supplémentaire
: Non applicable.
Irritant, Dangereux pour l'environnement
produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids
moléculaire moyen < 700)
résine époxidique à base de bisphénol F
Déterminés en accord avec les directives de l'UE 67/548/EEC et 1999/45/EC (y compris les amendements), la
classification et l'étiquetage prennent en compte l'usage prévu du produit.
Surveillance médicale
renforcée
: Arrêté du 11 Juillet 1977 fixant la liste des travaux nécessitant une surveillance
médicale renforcée: non concerné
Réglementations Internationales
Listes internationales : Inventaire des substances chimiques d'Australie (AICS): Tous les composants
sont répertoriés ou exclus.
Inventaire des substances chimiques existantes en Chine (IECSC): Tous les
composants sont répertoriés ou exclus.
Inventaire du Japon (ENCS): Un composant au moins n'est pas répertorié.
Inventaire du Japon (ISHL): Indéterminé.
Inventaire de Corée (KECI): Tous les composants sont répertoriés ou exclus.
Inventaire néo-zélandais des substances chimiques (NZIoC): Indéterminé.
Inventaire des substances chimiques des Philippines (PICCS): Un composant au
moins n'est pas répertorié.
Inventaire des États-Unis (TSCA 8b): Tous les composants sont répertoriés ou
exclus.
Inventaire d'Europe: Tous les composants sont répertoriés ou exclus.
Inventaire du Canada: Tous les composants sont répertoriés ou exclus.
Xi, N
Etiquetage exceptionnel
pour préparations
spéciales
: Contient des composés époxydiques. Voir les informations transmises par le
fabricant.
Date d'édition/Date de
révision
: 11/13/2009. 4/6
ARALDITE FUSION
AUTRES DONNÉES
11/13/2009.
Historique
16.
Date d'impression
Date d'édition/ Date de
révision
Version
Avis au lecteur
Date de la précédente
édition
:
:
:
:
R23/24- Toxique par inhalation et par contact avec la peau.
R22- Nocif en cas d'ingestion.
R35- Provoque de graves brûlures.
R41- Risque de lésions oculaires graves.
R38- Irritant pour la peau.
R36/38- Irritant pour les yeux et la peau.
R43- Peut entraîner une sensibilisation par contact avec la peau.
R50/53- Très toxique pour les organismes aquatiques, peut entraîner des effets
néfastes à long terme pour l'environnement aquatique.
R51/53- Toxique pour les organismes aquatiques, peut entraîner des effets néfastes
à long terme pour l'environnement aquatique.
R53- Peut entraîner des effets néfastes à long terme pour l'environnement aquatique.
Texte complet des phrases :
R citées dans les sections 2
et 3 - France
Référence du texte complet
des classifications se
trouvant dans les Sections 2
et 3 - France
: T - Toxique
C - Corrosif
Xn - Nocif
Xi - Irritant
N - Dangereux pour l'environnement
Indique quels renseignements ont été modifiés depuis la version précédente.
11/13/2009.
Aucune validation antérieure.
1
Epoxy Resins and Curing Agents; Toxicology, Health, Safety and Environmental Aspects (Plastics Europe, May 2006)
Les informations et recommandations figurant dans cette publication sont fondées sur notre expérience générale
et sont fournies de bonne foi au mieux de nos connaissances actuelles, MAIS RIEN DANS LES PRESENTES NE
DOIT ÊTRE INTERPRETE COMME CONSTITUANT UNE GARANTIE OU UNE DECLARATION, EXPRESSE,
IMPLICITE OU AUTRE.
DANS TOUS LES CAS, IL INCOMBE A L'UTILISATEUR DE DETERMINER ET DE VERIFIER L'EXACTITUDE, AINSI
QUE LE CARACTERE SUFFISANT ET APPLICABLE DE TELLES INFORMATIONS ET RECOMMANDATIONS, DE
MEME QUE L'ADEQUATION ET L'ADAPTATION D'UN QUELCONQUE PRODUIT A UNE UTILISATION SPECIFIQUE
OU DANS UN BUT PARTICULIER.
LES PRODUITS MENTIONNES PEUVENT PRESENTER DES RISQUES INCONNUS ET DOIVENT ETRE UTILISES
AVEC PRECAUTION. MEME SI CERTAINS RISQUES SONT DECRITS DANS CETTE PUBLICATION, IL N'EXISTE
AUCUNE GARANTIE QU'IL S'AGIT DES SEULS RISQUES EXISTANTS.
Les risques, la toxicité et le comportement des produits peuvent différer lorsque ceux-ci sont utilisés avec
d'autres matériaux et dépendent des conditions de fabrication et d'autres processus. Ces risques, cette toxicité et
ces comportements doivent être déterminés par l'utilisateur et portés à la connaissance des personnes ou entités
chargés du transport ou de la manutention, du traitement ou de la transformation, ainsi que de tous utilisateurs
finaux.
Pour toute demande, contactez le bureau commercial Huntsman Sales le plus proche ou directement Huntsman
(Belgium) BVBA, Everslaan 45, B-3078 Everberg, Belgique. Tél. +32 2 758 9211 - Fax +32 758 9946.
Huntsman Belgium (BVBA)
Everslaan 45
B-3078 Everberg
Belgium
Tel.:+32-(0)2-758-9211
Références
Date d'édition/Date de
révision
: 11/13/2009. 5/6
ARALDITE FUSION
16. AUTRES DONNÉES
NO PERSON OR ORGANIZATION EXCEPT A DULY AUTHORIZED HUNTSMAN EMPLOYEE IS AUTHORIZED TO
PROVIDE OR MAKE AVAILABLE DATA SHEETS FOR HUNTSMAN PRODUCTS. DATA SHEETS FROM
UNAUTHORIZED SOURCES MAY CONTAIN INFORMATION THAT IS NO LONGER CURRENT OR ACCURATE. NO
PART OF THIS DATA SHEET MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM, OR BY ANY MEANS,
WITHOUT PERMISSION IN WRITING FROM HUNTSMAN. ALL REQUESTS FOR PERMISSION TO REPRODUCE
MATERIAL FROM THIS DATA SHEET SHOULD BE DIRECTED TO HUNTSMAN, MANAGER, PRODUCT SAFETY AT
THE ABOVE ADDRESS.
Date d'édition/Date de
révision
: 11/13/2009. 6/6
FICHE DE DONNÉES DE SÉCURITÉ
Section 1: Identification de la substance/du mélange et de la société/l’entreprise
Identificateur de produit
Nom commercial ou
désignation du mélange
Contralube 770
Numéro -
d'enregistrement
Synonymes Aucun(e)(s).
Code de produit Contralube 770
Date de la première
publication
le 06-04-06
Numéro de version 12
le 17-02-11
le 06-01-11
Date de révision
Date d'entrée en vigueur de la
nouvelle version
Utilisations identifiées pertinentes de la substance ou du mélange et utilisations déconseillées
Utilisations identifiées Non disponible.
Utilisations déconseillées Aucun connu.
Renseignements concernant le fournisseur de la fiche de données de sécurité
Newgate Simms Ltd.
Broughton Mills Road, Bretton
Chester, CH4 0BY, United Kingdom
info@newgatesimms.co.uk
Section 2: Identification des dangers
Classification de la substance ou du mélange
Les dangers physiques, sanitaires et environnementaux du mélange ont été évalués et/ou testés, et la classification suivante
s'applique.
Classification selon la directive 67/548/CEE ou 1999/45/CEE et ses amendements
Cette préparation ne répond pas aux critères de classification de la directive 1999/45/CE et ses amendements.
Classification selon le règlement (CE) n° 1272/2008 et ses amendements
Ce mélange ne répond pas aux critères de classification du règlement (CE) 1272/2008 et ses amendements.
Résumé des dangers
Risques physiques Pas de classification pour les dangers physiques.
Risques pour la santé Pas de classification pour les dangers sanitaires.
Dangers pour
l’environnement
Pas de classification pour les dangers pour l'environnement.
Risques particuliers Non disponible.
Principaux symptômes Non disponible.
Éléments d’étiquetage
Étiquettage selon le règlement (CE) n° 1272/2008 et ses amendements
Numéro d'identification -
Mentions de danger La substance ne répond pas aux critères de classification.
Conseils de prudence
Prévention Non disponible.
Réaction Non disponible.
Stockage Non disponible.
Élimination Non disponible.
Informations supplémentaires
de l'étiquette
Sans objet.
Autres dangers Non affecté.
Nom de la matière: Contralube 770
FDS n° Contralube 770 N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 1 / 7
SDS FRANCE
Section 3: Composition/informations sur les composants
Mélange
Les composants ne sont pas dangereux ou sont en dessous des limites de déclaration légales.
Section 4: Premiers secours
Description des premiers secours
Inhalation Si des symptômes se développent, éloigner la personne touchée de la source d'exposition et la
sortir au grand air. Consulter immédiatement un médecin.
Contact avec la peau Laver avec de l'eau et du savon. Consulter un médecin en cas de symptômes. Laver séparément
les vêtements avant réutilisation.
Contact avec les yeux Laver immédiatement les yeux à grande eau pendant au moins 15 minutes. Consulter
immédiatement un médecin.
Ingestion Du fait de la nature physique de ce matériau, il est improbable qu'une ingestion ne se produise.
S'il se produit tout de même l'ingestion d'une grande quantité, solliciter des soins médicaux. S'il
se produit tout de même l'ingestion d'une grande quantité, Ne pas faire vomir sans l'avis d'un
médecin. Si le vomissement se produit naturellement, incliner la victime vers l'avant pour réduire
le risque d'aspiration. Ne jamais faire avaler quelque chose à une victime inconsciente ou
souffrant de convulsions.
Principaux symptômes et
effets, aigus et différés
Non disponible.
Indication des éventuels soins
médicaux immédiats et
traitements particuliers
nécessaires
Non disponible.
Section 5: Mesures de lutte contre l’incendie
Risques d'incendie généraux Ce produit est ininflammable.
Moyens d’extinction
Moyen d'extinction
approprié
Brouillard d’eau. Mousse. Dioxyde de carbone (CO2). Produit chimique sec.
Moyens d’extinction
inappropriés
Eau. En cas d'incendie ne pas utiliser de jet d'eau car celà dispersera le feu.
Dangers particuliers résultant
de la substance ou du mélange
Non disponible.
Conseils aux pompiers
Equipements de protection
particuliers des pompiers
Porter un équipement de protection adéquat.
Procédures spéciales de
lutte contre l'incendie
Porter des vêtements de protection complets, y compris un casque, un appareil autonome de
respiration à pression positive ou à demande de pression, des vêtements de protection et un
masque anti-poussière. Éloigner les contenants de la zone de feu si cela peut se faire sans
risque. Éloigner les récipients de l'incendie si cela peut se faire sans risque.
Section 6: Mesures à prendre en cas de dispersion accidentelle
Précautions individuelles, équipement de protection et procédures d’urgence
Pour les non-secouristes Tenir à l’écart le personnel superflu. Prévenir les autorités locales si des fuites significatives ne
peuvent pas être contenues. Ne pas toucher les récipients endommagés ou le produit déversé à
moins d'être vêtu d'une tenue protectrice appropriée. Garder les personnes à l'écart de l'endroit
de l'écoulement/de la fuite et contre le vent. Observer les précautions indiquées dans les autres
sections.
Pour les secouristes Non disponible.
Précautions pour la protection
de l’environnement
Empêcher l'infiltration dans les cours d'eau, les égouts, les sous-sols ou les endroits clos.
Nom de la matière: Contralube 770
FDS n° Contralube 770 N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 2 / 7
SDS FRANCE
Méthodes et matériel de
confinement et de nettoyage
Déversements importants : Arrêter le débit de matière, si ceci est sans risque. Enlever avec un
absorbant inerte. Endiguer le matériau renversé si cela est possible. Couvrir d'une bâche de
plastique pour éviter la dispersion. Absorber avec de la vermiculite, du sable sec ou de la terre,
puis placer en récipient. Nettoyer soigneusement la surface contaminée. Après avoir récupéré le
produit, rincer la zone à l'eau.
Déversements mineurs : Essuyer avec une matière absorbante (p.ex. tissu, laine). Nettoyer à
fond la surface pour éliminer toute contamination résiduelle.
Ne jamais réintroduire le produit répandu dans son récipient d'origine en vue d'une réutilisation.
Pour les conseils relatifs à l'élimination, voir la rubrique 13. Ne pas toucher les containers
endommagés ou la matière répandue. Il se peut que les dégâts au container extérieur aient été
sans conséquences pour le container interne. Si le container interne est endommagé et fuit, le
couvrir avec une serviette ou un ch Le produit ramassé ainsi que les chiffons de nettoyage seront
jetés dans les containers prévus à cet effet.
Référence à d'autres sections Pour les conseils relatifs à l'élimination, voir la rubrique 13.
Section 7: Manipulation et stockage
Précautions à prendre pour une
manipulation sans danger
NE PAS mettre sous pression, couper, chauffer ou souder les récipients. Les récipients vides
peuvent contenir des résidus du produit. Éviter tout contact prolongé ou répété de la peau avec ce
matériau. Ne pas manipuler ou stocker à proximité d'une flamme nue, d'une source de chaleur ou
toute autre source d'ignition. Éviter de respirer les gaz/vapeurs/brouillards/fumées. Ne pas ingérer.
Ne pas goûter ni avaler. Éviter le contact avec les yeux. Se laver soigneusement après
manipulation.
Conditions d’un stockage sûr,
y compris d’éventuelles
incompatibilités
Tenir à l'écart de la chaleur et des sources d'ignition. Entreposer dans un endroit frais. Conserver
dans un récipient fermé, à l'écart des matières incompatibles.
Utilisation(s) finale(s)
particulière(s)
Non disponible.
Section 8: Contrôles de l’exposition/protection individuelle
Paramètres de contrôle
Valeurs limites d’exposition
professionnelle
Il n'y a pas de limites d'exposition pour ce ou ces ingrédients.
Valeurs limites biologiques Il n'y a pas de limites d'exposition biologique pour ce ou ces ingrédients.
Procédures de suivi
actuellement recommandées
Non disponible.
DNEL Non disponible.
PNEC Non disponible.
Contrôles de l’exposition
Contrôles techniques
appropriés
Porter des gants thermorésistants, étanches, et des vêtements de protection pour éviter tout
contact avec la peau.
Mesures de protection individuelle, telles que les équipements de protection individuelle
Généralités Non disponible.
Protection des yeux/du
visage
Portez des lunettes de sécurité ou des lunettes de protection contre les substances chimiques (en
cas de risque de projection).
Protection de la peau
- Protection des mains Non nécessaire en général.
- Divers Porter un vêtement de protection approprié. Porter des gants en nitrile, néoprène, PVC ou en
viton. Choisir l'équipement de protection conformément aux normes CEN en vigueur et en
coopération avec le fournisseur de l'équipement de protection.
Protection respiratoire Aucun équipement de protection respiratoire individuel n'est normalement nécessaire. Un
appareil respiratoire purificateur d'air doté d'une cartouche de vapeur organique peut être utilisé
dans certains cas l'où on s'attend à ce que les concentrations aéroportées dépassent les limites
d'exposition, ou en cas d'irritation ou d'apparition de symptômes.
Risques thermiques Non disponible.
Mesures d'hygiène Lors de l'utilisation, ne pas manger, boire ou fumer. Se laver soigneusement les mains après
manipulation. Laver les vêtements contaminés avant de les porter à nouveau.
Contrôles d’exposition liés à la
protection de l’environnement
Non disponible.
Section 9: Propriétés physiques et chimiques
Informations sur les propriétés physiques et chimiques essentielles
État physique Liquide.
Nom de la matière: Contralube 770
FDS n° Contralube 770 N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 3 / 7
SDS FRANCE
Forme Liquide. Semi solide
Couleur Clair
Odeur Légère
Seuil olfactif Non disponible.
pH Sans objet.
Point de fusion/point de
congélation
Non disponible.
Point d'ébullition, point
d'ébullition initial et
gamme d'ébullition
Non disponible.
Point d'éclair Sans objet.
Température d’autoignition Sans objet.
Inflammabilité (solide, gaz) Non disponible.
Limite d'inflammabilité -
inférieure (%)
Non disponible.
Limite d'inflammabilité -
supérieure (%)
Non disponible.
Propriétés comburantes Sans objet.
Propriétés explosives Sans objet.
Limite d'explosivité Sans objet.
Pression de vapeur Sans objet.
Densité de vapeur Sans objet.
Taux d’évaporation Sans objet.
Densité relative Non disponible.
Densité 0,92 g/cm³
Solubilité (dans l'eau) Non disponible.
Coefficient de partition
(n-octanol/eau)
Non disponible.
Température de
décomposition
Non disponible.
Viscosité Non disponible.
Fraction volatile Non disponible.
Autres informations Aucune information pertinente supplémentaire n'est disponible.
Section 10: Stabilité et réactivité
Réactivité Aucun connu.
Stabilité chimique Ce produit est stable dans des conditions normales. Stable.
Possibilité de réactions
dangereuses
Non disponible.
Conditions à éviter Chaleur, flammes et étincelles.
Matières incompatibles Acides forts, alcalis et agents d'oxydation.
Produits de décomposition
dangereux
Monoxyde de carbone, dioxyde de carbone et/ou hydrocarbures à faible poids moléculaire.
Section 11: Informations toxicologiques
Généralités Non disponible.
Informations sur les voies d’exposition probables
Ingestion Non disponible.
Inhalation Non disponible.
Contact avec la peau Non disponible.
Contact avec les yeux Non disponible.
Symptômes Non
disponible.
Informations sur les effets toxicologiques
Toxicité aiguë Non disponible.
Corrosion ou irritation de
la peau
Nom de la matière: Contralube 770
FDS n° Contralube 770 N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 4 / 7
SDS FRANCE
Blessure ou irritation
grave des yeux
Non disponible.
Sensibilisation respiratoire Non disponible.
Sensibilisation cutanée Non disponible.
Mutagénicité des cellules
germinales
Non disponible.
Cancérogénicité Ce produit ne contient aucune substance carcinogène ou substance potentiellement carcinogène
selon la liste du CIRC.
Toxicité pour la
reproduction
Non disponible.
Toxicité spécifique au
niveau de l'organe cible
suite à une exposition
unique
Non disponible.
Toxicité spécifique au
niveau de l'organe cible
suite des expositions
répétées
Non disponible.
Risque en cas d’inhalation Non disponible.
Informations sur les mélanges
et informations sur les
substances
Non disponible.
Autres informations Ce produit n'est associé à aucun effet négatif connu sur la santé de l'homme.
Section 12: Informations écologiques
Toxicité Il n'y a pas de données de toxicité pour ce ou ces ingrédients.
Persistance et
dégradabilité
Aucune donnée n’est disponible sur la biodégradabilité du produit.
Potentiel de
bioaccumulation
Non disponible.
Mobilité Non disponible.
Devenir dans
l’environnement -
Coefficient de partage
Non disponible.
Mobilité dans le sol Non disponible.
Résultats des
évaluations PBT et
VPVB
Non disponible.
Autres effets néfastes Non disponible.
Section 13: Considérations relatives à l’élimination
Méthodes de traitement des déchets
Déchets résiduaires Non disponible.
Emballages contaminés Les conteneurs vides doivent être acheminés vers un site agréé pour le traitement des déchets à
des fins de recyclage ou d'élimination.
Code de déchet européen Non disponible.
Sent out for translation Recueillir et réutiliser ou éliminer dans des récipients scellés dans un centre de collecte de
déchets agréés. Élimination des contenus/contenants conformément aux dispositions locales /
régionales /nationales / internationales en vigueur.
Section 14: Informations relatives au transport
ADR
Non réglementé comme une marchandise dangereuse.
RID
Non réglementé comme une marchandise dangereuse.
ADN
Non réglementé comme une marchandise dangereuse.
IATA
Non réglementé comme une marchandise dangereuse.
Nom de la matière: Contralube 770
FDS n° Contralube 770 N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 5 / 7
SDS FRANCE
IMDG
Non réglementé comme une marchandise dangereuse.
Transport en vrac
conformément à l’annexe II de
la convention Marpol 73/78 et
au recueil IBC
Pas d'information disponible.
Section 15: Informations réglementaires
Réglementations/législation particulières à la substance ou au mélange en matière de sécurité, de santé et d’environnement
Réglementations de l’UE
Règlement (CE) nº 2037/2000 relatif à des substances qui appauvrissent la couche d'ozone, Annexe I
N'est pas listé.
Règlement (CE) nº 2037/2000 relatif à des substances qui appauvrissent la couche d'ozone, Annexe II
N'est pas listé.
Règlement (CE) n° 850/2004 concernant les polluants organiques persistants, Annexe I
N'est pas listé.
Règlement (CE) no 689/2008 concernant les exportations et importations de produits chimiques dangereux, Annexe I,
Partie 1
N'est pas listé.
Règlement (CE) no 689/2008 concernant les exportations et importations de produits chimiques dangereux, Annexe I,
Partie 2
N'est pas listé.
Règlement (CE) no 689/2008 concernant les exportations et importations de produits chimiques dangereux, Annexe I,
Partie 3
N'est pas listé.
Règlement (CE) no 689/2008 concernant les exportations et importations de produits chimiques dangereux, Annexe V
N'est pas listé.
Directive 96/61/CEE relative à la prévention et à la réduction intégrées de la pollution (IPPC) : Article 15, registre
européen des émissions polluantes (EPER)
N'est pas listé.
Règlement (CE) n° 1907/2006, Article 59(1). Liste candidate
N'est pas listé.
Autres réglementations Le produit ne nécessite pas d'étiquetage conformément aux directives de la CE et aux
réglementations nationales du pays concerné. Cette fiche de données de sécurité est conforme
aux exigences de la Directive 2001/58/CE. Cette fiche de données de sécurité est conforme aux
spécifications du Règlement (CE) N° 1907/2006.
Réglementations nationales Non disponible.
Évaluation de la sécurité
chimique
Aucune évaluation de sécurité chimique n'a été mise en oeuvre.
Section 16: Autres informations
Liste des abréviations Non disponible.
Références Non disponible.
Informations sur la méthode
d'évaluation utilisée pour
classer le mélange
Non disponible.
Texte intégral des
avertissements ou phrases R
et H en Sections 2 à 15
Aucun(e)(s).
Informations de révision Identification du produit et de l'entreprise : Identification du produit et de l'entreprise
Section 5: Mesures de lutte contre l’incendie: Equipements de protection particuliers des pompiers
Section 5: Mesures de lutte contre l’incendie: Risques d'incendie généraux
Section 6: Mesures à prendre en cas de dispersion accidentelle: Référence à d'autres sections
Section 8: Contrôles de l’exposition/protection individuelle: - Divers
Informations de formation Non disponible.
Édité par Ralph Patrizio
Avis de non-responsabilité Les informations fournies dans cette fiche technique de sécurité sont à notre connaissance exactes
et fiables à la date de leur publication. Les informations fournies sont uniquement des conseils pour
la manutention, l’utilisation, le traitement, le stockage, le transport, l’évacuation et le rejet du produit
en toute sécurité. Newgate Simms Ltd. ne fournit aucune garantie quant aux informations mises à
disposition et exclut toute responsabilité à cet égard. Les informations contenues dans cette fiche
sont exactes dans l'état actuel des connaissances et reposent sur les données disponibles au
moment de la préparation du document.
Nom de la matière: Contralube 770
FDS n° N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 6 / 7
SDS FRANCE
Date d'émission le 17-02-11
Date de révision le 17-02-11
Date d'impression le 17-02-11
Nom de la matière: NYOGEL 760G
FDS n° NYOGEL 760G N° version: 12 Date de révision: le 17-02-11 Date d'impression: le 17-02-11 7 / 7
SDS FRANCE
CRC Industries France SAS
6, Avenue du Marais – B.P. 90028
F-95102 Argenteuil Cedex. - France
Tél.: + 33 (0)1 34 11 20 00 Fax.:+ 33 (0)1 34 11 09 96
S.A au capital de 1.936.667 € - R.C.S. Pontoise B 391 513 314 – APE 515 L
www.crcind.com
1/2
Protection
1. Description générale
Spécialement étudié pour décaper le vernis KF1280 ND, ce produit permet d’enlever la plupart des vernis modifiés acryliques existants (frais ou polymérisés depuis plusieurs années) des circuits imprimés et cela sans altérer les composants électroniques.
2. Caractéristiques
Liquide incolore à base de solvants oxygénés
Faible odeur
Bonne compatibilité avec les composants électroniques.
N’altère pas les circuits imprimés dans des conditions normales d’utilisation. Il est toutefois recommandé de faire des essais préalablement.
Évaporation relativement rapide accéléré par l’usage d’air comprimé ou d’un dépoussiérant « Aero Clean X Force ».
3. Applications
Electronique, Aéronautique, électricité.
Décapage du vernis KF1280 ND (réf. 1141 & 2046) sur les circuits imprimés ou autres matériels électroniques.
Permet de réaliser des interventions de remises en état ou d’amélioration sur des circuits imprimés protégés par des vernis durs et résistants.
4. Mode d’emploi
Au pinceau/ au pistolet / en trempage: Enduire ou pulvériser soigneusement les surfaces à traiter. Afin d’éliminer les résidus de vernis, faire ruisseler du produit sur l’ensemble du circuit et laisser sécher. Accélérer l’évaporation par l’utilisation d’air comprimé ou d’un dépoussiérant Aero Clean X force.
Selon l’équipement disponible à l’utilisateur, celui peut déterminer l’utilisation par sa propre expérience.
Une fiche de données de sécurité (FDS) conforme à la reglementation EC N° 1907/2006 Art.31 et amendements est disponible pour tous les produits KF.
Décapant KF 1280 ND
Pour vernis
CRC Industries France SAS
6, Avenue du Marais – B.P. 90028
F-95102 Argenteuil Cedex. - France
Tél.: + 33 (0)1 34 11 20 00 Fax.:+ 33 (0)1 34 11 09 96
S.A au capital de 1.936.667 € - R.C.S. Pontoise B 391 513 314 – APE 515 L
www.crcind.com
2/2
Protection
5. Caractéristiques typiques du produit
Aspect : incolore
Odeur : légère
Faible viscosité
Densité : 0,913
Point éclair : > 64 °C
Ne contient pas d’aromatiques polycycliques,
ni des métaux lourds, ni de composés chlorés
Recouvrable par un nouveau vernis : après séchage complet
6. Conditionnement
Réf. : 2045 - Bidon de 5 L Carton de 2 bidons
Toutes les données dans cette publication sont basées sur l'expérience et les tests de laboratoire. Vu l’importante variété des conditions et des appareillages employés, ainsi que des facteurs humains imprévisibles qui peuvent avoir une influence importante sur les résultats de l’application, nous vous conseillons de vérifier la compatibilité du produit avant son utilisation. Toutes ces informations sont données suivant la plus grande objectivité, mais sans garantie de notre part exprimée ou implicite.
Cette fiche technique peut déjà, à ce moment précis, être révisée pour des raisons liées à la législation, à la disponibilité des composants, ou à des expériences nouvellement acquises. La dernière version de cette fiche technique, qui est la seule valable, vous sera envoyée sur simple demande, ou peut être trouvée sur notre site Internet: www.crcind.com.
Nous vous recommandons de vous enregistrer sur notre site Internet pour ce produit, afin de recevoir automatiquement chaque dernière version future.
Version: 0 02 1204 01
Date: 20 mars 2012
Pour vernis
Décapant KF 1280 ND
Manufactured by :
CRC Industries Europe BVBA
Touwslagerstraat 1 – 9240 Zele – Belgium
Tel (32) (0) 52/45.60.11 Fax (32) (0) 52/45.00.34
www.crcind.com
FICHE TECHNIQUE
1/2
CRC HANDCLEANER
Nettoyant mains
Réf. :10535
1. DESCRIPTION GENERALE
Nettoyant pour les mains, contenant de la lanoline. S’emploi sans eau.
La formule du Nettoyant Mains CRC permet de répondre aux exigences sévères des
professionnels dans l’industrie et est axée principalement sur le nettoyage des mains. Elle
est à base de solvants hydrocarbonés doux et de surfactants biodégradables. Le Nettoyant
Mains CRC peut être employé sans eau; il est donc idéal pour les travaux, tant à l'intérieur
qu'à l'extérieur, aux endroits où l’on ne dispose pas d'eau.
2. CARACTERISTIQUES
• Enlève la plupart des saletés et des salissures tenaces.
• Extrêmement efficace sur la graisse, les peintures ordinaires, les encres, les ciment-colles,
les bitumes, le carbone et bien d'autres composants chimiques.
• Peut être utilisé avec ou sans eau.
• Nettoie rapidement.
• Contient de la lanoline pour protéger la peau.
• Ses agents antiseptiques réduisent les risques d'infection bactérienne.
• Sans abrasifs.
• Après traitement, la peau des mains reste douce.
• Biodégradable.
3. UTILISATIONS
Pour débarrasser les mains de:
• huiles et graisses
• dépôts et salissures,
• ciment et colles,
• bitumes et goudrons
• peintures et encres ordinaires
Remplace les savons ordinaires:
• dans les usines
• dans les mines,
• dans les fermes,
• sur les chantiers de construction,
• à domicile.
4. INSTRUCTIONS
• Ne pas mouiller les mains.
• Appliquer suffisamment de nettoyant (environ une cuillère à thé) sur les mains souillées
sèches.
• Bien frotter jusqu'à ce que les salissures soient complètement liquéfiées et détachées.
• Il suffit d'essuyer les mains avec du papier ménager, ou un chiffon. Eventuellement rincer
à l'eau et essuyer.
• Eviter le contact avec les yeux. Tenir hors de portée des enfants.
• Une fiche de sécurité (MSDS) selon EU93/112 est disponible pour tous les produits CRC.
Manufactured by :
CRC Industries Europe BVBA
Touwslagerstraat 1 – 9240 Zele – Belgium
Tel (32) (0) 52/45.60.11 Fax (32) (0) 52/45.00.34
www.crcind.com
FICHE TECHNIQUE
2/2
CRC HANDCLEANER
Nettoyant mains
Réf. :10535
5. DONNEES TYPIQUES DU PRODUIT (sans le gaz propulseur)
Aspect : crème semi-solide,
Couleur : blanc cassé
Odeur : typique, parfum peu prononcé
Densité (à 20°C) : 1 ± 0,1
pH (à 5% dans de l'eau) : 6,25 – 6,75
Viscosité : 8000 – 9000 cp
Teneur en matières solides (6 h à 100°C) : 12,0%
Stabilité thermique
48 h à 45°C : bonne
48 h à 0°C : bonne
Caractéristiques du solvant hydrocarboné
Intervalle de distillation : 195-245°C
Point éclair (en vase fermée) : 73°C
Teneur en composants aromatiques : < 0,1% pds
6. CONDITIONNEMENT
Tube 12 x 150 ml
Bidon 6 x 2,5 l
Un distributeur et un support pour le bidon de 2,5 litres sont disponibles.
Toutes les données dans cette publication sont basées sur l'expérience et les tests de laboratoire. Vu l’importante
variété des conditions et des appareillages employés, ainsi que des facteurs humains imprévisibles qui peuvent
avoir une influence importante sur les résultats de l’application, nous vous conseillons de vérifier la compatibilité
du produit avant son utilisation. Toutes ces informations sont données suivant la plus grande objectivité, mais
sans garantie de notre part exprimée ou implicite.
Cette fiche technique peut déjà, à ce moment précis, être révisée pour des raisons liées à la législation, à la
disponibilité des composants, ou à des expériences nouvellement acquises. La dernière version de cette fiche
technique, qui est la seule valable, vous sera envoyée sur simple demande, ou peut être trouvée sur notre site
Internet : www.crcind.com.
Nous vous recommandons de vous enregistrer sur notre site Internet pour ce produit, afin de recevoir
automatiquement chaque dernière version future.
Version : 10535 02 1200 03
Date : 29 september 2003
CRC Industries Europe BVBA
Touwslagerstraat 1 – 9240 Zele - Belgium
Tel (32) (0) 52/45.60.11 Fax (32) (0) 52/45.00.34
www.crcind.com
FICHE TECHNIQUE
1/3
Dusters
Dust Off 67, Dust Off 360, Jet Clean 360, Dust Off HF
Ref. : 20575; 20576; 20812; 20855,
1. DESCRIPTION GENERALE
Grâce à un jet de gaz pressurisé, sec et inerte ces produits sèchent et dépoussièrent.
2. CARACTERISTOQUES
Les produits sont un mélange de gaz liquides sous pression, qui fonctionne à la fois comme
propulseur et produit actif. Le jet de gaz sec et inerte, agit comme de l’air comprimé. Il enlève
rapidement poussières et autres contaminants secs d’instruments délicats, d’endroits
d’accès difficile ou d’équipement électrique et électronique. Les produits éliminent les
pannes dues à l’humidité (eau; huile,…) incluse dans la poussière et la saleté. Ces
dépoussiérants sont essentiels pour les opérations de nettoyage où les nettoyants à base de
solvants ne sont pas conseillés. Ils nettoient rapidement et sans danger, n’attaquent ni
matières plastiques, ni composants sensitifs. Ne laissent ni résidu, ni condensation.
Remplacent avantageusement, où possible, le nettoyage laborieux et coûteux à l’air
comprimé. Les dépoussiérants peuvent être employés pour écarter les poussières, là où les
méthodes conventionnelles ne conviennent pas : équipement électrique, PCB’s,
connections de câbles, équipement de traitement de données et de communication,
ensembles micro-miniaturisés, horloges et instruments de précision, vidéo & caméras,
dispositifs optiques et lentes, …
3. UTILISATIONS
Dust Off 67
Dépoussiérant universel.
Equipé d’une valve normale, bouton-poussoir et tube-rallonge.
L’aérosol doit être tenu droit.
Disponible en 200 ml net (270 ml brut) et 400 ml net (520 ml brut).
Dust Off 360
Dépoussiérant universel, peut être employé tête en bas.
Equipé d’une valve normale, bouton-poussoir et tube-rallonge.
L’aérosol peut être utilisé en position droite mais également renversé.
Disponible en 200 ml net (520 ml brut).
Jet Clean 360
Dépoussiérant pour emploi renversé, pour une application précise.
Muni d’une valve spécial avec embout fileté.
Une valve spéciale pour un jet précis est également disponible comme pièce détachée.
L’aérosol peut être utilisé dans une position droite ou renversée.
Disponible en 200 ml net (520 ml brut)
Dust Off HF
Dépoussiérant grand débit, conçu pour des applications haute performance.
Equipé d’une valve/boutton-poussoir qui permet un soufflement très puissant.
L’aérosol ne peut être employé qu’en position droite.
Disponible en 300 ml net (520 ml brut).
CRC Industries Europe BVBA
Touwslagerstraat 1 – 9240 Zele - Belgium
Tel (32) (0) 52/45.60.11 Fax (32) (0) 52/45.00.34
www.crcind.com
FICHE TECHNIQUE
2/3
Dusters
Dust Off 67, Dust Off 360, Jet Clean 360, Dust Off HF
Ref. : 20575; 20855, 20574, 20576
4. INSTRUCTIONS
Instruction Generale:
Vaporiser le gaz sur les objets et surfaces à nettoyer. Le meilleur résultat est obtenu par
pressions brèves. Après une utilisation continue, attendre quelques minutes, afin de rétablir
la pression interne dans l’aérosol et continuer l’application. Ne pas secouer ou remuer
l’aérosol pendant l’application.
Dust Off 67
Utiliser le tube-rallonge pour les endroits d’accès difficile.
Tenir l’aérosol droit durant l’application (ne pas incliner de plus de 30°).
Dust Off 360
Utiliser le tube-rallonge pour les endroits d’accès difficile.
Vaporiser en position droite ou tête en bas (ne pas utiliser horizontalement).
Jet Clean 360
Ajuster le pistolet de précision (peut être obtenu comme pièce détachée).
Vaporiser en position droite ou tête en bas (ne pas utiliser horizontalement).
Dust Off HF
Tenir l’aérosol droit durant l’application (ne pas incliner de plus de 30°).
Une fiche de sécurité selon la directive EU 91/155/EEC et ses amendements est
disponible pour tous les produits CRC.
5. DONNEES TYPIQUES DU PRODUIT (sans le gaz propulseur)
Densité @ 20°C Aérosol (gaz liquéfié) : 1,01 g/cm 3
Test d’extension de flamme (FEA 607) : Négative (**)
Fl amabilité ( FEA x 610 200 L) : Convient (> 60s) (**)
Pression @ 20°C : 420 kPa
Débit
Dust Off 67 : 17,1 g/10s
Dust Off 360 : 17,1 g/10s
Jet Clean 360 : 19,1 g/10s
Dust Off HF : 94,4 g/10s
CRC Industries Europe BVBA
Touwslagerstraat 1 – 9240 Zele - Belgium
Tel (32) (0) 52/45.60.11 Fax (32) (0) 52/45.00.34
www.crcind.com
FICHE TECHNIQUE
3/3
Dusters
Dust Off 67, Dust Off 360, Jet Clean 360, Dust Off HF
Ref. : 20575; 20855, 20574, 20576
6. CONDITIONNEMENT
Uniquement en aérosol, voir page précédente : données typique et applications.
** Le produit liquide contient max 7 % de matières inflammable, mais le mélange des vapeurs est ininflammable
celons les méthodes de tests indiquées.
Toutes les données dans cette publication sont basées sur l'expérience et les tests de laboratoire. Vu l’importante
variété des conditions et des appareillages employés, ainsi que des facteurs humains imprévisibles qui peuvent
avoir une influence importante sur les résultats de l’application, nous vous conseillons de vérifier la compatibilité
du produit avant son utilisation. Toutes ces informations sont données suivant la plus grande objectivité, mais
sans garantie de notre part exprimée ou implicite.
Cette fiche technique peut déjà, à ce moment précis, être révisée pour des raisons liées à la législation, à la
disponibilité des composants, ou à des expériences nouvellement acquises. La dernière version de cette fiche
technique, qui est la seule valable, vous sera envoyée sur simple demande, ou peut être trouvée sur notre site
Internet : www.crcind.com.
Nous vous recommandons de vous enregistrer sur notre site Internet pour ce produit, afin de recevoir
automatiquement chaque dernière version future.
Version : 20575 02 1003 01
Date : 23 August 2006
Pa
rt of Ant Group Ltd
Silica Gel MSDS
Order Now www.antistat.co.uk t +44 (0) 1473 836 200
Component Packaging
Silica Gel
Silica-gel is a high-activity sorbing material, the outcome of chemical reaction of sodium silicate and sulfuric acid, ageing and sour bathing process. Silica-gel is an amorphous substance. It’s molecular formula is mSiO2.nH2O. It features a stable chemical property and never reacts with any substance except strong alkali and hydrofuoric acid.
PROPERTY PARAMETERS
QUALITY ITEMS
CRITERIA (Test methods JIS-Z0701)
A: Bulk density
>750g/L
B: Loss on drying
<3%
C: Moisture absorption rate
RH=20%
>8%
RH=40%
>20%
RH=80%
>30%
PH
4--8
Specific resistance Ohm* cm
>3000
INGREDIENTS
NAME
PERCENTAGE (%)
SiO2
99.6
Na2O
0.17
Fe2O3
0.02
MgO
0.01
CaO
0.04
A12O3
0.16
HARMFUL ELEMENTS
RATE
Cd
<2ppm
Pb
<2ppm
Hg
<2ppm
Cr(VI)
<2ppm
PBBS
<5ppm
PBDES
<5ppm
DOSAGE
VOLUME
MIN DOSAGE
0.1------1L
1------2g
1------10L
2------20g
10------100L
20------200g
100------1000L
200------1600g
PACKAGING
Weight
Packs are available from 1g to 1kg.
Packaging materials
Non-woven fabrics
PRINTING
The packages are printed in Chinese, English, Japanese and French.
STORAGE
Silica-gel should be kept sealed when not in use.
1.0
REV
2014-03-24
DATE
SSt
BY
CSo
CHECKED
Würth Elektronik eiSos GmbH & Co. KG
EMC & Inductive Solutions
Max-Eyth-Str. 1
74638 Waldenburg
Germany
Tel. +49 (0) 79 42 945 - 0
www.we-online.com
eiSos@we-online.com
DESCRIPTION
WE-WPCC Wireless Power Charging
Receiver Coil
Order.- No.
760308102210
SIZE
A4
Size: 3737
A Dimensions: [mm] B Recommended hole pattern: [mm]
C Schematic:
D Electrical Properties:
Properties
Inductance
Q-factor
Rated current
Saturation current
DC Resistance
DC Resistance
Self resonant frequency
Test conditions
125 kHz/ 10 mA
125 kHz/ 10 mA
ΔT = 40 K
@ 20°C
@ 20°C
L
Q
IR
Isat
RDC
RDC
fres
Value
7.5
50
3.0
6.0
0.15
0.2
22
Unit
μH
A
A
Ω
Ω
MHz
Tol.
±10%
typ.
max.
typ.
typ.
max.
E General information:
It is recommended that the temperature of the part does
not exceed +105°C under worst case conditions.
•Storage Temperature: -20°C to 60°C
•Operating Temperature: -20°C to 105°C
•Test conditions of Electrical Properties: 20°C, 33% RH
if not specified differently
This electronic component has been designed and developed for usage in general electronic equipment only. This product is not authorized for use in equipment where a higher safety standard and reliability standard is especially required or where a failure of the product is reasonably expected to cause severe personal injury or death, unless the parties have executed an agreement specifically governing such use.
Moreover Würth Elektronik eiSos GmbH & Co KG products are neither designed nor intended for use in areas such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network etc.. Würth Elektronik eiSos GmbH & Co KG must be informed about the intent of such usage before
the design-in stage. In addition, sufficient reliability evaluation checks for safety must be performed on every electronic component which is used in electrical circuits that require high safety and reliability functions or performance.
ARALDITE® 2014-1
SAFETY DATA SHEET
Product name
ARALDITE® 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
:
1.1 Product identifier
1.3 Details of the supplier of the safety data sheet
e-mail address of person
responsible for this SDS
: Global_Product_EHS_AdMat@huntsman.com
Product description : Not available.
1.2 Relevant identified uses of the substance or mixture and uses advised against
SECTION 1: Identification of the substance/mixture and of the
company/undertaking
Product code : 00057058
1.4 Emergency telephone number
Supplier
Telephone number : EUROPE: +32 35 75 1234
France ORFILA: +33(0)145425959
ASIA: +65 6336-6011
China: +86 20 39377888
Australia: 1800 786 152
New Zealand: 0800 767 437
USA: +1/800/424.9300
2-Component Product use : adhesive system
Supplier : Huntsman Advanced Materials (Europe)BVBA
Everslaan 45
3078 Everberg / Belgium
Tel.: +41 61 299 20 41
Fax: +41 61 299 20 40
Classification Xi; R41, R38
R43
N; R51/53
:
Human health hazards : Risk of serious damage to eyes. Irritating to skin. May cause sensitisation by skin
contact.
Environmental hazards : Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic
environment.
See Section 11 for more detailed information on health effects and symptoms.
SECTION 2: Hazards identification
2.1 Classification of the substance or mixture
Product definition : Working pack (preparation)
See Section 16 for the full text of the R phrases or H statements declared above.
Classification according to Directive 1999/45/EC [DPD]
The product is classified as dangerous according to Directive 1999/45/EC and its amendments.
2.2 Label elements
Hazard symbol or symbols :
Date of issue / Date of revision : 3 August 2011 1/17
ARALDITE 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
Date of printing :
Date of issue :
3 August 2011
3 August 2011
MSDS no.
Version :
: 00057058
1
2/17
SECTION 2: Hazards identification
Other hazards which do :
not result in classification
Not available.
Containers to be fitted
with child-resistant
fastenings
Not applicable.
Tactile warning of danger Not applicable.
:
:
Special packaging requirements
Safety phrases S26- In case of contact with eyes, rinse immediately with plenty of water and seek
medical advice.
S39- Wear eye/face protection.
S61- Avoid release to the environment. Refer to special instructions/safety data
sheet.
R41- Risk of serious damage to eyes.
R38- Irritating to skin.
R43- May cause sensitisation by skin contact.
R51/53- Toxic to aquatic organisms, may cause long-term adverse effects in the
aquatic environment.
Risk phrases
Hazardous ingredients
:
:
:
Irritant, Dangerous for the environment
reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average
molecular weight < 700)
bisphenol F-epoxy resin
butanedioldiglycidyl ether
N(3-dimethylaminopropyl)-1,3-propylenediamine
Indication of danger :
2.3 Other hazards
Supplemental label
elements
: Contains epoxy constituents. See information supplied by the manufacturer.
Substance/mixture : Working pack (preparation)
Product/ingredient Identifiers 67/548/EEC
name
SECTION 3: Composition/information on ingredients
reaction product:
bisphenol A-
(epichlorhydrin); epoxy
resin (number average
molecular weight <
700)
REACH #: 01-
2119456619-26
CAS: 25068-38-6
13 - 30 Xi; R36/38
R43
N; R51/53
Skin Irrit. 2, H315
Eye Irrit. 2, H319
Skin Sens. 1, H317
Aquatic Chronic 2,
H411
[1]
bisphenol F-epoxy
resin
REACH #: 01-
2119454392-40
CAS: 9003-36-5
3 - 7 Xi; R36/38
R43
N; R51/53
Skin Irrit. 2, H315
Eye Irrit. 2, H319
Skin Sens. 1, H317
Aquatic Chronic 2,
H411
[1]
butanedioldiglycidyl
ether
REACH #: 01-
2119494060-45
CAS: 2425-79-8
1 - 3 Xn; R20/21
Xi; R36/38
R43
R52/53
Acute Tox. 4, H312
Acute Tox. 4, H332
Skin Irrit. 2, H315
Eye Irrit. 2, H319
Skin Sens. 1, H317
[1]
N(3-
dimethylaminopropyl)-
1,3-propylenediamine
CAS: 10563-29-8 1 - 3 Xn; R21/22
C; R34
R43
Acute Tox. 4, H302
Acute Tox. 4, H312
Skin Corr. 1B, H314
Eye Dam. 1, H318
[1]
% Regulation (EC) No. Type
1272/2008 [CLP]
Classification
Date of issue / Date of revision : 3 August 2011 2/17
ARALDITE 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
Date of printing :
Date of issue :
3 August 2011
3 August 2011
MSDS no.
Version :
: 00057058
1
3/17
SECTION 3: Composition/information on ingredients
Occupational exposure limits, if available, are listed in Section 8.
There are no additional ingredients present which, within the current knowledge of the supplier and in the
concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this
section.
Skin Sens. 1, H317
terephthalic acid
diglycidylester
CAS: 7195-44-0 0.1 - 1 Xi; R36/38
R43
N; R51/53
Skin Irrit. 2, H315
Eye Irrit. 2, H319
Skin Sens. 1, H317
Aquatic Chronic 2,
H411
[1]
trimellitic acid
triglycidylester
CAS: 7237-83-4 0.1 - 1 Xi; R36/38
R43
N; R51/53
Skin Irrit. 2, H315
Eye Irrit. 2, H319
Skin Sens. 1, H317
Aquatic Chronic 2,
H411
[1]
See section 16 for
the full text of the Rphrases
declared
above
See Section 16 for the
full text of the H
statements declared
above.
[1] Substance classified with a health or environmental hazard
[2] Substance with a workplace exposure limit
[3] Substance meets the criteria for PBT according to Regulation (EC) No. 1907/2006, Annex XIII
[4] Substance meets the criteria for vPvB according to Regulation (EC) No. 1907/2006, Annex XIII
Type
Wash out mouth with water. Remove dentures if any. Remove victim to fresh air
and keep at rest in a position comfortable for breathing. If material has been
swallowed and the exposed person is conscious, give small quantities of water to
drink. Stop if the exposed person feels sick as vomiting may be dangerous. Do not
induce vomiting unless directed to do so by medical personnel. If vomiting occurs,
the head should be kept low so that vomit does not enter the lungs. Get medical
attention if adverse health effects persist or are severe. Never give anything by
mouth to an unconscious person. If unconscious, place in recovery position and get
medical attention immediately. Maintain an open airway. Loosen tight clothing such
as a collar, tie, belt or waistband.
Skin contact
Get medical attention immediately. Immediately flush eyes with plenty of water,
occasionally lifting the upper and lower eyelids. Check for and remove any contact
lenses. Continue to rinse for at least 10 minutes. Chemical burns must be treated
promptly by a physician.
Flush contaminated skin with plenty of water. Remove contaminated clothing and
shoes. Wash contaminated clothing thoroughly with water before removing it, or
wear gloves. Continue to rinse for at least 10 minutes. Get medical attention. In the
event of any complaints or symptoms, avoid further exposure. Wash clothing before
reuse. Clean shoes thoroughly before reuse.
4.1 Description of first aid measures
Remove victim to fresh air and keep at rest in a position comfortable for breathing. If
not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial
respiration or oxygen by trained personnel. It may be dangerous to the person
providing aid to give mouth-to-mouth resuscitation. Get medical attention if adverse
health effects persist or are severe. If unconscious, place in recovery position and
get medical attention immediately. Maintain an open airway. Loosen tight clothing
such as a collar, tie, belt or waistband. In case of inhalation of decomposition
products in a fire, symptoms may be delayed. The exposed person may need to be
kept under medical surveillance for 48 hours.
Ingestion
Inhalation
Eye contact
:
:
:
:
SECTION 4: First aid measures
Date of issue / Date of revision : 3 August 2011 3/17
ARALDITE 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
Date of printing :
Date of issue :
3 August 2011
3 August 2011
MSDS no.
Version :
: 00057058
1
4/17
SECTION 4: First aid measures
Notes to physician In case of inhalation of decomposition products in a fire, symptoms may be delayed.
The exposed person may need to be kept under medical surveillance for 48 hours.
:
Specific treatments
Protection of first-aiders : No action shall be taken involving any personal risk or without suitable training. It
may be dangerous to the person providing aid to give mouth-to-mouth resuscitation.
Wash contaminated clothing thoroughly with water before removing it, or wear
gloves.
4.2 Most important symptoms and effects, both acute and delayed
Potential acute health effects
Inhalation : Exposure to decomposition products may cause a health hazard. Serious effects
may be delayed following exposure.
Irritating to Ingestion : mouth, throat and stomach.
Skin contact : Irritating to skin. May cause sensitisation by skin contact.
Eye contact : Severely irritating to eyes. Risk of serious damage to eyes.
Over-exposure signs/symptoms
Skin contact
Ingestion
Inhalation No specific data.
No specific data.
Adverse symptoms may include the following:
irritation
redness
:
:
:
Eye contact : Adverse symptoms may include the following:
pain or irritation
watering
redness
4.3 Indication of any immediate medical attention and special treatment needed
: Symptomatic treatment and supportive therapy as indicated. Following severe
exposure the patient should be kept under medical review for at least 48 hours.
Hazardous thermal
decomposition products
Hazards from the
substance or mixture
Decomposition products may include the following materials:
carbon dioxide
carbon monoxide
nitrogen oxides
sulfur oxides
metal oxide/oxides
In a fire or if heated, a pressure increase will occur and the container may burst.
Use an extinguishing agent suitable for the surrounding fire.
5.1 Extinguishing media
:
:
None known.
Suitable extinguishing
media
:
Unsuitable extinguishing
media
:
SECTION 5: Firefighting measures
5.2 Special hazards arising from the substance or mixture
5.3 Advice for firefighters
Date of issue / Date of revision : 3 August 2011 4/17
ARALDITE 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
Date of printing :
Date of issue :
3 August 2011
3 August 2011
MSDS no.
Version :
: 00057058
1
5/17
SECTION 5: Firefighting measures
Promptly isolate the scene by removing all persons from the vicinity of the incident if
there is a fire. No action shall be taken involving any personal risk or without suitable
training. This material is toxic to aquatic organisms. Fire water contaminated with
this material must be contained and prevented from being discharged to any
waterway, sewer or drain.
Fire-fighters should wear appropriate protective equipment and self-contained
breathing apparatus (SCBA) with a full face-piece operated in positive pressure
mode. Clothing for fire-fighters (including helmets, protective boots and gloves)
conforming to European standard EN 469 will provide a basic level of protection for
chemical incidents.
Special protective
equipment for fire-fighters
:
Special precautions for
fire-fighters
:
6.2 Environmental
precautions
Stop leak if without risk. Move containers from spill area. Approach the release
from upwind. Prevent entry into sewers, water courses, basements or confined
areas. Wash spillages into an effluent treatment plant or proceed as follows.
Contain and collect spillage with non-combustible, absorbent material e.g. sand,
earth, vermiculite or diatomaceous earth and place in container for disposal
according to local regulations. Dispose of via a licensed waste disposal contractor.
Contaminated absorbent material may pose the same hazard as the spilt product.
Avoid dispersal of spilt material and runoff and contact with soil, waterways, drains
and sewers. Inform the relevant authorities if the product has caused environmental
pollution (sewers, waterways, soil or air). Water polluting material. May be harmful
to the environment if released in large quantities.
Large spill :
Stop leak if without risk. Move containers from spill area. Dilute with water and mop
up if water-soluble. Alternatively, or if water-insoluble, absorb with an inert dry
material and place in an appropriate waste disposal container. Dispose of via a
licensed waste disposal contractor.
Small spill :
6.3 Methods and materials for containment and cleaning up
SECTION 6: Accidental release measures
6.1 Personal precautions, protective equipment and emergency procedures
For non-emergency
personnel
:
For emergency responders :
6.4 Reference to other
sections
See Section 1 for emergency contact information.
See Section 8 for information on appropriate personal protective equipment.
See Section 13 for additional waste treatment information.
No action shall be taken involving any personal risk or without suitable training.
Evacuate surrounding areas. Keep unnecessary and unprotected personnel from
entering. Do not touch or walk through spilt material. Avoid breathing vapour or
mist. Provide adequate ventilation. Wear appropriate respirator when ventilation is
inadequate. Put on appropriate personal protective equipment.
If specialised clothing is required to deal with the spillage, take note of any
information in Section 8 on suitable and unsuitable materials. See also Section 8 for
additional information on hygiene measures.
:
:
SECTION 7: Handling and storage
The information in this section contains generic advice and guidance. The list of Identified Uses in Section 1 should be
consulted for any available use-specific information provided in the Exposure Scenario(s).
7.1 Precautions for safe handling
Protective measures : Put on appropriate personal protective equipment (see Section 8). Persons with a
history of skin sensitization problems should not be employed in any process in
which this product is used. Do not get in eyes or on skin or clothing. Do not ingest.
Avoid breathing vapour or mist. Avoid release to the environment. Refer to special
instructions/safety data sheet. Keep in the original container or an approved
alternative made from a compatible material, kept tightly closed when not in use.
Empty containers retain product residue and can be hazardous. Do not reuse
container.
Date of issue / Date of revision : 3 August 2011 5/17
ARALDITE 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
Date of printing :
Date of issue :
3 August 2011
3 August 2011
MSDS no.
Version :
: 00057058
1
6/17
SECTION 7: Handling and storage
Store between the following temperatures: 2 to 40°C (35.6 to 104°F). Store in
accordance with local regulations. Store in original container protected from direct
sunlight in a dry, cool and well-ventilated area, away from incompatible materials
(see section 10) and food and drink. Keep container tightly closed and sealed until
ready for use. Containers that have been opened must be carefully resealed and
kept upright to prevent leakage. Do not store in unlabelled containers. Use
appropriate containment to avoid environmental contamination.
Advice on general
occupational hygiene
:
7.2 Conditions for safe
storage, including any
incompatibilities
7.3 Specific end use(s)
Recommendations :
Industrial sector specific :
solutions
Not available.
Not available.
Eating, drinking and smoking should be prohibited in areas where this material is
handled, stored and processed. Workers should wash hands and face before
eating, drinking and smoking. Remove contaminated clothing and protective
equipment before entering eating areas. See also Section 8 for additional
information on hygiene measures.
:
Storage hazard class
Huntsman Advanced
Materials
: Storage class 10, Environmentally hazardous liquids
Recommended monitoring
procedures
Occupational exposure limits
If this product contains ingredients with exposure limits, personal, workplace
atmosphere or biological monitoring may be required to determine the effectiveness
of the ventilation or other control measures and/or the necessity to use respiratory
protective equipment. Reference should be made to European Standard EN 689 for
methods for the assessment of exposure by inhalation to chemical agents and
national guidance documents for methods for the determination of hazardous
substances.
:
No exposure limit value known.
No DELs available.
Predicted effect concentrations
No PECs available.
SECTION 8: Exposure controls/personal protection
The information in this section contains generic advice and guidance. The list of Identified Uses in Section 1 should be
consulted for any available use-specific information provided in the Exposure Scenario(s).
8.1 Control parameters
Derived effect levels
Workplace exposure limits (for total dust and inhalable quartz dust) must be complied with. If this is not possible,
then suitable dust masks must be worn.
W A R N I N G ! This product contains quartz, which has been classified by IARC as carcinogenic for humans
(Group 1), and which can cause silicosis and lung cancer following exposure to respirable dust. It is therefore
important to take particular care to avoid inhalation exposure when mechanically processing cured material (e.g.
grinding, sanding, sawing).
QUARTZ (CAS RN 14808-60-7):
United Kingdom: TWA: 0.1 mg/m³ 8 hour(s). Form: respirable dust
Ireland: OELV-8hr: 0.1 mg/m³ 8 hour(s). Form: respirable dust
Switzerland: TWA: 0.15 mg/m³ 8 hour(s). Form: respirable dust
Australia: TWA: 0.1 mg/m³ 8 hour(s)
Date of issue / Date of revision : 3 August 2011 6/17
ARALDITE 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
Date of printing :
Date of issue :
3 August 2011
3 August 2011
MSDS no.
Version :
: 00057058
1
7/17
SECTION 8: Exposure controls/personal protection
Hand protection
In case of inadequate ventilation wear respiratory protection. Respirator selection
must be based on known or anticipated exposure levels, the hazards of the product
and the safe working limits of the selected respirator.
Chemical-resistant, impervious gloves complying with an approved standard should
be worn at all times when handling chemical products if a risk assessment indicates
this is necessary.
Safety eyewear complying with an approved standard should be used when a risk
assessment indicates this is necessary to avoid exposure to liquid splashes, mists
or dusts.
Eye/face protection
Respiratory protection :
:
:
Skin protection
Personal protective equipment for the body should be selected based on the task
being performed and the risks involved and should be approved by a specialist
before handling this product.
:
Environmental exposure
controls
: Emissions from ventilation or work process equipment should be checked to ensure
they comply with the requirements of environmental protection legislation. In some
cases, fume scrubbers, filters or engineering modifications to the process
equipment will be necessary to reduce emissions to acceptable levels.
Appropriate engineering
controls
: No special ventilation requirements. Good general ventilation should be sufficient to
control worker exposure to airborne contaminants. If this product contains
ingredients with exposure limits, use process enclosures, local exhaust ventilation or
other engineering controls to keep worker exposure below any recommended or
statutory limits.
Wash hands, forearms and face thoroughly after handling chemical products, before
eating, smoking and using the lavatory and at the end of the working period.
Appropriate techniques should be used to remove potentially contaminated clothing.
Contaminated work clothing should not be allowed out of the workplace. Wash
contaminated clothing before reusing. Ensure that eyewash stations and safety
showers are close to the workstation location.
8.2 Exposure controls
Hygiene measures :
Individual protection measures
Body protection :
Other skin protection Appropriate footwear and any additional skin protection measures should be
selected based on the task being performed and the risks involved and should be
approved by a specialist before handling this product.
Ethyl Vinyl Alcohol Laminate (EVAL), butyl rubber
neoprene, Material of gloves for nitrile rubber
short term/splash
application
(10min480min):
Physical state Liquid. [Paste.]
Odour Not available.
Colour Not available.
Odour threshold Not available.
:
:
:
:
9.1 Information on basic physical and chemical properties
Appearance
SECTION 9: Physical and chemical properties
Date of issue / Date of revision : 3 August 2011 7/17
ARALDITE 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
Date of printing :
Date of issue :
3 August 2011
3 August 2011
MSDS no.
Version :
: 00057058
1
8/17
SECTION 9: Physical and chemical properties
Not available.
Melting point/freezing point
Initial boiling point and boiling
range
Vapour pressure
Relative density
Vapour density
Solubility(ies)
Not available.
Not available.
Not available.
Not available.
pH
Evaporation rate Not available.
Auto-ignition temperature
Flash point
Not available.
Closed cup: >100°C [DIN 51758 EN 22719 (Pensky-Martens Closed Cup)]
Not available.
Not available.
Not available.
Not available.
Viscosity Not available.
Partition coefficient: noctanol/
water
Upper/lower flammability or
explosive limits
Explosive properties
:
:
:
:
:
:
:
:
:
:
:
:
:
Oxidising properties : Not available.
9.2 Other information
Burning time Not applicable.
Burning rate Not applicable.
:
:
Decomposition temperature : Not available.
Flammability (solid, gas) : Not available.
Density : 1.4 g/cm3 [20°C (68°F)]
Water solubility :
10.6 Hazardous
decomposition products
10.4 Conditions to avoid No specific data.
Under normal conditions of storage and use, hazardous decomposition products
should not be produced.
10.2 Chemical stability The product is stable.
No specific data.
:
:
:
10.5 Incompatible materials :
10.3 Possibility of
hazardous reactions
: Under normal conditions of storage and use, hazardous reactions will not occur.
SECTION 10: Stability and reactivity
10.1 Reactivity : No specific test data related to reactivity available for this product or its ingredients.
Date of issue / Date of revision : 3 August 2011 8/17
ARALDITE 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
Date of printing :
Date of issue :
3 August 2011
3 August 2011
MSDS no.
Version :
: 00057058
1
9/17
Acute toxicity
reaction product: bisphenol
A-(epichlorhydrin); epoxy
resin (number average
molecular weight < 700)
LC0 Inhalation Vapour Rat - Male 0.00001 ppm 5 hours
LD50 Dermal Rat - Male,
Female
>2000 mg/kg -
LD50 Oral Rat - Female >2000 mg/kg -
bisphenol F-epoxy resin LD50 Dermal Rat - Male,
Female
>2000 mg/kg -
LD50 Oral Rat - Male,
Female
>5000 mg/kg -
butanedioldiglycidyl ether LD50 Dermal Rat - Male,
Female
>2150 mg/kg -
LD50 Oral Rat - Male,
Female
1163 mg/kg -
N(3-dimethylaminopropyl)-
1,3-propylenediamine
LD50 Dermal Rabbit 1310 mg/kg -
LD50 Oral Rat 1670 mg/kg -
Product/ingredient name Endpoint Species Result Exposure
Irritation/Corrosion
reaction product: bisphenol
A-(epichlorhydrin); epoxy
resin (number average
molecular weight < 700)
OECD 404 Acute Dermal
Irritation/Corrosion
Rabbit Mild irritant
OECD 405 Acute Eye Irritation/Corrosion Rabbit Mild irritant
bisphenol F-epoxy resin OECD 405 Acute Eye Irritation/Corrosion Rabbit Non-irritant.
OECD 404 Acute Dermal
Irritation/Corrosion
Rabbit Mild irritant
butanedioldiglycidyl ether OECD 404 Acute Dermal
Irritation/Corrosion
Rabbit Non-irritant.
OECD 405 Acute Eye Irritation/Corrosion Rabbit Severe irritant
Product/ingredient name Test Result
Conclusion/Summary :
Skin : reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average
molecular weight < 700): Slightly irritating to the skin.
bisphenol F-epoxy resin: Slightly irritating to the skin.
butanedioldiglycidyl ether: Non-irritating to the skin.
Eyes : reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average
molecular weight < 700): Slightly irritating to the eyes.
bisphenol F-epoxy resin: Non-irritating to the eyes.
butanedioldiglycidyl ether: Severely irritating to eyes.
Not available.
Sensitiser
reaction product: bisphenol
A-(epichlorhydrin); epoxy
resin (number average
molecular weight < 700)
OECD 429 Skin
Sensitisation:
Local Lymph
Node Assay
skin Mouse Sensitising
bisphenol F-epoxy resin OECD 429 Skin
Sensitisation:
Local Lymph
Node Assay
skin Mouse Sensitising
butanedioldiglycidyl ether OECD 406 Skin
Sensitization
skin Guinea pig Sensitising
Product/ingredient name Test Route of
exposure
Result
Species
SECTION 11: Toxicological information
11.1 Information on toxicological effects
Species
Date of issue / Date of revision : 3 August 2011 9/17
ARALDITE 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
Date of printing :
Date of issue :
3 August 2011
3 August 2011
MSDS no.
Version :
: 00057058
1
10/17
SECTION 11: Toxicological information
Carcinogenicity
reaction product:
bisphenol A-
(epichlorhydrin); epoxy
resin (number average
molecular weight <
700)
OECD 453 Combined Chronic
Toxicity/Carcinogenicity
Studies
Rat 2 years; 7
days per
week
Negative Oral -
OECD 453 Combined Chronic
Toxicity/Carcinogenicity
Studies
Rat 2 years; 5
days per
week
Negative Dermal -
OECD 453 Combined Chronic
Toxicity/Carcinogenicity
Studies
Mouse 2 years; 3
days per
week
Negative Dermal -
Product/ingredient
name
Test Species Exposure Result
Mutagenicity
reaction product: bisphenol
A-(epichlorhydrin); epoxy
resin (number average
molecular weight < 700)
OECD 471 Bacterial Reverse
Mutation Test
Positive
OECD 476 In vitro Mammalian Cell
Gene Mutation Test
Positive
OECD 478 Genetic Toxicology:
Rodent Dominant Lethal Test
Negative
EPA OPPTS Negative
bisphenol F-epoxy resin OECD 471 Bacterial Reverse
Mutation Test
Positive
OECD 476 In vitro Mammalian Cell
Gene Mutation Test
Positive
OECD 473 In vitro Mammalian
Chromosomal Aberration Test
Positive
OECD 474 Mammalian Erythrocyte
Micronucleus Test
Negative
OECD 486 Unscheduled DNA
Synthesis (UDS) Test with
Mammalian Liver Cells in vivo
Negative
butanedioldiglycidyl ether OECD 471 Bacterial Reverse
Mutation Test
Positive
OECD 473 In vitro Mammalian
Chromosomal Aberration Test
Positive
OECD 474 Mammalian Erythrocyte
Micronucleus Test
Negative
Product/ingredient name Test Result
Conclusion/Summary : Not available.
Teratogenicity
Reproductive toxicity
Product/ingredient name Test Species Result/Result type Target
organs
reaction product: bisphenol
A-(epichlorhydrin); epoxy
resin (number average
molecular weight < 700)
OECD 416 Two-Generation
Reproduction Toxicity Study
Rat Oral: 540 mg/kg
NOEL :
-
bisphenol F-epoxy resin OECD 416 Two-Generation
Reproduction Toxicity Study
Rat Oral: 540 mg/kg
NOEL :
-
Conclusion/Summary : Not available.
Route of
exposure
Target
organs
Date of issue / Date of revision : 3 August 2011 10/17
ARALDITE 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
Date of printing :
Date of issue :
3 August 2011
3 August 2011
MSDS no.
Version :
: 00057058
1
11/17
SECTION 11: Toxicological information
Potential chronic health effects
Potential acute health effects
Inhalation : Exposure to decomposition products may cause a health hazard. Serious effects
may be delayed following exposure.
Irritating to Ingestion : mouth, throat and stomach.
Skin contact : Irritating to skin. May cause sensitisation by skin contact.
Eye contact : Severely irritating to eyes. Risk of serious damage to eyes.
reaction product: bisphenol
A-(epichlorhydrin); epoxy
resin (number average
molecular weight < 700)
OECD 408 Repeated Dose
90-Day Oral Toxicity Study in
Rodents
NOAEL Subchronic
NOAEL
Oral
50 mg/kg -
OECD 411 Subchronic
Dermal Toxicity: 90-day Study
NOEL : Subchronic
NOEL :
Dermal
10 mg/kg -
OECD 411 Subchronic
Dermal Toxicity: 90-day Study
NOAEL Subchronic
NOAEL
Dermal
100 mg/kg -
bisphenol F-epoxy resin OECD 408 Repeated Dose NOAEL Sub- 250 mg/kg -
Product/ingredient name Test Result type Result Target organs
reaction product: bisphenol
A-(epichlorhydrin); epoxy
resin (number average
molecular weight < 700)
OECD 414 Prenatal Developmental
Toxicity Study
Rat - Female >540 mg/kg NOEL :
EPA CFR Rabbit -
Female
>300 mg/kg NOEL :
OECD 414 Prenatal Developmental
Toxicity Study
Rabbit -
Female
180 mg/kg NOAEL
bisphenol F-epoxy resin EPA CFR Rabbit -
Female
>300 mg/kg NOEL :
Product/ingredient name Test Species Result/Result type
Symptoms related to the physical, chemical and toxicological characteristics
Skin contact
Ingestion
Inhalation No specific data.
No specific data.
Adverse symptoms may include the following:
irritation
redness
:
:
:
Eye contact : Adverse symptoms may include the following:
pain or irritation
watering
redness
Information on the likely Not available.
routes of exposure
:
Delayed and immediate effects and also chronic effects from short and long term exposure
Short term exposure
Long term exposure
Potential immediate
effects
Potential delayed effects :
:
Potential immediate
effects
Potential delayed effects :
:
Not available.
Not available.
Not available.
Not available.
Date of issue / Date of revision : 3 August 2011 11/17
ARALDITE 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
Date of printing :
Date of issue :
3 August 2011
3 August 2011
MSDS no.
Version :
: 00057058
1
12/17
SECTION 11: Toxicological information
Once sensitized, a severe allergic reaction may occur when subsequently exposed
to very low levels.
General :
No known significant effects Carcinogenicity : or critical hazards.
Mutagenicity : No known significant effects or critical hazards.
Teratogenicity : No known significant effects or critical hazards.
90-Day Oral Toxicity Study in
Rodents
chronic
NOAEL
Oral
butanedioldiglycidyl ether OECD 407 Repeated Dose
28-day Oral Toxicity Study in
Rodents
NOAEL Subchronic
NOAEL
Oral
200 mg/kg -
Conclusion/Summary : Not available.
Developmental effects : No known significant effects or critical hazards.
Fertility effects : No known significant effects or critical hazards.
Other information : Not available.
12.1 Toxicity
reaction product: bisphenol
A-(epichlorhydrin); epoxy
resin (number average
molecular weight < 700)
- Acute EC50 72 hours
Static
Algae 9.4 mg/L
OECD 202 Daphnia sp. Acute
Immobilisation Test
Acute EC50 48 hours
Static
Daphnia 1.7 mg/L
- Acute IC50 3 hours
Static
Bacteria >100 mg/L
OECD 203 Fish, Acute
Toxicity Test
Acute LC50 96 hours
Static
Fish 1.5 mg/L
OECD 211 Daphnia Magna
Reproduction Test
Chronic NOEC 21 days
Semistatic
Daphnia 0.3 mg/L
bisphenol F-epoxy resin OECD 201 Alga, Growth
Inhibition Test
Acute EC50 72 hours
Static
Algae 1.8 mg/L
OECD OECD 202: Part I
(Daphnia sp., Acute
Immobilisation test)
Acute EC50 48 hours
Static
Daphnia 1.6 mg/L
- Acute IC50 3 hours
Static
Bacteria >100 mg/L
OECD 203 Fish, Acute
Toxicity Test
Acute LC50 96 hours
Semistatic
Fish 0.55 mg/L
OECD 211 Daphnia Magna
Reproduction Test
Chronic NOEC 21 days
Semistatic
Daphnia 0.3 mg/L
butanedioldiglycidyl ether OECD 202 Daphnia sp. Acute
Immobilisation Test
Acute EC50 24 hours
Static
Daphnia 75 mg/L
OECD 201 Alga, Growth
Inhibition Test
Acute EL50 72 hours
Static
Algae >160 mg/L
OECD 209 Activated Sludge,
Respiration Inhibition Test
Acute IC50 3 hours
Static
Bacteria >100 mg/L
OECD 203 Fish, Acute
Toxicity Test
Acute LC50 96 hours
Static
Fish 24 mg/L
Product/ingredient name Exposure Species Result
12.2 Persistence and degradability
SECTION 12: Ecological information
Test Endpoint
Date of issue / Date of revision : 3 August 2011 12/17
ARALDITE 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
Date of printing :
Date of issue :
3 August 2011
3 August 2011
MSDS no.
Version :
: 00057058
1
13/17
SECTION 12: Ecological information
Mobility : Not available.
LogPow BCF Potential
12.3 Bioaccumulative potential
12.6 Other adverse effects No known significant effects or critical hazards.
Product/ingredient name
reaction product: bisphenol
A-(epichlorhydrin); epoxy
resin (number average
molecular weight < 700)
3.242 31 low
bisphenol F-epoxy resin 2.7 to 3.6 - high
butanedioldiglycidyl ether -0.269 - low
Product/ingredient name Aquatic half-life Photolysis Biodegradability
reaction product: bisphenol
A-(epichlorhydrin); epoxy
resin (number average
molecular weight < 700)
Fresh water 4.83 days
Fresh water 3.58 days
Fresh water 7.1 days
- Not readily
bisphenol F-epoxy resin - - Not readily
butanedioldiglycidyl ether - - Not readily
reaction product: bisphenol
A-(epichlorhydrin); epoxy
resin (number average
molecular weight < 700)
OECD Derived from OECD 301F
(Biodegradation Test)
28 days 5 %
bisphenol F-epoxy resin EU 28 days 0 %
butanedioldiglycidyl ether OECD 301F Ready Biodegradability -
Manometric Respirometry Test
28 days 43 %
Product/ingredient name Test Result
Conclusion/Summary : reaction product: bisphenol A-(epichlorhydrin); epoxy resin (number average
molecular weight < 700): Not readily biodegradable.
12.4 Mobility in soil
Soil/water partition
coefficient (KOC)
: Not available.
12.5 Results of PBT and vPvB assessment
:
12.7 Other ecological information
Period
Not applicable.
The generation of waste should be avoided or minimised wherever possible.
Significant quantities of waste product residues should not be disposed of via the
foul sewer but processed in a suitable effluent treatment plant. Dispose of surplus
and non-recyclable products via a licensed waste disposal contractor. Disposal of
this product, solutions and any by-products should at all times comply with the
requirements of environmental protection and waste disposal legislation and any
regional local authority requirements. Waste packaging should be recycled.
Incineration or landfill should only be considered when recycling is not feasible. This
Methods of disposal :
SECTION 13: Disposal considerations
The information in this section contains generic advice and guidance. The list of Identified Uses in Section 1 should be
consulted for any available use-specific information provided in the Exposure Scenario(s).
13.1 Waste treatment methods
Product
Date of issue / Date of revision : 3 August 2011 13/17
ARALDITE 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
Date of printing :
Date of issue :
3 August 2011
3 August 2011
MSDS no.
Version :
: 00057058
1
14/17
SECTION 13: Disposal considerations
European waste catalogue (EWC)
Hazardous waste : Yes.
material and its container must be disposed of in a safe way. Care should be taken
when handling emptied containers that have not been cleaned or rinsed out. Empty
containers or liners may retain some product residues. Avoid dispersal of spilt
material and runoff and contact with soil, waterways, drains and sewers.
Packaging
Waste code Waste designation
Methods of disposal :
Special precautions :
07 02 08* other still bottoms and reaction residues
The generation of waste should be avoided or minimised wherever possible. Waste
packaging should be recycled. Incineration or landfill should only be considered
when recycling is not feasible.
This material and its container must be disposed of in a safe way. Care should be
taken when handling emptied containers that have not been cleaned or rinsed out.
Empty containers or liners may retain some product residues. Avoid dispersal of
spilt material and runoff and contact with soil, waterways, drains and sewers.
Environmentally hazardous substance, liquid, n.o.s. BISPHENOL A/F EPOXY
RESIN
9
III
Environmentally hazardous substance, liquid, n.o.s. (BISPHENOL A/F EPOXY
RESIN) Marine pollutant (reaction product: bisphenol A-(epichlorhydrin); epoxy
resin (number average molecular weight < 700), bisphenol F-epoxy resin)
9
III
Environmentally hazardous substance, liquid, n.o.s. (BISPHENOL A/F EPOXY
RESIN)
UN3082
9
not available not available
III
UN3082
UN3082
Hazard identification
number
90
Special provisions
274 335 601
Tunnel code
E
Emergency
schedules (EmS)
F-A, S-F
Passenger and
Cargo Aircraft
Quantity limitation:
450 L
Packaging
instructions: 964
Cargo Aircraft Only
Quantity limitation:
450 L
Packaging
SECTION 14: Transport information
ADR/RID IMDG IATA
14.1 UN number 14.2 UN proper shipping name
14.3 Transport
hazard class(es)
14.4 Packing
group
ADN/ADNR
Additional
information
14.5
Environmental
hazards
14.6 Special
precautions for
user
Yes. Yes. Yes.
Not available. Not available. Not available.
ADN/ADNR
IMDG
IATA
ADR/RID
Date of issue / Date of revision : 3 August 2011 14/17
ARALDITE 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
Date of printing :
Date of issue :
3 August 2011
3 August 2011
MSDS no.
Version :
: 00057058
1
15/17
SECTION 14: Transport information
instructions: 964
14.7 Transport in bulk
according to Annex II of
MARPOL 73/78 and the IBC
Code
: Not applicable.
National regulations
Other EU regulations
Annex XVII - Restrictions Not applicable.
on the manufacture,
placing on the market and
use of certain dangerous
substances, mixtures and
articles
:
Europe inventory : All components are listed or exempted.
Black List Chemicals : Not listed
Priority List Chemicals : Not listed
Integrated pollution
prevention and control
list (IPPC) - Air
: Not listed
Integrated pollution
prevention and control
list (IPPC) - Water
: Not listed
Chemical Weapons
Convention List Schedule I
Chemicals
: Not listed
Chemical Weapons
Convention List Schedule II
Chemicals
: Not listed
Chemical Weapons
Convention List Schedule III
Chemicals
: Not listed
International regulations
References : The provision of Safety Data Sheets comes under Regulation 6 of CHIP (CHIP is the
recognised abbreviation for the Chemicals Hazard Information and Packaging
Regulations). This is an addition to the Health and Safety at Work Act 1974.
SECTION 15: Regulatory information
15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture
EU Regulation (EC) No. 1907/2006 (REACH)
Annex XIV - List of substances subject to authorisation
15.2 Chemical Safety
Assessment
This product contains substances for which Chemical Safety Assessments are still
required.
Substances of very high concern
:
None of the components are listed.
Date of issue / Date of revision : 3 August 2011 15/17
ARALDITE 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
Date of printing :
Date of issue :
3 August 2011
3 August 2011
MSDS no.
Version :
: 00057058
1
16/17
Date of printing : 3 August 2011
R20/21- Harmful by inhalation and in contact with skin.
R21/22- Harmful in contact with skin and if swallowed.
R34- Causes burns.
R41- Risk of serious damage to eyes.
R38- Irritating to skin.
R36/38- Irritating to eyes and skin.
R43- May cause sensitisation by skin contact.
R51/53- Toxic to aquatic organisms, may cause long-term adverse effects in the
aquatic environment.
R52/53- Harmful to aquatic organisms, may cause long-term adverse effects in the
aquatic environment.
Full text of abbreviated R :
phrases
C - Corrosive
Xn - Harmful
Xi - Irritant
N - Dangerous for the environment
Full text of classifications :
[DSD/DPD]
Indicates information that has changed from previously issued version.
SECTION 16: Other information
Full text of abbreviated H
statements
:
Abbreviations and
acronyms
: ATE = Acute Toxicity Estimate
CLP = Classification, Labelling and Packaging Regulation [Regulation (EC) No.
1272/2008]
DNEL = Derived No Effect Level
EUH statement = CLP-specific Hazard statement
PNEC = Predicted No Effect Concentration
RRN = REACH Registration Number
Classification according to Regulation (EC) No. 1272/2008 [CLP/GHS]
Procedure used to derive the classification according to Regulation (EC) No. 1272/2008 [CLP/GHS]
Classification Justification
Skin Irrit. 2, H315 Expert judgment
Eye Dam. 1, H318 Expert judgment
Skin Sens. 1, H317 Expert judgment
Aquatic Chronic 2, H411 Expert judgment
Full text of classifications
[CLP/GHS]
:
H302 Harmful if swallowed.
H312 Harmful in contact with skin.
H314 Causes severe skin burns and eye damage.
H315 Causes skin irritation.
H317 May cause an allergic skin reaction.
H318 Causes serious eye damage.
H319 Causes serious eye irritation.
H332 Harmful if inhaled.
H411 Toxic to aquatic life with long lasting effects.
Acute Tox. 4, H302 ACUTE TOXICITY: ORAL - Category 4
Acute Tox. 4, H312 ACUTE TOXICITY: SKIN - Category 4
Acute Tox. 4, H332 ACUTE TOXICITY: INHALATION - Category 4
Aquatic Chronic 2, H411 AQUATIC TOXICITY (CHRONIC) - Category 2
Eye Dam. 1, H318 SERIOUS EYE DAMAGE/ EYE IRRITATION - Category 1
Eye Irrit. 2, H319 SERIOUS EYE DAMAGE/ EYE IRRITATION - Category 2
Skin Corr. 1B, H314 SKIN CORROSION/IRRITATION - Category 1B
Skin Irrit. 2, H315 SKIN CORROSION/IRRITATION - Category 2
Skin Sens. 1, H317 SKIN SENSITIZATION - Category 1
Skin Irrit. 2, H315
Eye Dam. 1, H318
Skin Sens. 1, H317
Aquatic Chronic 2, H411
MSDS no. : 00057058
Date of issue / Date of revision : 3 August 2011 16/17
ARALDITE 2014-1
Conforms to Regulation (EC) No. 1907/2006 (REACH), Annex II - United Kingdom (UK)
Date of printing :
Date of issue :
3 August 2011
3 August 2011
MSDS no.
Version :
: 00057058
1
17/17
SECTION 16: Other information
Date of issue/ Date of
revision
Version
Notice to reader
Date of previous issue
:
:
:
3 August 2011
No previous validation.
1
While the information and recommendations in this publication are to the best of our knowledge, information
and belief accurate at the date of publication, NOTHING HEREIN IS TO BE CONSTRUED AS A WARRANTY,
EXPRESS OR OTHERWISE.
IN ALL CASES, IT IS THE RESPONSIBILITY OF THE USER TO DETERMINE THE APPLICABILITY OF SUCH
INFORMATION AND RECOMMENDATIONS AND THE SUITABILITY OF ANY PRODUCT FOR ITS OWN
PARTICULAR PURPOSE.
THE PRODUCT MAY PRESENT HAZARDS AND SHOULD BE USED WITH CAUTION. WHILE CERTAIN HAZARDS
ARE DESCRIBED IN THIS PUBLICATION, NO GUARANTEE IS MADE THAT THESE ARE THE ONLY HAZARDS
THAT EXIST.
Hazards, toxicity and behaviour of the products may differ when used with other materials and are dependent
upon the manufacturing circumstances or other processes. Such hazards, toxicity and behaviour should be
determined by the user and made known to handlers, processors and end users.
ARALDITE® is a registered trademark of Huntsman Corporation or an affiliate thereof in one or more countries,
but not all countries.
NO PERSON OR ORGANIZATION EXCEPT A DULY AUTHORIZED HUNTSMAN EMPLOYEE IS AUTHORIZED TO
PROVIDE OR MAKE AVAILABLE DATA SHEETS FOR HUNTSMAN PRODUCTS. DATA SHEETS FROM
UNAUTHORIZED SOURCES MAY CONTAIN INFORMATION THAT IS NO LONGER CURRENT OR ACCURATE.
NO PART OF THIS DATA SHEET MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM, OR BY ANY
MEANS, WITHOUT PERMISSION IN WRITING FROM HUNTSMAN. ALL REQUESTS FOR PERMISSION TO
REPRODUCE MATERIAL FROM THIS DATA SHEET SHOULD BE DIRECTED TO HUNTSMAN, MANAGER,
PRODUCT SAFETY AT THE ABOVE ADDRESS.
Date of issue / Date of revision : 3 August 2011 17/17
1
®
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2002-2005. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
8-Digit, Microprocessor-Compatible, LED
Display Decoder Driver
The Intersil ICM7228 display driver interfaces
microprocessors to an 8-digit, 7-segment, numeric LED
display. Included on chip are two types of 7-segment
decoder, multiplex scan circuitry, LED display segment
drivers, LED display digit drivers and an 8-byte static
memory as display RAM.
Data can be written to the ICM7228A and ICM7228B’s display
RAM in sequential 8-digit update or in single-digit update
format. Data is written to the ICM7228C display RAM in parallel
random access format. The ICM7228A and ICM7228C drive
common anode displays. The ICM7228B drives common
cathode displays. All versions can display the RAM data as
either Hexadecimal or Code B format. The ICM7228A and
ICM7228B incorporate a No Decode mode allowing each bit of
each digit's RAM word to drive individual display segments
resulting in independent control of all display segments. As a
result, bargraph and other irregular display segments and
formats can be driven directly by this chip.
The Intersil ICM7228 is an alternative to both the Maxim
ICM7218 and the Intersil ICM7218 display drivers. Notice that
the ICM7228A/B has an additional single digit access mode.
This could make the Intersil ICM7218A/B software incompatible
with ICM7228A/B operation.
Features
• Pb-Free Plus Anneal Available (RoHS Compliant)
• Improved 2nd Source to Maxim ICM7218
• Fast Write Access Time of 200ns
• Multiple Microprocessor Compatible Versions
• Hexadecimal, Code B and No Decode Modes
• Individual Segment Control with “No Decode” Feature
• Digit and Segment Drivers On-Chip
• Non-Overlapping Digits Drive
• Common Anode and Common Cathode LED Versions
• Low Power CMOS Architecture
• Single 5V Supply
Applications
• Instrumentation
• Test Equipment
• Hand Held Instruments
• Bargraph Displays
• Numeric and Non-Numeric Panel Displays
• High and Low Temperature Environments where LCD
Display Integrity is Compromised
Ordering Information
PART NUMBER PART MARKING
DATA ENTRY
PROTOCOL DISPLAY TYPE
TEMP. RANGE
(oC) PACKAGE PKG. DWG. #
ICM7228AIBI ICM7228AIBI Sequential Common Anode -40 to 85 28 Ld SOIC M28.3
ICM7228AIBIZ (Note) 7228AIBIZ Sequential Common Anode -40 to 85 28 Ld SOIC (Pb-free) M28.3
ICM7228AIPI ICM7228AIPI Sequential Common Anode -40 to 85 28 Ld PDIP E28.6
ICM7228AIPIZ (Note) ICM7228AIPI Sequential Common Anode -40 to 85 28 Ld PDIP* (Pb-free) E28.6
ICM7228BIBI ICM7228BIBI Sequential Common Cathode -40 to 85 28 Ld SOlC M28.3
ICM7228BIBIZ (Note) ICM7228BIBIZ Sequential Common Cathode -40 to 85 28 Ld SOlC (Pb-free) M28.3
ICM7228BIPI ICM7228BIPI Sequential Common Cathode -40 to 85 28 Ld PDIP E28.6
ICM7228BIPIZ (Note) ICM7228BIPIZ Sequential Common Cathode -40 to 85 28 Ld PDIP (Pb-free) E28.6
ICM7228CIBI ICM7228CIBI Random Common Anode -40 to 85 28 Ld SOlC M28.3
ICM7228CIBIZ (Note) ICM7228CIBIZ Random Common Anode -40 to 85 28 Ld SOlC (Pb-free) M28.3
ICM7228CIPI ICM7228CIPI Random Common Anode -40 to 85 28 Ld PDIP E28.6
ICM7228CIPIZ (Note) ICM7228CIPI Random Common Anode -40 to 85 28 Ld PDIP (Pb-free) E28.6
*Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing applications.
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin
plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
Data Sheet December 6, 2005 FN3160.8
ICM7228
2
ICM7228
Pinouts
ICM7228A (PDIP, SOIC)
COMMON ANODE
TOP VIEW
ICM7228B (PDIP, SOIC)
COMMON CATHODE
TOP VIEW
ICM7228C (PDIP, SOIC)
COMMON ANODE
TOP VIEW
SEG c
SEG e
SEG b
DP
ID6 (HEXA/CODE B)
ID5 (DECODE)
ID7 (DATA COMING)
WRITE
MODE
ID4 (SHUTDOWN)
ID1
ID0
ID2
ID3
VSS
SEG g
SEG d
SEG f
DIGIT 3
DIGIT 7
VDD
DIGIT 8
DIGIT 5
DIGIT 2
DIGIT 1
SEG a
DIGIT 6
DIGIT 4
28
27
26
25
24
23
22
21
20
19
18
17
16
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
DIGIT 4
DIGIT 6
DIGIT 3
DIGIT 1
ID6 (HEXA/CODE B)
ID5 (DECODE)
ID7 (DATA COMING)
WRITE
MODE
ID4 (SHUTDOWN)
ID1
ID0
ID2
ID3
VSS
DIGIT 5
DIGIT 2
DIGIT 8
SEG g
SEG e
VDD
SEG d
SEG b
SEG a
DP
DIGIT 7
SEG f
SEG c
28
27
26
25
24
23
22
21
20
19
18
17
16
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
SEG c
SEG e
SEG b
DP
DA0 (DIGIT ADDRESS 0)
DA1 (DIGIT ADDRESS 1)
ID7 (INPUT DP)
WRITE
HEXA/CODE B/SHUTDOWN
DA2 (DIGIT ADDRESS 2)
ID1
ID0
ID2
ID3
VSS
SEG g
SEG d
SEG f
DIGIT 3
DIGIT 7
VDD
DIGIT 8
DIGIT 5
DIGIT 2
DIGIT 1
SEG a
DIGIT 6
DIGIT 4
28
27
26
25
24
23
22
21
20
19
18
17
16
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
3
ICM7228
Functional Block Diagram
8 SEGMENT
DRIVERS
8 DIGIT
DRIVERS
DECODE
NO-DECODE
8-BYTE
STATIC
RAM
HEXADECIMAL/
CODE B
DECODER
MULTIPLEX
OSCILLATOR
WRITE ADDRESS
COUNTER
CONTROL
LOGIC
READ
ADDRESS, DIGIT
MULTIPLEXER
ICM7228A, ICM7228B
ID0 - ID7
INPUT
DATA
ID4 - ID7
CONTROL
INPUTS MODE WRITE
SHUTDOWN
HEXA/CODE B
DECODE
INTERDIGIT
BLANKING
DECIMAL
POINT
8
8
4 1 1
1
1
4
7
7
7
8
8
8
1
1
3
8 1
1
7
1
8 SEGMENT
DRIVERS
8 DIGIT
DRIVERS
8-BYTE
STATIC
RAM
HEXADECIMAL/
CODE B
DECODER
MULTIPLEX
OSCILLATOR
WRITE ADDRESS
COUNTER
THREE LEVEL
INPUT LOGIC
READ
ADDRESS
MULTIPLEXER
ICM7228C
WRITE
SHUTDOWN
INTERDIGIT
BLANKING
DECIMAL
POINT
1 5 1
1
4
7
8
8
8
5
8 1
1
1
DA0 - DA2
3
DIGIT
ADDRESS
ID0 - ID3
ID7
DATA INPUT
HEXADECIMAL/
CODE B/
SHUTDOWN
4
ICM7228
Absolute Maximum Ratings Thermal Information
Supply Voltage (VDD - VSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6V
Digit Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500mA
Segment Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA
Input Voltage (Note 1) (Any Terminal) . . (VSS-0.3V)>1, then it can be simplified as follows:
From the above equation, it is shown that the system is a
single order system, which has a single pole located at
before the half switching frequency. Therefore, simple type II
compensator can be easily used to stabilize the system.
Figure 15 shows the voltage loop compensator, and its
transfer function is expressed as follows:
where
Compensator design goal:
• High DC gain
• Loop bandwidth fc:
• Gain margin: >10dB
• Phase margin: 40°
The compensator design procedure is as follows:
1. Put compensator zero at:
2. Put one compensator pole at zero frequency to achieve
high DC gain, and put another compensator pole at either
ESR zero frequency or half switching frequency,
whichever is lower.
The loop gain Tv(S) at cross over frequency of fc has unity
gain. Therefore, the compensator resistance R1 is
determined by:
where gm is the trans-conductance of the voltage loop error
amplifier. Compensator capacitor C1 is then given by:
Example: Vin = 19V, Vo = 16.8V, Io = 2.6A, fs = 300kHz,
Co = 10μF/10mΩ, L = 10μH, gm = 250μs, RT = 0.8Ω,
VFB = 2.1V, fc = 20kHz, then compensator resistance
R1 = 10kΩ. Choose R1 = 10kΩ. Put the compensator zero at
1.5kHz. The compensator capacitor is C1 = 6.5nF.
Therefore, choose voltage loop compensator: R1 = 10k,
C1 = 6.5nF.
Ti(S) = 0.25 RTF2(S)M
Tv(S) = KM F1(S)AV(S)
o
FB
V
V
K =
( )
1 T (S)
T S
L (S)
i
v
v +
=
LV(S)
4VFB
VO
--------------
(RO + RL)
RT
-----------------------------
1 S
ωesr
+ ------------
1 Sω
P
+ -------
------------------------AV(S) ωP
1
ROCO
= , ≈ -----------------
ωp
FIGURE 14. SMALL SIGNAL MODEL OF SYNCHRONOUS
BUCK REGULATOR
dˆ
Vin
dˆ
vˆIL
iˆin L
+
1:D
+
iˆL
Co
Rc
Ro
-Av(S)
dˆ
vˆcomp
RT
11/Vin
+
Ti(S)
K
vˆo
Tv(S)
-
VCA2
0.25VCA2
VindILdin ( )
SC
1 S
g
vˆ
vˆ
A S
1
cz
m
FB
comp
v
ω
+
= =
R C
1
1 1
ωcz =
-
+
R1
C1
VREF
VFB
Vo
gm
VCOMP
FIGURE 15. VOLTAGE LOOP COMPENSATOR
fs
20
1
5
1 ⎟⎠
⎞
⎜⎝
⎛ −
( )
o o
cz R C
ω = 1 − 3 1
R1
8πfCVOCORT
gmVFB
= ---------------------------------------
1 cz
1 R
C 1
ω
=
ISL6251, ISL6251A
18 FN9202.2
May 10, 2006
PCB Layout Considerations
Power and Signal Layers Placement on the PCB
As a general rule, power layers should be close together,
either on the top or bottom of the board, with signal layers on
the opposite side of the board. As an example, layer
arrangement on a 4-layer board is shown below:
1. Top Layer: signal lines, or half board for signal lines and
the other half board for power lines
2. Signal Ground
3. Power Layers: Power Ground
4. Bottom Layer: Power MOSFET, Inductors and other
Power traces
Separate the power voltage and current flowing path from
the control and logic level signal path. The controller IC will
stay on the signal layer, which is isolated by the signal
ground to the power signal traces.
Component Placement
The power MOSFET should be close to the IC so that the
gate drive signal, the LGATE, UGATE, PHASE, and BOOT,
traces can be short.
Place the components in such a way that the area under the
IC has less noise traces with high dv/dt and di/dt, such as
gate signals and phase node signals.
Signal Ground and Power Ground Connection.
At minimum, a reasonably large area of copper, which will
shield other noise couplings through the IC, should be used
as signal ground beneath the IC. The best tie-point between
the signal ground and the power ground is at the negative
side of the output capacitor on each side, where there is little
noise; a noisy trace beneath the IC is not recommended.
GND and VDD Pin
At least one high quality ceramic decoupling cap should be
used to cross these two pins. The decoupling cap can be put
close to the IC.
LGATE Pin
This is the gate drive signal for the bottom MOSFET of the
buck converter. The signal going through this trace has both
high dv/dt and high di/dt, and the peak charging and
discharging current is very high. These two traces should be
short, wide, and away from other traces. There should be no
other traces in parallel with these traces on any layer.
PGND Pin
PGND pin should be laid out to the negative side of the
relevant output cap with separate traces. The negative side
of the output capacitor must be close to the source node of
the bottom MOSFET. This trace is the return path of LGATE.
PHASE Pin
This trace should be short, and positioned away from other
weak signal traces. This node has a very high dv/dt with a
voltage swing from the input voltage to ground. No trace
should be in parallel with it. This trace is also the return path
for UGATE. Connect this pin to the high-side MOSFET
source.
UGATE Pin
This pin has a square shape waveform with high dv/dt. It
provides the gate drive current to charge and discharge the
top MOSFET with high di/dt. This trace should be wide,
short, and away from other traces similar to the LGATE.
BOOT Pin
This pin’s di/dt is as high as the UGATE; therefore, this trace
should be as short as possible.
CSOP, CSON Pins
The current sense resistor connects to the CSON and the
CSOP pins through a low pass filter. The CSON pin is also
used as the battery voltage feedback. The traces should be
away from the high dv/dt and di/di pins like PHASE, BOOT
pins. In general, the current sense resistor should be close
to the IC. Other layout arrangements should be adjusted
accordingly.
EN Pin
This pin stays high at enable mode and low at idle mode and
is relatively robust. Enable signals should refer to the signal
ground.
DCIN Pin
This pin connects to AC adapter output voltage, and should
be less noise sensitive.
Copper Size for the Phase Node
The capacitance of PHASE should be kept very low to
minimize ringing. It would be best to limit the size of the
PHASE node copper in strict accordance with the current
and thermal management of the application.
Identify the Power and Signal Ground
The input and output capacitors of the converters, the source
terminal of the bottom switching MOSFET PGND should
connect to the power ground. The other components should
connect to signal ground. Signal and power ground are tied
together at one point.
Clamping Capacitor for Switching MOSFET
It is recommended that ceramic caps be used closely
connected to the drain of the high-side MOSFET, and the
source of the low-side MOSFET. This capacitor reduces the
noise and the power loss of the MOSFET.
ISL6251, ISL6251A
19 FN9202.2
May 10, 2006
ISL6251, ISL6251A
Quad Flat No-Lead Plastic Package (QFN)
Micro Lead Frame Plastic Package (MLFP)
INDEX
D1/2
D1
D/2
D
E1/2 E/2
E
A
2X
0.15
B
C
0.10 M C A B
A
N
SEATING PLANE
N
6
3 2
23
e
1
1
0.08
FOR ODD TERMINAL/SIDE FOR EVEN TERMINAL/SIDE
C C
SECTION "C-C"
NX b
A1
C
2X
0.15 C
0.15
2X
B
0
REF.
(Nd-1)Xe
(NRe-E1F)X. e
5
A1
4X P
A
C
C
4X P
B
2X
0.15 C A
A2
A3
D2
D2
E2
E2/2
TERMINAL TIP
SIDE VIEW
TOP VIEW
7
BOTTOM VIEW
7
5
CL CL
e e
E1
2
NX k
NX b
8
NX L
8
8
9
AREA
9
4X
/ / 0.10 C
9
(DATUM B)
(DATUM A)
INDEX
6
AREA
N
9
CORNER
OPTION 4X
L1
L
10 L1
L
10
L28.5x5
28 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE
(COMPLIANT TO JEDEC MO-220VHHD-1 ISSUE I)
SYMBOL
MILLIMETERS
MIN NOMINAL MAX NOTES
A 0.80 0.90 1.00 -
A1 - 0.02 0.05 -
A2 - 0.65 1.00 9
A3 0.20 REF 9
b 0.18 0.25 0.30 5,8
D 5.00 BSC -
D1 4.75 BSC 9
D2 2.95 3.10 3.25 7,8
E 5.00 BSC -
E1 4.75 BSC 9
E2 2.95 3.10 3.25 7,8
e 0.50 BSC -
k 0.20 - - -
L 0.50 0.60 0.75 8
N 28 2
Nd 7 3
Ne 7 3
P - - 0.60 9
θ - - 12 9
Rev. 1 11/04
NOTES:
1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
2. N is the number of terminals.
3. Nd and Ne refer to the number of terminals on each D and E.
4. All dimensions are in millimeters. Angles are in degrees.
5. Dimension b applies to the metallized terminal and is measured
between 0.15mm and 0.30mm from the terminal tip.
6. The configuration of the pin #1 identifier is optional, but must be
located within the zone indicated. The pin #1 identifier may be
either a mold or mark feature.
7. Dimensions D2 and E2 are for the exposed pads which provide
improved electrical and thermal performance.
8. Nominal dimensions are provided to assist with PCB Land Pattern
Design efforts, see Intersil Technical Brief TB389.
9. Features and dimensions A2, A3, D1, E1, P & θ are present when
Anvil singulation method is used and not present for saw
singulation.
20
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
FN9202.2
May 10, 2006
ISL6251, ISL6251A
Shrink Small Outline Plastic Packages (SSOP)
Quarter Size Outline Plastic Packages (QSOP)
NOTES:
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2
of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusion and gate burrs shall not exceed
0.15mm (0.006 inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead
flash and protrusions shall not exceed 0.25mm (0.010 inch)
per side.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension “B” does not include dambar protrusion. Allowable dambar
protrusion shall be 0.10mm (0.004 inch) total in excess of “B”
dimension at maximum material condition.
10. Controlling dimension: INCHES. Converted millimeter dimensions
are not necessarily exact.
α
INDEX
AREA
E
D
N
1 2 3
-B-
0.17(0.007) M C A B S
e
-AB
M
-CA1
A
SEATING PLANE
0.10(0.004)
h x 45°
C
H 0.25(0.010) M B M
L
0.25
0.010
GAUGE
PLANE
A2
M24.15
24 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE
(0.150” WIDE BODY)
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A 0.053 0.069 1.35 1.75 -
A1 0.004 0.010 0.10 0.25 -
A2 - 0.061 - 1.54 -
B 0.008 0.012 0.20 0.30 9
C 0.007 0.010 0.18 0.25 -
D 0.337 0.344 8.55 8.74 3
E 0.150 0.157 3.81 3.98 4
e 0.025 BSC 0.635 BSC -
H 0.228 0.244 5.80 6.19 -
h 0.0099 0.0196 0.26 0.49 5
L 0.016 0.050 0.41 1.27 6
N 24 24 7
α 0° 8° 0° 8° -
Rev. 2 6/04
1
®
FN3282.13
DG411, DG412, DG413
Monolithic Quad SPST, CMOS Analog
Switches
The DG411 series monolithic CMOS analog switches are
drop-in replacements for the popular DG211 and DG212
series devices. They include four independent single pole
throw (SPST) analog switches, and TTL and CMOS
compatible digital inputs.
These switches feature lower analog ON-resistance (<35Ω)
and faster switch time (tON<175ns) compared to the DG211
or DG212. Charge injection has been reduced, simplifying
sample and hold applications.
The improvements in the DG411 series are made possible
by using a high voltage silicon-gate process. An epitaxial
layer prevents the latch-up associated with older CMOS
technologies. The 44V maximum voltage range permits
controlling 40VP-P signals. Power supplies may be
single-ended from +5V to 44V, or split from ±5V to ±20V.
The four switches are bilateral, equally matched for AC or
bidirectional signals. The ON-resistance variation with analog
signals is quite low over a ±15V analog input range. The
switches in the DG411 and DG412 are identical, differing only
in the polarity of the selection logic. Two of the switches in the
DG413 (#2 and #3) use the logic of the DG211 and DG411
(i.e., a logic “0” turns the switch ON) and the other two
switches use DG212 and DG412 positive logic. This permits
independent control of turn-on and turn-off times for SPDT
configurations, permitting “break-before-make” or “makebefore-
break” operation with a minimum of external logic.
Features
• ON-Resistance (Max). . . . . . . . . . . . . . . . . . . . . . . . . 35Ω
• Low Power Consumption (PD) . . . . . . . . . . . . . . . . . . <35μW
• Fast Switching Action
- tON (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175ns
- tOFF (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145ns
• Low Charge Injection
• Upgrade from DG211, DG212
• TTL, CMOS Compatible
• Single or Split Supply Operation
• Pb-Free Plus Anneal Available (RoHS Compliant)
Applications
• Audio Switching
• Battery Operated Systems
• Data Acquisition
• Hi-Rel Systems
• Sample and Hold Circuits
• Communication Systems
• Automatic Test Equipment
Data Sheet June 20, 2007
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright Intersil Americas Inc. 1993, 1994, 1997, 1999, 2002, 2004-2007. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
2 FN3282.13
June 20, 2007
Pinout
DG411, DG412, DG413
(16 LD PDIP, SOIC, TSSOP)
TOP VIEW
Ordering Information
PART NUMBER PART MARKING TEMP. RANGE (°C) PACKAGE PKG. DWG. #
DG411DJ DG411DJ -40 to +85 16 Ld PDIP E16.3
DG411DJZ (Note) DG411DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3
DG411DY* DG411DY -40 to +85 16 Ld SOIC (150 mil) M16.15
DG411DYZ* (Note) DG411DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15
DG411DVZ* (Note) DG411 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173
DG412DJ DG412DJ -40 to +85 16 Ld PDIP E16.3
DG412DJZ (Note) DG412DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3
DG412DY* DG412DY -40 to +85 16 Ld SOIC (150 mil) M16.15
DG412DYZ* (Note) DG412DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15
DG412DVZ* (Note) DG412 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173
DG413DJ DG413DJ -40 to +85 16 Ld PDIP E16.3
DG413DJZ (Note) DG413DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3
DG413DY* DG413DY -40 to +85 16 Ld SOIC (150 mil) M16.15
DG413DYZ* (Note) DG413DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15
DG413DVZ* (Note) DG413 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173
*Add “-T” suffix for tape and reel.
**Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing
applications.
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin
plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products
are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
TRUTH TABLE
LOGIC
DG411 DG412 DG413
SWITCH SWITCH
SWITCH
1, 4
SWITCH
2, 3
0 On Off Off On
1 Off On On Off
NOTE: Logic “0” ≤0.8V. Logic “1” ≥2.4V.
14
15
16
9
13
12
11
10
1
2
3
4
5
7
6
8
IN1
D1
S1
VGND
S4
IN4
D4
IN2
S2
V+
VL
S3
D3
IN3
D2
Pin Descriptions
PIN SYMBOL DESCRIPTION
1 IN1 Logic Control for Switch 1.
2 D1 Drain (Output) Terminal for Switch 1.
3 S1 Source (Input) Terminal for Switch 1.
4 V- Negative Power Supply Terminal.
5 GND Ground Terminal (Logic Common).
6 S4 Source (Input) Terminal for Switch 4.
7 D4 Drain (Output) Terminal for Switch 4.
8 IN4 Logic Control for Switch 4.
9 IN3 Logic Control for Switch 3.
10 D3 Drain (Output) Terminal for Switch 3.
11 S3 Source (Input) Terminal for Switch 3.
12 VL Logic Reference Voltage.
13 V+ Positive Power Supply Terminal (Substrate).
14 S2 Source (Input) Terminal for Switch 2.
15 D2 Drain (Output) Terminal for Switch 2.
16 IN2 Logic Control for Switch 2.
DG411, DG412, DG413
3 FN3282.13
June 20, 2007
Functional Diagrams Four SPST Switches per Package Switches Shown for Logic “1” Input
Schematic Diagram (1 Channel)
S1
D1
S2
D2
S3
D3
S4
D4
DG411
S1
D1
S2
D2
S3
D3
S4
D4
IN1
DG412
IN2
IN3
IN4
S1
D1
S2
D2
S3
D3
S4
D4
IN1
DG413
IN2
IN3
IN4
IN2
IN3
IN4
IN1
S
V+
INX
GND
VVVL
D
V+
DG411, DG412, DG413
4 FN3282.13
June 20, 2007
Absolute Maximum Ratings Thermal Information
V+ to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44V
GND to V-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25V
VL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (GND -0.3V) to (V+) +0.3V
Digital Inputs, VS, VD (Note 1). . . . . (V-) -2V to (V+) + 2V or 30mA,
Whichever Occurs First
Continuous Current (Any Terminal) . . . . . . . . . . . . . . . . . . . . . 30mA
Peak Current, S or D (Pulsed 1ms, 10% Duty Cycle Max) . . 100mA
Operating Conditions
Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20V (Max)
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C
Input Low Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8V (Max)
Input High Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4V (Min)
Input Rise and Fall Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤20ns
Thermal Resistance (Typical, Note 2) θJA (°C/W)
PDIP Package* . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
TSSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Maximum Junction Temperature (Plastic Packages). . . . . . . +150°C
Maximum Storage Temperature Range. . . . . . . . . .-65°C to +150°C
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
(SOIC and TSSOP - Lead Tips Only)
*Pb-free PDIPs can be used for through hole wave solder
processing only. They are not intended for use in Reflow solder
processing applications.
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and
result in failures not covered by warranty.
NOTES:
1. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
2. θJA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
Electrical Specifications Test Conditions: V+ = +15V, V- = -15V, VL = 5V, VIN = 2.4V, 0.8V (Note 3),
Unless Otherwise Specified.
PARAMETER TEST CONDITIONS
TEMP
(°C)
MIN
(Note 4)
TYP
(Note 5)
MAX
(Note 4) UNITS
DYNAMIC CHARACTERISTICS
Turn-ON Time, tON RL = 300Ω, CL = 35pF, VS = ±10V (Figure 1) 25 - 110 175 ns
85 - - 220 ns
Turn-OFF Time, tOFF 25 - 100 145 ns
85 - - 160 ns
Break-Before-Make Time Delay DG413 Only, RL = 300Ω, CL = 35pF (Figure 2) 25 - 25 - ns
Charge Injection, Q (Figure 3) CL = 10nF, VG = 0V, RG = 0Ω 25 - 5 - pC
OFF Isolation (Figure 5) RL = 50Ω, CL = 5pF, f = 1MHz 25 - 68 - dB
Crosstalk (Channel-to-Channel),
(Figure 4)
25 - -85 - dB
Source OFF Capacitance, CS(OFF) f = 1MHz (Figure 6) 25 - 9 - pF
Drain OFF Capacitance, CD(OFF) 25 - 9 - pF
Channel ON Capacitance,
CD(ON) + CS(ON)
25 - 35 - pF
DIGITAL INPUT CHARACTERISTICS
Input Current VIN Low, IIL VIN Under Test = 0.8V, All Others = 2.4V Full -0.5 0.005 0.5 μA
Input Current VIN High, IIH VIN Under Test = 2.4V, All Others = 0.8V Full -0.5 0.005 0.5 μA
ANALOG SWITCH CHARACTERISTICS
Analog Signal Range, VANALOG IS = 10mA Full -15 - 15 V
Drain-Source ON Resistance,
rDS(ON)
IS = 10mA, VD = ±8.5V, V+ = 13.5V, V- = -13.5V 25 - 25 35 Ω
Full - - 45 Ω
±
±
DG411, DG412, DG413
5 FN3282.13
June 20, 2007
Source OFF Leakage Current,
IS(OFF)
V+ = 16.5V, V- = -16.5V, VD = ±15.5V, VS = 15.5V 25 -0.25 ±0.1 0.25 nA
Full -5 - +5 nA
Drain OFF Leakage Current,
ID(OFF)
25 -0.25 ±0.1 0.25 nA
Full -5 - +5 nA
Channel ON Leakage Current,
ID(ON) + IS(ON)
V+ = 16.5V, V- = -16.5V, VS = VD = ±15.5V 25 -0.4 ±0.1 0.4 nA
Full -10 - +10 nA
POWER SUPPLY CHARACTERISTICS
Positive Supply Current, I+ V+ = 16.5V, V- = -16.5V, VIN = 0V or 5V 25 - 0.0001 1 μA
85 - - 5 μA
Negative Supply Current, I- 25 -1 -0.0001 - μA
85 -5 - - μA
Logic Supply Current, IL 25 - 0.0001 1 μA
85 - - 5 μA
Ground Current, IGND 25 -1 -0.0001 - μA
85 -5 - - μA
Electrical Specifications (Single Supply) Test Conditions: V+ = +12V, V- = 0V, VL = 5V, VIN = 2.4V, 0.8V (Note 3),
Unless Otherwise Specified.
PARAMETER TEST CONDITIONS
TEMP
(°C)
MIN
(Note 4)
TYP
(Note 5)
MAX
(Note 4) UNITS
DYNAMIC CHARACTERISTICS
Turn-ON Time, tON RL = 300Ω, CL = 35pF,
VS = 8V, (Figure 1)
25 - 175 250 ns
85 - - 315 ns
Turn-OFF Time, tOFF 25 - 95 125 ns
85 - - 140 ns
Break-Before-Make Time Delay DG413 Only, RL = 300Ω,
CL = 35pF, VS = 8V
25 - 25 - ns
Charge Injection, Q CL = 10nF, VG = 6.0V, RG = 0Ω 25 - 25 - pC
ANALOG SWITCH CHARACTERISTICS
Analog Signal Range, VANALOG Full 0 - 12 V
Drain-Source ON-Resistance,
rDS(ON)
IS = -10mA, VD = 3V, 8V
V+ = 10.8V
25 - 40 80 Ω
Full - - 100 Ω
Electrical Specifications Test Conditions: V+ = +15V, V- = -15V, VL = 5V, VIN = 2.4V, 0.8V (Note 3),
Unless Otherwise Specified. (Continued)
PARAMETER TEST CONDITIONS
TEMP
(°C)
MIN
(Note 4)
TYP
(Note 5)
MAX
(Note 4) UNITS
±
DG411, DG412, DG413
6 FN3282.13
June 20, 2007
POWER SUPPLY CHARACTERISTICS
Positive Supply Current, I+ V+ = 13.2V, V- = 0V
VIN = 0V or 5V
25 - 0.0001 1 μA
85 - - 5 μA
Negative Supply Current, I- 25 -1 -0.0001 - μA
85 -5 - - μA
Logic Supply Current, IL 25 - 0.0001 1 μA
85 - - 5 μA
Ground Current, IGND 25 -1 -0.0001 - μA
85 -5 - - μA
NOTES:
3. VIN = input voltage to perform proper function.
4. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
5. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
Test Circuits and Waveforms
VO is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing
edge of the output waveform.
NOTE: Logic input waveform is inverted for switches that have the
opposite logic sense.
FIGURE 1A. MEASUREMENTS POINTS
Repeat test for all IN and S.
For load conditions, see Specifications. CL includes fixture and stray
capacitance.
FIGURE 1B. TEST CIRCUIT
FIGURE 1. SWITCHING TIMES
FIGURE 2A. MEASUREMENT POINTS FIGURE 2B. TEST CIRCUITS
FIGURE 2. BREAK-BEFORE-MAKE TIME
Electrical Specifications (Single Supply) Test Conditions: V+ = +12V, V- = 0V, VL = 5V, VIN = 2.4V, 0.8V (Note 3),
Unless Otherwise Specified. (Continued)
PARAMETER TEST CONDITIONS
TEMP
(°C)
MIN
(Note 4)
TYP
(Note 5)
MAX
(Note 4) UNITS
50%
tr < 20ns
tf < 20ns
tOFF
90%
3V
0V
VS
0V
tON
VO
LOGIC
INPUT
SWITCH
INPUT
SWITCH
OUTPUT
90%
VO VS
RL
RL + rDS(ON)
= ------------------------------------
SWITCH
INPUT
LOGIC
INPUT
S1
IN1
V+
D1
RL CL
VO
GND
VVL
+5V +15V
SWITCH
OUTPUT
-15V
tD
3V
0V
VS1
0V
tD
LOGIC
INPUT
SWITCH
OUTPUT
SWITCH
OUTPUT
90%
0V
VS2
(V01)
VO2
90%
S1
IN1, IN2
V+
D1
RL1 CL1
VO1
GND VVL
VS1 = 10V
300Ω
+5V +15V
S2 D2 35pF
RL2 CL2
VO2
VS2 = 10V
300Ω 35pF
-15V
LOGIC
INPUT
CL includes fixture and
stray capacitance.
DG411, DG412, DG413
7 FN3282.13
June 20, 2007
FIGURE 3A. TEST CIRCUIT
NOTE: INX dependent on switch configuration, input polarity
determined by sense of switch.
FIGURE 3B. MEASUREMENT POINTS
FIGURE 3. CHARGE INJECTION
FIGURE 4. CROSSTALK TEST CIRCUIT FIGURE 5. OFF ISOLATION TEST CIRCUIT
FIGURE 6. SOURCE/DRAIN CAPACITANCES TEST CIRCUIT
Test Circuits and Waveforms (Continued)
V+
D1
CL
VO
GND
VVIN
= 3V
RG
VG
SWITCH ΔVO
INX
OFF ON
INX
OFF OFF
OFF
ON
Q = ΔVO x CL
OUTPUT
0V, 2.4V
ANALYZER
+15V
C V+
0dBm VS
SIGNAL
GENERATOR
RL
GND
IN1
VD
IN2
50Ω
0V, 2.4V
NC
V-
-15V
C
VD ANALYZER
RL
+15V
0dBm
SIGNAL
GENERATOR
C V+
V-
-15V
C
0V, 2.4V
VS
VD
INX
GND
+15V
C V+
GND
VS
VD
INX
V-
-15V
C
IMPEDANCE
ANALYZER
f = 1MHz
0V, 2.4V
DG411, DG412, DG413
8 FN3282.13
June 20, 2007
Application Information
Single Supply Operation
The DG411, DG412, DG413 can be operated with unipolar
supplies from 5V to 44V. These devices are characterized
and tested for single supply operation at 12V to facilitate the
majority of applications. To function properly, 12V is tied to
Pins 13 and 0V is tied to Pin 4.
Pin 12 still requires 5V for TTL compatible switching.
Summing Amplifier
When driving a high impedance, high capacitance load such
as shown in Figure 7, where the inputs to the summing
amplifier have some noise filtering, it is necessary to have
shunt switches for rapid discharge of the filter capacitor, thus
preventing offsets from occurring at the output.
VIN1
R1 R2
VOUT
+
-
C1
VIN2
R3 R4
C2
DG413
R5
R6
FIGURE 7. SUMMING AMPLIFIER
DG411, DG412, DG413
9 FN3282.13
June 20, 2007
Typical Performance Curves
FIGURE 8. ON RESISTANCE vs VD AND POWER SUPPLY
VOLTAGE
FIGURE 9. SWITCHING TIME vs TEMPERATURE
FIGURE 10. LEAKAGE CURRENTS vs ANALOG VOLTAGE FIGURE 11. SUPPLY CURRENT vs INPUT SWITCHING
FREQUENCY
FIGURE 12. CHARGE INJECTION vs SOURCE VOLTAGE FIGURE 13. CHARGE INJECTION vs DRAIN VOLTAGE
TA = +25°C
50
A: ±5V
B: ±8V
C: ±10V
D: ±12V
E: ±15V
F: ±20V
45
40
35
30
25
20
15
10
5
0
-20 -15 -10 -5 0 5 10 15 20
A
B
C
D
E
F
DRAIN VOLTAGE (V)
rDS(ON) (Ω)
V+ = 15V, V- = -15V
VL = 5V, VS = 10V
tON
tOFF
-55 -15 5 25 45 65 85 105 125
TEMPERATURE (°C)
-35
0
240
210
180
150
120
90
60
30
tON, tOFF (ns)
V+ = 15V, V- = -15V
VL = 5V, TA = +25°C
-15 -5 0 5 10 15
VS, VD (V)
-10
-60
20
10
0
-10
-20
-30
-40
-50
IS, ID (pA)
IS(OFF)
ID(OFF)
30
40
ID(ON) + IS(ON)
ISUPPLY
100mA
1mA
100μA
10μA
1μA
100nA
10nA
10mA
10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
IL
I+, I-
1SW 1SW
4SW
4SW
V+ = 15V, V- = -15V
VL = 5V
CL = 10nF
CL = 1nF
-15 -5 0 5 10 15
VS (V)
-10
-60
60
40
20
0
-20
-40
Q (pC)
80
100
V+ = 15V, V- = -15V
VL = 5V CL = 10nF
CL = 1nF
-15 -5 0 5 10 15
VD (V)
-10
-60
60
40
20
0
-20
-40
Q (pC)
100
140
120
80
V+ = 15V, V- = -15V
VL = 5V
DG411, DG412, DG413
10 FN3282.13
June 20, 2007
Die Characteristics
DIE DIMENSIONS:
2760mm x 1780mm x 485mm
METALLIZATION:
Type: SiAl
Thickness: 12kÅ ±1kÅ
PASSIVATION:
Type: Nitride
Thickness: 8kÅ ±1kÅ
WORST CASE CURRENT DENSITY:
1.5 x 105 A/cm2
Metallization Mask Layout
DG411, DG412, DG413
S1 (3)
V- (4)
GND (5)
S4 (6)
D1 IN1 IN2
(11) S3
(12) VL
(13) V+ SUBSTRATE
(14) S2
(15) D2
(2) (1) (16)
D4 IN4 IN3 D3
(7) (8) (9) (10)
DG411, DG412, DG413
11 FN3282.13
June 20, 2007
DG411, DG412, DG413
Thin Shrink Small Outline Plastic Packages (TSSOP)
NOTES:
1. These package dimensions are within allowable dimensions of
JEDEC MO-153-AB, Issue E.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusion and gate burrs shall not exceed
0.15mm (0.006 inch) per side.
4. Dimension “E1” does not include interlead flash or protrusions.
Interlead flash and protrusions shall not exceed 0.15mm (0.006
inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual
index feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension “b” does not include dambar protrusion. Allowable
dambar protrusion shall be 0.08mm (0.003 inch) total in excess
of “b” dimension at maximum material condition. Minimum space
between protrusion and adjacent lead is 0.07mm (0.0027 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions
are not necessarily exact. (Angles in degrees)
α
INDEX
AREA
E1
D
N
1 2 3
-B-
0.10(0.004) M C A B S
e
-Ab
M
-CA1
A
SEATING PLANE
0.10(0.004)
c
E 0.25(0.010) M B M
L
0.25
0.010
GAUGE
PLANE
A2
0.05(0.002)
M16.173
16 LEAD THIN SHRINK SMALL OUTLINE PLASTIC PACKAGE
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A - 0.043 - 1.10 -
A1 0.002 0.006 0.05 0.15 -
A2 0.033 0.037 0.85 0.95 -
b 0.0075 0.012 0.19 0.30 9
c 0.0035 0.008 0.09 0.20 -
D 0.193 0.201 4.90 5.10 3
E1 0.169 0.177 4.30 4.50 4
e 0.026 BSC 0.65 BSC -
E 0.246 0.256 6.25 6.50 -
L 0.020 0.028 0.50 0.70 6
N 16 16 7
a 0o 8o 0o 8o -
Rev. 1 2/02
12 FN3282.13
June 20, 2007
DG411, DG412, DG413
Dual-In-Line Plastic Packages (PDIP)
NOTES:
1. Controlling Dimensions: INCH. In case of conflict between English and
Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of
Publication No. 95.
4. Dimensions A, A1 and L are measured with the package seated in JEDEC
seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions.
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
6. E and are measured with the leads constrained to be perpendicular
to datum .
7. eB and eC are measured at the lead tips with the leads unconstrained.
eC must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar
protrusions shall not exceed 0.010 inch (0.25mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).
eA
-CCL
E
eA
C
eB
eC
-BE1
INDEX 1 2 3 N/2
N
AREA
SEATING
BASE
PLANE
PLANE
-CD1
B1
B
e
D
D1
A2 A
L
A1
-A-
0.010 (0.25) M C A B S
E16.3 (JEDEC MS-001-BB ISSUE D)
16 LEAD DUAL-IN-LINE PLASTIC PACKAGE
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A - 0.210 - 5.33 4
A1 0.015 - 0.39 - 4
A2 0.115 0.195 2.93 4.95 -
B 0.014 0.022 0.356 0.558 -
B1 0.045 0.070 1.15 1.77 8, 10
C 0.008 0.014 0.204 0.355 -
D 0.735 0.775 18.66 19.68 5
D1 0.005 - 0.13 - 5
E 0.300 0.325 7.62 8.25 6
E1 0.240 0.280 6.10 7.11 5
e 0.100 BSC 2.54 BSC -
eA 0.300 BSC 7.62 BSC 6
eB - 0.430 - 10.92 7
L 0.115 0.150 2.93 3.81 4
N 16 16 9
Rev. 0 12/93
13
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
FN3282.13
June 20, 2007
DG411, DG412, DG413
Small Outline Plastic Packages (SOIC)
NOTES:
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of
Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006
inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above
the seating plane, shall not exceed a maximum value of 0.61mm
(0.024 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions are
not necessarily exact.
INDEX
AREA
E
D
N
1 2 3
-B-
0.25(0.010) M C A B S
e
-AL
B
M
-CA1
A
SEATING PLANE
0.10(0.004)
h x 45°
C
H 0.25(0.010) M B M
α
M16.15 (JEDEC MS-012-AC ISSUE C)
16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A 0.0532 0.0688 1.35 1.75 -
A1 0.0040 0.0098 0.10 0.25 -
B 0.013 0.020 0.33 0.51 9
C 0.0075 0.0098 0.19 0.25 -
D 0.3859 0.3937 9.80 10.00 3
E 0.1497 0.1574 3.80 4.00 4
e 0.050 BSC 1.27 BSC -
H 0.2284 0.2440 5.80 6.20 -
h 0.0099 0.0196 0.25 0.50 5
L 0.016 0.050 0.40 1.27 6
N 16 16 7
α 0° 8° 0° 8° -
Rev. 1 6/05
1
®
July 2004
HIP4081A
80V/2.5A Peak, High Frequency Full
Bridge FET Driver
The HIP4081A is a high frequency, medium voltage Full
Bridge N-Channel FET driver IC, available in 20 lead plastic
SOIC and DIP packages. The HIP4081A can drive every
possible switch combination except those which would
cause a shoot-through condition. The HIP4081A can switch
at frequencies up to 1MHz and is well suited to driving Voice
Coil Motors, high-frequency switching power amplifiers, and
power supplies.
For example, the HIP4081A can drive medium voltage brush
motors, and two HIP4081As can be used to drive high
performance stepper motors, since the short minimum
“on-time” can provide fine micro-stepping capability.
Short propagation delays of approximately 55ns maximizes
control loop crossover frequencies and dead-times which
can be adjusted to near zero to minimize distortion, resulting
in rapid, precise control of the driven load.
A similar part, the HIP4080A, includes an on-chip input
comparator to create a PWM signal from an external triangle
wave and to facilitate “hysteresis mode” switching.
The Application Note for the HIP4081A is the AN9405.
Features
• Independently Drives 4 N-Channel FET in Half Bridge or
Full Bridge Configurations
• Bootstrap Supply Max Voltage to 95VDC
• Drives 1000pF Load at 1MHz in Free Air at 50°C with Rise
and Fall Times of Typically 10ns
• User-Programmable Dead Time
• On-Chip Charge-Pump and Bootstrap Upper Bias
Supplies
• DIS (Disable) Overrides Input Control
• Input Logic Thresholds Compatible with 5V to 15V Logic
Levels
• Very Low Power Consumption
• Undervoltage Protection
• Pb-free Available
Applications
• Medium/Large Voice Coil Motors
• Full Bridge Power Supplies
• Switching Power Amplifiers
• High Performance Motor Controls
• Noise Cancellation Systems
• Battery Powered Vehicles
• Peripherals
• U.P.S.
Pinout
HIP4081A
(PDIP, SOIC)
TOP VIEW
Ordering Information
PART
NUMBER
TEMP RANGE
(°C) PACKAGE
PKG.
DWG. #
HIP4081AIP -40 to 85 20 Ld PDIP E20.3
HIP4081AIPZ
(Note)
-40 to 85 20 Ld PDIP
(Pb-free)
E20.3
HIP4081AIB -40 to 85 20 Ld SOIC (W) M20.3
HIP4081AIBZ
(Note)
-40 to 85 20 Ld SOIC (W)
(Pb-free)
M20.3
NOTE: Intersil Pb-free products employ special Pb-free material
sets; molding compounds/die attach materials and 100% matte tin
plate termination finish, which is compatible with both SnPb and
Pb-free soldering operations. Intersil Pb-free products are MSL
classified at Pb-free peak reflow temperatures that meet or exceed
the Pb-free requirements of IPC/JEDEC J Std-020B.
11
12
13
14
15
16
17
18
20
19
10
9
8
7
6
5
4
3
2
BHB 1
BHI
DIS
VSS
BLI
ALI
HDEL
AHI
LDEL
AHB
BHO
BLO
BLS
VDD
BHS
VCC
ALS
ALO
AHS
AHO
Data Sheet FN3659.7
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright Harris Corporation. Copyright Intersil Americas Inc. 2003, 2004. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
2
HIP4081A
Application Block Diagram
Functional Block Diagram (1/2 HIP4081A)
80V
GND
LOAD
HIP4081A
GND
12V
AHI
ALI
BLI
BHI BLO
BHS
BHO
ALO
AHS
AHO
CHARGE
PUMP
VDD
AHI
DIS
ALI
HDEL
LDEL
VSS
TURN-ON
DELAY
TURN-ON
DELAY
DRIVER
DRIVER
AHB
AHO
AHS
VCC
ALO
ALS
CBF
TO VDD (PIN 16)
CBS
DBS
HIGH VOLTAGE BUS ≤ 80VDC
+12VDC
LEVEL SHIFT
AND LATCH
14
10
11
12
15
13
16
7
3
6
8
9
4
BIAS
SUPPLY
UNDERVOLTAGE
3
Typical Application (PWM Mode Switching)
11
12
13
14
15
16
17
18
20
19
10
9
8
7
6
5
4
3
2
1 BHB
BHI
DIS
VSS
BLI
ALI
HDEL
AHI
LDEL
AHB
BHO
BLO
BLS
VDD
BHS
VCC
ALS
ALO
AHS
AHO
80V
12V
+
-
12V
DIS
GND
6V
GND
TO OPTIONAL
CURRENT CONTROLLER
PWM
LOAD
INPUT
HIP4081/HIP4081A
HIP4081A
4
HIP4081A
Absolute Maximum Ratings Thermal Information
Supply Voltage, VDD and VCC . . . . . . . . . . . . . . . . . . . . -0.3V to 16V
Logic I/O Voltages . . . . . . . . . . . . . . . . . . . . . . . -0.3V to VDD +0.3V
Voltage on AHS, BHS . . . -6.0V (Transient) to 80V (25°C to 125°C)
Voltage on AHS, BHS . . . -6.0V (Transient) to 70V (-55°C to 125°C)
Voltage on ALS, BLS . . . . . . . -2.0V (Transient) to +2.0V (Transient)
Voltage on AHB, BHB . . . . . . . . VAHS, BHS -0.3V to VAHS, BHS +VDD
Voltage on ALO, BLO . . . . . . . . . . . . .VALS, BLS -0.3V to VCC +0.3V
Voltage on AHO, BHO . . . . . . . VAHS, BHS -0.3V to VAHB, BHB +0.3V
Input Current, HDEL and LDEL . . . . . . . . . . . . . . . . . . -5mA to 0mA
Phase Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V/ns
NOTE: All Voltages relative to VSS, unless otherwise specified.
Thermal Resistance (Typical, Note 1) θJA (°C/W)
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
DIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Storage Temperature Range. . . . . . . . . . . . . . . . . . . -65°C to 150°C
Operating Max. Junction Temperature . . . . . . . . . . . . . . . . . . 125°C
Lead Temperature (Soldering 10s)). . . . . . . . . . . . . . . . . . . . . 300°C
(For SOIC - Lead Tips Only
Operating Conditions
Supply Voltage, VDD and VCC . . . . . . . . . . . . . . . . . . +9.5V to +15V
Voltage on ALS, BLS . . . . . . . . . . . . . . . . . . . . . . . . . -1.0V to +1.0V
Voltage on AHB, BHB . . . . . . . . . VAHS, BHS +5V to VAHS, BHS +15V
Input Current, HDEL and LDEL . . . . . . . . . . . . . . . .-500μA to -50μA
Operating Ambient Temperature Range . . . . . . . . . . .-40°C to 85°C
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and
TA = 25°C, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS
TJ = 25°C
TJS = -40°C TO
125°C
MIN TYP MAX MIN MAX UNITS
SUPPLY CURRENTS AND CHARGE PUMPS
VDD Quiescent Current IDD All inputs = 0V 8.5 10.5 14.5 7.5 14.5 mA
VDD Operating Current IDDO Outputs switching f = 500kHz 9.5 12.5 15.5 8.5 15.5 mA
VCC Quiescent Current ICC All Inputs = 0V, IALO = IBLO = 0 - 0.1 10 - 20 μA
VCC Operating Current ICCO f = 500kHz, No Load 1 1.25 2.0 0.8 3 mA
AHB, BHB Quiescent Current -
Qpump Output Current
IAHB, IBHB All Inputs = 0V, IAHO = IBHO = 0
VDD = VCC = VAHB = VBHB = 10V
-50 -30 -11 -60 -10 μA
AHB, BHB Operating Current IAHBO, IBHBO f = 500kHz, No Load 0.6 1.2 1.5 0.5 1.9 mA
AHS, BHS, AHB, BHB Leakage
Current
IHLK VBHS = VAHS = 80V,
VAHB = VBHB = 93V
- 0.02 1.0 - 10 μA
AHB-AHS, BHB-BHS Qpump
Output Voltage
VAHB-VAHS
VBHB-VBHS
IAHB = IAHB = 0, No Load 11.5 12.6 14.0 10.5 14.5 V
INPUT PINS: ALI, BLI, AHI, BHI, AND DIS
Low Level Input Voltage VIL Full Operating Conditions - - 1.0 - 0.8 V
High Level Input Voltage VIH Full Operating Conditions 2.5 - - 2.7 - V
Input Voltage Hysteresis - 35 - - - mV
Low Level Input Current IIL VIN = 0V, Full Operating Conditions -130 -100 -75 -135 -65 μA
High Level Input Current IIH VIN = 5V, Full Operating Conditions -1 - +1 -10 +10 μA
TURN-ON DELAY PINS: LDEL AND HDEL
LDEL, HDEL Voltage VHDEL, VLDEL IHDEL = ILDEL = -100μA 4.9 5.1 5.3 4.8 5.4 V
GATE DRIVER OUTPUT PINS: ALO, BLO, AHO, AND BHO
Low Level Output Voltage VOL IOUT = 100mA 0.7 0.85 1.0 0.5 1.1 V
High Level Output Voltage VCC-VOH IOUT = -100mA 0.8 0.95 1.1 0.5 1.2 V
Peak Pullup Current IO+ VOUT = 0V 1.7 2.6 3.8 1.4 4.1 A
5
HIP4081A
Peak Pulldown Current IO- VO UT = 12V 1.7 2.4 3.3 1.3 3.6 A
Undervoltage, Rising Threshold UV+ 8.1 8.8 9.4 8.0 9.5 V
Undervoltage, Falling Threshold UV- 7.6 8.3 8.9 7.5 9.0 V
Undervoltage, Hysteresis HYS 0.25 0.4 0.65 0.2 0.7 V
Switching Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K,
CL = 1000pF.
PARAMETER SYMBOL TEST CONDITIONS
TJ = 25°C
TJS = -40°C
TO 125°C
MIN TYP MAX MIN MAX UNITS
Lower Turn-off Propagation Delay
(ALI-ALO, BLI-BLO)
TLPHL - 30 60 - 80 ns
Upper Turn-off Propagation Delay
(AHI-AHO, BHI-BHO)
THPHL - 35 70 - 90 ns
Lower Turn-on Propagation Delay
(ALI-ALO, BLI-BLO)
TLPLH RHDEL = RLDEL = 10K - 45 70 - 90 ns
Upper Turn-on Propagation Delay
(AHI-AHO, BHI-BHO)
THPLH RHDEL = RLDEL = 10K - 60 90 - 110 ns
Rise Time TR - 10 25 - 35 ns
Fall Time TF - 10 25 - 35 ns
Turn-on Input Pulse Width TPWIN-ON RHDEL = RLDEL = 10K 50 - - 50 - ns
Turn-off Input Pulse Width TPWIN-OFF RHDEL = RLDEL = 10K 40 - - 40 - ns
Turn-on Output Pulse Width TPWOUT-ON RHDEL = RLDEL = 10K 40 - - 40 - ns
Turn-off Output Pulse Width TPWOUT-OFF RHDEL = RLDEL = 10K 30 - - 30 - ns
Disable Turn-off Propagation Delay
(DIS - Lower Outputs)
TDISLOW - 45 75 - 95 ns
Disable Turn-off Propagation Delay
(DIS - Upper Outputs)
TDISHIGH - 55 85 - 105 ns
Disable to Lower Turn-on Propagation Delay
(DIS - ALO and BLO)
TDLPLH - 40 70 - 90 ns
Refresh Pulse Width (ALO and BLO) TREF-PW 240 410 550 200 600 ns
Disable to Upper Enable (DIS - AHO and BHO) TUEN - 450 620 - 690 ns
TRUTH TABLE
INPUT OUTPUT
ALI, BLI AHI, BHI U/V DIS ALO, BLO AHO, BHO
X X X 1 0 0
1 X 0 0 1 0
0 1 0 0 0 1
0 0 0 0 0 0
X X 1 X 0 0
NOTE: X signifies that input can be either a “1” or “0”.
Electrical Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and
TA = 25°C, Unless Otherwise Specified (Continued)
PARAMETER SYMBOL TEST CONDITIONS
TJ = 25°C
TJS = -40°C TO
125°C
MIN TYP MAX MIN MAX UNITS
6
HIP4081A
Pin Descriptions
PIN
NUMBER SYMBOL DESCRIPTION
1 BHB B High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap
diode and positive side of bootstrap capacitor to this pin. Internal charge pump supplies 30μA out of this pin to
maintain bootstrap supply. Internal circuitry clamps the bootstrap supply to approximately 12.8V.
2 BHI B High-side Input. Logic level input that controls BHO driver (Pin 20). BLI (Pin 5) high level input overrides BHI high
level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 3) high level input overrides BHI high level
input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD).
3 DIS DISable input. Logic level input that when taken high sets all four outputs low. DIS high overrides all other inputs.
When DIS is taken low the outputs are controlled by the other inputs. The pin can be driven by signal levels of 0V to
15V (no greater than VDD).
4 VSS Chip negative supply, generally will be ground.
5 BLI B Low-side Input. Logic level input that controls BLO driver (Pin 18). If BHI (Pin 2) is driven high or not connected
externally then BLI controls both BLO and BHO drivers, with dead time set by delay currents at HDEL and LDEL (Pin
8 and 9). DIS (Pin 3) high level input overrides BLI high level input. The pin can be driven by signal levels of 0V to 15V
(no greater than VDD).
6 ALI A Low-side Input. Logic level input that controls ALO driver (Pin 13). If AHI (Pin 7) is driven high or not connected
externally then ALI controls both ALO and AHO drivers, with dead time set by delay currents at HDEL and LDEL (Pin
8 and 9). DIS (Pin 3) high level input overrides ALI high level input. The pin can be driven by signal levels of 0V to 15V
(no greater than VDD).
7 AHI A High-side Input. Logic level input that controls AHO driver (Pin 11). ALI (Pin 6) high level input overrides AHI high
level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 3) high level input overrides AHI high level
input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD).
8 HDEL High-side turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the turn-on delay of
both high-side drivers. The low-side drivers turn-off with no adjustable delay, so the HDEL resistor guarantees no
shoot-through by delaying the turn-on of the high-side drivers. HDEL reference voltage is approximately 5.1V.
9 LDEL Low-side turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the turn-on delay of
both low-side drivers. The high-side drivers turn-off with no adjustable delay, so the LDEL resistor guarantees no
shoot-through by delaying the turn-on of the low-side drivers. LDEL reference voltage is approximately 5.1V.
10 AHB A High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap
diode and positive side of bootstrap capacitor to this pin. Internal charge pump supplies 30μA out of this pin to
maintain bootstrap supply. Internal circuitry clamps the bootstrap supply to approximately 12.8V.
11 AHO A High-side Output. Connect to gate of A High-side power MOSFET.
12 AHS A High-side Source connection. Connect to source of A High-side power MOSFET. Connect negative side of
bootstrap capacitor to this pin.
13 ALO A Low-side Output. Connect to gate of A Low-side power MOSFET.
14 ALS A Low-side Source connection. Connect to source of A Low-side power MOSFET.
15 VCC Positive supply to gate drivers. Must be same potential as VDD (Pin 16). Connect to anodes of two bootstrap diodes.
16 VDD Positive supply to lower gate drivers. Must be same potential as VCC (Pin 15). De-couple this pin to VSS (Pin 4).
17 BLS B Low-side Source connection. Connect to source of B Low-side power MOSFET.
18 BLO B Low-side Output. Connect to gate of B Low-side power MOSFET.
19 BHS B High-side Source connection. Connect to source of B High-side power MOSFET. Connect negative side of
bootstrap capacitor to this pin.
20 BHO B High-side Output. Connect to gate of B High-side power MOSFET.
7
HIP4081A
Timing Diagrams
FIGURE 1. INDEPENDENT MODE
FIGURE 2. BISTATE MODE
FIGURE 3. DISABLE FUNCTION
U/V = DIS = 0
XLI
XHI
XLO
XHO
TLPHL THPHL
THPLH TLPLH TR
(10% - 90%)
TF
(10% - 90%)
X = A OR B, A AND B HALVES OF BRIDGE CONTROLLER ARE INDEPENDENT
U/V = DIS = 0
XLI
XHI = HI OR NOT CONNECTED
XLO
XHO
(10% - 90%) (10% - 90%)
U/V OR DIS
XLI
XHI
XLO
XHO
TDLPLH TDIS
TUEN
TREF-PW
8
HIP4081A
Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K
and TA = 25°C, Unless Otherwise Specified
FIGURE 4. QUIESCENT IDD SUPPLY CURRENT vs VDD
SUPPLY VOLTAGE
FIGURE 5. IDDO, NO-LOAD IDD SUPPLY CURRENT vs
FREQUENCY (kHz)
FIGURE 6. SIDE A, B FLOATING SUPPLY BIAS CURRENT vs
FREQUENCY (LOAD = 1000pF)
FIGURE 7. ICCO, NO-LOAD ICC SUPPLY CURRENT vs
FREQUENCY (kHz) TEMPERATURE
FIGURE 8. IAHB, IBHB, NO-LOAD FLOATING SUPPLY BIAS
CURRENT vs FREQUENCY
FIGURE 9. ALI, BLI, AHI, BHI LOW LEVEL INPUT CURRENT IIL
vs TEMPERATURE
6 8 10 12 14
2.0
4.0
6.0
8.0
10.0
12.0
14.0
IDD SUPPLY CURRENT (mA)
VDD SUPPLY VOLTAGE (V)
0 100 200 300 400 500 600 700 800 900 1000
8.0
8.5
9.0
9.5
10.0
10.5
11.0
IDD SUPPLY CURRENT (mA)
SWITCHING FREQUENCY (kHz)
0 100 200 300 400 500 600 700 800 900 1000
0.0
5.0
10.0
15.0
20.0
25.0
30.0
FLOATING SUPPLY BIAS CURRENT (mA)
SWITCHING FREQUENCY (kHz) 0 100 200 300 400 500 600 700 800 900 1000
0.0
1.0
2.0
3.0
4.0
5.0
ICC SUPPLY CURRENT (mA)
SWITCHING FREQUENCY (kHz)
75°C
25°C
125°C
-40°C
0°C
0.5
1
1.5
2
2.5
0 200 400 600 800 1000
FLOATING SUPPLY BIAS CURRENT (mA)
SWITCHING FREQUENCY (kHz)
-50 -25 0 25 50 75 100 125
-120
-110
-100
-90
LOW LEVEL INPUT CURRENT (μA)
JUNCTION TEMPERATURE (°C)
9
HIP4081A
Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K
and TA = 25°C, Unless Otherwise Specified
FIGURE 10. AHB - AHS, BHB - BHS NO-LOAD CHARGE PUMP
VOLTAGE vs TEMPERATURE
FIGURE 11. UPPER DISABLE TURN-OFF PROPAGATION
DELAY TDISHIGH vs TEMPERATURE
FIGURE 12. DISABLE TO UPPER ENABLE, TUEN,
PROPAGATION DELAY vs TEMPERATURE
FIGURE 13. LOWER DISABLE TURN-OFF PROPAGATION
DELAY TDISLOW vs TEMPERATURE
FIGURE 14. TREF-PW REFRESH PULSE WIDTH vs
TEMPERATURE
FIGURE 15. DISABLE TO LOWER ENABLE TDLPLH
PROPAGATION DELAY vs TEMPERATURE
-40 -20 0 20 40 60 80 100 120
10.0
11.0
12.0
13.0
14.0
15.0
NO-LOAD FLOATING CHARGE PUMP VOLTAGE (V)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
425
450
475
500
525
-50 -25 0 25 50 75 100 125 150
JUNCTION TEMPERATURE (°C)
PROPAGATION DELAY (ns)
-40 -20 0 20 40 60 80 100 120
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
350
375
400
425
450
-50 -25 0 25 50 75 100 125 150
REFRESH PULSE WIDTH (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
20
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
10
HIP4081A
FIGURE 16. UPPER TURN-OFF PROPAGATION DELAY THPHL
vs TEMPERATURE
FIGURE 17. UPPER TURN-ON PROPAGATION DELAY THPLH vs
TEMPERATURE
FIGURE 18. LOWER TURN-OFF PROPAGATION DELAY TLPHL
vs TEMPERATURE
FIGURE 19. LOWER TURN-ON PROPAGATION DELAY TLPLH vs
TEMPERATURE
FIGURE 20. GATE DRIVE FALL TIME TF vs TEMPERATURE FIGURE 21. GATE DRIVE RISE TIME TR vs TEMPERATURE
Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K
and TA = 25°C, Unless Otherwise Specified (Continued)
-40 -20 0 20 40 60 80 100 120
20
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
20
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
20
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
20
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
8.5
9.5
10.5
11.5
12.5
13.5
GATE DRIVE FALL TIME (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
8.5
9.5
10.5
11.5
12.5
13.5
TURN-ON RISE TIME (ns)
JUNCTION TEMPERATURE (°C)
11
HIP4081A
Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL =
100K and TA = 25°C, Unless Otherwise Specified
FIGURE 22. VLDEL, VHDEL VOLTAGE vs TEMPERATURE FIGURE 23. HIGH LEVEL OUTPUT VOLTAGE VCC - VOH vs BIAS
SUPPLY AND TEMPERATURE AT 100mA
FIGURE 24. LOW LEVEL OUTPUT VOLTAGE VOL vs BIAS
SUPPLY AND TEMPERATURE AT 100mA
FIGURE 25. PEAK PULLDOWN CURRENT IO vs BIAS SUPPLY
VOLTAGE
FIGURE 26. PEAK PULLUP CURRENT IO+ vs BIAS SUPPLY
VOLTAGE
FIGURE 27. LOW VOLTAGE BIAS CURRENT IDD (LESS
QUIESCENT COMPONENT) vs FREQUENCY AND
GATE LOAD CAPACITANCE
-40 -20 0 20 40 60 80 100 120
4.0
4.5
5.0
5.5
6.0
HDEL, LDEL INPUT VOLTAGE (V)
JUNCTION TEMPERATURE (°C)
10 12 14
0
250
500
750
1000
1250
1500
VCC - VOH (mV)
BIAS SUPPLY VOLTAGE (V)
75°C
25°C
125°C
-40°C
0°C
12 14
0
250
500
750
1000
1250
1500
VOL (mV)
BIAS SUPPLY VOLTAGE (V)
10
75°C
25°C
125°C
-40°C
0°C
6 7 8 9 10 11 12 13 14 15 16
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
GATE DRIVE SINK CURRENT (A)
VDD, VCC, VAHB, VBHB (V)
6 7 8 9 10 11 12 13 14 15 16
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
GATE DRIVE SINK CURRENT (A)
VDD, VCC, VAHB, VBHB (V)
1 2 5 10 20 50 100 200 500 1000
0.1
1
10
100
500
50
5
0.5
200
20
2
0.2
LOW VOLTAGE BIAS CURRENT (mA)
SWITCHING FREQUENCY (kHz)
100pF
1,000pF
10,000pF
3,000pF
12
HIP4081A
FIGURE 28. HIGH VOLTAGE LEVEL-SHIFT CURRENT vs FREQUENCY AND BUS VOLTAGE
FIGURE 29. UNDERVOLTAGE LOCKOUT vs TEMPERATURE FIGURE 30. MINIMUM DEAD-TIME vs DEL RESISTANCE
Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL =
100K and TA = 25°C, Unless Otherwise Specified (Continued)
10 20 50 100 200 500 1000
10
100
1000
20
50
200
500
LEVEL-SHIFT CURRENT (μA)
SWITCHING FREQUENCY (kHz)
8.2
8.4
8.6
8.8
9.0
50 25 0 25 50 75 100 125 150
UV+
UVTEMPERATURE
(°C)
BIAS SUPPLY VOLTAGE, VDD (V)
10 50 100 150 200 250
0
30
60
90
120
150
HDEL/LDEL RESISTANCE (kΩ)
DEAD-TIME (ns)
13
HIP4081A
1
2
3
1
2
3
1
2
3
5 6
1
2
3
1 2
13 12
1
2
3
11 10
1
2
3
1
2
3
4
5
6
7
8
9
10 11
12
13
14
15
16
17
18
19
20
L1
R21
Q1
Q3
Q4
R22
L2
R23 C1
C3
JMPR1
R24
R30 R31
C2
R34
C4
CR2
CR1
Q2
JMPR5
JMPR3
JMPR2
JMPR4
R33
C5
C6
CX CY
C8
U1
CW CW
+
B+
IN2 IN1
BO
OUT/BLI
IN-/AHI
COM
IN+/ALI +12V
+12V
BLS
AO
HEN/BHI
ALS
CD4069UB
CD4069UB
CD4069UB
CD4069UB
HIP4080A/81A
SECTION
CONTROL LOGIC
POWER SECTION
DRIVER SECTION
AHB AHO
LDEL AHS
HDEL ALO
IN-/AHI ALS
IN+/ALI VCC
OUT/BLI VDD
VSS BLS
DIS BLO
HEN/BHI BHS
BHB BHO
R29
U2
U2
U2
U2
3 4
9 8
R32
I
O
O
CD4069UB
CD4069UB
ENABLE IN
U2
U2
NOTES:
1. DEVICE CD4069UB PIN 7 = COM, PIN 14 = +12V.
2. COMPONENTS L1, L2, C1, C2, CX, CY, R30, R31, NOT SUPPLIED.
REFER TO APPLICATION NOTE FOR DESCRIPTION OF INPUT
LOGIC OPERATION TO DETERMINE JUMPER LOCATIONS FOR
JMPR1 - JMPR4.
FIGURE 31. HIP4081A EVALUATION PC BOARD SCHEMATIC
14
HIP4081A
R22 1
Q3
L1
JMPR2
JMPR5
R31
R33
CR2
R23
R24
R27
R28
R26
1
Q4
1
JMPR3 Q2
U1
R21
GND
L2
C3
C4
JMPR4
JMPR1
R30
CR1
U2
R34
R32
I
O
C8
R29
C7
C6
C5
CY
CX
1
Q1
COM
+12V
B+
IN1
IN2
AHO
BHO
ALO
BLO
BLS
BLS
LDEL
HDEL
DIS
ALS
ALS
O
+ +
HIP4080/81
FIGURE 32. HIP4081A EVALUATION BOARD SILKSCREEN
15
HIP4081A
Dual-In-Line Plastic Packages (PDIP)
NOTES:
1. Controlling Dimensions: INCH. In case of conflict between English
and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2
of Publication No. 95.
4. Dimensions A, A1 and L are measured with the package seated in
JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions.
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
6. E and are measured with the leads constrained to be perpendicular
to datum .
7. eB and eC are measured at the lead tips with the leads unconstrained.
eC must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar
protrusions shall not exceed 0.010 inch (0.25mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).
eA
-CCL
E
eA
C
eB
eC
-BE1
INDEX 1 2 3 N/2
N
AREA
SEATING
BASE
PLANE
PLANE
-CD1
B1
B
e
D
D1
A2 A
L
A1
-A-
0.010 (0.25) M C A B S
E20.3 (JEDEC MS-001-AD ISSUE D)
20 LEAD DUAL-IN-LINE PLASTIC PACKAGE
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A - 0.210 - 5.33 4
A1 0.015 - 0.39 - 4
A2 0.115 0.195 2.93 4.95 -
B 0.014 0.022 0.356 0.558 -
B1 0.045 0.070 1.55 1.77 8
C 0.008 0.014 0.204 0.355 -
D 0.980 1.060 24.89 26.9 5
D1 0.005 - 0.13 - 5
E 0.300 0.325 7.62 8.25 6
E1 0.240 0.280 6.10 7.11 5
e 0.100 BSC 2.54 BSC -
eA 0.300 BSC 7.62 BSC 6
eB - 0.430 - 10.92 7
L 0.115 0.150 2.93 3.81 4
N 20 20 9
Rev. 0 12/93
16
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
HIP4081A
Small Outline Plastic Packages (SOIC)
NOTES:
1. Symbols are defined in the “MO Series Symbol List” in Section
2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusion and gate burrs shall not exceed
0.15mm (0.006 inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead
flash and protrusions shall not exceed 0.25mm (0.010
inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual
index feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater
above the seating plane, shall not exceed a maximum value of
0.61mm (0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions
are not necessarily exact.
INDEX
AREA
E
D
N
1 2 3
-B-
0.25(0.010) M C A B S
e
-AL
B
M
-CA1
A
SEATING PLANE
0.10(0.004)
h x 45o
C
H
μ
0.25(0.010) M B M
α
M20.3 (JEDEC MS-013-AC ISSUE C)
20 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A 0.0926 0.1043 2.35 2.65 -
A1 0.0040 0.0118 0.10 0.30 -
B 0.014 0.019 0.35 0.49 9
C 0.0091 0.0125 0.23 0.32 -
D 0.4961 0.5118 12.60 13.00 3
E 0.2914 0.2992 7.40 7.60 4
e 0.050 BSC 1.27 BSC -
H 0.394 0.419 10.00 10.65 -
h 0.010 0.029 0.25 0.75 5
L 0.016 0.050 0.40 1.27 6
N 20 20 7
α 0o 8o 0o 8o -
Rev. 1 1/02
http://www.farnell.com/datasheets/32553.pdf
1
®
FN3663.5
HFA3101
Gilbert Cell UHF Transistor Array
The HFA3101 is an all NPN transistor array configured as a Multiplier Cell. Based on Intersil’s bonded wafer UHF-1 SOI process, this array achieves very high fT (10GHz) while maintaining excellent hFE and VBE matching characteristics that have been maximized through careful attention to circuit design and layout, making this product ideal for communication circuits. For use in mixer applications, the cell provides high gain and good cancellation of 2nd order distortion terms.
Pinout
HFA3101(SOIC)
TOP VIEW
Features
•Pb-free Available as an Option
•High Gain Bandwidth Product (fT) . . . . . . . . . . . . . 10GHz
•High Power Gain Bandwidth Product. . . . . . . . . . . . 5GHz
•Current Gain (hFE). . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
•Low Noise Figure (Transistor) . . . . . . . . . . . . . . . . . 3.5dB
•Excellent hFE and VBE Matching
•Low Collector Leakage Current . . . . . . . . . . . . . . <0.01nA
•Pin to Pin Compatible to UPA101
Applications
•Balanced Mixers
•Multipliers
•Demodulators/Modulators
•Automatic Gain Control Circuits
•Phase Detectors
•Fiber Optic Signal Processing
•Wireless Communication Systems
•Wide Band Amplification Stages
•Radio and Satellite Communications
•High Performance Instrumentation
Ordering Information
PART NUMBER (BRAND)
TEMP. RANGE (°C)
PACKAGE
PKG. DWG. #
HFA3101B
(H3101B)
-40 to 85
8 Ld SOIC
M8.15
HFA3101BZ
(H3101B) (Note)
-40 to 85
8 Ld SOIC
(Pb-free)
M8.15
HFA3101B96
(H3101B)
-40 to 85
8 Ld SOIC Tape and Reel
M8.15
HFA3101BZ96
(H3101B) (Note)
-40 to 85
8 Ld SOIC Tape and Reel (Pb-free)
M8.15
NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which is compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020C.
12348765Q5Q6Q1Q2Q3Q4NOTE: Q5 and Q6 -
2
Paralleled 3μm x
50μm Transistors Q1, Q2, Q3, Q4 -
Single 3μm x
50μm Transistors
Data Sheet
September 2004
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 1998, 2004. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
2
Absolute Maximum Ratings
Thermal Information
VCEO, Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . 8.0V
VCBO, Collector to Base Voltage. . . . . . . . . . . . . . . . . . . . . . . 12.0V
VEBO, Emitter to Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V
IC, Collector Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30mA
Operating Conditions
Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC
Thermal Resistance (Typical, Note 1)θJA (oC/W) SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . . .175oC
Maximum Junction Temperature (Plastic Package). . . . . . . . .150oC
Maximum Storage Temperature Range. . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300oC (SOIC - Lead Tips Only)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical SpecificationsTA = 25oC
PARAMETER
TEST CONDITIONS
(NOTE 2)
TEST LEVEL
MIN
TYP
MAX
UNITS
Collector to Base Breakdown Voltage, V(BR)CBO, Q1 thru Q6
IC = 100μA, IE = 0
A
12
18
-
V
Collector to Emitter Breakdown Voltage, V(BR)CEO,
Q5 and Q6
IC = 100μA, IB = 0
A
8
12
-
V
Emitter to Base Breakdown Voltage, V(BR)EBO, Q1 thru Q6
IE = 10μA, IC = 0
A
5.5
6
-
V
Collector Cutoff Current, ICBO, Q1 thru Q4
VCB = 8V, IE = 0
A
-
0.1
10
nA
Emitter Cutoff Current, IEBO, Q5 and Q6
VEB = 1V, IC = 0
A
-
-
200
nA
DC Current Gain, hFE, Q1 thru Q6
IC = 10mA, VCE = 3V
A
40
70
-
Collector to Base Capacitance, CCB
Q1 thru Q4
VCB = 5V, f = 1MHz
C
-
0.300
-
pF
Q5 and Q6
-
0.600
-
pF
Emitter to Base Capacitance, CEB
Q1 thru Q4
VEB = 0, f = 1MHz
B
-
0.200
-
pF
Q5 and Q6
-
0.400
-
pF
Current Gain-Bandwidth Product, fT
Q1 thru Q4
IC = 10mA, VCE = 5V
C
-
10
-
GHz
Q5 and Q6
IC = 20mA, VCE = 5V
C
-
10
-
GHz
Power Gain-Bandwidth Product, fMAX
Q1 thru Q4
IC = 10mA, VCE = 5V
C
-
5
-
GHz
Q5 and Q6
IC = 20mA, VCE = 5V
C
-
5
-
GHz
Available Gain at Minimum Noise Figure, GNFMIN,
Q5 and Q6
IC = 5mA, VCE = 3V
f = 0.5GHz
C
-
17.5
-
dB
f = 1.0GHz
C
-
11.9
-
dB
Minimum Noise Figure, NFMIN, Q5 and Q6
IC = 5mA, VCE = 3V
f = 0.5GHz
C
-
1.7
-
dB
f = 1.0GHz
C
-
2.0
-
dB
50Ω Noise Figure, NF50Ω, Q5 and Q6
IC = 5mA, VCE = 3V
f = 0.5GHz
C
-
2.25
-
dB
f = 1.0GHz
C
-
2.5
-
dB
DC Current Gain Matching, hFE1/hFE2, Q1 and Q2,
Q3 and Q4, and Q5 and Q6
IC = 10mA, VCE = 3V
A
0.9
1.0
1.1
Input Offset Voltage, VOS, (Q1 and Q2), (Q3 and Q4),
(Q5 and Q6)
IC = 10mA, VCE = 3V
A
-
1.5
5
mV
Input Offset Current, IC, (Q1 and Q2), (Q3 and Q4),
(Q5 and Q6)
IC = 10mA, VCE = 3V
A
-
5
25
μA
Input Offset Voltage TC, dVOS/dT, (Q1 and Q2, Q3 and Q4, Q5 and Q6)
IC = 10mA, VCE = 3V
C
-
0.5
-
μV/oC
Collector to Collector Leakage, ITRENCH-LEAKAGE
ΔVTEST = 5V
B
-
0.01
-
nA
NOTE:
2. Test Level: A. Production Tested, B. Typical or Guaranteed Limit Based on Characterization, C. Design Typical for Information Only.
HFA3101
3-3
PSPICE Model for a 3 μm x 50μm Transistor
.Model NUHFARRY NPN
+ (IS = 1.840E-16
XTI = 3.000E+00
EG = 1.110E+00
VAF = 7.200E+01
+ VAR = 4.500E+00
BF = 1.036E+02
ISE = 1.686E-19
NE = 1.400E+00
+ IKF = 5.400E-02
XTB = 0.000E+00
BR = 1.000E+01
ISC = 1.605E-14
+ NC = 1.800E+00
IKR = 5.400E-02
RC = 1.140E+01
CJC = 3.980E-13
+ MJC = 2.400E-01
VJC = 9.700E-01
FC = 5.000E-01
CJE = 2.400E-13
+ MJE = 5.100E-01
VJE = 8.690E-01
TR = 4.000E-09
TF = 10.51E-12
+ ITF = 3.500E-02
XTF = 2.300E+00
VTF = 3.500E+00
PTF = 0.000E+00
+ XCJC = 9.000E-01
CJS = 1.689E-13
VJS = 9.982E-01
MJS = 0.000E+00
+ RE = 1.848E+00
RB = 5.007E+01
RBM = 1.974E+00
KF = 0.000E+00
+ AF = 1.000E+00)
Common Emitter S-Parameters of 3 μm x 50μm Transistor
FREQ. (Hz)
|S11|
PHASE(S11)
|S12|
PHASE(S12)
|S21|
PHASE(S21)
|S22|
PHASE(S22)
VCE = 5V and IC = 5mA
1.0E+08
0.83
-11.78
1.41E-02
78.88
11.07
168.57
0.97
-11.05
2.0E+08
0.79
-22.82
2.69E-02
68.63
10.51
157.89
0.93
-21.35
3.0E+08
0.73
-32.64
3.75E-02
59.58
9.75
148.44
0.86
-30.44
4.0E+08
0.67
-41.08
4.57E-02
51.90
8.91
140.36
0.79
-38.16
5.0E+08
0.61
-48.23
5.19E-02
45.50
8.10
133.56
0.73
-44.59
6.0E+08
0.55
-54.27
5.65E-02
40.21
7.35
127.88
0.67
-49.93
7.0E+08
0.50
-59.41
6.00E-02
35.82
6.69
123.10
0.62
-54.37
8.0E+08
0.46
-63.81
6.27E-02
32.15
6.11
119.04
0.57
-58.10
9.0E+08
0.42
-67.63
6.47E-02
29.07
5.61
115.57
0.53
-61.25
1.0E+09
0.39
-70.98
6.63E-02
26.45
5.17
112.55
0.50
-63.96
1.1E+09
0.36
-73.95
6.75E-02
24.19
4.79
109.91
0.47
-66.31
1.2E+09
0.34
-76.62
6.85E-02
22.24
4.45
107.57
0.45
-68.37
1.3E+09
0.32
-79.04
6.93E-02
20.53
4.15
105.47
0.43
-70.19
1.4E+09
0.30
-81.25
7.00E-02
19.02
3.89
103.57
0.41
-71.83
1.5E+09
0.28
-83.28
7.05E-02
17.69
3.66
101.84
0.40
-73.31
1.6E+09
0.27
-85.17
7.10E-02
16.49
3.45
100.26
0.39
-74.66
1.7E+09
0.25
-86.92
7.13E-02
15.41
3.27
98.79
0.38
-75.90
1.8E+09
0.24
-88.57
7.17E-02
14.43
3.10
97.43
0.37
-77.05
1.9E+09
0.23
-90.12
7.19E-02
13.54
2.94
96.15
0.36
-78.12
2.0E+09
0.22
-91.59
7.21E-02
12.73
2.80
94.95
0.35
-79.13
2.1E+09
0.21
-92.98
7.23E-02
11.98
2.68
93.81
0.35
-80.09
2.2E+09
0.20
-94.30
7.25E-02
11.29
2.56
92.73
0.34
-80.99
2.3E+09
0.20
-95.57
7.27E-02
10.64
2.45
91.70
0.34
-81.85
2.4E+09
0.19
-96.78
7.28E-02
10.05
2.35
90.72
0.33
-82.68
2.5E+09
0.18
-97.93
7.29E-02
9.49
2.26
89.78
0.33
-83.47
2.6E+09
0.18
-99.05
7.30E-02
8.96
2.18
88.87
0.33
-84.23
2.7E+09
0.17
-100.12
7.31E-02
8.47
2.10
88.00
0.33
-84.97
HFA3101
4
2.8E+09
0.17
-101.15
7.31E-02
8.01
2.02
87.15
0.33
-85.68
2.9E+09
0.16
-102.15
7.32E-02
7.57
1.96
86.33
0.33
-86.37
3.0E+09
0.16
-103.11
7.32E-02
7.16
1.89
85.54
0.33
-87.05
VCE = 5V and IC = 10mA
1.0E+08
0.72
-16.43
1.27E-02
75.41
15.12
165.22
0.95
-14.26
2.0E+08
0.67
-31.26
2.34E-02
62.89
13.90
152.04
0.88
-26.95
3.0E+08
0.60
-43.76
3.13E-02
52.58
12.39
141.18
0.79
-37.31
4.0E+08
0.53
-54.00
3.68E-02
44.50
10.92
132.57
0.70
-45.45
5.0E+08
0.47
-62.38
4.05E-02
38.23
9.62
125.78
0.63
-51.77
6.0E+08
0.42
-69.35
4.31E-02
33.34
8.53
120.37
0.57
-56.72
7.0E+08
0.37
-75.26
4.49E-02
29.47
7.62
116.00
0.51
-60.65
8.0E+08
0.34
-80.36
4.63E-02
26.37
6.86
112.39
0.47
-63.85
9.0E+08
0.31
-84.84
4.72E-02
23.84
6.22
109.36
0.44
-66.49
1.0E+09
0.29
-88.83
4.80E-02
21.75
5.69
106.77
0.41
-68.71
1.1E+09
0.27
-92.44
4.86E-02
20.00
5.23
104.51
0.39
-70.62
1.2E+09
0.25
-95.73
4.90E-02
18.52
4.83
102.53
0.37
-72.28
1.3E+09
0.24
-98.75
4.94E-02
17.25
4.49
100.75
0.35
-73.76
1.4E+09
0.22
-101.55
4.97E-02
16.15
4.19
99.16
0.34
-75.08
1.5E+09
0.21
-104.15
4.99E-02
15.19
3.93
97.70
0.33
-76.28
1.6E+09
0.20
-106.57
5.01E-02
14.34
3.70
96.36
0.32
-77.38
1.7E+09
0.20
-108.85
5.03E-02
13.60
3.49
95.12
0.31
-78.41
1.8E+09
0.19
-110.98
5.05E-02
12.94
3.30
93.96
0.31
-79.37
1.9E+09
0.18
-113.00
5.06E-02
12.34
3.13
92.87
0.30
-80.27
2.0E+09
0.18
-114.90
5.07E-02
11.81
2.98
91.85
0.30
-81.13
2.1E+09
0.17
-116.69
5.08E-02
11.33
2.84
90.87
0.30
-81.95
2.2E+09
0.17
-118.39
5.09E-02
10.89
2.72
89.94
0.29
-82.74
2.3E+09
0.16
-120.01
5.10E-02
10.50
2.60
89.06
0.29
-83.50
2.4E+09
0.16
-121.54
5.11E-02
10.13
2.49
88.21
0.29
-84.24
2.5E+09
0.16
-122.99
5.12E-02
9.80
2.39
87.39
0.29
-84.95
2.6E+09
0.15
-124.37
5.12E-02
9.49
2.30
86.60
0.29
-85.64
2.7E+09
0.15
-125.69
5.13E-02
9.21
2.22
85.83
0.29
-86.32
2.8E+09
0.15
-126.94
5.13E-02
8.95
2.14
85.09
0.29
-86.98
2.9E+09
0.15
-128.14
5.14E-02
8.71
2.06
84.36
0.29
-87.62
3.0E+09
0.14
-129.27
5.15E-02
8.49
1.99
83.66
0.29
-88.25
Common Emitter S-Parameters of 3 μm x 50 μm Transistor (Continued)
FREQ. (Hz) |S11| PHASE(S11) |S12| PHASE(S12) |S21| PHASE(S21) |S22| PHASE(S22)
HFA3101
3-5
Application Information
The HFA3101 array is a very versatile RF Building block. It has been carefully laid out to improve its matching properties, bringing the distortion due to area mismatches, thermal distribution, betas and ohmic resistances to a minimum.
The cell is equivalent to two differential stages built as two “variable transconductance multipliers” in parallel, with their outputs cross coupled. This configuration is well known in the industry as a Gilbert Cell which enables a four quadrant multiplication operation.
Due to the input dynamic range restrictions for the input levels at the upper quad transistors and lower tail transistors, the HFA3101 cell has restricted use as a linear four quadrant multiplier. However, its configuration is well suited for uses where its linear response is limited to one of the inputs only, as in modulators or mixer circuit applications. Examples of these circuits are up converters, down converters, frequency doublers and frequency/phase detectors.
Although linearization is still an issue for the lower pair input, emitter degeneration can be used to improve the dynamic range and consequent linearity. The HFA3101 has the lower pair emitters brought to external pins for this purpose.
In modulators applications, the upper quad transistors are used in a switching mode where the pairs Q1/Q2 and Q3/Q4 act as non saturating high speed switches. These switches are controlled by the signal often referred as the carrier input. The signal driving the lower pair Q5/Q6 is commonly used as the modulating input. This signal can be linearly transferred to the output by either the use of low signal levels (Well below the thermal voltage of 26mV) or by the use of emitter degeneration. The chopped waveform appearing at the output of the upper pair (Q1 to Q4) resembles a signal that is multiplied by +1 or -1 at every half cycle of the switching waveform.
Figure 1 shows the typical input waveforms where the frequency of the carrier is higher than the modulating signal. The output waveform shows a typical suppressed carrier output of an up converter or an AM signal generator.
Carrier suppression capability is a property of the well known Balanced modulator in which the output must be zero when one or the other input (carrier or modulating signal) is equal to zero. however, at very high frequencies, high frequency mismatches and AC offsets are always present and the suppression capability is often degraded causing carrier and modulating feedthrough to be present.
Being a frequency translation circuit, the balanced modulator has the properties of translating the modulating frequency (ωM) to the carrier frequency (ωC), generating the two side bands ωU = ωC + ωM and ωL = ωC - ωM. Figure 2 shows some translating schemes being used by balanced mixers.
CARRIER SIGNALMODULATING SIGNALDIFFERENTIAL OUTPUT+1-1FIGURE 1. TYPICAL MODULATOR SIGNALS
FIGURE 2A. UP CONVERSION OR SUPPRESSED CARRIER AM
FIGURE 2B. DOWN CONVERSION
FIGURE 2C. ZERO IF OR DIRECT DOWN CONVERSION
FIGURE 2. MODULATOR FREQUENCY SPECTRUM
ωC + ωMωC - ωMωC
IF (ωC - ωM)FOLDED BACKωMωC
BASEBANDωCωM
HFA3101
6
The use of the HFA3101 as modulators has several advantages when compared to its counterpart, the diode doublebalanced mixer, in which it is required to receive enough energy to drive the diodes into a switching mode and has also some requirements depending on the frequency range desired, of different transformers to suit specific frequency responses. The HFA3101 requires very low driving capabilities for its carrier input and its frequency response is limited by the fT of the devices, the design and the layout techniques being utilized.
Up conversion uses, for UHF transmitters for example, can be performed by injecting a modulating input in the range of 45MHz to 130MHz that carries the information often called IF (Intermediate frequency) for up conversion (The IF signal has been previously modulated by some modulation scheme from a baseband signal of audio or digital information) and by injecting the signal of a local oscillator of a much higher frequency range from 600MHz to 1.2GHz into the carrier input. Using the example of a 850MHz carrier input and a 70MHz IF, the output spectrum will contain a upper side band of 920MHz, a lower side band of 780MHz and some of the carrier (850MHz) and IF (70MHz) feedthrough. A Band pass filter at the output can attenuate the undesirable signals and the 920MHz signal can be routed to a transmitter RF power amplifier.
Down conversion, as the name implies, is the process used to translate a higher frequency signal to a lower frequency range conserving the modulation information contained in the higher frequency signal. One very common typical down conversion use for example, is for superheterodyne radio receivers where a translated lower frequency often referred as intermediate frequency (IF) is used for detection or demodulation of the baseband signal. Other application uses include down conversion for special filtering using frequency translation methods.
An oscillator referred as the local oscillator (LO) drives the upper quad transistors of the cell with a frequency called ωC. The lower pair is driven by the RF signal of frequency ωM to be translated to a lower frequency IF. The spectrum of the IF output will contain the sum and difference of the frequencies ωC and ωM. Notice that the difference can become negative when the frequency of the local oscillator is lower than the incoming frequency and the signal is folded back as in Figure 2.
NOTE: The acronyms RF, IF and LO are often interchanged in the industry depending on the application of the cell as mixers or modulators. The output of the cell also contains multiples of the frequency of the signal being fed to the upper quad pair of transistors because of the switching action equivalent to a square wave multiplication. In practice, however, not only the odd multiples in the case of a symmetrical square wave but some of the even multiples will also appear at the output spectrum due to the nature of the actual switching waveform and high frequency performance. By-products of the form M*ωC + N*ωM with M and N being positive or negative integers are also expected to be present at the output and their levels are carefully examined and minimized by the design. This distortion is considered one of the figures of merit for a mixer application.
The process of frequency doubling is also understood by having the same signal being fed to both modulating and carrier ports. The output frequency will be the sum of ωC and ωM which is equivalent to the product of the input frequency by 2 and a zero Hz or DC frequency equivalent to the difference of ωC and ωM. Figure 2 also shows one technique in use today where a process of down conversion named zero IF is made by using a local oscillator with a very pure signal frequency equal to the incoming RF frequency signal that contains a baseband (audio or digital signal) modulation. Although complex, the extraction or detection of the signal is straightforward.
Another useful application of the HFA3101 is its use as a high frequency phase detector where the two signals are fed to the carrier and modulation ports and the DC information is extracted from its output. In this case, both ports are utilized in a switching mode or overdrive, such that the process of multiplication takes place in a quasi digital form (2 square waves). One application of a phase detector is frequency or phase demodulation where the FM signal is split before the modulating and carrier ports. The lower input port is always 90 degrees apart from the carrier input signal through a high Q tuned phase shift network. The network, being tuned for a precise 90 degrees shift at a nominal frequency, will set the two signals 90 degrees apart and a quiescent output DC level will be present at the output. When the input signal is frequency modulated, the phase shift of the signal coming from the network will deviate from 90 degrees proportional to the frequency deviation of the FM signal and a DC variation at the output will take place, resembling the demodulated FM signal.
The HFA3101 could also be used for quadrature detection, (I/Q demodulation), AGC control with limited range, low level multiplication to name a few other applications.
Biasing
Various biasing schemes can be employed for use with the HFA3101. Figure 3 shows the most common schemes. The biasing method is a choice of the designer when cost, thermal dependence, voltage overheads and DC balancing properties are taken into consideration.
Figure 3A shows the simplest form of biasing the HFA3101. The current source required for the lower pair is set by the voltage across the resistor RBIAS less a VBE drop of the lower transistor. To increase the overhead, collector resistors are substituted by an RF choke as the upper pair functions as a current source for AC signals. The bases of the upper and lower transistors are biased by RB1 and RB2 respectively. The voltage drop across the resistor R2 must be higher than a VBE with an increase sufficient to assure that the collector to base junctions of the lower pair are always reverse biased. Notice that this same voltage also sets the VCE of operation of the lower pair which is important for the optimization of gain. Resistors REE are nominally zero for applications where the input signals are well below 25mV peak. Resistors REE are used to increase the linearity
HFA3101
3-7
of the circuit upon higher level signals. The drop across REE must be taken into consideration when setting the current source value.
Figure 3B depicts the use of a common resistor sharing the current through the cell which is used for temperature compensation as the lower pair VBE drop at the rate of -2mV/oC.
Figure 3C uses a split supply.
Design Example: Down Converter Mixer
Figure 4 shows an example of a low cost mixer for cellular applications.
The design flexibility of the HFA3101 is demonstrated by a low cost, and low voltage mixer application at the 900MHz range. The choice of good quality chip components with their self resonance outside the boundaries of the application are important. The design has been optimized to accommodate the evaluation of the same layout for various quiescent current values and lower supply voltages. The choice of RE became important for the available overhead and also for maintaining an AC true impedance for high frequency signals. The value of 27Ω has been found to be the optimum minimum for the application. The input impedances of the HFA3101 base input ports are high enough to permit their termination with 50Ω resistors. Notice the AC termination by decoupling the bias circuit through good quality capacitors.
The choice of the bias has been related to the available power supply voltage with the values of R1, R2 and RBIAS splitting the voltages for optimum VCE values. For evaluation of the cell quiescent currents, the voltage at the emitter resistor RE has been recorded.
The gain of the circuit, being a function of the load and the combined emitter resistances at high frequencies have been kept to a maximum by the use of an output match network. The high output impedance of the HFA3101 permits
FIGURE 3A.
FIGURE 3B.
FIGURE 3C.
FIGURE 3.
VCCRB1R1R2RBIASREREEREELCH12348765Q5Q6Q1Q2Q3Q4RB2
VCCRB1R1R2RBIASREREEREE12348765Q5Q6Q1Q2Q3Q4RB2RCLCH
VEERB1R1RBIASREREEREE12348765Q5Q6Q1Q2Q3Q4RB2VCCLCHR2
27LCH12348765Q5Q6Q1Q2Q3Q4VCC390nH0.010.011102200.1VCC3V75MHz2K5p TO 12pLO IN51825MHz51900MHzIF OUTRF IN0.010.010.01330FIGURE 4. 3V DOWN CONVERTER APPLICATION
HFA3101
8
broadband match if so desired at 50Ω (RL = 50Ω to 2kΩ) as well as with tuned medium Q matching networks (L, T etc.).
Stability
The cell, by its nature, has very high gain and precautions must be taken to account for the combination of signal reflections, gain, layout and package parasitics. The rule of thumb of avoiding reflected waves must be observed. It is important to assure good matching between the mixer stage and its front end. Laboratory measurements have shown some susceptibility for oscillation at the upper quad transistors input. Any LO prefiltering has to be designed such the return loss is maintained within acceptable limits specially at high frequencies. Typical off the shelf filters exhibits very poor return loss for signals outside the passband. It is suggested that a “pad” or a broadband resistive network be used to interface the LO port with a filter. The inclusion of a parallel 2K resistor in the load decreases the gain slightly which improves the stability factor and also improves the distortion products (output intermodulation or 3rd order intercept). The employment of good RF techniques shall suffice the stability requirements.
Evaluation
The evaluation of the HFA3101 in a mixer configuration is presented in Figures 6 to 11, Table 1 and Table 2. The layout is depicted in Figure 5.
The output matching network has been designed from data taken at the output port at various test frequencies with the setup as in Table 1. S22 characterization is enough to assure the calculation of L, T or transmission line matching networks.
FIGURE 5. UP/DOWN CONVERTER LAYOUT, 400%; MATERIAL G10, 0.031
TABLE 1. S22 PARAMETERS FOR DOWN CONVERSION, LCH = 10μH
FREQUENCY
RESISTANCE
REACTANCE
10MHz
265Ω
615Ω
45MHz
420Ω
- 735Ω
75MHz
122Ω
- 432Ω
100MHz
67Ω
- 320Ω
TABLE 2. TYPICAL PARAMETERS FOR DOWN CONVERSION, LCH = 10μH
PARAMETER
LO LEVEL
VCC = 3V, IBIAS = 8mA
Power Gain
-6dBm
8.5dB
TOI Output
-6dBm
11.5dBm
NF SSB
-6dBm
14.5dB
Power Gain
0dBm
8.6dB
TOI Output
0dBm
11dBm
NF SSB
0dBm
15dB
PARAMETER
LO LEVEL
VCC = 4V, IBIAS = 19mA
Power Gain
-6dBm
10dB
TOI Output
-6dBm
13dBm
NF SSB
-6dBm
20dB
Power Gain
0dBm
11dB
TOI Output
0dBm
12.5dBm
NF SSB
0dBm
24dB
TABLE 3. TYPICAL VALUES OF S22 FOR THE OUTPUT PORT. LCH = 390nH IBIAS = 8mA (SET UP OF FIGURE 11)
FREQUENCY
RESISTANCE
REACTANCE
300MHz
22Ω
-115Ω
600MHz
7.5Ω
-43Ω
900MHz
5.2Ω
-14Ω
1.1GHz
3.9Ω
0Ω
TABLE 4. TYPICAL VALUES OF S22. LCH = 390nH, IBIAS = 18mA
FREQUENCY
RESISTANCE
REACTANCE
300MHz
23.5Ω
-110Ω
600MHz
10.3Ω
-39Ω
900MHz
8.7Ω
-14Ω
1.1GHz
8Ω
0Ω
HFA3101
3-9
Up Converter Example
An application for a up converter as well as a frequency multiplier can be demonstrated using the same layout, with an addition of matching components. The output port S22 must be characterized for proper matching procedures and depending on the frequency desired for the output, transmission line transformations can be designed. The return loss of the input ports maintain acceptable values in excess of 1.2GHz which can permit the evaluation of a frequency doubler to 2.4GHz if so desired.
The addition of the resistors REE can increase considerably the dynamic range of the up converter as demonstrated at Figure 13. The evaluation results depicted in Table 5 have been obtained by a triple stub tuner as a matching network for the output due to the layout constraints. Based on the evaluation results it is clear that the cell requires a higher Bias current for overall performance.
FIGURE 6. OUTPUT PORT S22 TEST SET UP
FIGURE 7. LO PORT RETURN LOSS
FIGURE 8. RF PORT RETURN LOSS
FIGURE 9. IF PORT RETURN LOSS, WITH MATCHING NETWORK
FIGURE 10. TYPICAL IN BAND OUTPUT SPECTRUM, VCC = 3V
FIGURE 11. TYPICAL OUT OF BAND OUTPUT SPECTRUM
VCC 3V0.1LCH12348765Q5Q6Q1Q2Q3Q42K
S110dB5dB/DIV100MHz1.1GHzLOG MAG3V4V
0dB10dB/DIV100MHz1.1GHzS11LOG MAG
0dB5dB/DIV10MHzS22LOG MAG110MHz
76MHz64M11*LO - 10RF88M12RF - 13LOIFSPAN40MHzLO = 825MHz -6dBmRF = 901MHz - 25dBm-17dBm10dB/DIV
67575082590097510dB/DIVLO + 2RFSPAN500MHzLO - 2RF-26dBm-36dBm-58dBm-53dBmLO = 825MHz -6dBmRF = 900MHz -25dBm
HFA3101
10
Design Example: Up Converter Mixer
Figure 12 shows an example of an up converter for cellular applications.
Conclusion
The HFA3101 offers the designer a number of choices and different applications as a powerful RF building block. Although isolation is degraded from the theoretical results for the cell due to the unbalanced, nondifferential input schemes being used, a number of advantages can be taken into consideration like cost, flexibility, low power and small outline when deciding for a design.
TABLE 5. TYPICAL PARAMETERS FOR THE UP CONVERTER EXAMPLE
PARAMETER
VCC = 3V, IBIAS = 8mA
VCC = 4V, IBIAS = 18mA
Power Gain, LO = -6dBm
3dB
5.5dBm
Power Gain, LO = 0dBm
4dB
7.2dB
RF Isolation, LO = 0dBm
15dBc
22dBc
LO Isolation, LO = 0dBm
28dBc
28dBc
FIGURE 12. UP CONVERTER
FIGURE 13. TYPICAL SPECTRUM PERFORMANCE OF UP CONVERTER
RF IN0.01390nH900MHz5.2nHVCC 3V0.112348765Q5Q6Q1Q2Q3Q411p0.0175MHz27220REEREE51LO INVCC0.010.011103303V825MHz0.010.015147-100pF
9019128902LO - 10RF12RFOUTPUT WITHOUT EMITTER DEGENERATIONRF = 76MHzLO = 825MHzSPAN50MHzOUTPUT WITH EMITTER DEGENERATION REE = 4.7Ω825900976EXPANDED SPECTRUM REE = 4.7Ω
HFA3101
3-11
Typical Performance Curves for Transistors
FIGURE 14. IC vs VCE
FIGURE 15. HFE vs IC
FIGURE 16. GUMMEL PLOT
FIGURE 17. fT vs IC
FIGURE 18. GAIN AND NOISE FIGURE vs FREQUENCY
NOTE: Figures 14 through 18 are only for Q5 and Q6.
VCE (V)IC (mA)02.06.04.0070605040302010IB = 800μAIB = 1mAIB = 200μAIB = 400μAIB = 600μA
hFEIC (
A)10-1010-810-610-410-2100140120100806040200VCE = 5V
VBE (V)IC AND IB (A)10-1010-810-610-410-210010-120.200.400.600.801.0VCE = 3V
IC (A)fT (GHz)12108642010-410-310-210-1
20181614121046NOISE FIGURE (
dB)FREQUENCY (GHz)|S21| (dB)0.51.51.02.002.53.04.84.64.44.24.03.83.63.43.28
HFA3101
12
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable.
However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Die Characteristics
PROCESS UHF-1
DIE DIMENSIONS: 53 mils x 52 mils x 14 mils
1340μm x 1320μm x 355.6μm
METALLIZATION: Type: Metal 1: AlCu(2%)/TiW
Thickness: Metal 1: 8kÅ ±0.5kÅ Type: Metal 2: AlCu(2%)
Thickness: Metal 2: 16kÅ ±0.8kÅ
PASSIVATION: Type: Nitride
Thickness: 4kÅ ±0.5kÅ
SUBSTRATE POTENTIAL (Powered Up): Floating
Metallization Mask Layout
HFA31011122334455667788
HFA3101
16-Bit Low Power Sigma-Delta ADC
Data Sheet AD7171
Rev. A Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2009–2013 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Output data rate: 125 Hz
Pin-programmable power-down and reset
Status function
Internal clock oscillator
Current: 135 μA
Power supply: 2.7 V to 5.25 V
–40°C to +105°C temperature range
Package: 10-lead 3 mm x 3 mm LFCSP
INTERFACE
2-wire serial (read-only device)
SPI compatible
Schmitt trigger on SCLK
APPLICATIONS
Weigh scales
Pressure measurement
Industrial process control
Portable instrumentation
FUNCTIONAL BLOCK DIAGRAM
16-BIT Σ-ΔADCAD7171GNDINTERNALCLOCKVDDREFIN(+)AIN(+)AIN(–)REFIN(–)DOUT/RDYSCLKPDRST08417-001
Figure 1.
Table 1.
VREF = VDD
RMS Noise
P-P Noise
P-P Resolution
ENOB
5 V
11.5 μV
76 μV
16 bits
16 bits
3 V
6.9 μV
45 μV
16 bits
16 bits
GENERAL DESCRIPTION
The AD7171 is a very low power 16-bit analog-to-digital converter (ADC). It contains a precision 16-bit sigma-delta (Σ-Δ) ADC and an on-chip oscillator. Consuming only 135 μA, the AD7171 is particularly suitable for portable or battery operated products where very low power is a requirement. The AD7171 also has a power-down mode in which the device consumes 5 μA, thus increasing the battery life of the product.
For ease-of-use, all the features of the AD7171 are controlled by dedicated pins. Each time a data read occurs, eight status bits are appended to the 16-bit conversion. These status bits contain a pattern sequence that can be used to confirm the validity of the serial transfer.
The output data rate of the AD7171 is 125 Hz, whereas the settling time is 24 ms. The AD7171 has one differential input and a gain of 1. This is useful in applications where the user needs to use an external amplifier to implement system-specific filtering or gain requirements.
The AD7171 operates with a power supply from 2.7 V to 5.25 V. It is available in a 10-lead LFCSP package.
The AD7170 is a 12-bit version of the AD7171. It has the same feature set as the AD7171 and is pin-for-pin compatible.
1
Low-Noise 24-bit Delta Sigma ADC
ISL26132, ISL26134
The ISL26132 and ISL26134 are complete analog front ends
for high resolution measurement applications. These 24-bit
Delta-Sigma Analog-to-Digital Converters include a very
low-noise amplifier and are available as either two or four
differential multiplexer inputs. The devices offer the same
pinout as the ADS1232 and ADS1234 devices and are
functionally compatible with these devices. The ISL26132 and
ISL26134 offer improved noise performance at 10Sps and
80Sps conversion rates.
The on-chip low-noise programmable-gain amplifier provides
gains of 1x/2x/64x/128x. The 128x gain setting provides an
input range of ±9.766mVFS when using a 2.5V reference. The
high input impedance allows direct connection of sensors such
as load cell bridges to ensure the specified measurement
accuracy without additional circuitry. The inputs accept signals
100mV outside the supply rails when the device is set for unity
gain.
The Delta-Sigma ADC features a third order modulator
providing up to 21.6-bit noise-free performance.
The device can be operated from an external clock source,
crystal (4.9152MHz typical), or the on-chip oscillator.
The two channel ISL26132 is available in a 24 Ld TSSOP
package and the four channel ISL26134 is available in a 28 Ld
TSSOP package. Both are specified for operation over the
automotive temperature range (-40°C to +105°C).
Features
• Up to 21.6 Noise-free bits.
• Low Noise Amplifier with Gains of 1x/2x/64x/128x
• RMS noise: 10.2nV @ 10Sps (PGA = 128x)
• Linearity Error: 0.0002% FS
• Simultaneous rejection of 50Hz and 60Hz (@ 10Sps)
• Two (ISL26132) or four (ISL26134) channel differential
input multiplexer
• On-chip temperature sensor (ISL26132)
• Automatic clock source detection
• Simple interface to read conversions
• +5V Analog, +5 to +2.7V Digital Supplies
• Pb-Free (RoHS Compliant)
• TSSOP packages: ISL26132, 24 pin; ISL26134, 28 pin
Applications
• Weigh Scales
• Temperature Monitors and Controls
• Industrial Process Control
• Pressure Sensors
ADC
PGA
1x/2x/64x/
128x
INTERNAL
CLOCK
SDO/RDY
SCLK
AVDD DVDD
AGND DGND
XTALIN/CLOCK
VREF+
EXTERNAL
OSCILLATOR
XTALOUT
A0 A1/TEMP VREFAIN1+
AIN1-
AIN2+
AIN2-
AIN3+
AIN3-
AIN4+
AIN4-
INPUT
MULTIPLEXER
ISL26134
Only
CAP
CAP
GAIN0 GAIN1
PWDN
SPEED
DGND DGND
NOTE for A1/TEMP pin: Functions as A1 on ISL26134; Functions as TEMP on ISL26132
FIGURE 1. BLOCK DIAGRAM
September 9, 2011
FN6954.1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.
All other trademarks mentioned are the property of their respective owners.
ISL26132, ISL26134
2 FN6954.1
September 9, 2011
Ordering Information
PART NUMBER
(Notes 2, 3) PART MARKING
TEMPERATURE RANGE
(°C)
PACKAGE
(Pb-free)
PKG. DWG
NUMBER
ISL26132AVZ 26132 AVZ -40 to +105 24 Ld TSSOP M24.173
ISL26132AVZ-T (Note 1) 26132 AVZ -40 to +105 24 Ld TSSOP (Tape & Reel) M24.173
ISL26132AVZ-T7A (Note 1) 26132 AVZ -40 to +105 24 Ld TSSOP (Tape & Reel) M24.173
ISL26134AVZ 26134 AVZ -40 to +105 28 Ld TSSOP M28.173
ISL26134AVZ-T (Note 1) 26134 AVZ -40 to +105 28 Ld TSSOP (Tape & Reel) M28.173
ISL26134AVZ-T7A (Note 1) 26134 AVZ -40 to +105 28 Ld TSSOP (Tape & Reel) M28.173
ISL26134AV28EV1Z Evaluation Board
NOTES:
1. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL26132, ISL26134. For more information on MSL please see techbrief
TB363.
TABLE 1. KEY DIFFERENCES OF PARTS
PART NUMBER NUMBER OF CHANNELS ON-CHIP TEMPERATURE SENSOR NUMBER OF PINS
ISL26132 2 YES 24
ISL26134 4 NO 28
Pin Configurations
ISL26132
(24 LD TSSOP)
TOP VIEW
ISL26134
(28 LD TSSOP)
TOP VIEW
1
2
3
4
5
6
7
8
9
10
11
12
16
17
18
19
20
21
22
23
24
15
14
13
DVDD
DGND
XTALIN/CLOCK
XTALOUT
DGND
DGND
TEMP
A0
CAP
CAP
AIN1+
AIN1-
SDO/RDY
PDWN
SPEED
GAIN1
GAIN0
AGND
VREFAIN2+
AIN2-
SCLK
AVDD
VREF+
28
27
26
25
24
23
22
21
20
19
18
17
16
15
DVDD
DGND
XTALIN/CLOCK
XTALOUT
DGND
DGND
A1
A0
CAP
CAP
AIN1+
AIN1-
AIN3+
AIN3-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
SDO/RDY
PDWN
SPEED
GAIN1
GAIN0
AGND
VREFAIN2+
AIN2-
AIN4+
AIN4-
SCLK
AVDD
VREF+
ISL26132, ISL26134
3 FN6954.1
September 9, 2011
Pin Descriptions
NAME
PIN NUMBER
ANALOG/DIGITAL
ISL26132 ISL26134 INPUT/OUTPUT DESCRIPTION
DVDD 1 1 Digital Digital Power Supply (2.7V to 5.25V)
DGND 2, 5, 6 2, 5, 6 Digital Digital Ground
XTALIN/CLOCK 3 3 Digital/Digital Input External Clock Input: typically 4.9152MHz. Tie low to activate
internal oscillator. Can also use external crystal across
XTALIN/CLOCK and XTALOUT pins.
XTALOUT 4 4 Digital External Crystal connection
TEMP 7 - Digital Input On-chip Temperature Diode Enable
A1
A0
-
8
7
8
Digital Input
CAP 9, 10 9, 10 Analog PGA Filter Capacitor
AIN1+ 11 11 Analog Input Positive Analog Input Channel 1
AIN1- 12 12 Analog Input Negative Analog Input Channel 1
AIN3+ - 13 Analog Input Positive Analog Input Channel 3
AIN3- - 14 Analog Input Negative Analog Input Channel 3
AIN4- - 15 Analog Input Negative Analog Input Channel 4
AIN4+ - 16 Analog Input Positive Analog Input Channel 4
AIN2- 13 17 Analog Input Negative Analog Input Channel 2
AIN2+ 14 18 Analog Input Positive Analog Input Channel 2
VREF- 15 19 Analog Input Negative Reference Input
VREF+ 16 20 Analog Input Positive Reference Input
AGND 17 21 Analog Analog Ground
AVDD 18 22 Analog Analog Power Supply 4.75V to 5.25V
GAIN0
GAIN1
19
20
23
24
Digital Input
TABLE 2. INPUT MULTIPLEXER SELECT
ISL26134 ISL26132
A1 A0 CHANNEL
0 0 AIN1
0 1 AIN2
1 0 AIN3
1 1 AIN4
TABLE 3. GAIN SELECT
GAIN1 GAIN0 GAIN
0 0 1
0 1 2
1 0 64
1 1 128
ISL26132, ISL26134
4 FN6954.1
September 9, 2011
Circuit Description
The ISL26132 (2-channel) and ISL26134 (4-channel) devices are
very low noise 24-bit delta-sigma ADCs that include a
programmable gain amplifier and an input multiplexer. The
ISL26132 offers an on-chip temperature measurement
capability.
The ISL26132, ISL26134 provide pin compatibility and output
data compatibility with the ADS1232/ADS1234, and offer the
same conversion rates of 10Sps and 80Sps.
All the features of the ISL26132, ISL26134 are pin-controllable,
while offset calibration, standby mode, and output conversion
data are accessible through a simple 2-wire interface.
The clock can be selected to come from an internal oscillator, an
external clock signal, or crystal (4.9152MHz typical).
SPEED 21 25 Digital Input
PDWN 22 26 Digital Input Power-Down: Holding this pin low powers down the entire
converter and resets the ADC.
SCLK 23 27 Digital Input Serial Clock: Clock out data on the rising edge. Also used to
initiate Offset Calibration and Sleep modes. See “Serial Clock
Input (SCLK)” on page 14 for more details.
SDO/RDY 24 28 Digital Output Dual-Purpose Output:
Data Ready: Indicate valid data by going low.
Data Output: Outputs data, MSB first, on the first rising edge
of SCLK.
Pin Descriptions (Continued)
NAME
PIN NUMBER
ANALOG/DIGITAL
ISL26132 ISL26134 INPUT/OUTPUT DESCRIPTION
TABLE 4. DATA RATE SELECT
SPEED DATA RATE
0 10Sps
1 80Sps
ISL26132, ISL26134
5 FN6954.1
September 9, 2011
Absolute Maximum Ratings Thermal Information
AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to +0.3V
Analog In to AGND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to AVDD+0.3V
Digital In to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to DVDD+0.3V
Input Current
Momentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA
Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA
ESD Rating
Human Body Model (Per MIL-STD-883 Method 3015.7) . . . . . . . . . . . . .7.5kV
Machine Model (Per JESD22-A115). . . . . . . . . . . . . . . . . . . . . . . . . . 450V
Charged Device Model (Per JESD22-C101) . . . . . . . . . . . . . . . . . . . . . . . . 2kV
Latch-up (Per JEDEC JESD-78B; Class 2, Level A)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA @ Room and Hot (+105°C)
Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W)
24 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . . 65 18
28 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . . 63 18
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80mW
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
Operating Conditions
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +105°C
AVDD to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.75V to 5.25V
DVDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7V to 5.25V
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product
reliability and result in failures not covered by warranty.
NOTES:
4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
5. For θJC, the “case temp” location is taken at the package top center.
Electrical Specifications VREF+ = 5V, VREF- = 0V, AVDD = 5V, DVDD = 5V, AGND = DGND = 0V, MCLK = 4.9152MHz, and
TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C
SYMBOL PARAMETER TEST LEVEL or NOTES
MIN
(Note 6) TYP
MAX
(Note 6) UNITS
ANALOG INPUTS
Differential Input Voltage Range ±0.5VREF/
Gain
V
Common Mode Input Voltage
Range
Gain = 1, 2 AGND - 0.1 AVDD + 0.1 V
Gain = 64, 128 AGND+1.5 AVDD - 1.5 V
Differential Input Current
Gain = 1 ±20 nA
Gain = 2 ±40 nA
Gain = 64, 128 ±1 nA
SYSTEM PERFORMANCE
Resolution No Missing Codes 24 Bits
Data Rate
Internal Osc. SPEED = High 80 SPS
Internal Osc. SPEED = Low 10 SPS
External Osc. SPEED = High fCLK/61440 SPS
External Osc. SPEED = Low fCLK/49152
0
SPS
Digital Filter Settling Time Full Setting 4 Conversions
INL Integral Nonlinearity Differential Input Gain = 1, 2 ±0.0002 ±0.001 % of FSR (Note 7)
Differential Input Gain = 64, 128 ±0.0004 % of FSR
(Note 7)
Input Offset Error Gain = 1 ±0.4 ppm of FS
Gain = 128 ±1.5 ppm of FS
Input Offset Drift Gain = 1 0.3 μV/°C
Gain = 128 10 nV/°C
Gain Error (Note 8) Gain = 1 ±0.007 ±0.02 %
Gain = 128 ±0.02 %
Gain Drift Gain = 1 0.5 ppm/°C
Gain = 128 7 ppm/°C
ISL26132, ISL26134
6 FN6954.1
September 9, 2011
CMRR Common Mode Rejection At DC, Gain = 1, ΔV = 1V 85 100 dB
At DC, Gain = 128, ΔV = 0.1V 100 dB
50Hz/60Hz Rejection (Note 9) External 4.9152MHz Clock 130 dB
PSRR Power Supply Rejection At DC, Gain = 1, ΔV = 1V 82 100 dB
At DC, Gain = 128, ΔV = 0.1V 100 105 dB
Input Referred Noise See “Typical Characteristics” beginning
on page 8
Noise Free Bits See “Typical Characteristics” beginning
on page 8
VOLTAGE REFERENCE INPUT
VREF Voltage Reference Input VREF = VREF+ - VREF- 1.5 AVDD AVDD + 0.1 V
VREF- Negative Reference Input AGND - 0.1 VREF+ - 1.5 V
VREF+ Positive Reference Input VREF- + 1.5 AVDD + 0.1 V
IREF Voltage Reference Input Current ±350 nA
POWER SUPPLY REQUIREMENTS
AVDD Analog Supply Voltage 4.75 5.0 5.25 V
DVDD Digital Supply Voltage 2.7 3.3 5.25 V
AIDD Analog Supply Current Normal Mode, AVDD = 5, Gain = 1, 2 7 8.5 mA
Normal Mode, AVDD = 5, Gain = 64, 128 9 12 mA
Standby Mode 0.2 3 μA
Power-Down 0.2 2.5 μA
DIDD Digital Supply Current Normal Mode, AVDD = 5, Gain = 1, 2 750 950 μA
Normal Mode, AVDD = 5, Gain = 64, 128 750 950 μA
Standby Mode 1.5 26 μA
Power-Down 1 26 μA
PD Power Dissipation, Total Normal Mode, AVDD = 5, Gain = 1, 2 49.6 mW
Normal Mode, AVDD = 5, Gain = 64, 128 68 mW
Standby Mode 0.14 mW
Power-Down 0.14 mW
DIGITAL INPUTS
VIH 0.7 DVDD V
VIL 0.2 DVDD V
VOH IOH = -1mA DVDD - 0.4 V
VOL IOL = 1mA 0.2 DVDD V
Input Leakage Current ±10 μA
External Clock Input Frequency 0.3 4.9152 MHz
Serial Clock Input Frequency 1 MHz
NOTE:
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.
7. FSR = Full Scale Range = VREF/Gain
8. Gain accuracy is calibrated at the factory (AVDD = +5V).
9. Specified for word rate equal to 10Sps.
Electrical Specifications VREF+ = 5V, VREF- = 0V, AVDD = 5V, DVDD = 5V, AGND = DGND = 0V, MCLK = 4.9152MHz, and
TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C (Continued)
SYMBOL PARAMETER TEST LEVEL or NOTES
MIN
(Note 6) TYP
MAX
(Note 6) UNITS
ISL26132, ISL26134
7 FN6954.1
September 9, 2011
Noise Performance
The ISL26132 and ISL26134 provide excellent noise
performance. The noise performance on each of the gain
settings of the PGA at the selected word rates is shown in
Tables 5 and 6.
Resolution in bits decreases by 1-bit if the ADC is operated as a
single-ended input device. Noise measurements are
input-referred, taken with bipolar inputs under the specified
operating conditions, with fCLK = 4.9152MHz.
TABLE 5. AVDD = 5V, VREF = 5V, DATA RATE = 10Sps
GAIN
RMS NOISE
(nV)
PEAK-TO-PEAK NOISE
(nV) (Note 10)
NOISE-FREE BITS
(Note 11)
1 243 1604 21.6
2 148 977 21.3
64 10.8 71 20.1
128 10.2 67 19.1
TABLE 6. AVDD = 5V, VREF = 5V, DATA RATE = 80Sps
GAIN
RMS NOISE
(nV)
PEAK-TO-PEAK NOISE
(nV) (Note 10)
NOISE-FREE BITS
(Note 11)
1 565 3730 20.4
2 285 1880 20.3
64 28.3 187 18.7
128 27 178 17.7
NOTES:
10. The peak-to-peak noise number is 6.6 times the rms value. This
encompasses 99.99% of the noise excursions that may occur. This
value best represents the worst case noise that could occur in the
output conversion words from the converter.
11. Noise-Free Bits is defined as: Noise-Free Bits = ln(FSR/peak-to-peak
noise)/ln(2) where FSR is the full scale range of the converter,
VREF/Gain.
ISL26132, ISL26134
8 FN6954.1
September 9, 2011
Typical Characteristics
FIGURE 2. NOISE AT GAIN = 1, 10Sps FIGURE 3. NOISE HISTOGRAM AT GAIN = 1, 10Sps
FIGURE 4. NOISE AT GAIN = 2, 10Sps FIGURE 5. NOISE HISTOGRAM AT GAIN = 2, 10Sps
FIGURE 6. NOISE AT GAIN = 64, 10Sps FIGURE 7. NOISE HISTOGRAM AT GAIN = 64, 10Sps
-10
-5
0
5
10
0 200 400 600 800 1000
GAIN = 1
RATE = 10Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
50
100
150
200
250
300
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
OUTPUT CODE (LSB)
GAIN = 1, N = 1024
RATE = 10Sps
STD DEV = 1.635 LSB
VREF = 2.5V
COUNTS -
10
-5
0
5
10
0 200 400 600 800 1000
TIME (SAMPLES)
OUTPUT CODE (LSB)
GAIN = 2
RATE = 10Sps
0
50
100
150
200
250
-8 -6 -4 -2 0 2 4 6 8
GAIN = 2, N = 1024
RATE = 10Sps
STD DEV = 1.989 LSB
VREF = 2.5V
OUTPUT CODE (LSB)
COUNTS
-15
-10
-5
0
5
10
15
20
0 200 400 600 800 1000
TIME (SAMPLES)
OUTPUT CODE (LSB)
GAIN = 64
RATE = 10Sps
0
20
40
60
80
100
120
-20 -15 -10 -5 0 5 10 15 20
GAIN = 64, N = 1024
RATE = 10Sps
STD DEV = 4.627 LSB
VREF = 2.5V
OUTPUT CODE (LSB)
COUNTS
ISL26132, ISL26134
9 FN6954.1
September 9, 2011
FIGURE 8. NOISE AT GAIN = 128, 10Sps FIGURE 9. NOISE HISTOGRAM AT GAIN = 128, 10Sps
FIGURE 10. NOISE AT GAIN = 1, 80Sps FIGURE 11. NOISE HISTOGRAM AT GAIN = 1, 80Sps
FIGURE 12. NOISE AT GAIN = 2, 80Sps FIGURE 13. NOISE HISTOGRAM AT GAIN = 2, 80Sps
Typical Characteristics (Continued)
-50
-30
-10
10
30
50
0 200 400 600 800 1000
GAIN = 128
RATE = 10Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
10
20
30
40
50
60
-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30
OUTPUT CODE (LSB)
COUNTS
GAIN = 128, N = 1024
RATE = 10Sps
STD DEV = 8.757 LSB
VREF = 2.5V
-25
-20
-15
-10
-5
0
5
10
15
20
25
0 200 400 600 800 1000
GAIN = 1
RATE = 80Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
20
40
60
80
100
120
-15 -10 -5 0 5 10 15
OUTPUT CODE (LSB)
COUNTS
GAIN = 1, N = 1024
RATE = 80Sps
STD DEV = 3.791 LSB
VREF = 2.5V
-25
-15
-5
5
15
25
0 200 400 600 800 1000
GAIN = 2
RATE = 80Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
20
40
60
80
100
120
-15 -10 -5 0 5 10 15
OUTPUT CODE (LSB)
COUNTS
GAIN = 2, N = 1024
RATE = 80Sps
STD DEV = 3.831 LSB
VREF = 2.5V
ISL26132, ISL26134
10 FN6954.1
September 9, 2011
FIGURE 14. NOISE AT GAIN = 64, 80Sps FIGURE 15. NOISE HISTOGRAM AT GAIN = 64, 80Sps
FIGURE 16. NOISE AT GAIN = 128, 80Sps FIGURE 17. NOISE HISTOGRAM AT GAIN = 128, 80Sps
FIGURE 18. ANALOG CURRENT vs TEMPERATURE FIGURE 19. DIGITAL CURRENT vs TEMPERATURE
Typical Characteristics (Continued)
-100
-50
0
50
100
0 200 400 600 800 1000
GAIN = 64
RATE = 80Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
10
20
30
40
50
-40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40
OUTPUT CODE (LSB)
COUNTS
GAIN = 64, N = 1024
RATE = 80Sps
STD DEV = 12.15 LSB
VREF = 2.5V
-200
-160
-120
-80
-40
0
40
80
120
160
0 200 400 600 800 1000
GAIN = 128
RATE = 80Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
5
10
15
20
25
30
-80 -60 -40 -20 0 20 40 60 80
OUTPUT CODE (LSB)
COUNTS
GAIN = 128, N = 1024
RATE = 80Sps
STD DEV = 23.215 LSB
VREF = 2.5V
0
2
4
6
8
10
-40 -10 20 50 80 110
TEMPERATURE (°C)
CURRENT (mA)
NORMAL MODE, PGA = 64.128
NORMAL MODE, PGA = 1, 2
1
10
100
1000
10000
-40 -10 20 50 80 110
TEMPERATURE (°C)
CURRENT (μA)
NORMAL MODE, ALL PGA GAINS
POWERDOWN MODE
ISL26132, ISL26134
11 FN6954.1
September 9, 2011
FIGURE 20. TYPICAL WORD RATE vs TEMPERATURE USING
INTERNAL OSCILLATOR
FIGURE 21. NOISE DENSITY vs FREQUENCY AT GAIN = 1, 80Sps
FIGURE 22. NOISE DENSITY vs FREQUENCY AT GAIN = 128, 80Sps
Typical Characteristics (Continued)
9.6
9.8
10.0
10.2
10.4
10.6
10.8
11.0
-40 -10 20 50 80 110
TEMPERATURE (°C)
DATA RATE (Sps)
WORD RATE = 10Sps
10
100
1000
10000
0.01 0.1 1 10
FREQUENCY (Hz)
NOISE (nV/√Hz)
GAIN = 1, 80Sps
64k FFT
25 AVERAGES
1
10
100
0.01 0.1 1 10
FREQUENCY (Hz)
NOISE (nV/√Hz)
GAIN = 128, 80Sps
64k FFT
25 AVERAGES
ISL26132, ISL26134
12 FN6954.1
September 9, 2011
Functional Description
Analog Inputs
The analog signal inputs to the ISL26132 connect to a 2-Channel
differential multiplexer and the ISL26134 connect to a 4-Channel
differential multiplexer (Mux). The multiplexer connects a pair of
inputs to the positive and negative inputs (AINx+, AINx-), selected
by the Channel Select Pins A0 and A1 (ISL26134 only). Input
channel selection is shown in Table 7. On the ISL26132, the
TEMP pin is used to select the Temperature Sensor function.
Whenever the MUX channel is changed (i.e. if any one of the
following inputs - A0/A1, Gain1/0, SPEED is changed), the
digital logic will automatically restart the digital filter and will
cause SDO/RDY to go low only when the output is fully settled.
But if the input itself is suddenly changed, then the user needs to
ignore first four RDY pulses (going low) to get an accurate
measurement of the input signal.
The input span of the ADC is ±0.5 VREF/GAIN. For a 5V VREF and
a gain of 1x, the input span will be 5VP-P fully differential as
shown in Figure 23. Note that input voltages that exceed the
supply rails by more than 100mV will turn on the ESD protection
diodes and degrade measurement accuracy.
If the differential input exceeds well above the +VE or the -VE FS
(by ~1.5x times) the output code will clip to the corresponding FS
value. Under such conditions, the output data rate will become
1/4th of the original value as the Digital State Machine will
RESET the Delta-Sigma Modulator and the Decimation Filter.
Temperature Sensor (ISL26132 only)
When the TEMP pin of the ISL26132 is set High, the input
multiplexer is connected to a pair of diodes, which are scaled in
both size and current. The voltage difference measured between
them corresponds to the temperature of the die according to
Equation 1:
Note: Valid only for GAIN = 1x or 2x
Where T is the temperature of the die, and Gain = the PGA Gain
Setting.
At a temperature of +25°C, the measured voltage will be
approximately 111.7mV. Note that this measurement indicates
only the temperature of the die itself. Applying the result to
correct for the temperature drift of a device external to the
package requires that thermal coupling between the sensor and
the die be taken into account.
Low-Noise Programmable Gain Amplifier
(PGA)
The chopper-stabilized programmable gain amplifier features a
variety of gain settings to achieve maximum dynamic range and
measurement accuracy from popular sensor types with excellent
low noise performance, input offset error, and low drift, and with
minimal external parts count. The GAIN0 and GAIN1 pins allow the
user to select gain settings of 1x, 2x, 64x, or 128x. A block diagram
is shown in Figure 24. The differential input stage provides a gain of
64, which is bypassed when the lower gain settings are selected.
The lower gain settings (1 and 2) will accept inputs with common
mode voltages up to 100mV outside the rails, allowing the device to
accept ground-referred signals. At gain settings of 64 or 128 the
common mode voltage at the inputs is limited to 1.5V inside the
supply rails while maintaining specified measurement accuracy.
TABLE 7. INPUT CHANNEL SELECTION
CHANNEL SELECT PINS ANALOG INPUT PINS SELECTED
A1 A0 AIN+ AIN-
0 0 AIN1+ AIN1-
0 1 AIN2+ AIN2-
1 0 AIN3+ AIN3-
1 1 AIN4+ AIN4-
3.75
2.50
1.25
1.25V
INPUT VOLTAGE RANGE = ±0.5VREF/GAIN
VREF = 5V, GAIN = 1X
3.75
2.50
1.25
AIN+
AIN-
2.50V
FIGURE 23. DIFFERENTIAL INPUT FOR VREF = 5V, GAIN = 1X
V= 102.2mV + (379μV∗T(°C))∗Gain
(EQ. 1)
ISL26132, ISL26134
13 FN6954.1
September 9, 2011
Filtering PGA Output Noise
The programmable gain amplifier, as shown in Figure 24,
includes a passive RC filter on its output. The resistors are
located inside the chip on the outputs of the differential amplifier
stages. The capacitor (nominally a 100nF C0G ceramic or a PPS
film (Polyphenylene sulfide)) for the filter is connected to the two
CAP pins of the chip. The outputs of the differential amplifier
stages of the PGA are filtered before their signals are presented
to the delta-sigma modulator. This filter reduces the amount of
noise by limiting the signal bandwidth and filters the chopping
artifacts of the chopped PGA stage.
Voltage Reference Inputs (VREF+, VREF-)
The voltage reference for the ADC is derived from the difference
in the voltages presented to the VREF+ and VREF- pins;
VREF = (VREF+ - VREF-). The ADCs are specified with a voltage
reference value of 5V, but a voltage reference as low as 1.5V can
be used. For proper operation, the voltage on the VREF+ pin
should not be greater than AVDD + 0.1V and the voltage on the
VREF- pin should not be more negative than AGND - 0.1V.
Clock Sources
The ISL26132, ISL26134 can operate from an internal oscillator,
an external clock source, or from a crystal connected between
the XTALIN/CLOCK and XTALOUT pins. See the block diagram of
the clock system in Figure 25. When the ADC is powered up, the
CLOCK DETECT block determines if an external clock source is
present. If a clock greater than 300kHz is present on the
XTALIN/CLOCK pin, the circuitry will disable the internal oscillator
on the chip and use the external clock as the clock to drive the
chip circuitry. If the ADC is to be operated from the internal
oscillator, the XTALIN/CLOCK pin should be grounded.
If the ADC is to be operated from a crystal, it should be located
close to the package pins of the ADC. Note that external loading
capacitors for the crystal are not required as there are loading
capacitors built into the silicon, although the capacitor values are
optimized for operation with a 4.9152MHz crystal.
The XTALOUT pin is not intended to drive external circuits.
Digital Filter Characteristics
The digital filter inside the ADC is a fourth-order Siinc filter.
Figures 26 and 27 illustrate the filter response for the ADC when
it is operated from a 4.9152MHz crystal. The internal oscillator is
factory trimmed so the frequency response for the filter will be
much the same when using the internal oscillator. The figures
illustrate that when the converter is operated at 10Sps the digital
filter provides excellent rejection of 50Hz and 60Hz line
interference.
FIGURE 24. SIMPLIFIED PROGRAMMABLE GAIN AMPLIFIER BLOCK DIAGRAM
+
-
A1
-
+
A2
AINx-
AINx+
ADC
RINT
RINT
R1
RF1
RF2
CAP
CAP
FIGURE 25. CLOCK BLOCK DIAGRAM
XTALIN/
CRYSTAL
OSCILLATOR
XTALOUT
TO ADC
INTERNAL
OSCILLATOR
CLOCK DETECT
MUX
EN
CLOCK
ISL26132, ISL26134
14 FN6954.1
September 9, 2011
Serial Clock Input (SCLK)
The serial clock input is provided with hysteresis to minimize
false triggering. Nevertheless, care should be taken to ensure
reliable clocking.
Filter Settling Time and ADC Latency
Whenever the analog signal into the ISL26132, ISL26134
converters is changed, the effects of the digital filter must be
taken into account. The filter takes four data ready periods for
the output code to fully reflect a new value at the analog input. If
the multiplexer control input is changed, the modulator and the
digital filter are reset, and the device uses four data ready
periods to fully settle to yield a digital code that accurately
represents the analog input. Therefore, from the time the control
inputs for the multiplexer are changed until the SDO/RDY goes
low, four data ready periods will elapse. The settling time delay
after a multiplexer channel change is listed in Table 8 for the
converter operating in continuous conversion mode.
0
-50
-100
-150
0 10 20 30 40 50 60 70 80 90 100
FREQUENCY (Hz)
GAIN (dB)
DDAATTAA RRAATTEE == 1100 SSpPsS
FIGURE 26. 10Sps: FREQUENCY RESPONSE OUT TO 100Hz
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
45 50 55 60 65
FREQUENCY (Hz)
GAIN (dB)
DATA RATE = 10Sps
FIGURE 27. 10Sps: 50/60Hz NOISE REJECTION, 45Hz TO 65Hz
TABLE 8. SETTLING TIME
PARAMETER
DESCRIPTION
(fCLK = 4.9152MHz) MIN MAX UNITS
tS A0, A1, SPEED, Gain1, Gain0 change
set-up time
40 50 μs
t1 Settling time SPEED = 1 54 55 ms
SPEED = 0 404 405 ms
FIGURE 28. SDO/RDY DELAY AFTER MULTIPLEXER CHANGE
SDO/RDY
tS
t1
A0, A1, SPEED, Gain1, Gain0
ISL26132, ISL26134
15 FN6954.1
September 9, 2011
Conversion Data Rate
The SPEED pin is used to select between the 10Sps and 80Sps
conversion rates. The 10Sps rate (SPEED = Low) is preferred in
applications requiring 50/60Hz noise rejection. Note that the
sample rate is directly related to the oscillator frequency, as
491,520 clocks are required to perform a conversion at the
10Sps rate, and 61,440 clocks at the 80Sps rate.
Output Data Format
The 24-bit converter output word is delivered in two’s
complement format. Input exceeding full scale results in a
clipped output which will not return to in-range values until after
the input signal has returned to the specified allowable voltage
range and the digital filter has settled as discussed previously.
Reading Conversion Data from the Serial
Data Output/Ready SDO/RDY Pin
When the ADC is powered, it will automatically begin doing
conversions. The SDO/RDY signal will go low to indicate the
completion of a conversion. After the SDO/RDY signal goes low,
the MSB data bit of the conversion word will be output from the
SDO/RDY pin after SCLK is transitioned from a low to a high.
Each subsequent new data bit is also output on the rising edge of
SCLK (see Figure 30). The receiving device should use the falling
edge of SCLK to latch the data bits. After the 24th SCLK, the
SDO/RDY output will remain in the state of the LSB data bit until
a new conversion is completed. At this time, the SDO/RDY will go
high if low and then go low to indicate that a new conversion
word is available. If not all data bits are read from the SDO/RDY
pin prior to the completion of a new conversion, they will be
overwritten. SCLK should be low during time t6, as shown in
Figure 30, when SDO/RDY is high.
If the user wants the SDO/RDY signal to go high after reading the
24 bits of the conversion data word, a 25th SCLK can be issued.
The 25th SCLK will force the SDO/RDY signal to go high and
remain high until it falls to signal that a new conversion word is
available. Figure 31 illustrates the behavior of the SDO/RDY
signal when a 25th SCLK is used.
FIGURE 29. SDO/RDY DELAY AFTER MULTIPLEXER CHANGE
SDO/RDY
TABLE 9. OUTPUT CODES CORRESPONDING TO INPUT
INPUT SIGNAL OUTPUT CODE (HEX)
≥ + 0.5VREF/GAIN 7FFFFF
(+0.5VREF/GAIN)/(223 - 1) 000001
0 000000
(-0.5VREF/GAIN)/(223 - 1) FFFFFF
≤ - 0.5VREF/GAIN 800000
FIGURE 30. OUTPUT DATA WAVEFORMS USING 24 SCLKS TO READ CONVERSION DATA
SDO/RDY
DATA READY
DATA
MSB LSB
NEW DATA READY
23 22 21 0
SCLK
t4
t2
1
t3
24
t5
t6
t3
t7
ISL26132, ISL26134
16 FN6954.1
September 9, 2011
Offset Calibration Control
The offset internal to the ADC can be removed by performing an
offset calibration operation. Offset calibration can be initiated
immediately after reading a conversion word with 24 SCLKs by
issuing two additional SCLKs. The offset calibration operation will
begin immediately after the 26th SCLK occurs. Figure 32
illustrates the timing details for the offset calibration operation.
During offset calibration, the analog inputs are shorted internally
and a regular conversion is performed. This conversion generates
a conversion word that represents the offset error. This value is
stored and used to digitally remove the offset error from future
conversion words. The SDO/RDY output will fall to indicate the
completion of the offset calibration operation.
TABLE 10. INTERFACE TIMING CHARACTERISTICS
PARAMETER DESCRIPTION MIN TYP MAX UNITS
t2 SDO/RDY Low to first SLK 0 ns
t3 SCLK pulsewidth, Low or High 100 ns
t4 SCLK High to Data Valid 50 ns
t5 Data Hold after SCLK High 0 ns
t6 Register Update Time 39 μs
t7 Conversion Period SPEED = 1 12.5 ms
SPEED = 0 100 ms
FIGURE 31. OUTPUT DATA WAVEFORMS FOR SDO/RDY POLLING
DATA READY NEW DATA READY
SDO/RDY
SCLK
23 22 21 0
1 24 25
DATA
25TH SCLK FORCES
SDO/RDY HIGH
FIGURE 32. OFFSET CALIBRATION WAVEFORMS
DATA READY AFTER CALIBRATION
CALIBRATION BEGINS
SDO/RDY
SCLK
23 22 21 0 23
1 24 25 26
t8
FIGURE 33. STANDBY MODE WAVEFORMS
DATA READY
START
CONVERSION
STANDBY MODE
SDO/RDY
SCLK
23 22 21 0
1 24
t10 t11
t9
23
TABLE 11. SDO/RDY DELAY AFTER CALIBRATION
PARAMETER MIN MAX UNITS
t8 SPEED = 1 108 109 ms
SPEED = 0 808 809 ms
ISL26132, ISL26134
17 FN6954.1
September 9, 2011
Standby Mode Operation
The ADC can be put into standby mode to save power. Standby
mode reduces the power to all circuits in the device except the
crystal oscillator amplifier. To enter the standby mode, take the
SCLK signal high and hold it high after SDO/RDY falls. The
converter will remain in standby mode as long as SCLK is held
high. To return to normal operation, take SCLK back low and wait
for the SDO/RDY to fall to indicate that a new conversion has
completed. Figure 33 and Table 12 illustrate the details of
standby mode.
Supply currents are equal in Standby and Power-down modes
unless a Crystal is used. If the Crystal is used, the Crystal
amplifier is turned ON, even in the standby mode.
Performing Offset Calibration After Standby
Mode
To perform an offset calibration automatically upon returning
from standby, deliver 2 or more additional SCLKs following a
data read cycle, and then set and hold SCLK high. The device will
remain in Standby as long as SCLK remains high. A calibration
cycle will begin once SCLK is brought low again to resume
normal operation. Additional time will be required to perform the
calibration after returning from Standby. Figure 34 and Table 13
illustrate the details of performing offset calibration after
standby mode.
TABLE 12. STANDBY MODE TIMING
PARAMETER DESCRIPTION MIN MAX UNITS
t9 SCLK High after
SDO/RDY Low
SPEED = 1 0 12.44 ms
SPEED = 0 0 99.94
t10 Standby Mode Delay SPEED = 1 12.5
SPEED = 0 100
t11 SDO/RDY falling edge
after SCLK Low
SPEED = 1 50 60
SPEED = 0 400 410
TABLE 13. OFFSET CALIBRATION TIMING AFTER STANDY
PARAMETER DESCRIPTION MIN MAX UNITS
t12 SDO/RDY Low after
SCLK Low
SPEED = 1 108 113 ms
SPEED = 0 808 813 ms
FIGURE 34. OFFSET CALIBRATION WAVEFORMS AFTER STANDBY
SDO/RDY
SCLK
23 22 21 0
1 24 25
STANDBY MODE DATA READY AFTER CALIBRATION
BEGIN 23
CALIBRATION
t10 t12
ISL26132, ISL26134
18 FN6954.1
September 9, 2011
Operation of PDWN
PDWN must transition from low to high after both power supplies
have settled to specified levels in order to initiate a correct
power-up reset (Figure 35). This can be implemented by an
external controller or a simple RC delay circuit, as shown in
Figure 36.
In order to reduce power consumption, the user can assert the
Power-down mode by bringing PDWN Low as shown in Figure 37.
All circuitry is shut down in this mode, including the Crystal
Oscillator. After PDWN is brought High to resume operation, the
reset delay varies depending on the clock source used. While an
external clock source will resume operation immediately, a
circuit utilizing a crystal will incur about a 20 millisecond delay
due to the inherent start-up time of this type of oscillator.
FIGURE 35. POWER-DOWN TIMING RELATIVE TO SUPPLIES
≥10μs
AVDD
DVDD
PDWN
FIGURE 36. PDWNDELAY CIRCUIT
DVDD
1kΩ
2.2nF
CONNECT TO
PDWN PIN
FIGURE 37. POWER-DOWN MODE WAVEFORMS
SDO/RDY
SCLK
t11
PDWN
POWER-DOWN
MODE
START
CONVERSION
DATA
CLK READY
SOURCE
WAKEUP
t13
tt1144
TABLE 14. POWER-DOWN RECOVERY TIMING
PARAMETER DESCRIPTION TYP UNITS
t13 Clock Recovery after PDWN
High
Internal Oscillator 7.95 μs
External Clock Source 0.16 μs
4.9152MHz Crystal
Oscillator
5.6 ms
t14 PDWN Pulse Duration 26 μs (min)
ISL26132, ISL26134
19 FN6954.1
September 9, 2011
Applications Information
Power-up Sequence – Initialization and
Configuration
The sequence to properly power-up and initialize the device are
as follows. For details on individual functions, refer to their
descriptions.
1. AVDD, DVDD ramp to specified levels
2. Apply External Clock
3. Pull PDWN High to initiate Reset
4. Device begins conversion
5. SDO/RDY goes low at end of first conversion
OPTIONAL ACTIONS
• Perform Offset Calibration
• Place device in Standby
• Return device from Standby
• Read on-chip Temperature (applicable to ISL26132 only)
Application Examples
WEIGH SCALE SYSTEM
Figure 38 illustrates the ISL26132 connected to a load cell. The
A/D converter is configured for a gain of 128x and a sample rate
of 10Sps. If a load cell with 2mV/V sensitivity is used, the full
scale output from the load cell will be 10mV. On a gain of 128x
and sample rate of 10Sps, the converter noise is 67nVP-P. The
converter will achieve 10mV/67nVP-P = 149,250 noise free
counts across its 10mV input signal. This equates to 14,925
counts per mV of input signal. If five output words are averaged
together this can be improved by √5 to yield √5*14925
counts = 33,370 counts per mV of input signal with an effective
update rate of 2 readings per second.
THERMOCOUPLE MEASUREMENT
Figure 39 illustrates the ISL26132 in a thermocouple
application. As shown, the 4.096V reference combined with the
PGA gain set to 128x sets the input span of the converter to
±16mV. This supports the K type thermocouple measurement for
temperatures from -270°C at -6.485mV to +380°C at about
16mV.
If a higher temperature is preferred, the PGA can be set to 64x to
provide a converter span of ±32mV. The will allow the converter
to support temperature measurement with the K type
thermocouple up to about +765°C.
In the circuit shown, the thermocouple is referenced to a voltage
dictated by the resistor divider from the +5V supply to ground.
These set the common mode voltage at about 2.5V. The 5M
resistors provide a means for detection of an open thermocouple.
If the thermocouple fails open or is not connected, the bias
through the 5M resistors will cause the input to the PGA to go to
full scale.
AVDD
VREF+
CAP
CAP
AIN+1
AIN-1
AIN+2
AIN-2
VREFAGND
DGND
TEMP
A0
SPEED
XTALOUT
PDWN
SCLK
SDO/RDY
GAIN0
GAIN1
DVDD
ISL26132
XTALIN/CLOCK
- +
0.1μF
VDD
MICRO
CONTROLLER
GND
16
9
10
11
12
14
13
15
17 2, 5, 6
7
8
21
3
4
22
23
24
19
20
GAIN = 128
5V 3V
0.1μF 18 1
FIGURE 38. WEIGH SCALE APPLICATION
ISL26132, ISL26134
20 FN6954.1
September 9, 2011
PCB Board Layout and System
Configuration
The ISL26132,ISL26134 ADC is a very low noise converter. To
achieve the full performance available from the device will
require attention to the printed circuit layout of the circuit board.
Care should be taken to have a full ground plane without
impairments (traces running through it) directly under the chip
on the back side of the circuit board. The analog input signals
should be laid down adjacent (AIN+ and AIN- for each channel) to
achieve good differential signal practice and routed away from
any traces carrying active digital signals. The connections from
the CAP pins to the off-chip filter capacitor should be short, and
without any digital signals nearby. The crystal, if used should be
connected with relatively short leads. No active digital signals
should be routed near or under the crystal case or near the
traces, which connect it to the ADC. The AGND and DGND pins of
the ADC should be connected to a common solid ground plane.
All digital signals to the chip should be powered from the same
supply, as that used for DVDD (do not allow digital signals to be
active high unless the DVDD supply to the chip is alive). Route all
active digital signals in a way to keep distance from any analog
pin on the device (AIN, VREF, CAP, AVDD). Power on the AVDD
supply should be active before the VREF voltage is present.
PCB layout patterns for the chips (ISL26132 and ISL26134) are
found on the respective package outline drawings on pages 22,
and 23.
AVDD
VREF+
AIN+1
AIN-1
AIN+2
AIN-2
VREFAGND
DGND
TEMP
A0
SPEED
XTALOUT
PDWN
SCLK
SDO/RDY
GAIN0
GAIN1
DVDD
XTALIN/CLOCK
MICRO
CONTROLLER
16
11
12
14
13
15
17 2, 5, 6
7
8
21
3
4
22
23
24
19
20
+5V +3V
0.1μF
18 1
FIGURE 39. THERMOCOUPLE MEASUREMENT APPLICATION
4.9152
MHz
ISL21009
4.096V
10nF
1μF
10k
10k
0.1μF
TYPE K
5M
5M
ISL26132, ISL26134
21
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted
in the quality certifications found at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
FN6954.1
September 9, 2011
For additional products, see www.intersil.com/product_tree
Products
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a
complete list of Intersil product families.
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on
intersil.com: ISL26132, ISL26134
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff
FITs are available from our website at http://rel.intersil.com/reports/search.php
Revision History
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make
sure you have the latest Rev.
DATE REVISION CHANGE
09/08/11 FN6954.1 Power Supply Requirements on page 6 - AIDD - Analog Supply Current - Normal Mode, AVDD = 5, Gain = 1,2
changed TYP and MAX from “6, 7.3” to “7, 8.5”
Power Dissipation, Total Normal Mode, AVDD = 5, Gain = 1, 2 changed from “43.3” to “49.6” mW (Max)
08/22/11 FN6954.0 Initial Release.
ISL26132, ISL26134
22 FN6954.1
September 9, 2011
Package Outline Drawing
M24.173
24 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
Rev 1, 5/10
DETAIL "X"
TYPICAL RECOMMENDED LAND PATTERN
TOP VIEW
SIDE VIEW
END VIEW
Dimension does not include mold flash, protrusions or gate burrs.
Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.
Dimension does not include interlead flash or protrusion. Interlead
flash or protrusion shall not exceed 0.25 per side.
Dimensions are measured at datum plane H.
Dimensioning and tolerancing per ASME Y14.5M-1994.
Dimension does not include dambar protrusion. Allowable protrusion
shall be 0.08mm total in excess of dimension at maximum material
condition. Minimum space between protrusion and adjacent lead
is 0.07mm.
Dimension in ( ) are for reference only.
Conforms to JEDEC MO-153.
6.
3.
5.
4.
2.
1.
NOTES:
7.
5
SEATING PLANE
C
H
2 3
1
24
B
12
1 3
13
A
PLANE
GAUGE
0.05 MIN
0.15 MAX
0°-8°
0.60± 0.15
0.90
1.00 REF
0.25
SEE DETAIL "X"
0.15
0.25
(0.65 TYP)
(5.65)
(0.35 TYP)
(1.45)
6.40
4.40 ±0.10
0.65
1.20 MAX
PIN #1
I.D. MARK
7.80 ±0.10
+0.05
-0.06
-0.06
+0.05
-0.10
+0.15
0.20 C B A
0.10 C
- 0.05
0.10 M C B A
ISL26132, ISL26134
23 FN6954.1
September 9, 2011
Package Outline Drawing
M28.173
28 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
Rev 1, 5/10
DETAIL "X"
TYPICAL RECOMMENDED LAND PATTERN
TOP VIEW
SIDE VIEW
END VIEW
Dimension does not include mold flash, protrusions or gate burrs.
Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.
Dimension does not include interlead flash or protrusion. Interlead
flash or protrusion shall not exceed 0.25 per side.
Dimensions are measured at datum plane H.
Dimensioning and tolerancing per ASME Y14.5M-1994.
Dimension does not include dambar protrusion. Allowable protrusion
shall be 0.08mm total in excess of dimension at maximum material
condition. Minimum space between protrusion and adjacent lead
is 0.07mm.
Dimension in ( ) are for reference only.
Conforms to JEDEC MO-153.
6.
3.
5.
4.
2.
1.
NOTES:
7.
5
SEATING PLANE
C
H
2 3
1
28
B
14
1 3
15
A
PLANE
GAUGE
0.05 MIN
0.15 MAX
0°-8°
0.60 ±0.15
0.90
1.00 REF
0.25
SEE DETAIL "X"
0.25
(0.65 TYP)
(5.65)
(0.35 TYP)
(1.45)
6.40
4.40 ± 0.10
0.65
1.20 MAX
PIN #1
I.D. MARK
9.70± 0.10
-0.06
0.15 +0.05
-0.10
+0.15
-0.06
+0.05
0.20 C B A
0.10 C
- 0.05
0.10 M C B A
Both, the Deltabell® E and Plus feature engineer friendly features such as the unique levelling mechanism and
modular components that make simple sounder installations a reality.
Both external sounders incorporate the same features that are described overleaf. However, the Deltabell® Plus
has a fully back-light option, which enables around the clock visual deterrent to maximise your security.
The Deltabell® E and Plus are available in a variety of different colours:
Low power external sounder with strobe
Low power external sounder with strobe and back-light
Available Base Colours: Red,
Green, White, Amber, Blue and Black
Available Lid Colours: Red, White,
Yellow, Black*, Blue* and Chrome*
*Not recommended for Deltabell® Plus
2012 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change. Other cover colour
options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity.
RMKT090001-7
© 2009 Pyronix Ltd. Pyronix and the Pyronix Blades device are trademarks of Pyronix Ltd.
As part of our continued development programme specifications of the V2 TEL and V2 GSM may change.
RMKT090057-1
© 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change.
RMKT080064-4
© 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change.
RMKT090057-1
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
2010 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change. Other cover colour
options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity.
RMKT090150
www.pyronix.com
marketing@pyronix.com
01709 700100Current consumption feature Deltabell® Plus only
The Deltabell® incorporates a LDR (Light Dependant Resistor)
circuit which turns the Light off during daylight hours when it is
not needed, saving on the product current consumption.
When the day turns from dusk to dark the Lightbox illuminates
so that your external visual deterrent can be seen on the
darkest of nights.
Visual alarm warning feature Deltabell® Plus only
In addition to the strobe which is present on all of the Deltabell®
models, the Deltabell® PLUS has the added feature that the
illuminated cover will strobe when the alarm is activated, giving
you the added peace of mind that your alarm will be seen in
‘alarm mode’ from a much greater distance than standard
sounders that do not have back lighting facilities.
Security and peace of mind
The Deltabell® has front and rear tamper protection and in the
event of a potential sabotage attack, the 104dBA sounder
provides a distinctive audible warning.
The electronic elements on the printed circuit board are
protected by a fully sealed unit with a rubber gasket providing
added protection in harsh environments and giving your
customer peace of mind that the Deltabell® will always sound
in the event of an alarm activation.
104 dBA sounder
Piezo sounder with high decibel output.
Engineer hold-off facility
The Deltabell® engineer hold-off facility means that when
initially powered with the tamper switch open, the sounder will
not activate.
Remote engineer hold-off facility
There is also the capability for remote engineer hold-off which
is invaluable when you are servicing the system enabling easy
maintenance. It can be turned on at any time by applying 0V
to this dedicated terminal which will then disable the tamper.
Unique levelling mechanism
A spirit level is supplied so that you can easily mount the
Deltabell®. In addition, to make the installation as simple as
possible, revolving guide holes are used to save time lining up
screw and drill holes.
SCB/SAB Mode
Self Contained Bell or Self Activating Bell mode.
Hinged cover The Deltabell® has a hinged cover that locks into place so that
both your hands are free to work on the sounder.
Fully back-lit cover
The Deltabell® low power modular unit back-lights the cover
(Deltabell® Plus only)
Electrical specification
Operating Voltage
Supply: 9-16 V DC (13.5 nominal)
Protected: Reverse polarity protected
Current Consumption
Quiescent Current: < 60 mA
Alarm Current: < 300 mA
Strobe
Strobe Duration: 100 ms
Strobe Frequency: 1Hz
Dimensions
[W] 290 mm
[H] 285 mm
[D] 50 mm
Compliance
Europe.
Suitable for use in
EN50131-1 systems
Security grade 2 or 3,
Environmental class IV
[H]
[W] [D]
Packing information
Minimum quantity: 10
Minimum order for
screen print: 40
Warranty: 2 years
Designed: UK
Dummy bases also available
2012 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change. Other cover colour
options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity.
RMKT090001-7
© 2009 Pyronix Ltd. Pyronix and the Pyronix Blades device are trademarks of Pyronix Ltd.
As part of our continued development programme specifications of the V2 TEL and V2 GSM may change.
RMKT090057-1
© 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change.
RMKT080064-4
© 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change.
RMKT090057-1
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
2010 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change. Other cover colour
options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity.
RMKT090150
www.pyronix.com
marketing@pyronix.com
01709 700100
Serial File Transfer Cables
The cables feature either the traditional 25 D type RS232 connector or the now more commonly fitted 9 D type
serial connector. As the serial port on most PCs is a plug or male the most common interface cable tends to be
a socket to socket (female to female).
Features:
• Multi-headed cable allows either 9 D or 25 D connection - providing complete serial port flexibility
• Both serial port configurations (Pt Nos 4070 & 4062) available from stock
• High quality moulded cables manufactured using foil screened cable
• Custom lengths can be made up upon request
• Now recognised as conforming to the most standard file transfer wiring configuration
4070
Stock No Description
PC AT to PC AT
4070 DB9F to DB9F Null Modem Cable 2Mtr
4070-3 DB9F to DB9F Null Modem Cable 3Mtr
4070-5 DB9F to DB9F Null Modem Cable 5Mtr
4070-10 DB9F to DB9F Null Modem Cable 10Mtr
4070-15 DB9F to DB9F Null Modem Cable 15Mtr
PC XT to PC XT
4062 DB25F to DB25F Null Modem Cable 2Mtr
4062-3 DB25F to DB25F Null Modem Cable 3Mtr
4062-5 DB25F to DB25F Null Modem Cable 5Mtr
4062-10 DB25F to DB25F Null Modem Cable 10Mtr
PC XT to PC AT
4063 DB9F to DB25F Null Modem Cable 2Mtr
4063-3 9DS TO 25DS NULL MODEM 3M
4063-5 9DS TO 25DS NULL MODEM 5M
4063-10 9DS TO 25DS NULL MODEM 10M
Multi-head Serial Cables
4090 DB9F+DB25F to DB9F+DB25F Null Modem Cable 2Mtr
4090-3 DB9F+DB25F to DB9F+DB25F Null Modem Cable 3Mtr
4090-5 DB9F+DB25F to DB9F+DB25F Null Modem Cable 5Mtr
Amplifier
Internet Radio
Terrestrial Tuner
Features
Feature Description
Audio
Sources
6 – Internet Radio, MP3, CD, Terrestrial Radio,
Auxiliary Input.
Portable
Yes, two part system. The Internet Radio is
completely portable receiving all data and audio
over a wireless link from the transmitter part
connected to the PC USB port.
LCD
Display
20 character 5 x 7 dot matrix display with icons,
EL blue backlight.
Power
Source
8 x C size 1.5 volt alkaline battery or AC mains –
220 - 240 volt Europe, 110 volt US.
Operation
Time
Approx 30 hours continuous play at mid volume
on one set of alkaline batteries.
Feature Description
Output Power (RMS) 2 x 2.2 watts
Total Power 4.4 watts
Music Power 2 x 4.4 watts
PMPO 65 watts
Feature Description
Radio presets 6 with station name display
Feature Description
Digital Tuner bands FM Stereo
Tuner presets 6 for each band
Antenna FM YesLoudspeaker
Connections
Wireless Link
Dimensions
Frequency Display Yes, 4 digit
Feature Description
No. of way speaker system 1 – way full range driver
Impedance 2 x 8 ohm
Rated Power (RMS) 2 x 6 watts
Size 67 mm x 106 mm, Elliptical
Magnetic Shielding Yes
Feature Description
Stereo
headphone Yes
Auxiliary Input Yes, 2 x phono socket
Auxiliary
Output Yes, 2 x phono socket
USB connection Yes, transmitter connects to PC USB port
with 1.5 metre cable
Feature Description
Stereo Audio
Channel
Europe 863 MHz 10 mW erp, USA 925 MHz 10
mW erp, user selectable band switching to
avoid interference.
Data
Channel
Europe + USA, 433 MHz , bi-directional, user
selectable band switching to avoid interference.
Feature Description
Radio Remote
Module
Front to Back 155mm (6.1"), Side to Side
283mm (11.1"), Height 150mm (5.9")
USB Base
Module
Front to Back 120mm (4.7"), Side to Side
135mm (5.3"), Height 41mm (1.6")
maxon motor control Document ID: rel3149
ESCON Servo Controllers Edition: September 2012 1
Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice.
ESCON Feature Comparison Chart
The ESCON servo controllers are small-sized, powerful 4-quadrant PWM servo controller for the highly efficient control of permanent magnet-activated DC motors.
The featured operating modes – speed control (closed loop), speed control (open loop), and current control – meet the highest requirements. The ESCON servo controllers are designed being commanded
by an analog set value and features extensive analog and digital I/O functionality and are being configured via USB interface using the graphical user interface «ESCON Studio» for Windows
PCs.
Legend: ()* = only in use with DC Tacho or Encoder / nnnnnn = order number / O = optional
Feature ESCON 36/2 DC
(403112)
ESCON 36/3 EC
(414533)
ESCON 50/5
(409510)
Product image
Motors
DC motors up to 72 W — 250 W
EC motors up to — 97 W 250 W
Sensors
Digital Incremental Encoder (2 channel with or without Line Driver) —
DC Tacho —
Without sensor (DC motors) —
Digital Hall Sensors (EC motors) —
Electrical Data
Nominal operating voltage Vcc 10…36 VDC 10…36 VDC 10…50 VDC
Max. output voltage 0.98 x Vcc 0.98 x Vcc 0.98 x Vcc
Max. output current 4 A (<60 s) 9 A (<4 s) 15 A (<20 s)
Continuous output current 2 A 2.7 A 5 A
Pulse Width Modulation frequency 53.6 kHz
maxon motor control Document ID: rel3149
ESCON Servo Controllers Edition: September 2012 2
Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice.
Sampling rate PI current controller 53.6 kHz
Sampling rate PI speed controller 5.36 kHz
Max. efficiency 95% 95% 95%
Max. speed (DC) limited by max. permissible speed (motor)
and max. output voltage (controller) — limited by max. permissible speed (motor)
and max. output voltage (controller)
Max. speed (EC; 1 pole pair) — 150'000 rpm 150'000 rpm
Built-in motor choke 300 μH; 2 A 3 x 47 μH; 2.7 A 3 x 30 μH; 5 A
Inputs / Outputs
Hall sensor signals — H1, H2, H3 H1, H2, H3
Encoder signals A,A\,B,B\ — A,A\,B,B\
Max. encoder input frequency differential (single-ended) 1 MHz (100 kHz) — 1 MHz (100 kHz)
Potentiometers 1 1 2
Digital inputs 2
Digital inputs/outputs 2
Analog inputs 2
Resolution 12-bit
Range –10…+10 V
Circuit differential
Analog outputs 2
Resolution 12-bit
Range –4…+4 V
Auxiliary voltage output +5 VDC (IL ≤10 mA)
Hall sensor supply voltage — +5 VDC (IL ≤30 mA) +5 VDC (IL ≤30 mA)
Encoder supply voltage +5 VDC (IL ≤70 mA) — +5 VDC (IL ≤70 mA)
Status Indicators Operation: green LED / Error: red LED
Connections
J1 Power Pin header (2 mm), 2 poles Pin header (2 mm), 2 poles Pluggable screw-type terminal block
(3.5 mm), 2 poles
J2 Motor
Motor / Hall sensors Pin header (2 mm), 3 poles Mini module pin header, 8 poles Pluggable screw-type terminal block
(3.5 mm), 4 poles
J2A Motor
Motor / Hall sensors Spring-loaded contacts, 2 poles Spring-loaded contacts, 8 poles —
Feature ESCON 36/2 DC
(403112)
ESCON 36/3 EC
(414533)
ESCON 50/5
(409510)
maxon motor control Document ID: rel3149
ESCON Servo Controllers Edition: September 2012 3
Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice.
J3 Hall sensors — — Pluggable screw-type terminal block
(3.5 mm), 5 poles
J4 Encoder Pin header (2.54 mm), 5 x 2 poles — Pin header (2.54 mm), 5 x 2 poles
J4A Encoder Pin header (1.27 mm), 5 x 2 poles — —
J5 Digital I/O Pin header (2 mm), 6 poles Pin header (2 mm), 6 poles Pluggable screw-type terminal block
(3.5 mm), 6 poles
J6 Analog I/O Pin header (2 mm), 7 poles Pin header (2 mm), 7 poles Pluggable screw-type terminal block
(3.5 mm), 7 poles
J7 USB USB Type micro B female
Mechanical Data
Weight (approximate) 30 g 36 g 204 g
Dimensions (L x W x H) 55 x 40 x 16.1 mm 55 x 40 x 19.8 mm 115 x 75.5 x 24 mm
Mounting holes for screws M2.5 for screws M2.5 for screws M4
Environmental Conditions
Temperature – Operation –30…+45°C
Temperature – Extended range +45…+81°C; Derating: –0.056 A/°C +45…+78°C; Derating: –0.082 A/°C +45…+85°C; Derating: –0.113 A/°C
Temperature – Storage –40…+85°C
Humidity (condensation not permitted) 20…80%
Functionality
Operating Mode
Current controller (torque control)
Speed controller (closed loop)
with encoder feedback —
with DC Tacho feedback —
with Hall sensor feedback —
Speed controller (open loop)
with static IxR Compensation
with adaptive IxR Compensation ()*
Feature ESCON 36/2 DC
(403112)
ESCON 36/3 EC
(414533)
ESCON 50/5
(409510)
maxon motor control Document ID: rel3149
ESCON Servo Controllers Edition: September 2012 4
Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice.
Set Value
Analog set value
PWM set value
Fixed set value
2 fixed set values
Digital I/O Functionality
Enable
Enable CW
Enable CCW
Enable CW + CCW
Enable + Direction
Stop
Ready
Speed Comparator
Commutation frequency —
Monitoring Outputs
Monitor Current
Monitor Speed
Analog Settings
Set value
Current limit
Offset adjust set value
Speed ramp (using potentiometer)
Current gain (using potentiometer)
Speed gain (using potentiometer)
IxR Factor (using potentiometer)
Feature ESCON 36/2 DC
(403112)
ESCON 36/3 EC
(414533)
ESCON 50/5
(409510)
maxon motor control Document ID: rel3149
ESCON Servo Controllers Edition: September 2012 5
Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice.
Protection
Overcurrent
Current limiter (adjustable)
Thermal overload
Undervoltage
Overvoltage
Voltage transients
Short-circuit of motor winding
Software
Installation Program ESCON Setup
Graphical User Interface ESCON Studio
Startup Wizard
Regulation Tuning
Diagnostic
Firmware Update
Controller Monitor
Parameters
Data Recording
Online Help
Language German, English, French, Italian, Spanish, Japanese, Chinese
Operating System Windows 7, Windows XP SP3
Communication interface USB 2.0 (full speed)
Feature ESCON 36/2 DC
(403112)
ESCON 36/3 EC
(414533)
ESCON 50/5
(409510)
maxon motor control Document ID: rel3149
ESCON Servo Controllers Edition: September 2012 6
Feature Comparison Chart © 2012 maxon motor. Subject to change without prior notice.
Accessories (not included in delivery)
404404 ESCON 36/2 DC Connector Set — —
425255 ESCON 36/3 EC Connector Set — —
403964 ESCON Analog I/O Cable —
403962 ESCON DC Motor Cable — —
403965 ESCON Digital I/O Cable —
275934 ESCON Encoder Cable O — O
403957 ESCON Power Cable —
403968 USB 2.0 Type A micro-B Cable
418719 Adapter BLACK (for flexprint cable (FPC), 11 poles) — —
418723 Adapter BLUE (for flexprint cable (FPC), 8 poles) — —
418721 Adapter GREEN (for flexprint cable (FPC), 8 poles) — —
409286 ESCON USB Stick
Feature ESCON 36/2 DC
(403112)
ESCON 36/3 EC
(414533)
ESCON 50/5
(409510)
maxon motor control
ESCON Servo Controllers Document ID: rel2547 1
Feature Comparison Chart Edition: March 2012
© 2012 maxon motor. Subject to change without prior notice.
ESCON Feature Comparison Chart
The ESCON servo controllers are small-sized, powerful 4-quadrant PWM servo controller for the highly efficient control of permanent
magnet-activated DC motors.
The featured operating modes – speed control (closed loop), speed control (open loop), and current control – meet the highest
requirements. The ESCON servo controllers are designed being commanded by an analog set value and features extensive analog
and digital I/O functionality and are being configured via USB interface using the graphical user interface «ESCON Studio» for Windows
PCs.
Legend: ()* = only in use with DC Tacho or Encoder / nnnnnn = order number / O = optional
Feature ESCON 36/2 DC
(403112)
ESCON 50/5
(409510)
Product image
Motors
DC motors up to 72 W 250 W
EC motors up to — 250 W
Sensors
Digital Incremental Encoder (2 channel with or
without Line Driver)
DC Tacho
Without sensor (DC motors)
Digital Hall Sensors (EC motors) —
Electrical Data
Nominal operating voltage Vcc 10…36 VDC 10…50 VDC
Max. output voltage 0.98 x Vcc 0.98 x Vcc
Max. output current 4 A (<60 s) 15 A (<20 s)
Continuous output current 2 A 5 A
Pulse Width Modulation frequency 53.6 kHz
Sampling rate PI current controller 53.6 kHz
Sampling rate PI speed controller 5.36 kHz
Max. efficiency 95% 95%
Max. speed (DC) limited by max. permissible speed (motor)
and max. output voltage (controller)
Max. speed (EC; 1 pole pair) — 150'000 rpm
Built-in motor choke 300 μH; 2 A 3 x 30 μH; 5 A
Inputs / Outputs
Hall sensor signals — H1, H2, H3
Encoder signals A,A\,B,B\
Max. encoder input frequency differential (singleended)
1 MHz (100 kHz)
Potentiometers 1 2
maxon motor control
2 Document ID: rel2547 ESCON Servo Controllers
Edition: March 2012 Feature Comparison Chart
© 2012 maxon motor. Subject to change without prior notice.
Digital inputs 2
Digital inputs/outputs 2
Analog inputs 2
Resolution 12-bit
Range –10…+10 V
Circuit differential
Analog outputs 2
Resolution 12-bit
Range –4…+4 V
Auxiliary voltage output +5 VDC (IL ≤10 mA)
Hall sensor supply voltage — +5 VDC (IL ≤30 mA)
Encoder supply voltage +5 VDC (IL ≤70 mA)
Status Indicators Operation: green LED / Error: red LED
Connections
J1 Power Pin header (2 mm), 2 poles Pluggable screw-type terminal block
(3.5 mm), 2 poles
J2 Motor Pin header (2 mm), 3 poles Pluggable screw-type terminal block
(3.5 mm), 4 poles
J2A Motor Spring-loaded contacts, 2 poles —
J3 Hall sensors — Pluggable screw-type terminal block
(3.5 mm), 5 poles
J4 Encoder Pin header (2.54 mm), 5 x 2 poles
J4A Encoder Pin header (1.27 mm), 5 x 2 poles —
J5 Digital I/O Pin header (2 mm), 6 poles Pluggable screw-type terminal block
(3.5 mm), 6 poles
J6 Analog I/O Pin header (2 mm), 7 poles Pluggable screw-type terminal block
(3.5 mm), 7 poles
J7 USB USB Type micro B female
Mechanical Data
Weight (approximate) 30 g 204 g
Dimensions (L x W x H) 55 x 40 x 16.1 mm 115 x 75.5 x 24 mm
Mounting holes for screws M2.5 for screws M4
Environmental Conditions
Temperature – Operation –30…+45°C
Temperature – Extended range +45…+81°C; Derating: –0.056 A/°C +45…+85°C; Derating: –0.113 A/°C
Temperature – Storage –40…+85°C
Humidity (condensation not permitted) 20…80%
Functionality
Operating Mode
Current controller (torque control)
Speed controller (closed loop)
with encoder feedback
with DC Tacho feedback
with Hall sensor feedback —
Feature ESCON 36/2 DC
(403112)
ESCON 50/5
(409510)
maxon motor control
ESCON Servo Controllers Document ID: rel2547 3
Feature Comparison Chart Edition: March 2012
© 2012 maxon motor. Subject to change without prior notice.
Speed controller (open loop)
with static IxR Compensation
with adaptive IxR Compensation ()*
Set Value
Analog set value
PWM set value
Fixed set value
2 fixed set values
Digital I/O Functionality
Enable
Enable CW
Enable CCW
Enable CW + CCW
Enable + Direction
Stop
Ready
Speed Comparator
Commutation frequency —
Monitoring Outputs
Monitor Current
Monitor Speed
Analog Settings
Set value
Current limit
Offset adjust set value
Speed ramp (using potentiometer)
Current gain (using potentiometer)
Speed gain (using potentiometer)
IxR Factor (using potentiometer)
Protection
Overcurrent
Current limiter (adjustable)
Thermal overload
Undervoltage
Overvoltage
Voltage transients
Short-circuit of motor winding
Feature ESCON 36/2 DC
(403112)
ESCON 50/5
(409510)
maxon motor control
4 Document ID: rel2547 ESCON Servo Controllers
Edition: March 2012 Feature Comparison Chart
© 2012 maxon motor. Subject to change without prior notice.
Software
Installation Program ESCON Setup
Graphical User Interface ESCON Studio
Startup Wizard
Regulation Tuning
Diagnostic
Firmware Update
Controller Monitor
Parameters
Data Recording
Online Help
Language German, English, French, Italian, Spanish
Operating System Windows 7, Windows XP SP3
Communication interface USB 2.0 (full speed)
Accessories (not included in delivery)
404404 ESCON 36/2 DC Connector Set —
403964 ESCON Analog I/O Cable —
403962 ESCON DC Motor Cable —
403965 ESCON Digital I/O Cable —
275934 ESCON Encoder Cable O O
403957 ESCON Power Cable —
403968 USB 2.0 Type A micro-B Cable
409286 ESCON USB Stick
Feature ESCON 36/2 DC
(403112)
ESCON 50/5
(409510)
Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/
EV (AEV)
ASCTB233E 201209-T
ORDERING INFORMATION
Capsule contact
Mechanism and
High-capacity Cut-off
Compact Relay
EV RELAYS (AEV)
10A
80A
200A 300A
120A
20A
New
RoHS compliant
FEATURES
• Compact and lightweight
Charged with hydrogen gas for high arc
cooling capacity, short gap cutoff has
been achieved at high DC voltages.
• Safety
High safety achieved with construction
that prevents explosions by keeping the
arc from leaking.
• High contact reliability
Since the contact portion is sealed in
hydrogen gas, there is no contact
oxidation. It is also dustproof and
waterproof.
TYPICAL APPLICATIONS
High DC voltage applications such as
• Electric vehicle
• Hybrid vehicle
• Fuel-cell vehicle
• Battery charge and discharge
systems
• Construction equipment
Contact arrangement
1: 1 Form A (Screw terminal, 10A TM, with terminal protection cover)
5: 1 Form A (20A TM type)
AEV 0
Contact rating
1: 10 A
2: 20 A
8: 80 A
4: 120 A
7: 200 A
9: 300 A
Coil terminal structure
Nil:
2:
Plug-in (Faston) (for 20 A type), Connector (for 80 A, 120 A and 300 A), Lead wire (for 200 A)
Plug-in (Faston) (for 10 A type with terminal protection cover)
Coil voltage
12: 12V DC
24: 24V DC
Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/
LQ (ALQ)
ASCTB92E 201206-T
ORDERING INFORMATION
TYPES
Standard packing: Carton 100 pcs., Case 500 pcs.
1 Form A/1 Form C 10A
Small power relays LQ RELAYS (ALQ)
Nominal coil voltage
1 Form A 1 Form C
Part No. Part No.
5V DC ALQ305 ALQ105
6V DC ALQ306 ALQ106
9V DC ALQ309 ALQ109
12V DC ALQ312 ALQ112
18V DC ALQ318 ALQ118
24V DC ALQ324 ALQ124
* Protective construction: Flux-resistant type
RoHS compliant
FEATURES
1. Miniature size and small: 10(W) ×
20(L) × 16(H) mm .394(W) × .787(L) ×
.630(H) inch
2. Compact with high capacity:
1 Form A and 1 Form C, 10 A
3. Ambient temperature:
–40°C to +85°C –40°F to 185°F
4. High surge voltage: 8,000 V
between contacts and coil
5. High breakdown voltage: 4,000 V
between contacts and coil
TYPICAL APPLICATIONS
1. Household appliances
Air conditioners, Refrigerators,
Fan heaters, Microwave ovens, Inverter
and Hot water units
New
Contact arrangement
1: 1 Form C
3: 1 Form A
ALQ
Coil insulation class
Nil:
F:
Class B insulation
Class F insulation
Nominal coil voltage (DC)
05: 5V, 06: 6V, 09: 9V, 12: 12V, 18: 18V, 24: 24VPanasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/
LQ (ALQ)
ASCTB92E 201206-T
RATING
1. Coil data
2. Specifications
* Specifications will vary with foreign standards certification ratings.
Notes: *1. This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the
actual load.
*2. Wave is standard shock voltage of ±1.2×50µs according to JEC-212-1981
*3. The upper limit of the ambient temperature is the maximum temperature that can satisfy the coil temperature rise value. Refer to Usage, transport and storage
conditions in NOTES.
*4. When using relays in a high ambient temperature, consider the pick-up voltage rise due to the high temperature (a rise of approx. 0.4% V for each 1°C 33.8°F with
20°C 68°F as a reference) and use a coil impressed voltage that is within the maximum applied voltage range.
Contact
arrangement
Nominal coil
voltage
Pick-up voltage
(at 20°C 68°F)
Drop-out voltage
(at 20°C 68°F)
Nominal operating
current
[±10%] (at 20°C 68°F)
Coil resistance
[±10%] (at 20°C 68°F)
Nominal operating
power
(at 20°C 68°F)
Max. applied voltage
1 Form A
5V DC
75%V or less of
nominal voltage
(Initial)
5%V or more of
nominal voltage
(Initial)
40.0mA 125 Ω
200mW
180% of nominal voltage
(at 20°C 68°F)
130% of nominal voltage
(at 85°C 185°F)*4
6V DC 33.3mA 180 Ω
9V DC 22.2mA 405 Ω
12V DC 16.7mA 720 Ω
18V DC 11.1mA 1,620 Ω
24V DC 8.3mA 2,880 Ω
1 Form C
5V DC
75%V or less of
nominal voltage
(Initial)
5%V or more of
nominal voltage
(Initial)
80.0mA 62.5Ω
400mW
150% of nominal voltage
(at 20°C 68°F)
110% of nominal voltage
(at 85°C 185°F)*4
6V DC 66.7mA 90 Ω
9V DC 44.4mA 202.5Ω
12V DC 33.3mA 360 Ω
18V DC 22.2mA 810 Ω
24V DC 16.7mA 1,440 Ω
Characteristics Item Specifications
Contact
Arrangement 1 Form A 1 Form C
Contact resistance (Initial) Max. 100mΩ (By voltage drop 6 V DC 1 A)
Contact material AgNi type
Rating
Nominal switching capacity (resistive load) 5 A 30 V DC, 10 A 125 V AC, 5 A 250 V AC
N.O. side:
10 A 125 V AC, 5 A 250 V AC, 5 A 30 V DC
N.C. side:
3 A 125 V AC, 2 A 250 V AC, 1 A 30 V DC
Max. switching power (resistive load) 150 W, 1,250 VA N.O. side: 150 W, 1,250 VA
N.C. side: 30 W, 500 VA
Max. switching voltage 250 V AC
Max. switching current N.O.: 10 A (125V AC), N.C.: 3 A (125V AC)
Nominal operating power 200 mW 400 mW
Min. switching capacity (reference value)*1 100 mA, 5 V DC
Electrical
characteristics
Insulation resistance (Initial) Min. 1,000 MΩ (at 500 V DC) Measurement at same location as “Breakdown voltage” section.
Breakdown voltage
(Initial)
Between open contacts 1,000 Vrms for 1 min.
(Detection current: 10 mA)
750 Vrms for 1 min.
(Detection current: 10 mA)
Between contact and coil 4,000 Vrms for 1 min. (Detection current: 10 mA)
Temperature rise (coil)*4 Max. 45°C 113°F (By resistive method, nominal coil voltage applied to the coil; contact carrying
current: 10A, at 85°C 185°F)
Surge breakdown voltage*2
(Between contact and coil) 8,000 V (Initial)
Operate time (at nominal voltage) (at 20°C 68°F) Max. 20 ms (excluding contact bounce time.) (Initial)
Release time (at nominal voltage) (at 20°C 68°F) Max. 20 ms (excluding contact bounce time, with diode) (Initial)
Mechanical
characteristics
Shock resistance Functional 1 Form A: 294 m/s2, 1 Form C: 196 m/s2
(Half-wave pulse of sine wave: 11 ms; detection time: 10µs.)
Destructive 980 m/s2 (Half-wave pulse of sine wave: 6 ms.)
Vibration resistance Functional 10 to 55 Hz at double amplitude of 1.6 mm (Detection time: 10µs.)
Destructive 10 to 55 Hz at double amplitude of 2.0 mm
Expected life Mechanical Min. 107 (at 180 times/min.)
Conditions Conditions for operation, transport and storage*3 Ambient temperature: –40°C to +85°C –40°F to +185°F
Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
Max. operating speed 20 times/min. (at nominal switching capacity)
Unit weight Approx. 7 g .25 ozPanasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/
LQ (ALQ)
ASCTB92E 201206-T
3. Expected electrical life
Condition: Resistive load, at 20°C 68°F, at 20 times/min., with diode
REFERENCE DATA
Type Switching capacity No. of operations
1 Form A (at 20 times/min.)
10 A 125 V AC
5 A 250 V AC
5 A 30 V DC
5×104
5×104
105
1 Form C (at 20 times/min.)
N.O.
10 A 125 V AC
5 A 250 V AC
5 A 30 V DC
5×104
5×104
105
N.C.
3 A 125 V AC
2 A 250 V AC
1 A 30 V DC
2×105
2×105
105
1.-(1) Max. switching capacity (1 Form A type) 1.-(2) Max. switching capacity (1 Form C type) 2. Life curve
Ambient temperature: room temperature
1,000
AC resistive load
10010 250
100
10
5
1
Contact voltage, V
Contact current, A
1,00025010010
100
10
5
3
2
1
Contact voltage, V
Contact current, A
AC resistive load N.O. side
AC resistive load N.C. side
125V AC resistive load
250V AC resistive load
1086420
100
10
1
Contact current, A
Life, ×104
3.-(1) Coil temperature rise (1 Form A type)
Contact carrying current: 5 A, 10 A
Measured portion: Inside the coil
3.-(2) Coil temperature rise (1 Form C type)
Contact carrying current: 5 A, 10 A
Measured portion: Inside the coil
4.-(1) Ambient temperature characteristics
(1 Form A type)
Contact carrying current: 5 A, 10 A
180160140120100
Coil applied voltage, %V
70
60
50
40
30
20
10
0
Te
mperature rise, °C
10 A at 70°C
5 A at 70°C
5 A at 85°C
10 A at 85°C
160150140130120110100
Coil applied voltage, %V
70
60
50
40
30
20
10
0
Temperature rise, °C
10 A at 70°C
10 A at 85°C
5 A at 85°C
5 A at 70°C
0 20 30 40 50 60 70 80 90
Ambient temperature, °C
400
300
200
100
Coil applied voltage, %V
1
2
3
5 4
6 7
4.-(2) Ambient temperature characteristics
(1 Form C type)
Contact carrying current: 5 A, 10 A 1Allowable ambient temperature against
% coil voltage (max. inside the coil temperature
set as 130°C 266°F) (Carrying current: 5 A)
2Allowable ambient temperature against
% coil voltage (max. inside the coil temperature
set as 130°C 266°F) (Carrying current: 10 A)
3Allowable ambient temperature against
% coil voltage (max. inside the coil temperature
set as 115°C 239°F) (Carrying current: 5 A)
4Allowable ambient temperature against
% coil voltage (max. inside the coil temperature
set as 115°C 239°F) (Carrying current: 10 A)
5Pick-up voltage with a hot-start condition
of 100%V on the coil (Carrying current: 10 A)
6Pick-up voltage with a hot-start condition
of 100%V on the coil (Carrying current: 5 A)
7Pick-up voltage
0 20 30 40 50 60 70 80 90
Ambient temperature, °C
400
300
200
100
Coil applied voltage, %V
1
2
3
4
5
6 7Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/
LQ (ALQ)
ASCTB92E 201206-T
DIMENSIONS (mm inch)
SAFETY STANDARDS
Note) CSA standard: Certified by C-UL
Item UL/C-UL (Recognized) VDE (Certified)
File No. Contact rating File No. Contact rating
1 Form A
E43028 10A 125V AC
5A 277V AC
5A 30V DC
4FLA/4LRA 277V AC
1/6 HP 125V AC 1/6 HP 277V AC
40032836 5A 250V AC (cosφ=1.0)
10A 250V AC (cosφ=1.0)
10A 250V AC (cosφ=0.4)
5A 30V DC (0ms)
1 Form C
E43028
10A 125V AC
5A 277V AC
5A 30V DC
4FLA/4LRA 277V AC
1/6 HP 125V AC 1/6 HP 277V AC
3A 125V AC
2A 277V AC
1A 30V DC
40032836
5A 250V AC (cosφ=1.0)
10A 250V AC (cosφ=1.0)
10A 250V AC (cosφ=0.4)
5A 30V DC (0ms)
3A 250V AC (cosφ=0.4)
The CAD data of the products with a CAD Data mark can be downloaded from: http://industrial.panasonic.com/ac/e/
External dimensions
1 Form A
1 Form C
20
.787
10.16
.400 7.62
.300 7.62
.300
10
.394
7.62
.300
15.6
.614
4.2
.165
0.4
.016
0.5 dia.
.020 dia. 0.3
.012 0.3
.012 0.8
.031
20
.787
10.16
.400
5.08
.200
10
.394
7.62
.300
15.6
.614
4.2
.165
0.4
.016
0.5 dia.
.020 dia. 0.3
.012 0.3
.012 0.3
.012
2.54
.100 7.62
.300
0.8
.031
0.8
.031
Schematic (Bottom view)
1 Form A 1 Form C
Coil
COM N.O.
Coil
COM N.O.
N.C.
PC board pattern (Bottom view)
1 Form A 1FormC
Tolerance: ±0.1 ±.004
4-1.3 dia.
7.62
7.62
10.16 4-.051 dia.
.300
.300
.400
5-1.3 dia.
7.62
7.62
10.16
2.54
5-.051 dia.
.300
.300
.400
.100
CAD Data
Dimension:
Less than 1mm .039inch:
Min. 1mm .039inch less than 5mm .197 inch:
Min. 5mm .197 inch:
General tolerance
±0.2 ±.008
±0.3 ±.012
±0.4 ±.016Panasonic Corporation Automation Controls Business Unit industrial.panasonic.com/ac/e/
LQ (ALQ)
ASCTB92E 201206-T
NOTES
Usage, transport and storage
conditions
1) Temperature:
–40 to +85°C –40 to +185°F
2) Humidity: 5 to 85% RH
(Avoid freezing and condensation.)
The humidity range varies with the
temperature. Use within the range
indicated in the graph below.
3) Atmospheric pressure: 86 to 106 kPa
Temperature and humidity range for
usage, transport, and storage
4) Condensation
Condensation forms when there is a
sudden change in temperature under
high temperature and high humidity
conditions. Condensation will cause
deterioration of the relay insulation.
5) Freezing
Condensation or other moisture may
freeze on the relay when the
temperatures is lower than 0°C 32°F. This
causes problems such as sticking of
movable parts or operational time lags.
6) Low temperature, low humidity
environments
The plastic becomes brittle if the relay is
exposed to a low temperature, low
humidity environment for long periods of
time.
Solder and cleaning conditions
1) Please obey the following conditions
when soldering automatically.
(1) Preheating: Within 120°C 248°F
(solder surface terminal portion) and
within 120 seconds
(2) Soldering iron: 260°C±5°C
500°F±41°F (solder temperature) and
within 6 seconds (soldering time)
2) Do not use ultrasonic cleaning. This
will adversely affect relay characteristics.
When cleaning the relay, please use
alcoholic solvents.
Cautions for use
1) For precautions regarding use and
explanations of technical terminology,
please refer to our web site.
(panasonic-electric-works.net/ac)
2) To ensure good operation, please keep
the voltage on the coil ends to ±5% (at
20°C 68°F) of the rated coil operation
voltage. Also, please be aware that the
pick-up voltage and drop-out voltage may
change depending on the temperature
and conditions of use.
3) Keep the ripple rate of the nominal coil
voltage below 5%.
4) The cycle lifetime is defined under the
standard test condition specified in the
JIS C 5442 standard (temperature 15 to
35°C 59 to 95°F, humidity 25 to 75%).
Check this with the real device as it is
affected by coil driving circuit, load type,
activation frequency, activation phase,
ambient conditions and other factors.
Also, be especially careful of loads such
as those listed below.
(1) When used for AC load-operating and
the operating phase is synchronous.
Rocking and fusing can easily occur due
to contact shifting.
(2) Highly frequent load-operating
When highly frequent opening and
closing of the relay is performed with a
load that causes arcs at the contacts,
nitrogen and oxygen in the air is fused by
the arc energy and HNO3 is formed. This
can corrode metal materials.
Three countermeasures for these are
listed here.
• Incorporate an arc-extinguishing circuit.
• Lower the operating frequency
• Lower the ambient humidity
5) This value can change due to the
switching frequency, environmental
conditions, and desired reliability level,
therefore it is recommended to check this
with the actual load.
6) Heat, smoke, and even a fire may
occur if the relay is used in conditions
outside of the allowable ranges for the
coil ratings, contact ratings, operating
cycle lifetime, and other specifications.
Therefore, do not use the relay if these
ratings are exceeded.
7) If the relay has been dropped, the
appearance and characteristics should
always be checked before use.
8) Incorrect wiring may cause
unexpected events or the generation of
heat or flames.
85
5
Humidity, %RH
Tolerance range
(Avoid
condensation
when used at
temperatures
higher than
0°C 32°F)
(Avoid freezing
when used at
temperatures
lower than
0°C 32°F)
850–40
+185+32–40
Temperature, °C °F
74AC00, 74ACT00 — Quad 2-Input NAND Gate
©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com
74AC00, 74ACT00 Rev. 1.4.1
January 2008
74AC00, 74ACT00
Quad 2-Input NAND Gate
Features
■
I
CC
reduced by 50%
■
Outputs source/sink 24mA
■
ACT00 has TTL-compatible inputs
General Description
The AC00/ACT00 contains four, 2-input NAND gates.
Ordering Information
Device also available in Tape and Reel. Specify by appending suffix letter “X” to the ordering number.
All packages are lead free per JEDEC: J-STD-020B standard.
Connection Diagram
Pin Description
Logic Symbol
IEEE/IEC
Order
Number
Package
Number Package Description
74AC00SC M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74AC00SJ M14D 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC00MTC MTC14 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm
Wide
74AC00PC N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT00SC M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74ACT00SJ M14D 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACT00MTC MTC14 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm
Wide
74ACT00PC N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Pin Names Description
A
n
, B
n
Inputs
O
n
Outputs
©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com
74AC00, 74ACT00 Rev. 1.4.1 2
74AC00, 74ACT00 — Quad 2-Input NAND Gate
Absolute Maximum Ratings
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.
The absolute maximum ratings are stress ratings only.
Recommended Operating Conditions
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended
operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not
recommend exceeding them or designing to absolute maximum ratings.
Symbol Parameter Rating
V
CC
Supply Voltage –0.5V to +7.0V
I
IK
DC Input Diode Current
V
I
=
–0.5V –20mA
V
I
=
V
CC
+ 0.5 +20mA
V
I
DC Input Voltage –0.5V to V
CC
+ 0.5V
I
OK
DC Output Diode Current
V
O
=
–0.5V –20mA
V
O
=
V
CC
+ 0.5V +20mA
V
O
DC Output Voltage –0.5V to V
CC
+ 0.5V
I
O
DC Output Source or Sink Current ±50mA
I
CC
or I
GND
DC V
CC
or Ground Current per Output Pin ±50mA
T
STG
Storage Temperature –65°C to +150°C
T
J
Junction Temperature 140°C
Symbol Parameter Rating
V
CC
Supply Voltage
AC 2.0V to 6.0V
ACT 4.5V to 5.5V
V
I
Input Voltage 0V to V
CC
V
O
Output Voltage 0V to V
CC
T
A
Operating Temperature –40°C to +85°C
Δ
V
/
Δ
t Minimum Input Edge Rate, AC Devices:
V
IN
from 30% to 70% of V
CC
,
V
CC
@ 3.3V, 4.5V, 5.5V
125mV/ns
Δ
V
/
Δ
t Minimum Input Edge Rate, ACT Devices:
V
IN
from 0.8V to 2.0V, V
CC
@ 4.5V, 5.5V
125mV/ns
©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com
74AC00, 74ACT00 Rev. 1.4.1 3
74AC00, 74ACT00 — Quad 2-Input NAND Gate
DC Electrical Characteristics for AC
Notes:
1. All outputs loaded; thresholds on input associated with output under test.
2. Maximum test duration 2.0ms, one output loaded at a time.
3. I
IN
and I
CC
@ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V
CC
.
Symbol Parameter
V
CC
(V) Conditions
T
A
=
+25°C T
A
=
–40°C to +85°C
Typ. Guaranteed Limits Units
V
IH
Minimum HIGH Level
Input Voltage
3.0 V
OUT
=
0.1V
or V
CC
– 0.1V
1.5 2.1 2.1 V
4.5 2.25 3.15 3.15
5.5 2.75 3.85 3.85
V
IL
Maximum LOW Level
Input Voltage
3.0 V
OUT
=
0.1V
or V
CC
– 0.1V
1.5 0.9 0.9 V
4.5 2.25 1.35 1.35
5.5 2.75 1.65 1.65
V
OH
Minimum HIGH Level
Output Voltage
3.0 I
OUT
=
–50μA 2.99 2.9 2.9 V
4.5 4.49 4.4 4.4
5.5 5.49 5.4 5.4
3.0 V
IN
=
V
IL
or V
IH
,
I
OH
=
–12mA
2.56 2.46
4.5 V
IN
=
V
IL
or V
IH
,
I
OH
=
–24mA
3.86 3.76
5.5 V
IN
=
V
IL
or V
IH
,
I
OH
=
–24mA
(1)
4.86 4.76
V
OL
Maximum LOW Level
Output Voltage
3.0 I
OUT
=
50μA 0.002 0.1 0.1 V
4.5 0.001 0.1 0.1
5.5 0.001 0.1 0.1
3.0 V
IN
=
V
IL
or V
IH
,
I
OL
=
12mA
0.36 0.44
4.5 V
IN
=
V
IL
or V
IH
,
I
OL
=
24mA
0.36 0.44
5.5 V
IN
=
V
IL
or V
IH
,
I
OL
=
24mA
(1)
0.36 0.44
I
IN
(3)
Maximum Input
Leakage Current
5.5 V
I
=
V
CC
, GND ±0.1 ±1.0 μA
I
OLD
Minimum Dynamic
Output Current
(2)
5.5 V
OLD
= 1.65V Max. 75 mA
IOHD 5.5 VOHD = 3.85V Min. –75 mA
ICC
(3) Maximum Quiescent
Supply Current
5.5 VIN = VCC or GND 2.0 20.0 μA
©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com
74AC00, 74ACT00 Rev. 1.4.1 4
74AC00, 74ACT00 — Quad 2-Input NAND Gate
DC Electrical Characteristics for ACT
Notes:
4. All outputs loaded; thresholds on input associated with output under test.
5. Maximum test duration 2.0ms, one output loaded at a time.
Symbol Parameter
VCC
(V) Conditions
TA = +25°C TA = –40°C to +85°C
Typ. Guaranteed Limits Units
VIH Minimum HIGH Level
Input Voltage
4.5 VOUT = 0.1V or
VCC – 0.1V
1.5 2.0 2.0 V
5.5 1.5 2.0 2.0
VIL Maximum LOW Level
Input Voltage
4.5 VOUT = 0.1V or
VCC – 0.1V
1.5 0.8 0.8 V
5.5 1.5 0.8 0.8
VOH Minimum HIGH Level
Output Voltage
4.5 IOUT = –50μA 4.49 4.4 4.4 V
5.5 5.49 5.4 5.4
4.5 VIN = VIL or VIH,
IOH = –24mA
3.86 3.76
5.5 VIN = VIL or VIH,
IOH = –24mA(4)
4.86 4.76
VOL Maximum LOW Level
Output Voltage
4.5 IOUT = 50μA 0.001 0.1 0.1 V
5.5 0.001 0.1 0.1
4.5 VIN = VIL or VIH,
IOL = 24mA
0.36 0.44
5.5 VIN = VIL or VIH,
IOL= 24mA(4)
0.36 0.44
IIN Maximum Input
Leakage Current
5.5 VI = VCC, GND ±0.1 ±1.0 μA
ICCT Maximum ICC/Input 5.5 VI = VCC – 2.1V 0.6 1.5 mA
IOLD Minimum Dynamic
Output Current(5)
5.5 VOLD = 1.65V Max. 75 mA
IOHD 5.5 VOHD = 3.85V Min. –75 mA
ICC Maximum Quiescent
Supply Current
5.5 VIN = VCC or GND 2.0 20.0 μA
©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com
74AC00, 74ACT00 Rev. 1.4.1 5
74AC00, 74ACT00 — Quad 2-Input NAND Gate
AC Electrical Characteristics for AC
Note:
6. Voltage range 3.3 is 3.3V ± 0.3V. Voltage range 5.0 is 5.0V ± 0.5V.
AC Electrical Characteristics for ACT
Note:
7. Voltage Range 5.0 is 5.0V ± 0.5V.
Capacitance
Symbol Parameter VCC
(V)(6)
TA = +25°C,
CL = 50pF
TA = –40°C to +85°C,
CL = 50pF
Min. Typ. Max. Min. Max. Units
tPLH Propagation Delay 3.3 2.0 7.0 9.5 2.0 10.0 ns
5.0 1.5 6.0 8.0 1.5 8.5
tPHL Propagation Delay 3.3 1.5 5.5 8.0 1.0 8.5 ns
5.0 1.5 4.5 6.5 1.0 7.0
Symbol Parameter VCC
(V)(7)
TA = +25°C,
CL = 50pF
TA = –40°C to +85°C,
CL = 50pF
Min. Typ. Max. Min. Max. Units
tPLH Propagation Delay 5.0 1.5 5.5 9.0 1.0 9.5 ns
tPHL Propagation Delay 5.0 1.5 4.0 7.0 1.0 8.0 ns
Symbol Parameter Conditions Typ. Units
CIN Input Capacitance VCC = OPEN 4.5 pF
CPD Power Dissipation Capacitance VCC = 5.0V 30.0 pF
©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com
74AC00, 74ACT00 Rev. 1.4.1 6
74AC00, 74ACT00 — Quad 2-Input NAND Gate
Physical Dimensions
Figure 1. 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions,
specifically the warranty therein, which covers Fairchild products.
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/
LAND PATTERN RECOMMENDATION
NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE CONFORMS TO JEDEC
MS-012, VARIATION AB, ISSUE C,
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS DO NOT INCLUDE MOLD
FLASH OR BURRS.
D) LANDPATTERN STANDARD:
SOIC127P600X145-14M
E) DRAWING CONFORMS TO ASME Y14.5M-1994
F) DRAWING FILE NAME: M14AREV13
PIN ONE
INDICATOR
8°
0°
SEATING PLANE
DETAIL A
SCALE: 20:1
GAGE PLANE
0.25
X 45°
1
0.10
C
C
C B A
7
M
14
B
A
8
SEE DETAIL A
5.60
0.65
1.70 1.27
8.75
8.50
7.62
6.00 4.00
3.80
(0.33)
1.27 0.51
0.35
1.75 MAX
1.50
1.25
0.25
0.10
0.25
0.19
(1.04)
0.90
0.50
0.36
R0.10
R0.10
0.50
0.25
©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com
74AC00, 74ACT00 Rev. 1.4.1 7
74AC00, 74ACT00 — Quad 2-Input NAND Gate
Physical Dimensions (Continued)
Figure 2. 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions,
specifically the warranty therein, which covers Fairchild products.
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/
©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com
74AC00, 74ACT00 Rev. 1.4.1 8
74AC00, 74ACT00 — Quad 2-Input NAND Gate
Physical Dimensions (Continued)
Figure 3. 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions,
specifically the warranty therein, which covers Fairchild products.
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH,
AND TIE BAR EXTRUSIONS
F. DRAWING FILE NAME: MTC14REV6
R0.09 min
12.00°TOP & BOTTOM
0.43 TYP
1.00
D. DIMENSIONING AND TOLERANCES PER ANSI
Y14.5M, 1982
R0.09min
E. LANDPATTERN STANDARD: SOP65P640X110-14M
0.65
6.10
1.65
0.45
A. CONFORMS TO JEDEC REGISTRATION MO-153,
VARIATION AB, REF NOTE 6
B. DIMENSIONS ARE IN MILLIMETERS
©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com
74AC00, 74ACT00 Rev. 1.4.1 9
74AC00, 74ACT00 — Quad 2-Input NAND Gate
Physical Dimensions (Continued)
Figure 4. 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions,
specifically the warranty therein, which covers Fairchild products.
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/
14 8
1 7
NOTES: UNLESS OTHERWISE SPECIFIED
A)
THIS PACKAGE CONFORMS TO
JEDEC MS-001 VARIATION BA
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C)
DIMENSIONS ARE EXCLUSIVE OF BURRS,
MOLD FLASH, AND TIE BAR EXTRUSIONS.
D) DIMENSIONS AND TOLERANCES PER
ASME Y14.5-1994
E) DRAWING FILE NAME: MKT-N14AREV7
6.60
6.09
8.12
7.62
0.35
0.20
19.56
18.80
3.56
3.30 5.33 MAX
0.38 MIN
1.77
1.14
0.58
0.35 2.54
3.81
3.17 8.82
(1.74)
©1988 Fairchild Semiconductor Corporation www.fairchildsemi.com
74AC00, 74ACT00 Rev. 1.4.1 10
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global
subsidiaries, and is not intended to be an exhaustive list of all such trademarks.
ACEx®
Build it Now™
CorePLUS™
CROSSVOLT™
CTL™
Current Transfer Logic™
EcoSPARK®
EZSWITCH™ *
™
®
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FlashWriter® *
FPS™
FRFET®
Global Power ResourceSM
Green FPS™
Green FPS™ e-Series™
GTO™
i-Lo™
IntelliMAX™
ISOPLANAR™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MillerDrive™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®
®
PDP-SPM™
Power220®
Power247®
POWEREDGE®
Power-SPM™
PowerTrench®
Programmable Active Droop™
QFET®
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
SMART START™
SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
®
The Power Franchise®
TinyBoost™
TinyBuck™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
μSerDes™
UHC®
Ultra FRFET™
UniFET™
VCX™
* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TOMAKE CHANGESWITHOUT FURTHER NOTICE TO ANY PRODUCTS
HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE
APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS
PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S
WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THEWARRANTY THEREIN,WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMSWITHOUT THE EXPRESSWRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body or
(b) support or sustain life, and (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result in a significant injury of the user.
2. A critical component in any component of a life support,
device, or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information Form
First Production
ative or In Design
This datasheet contains the design specifications for product
development. Specifications may change in any manner without notice.
Preliminary
This datasheet contains preliminary data; supplementary data will be
published at a later date. Fairchild Semiconductor reserves the right to
make changes at any time without notice to improve design.
No Identification Needed Full Production
This datasheet contains final specifications. Fairchild Semiconductor
reserves the right to make changes at any time without notice to improve
the design.
Obsolete Not In Production
This datasheet contains specifications on a product that has been
discontinued by Fairchild Semiconductor. The datasheet is printed for
reference information only.
Rev. I32
74AC00, 74ACT00 — Quad 2-Input NAND Gate
S1A - S1M — General Purpose Rectifiers
© 2010 Fairchild Semiconductor Corporation www.fairchildsemi.com
S1A - S1M Rev. 1.1.2 1
October 2013
S1A - S1M
General Purpose Rectifiers
Features
• 1 AIF(AV) Current Rating
• Glass Passivated
• Low Leakage:
- 1 μA Maximum at 25°C
- 50 μA Maximum at 125°C
• Fast Response: 1.8 μs (Typical)
• 30 A Surge Rating
• 50 to 1000 V Reverse Voltage Ratings
• 6.6 pF Typical Capacitance
• RoHS Compliant
Ordering Information
Part Number Marking Package Packing Method
S1A S1A DO-214AC Tape and Reel
S1B S1B DO-214AC Tape and Reel
S1D S1D DO-214AC Tape and Reel
S1G S1G DO-214AC Tape and Reel
S1J S1J DO-214AC Tape and Reel
S1K S1K DO-214AC Tape and Reel
S1M S1M DO-214AC Tape and Reel
SMA/DO-214AC
COLOR BAND DENOTES CATHODE
Description
In the world of commodity rectifiers, Fairchild Semiconductor’s
S1 family of 1 A, P-I-N, SMA rectifiers stand out
for their optimized low leakage, low capacitance, and
fast response time. This was achieved while maintaining
the industry standard VF max of 1.1 V at 1 A and a 30 A
surge rating. In today’s world, where system power efficiency
is a critical differentiating feature, these advantages
can be leveraged to support those higher
efficiency goals.
S1A - S1M — General Purpose Rectifiers
© 2010 Fairchild Semiconductor Corporation www.fairchildsemi.com
S1A - S1M Rev. 1.1.2 2
Absolute Maximum Ratings(1)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable
above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition,
extended exposure to stresses above the recommended operating conditions may affect device reliability. The
absolute maximum ratings are stress ratings only. Values are at TA = 25°C unless otherwise noted.
Note:
1. These ratings are limiting values above which the serviceability of any semiconductor device maybe impaired.
Thermal Characteristics
Notes:
2. Device mounted on FR-4 PCB, land pattern size: 25 mm² (5 x 5 mm).
3. Device mounted on FR-4 PCB, land pattern size: 4.6375 mm² (2.65 x 1.75 mm).
Electrical Characteristics
Values are at TA = 25°C unless otherwise noted.
Symbol Parameter
Value
Units
1A 1B 1D 1G 1J 1K 1M
VRRM Maximum Repetitive Reverse Voltage 50 100 200 400 600 800 1000 V
IF(AV)
Average Rectified Forward Current at
TA = 100°C 1.0 A
IFSM
Non-Repetitive Peak Forward Surge Current
8.3 ms Single Half-Sine-Wave 30 A
TSTG Storage Temperature Range -55 to +150 °C
TJ Operating Junction Temperature -55 to +150 °C
Symbol Parameter Max. Units
PD Power Dissipation 1.4 W
RθJA Thermal Resistance, Junction to Ambient(2) 85 °C/W
RθJA Thermal Resistance, Junction to Ambient(3) 170 °C/W
Ψjl Junction-Lead thermal characteristics(3) 25 °C/W
Symbol Parameter Test Condition Typ. Max. Units
VF Forward Voltage IF = 1.0 A 1.1 V
trr Reverse Recovery Time
IF = 0.5 A,
IR = 1.0 A,
Irr = 0.25 A
1.8 μs
IR Reverse Current at Rated VR
TA = 25°C 1.0 μA
TA =125°C 50 μA
CT Junction Capacitance VR = 4.0 V,
f = 1.0MHz 6.6 pF
S1A - S1M — General Purpose Rectifiers
© 2010 Fairchild Semiconductor Corporation www.fairchildsemi.com
S1A - S1M Rev. 1.1.2 3
Typical Performance Characteristics
Figure 1. Forward Current Derating Curve Figure 2. Forward Voltage Characteristics
Figure 3. Non-Repetitive Surge Current Figure 4. Reverse Current vs. Reverse Voltage
Figure 5. Total Capacitance Figure 6. Thermal Impedance Characteristics
0 25 50 75 100 125 150 175
0
1
2
Average Rectified Forward Current, IF [A]
Lead Temperature, [OC]
Percent of Rated Peak Reverse Voltage (%)
S1A - S1M — General Purpose Rectifiers
© 2010 Fairchild Semiconductor Corporation www.fairchildsemi.com
S1A - S1M Rev. 1.1.2 4
Physical Dimension
Figure 7. 2-LEAD, SMA, JEDEC DO-214, VARIATION AC
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the
warranty therein, which covers Fairchild products.
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/dwg/DO/DO214AC.pdf.
1.75
2.65
4.30
2.70 MAX
2.20
1.90
0.30
0.05
2.05
1.95
B 0.203
0.050
A
0.13 M C B A
C
2.95
2.50 B 1.65
1.20
B 5.60
4.80
B 4.75
4.00
B 0.13 M C B A
A
0.41
0.15
1.52
0.75
R0.15 4X
8°
0°
0.45
0 -8°
DETAIL A
SCALE 20 : 1
LAND PATTERN RECOMMENDATION
GAUGE
PLANE
NOTES:
A. EXCEPT WHERE NOTED CONFORMS TO
JEDEC DO214 VARIATION AC.
B DOES NOT COMPLY JEDEC STD. VALUE.
C. ALL DIMENSIONS ARE IN MILLIMETERS.
D. DIMENSIONS ARE EXCLUSIVE OF BURRS,
MOLD FLASH AND TIE BAR PROTRUSIONS.
E. DIMENSION AND TOLERANCE AS PER ASME
Y14.5-1994.
F. LAND PATTERN STD. DIOM5025X231M.
G. DRAWING FILE NAME: DO214ACREV1
DO-214AC
© Fairchild Semiconductor Corporation www.fairchildsemi.com
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not
intended to be an exhaustive list of all such trademarks.
AccuPower
AX-CAP®*
BitSiC
Build it Now
CorePLUS
CorePOWER
CROSSVOLT
CTL
Current Transfer Logic
DEUXPEED®
Dual Cool™
EcoSPARK®
EfficientMax
ESBC
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series
FACT®
FAST®
FastvCore
FETBench
FPS
F-PFS
FRFET®
Global Power ResourceSM
GreenBridge
Green FPS
Green FPS e-Series
Gmax
GTO
IntelliMAX
ISOPLANAR
Making Small Speakers Sound Louder
and Better™
MegaBuck
MICROCOUPLER
MicroFET
MicroPak
MicroPak2
MillerDrive
MotionMax
mWSaver®
OptoHiT
OPTOLOGIC®
OPTOPLANAR®
®
PowerTrench®
PowerXS™
Programmable Active Droop
QFET®
QS
Quiet Series
RapidConfigure
Saving our world, 1mW/W/kW at a time™
SignalWise
SmartMax
SMART START
Solutions for Your Success
SPM®
STEALTH
SuperFET®
SuperSOT-3
SuperSOT-6
SuperSOT-8
SupreMOS®
SyncFET
Sync-Lock™
®*
TinyBoost®
TinyBuck®
TinyCalc
TinyLogic®
TINYOPTO
TinyPower
TinyPWM
TinyWire
TranSiC
TriFault Detect
TRUECURRENT®*
SerDes
UHC®
Ultra FRFET
UniFET
VCX
VisualMax
VoltagePlus
XS™
* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE
SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN,
WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are
intended for surgical implant into the body or (b) support or sustain
life, and (c) whose failure to perform when properly used in
accordance with instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or
system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its
safety or effectiveness.
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,
under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed
applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors
are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical
and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise.
Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global
problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change
in any manner without notice.
Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild
Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make
changes at any time without notice to improve the design.
Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor.
The datasheet is for reference information only.
Rev. I66
®
http://www.farnell.com/datasheets/1766308.pdf
2N7002DW — N-Channel Enhancement Mode Field Effect Transistor
© 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com
2N7002DW Rev. A 1
October 2007
2N7002DW
N-Channel Enhancement Mode Field Effect Transistor
Features
•Dual N-Channel MOSFET
•Low On-Resistance
•Low Gate Threshold Voltage
•Low Input Capacitance
•Fast Switching Speed
•Low Input/Output Leakage
•Ultra-Small Surface Mount Package
•Lead Free/RoHS Compliant
Absolute Maximum Ratings * Ta = 25°C unless otherwise noted
* These ratings are limiting values above which the serviceability of any semiconductor device may by impaired.
Thermal Characteristics
* Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch, Minimun land pad size,
Symbol
Parameter
Value
Units
VDSS
Drain-Source Voltage
60
V
VDGR
Drain-Gate Voltage RGS ≤ 1.0MΩ
60
V
VGSS
Gate-Source Voltage Continuous
Pulsed
±20
±40
V
ID
Drain Current Continuous
Continuous @ 100°C
Pulsed
115
73
800
mA
TJ , TSTG
Junction and Storage Temperature Range
-55 to +150
°C
Symbol
Parameter
Value
Units
PD
Total Device Dissipation
Derating above TA = 25°C
200
1.6
mW
mW/°C
RθJA
Thermal Resistance, Junction to Ambient *
625
°C/W
1SC70-6 (SOT363)Marking : 2N1
2N7002DW — N-Channel Enhancement Mode Field Effect Transistor
© 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com
2N7002DW Rev. A 2
Electrical Characteristics TC = 25°C unless otherwise noted
Off Characteristics (Note1)
On Characteristics (Note1)
Dynamic Characteristics
Switching Characteristics
Note1 : Short duration test pulse used to minimize self-heating effect.
Symbol
Parameter
Test Condition
MIN
TYP
MAX
Units
BVDSS
Drain-Source Breakdown Voltage
VGS= 0V, ID=10uA
60
78
-
V
IDSS
Zero Gate Voltage Drain Current
VDS= 60V, VGS= 0V
VDS= 60V, VGS= 0V, @TC = 125°C
-
0.001
7
1.0
500
uA
IGSS
Gate-Body Leakage
VGS= ±20V, VDS= 0V
-
0.2
±10
nA
VGS(th)
Gate Threshold Voltage
VDS = VGS, ID = 250uA
1.0
1.76
2.0
V
RDS(ON)
Satic Drain-Source On-Resistance
VGS = 5V, ID = 0.05A,
VGS = 10V, ID = 0.5A, @Tj = 125°C
-
-
1.6
2.53
7.5
13.5
Ω
ID(ON)
On-State Drain Current
VGS = 10V, VDS= 7.5V
0.5
1.43
-
A
gFS
Forward Transconductance
VDS = 10V, ID = 0.2A
80
356.5
-
mS
Ciss
Input Capacitance
VDS = 25V, VGS= 0V, f = 1.0MHz
-
37.8
50
pF
Coss
Output Capacitance
-
12.4
25
pF
Crss
Reverse Transfer Capacitance
-
6.5
7.0
pF
tD(ON)
Turn-On Delay Time
VDD = 30V, ID = 0.2A, VGEN= 10V
RL = 150Ω, RGEN = 25Ω
-
5.85
20
ns
tD(OFF)
Turn-Off Delay Time
-
12.5
20
2N7002DW — N-Channel Enhancement Mode Field Effect Transistor
© 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com
2N7002DW Rev. A 3
Typical Performance Characteristics
Figure 1. On-Region Characteristics
Figure 2. On-Resistance Variation with Gate
Voltage and Drain Current
Figure 3. On-Resistance Variation with
Temperature
Figure 4. On-Resistance Variation with
Gate-Source Voltage
Figure 5. Transfer Characteristics
Figure 6. Gate Threshold Variation with
Temperature
0123456789100.00.20.40.60.81.01.21.41.62V3V4V5VVGS = 10VID. DRAIN-SOURCE CURRENT(A)VDS. DRAIN-SOURCE VOLTAGE (V)
0.00.20.40.60.81.01.01.52.02.53.0(Ω)9V8V5V6V10V7V4V4.5VVGS = 3VRDS(on), DRANI-SOURCE ON-RESISTANCEID. DRAIN-SOURCE CURRENT(A)
-500501001500.51.01.52.02.53.0(Ω)VGS = 10VID = 500 mARDS(on) DRANI-SOURCE ON-RESISTANCETJ. JUNCTION TEMPERATURE(oC)
2468101.01.52.02.53.0ID = 500 mA(Ω)ID = 50 mARDS(on), DRANI-SOURCE ON-RESISTANCEVGS. GATE-SOURCE VOLTAGE (
V)
234560.00.20.40.60.81.0VDS = 10V75oC125oC150oC25oCTJ = -25oCID. DRAIN-SOURCE CURRENT(A)VGS. GATE-SOURCE VOLTAGE (V)
-500501001501.01.52.02.5ID = 0.25 mAID = 1 mAVGS = VDSVth, Gate-Source Threshold Voltage (
V)TJ. JUNCTION TEMPERATURE(oC)
2N7002DW — N-Channel Enhancement Mode Field Effect Transistor
© 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com
2N7002DW Rev. A 4
Typical Performance Characteristics
Figure 7. Reverse Drain Current Variation with
Diode Forward Voltage and Temperature
Figure 8. Power Derating
1101000.00.20.40.60.81.0-55oCVGS = 0 V150oC25oCVSD, Body Diode Forward Voltage [V]IS Reverse Drain Current, [mA]
025507510012515017504080120160200240280 PC[mW], POWER DISSIPATIONTa[oC], AMBIENT TEMPERATURE
2N7002DW — N-Channel Enhancement Mode Field Effect Transistor
© 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com
2N7002DW Rev. A 5
Package DimensionsSC70-6 ( SOT-363 )
2N7002DW N-Channel Enhancement Mode Field Effect Transistor
TRADEMARKS
The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and
is not intended to be an exhaustive list of all such trademarks.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS
HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF
THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE
UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF
FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE
PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, and (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result
in significant injury to the user.
2. A critical component is any component of a life support
device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
ACEx®
Build it Now™
CorePLUS™
CROSSVOLT™
CTL™
Current Transfer Logic™
EcoSPARK®
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FPS™
FRFET®
Global Power ResourceSM
Green FPS™
Green FPS™ e-Series™
GTO™
i-Lo™
IntelliMAX™
ISOPLANAR™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®
®
PDP-SPM™
Power220®
Power247®
POWEREDGE®
Power-SPM™
PowerTrench®
Programmable Active Droop™
QFET®
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
SMART START™
SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
The Power Franchise®
TinyBoost™
TinyBuck™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
μSerDes™
UHC®
UniFET™
VCX™
Datasheet Identification Product Status Definition
Advance Information Formative or In Design This datasheet contains the design specifications for product development.
Specifications may change in any manner without notice.
Preliminary First Production
This datasheet contains preliminary data; supplementary data will be published
at a later date. Fairchild Semiconductor reserves the right to make
changes at any time without notice to improve design.
No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves
the right to make changes at any time without notice to improve design.
Obsolete Not In Production
This datasheet contains specifications on a product that has been discontinued
by Fairchild semiconductor. The datasheet is printed for reference information
only.
Rev. I30
© 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com
2N7002DW Rev. A 6
QRE1113, QRE1113GR — Minature Reflective Object Sensor
©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com
QRE1113, QRE1113GR Rev. 1.7.1
August 2011
QRE1113, QRE1113GR
Minature Reflective Object Sensor
Features
■
Phototransistor output
■
No contact surface sensing
■
Miniature package
■
Lead form style: Gull Wing
■
Two leadform options: Through hole (QRE1113)
SMT gullwing (QRE1113GR)
■
Two packaging options: Tube (QRE1113)
Tape and reel (QRE1113GR)
QRE1113GR Package Dimensions
2.90
2.50
3.60
0.94
3.20 1.80
0.60
1.00
C L
C L
0.40
0.94
1.70
1.50
4.80
4.40
1.10
0.90
1 2
4 3
30°
0.40
Notes:
1. Dimensions for all drawings are in millimeters.
2. Tolerance of ±0.15mm on all non-nominal dimensions
0.120
©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com
QRE1113, QRE1113GR Rev. 1.7.1 2
QRE1113, QRE1113GR — Minature Reflective Object Sensor
QRE1113 Package Dimensions
Schematic
2.90
2.50
10.4
0.94
8.4
1.80
0.60
1.00
C L
C L
0.40
0.94
1.70
0~20° 0~20°
1.50
1 2
4 3
4.20
3.80
0.40
3.60
3.20
Notes:
1. Dimensions for all drawings are in millimeters.
2. Tolerance of ±0.15mm on all non-nominal dimensions
1
Pin 1: Anode
Pin 2: Cathode
Pin 3: Collector
Pin 4: Emitter
2 34
©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com
QRE1113, QRE1113GR Rev. 1.7.1 3
QRE1113, QRE1113GR — Minature Reflective Object Sensor
Absolute Maximum Ratings
(T
A
= 25°C unless otherwise specified)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.
The absolute maximum ratings are stress ratings only.
Electrical/Optical Characteristics
(T
A
= 25°C unless otherwise specified)
Notes:
1. Derate power dissipation linearly 1.00mW/°C above 25°C.
2. RMA flux is recommended.
3. Methanol or isopropyl alcohols are recommended as cleaning agents.
4. Soldering iron 1/16" (1.6mm) from housing.
5. Pulse conditions: tp = 100µs; T = 10ms.
6. Measured using an aluminum alloy mirror at d = 1mm.
7. No reflective surface at close proximity.
Symbol Parameter Rating Units
T
OPR
Operating Temperature -40 to +85 °C
T
STG
Storage Temperature -40 to +90 °C
T
SOL-I
Soldering Temperature (Iron)
(2,3,4)
240 for 5 sec °C
T
SOL-F
Soldering Temperature (Flow)
(2,3)
260 for 10 sec °C
EMITTER
I
F
Continuous Forward Current 50 mA
V
R
Reverse Voltage 5 V
I
FP
Peak Forward Current
(5)
1 A
P
D
Power Dissipation
(1)
75 mW
SENSOR
V
CEO
Collector-Emitter Voltage 30 V
V
ECO
Emitter-Collector Voltage 5 V
I
C
Collector Current 20 mA
P
D
Power Dissipation
(1)
50 mW
Symbol Parameter Test Conditions Min. Typ. Max. Units
INPUT DIODE
V
F
Forward Voltage I
F
= 20mA 1.2 1.6 V
I
R
Reverse Leakage Current V
R
= 5V 10 µA
λ
PE
Peak Emission Wavelength I
F
= 20mA 940 nm
OUTPUT TRANSISTOR
I
D
Collector-Emitter Dark Current I
F
= 0mA, V
CE
= 20V 100 nA
COUPLED
I
C(ON)
On-State Collector Current I
F
= 20mA, V
CE
= 5V
(6)
0.10 0.40 mA
I
CX
Cross-Talk Collector Current I
F
= 20mA, V
CE
= 5V
(7)
1 µA
V
CE (SAT)
Saturation Voltage 0.3 V
t
r
Rise Time V
CC
= 5V, I
C(ON)
= 100µA,
R
L
= 1k
Ω
20 µs
t
f
Fall Time 20
©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com
QRE1113, QRE1113GR Rev. 1.7.1 4
QRE1113, QRE1113GR — Minature Reflective Object Sensor
Typical Performance Curves
Fig. 1 Normalized Collector Current vs. Distance
between device and reflector
d-DISTANCE (mm)
012345
IC (ON)
- NORMALIZED
COLLECTOR CURRENT
0.0
0.2
0.4
0.6
0.8
1.0
IF = 10 mA
VCE = 5 V
TA = 25˚C
Mirror
Sensing Object:
White Paper (90% reflective)
d 0
Fig. 2 Collector Current vs. Forward Current
IF - FORWARD CURRENT (mA)
0 4 8 12 16 20
IC (ON) - COLLECTOR CURRENT
(mA)
0.0
0.2
0.4
0.6
0.8
1.0
Fig. 3 Normalized Collector Current vs.
Collector to Emitter Voltage
VCE - COLLECTOR EMITTER VOLTAGE (V)
0.1 1 10 C (ON) I - NORMALIZ
ED COLLECT
OR CURRENT
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
IF = 25mA
IF =20mA
IF =10mA
IF =15mA
IF =5mA
d = 1 mm, 90% reflection
TA = 25˚C
Fig. 4 Collector Emitter Dark Current (Normalized)
vs. Ambient Temperature
TA - Ambient Temperature (˚C)
ICEO
- NORMALIZ
ED DARK CURRENT
25 40 55 70 85
10-2
10-1
100
101
102
Normalized to:
VCE = 10 V
TA = 25˚C
VCE = 10 V
VCE = 5 V
©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com
QRE1113, QRE1113GR Rev. 1.7.1 5
QRE1113, QRE1113GR — Minature Reflective Object Sensor
Typical Performance Curves
(Continued)
Fig. 6 Forward Current vs. Forward Voltage
VF - FORWARD VOLTAGE (V)
VF - FORWARD VOLTAGE (V) IF - FORWARD CURRENT (mA)
1.0 1.1 1.2 1.3 1.4 1.5
0
10
20
30
40
50
TA = 25˚C
Fig. 7 Rise and Fall Time vs. Load Resistance
RL - LOAD RESIST
ANGULAR DISPLACEMENT
ANCE (KΩ)
0.1 1 10
0.6 0.6 0.4 0.2 0 0.2 0.4
R
RELATIVE RADIAN
T INTENSITY
ISE AND FALL TIME (us)
1
10
1.0
0.9
0.8
0.7
100 VCC = 10 V
tpw = 100 us
T=1ms
TA = 25˚C
IC = 0.3 mA
IC = 1 mA
tf
tf
tr
tr
Fig. 8 Forward Voltage vs. Ambient Temperature Fig. 8 Radiation Diagram
0.0
0.5
1.0
1.5
2.0
2.5
3.0
IF = 50 mA
IF = 10 mA
IF = 20 mA
TA - AMBIENT TEMPERATURE (˚C)
-40 -20 0 20 40 60 80
©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com
QRE1113, QRE1113GR Rev. 1.7.1 6
QRE1113, QRE1113GR — Minature Reflective Object Sensor
Recommended Solder Screen Pattern for GR option (for reference only)
Taping Dimensions for GR option
Dimensions in mm
1.0
1.1
2.8
LED (+)
0.8
2.0±0.05 4.0
0.25
5.5±0.05
12.0±0.3
8.0
3.73
4.75
1.98
ø1.5
1.75
Progressive Direction
General tolerance ±0.1
Dimensions in mm
©2011 Fairchild Semiconductor Corporation www.fairchildsemi.com
QRE1113, QRE1113GR Rev. 1.7.1 7
QRE1113, QRE1113GR — Minature Reflective Object Sensor
Reel Dimensions
Reflow Profile
ø13.0 ± 0.5
2.2 ± 0.5
9.0 ± 0.5
12.0 ± 0.15
ø60.0 ± 0.5
ø178.0 ± 1.0
Time (seconds)
Te
mperature (°C)
1°C to 5°C/sec
1°C to 5°C/sec
260°C max. for 10 sec. max.
260°C
120 sec. max.
60 sec. max.
above 220°C
Pre-heating
180°C to 200°C
Note: Reflow soldering should not be done more than twice.
220°C
© Fairchild Semiconductor Corporation www.fairchildsemi.com
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not
intended to be an exhaustive list of all such trademarks.
2Cool
AccuPower
AX-CAP®
*
BitSiC
Build it Now
CorePLUS
CorePOWER
CROSSVOLT
CTL
Current Transfer Logic
DEUXPEED®
Dual Cool™
EcoSPARK®
EfficientMax
ESBC
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series
FACT®
FAST®
FastvCore
FETBench
FPS
F-PFS
FRFET®
Global Power ResourceSM
GreenBridge
Green FPS
Green FPS e-Series
Gmax
GTO
IntelliMAX
ISOPLANAR
Making Small Speakers Sound Louder
and Better™
MegaBuck
MICROCOUPLER
MicroFET
MicroPak
MicroPak2
MillerDrive
MotionMax
mWSaver
OptoHiT
OPTOLOGIC®
OPTOPLANAR®
®
PowerTrench®
PowerXS™
Programmable Active Droop
QFET®
QS
Quiet Series
RapidConfigure
Saving our world, 1mW/W/kW at a time™
SignalWise
SmartMax
SMART START
Solutions for Your Success
SPM®
STEALTH
SuperFET®
SuperSOT-3
SuperSOT-6
SuperSOT-8
SupreMOS®
SyncFET
Sync-Lock™
®*
TinyBoost
TinyBuck
TinyCalc
TinyLogic®
TINYOPTO
TinyPower
TinyPWM
TinyWire
TranSiC
TriFault Detect
TRUECURRENT®
*
SerDes
UHC®
Ultra FRFET
UniFET
VCX
VisualMax
VoltagePlus
XS™
* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE
SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN,
WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are
intended for surgical implant into the body or (b) support or sustain
life, and (c) whose failure to perform when properly used in
accordance with instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or
system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its
safety or effectiveness.
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,
under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed
applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors
are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical
and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise.
Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global
problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change
in any manner without notice.
Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild
Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make
changes at any time without notice to improve the design.
Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor.
The datasheet is for reference information only.
Rev. I64
®
©2007 Fairchild Semiconductor Corporation 1 www.fairchildsemi.com
ES1F - ES1J Rev. A
ES1F - ES1J Fast Rectifiers
July 2007
ES1F - ES1J
Fast Rectifiers
Features
•For surface mount applications.
•Glass passivated junction.
•Low profile package.
•Easy pick and place.
•Built-in strain relief.
•Superfast recovery times for high efficiency.
Absolute Maximum Ratings * Ta = 25°C unless otherwise noted
* These ratings are limiting values above which the serviceability of any semiconductor device may by impaired.
Thermal Characteristics
* P. C. B mounted on 0.2’’ x 0.2’’( 5 x 5 mm) copper Pad Area.
Electrical Characteristics TC = 25°C unless otherwise noted
Symbol
Parameter
Value
Units
ES1F
ES1G
ES1H
ES1J
VRRM
Maximum Repetitive Reverse Voltage
300
400
500
600
V
IF(AV)
Average Rectified Forward Current
1.0
A
IFSM
Non-repetitive Peak Forward Surge Current
8.3 ms Single Half-Sine-Wave (JEDEC method)
30
A
TJ
Junction Temperature
150
°C
TSTG
Storage Temperature Range
-55 to 150
°C
PD
Power Dissipation
1.47
W
Symbol
Parameter
Value
Units
RθJA
Thermal Resistance, Junction to Ambient *
85
°C/W
RθJL
Thermal Resistance, Junction to Lead *
35
°C/W
Symbol
Parameter
Value
Units
VF
Maximum Forward Voltage @ IF = 1.0 A
1.3
1.7
V
Trr
Maximum Reverse Recovery Time
IF = 0.5 A, IR = 1.0 A, IRR = 0.25 A
35
ns
IR
Maximum Reverse Current @ rated VR TA = 25°C
TA = 100°C
5.0
100
uA
Cj
Typical Junction Capacitance
VR = 4.0 V, f = 1.0 MHz
10.0
8.0
pF
Color Band Denotes CathodeSMA(DO-214AC)
2 www.fairchildsemi.com
ES1F - ES1J Rev. A
ES1F - ES1J Fast Rectifiers
Typical Performance Characteristics
FIG.2- MAXIMUM NON-REPETITIVE PEAK FORWARD
SURGE CURRENT
PEAK FORWARD SURGE CURRENT. (A)
1 10 100
30
20
10
5.0
25
15
NUMBER OF CYCLES AT 60Hz
8.3ms Single Half Sine Wave
(JEDEC Method) at TL=120 C
o
FIG.3- TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS
INSTANTANEOUS FORWARD CURRENT. (A)
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.01
1
10
50
0.1
FORWARD VOLTAGE. (V)
ES1A - D
ES1F - 1G
Tj=25 C
PULSE WIDTH-300 S
1% DUTY CYCLE
0
FIG.1- MAXIMUM FORWARD CURRENT DERATING
CURVE
AVERAGE FORWARD CURRENT. (A)
80 90 100 110 120 130 140 150
0
0.2
0.6
0.8
1.2
1.0
0.4
LEAD TEMPERATURE. ( C) o
RESISTIVE OR
INDUCTIVE LOAD
0.2X0.2"(5.0X5.0mm)
COPPER PAD AREAS
FIG.4- TYPICAL REVERSE CHARACTERISTICS
0 20 40 60 80 100 120 140
10
100
1000
1
0.1
0.01
PERCENT OF RATED PEAK REVERSE VOLTAGE. (%)
Tj=125 C 0
Tj=85 C 0
Tj=25 C 0
0 1
0
10 100
14
10
6.0
4.0
2.0
12
8.0
FIG.5- TYPICAL JUNCTION CAPACITANCE
JUNCTION CAPACITANCE.(pF)
REVERSE VOLTAGE. (V)
ES1 F - G
ES1 H -J
Tj=25 C
f=1.0MHz
Vsig=50mVp-p
0
INSTANTANEOUS REVERSE CURRENT. ( A)
ES1H - 1J
0.01
0.1
1
10
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Tj=25 oC
PULSE WIDTH 300uS
1% DUTY CYCLE
ES1F-1G
ES1H-1J
3 www.fairchildsemi.com
ES1F - ES1J Rev. A
ES1F - ES1J Fast Rectifiers
Package Dimensions
Dimensions in Millimeters SMA / DO - 214AC
TRADEMARKS
The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and
is not intended to be an exhaustive list of all such trademarks.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS
HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF
THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE
UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF
FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE
PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, and (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result
in significant injury to the user.
2. A critical component is any component of a life support
device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or
system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
ACEx®
Build it Now™
CorePLUS™
CROSSVOLT™
CTL™
Current Transfer Logic™
EcoSPARK®
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FPS™
FRFET®
Global Power ResourceSM
Green FPS™
Green FPS™ e-Series™
GTO™
i-Lo™
IntelliMAX™
ISOPLANAR™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
Motion-SPM™
OPTOLOGIC®
OPTOPLANAR®
®
PDP-SPM™
Power220®
Power247®
POWEREDGE®
Power-SPM™
PowerTrench®
Programmable Active Droop™
QFET®
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
SMART START™
SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
The Power Franchise®
TinyBoost™
TinyBuck™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
μSerDes™
UHC®
UniFET™
VCX™
Datasheet IdentificationProduct StatusDefinition
Advance InformationFormative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
PreliminaryFirst Production
This datasheet contains preliminary data; supplementary data will be pub-
lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification NeededFull Production This datasheet contains final specifications. Fairchild Semiconductor reserves
the right to make changes at any time without notice to improve design. ObsoleteNot In Production
This datasheet contains specifications on a product that has been discontin-
ued by Fairchild semiconductor. The datasheet is printed for reference infor-
mation only.
Rev. I30
1N/FDLL 914A/B / 916/A/B / 4148 / 4448 — Small Signal Diode
© 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com
1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Rev. 1.1.1 1
April 2013
1N/FDLL 914A/B / 916/A/B / 4148 / 4448
Small Signal Diode
Absolute Maximum Ratings(1)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable
above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition,
extended exposure to stresses above the recommended operating conditions may affect device reliability. The
absolute maximum ratings are stress ratings only. Values are at TA = 25°C unless otherwise noted.
Note:
1. These ratings are limiting values above which the serviceability of the diode may be impaired.
Thermal Characteristics
Symbol Parameter Value Units
VRRM Maximum Repetitive Reverse Voltage 100 V
IO Average Rectified Forward Current 200 mA
IF DC Forward Current 300 mA
If Recurrent Peak Forward Current 400 mA
IFSM Non-repetitive Peak Forward Surge Current
Pulse Width = 1.0 s 1.0 A
Pulse Width = 1.0 μs 4.0 A
TSTG Storage Temperature Range -65 to +200 °C
TJ Operating Junction Temperature 175 °C
Symbol Parameter
Max.
Units
1N/FDLL 914/A/B / 4148 / 4448
PD Power Dissipation 500 mW
RθJA Thermal Resistance, Junction to Ambient 300 °C/W
LL-34
THE PLACEMENT OF THE EXPANSION GAP
HAS NO RELATIONSHIP TO THE LOCATION
OF THE CATHODE TERMINAL
LL-34 COLOR BAND MARKING
DEVICE 1ST BAND
DO-35
FDLL914 BLACK
FDLL914A BLACK
FDLL914B BLACK
Cathode is denoted with a black band
FDLL4148 BLACK
FDLL4448 BLACK
-1st band denotes cathode terminal
and has wider width
SOD80
Cathode Band
1N/FDLL 914A/B / 916/A/B / 4148 / 4448 — Small Signal Diode
© 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com
1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Rev. 1.1.1 2
Electrical Characteristics(2)
Values are at TA = 25°C unless otherwise noted.
Note:
2. Non-recurrent square wave PW= 8.3 ms.
Symbol Parameter Test Conditions Min. Max. Units
VR Breakdown Voltage
IR= 100 μA 100 V
IR= 5.0 μA 75 V
VF Forward Voltage
1N914B / 4448 IF= 5.0 mA 0.62 0.72 V
1N916B IF= 5.0 mA 0.63 0.73 V
1N914 / 916 / 4148 IF= 10 mA 1.0 V
1N914A / 916A IF= 20 mA 1.0 V
1N916B IF= 20 mA 1.0 V
1N914B / 4448 IF= 100 mA 1.0 V
IR Reverse Leakage
VR= 20 V 0.025 μA
VR= 20 V, TA= 150°C 50 μA
VR= 75 V 5.0 μA
CT Total Capacitance
1N916A/B/4448 VR = 0, f = 1.0 MHz 2.0 pF
1N914A/B/4148 VR = 0, f = 1.0 MHz 4.0 pF
trr Reverse Recovery Time IF = 10 mA, VR = 6.0 V (600 mA)
Irr = 1.0 mA, RL = 100 Ω 4.0 ns
1N/FDLL 914A/B / 916/A/B / 4148 / 4448 — Small Signal Diode
© 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com
1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Rev. 1.1.1 3
Typical Performance Characteristics
Figure 1. Reverse Voltage vs. Reverse Current
BV - 1.0 to 100 μA
Figure 2. Reverse Current vs. Reverse Voltage
IR - 10 to 100 V
Figure 3. Forward Voltage vs. Forward Current
VF - 1 to 100 μA
Figure 4. Forward Voltage vs. Forward Current
VF - 0.1 to 10 mA
Figure 5. Forward Voltage vs. Forward Current
VF - 10 to 800 mA
Figure 6. Forward Voltage vs. Ambient Temperature
VF - 0.01 - 20 mA (- 40 to +65°C)
110
120
130
140
150
160
Ta=25 oC
1 2 3 5 10 20 30 50 100
Reverse Voltage, V R [V]
Reverse Current, IR [uA]
0
20
40
60
80
100
120
10 20 30 50 70 100
Ta= 25 oC
Reverse Current, I R [nA]
Reverse Voltage, VR [V]
GENERAL RULE: The Reverse Current of a diode will approximately
double for every ten (10) Degree C increase in Temperature
250
300
350
400
450
500
550
1 2 3 5 10 20 30 50 100
Ta= 25 oC
Forward Voltage, V R [mV]
Forward Current, IF [uA]
450
500
550
600
650
700
750
0.1 0.2 0.3 0.5 1 2 3 5 10
Ta= 25 oC
Forward Voltage, V F [mV]
Forward Current, IF [mA]
0.6
0.8
1.0
1.2
1.4
1.6
10 20 30 50 100 200 300 500 800
Ta= 25 oC
Forward Voltage, V F [mV]
Forward Current, IF [mA]
0.01 0.1 1 10
300
400
500
600
700
800
900
0.03 0.3 3
Typical
Ta= -40 oC
Ta= 25 oC
Ta= +65 oC
Forward Voltage, V F [mV]
Forward Current, IF [mA]
1N/FDLL 914A/B / 916/A/B / 4148 / 4448 — Small Signal Diode
© 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com
1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Rev. 1.1.1 4
Typical Performance Characteristics (Continued)
Figure 7. Total Capacitance Figure 8. Reverse Recovery Time vs
Reverse Recovery Current
Figure 9. Average Rectified Current (IF(AV))
vs Ambient Temperature (TA)
Figure 10. Power Derating Curve
0 2 4 6 8 10 12 14
0.75
0.80
0.85
0.90
TA = 25 oC
Total Capacitance (pF)
REVERSE VOLTAGE (V)
10 20 30 40 50 60
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Ta = 25 oC
Reverse Recovery Time, t rr [ns]
Reverse Recovery Current, Irr [mA]
IF = 10mA , IRR = 1.0 mA , Rloop = 100 Ohms
0 50 100 150
0
100
200
300
400
500
IF(AV) - AVERAGE RECTIFIED CURRENT - mA
Current (mA)
Ambient Temperature ( oC)
0 50 100 150 200
0
100
200
300
400
500
DO-35
SOT-23
Power Dissipation, PD [mW]
Temperature [ oC]
1N/FDLL 914A/B / 916/A/B / 4148 / 4448 — Small Signal Diode
© 2007 Fairchild Semiconductor Corporation www.fairchildsemi.com
1N/FDLL 914A/B / 916/A/B / 4148 / 4448 Rev. 1.1.1 5
Physical Dimensions
Figure 11. 2-TERMINAL, SOD-80, JEDEC DO-213AC, MINI-MELF
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the
warranty therein, which covers Fairchild products.
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/.
For current tape and reel specifications, visit Fairchild Semiconductor’s online packaging area:
http://www.fairchildsemi.com/packaging/tr/SOD80A_tnr.pdf.
1.50
1.30
C R0.30
0.20
0.50 2.64 REF
0.30
3.60
3.30
NOTES: UNLESS OTHERWISE SPECIFIED
A) PACKAGE STANDARD REFERENCE:
JEDEC DO-213, VARIATION AC.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C CORNER RADIUS IS OPTIONAL.
D) DRAWING FILE NAME: SOD80A REV01
SOD-80
© Fairchild Semiconductor Corporation www.fairchildsemi.com
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not
intended to be an exhaustive list of all such trademarks.
2Cool
AccuPower
AX-CAP®*
BitSiC
Build it Now
CorePLUS
CorePOWER
CROSSVOLT
CTL
Current Transfer Logic
DEUXPEED®
Dual Cool™
EcoSPARK®
EfficientMax
ESBC
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series
FACT®
FAST®
FastvCore
FETBench
FPS
F-PFS
FRFET®
Global Power ResourceSM
GreenBridge
Green FPS
Green FPS e-Series
Gmax
GTO
IntelliMAX
ISOPLANAR
Making Small Speakers Sound Louder
and Better™
MegaBuck
MICROCOUPLER
MicroFET
MicroPak
MicroPak2
MillerDrive
MotionMax
mWSaver
OptoHiT
OPTOLOGIC®
OPTOPLANAR®
®
PowerTrench®
PowerXS™
Programmable Active Droop
QFET®
QS
Quiet Series
RapidConfigure
Saving our world, 1mW/W/kW at a time™
SignalWise
SmartMax
SMART START
Solutions for Your Success
SPM®
STEALTH
SuperFET®
SuperSOT-3
SuperSOT-6
SuperSOT-8
SupreMOS®
SyncFET
Sync-Lock™
®*
TinyBoost
TinyBuck
TinyCalc
TinyLogic®
TINYOPTO
TinyPower
TinyPWM
TinyWire
TranSiC
TriFault Detect
TRUECURRENT®*
SerDes
UHC®
Ultra FRFET
UniFET
VCX
VisualMax
VoltagePlus
XS™
* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE
SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN,
WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are
intended for surgical implant into the body or (b) support or sustain
life, and (c) whose failure to perform when properly used in
accordance with instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or
system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its
safety or effectiveness.
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,
under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed
applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors
are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical
and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise.
Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global
problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change
in any manner without notice.
Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild
Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make
changes at any time without notice to improve the design.
Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor.
The datasheet is for reference information only.
Rev. I64
®
1N4148WS / 1N4448WS / 1N91
4BWS — Small Signal Diodes
© 2012 Fairchild Semiconductor Corporation www.fairchildsemi.com
1N4148WS / 1N4448WS / 1N914BWS Rev. B0 1
April 2012
1N4148WS / 1N4448WS / 1N914BWS
Small Signal Diodes
Features
• General Purpose Diodes
• Fast Switching Device (TRR < 4.0ns)
• Very Small and Thin SMD Package
• Moisture Level Sensitivity 1
• Pb-free Version and RoHS Compliant
• Matte Tin (Sn) Lead Finish
• Green Mold Compound
Absolute Maximum Ratings* Ta = 25°C unless otherwise noted
* These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
The factory should be consulted on applications involving pulsed or low duty cycle operations.
Thermal Characteristics
* Device mounted on FR-4 PCB minimum land pad.
Electrical Characteristics Ta = 25°C unless otherwise noted
Symbol Parameter Value Units
VRSM Non-Repetitive Peak Reverse Voltage 100 V
VRRM Repetitive Peak Reverse Voltage 75 V
IFRM Repetitive Peak Forward Current 300 mA
IO Continuous Forward Current 150 mA
TJ Operating Junction Temperature +150 °C
TSTG Storage Temperature Range -55 to +150 °C
Symbol Parameter Value Units
PD Power Dissipation (TC = 25°C) 200 mW
RθJA Thermal Resistance, Junction to Ambient * 500 °C/W
Symbol Parameter Test Conditions Min. Typ. Max. Units
BVR Breakdown Voltage IR = 100 μA
IR = 5 μA
100
75
V
V
IR Reverse Current VR = 20 V
VR = 75 V
25
5
nA
μA
VF Forward Voltage 1N4448WS/914BWS
1N4148WS
1N4448WS/914BWS
IF = 5 mA
IF = 10 mA
IF = 100 mA
0.62 0.72
1
1
V
V
V
CO Diode Capacitance VR = 0, f = 1 MHz 4 pF
TRR Reverse Recovery Time IF = 10 mA, IR = 60 mA,
IRR = 1 mA, RL = 100 Ω
4 ns
Band Indicates Cathode
1. Cathode
ELECTRICAL SYMBOL
2. Anode
SOD-323 Flat Lead
Device Marking Code
Device Type Device Marking
1N4148WS S1
1N4448WS S2
1N914BWS S3
2
11N4148WS / 1N4448WS / 1N91
4BWS — Small Signal Diodes
© 2012 Fairchild Semiconductor Corporation www.fairchildsemi.com
1N4148WS / 1N4448WS / 1N914BWS Rev. B0 2
Typical Performance Characteristics
Figure 1. Total Capacitance Figure 2. Forward Voltage vs. Ambient Temperature
Figure 3. Power Derating Curve Figure 4. Reverse Current vs. Reverse Voltage
Figure 5. Reverse Voltage vs. Reverse Current
Reverse Voltage (V)
0 2 4 6 8 10 12 14
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
TA=25°C
Capacitance [pF]
Forward Current, IF
[mA]
0.01 0.1 1 10 100
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Ta=-40°C
Ta=25°C
Ta=150°C
Typical
VF- Forward Voltage [V]
Temperature [°C]
0 25 50 75 100 125 150 175
0
50
100
150
200
250
PD - Power Dissipation [mW]
Reverse Voltage, VR[V]
10 20 30 40 50 60 70 80 90 100
10-1
100
101
102
103
104
105
Ta=150°C
Ta=25°C
Ta=-40°C
Reverse Current [nA]
VR - Reverse Voltage
Reverse Current, IR[µA]
1 10 100
140
150
160
170
Ta=25°C1N4148WS / 1N4448WS / 1N91
4BWS — Small Signal Diodes
© 2012 Fairchild Semiconductor Corporation www.fairchildsemi.com
1N4148WS / 1N4448WS / 1N914BWS Rev. B0 3
Physical Dimensions
SOD-323F
Dimensions in Millimeters© Fairchild Semiconductor Corporation www.fairchildsemi.com
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not
intended to be an exhaustive list of all such trademarks.
2Cool¥
AccuPower¥
AX-CAP¥*
BitSiC¥
Build it Now¥
CorePLUS¥
CorePOWER¥
CROSSVOLT¥
CTL¥
Current Transfer Logic¥
DEUXPEED®
Dual Cool™
EcoSPARK®
EfficientMax¥
ESBC¥
®
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series¥
FACT®
FAST®
FastvCore¥
FETBench¥
FlashWriter®
*
FPS¥
F-PFS¥
FRFET®
Global Power ResourceSM
GreenBridge¥
Green FPS¥
Green FPS¥ e-Series¥
Gmax¥
GTO¥
IntelliMAX¥
ISOPLANAR¥
Making Small Speakers Sound Louder
and Better™
MegaBuck¥
MICROCOUPLER¥
MicroFET¥
MicroPak¥
MicroPak2¥
MillerDrive¥
MotionMax¥
Motion-SPM¥
mWSaver¥
OptoHiT¥
OPTOLOGIC®
OPTOPLANAR®
®
PowerTrench®
PowerXS™
Programmable Active Droop¥
QFET®
QS¥
Quiet Series¥
RapidConfigure¥
¥
Saving our world, 1mW/W/kW at a time™
SignalWise¥
SmartMax¥
SMART START¥
Solutions for Your Success¥
SPM®
STEALTH¥
SuperFET®
SuperSOT¥-3
SuperSOT¥-6
SuperSOT¥-8
SupreMOS®
SyncFET¥
Sync-Lock™
®
*
The Power Franchise®
TinyBoost¥
TinyBuck¥
TinyCalc¥
TinyLogic®
TINYOPTO¥
TinyPower¥
TinyPWM¥
TinyWire¥
TranSiC¥
TriFault Detect¥
TRUECURRENT®
*
PSerDes¥
UHC®
Ultra FRFET¥
UniFET¥
VCX¥
VisualMax¥
VoltagePlus¥
XS™
* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE
SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN,
WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a)
are intended for surgical implant into the body or (b) support or
sustain life, and (c) whose failure to perform when properly used in
accordance with instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or
system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its
safety or effectiveness.
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,
under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed
applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors
are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical
and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise.
Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global
problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification Product Status Definition
Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change
in any manner without notice.
Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild
Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make
changes at any time without notice to improve the design.
Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor.
The datasheet is for reference information only.
Rev. I61
39 ALIMENTATION FIXE A DÉCOUPAGE ALF1210 12 Volts continu 120 watts 10 Ampères - Output ripple < 3mV rms. - Built in power corrector (PFC). - Output voltage adjustable from 10 to 15V. - Short circuit protection. - Temperature controlled fan cooling. - Ausgangswelligkeit < 3mV effektiv. - Eingebaute Leistungsfaktorkorrektur (PFC) - Ausgangsspannung verstellbar zwischen 10 und 15 Volt. - Schutz gegen Kurzschlüsse. - Geregelte Lüftung. Autres caractéristiques • Sécurité : Classe II, double isolation, conforme à la norme EN 61010-1 • CEM : Conforme aux normes EN 50081-1 et 50082-1 • Indice de protection : IP 30 • Alimentation : Secteur 190 à 253 Volts, 50 / 60Hz. • Entrée secteur : cordon 2 pôles double isolation. • Consommation : 170W maxi. • Facteur de puissance : 0,99 (PFC intégré). • Rigidité diélectrique : 3000V entre entrée et sortie. • Présentation : Boîtier métal avec peinture époxy. Caractéristiques techniques Tension • Sorties flottantes sur douilles de sécurité de 4mm. • Tension de sortie : ajustable de 10 à 15V linéairement • Régulation : < 2mV pour une variation de charge de 0 à 100%. < 1mV pour une variation secteur de 190V à 253V. • Ondulation : < 3mV efficace comprenant : < 5mV crête à crête du signal à 100KHz < 5mV crête à crête du signal à 100Hz < 40mV crête à crête des pics de commutations • Temps de maintien : 25ms à 50% de charge et 12ms à 100% (secteur à 190V) • Visualisation : Led verte "alimentation en fonctionnement" Led rouge “status, défaut sur la sortie” Intensité • I maxi : 10,5A au court-circuit 10A de 10 à 15V Puissance • Puissance max. de sortie : 150W. Protections • Contre les courts-circuits par limitation de courant. • Contre les surintensités sur la source, par fusible. • Contre les surtensions en sortie, par limitation de tension à 17V. - Ondulation de sortie < 3mV efficace. - Correcteur du facteur de puissance (PFC) intégré. - Tension de sortie ajustable de 10 à 15 Volts. - Protection contre les courts-circuits. - Ventilation controlée. Other specifications • Safety : Classe II, double insulation, according to EN 61010-1. • EMC : Complies with EN 50081-1 and 50082-1. • Protection level : IP 30. • Input voltage : 190 to 253 Volts, 50 / 60 Hz. • Mains input : double insulation 2 poles cable. • Power consumption : 170 W max. • Power factor : 0.99 (built in PFC). • Dielectric strength : 3000V. • Presentation : metal case with epoxy finish. Specifications Voltage • Floating outputs on 4 mm safety sockets. • Output voltage : adjustable from 10 to 15V linearly. • Regulation : < 1mV for a load change from 0 to 100%. < 1mV for a line change from 190 to 253V. • Ripple : < 3mV rms including: < 5mV peak to peak of the signal at 100 KHz < 5mV peak to peak of the signal at 100 Hz < 40mV peak to peak of switching spikes • Hold-up time : 25 ms at half load and 12 ms at full load (190V line input). • Indicator : green power-on LED indicator. "status, output fault" red LED. Current • Max I : 10,5A in short circuit condition. 10A from 10 to 15V Power • Max output power : 150W. Protection • Short circuit protection, by current regulation. • Transformer primary overcurrent protection, by fuse. • Output overload protection by voltage limiting to 17V. 38 Andere Eigenschaften • Schutz : Klasse II, schutzisoliert, entspricht den Normen EN 61010-1. • EMC : Entspricht den Normen EN 50081-1 und 50082-1. • Schutzart : IP 30. • Versorgung : Netzversorgung 190 bis 253 Volt, 50 / 60 Hz. • Netzversorgungseingang : schutzisoliertes 2-Phasen-Netzkabel. • Leistungsaufnahme : max. 170W. • Leistungsfaktor : 0,99 (PFC integriert). • Durchschlagsfestigkeit : 3000V. • Erscheinungsbild : Metallgehäuse mit Epoxid-Lackierung. Technische Daten Spannung • Ausgänge von Masse getrennt (floating) auf 4-mm-Schutzbuchsen. • Ausgangsspannung : linear verstellbar zwischen 10 und 15 V. • Regelung : < 1mV bei Laständerungen von 0 bis 100%. < 1mV bei Schwankungen der Netzversorgung zwischen 190V und 253V. • Welligkeit : < 3mV effektiv mit: < 3mV Spitze-Spitze des Signals bei 100kHz < 4mV Spitze-Spitze des Signals bei 100Hz < 12mV Spitze-Spitze von Schaltspitzen • Haltezeit : 25ms bei 50% der Last und 12ms bei 100% (Netzversorgung bei 190V). • Anzeige : Grüne LED “Versorgung bei Betrieb”. Rote LED "Status, Fehler auf Ausgang" Stromstärke • I max : 10,5A bei Kurzschluss 10A von 10 bis 15V Liestung • Max. Ausgangsleistung : 150 W. Schutzvorrichtungen • Gegen Kurzschlüsse durch Strombegrenzung. • Gegen Überströme auf dem Primärkreis des Transformators durch Sicherung . • Gegen Überspannungen am Ausgang durch Spannungsbegrenzung auf 17 V. Switching fixed power supply ALF1210 Feste Unterbrechungsfreie Versorgung ALF1210 Séries TDS1000B et TDS2000B Oscilloscope à mémoire numérique Manuel de l’utilisateur Révision B www.tektronix.com 071-1818-00 Copyright © Tektronix. Tous droits réservés. Les produits logiciels sous licence sont la propriété de Tektronix, de ses filiales ou de ses fournisseurs et sont protégés par les lois nationales sur le copyright, ainsi que par des traités internationaux. Les produits Tektronix sont protégés par des brevets américains et étrangers déjà déposés ou en cours d’obtention. Les informations contenues dans le présent document remplacent celles publiées précédemment. Les spécifications et les prix peuvent être soumis à modification. TEKTRONIX et TEK sont des marques déposées de Tektronix, Inc. OpenChoice™ est une marque déposée de Tektronix, Inc. PictBridge™ est une marque déposée de la norme CIPA DC-001-2003 Digital Photo Solutions for Imaging Devices de la Camera & Imaging Products Association. Coordonnées de Tektronix Tektronix, Inc. 14200 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 Etats-Unis Pour obtenir des informations sur le produit, la vente, les services et l’assistance technique : En Amérique du Nord, appelez le 1-800-833-9200. Pour les autres pays, visitez le site www.tektronix.com pour connaître les coordonnées locales. Oscilloscopes TDS1000B et TDS2000B Garantie 18 – Garantie limitée à la durée de vie Tektronix garantit à l’acheteur-utilisateur final d’origine (ci-après dénommé le « premier acheteur ») du produit désigné ci-dessous que ce dernier est exempt de défaut au niveau des matériaux et de la fabrication durant toute la durée de vie du produit. Dans les présentes, la « durée de vie du produit » est définie comme une période de cinq (5) années suivant la fin de la fabrication du produit par Tektronix (comme défini par Tektronix), mais la période de garantie sera d’au moins dix (10) ans à compter de la date d’achat du produit par le premier acheteur à Tektronix ou à un l’un de ses distributeurs agréés. La présente garantie limitée à la durée de vie concerne uniquement le premier acheteur et ne peut être transférée. Si une réclamation concernant la garantie intervient avant la fin de celle-ci, l’acheteur doit fournir une preuve satisfaisante de la date d’achat à Tektronix ou à un distributeur agréé et du fait qu’il est le premier acheteur. En cas de vente ou de transfert du produit par le premier acheteur à un tiers dans les trois (3) ans à compter de la date d’achat du produit par le premier acheteur, la période de garantie sera de trois (3) ans à compter de la date d’achat du produit par le premier acheteur à Tektronix ou à un distributeur agréé. Les sondes, autres accessoires, batteries et fusibles ne sont pas couverts par la garantie. Si l’un des produits Tektronix se révèle défectueux pendant ladite période de garantie, Tektronix peut au choix réparer le produit en question en prenant à sa charge les frais de main-d’oeuvre et de pièces ou bien fournir un produit de remplacement équivalent (comme établi par Tektronix) en échange du produit défectueux. Les pièces, modules et produits de remplacement utilisés par Tektronix pour des travaux sous garantie peuvent être neufs ou reconditionnés pour de nouvelles performances. Tous les produits, modules et pièces de rechange deviennent la propriété de Tektronix. Dans les présentes, le « client » est la personne ou l’entité revendiquant ses droits en vertu de la présente garantie. Pour pouvoir prétendre à la garantie, le client doit signaler le défaut à Tektronix avant l’expiration de la période de garantie applicable et effectuer les démarches correspondantes. Il appartient au client d’emballer et d’expédier le produit défectueux au centre de réparation indiqué par Tektronix, avec les frais d’expédition prépayés et une copie du certificat d’achat du premier acheteur. Tektronix prend à sa charge la réexpédition du produit au client, si le destinataire se trouve dans le pays où le centre de réparation Tektronix est implanté. Tous les frais d’expédition, droits, taxes et autres coûts afférents à la réexpédition du produit dans un autre lieu sont à la charge du client. Cette garantie est caduque en cas de défaillance, de panne ou de dommage provoqué par un accident, l’usure ou des dégradations d’éléments mécaniques, l’utilisation non conforme aux spécifications du produit, un usage impropre ou un défaut de soin ou de maintenance. Tektronix n’est pas contraint d’assurer les réparations sous garantie dans les cas suivants : a) réparations résultant de dommages provoqués par un personnel non mandaté par Tektronix ayant installé, réparé ou entretenu le produit ; b) réparations résultant d’une utilisation impropre ou d’un raccordement à des équipements incompatibles ; c) réparation de dommages ou de dysfonctionnements résultant de l’utilisation de pièces non fournies par Tektronix ; d) entretien d’un produit modifié ou intégré à d’autres produits, rendant ainsi le produit plus difficile à entretenir ou augmentant la périodicité des entretiens. LA PRESENTE GARANTIE DEFINIE PAR TEKTRONIX QUANT AU PRODUIT TIENT LIEU DE TOUTE AUTRE GARANTIE, EXPLICITE OU IMPLICITE. TEKTRONIX ET SES FOURNISSEURS NE DONNENT AUCUNE GARANTIE IMPLICITE QUANT A LA QUALITE MARCHANDE OU A L’ADEQUATION DU PRODUIT A DES USAGES PARTICULIERS. LE SEUL RECOURS DU CLIENT EN CAS DE VIOLATION DE CETTE GARANTIE EST D’EXIGER DE TEKTRONIX QU’IL REPARE OU REMPLACE LE PRODUIT DEFECTUEUX. TEKTRONIX ET SES FOURNISSEURS NE POURRONT PAR CONSEQUENT PAS ETRE TENUS POUR RESPONSABLES DES DOMMAGES INDIRECTS, SPECIAUX OU CONSECUTIFS, MEME S’ILS SONT INFORMES AU PREALABLE DE L’EVENTUALITE DES DOMMAGES EN QUESTION. Sonde P2220 Garantie 2 Tektronix garantit que ce produit est exempt de défaut au niveau des matériaux et de la fabrication, pendant une période de un (1) an à compter de la date d’expédition. Si un produit Tektronix se révèle défectueux pendant sa période de garantie, Tektronix peut soit réparer le produit en question, en prenant à sa charge les frais de main-d’oeuvre et de pièces, soit fournir un produit de remplacement en échange de celui défectueux. Les pièces, modules et produits de remplacement utilisés par Tektronix pour des travaux sous garantie peuvent être neufs ou reconditionnés pour de nouvelles performances. Tous les produits, modules et pièces de rechange deviennent la propriété de Tektronix. Pour pouvoir prétendre à la garantie, le client doit signaler le défaut à Tektronix avant l’expiration de la période de garantie et effectuer les démarches correspondantes. Il appartient au client d’emballer et d’expédier en port payé le produit défectueux au centre de réparation indiqué par Tektronix. Tektronix prend à sa charge la réexpédition du produit au client, si le destinataire se trouve dans le pays où le centre de réparation Tektronix est implanté. Tous les frais d’expédition, droits, taxes et autres coûts afférents à la réexpédition du produit dans un autre lieu sont à la charge du client. Cette garantie est caduque en cas de défaillance, de panne ou de dommage provoqué par un usage impropre ou un défaut de soin ou de maintenance. Tektronix n’est pas contraint d’assurer les réparations sous garantie dans les cas suivants : a) réparations résultant de dommages provoqués par un personnel non mandaté par Tektronix qui a installé, réparé ou entretenu le produit ; b) réparations résultant d’une utilisation impropre ou d’un raccordement à des équipements incompatibles ; c) réparation de dommages ou de dysfonctionnements résultant de l’utilisation de pièces non fournies par Tektronix ; ou d) entretien d’un produit modifié ou intégré à d’autres produits, rendant ainsi le produit plus difficile à entretenir ou augmentant la périodicité des entretiens. LA PRESENTE GARANTIE DEFINIE PAR TEKTRONIX EU EGARD AU PRODUIT TIENT LIEU DE TOUTE AUTRE GARANTIE, EXPLICITE OU IMPLICITE. TEKTRONIX ET SES FOURNISSEURS NE DONNENT AUCUNE GARANTIE IMPLICITE QUANT A LA QUALITE MARCHANDE OU A L’ADEQUATION DU PRODUIT A DES USAGES PARTICULIERS. LE SEUL RECOURS DU CLIENT EN CAS DE VIOLATION DE CETTE GARANTIE EST D’EXIGER DE TEKTRONIX QU’IL REPARE OU REMPLACE LE PRODUIT DEFECTUEUX. TEKTRONIX ET SES FOURNISSEURS NE POURRONT PAR CONSEQUENT PAS ETRE TENUS POUR RESPONSABLES DES DOMMAGES INDIRECTS, SPECIAUX OU CONSECUTIFS, MEME S’ILS SONT INFORMES AU PREALABLE DE L’EVENTUALITE DES DOMMAGES EN QUESTION. Table des matières Consignes générales de sécurité........................................ iv Environnement.......................................................... vii Préface.................................................................... ix Système d’aide ...................................................... x Mises à jour du firmware via Internet ............................ xi Conventions........................................................ xii Démarrage ................................................................ 1 Fonctions générales ................................................. 1 Installation ........................................................... 3 Test de fonctionnement ............................................. 4 Sécurité de la sonde ................................................. 5 Assistant Test de sonde de tension ................................. 5 Compensation manuelle de sonde.................................. 7 Réglage d’atténuation de la sonde ................................. 8 Mise à échelle de la sonde de courant ............................. 9 Calibrage automatique .............................................. 9 Principes de fonctionnement .......................................... 11 Zone d’affichage................................................... 11 Utilisation du système de menus ................................. 15 Réglages verticaux ................................................ 17 Réglages horizontaux ............................................. 18 Commandes de déclenchement .................................. 19 Boutons de menu et de commande............................... 20 Connecteurs d’entrée.............................................. 23 Autres éléments du panneau avant ............................... 24 Compréhension des fonctions de l’oscilloscope ..................... 25 Réglage de l’oscilloscope......................................... 25 Déclenchement .................................................... 27 Acquisition de signaux............................................ 29 Mise à l’échelle et positionnement de signaux.................. 30 Prise de mesures................................................... 35 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B i Table des matières Exemples d’application ................................................ 37 Prise de mesures simples ......................................... 38 Utilisation de la fonction de calibrage automatique (Autorange) pour examiner une série de points de test .................. 44 Mesures par curseur ............................................... 45 Analyse détaillée du signal ....................................... 50 Acquisition d’un signal monocoup .............................. 53 Mesure du retard de propagation................................. 55 Déclenchement sur une largeur d’impulsion spécifique........ 56 Déclenchement sur un signal vidéo.............................. 58 Analyse d’un signal de communication différentiel ............ 64 Affichage des modifications d’impédance sur un réseau....... 66 Fonctions mathématiques FFT ........................................ 69 Réglage du signal temporel....................................... 69 Affichage du spectre FFT......................................... 71 Sélection d’une fenêtre FFT...................................... 73 Agrandissement et positionnement d’un spectre FFT .......... 76 Mesure d’un spectre FFT à l’aide des curseurs ................. 77 Port du lecteur flash USB et port périphérique....................... 79 Port du lecteur flash USB......................................... 79 Conventions de gestion des fichiers.............................. 82 Sauvegarde et rappel de fichiers avec un lecteur flash USB ... 83 Utilisation de la fonction de sauvegarde du bouton PRINT du panneau avant ................................................ 85 Port périphérique USB............................................ 89 Installation du logiciel de communication sur un PC .......... 89 Connexion à un PC................................................ 90 Connexion à un système GPIB................................... 93 Saisie de commande............................................... 93 Connexion à une imprimante..................................... 94 Imprimer une image d’écran ..................................... 95 Référence................................................................ 97 Acquisition......................................................... 97 Calibrage Auto ................................................... 101 Réglage automatique (Autoset) ................................. 103 ii Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Table des matières Curseurs ........................................................... 107 Configuration par défaut ......................................... 109 Affichage.......................................................... 109 Aide ............................................................... 112 Horizontal ......................................................... 112 Fonctions mathématiques........................................ 115 Mesures ........................................................... 116 Imprimer .......................................................... 118 Test de sonde...................................................... 119 Menu Réf.......................................................... 119 Sauvegarder/Rappeler............................................ 120 Commandes de déclenchement ................................. 127 Utilitaire........................................................... 136 Réglages verticaux ............................................... 140 Annexe A : Spécifications ............................................ 145 Spécifications de l’oscilloscope ................................. 145 Homologations et conformité de l’oscilloscope ............... 158 Spécifications relatives à la sonde P2220 ...................... 163 Annexe B : Accessoires ............................................... 167 Annexe C : Nettoyage................................................. 171 Entretien - Généralités ........................................... 171 Nettoyage ......................................................... 171 Annexe D : Configuration par défaut ................................ 173 Annexe E : Licences de police ....................................... 177 Index Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B iii Consignes générales de sécurité Consignes générales de sécurité Veuillez lire avec attention les précautions et consignes de sécurité suivantes, afin d’éviter toute blessure et l’endommagement éventuel de cet appareil et des produits qui lui sont associés. Pour écarter tout danger, utilisez uniquement cet appareil dans les conditions spécifiées. Seul un personnel qualifié doit être autorisé à effectuer les opérations d’entretien. Pour éviter les incendies et les dommages corporels Utilisez le cordon d’alimentation spécifié. Utilisez uniquement le cordon d’alimentation prévu pour cet appareil et conforme aux normes du pays d’utilisation. Procédez aux branchements et débranchements de manière appropriée Branchez la sortie de sonde à l’instrument de mesure avant de brancher la sonde sur le circuit à tester. Branchez le fil de référence de la sonde sur le circuit à tester avant de brancher l’entrée de la sonde. Débranchez l’entrée et le fil de référence de la sonde du circuit testé avant de débrancher la sonde de l’instrument de mesure. Mettez le produit à la terre. Ce produit est raccordé à la terre au moyen du fil de masse du cordon d’alimentation. Pour éviter tout choc électrique, le fil de masse doit être connecté à une prise de terre. Avant de procéder aux branchements des bornes d’entrée et de sortie du produit, veillez à ce que celui-ci soit correctement mis à la terre. Respectez toutes les valeurs nominales des terminaux. Pour éviter tout risque d’incendie ou de choc électrique, respectez les valeurs nominales et les indications figurant sur le produit. Consultez le manuel livré avec le produit où figurent toutes les informations complémentaires avant de procéder au branchement du produit. Branchez le fil de référence de la sonde sur la terre uniquement. N’appliquez à une borne (borne commune incluse) aucun potentiel dépassant la valeur maximale de cette borne. iv Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Consignes générales de sécurité Interrupteur d’alimentation L’interrupteur d’alimentation permet de déconnecter le produit de la source d’alimentation. Consultez les instructions pour connaître l’emplacement de cet interrupteur. Ne bloquez pas l’interrupteur d’alimentation ; il doit rester accessible à tout moment. Ne mettez pas l’appareil en service sans ses capots de protection. Ne mettez pas l’appareil en service si les capots ou panneaux de protection ont été retirés. N’utilisez pas l’appareil en cas de défaillance suspecte. En cas de doute sur le bon état de cet appareil, faites-le inspecter par un technicien qualifié. Evitez tout circuit exposé. Ne touchez à aucun branchement ou composant exposé lorsque l’appareil est sous tension. N’utilisez pas l’appareil dans un environnement humide. N’utilisez pas l’appareil dans un environnement explosif. Maintenez les surfaces du produit propres et sèches. Assurez une ventilation adéquate. Reportez-vous aux instructions d’installation du manuel pour plus de détails sur la mise en place d’une ventilation adéquate du produit. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B v Consignes générales de sécurité Termes apparaissant dans ce manuel. Les mentions suivantes peuvent figurer dans ce manuel : AVERTISSEMENT. Les avertissements identifient des situations ou des opérations pouvant entraîner des blessures graves ou mortelles. ATTENTION. Les mises en garde identifient des situations ou des opérations susceptibles d’endommager le matériel ou d’autres équipements. Symboles et termes relatifs au produit Les mentions suivantes peuvent figurer sur le produit : La mention « DANGER » indique un risque de blessure immédiate à la lecture de l’étiquette. La mention « AVERTISSEMENT » indique un risque de blessure non immédiate à la lecture de l’étiquette. La mention « PRECAUTION » indique un risque de dommage matériel, y compris du produit. Les symboles suivants peuvent figurer sur le produit : vi Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Environnement Cette section contient des informations concernant l’impact du produit sur l’environnement. Recyclage du produit Observez la procédure ci-dessous pour le recyclage d’un instrument ou d’un composant : Recyclage de l’appareil. La fabrication du présent appareil a exigé l’extraction et l’utilisation de ressources naturelles. Il peut contenir des substances potentiellement dangereuses pour l’environnement ou la santé si elles ne sont pas correctement traitées lors de la mise au rebut de l’appareil. Pour éviter la diffusion de telles substances dans l’environnement et réduire l’utilisation des ressources naturelles, nous vous encourageons à recycler ce produit de manière appropriée, afin de garantir que la majorité des matériaux soient correctement réutilisés ou recyclés. Le symbole ci-dessous indique que ce produit respecte les exigences de l’Union européenne, conformément à la directive 2002/96/CE relative aux déchets d’équipements électriques et électroniques (DEEE). Pour plus d’informations sur les solutions de recyclage, reportez-vous à la section Assistance/Maintenance du site Web de Tektronix (www.tektronix.com). Remarque relative au mercure. Ce produit est équipé d’une lampe de rétroéclairage LCD contenant du mercure. Sa mise au rebut est soumise à la réglementation en vigueur concernant l’environnement. Pour connaître les conditions de mise au rebut ou de recyclage, contactez les autorités locales ou, pour les Etats-Unis, l’EIA (Electronics Industries Alliance, www.eiae.org). Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B vii Environnement Restriction concernant les substances dangereuses Cet appareil est considéré comme un appareil de contrôle et de surveillance, non pris en charge par la directive 2002/95/CE relative à la limitation de l’utilisation de certaines substances dangereuses dans les équipements électriques et électroniques. Ce produit contient, de manière avérée, du plomb, du cadmium, du mercure et du chrome hexavalent. viii Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Préface Préface Ce manuel contient des informations relatives au fonctionnement des oscilloscopes à mémoire numérique TDS1000B et TDS2000B. Il se compose des chapitres suivants : Le chapitre Démarrage décrit brièvement les fonctions de l’oscilloscope et fournit des instructions relatives à l’installation. Le chapitre Principes de fonctionnement explique le fonctionnement des oscilloscopes. Le chapitre Compréhension des fonctions de l’oscilloscope décrit les opérations et les fonctions de base d’un oscilloscope : configuration de l’oscilloscope, déclenchement, acquisition de données, mise à l’échelle et positionnement des signaux et prise de mesures. Le chapitre Exemples d’application fournit des exemples de solutions visant à résoudre divers problèmes de mesures. Le chapitre Fonction mathématique FFT explique comment utiliser la fonction mathématique Transformée de Fourier Rapide (FFT) pour convertir un signal temporel en ses composantes de fréquence (spectre). Le chapitre Port du lecteur flash USB et port périphérique décrit l’utilisation du port du lecteur flash USB et le raccordement de l’oscilloscope aux imprimantes et aux ordinateurs via le port périphérique USB. Le chapitre Référence décrit les sélections ou la gamme de valeurs disponibles pour chaque option. L’annexe A : Spécifications contient les spécifications électriques, environnementales et physiques de l’oscilloscope et de la sonde P2220, ainsi que des homologations et des conformités. L’annexe B : Accessoires décrit brièvement les accessoires standard et en option. L’annexe C : Nettoyage décrit comment entretenir l’oscilloscope. L’annexe D : Configuration par défaut contient la liste des menus et des commandes avec leurs configurations (d’usine) par défaut, Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B ix Préface rétablies lorsque vous appuyez sur le bouton CONF. PAR D. du panneau avant. L’annexe E : Licences de police fournit les licences permettant d’utiliser des polices asiatiques spécifiques. Système d’aide L’oscilloscope dispose d’un système d’aide doté de rubriques couvrant toutes les fonctions de l’appareil. Ce système d’aide vous permet d’afficher différents types d’informations : des informations générales portant sur la compréhension et l’utilisation de l’oscilloscope, telles que Utilisation du système de menus ; des informations portant sur les menus et les commandes spécifiques, telles que Commande de position verticale ; des conseils portant sur les problèmes que vous pouvez rencontrer lors de l’utilisation de l’oscilloscope, tels que Réduction du bruit. Le système d’aide met à votre disposition différents moyens de trouver les informations dont vous avez besoin : aide contextuelle, liens hypertexte et index. Aide contextuelle Lorsque vous appuyez sur le bouton AIDE du panneau avant, l’oscilloscope affiche des informations relatives au dernier menu affiché à l’écran. Lorsque vous visualisez les rubriques d’aide, un voyant LED s’allume à côté du bouton multifonctionnel pour indiquer que ce dernier est actif. Si la rubrique s’étend sur plus d’une page, tournez le bouton multifonctionnel pour passer d’une page à l’autre de la rubrique. x Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Préface Liens hypertexte La plupart des rubriques d’aide présentent des phrases dotées de passage entre chevrons, tels que . Il s’agit de liens vers d’autres rubriques. Tournez le bouton multifonctionnel pour sélectionner les différents liens. Appuyez sur le bouton d’option Afficher sujet pour consulter la rubrique correspondant au lien mis en surbrillance. Appuyez sur le bouton d’option Retour pour revenir à la rubrique précédente. Index Appuyez sur le bouton AIDE du panneau avant, puis appuyez sur le bouton d’option Index. Appuyez sur les boutons d’option Page précédente ou Page suivante jusqu’à ce que vous trouviez la page d’index contenant la rubrique que vous souhaitez afficher. Tournez le bouton multifonctionnel pour mettre en surbrillance la rubrique d’aide qui vous intéresse. Appuyez sur le bouton Afficher sujet pour afficher la rubrique. REMARQUE. Appuyez sur le bouton d’option Quitter ou sur un bouton de menu quelconque pour quitter l’écran d’aide affiché et revenir à l’affichage des signaux. Mises à jour du firmware via Internet Si une version plus récente du micrologiciel est disponible, vous pouvez utiliser Internet et un lecteur flash USB pour mettre à jour votre oscilloscope. Si vous ne disposez pas d’un accès à Internet, contactez Tektronix pour obtenir des informations sur les procédures de mise à jour. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B xi Préface Pour mettre à jour le micrologiciel via Internet, procédez comme suit : 1. Appuyez sur UTILITAIRE ► Etat du système et notez le numéro de version du micrologiciel de l’oscilloscope. 2. Depuis votre ordinateur, accédez au site Web www.tektronix.com et vérifiez la disponibilité d’une version plus récente du micrologiciel pour l’oscilloscope. 3. Si une version plus récente est disponible, téléchargez le fichier du micrologiciel à partir de la page Web. Vous devrez peut-être décompresser le fichier téléchargé. 4. Copiez le fichier du micrologiciel TDS1K2KB.TEK dans le dossier racine du lecteur flash USB. 5. Insérez le lecteur flash USB dans le port du lecteur flash USB situé sur le panneau avant de l’oscilloscope. 6. Sur votre oscilloscope, appuyez sur le bouton d’option UTILITAIRE ► Utilitaires Fichiers ► - suite - p. 2 de 2 ► M. à jour Firmware. La mise à jour du micrologiciel prend plusieurs minutes. Lorsque que la mise à jour du microprogramme est terminée, l’oscilloscope vous invite à appuyer sur un bouton. Vous ne devez pas retirer le lecteur flash USB ou mettre l’oscilloscope hors tension avant la fin de la mise à jour du microprogramme. Conventions Ce manuel utilise les conventions suivantes : Les boutons, molettes et connecteurs du panneau avant apparaissent en lettres majuscules. Par exemple : AIDE, PRINT. La première lettre des options de menu est en majuscules. Par exemple : Détect Créte, Zone retardée. xii Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Préface Bouton multifonctionnel Etiquettes des boutons et molettes du panneau avant : tout en majuscules Boutons d’option : première lettre de chaque mot apparaissant à l’écran en majuscules REMARQUE. Les boutons d’options peuvent également être appelés boutons d’écran, boutons du menu latéral, boutons du panneau ou touches programmables. Le délimiteur ► sert à séparer les boutons dans une séquence à réaliser. Par exemple, UTILITAIRE ► Options ► Régler date et heure signifie que vous devez appuyer sur le bouton UTILITAIRE du panneau avant, puis sur le bouton d’option Options, et enfin sur le bouton d’option Régler date et heure. Il est parfois nécessaire d’utiliser plusieurs boutons pour sélectionner l’option souhaitée. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B xiii Préface xiv Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Démarrage Les oscilloscopes à mémoire numérique TDS1000B et TDS2000B sont des oscilloscopes de table compacts et légers, que vous pouvez utiliser pour prendre des mesures référencées au sol. Ce chapitre décrit comment : installer votre produit, effectuer une brève vérification du fonctionnement, effectuer un test de sonde et compenser les sondes, faire correspondre votre facteur d’atténuation de sonde, utiliser le programme de calibrage automatique. REMARQUE. Vous pouvez sélectionner la langue affichée à l’écran lorsque vous mettez l’oscilloscope sous tension. A tout moment, vous pouvez accéder à l’option UTILITAIRE ► Language pour sélectionner la langue souhaitée. Fonctions générales Le tableau et la liste qui suivent décrivent les fonctions générales. Modèle Voies Bande passante Fréquence d’échantillonnageAffichage TDS1001B 2 40 MHz 500 éch./s Monochrome TDS1002B 2 60 MHz 1 G éch./s Monochrome TDS1012B 2 100 MHz 1 G éch./s Monochrome TDS2002B 2 60 MHz 1 G éch./s Couleur TDS2004B 4 60 MHz 1 G éch./s Couleur TDS2012B 2 100 MHz 1 G éch./s Couleur TDS2014B 4 100 MHz 1 G éch./s Couleur TDS2022B 2 200 MHz 2 G éch./s Couleur TDS2024B 4 200 MHz 2 G éch./s Couleur Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 1 Démarrage Aide contextuelle Ecran LCD couleur ou monochrome Limite de bande passante de 20 MHz sélectionnable Longueur d’enregistrement de 2 500 points pour chaque voie Réglage automatique (Autoset) Ajustement automatique Assistant Test de sonde Stockage de la configuration et du signal Port du lecteur flash USB pour stockage des fichiers Impression directe sur imprimante compatible PictBridge Communications avec l’ordinateur via le port périphérique USB doté du logiciel de communication pour PC OpenChoice Connexion à un contrôleur GPIB par un adaptateur TEK-USB-488 en option Curseurs dotés d’un affichage Mesure de la fréquence de déclenchement Onze mesures automatiques Moyenne du signal et Détect Créte Double base de temps Fonctions mathématiques : opérations +, - et × Fonction mathématique Transformée de Fourier Rapide (FFT) Fonctionnalité de déclenchement sur largeur d’impulsion Capacité de déclenchement vidéo avec déclenchement sélectionnable par ligne Déclenchement externe Affichage à persistance variable Interface utilisateur et rubriques d’aide en dix langues 2 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Démarrage Installation Cordon d’alimentation Utilisez uniquement le cordon d’alimentation fourni avec l’oscilloscope. L’Annexe B : Accessoires dresse la liste des accessoires standard et en option. Source d’alimentation Utilisez une source d’alimentation délivrant 90 à 264 V CAeff, de 45 à 66 Hz. Si vous disposez d’une source d’alimentation de 400 Hz, elle doit délivrer 90 à 132 V CAeff, de 360 à 440 Hz. Boucle de sécurité Utilisez un verrou de sécurité standard d’ordinateur portable ou faites passer un câble de sécurité par la voie de câble intégrée afin d’attacher votre oscilloscope. Voie de câble de sécurité Orifice du verrou de sécurité Cordon d’alimentation Ventilation REMARQUE. L’oscilloscope refroidit par convection. Laissez cinq centimètres de chaque côté et au-dessus de l’appareil pour permettre à l’air de circuler. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 3 Démarrage Test de fonctionnement Effectuez le test suivant pour vous assurer du bon fonctionnement de l’oscilloscope. Bouton ON/OFF 1. Mettez l’oscilloscope sous tension. Appuyez sur le bouton CONF. PAR D. Le réglage d’atténuation par défaut de l’option Sonde est 10X. CONF. PAR D., bouton COMP SONDE 2. Réglez le commutateur de la sonde P2220 sur 10X et raccordez la sonde à la voie 1 de l’oscilloscope. Pour ce faire, alignez l’emplacement du connecteur de la sonde avec la touche du connecteur BNC CH 1, appuyez pour effectuer la connexion et tournez la sonde vers la droite pour la verrouiller. Connectez l’extrémité de la sonde et le câble de référence aux bornes COMP SONDE. 3. Appuyez sur le bouton AUTOSET. Au bout de quelques secondes, une onde carrée de 5 V crête à crête à 1 kHz doit s’afficher à l’écran. Appuyez deux fois sur le bouton CH1 MENU du panneau avant pour supprimer la voie 1, appuyez sur le bouton CH2 MENU pour afficher la voie 2 et répétez les étapes 2 et 3. Pour les modèles à 4 voies, répétez la procédure pour les voies 3 et 4. 4 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Démarrage Sécurité de la sonde Vérifiez les valeurs nominales des sondes avant de les utiliser et respectez ces valeurs. Un manchon entourant le corps de la sonde P2220 protège les doigts contre tout choc électrique. Protège-doigts AVERTISSEMENT. Pour éviter tout choc électrique lors de l’utilisation de la sonde, gardez vos doigts derrière le manchon entourant le corps de la sonde. Pour éviter tout choc électrique lors de l’utilisation de la sonde, ne touchez aucune partie métallique de la tête de sonde lorsque celle-ci est branchée sur une source de tension. Raccordez la sonde à l’oscilloscope et la borne de mise à la terre à la masse avant de prendre des mesures. Assistant Test de sonde de tension L’assistant Test de sonde permet de vérifier rapidement le bon fonctionnement d’une sonde de tension. Il ne prend pas en charge les sondes de courant. L’assistant vous permet de régler la compensation des sondes de tension (généralement à l’aide d’un tournevis sur le corps ou un connecteur de la sonde) et de définir le facteur d’atténuation de chaque voie, comme dans l’option CH 1 MENU ► Sonde ► Tension ► Atténuation. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 5 Démarrage Utilisez l’assistant Test de sonde pour chaque raccordement d’une sonde de tension à une voie d’entrée. Pour utiliser l’assistant Test de sonde, appuyez sur le bouton TEST SONDE. Si la sonde de tension est correctement raccordée et compensée et si l’option Atténuation dans le menu VERTICAL de l’oscilloscope correspond bien à la sonde, l’oscilloscope indique alors PASSE en bas de l’écran. Sinon, l’oscilloscope indique la marche à suivre à l’écran pour vous permettre de résoudre ces problèmes. REMARQUE. L’assistant Test de sonde est utile pour les sondes 1X, 10X, 20X, 50X et 100X. Il ne sert pas pour les sondes 500X ou 1000X, ni pour les sondes raccordées au connecteur BNC EXTERNE. REMARQUE. Une fois le processus terminé, l’assistant Test de sonde rétablit les paramètres de l’oscilloscope (autres que l’option Sonde) à la valeur qu’ils avaient avant d’appuyer sur le bouton TEST SONDE. Pour compenser une sonde que vous envisagez d’utiliser avec l’entrée EXTERNE, procédez comme suit : 1. Raccordez la sonde au connecteur BNC d’une voie d’entrée quelconque, par exemple CH 1. 2. Appuyez sur le bouton TEST SONDE et suivez les instructions à l’écran. 3. Après avoir vérifié que la sonde fonctionne et qu’elle est correctement compensée, raccordez-la au connecteur BNC EXTERNE. 6 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Démarrage Compensation manuelle de sonde Il existe une alternative à l’assistant Test de sonde, qui consiste à effectuer manuellement ce réglage afin de faire correspondre votre sonde à la voie d’entrée. COMP SONDE Bouton AUTOSET 1. Appuyez sur CH 1 MENU ► Sonde ► Tension ► Atténuation, puis sélectionnez 10X. Réglez le commutateur de la sonde P2220 sur 10X et raccordez la sonde à la voie 1 de l’oscilloscope. Si vous utilisez un embout en crochet pour la sonde, assurez-vous que la connexion s’effectue correctement en insérant fermement l’embout dans la sonde. 2. Fixez l’extrémité de la sonde à la terminaison COMP SONDE ~5V à 1kHz et le câble de référence à la terminaison COMP SONDE du châssis. Affichez la voie, puis appuyez sur le bouton AUTOSET. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 7 Démarrage Surcompensé Sous-compensé Compensé correctement 3. Vérifiez la forme du signal affiché. 4. Au besoin, ajustez la sonde. L’illustration montre une sonde P2220. Recommencez cette étape si nécessaire. Réglage d’atténuation de la sonde Les sondes sont proposées avec divers facteurs d’atténuation qui affectent l’échelle verticale du signal. L’assistant Test de sonde vérifie que le facteur d’atténuation sélectionné dans l’oscilloscope correspond à la sonde. Au lieu d’utiliser l’assistant Test de sonde, vous pouvez sélectionner manuellement le facteur correspondant à l’atténuation de votre sonde. Par exemple, pour régler l’oscilloscope pour une sonde 10X connectée à CH 1, appuyez sur CH 1 MENU ► Sonde ► Tension ► Atténuation, puis sélectionnez 10X. REMARQUE. Le réglage par défaut de l’option Atténuation est 10X. Si vous changez le commutateur d’atténuation de la sonde P2220, vous devez changer en conséquence l’option Atténuation de l’oscilloscope. Les réglages du commutateur sont 1X et 10X. 8 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Démarrage Commutateur d’atténuation REMARQUE. Lorsque le commutateur d’atténuation est défini sur 1X, la sonde P2220 limite la bande passante de l’oscilloscope à 6 MHz. Pour utiliser toute la bande passante de l’oscilloscope, définissez le commutateur sur 10X. Mise à échelle de la sonde de courant Les sondes de courant fournissent un signal de tension proportionnel au courant. Vous devez régler l’oscilloscope en fonction de l’échelle de votre sonde de courant. L’échelle par défaut est 10 A/V. Par exemple, pour régler l’échelle d’une sonde de courant connectée à CH 1, appuyez sur CH 1 MENU ► Sonde ► Courant ► Echelle, puis sélectionnez une valeur appropriée. Calibrage automatique Le programme de calibrage automatique permet d’optimiser le chemin du signal de l’oscilloscope, afin d’obtenir une précision de mesure maximale. Vous pouvez exécuter ce programme à tout moment, mais il est conseillé de le faire si la température ambiante change de 5 °C (9 °F) ou plus. Ce programme prend environ deux minutes. Pour un calibrage précis, mettez l’oscilloscope sous tension et laissez-le chauffer pendant vingt minutes. Pour compenser le chemin du signal, déconnectez les sondes ou les câbles des connecteurs d’entrée. Ensuite, accédez à l’option UTILITAIRE ► Exécuter Auto-cal et suivez les instructions affichées à l’écran. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 9 Démarrage 10 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement Le panneau avant se compose de plusieurs zones faciles à utiliser. Ce chapitre vous propose une présentation rapide des commandes et informations affichées à l’écran. Modèle à 2 voies Modèle à 4 voies Zone d’affichage Outre l’affichage des signaux, la zone d’affichage contient de nombreuses informations relatives aux réglages du signal et de l’oscilloscope. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 11 Principes de fonctionnement REMARQUE. Pour obtenir des détails sur l’affichage de la fonction FFT, voir (Voir page 71, Affichage du spectre FFT.). 1. L’apparence de l’icône indique le mode d’acquisition. Mode Normale Mode Détect Créte Mode Moyenne 12 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement 2. L’état du déclenchement est indiqué par les icônes ci-dessous : L’oscilloscope est en train d’acquérir des données de pré-déclenchement. Dans cet état, tous les déclenchements sont ignorés. Toutes les données de pré-déclenchement ont été acquises et l’oscilloscope est prêt à accepter un déclenchement. L’oscilloscope a détecté un déclenchement et il est en train d’acquérir les données de post-déclenchement. L’oscilloscope a arrêté l’acquisition des données du signal. L’oscilloscope a terminé l’acquisition d’une séquence unique. L’oscilloscope est en mode automatique et il est en train d’acquérir des signaux en l’absence de déclenchement. L’oscilloscope est en train d’acquérir et d’afficher en continu les données du signal en mode Balayage. 3. Le marqueur indique la position horizontale de déclenchement. Tournez le bouton HORIZONTAL POSITION pour modifier la position du marqueur. 4. L’affichage indique le temps au réticule central. Le temps au déclenchement est zéro. 5. Le marqueur indique le niveau de déclenchement sur front ou sur largeur d’impulsion. 6. Les marqueurs à l’écran indiquent les points de référence de masse des signaux affichés. S’il n’existe aucun marqueur, la voie n’est pas affichée. 7. Une icône en forme de flèche indique que le signal est inversé. 8. Les facteurs d’échelle verticale des voies sont affichés. 9. Une icône BP indique que la bande passante de la voie est limitée. 10. Le réglage de la base de temps principale est affiché. 11. L’affichage indique le réglage de la base de temps de la fenêtre, si celle-ci est utilisée. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 13 Principes de fonctionnement 12. La source utilisée pour le déclenchement est affichée. 13. L’icône indique le type de déclenchement sélectionné comme suit : Déclenchement sur front pour le front montant. Déclenchement sur front pour le front descendant. Déclenchement vidéo pour l’option Synchro de ligne. Déclenchement vidéo pour l’option Synchro de trame. Déclenchement sur largeur d’impulsion, polarité positive. Déclenchement sur largeur d’impulsion, polarité négative. 14. L’affichage indique le niveau de déclenchement sur front ou sur largeur d’impulsion. 15. La zone d’affichage contient des messages utiles, dont certains s’affichent pendant 3 secondes seulement. Si vous rappelez un signal sauvegardé, des informations s’affichent à propos du signal de référence, telles que RefA 1,00 V 500 μs. 16. La date et l’heure sont affichées. 17. L’affichage indique la fréquence du déclenchement. 14 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement Zone de messages L’oscilloscope affiche en bas de l’écran une zone de message (numéro 15 dans la figure précédente) qui propose les types d’informations suivants : Instructions d’accès à un autre menu, par exemple lorsque vous appuyez sur le bouton TRIG MENU. Pour le déclenchement HOLDOFF, aller dans le MENU HORIZONTAL Les étapes que vous pouvez effectuer par la suite, par exemple lorsque vous appuyez sur le bouton MESURES. Appuyez sur un bouton de l’écran pour modifier les mesures Des informations sur l’action effectuée par l’oscilloscope, par exemple lorsque vous appuyez sur le bouton CONF. PAR D. Rappel de la configuration d’usine standard Des informations sur le signal, par exemple lorsque vous appuyez sur le bouton AUTOSET. Onde carrée ou impulsion détectée sur CH1 Utilisation du système de menus L’interface utilisateur des oscilloscopes a été conçue pour faciliter l’accès aux fonctions spécialisées par le biais d’une structure de menus. Lorsque vous appuyez sur un bouton de menu du panneau avant, l’oscilloscope affiche le menu correspondant sur le côté droit de l’écran. Le menu affiche les options disponibles lorsque vous appuyez directement sur les boutons d’option dépourvus d’inscription situés à droite de l’écran. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 15 Principes de fonctionnement L’oscilloscope utilise plusieurs méthodes pour afficher les options de menu : Sélection de la page (sous-menu) : pour certains menus, vous pouvez utiliser le bouton d’option supérieur pour choisir entre deux ou trois sous-menus. Chaque fois que vous appuyez sur le bouton supérieur, les options changent. Par exemple, lorsque vous appuyez sur le bouton supérieur dans le menu TRIGGER, l’oscilloscope passe en revue les sous-menus de déclenchement Front, Vidéo et Largeur d’impulsion. Liste circulaire : l’oscilloscope attribue une valeur différente au paramètre à chaque fois que vous appuyez sur le bouton d’option. Par exemple, vous pouvez appuyer sur le bouton CH 1 MENU, puis sur le bouton d’option supérieur pour passer en revue les options Couplage vertical (voie). Dans certaines listes, vous pouvez utiliser le bouton multifonctionnel pour sélectionner une option. Une ligne de conseil vous indique quand vous pouvez utiliser le bouton multifonctionnel ; un voyant LED à côté de ce même bouton s’allume lorsque celui-ci est actif. (Voir page 20, Boutons de menu et de commande.) Action : l’oscilloscope affiche le type d’action qui se produira dès l’instant où vous appuyez sur un bouton d’option Action. Par exemple, lorsque l’index d’aide est visible et que vous appuyez sur le bouton d’option Page suivante, l’oscilloscope affiche immédiatement la page d’entrées d’index qui suit. Radio : l’oscilloscope utilise un bouton différent pour chaque option. L’option sélectionnée est mise en surbrillance. Par exemple, l’oscilloscope affiche plusieurs options de mode d’acquisition lorsque vous appuyez sur le bouton du menu ACQUISITION. Pour sélectionner une option, appuyez sur le bouton correspondant. 16 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement Sélection de page Liste circulaire Action Radio TRIGGER CH1 AIDE ACQUISITION Type Front Couplage CC Page précédente Normale ou ou Page suivante Détect Créte TRIGGER CH1 Moyennage Type Vidéo Couplage CA ou ou TRIGGER CH1 Type Impulsion Couplage masse Réglages verticaux Tous les modèles (modèle illustré : 4 voies) POSITION (CH 1, CH 2, CH 3 & CH 4). Positionne un signal verticalement. CH 1, CH 2, CH 3 & CH 4 MENU. Permet d’afficher les sélections du menu vertical et d’activer/de désactiver l’affichage du signal de la voie. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 17 Principes de fonctionnement VOLTS/DIV (CH 1, CH 2, CH 3 & CH 4). Permet de sélectionner les facteurs d’échelles verticales. MATH MENU. Permet d’afficher le menu des opérations mathématiques du signal ; permet également d’activer ou de désactiver le signal calculé. Réglages horizontaux Modèle à 2 voies Modèle à 4 voies POSITION. Permet de régler la position horizontale de toutes les voies et de tous les signaux calculés. La résolution de ce réglage varie selon le réglage de la base de temps. (Voir page 114, Zone retardée.) REMARQUE. Pour appliquer un réglage étendu à la position horizontale, tournez la molette SEC/DIV pour définir une valeur supérieure, modifiez la position horizontale, puis tournez de nouveau la molette SEC/DIV pour revenir à la valeur précédente. HORIZ MENU. Permet d’afficher le menu Horizontal. REGLER SUR 0. Permet de régler la position horizontale sur zéro. SEC/DIV. Permet de sélectionner l’unité de temps/la division (facteur d’échelle) de la base de temps principale ou de la base de temps de la fenêtre. Lorsque la Zone retardée est activée, cette commande modifie 18 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement la largeur de la zone retardée en modifiant la base de temps de la fenêtre. (Voir page 114, Zone retardée.) Commandes de déclenchement Modèle à 4 voies Modèle à 2 voies NIVEAU. Lorsque vous utilisez un déclenchement sur front ou sur impulsion, le bouton NIVEAU détermine le niveau d’amplitude que le signal doit traverser pour acquérir un signal. TRIG MENU. Permet d’afficher le menu Déclenchement. NIVEAU A 50%. Le niveau de déclenchement est défini sur le point médian entre les crêtes du signal de déclenchement. FORCE TRIG. Permet de terminer une acquisition quel que soit l’état du signal de déclenchement. Ce bouton est sans effet si l’acquisition est déjà interrompue. TRIG VIEW. Permet d’afficher le signal de déclenchement à la place du signal de voie lorsque vous maintenez le bouton TRIG VIEW enfoncé. Utilisez cette option pour voir comment les paramètres de déclenchement affectent un signal de déclenchement, tel qu’un couplage de déclenchement. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 19 Principes de fonctionnement Boutons de menu et de commande Bouton multifonctionnel Reportez-vous au chapitre Référence pour obtenir des informations détaillées sur les commandes des menus et boutons. Bouton multifonctionnel. La fonction est déterminée par le menu affiché ou l’option de menu sélectionnée. Lorsque la fonction est active, le voyant LED correspondant s’allume. Le tableau suivant énumère les fonctions. Option ou menu actif Fonction du bouton Description Curseurs Curseur 1 ou Curseur 2 Positionne le curseur sélectionné Affichage Contraste Modifie le contraste de l’écran Aide Défilement Sélectionne des entrées dans l’index ; sélectionne des liens dans une rubrique ; affiche la page suivante ou précédente d’une rubrique Horizontal Inhibition Permet de définir la durée avant acceptation d’un autre déclenchement ;(Voir page 135, Inhibition.) Math Position Positionne le signal calculé Echelle verticale Change l’échelle du signal calculé 20 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement Option ou menu actif Fonction du bouton Description Mesures Type Sélectionne le type de mesures automatiques pour chaque source Action Affiche la transaction comme mise en mémoire ou rappel pour les fichiers de configuration, les fichiers de signal et les images d’écran Sauv./Rap Sélection de fichiers Sélectionne les fichiers de configuration, de signal ou image à enregistrer, ou sélectionne les fichiers de configuration ou de signal à rappeler Source Sélectionne la source lorsque l’option Type de déclenchement est réglée sur Front Numéro de ligne vidéo Permet de régler l’oscilloscope sur un numéro de ligne spécifique lorsque l’option Type de déclenchement est définie sur Vidéo et que l’option Synchro de déclenchement est définie sur Numéro de ligne Trigger (Déclenchement) Largeur d’impulsion Détermine la largeur de l’impulsion lorsque l’option Type de déclenchement est définie sur Impulsion Sélection de fichiers Sélectionne des fichiers à renommer ou supprimer ; (Voir page 139, Utilitaires Fichiers pour le lecteur flash USB.) Utilitaire ► Utilitaires Fichiers Saisie du nom Permet de renommer le fichier ou le dossier ; (Voir page 140, Renommer un fichier ou dossier.) Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 21 Principes de fonctionnement Option ou menu actif Fonction du bouton Description Utilitaire ► Options ► Configuration du bus GPIB ► Adresse Saisie de la valeur Définit l’adresse GPIB pour l’adaptateur TEK-USB-488 Utilitaire ► Options ► Régler date et heure Saisie de la valeur Définit la valeur de la date et de l’heure ; (Voir page 138, Réglage de la date et de l’heure.) Vertical ► Sonde ► Tension► Atténuation Saisie de la valeur Pour un menu de voie (comme CH 1 MENU), définit le facteur d’atténuation dans l’oscilloscope Vertical ► Sonde ► Courant ► Echelle Saisie de la valeur Pour un menu de voie (comme CH 1 MENU), définit l’échelle dans l’oscilloscope CALIBRAGE AUTO. Affiche le menu Calibrage Auto et active ou désactive la fonction correspondante. Lorsque la fonction est active, le voyant LED correspondant s’allume. SAUV./RAP. Permet d’afficher le menu Sauvegarde/Rappel des réglages et des signaux. MESURES. Permet d’afficher le menu des mesures automatiques. ACQUISITION. Permet d’afficher le menu Acquisition. MENU REF. Affiche le menu Référence pour afficher et cacher rapidement les signaux de référence stockés dans la mémoire non volatile de l’oscilloscope. UTILITAIRE. Permet d’afficher le menu Utilitaire. CURSEURS. Permet d’afficher le menu Curseurs. Les curseurs restent visibles (sauf si l’option Type est définie sur Désact.) une fois que vous avez quitté le menu Curseurs, mais ils ne sont plus réglables. AFFICHAGE. Permet d’afficher le menu Affichage. 22 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Principes de fonctionnement AIDE. Permet d’afficher le menu Aide. CONF. PAR D. Permet de rétablir la configuration d’usine. AUTOSET. Permet de régler automatiquement les commandes de l’oscilloscope afin d’obtenir un affichage exploitable des signaux d’entrées. SEQ. UNIQUE. Permet d’acquérir un signal unique, puis de s’arrêter. RUN/STOP. Permet d’acquérir des signaux en continu ou d’interrompre l’acquisition. PRINT. Lance l’opération d’impression sur une imprimante compatible PictBridge ou effectue la fonction ENREGISTRER sur le lecteur flash USB. ENREGISTRER. Un voyant LED s’allume lorsque la touche PRINT est configurée pour enregistrer des données sur le lecteur flash USB. Connecteurs d’entrée Modèle à 2 voies Modèle à 4 voies CH 1, CH 2, CH 3 & CH 4. Connecteurs d’entrée pour l’affichage des signaux. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 23 Principes de fonctionnement EXTERNE. Connecteur d’entrée pour une source de déclenchement externe. Le menu Déclenchement permet de sélectionner la source de déclenchement Ext. ou Ext/5. Maintenez le bouton TRIG VIEW enfoncé pour voir comment les paramètres de déclenchement affectent le signal de déclenchement, tel qu’un couplage de déclenchement. Autres éléments du panneau avant port du lecteur flash USB Port du lecteur flash USB. Insérez un lecteur flash USB pour le stockage ou la récupération de données. L’oscilloscope affiche un symbole en forme d’horloge pour indiquer quand le lecteur flash est actif. Après l’enregistrement ou la récupération d’un fichier, l’oscilloscope supprime l’horloge et affiche une ligne de conseil pour vous avertir que l’opération de sauvegarde ou de rappel est terminée. Pour les lecteurs flash dotés d’un voyant LED, celui-ci clignote lors de l’enregistrement de données sur le lecteur ou de la récupération de données depuis le lecteur. Attendez que le voyant LED ne clignote plus pour retirer le lecteur. COMP SONDE. Référence de châssis et de sortie de la compensation de sonde. Permet d’établir une correspondance électrique entre une sonde de tension et le circuit d’entrée de l’oscilloscope. (Voir page 5, Assistant Test de sonde de tension.) (Voir page 7, Compensation manuelle de sonde.) 24 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope Ce chapitre contient des informations générales que vous devez connaître avant d’utiliser un oscilloscope. Pour utiliser votre oscilloscope de manière efficace, vous devez vous familiariser avec les fonctions suivantes : Réglage de l’oscilloscope Déclenchement Acquisition de signaux Mise à l’échelle et positionnement de signaux Mesure de signaux La figure ci-dessous représente un diagramme fonctionnel des différentes fonctions de l’oscilloscope et de leurs relations. Réglage de l’oscilloscope Vous devez vous familiariser avec plusieurs fonctions que vous allez utiliser souvent lors du fonctionnement de l’oscilloscope : le réglage automatique (Autoset), le calibrage automatique (Calibrage Auto), la sauvegarde d’un réglage et le rappel d’un réglage. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 25 Compréhension des fonctions de l’oscilloscope Utilisation de la fonction de réglage automatique (Autoset) Chaque fois que vous appuyez sur le bouton AUTOSET, la fonction de réglage automatique (Autoset) vous donne un affichage de signal stable. Elle permet d’ajuster automatiquement les réglages de l’échelle verticale et horizontale et du déclenchement. Le réglage automatique permet également d’afficher plusieurs mesures automatiques dans la zone du réticule, en fonction du type de signal. Utilisation de la fonction de calibrage automatique (Autorange) Le calibrage automatique est une fonction continue que vous pouvez activer ou désactiver. Cette fonction ajuste la configuration de manière à suivre un signal lorsque celui-ci présente de grandes variations ou lorsque vous déplacez physiquement la sonde. Sauvegarde d’un réglage Le réglage courant est sauvegardé si vous patientez cinq secondes après la dernière modification avant d’éteindre l’oscilloscope. A la prochaine mise sous tension, l’oscilloscope rappelle ce réglage. Le menu SAUV./RAP vous permet d’enregistrer jusqu’à dix réglages différents. Vous pouvez également enregistrer des réglages sur un lecteur flash USB. L’oscilloscope peut recevoir un lecteur flash USB pour le stockage et la récupération de données amovibles. (Voir page 79, Port du lecteur flash USB.) Rappel d’une configuration L’oscilloscope peut rappeler le dernier réglage utilisé avant sa mise hors tension, l’un des réglages que vous avez enregistrés ou le réglage par défaut. (Voir page 120, Sauvegarder/Rappeler.) Configuration par défaut Dans sa configuration définie en usine, l’oscilloscope est réglé en mode de fonctionnement normal. Il s’agit de la configuration par défaut. Pour rappeler cette configuration, appuyez sur le bouton CONF. PAR D. Pour afficher les réglages par défaut, reportez-vous à l’Annexe D : Configuration par défaut. 26 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope Déclenchement Le déclenchement permet de déterminer le moment où l’oscilloscope commence à acquérir des données et à afficher un signal. Lorsque le déclenchement est configuré correctement, l’oscilloscope convertit un signal instable ou des écrans vides en signaux significatifs. Signal déclenché Signaux sans déclenchement Pour obtenir des informations spécifiques sur l’oscilloscope, reportez-vous au chapitre Principes de fonctionnement. (Voir page 19, Commandes de déclenchement.) Reportez-vous également au chapitre Référence. (Voir page 127, Commandes de déclenchement.) Lorsque vous appuyez sur le bouton RUN/STOP ou SEQ. UNIQUE pour démarrer une acquisition, l’oscilloscope effectue les étapes suivantes : 1. Il acquiert suffisamment de données pour remplir la portion de l’enregistrement du signal située sur la gauche du point de déclenchement. Cette opération est appelée pré-déclenchement. 2. Il continue à acquérir des données en attendant le déclenchement. 3. Il détecte le déclenchement. 4. Il continue à acquérir des données jusqu’à ce que l’enregistrement du signal soit complet. 5. Il affiche le signal qui vient d’être acquis. REMARQUE. Pour les déclenchements sur front et sur impulsion, l’oscilloscope évalue la cadence à laquelle se produisent les déclenchements afin de déterminer la fréquence du déclenchement. L’oscilloscope affiche la fréquence dans le coin inférieur droit de l’écran. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 27 Compréhension des fonctions de l’oscilloscope Source Les options de source de déclenchement vous permettent de sélectionner le signal qui sera utilisé par l’oscilloscope comme déclenchement. La source peut être n’importe quel signal connecté à la ligne d’alimentation secteur (disponible uniquement avec les déclenchements sur front), à une voie BNC ou au connecteur BNC EXTERNE. Types L’oscilloscope dispose de trois types de déclenchements : sur front, vidéo et sur largeur d’impulsion. Modes Vous pouvez sélectionner le mode de déclenchement Auto ou Normal pour définir le mode d’acquisition des données par l’oscilloscope lorsque celui-ci ne détecte pas de condition de déclenchement. (Voir page 128, Options des modes.) Pour effectuer une acquisition de type séquence unique, appuyez sur le bouton SEQ. UNIQUE. Couplage Vous pouvez utiliser l’option Couplage déclenchement pour déterminer la partie du signal qui passera dans le circuit de déclenchement. Cela peut vous permettre d’obtenir un affichage du signal stable. Pour utiliser le couplage de déclenchement, appuyez sur le bouton TRIG MENU, sélectionnez un déclenchement sur front ou sur impulsion et sélectionnez une option de couplage. REMARQUE. Le couplage de déclenchement n’affecte que le signal transmis au système de déclenchement. Il n’affecte ni la bande passante, ni le couplage du signal affiché à l’écran. Pour afficher le signal conditionné transmis au circuit de déclenchement, maintenez le bouton TRIG VIEW enfoncé. Position Le réglage de la commande de position horizontale permet de représenter le temps qui s’est écoulé entre le déclenchement et le centre de l’écran. Reportez-vous aux Informations sur l’échelle horizontale 28 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope et la position horizontale et sur le pré-déclenchement pour des informations sur la façon d’utiliser cette commande afin de positionner le déclencheur. (Voir page 31, Informations sur l’échelle horizontale et la position horizontale et sur le pré-déclenchement.) Pente et Niveau Les commandes Pente et Niveau vous permettent de définir le mode de déclenchement. L’option Pente (type de déclenchement sur front uniquement) vous permet de déterminer si l’oscilloscope trouve le point de déclenchement sur le front montant ou descendant du signal. La molette TRIGGER NIVEAU permet de spécifier le point de déclenchement sur le front. Front montant Front descendant Le niveau de déclenchement peut être ajusté verticalement Le déclenchement peut être montant ou descendant Acquisition de signaux Lorsque vous faites l’acquisition d’un signal, l’oscilloscope le convertit au format numérique et affiche sa courbe. Le mode d’acquisition définit la façon dont le signal est numérisé et le réglage de la base de temps affecte la durée temporelle et le niveau de détail de l’acquisition. Modes d’acquisition Il existe trois modes d’acquisition : Normale, Détect Créte et Moyenne. Normale. Dans ce mode d’acquisition, l’oscilloscope échantillonne le signal à intervalles réguliers afin de pouvoir en donner une représentation. Ce mode permet en général de représenter avec précision les signaux. Cependant, ce mode n’acquiert pas les variations rapides qui peuvent se produire dans le signal entre les différents prélèvements d’échantillons. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 29 Compréhension des fonctions de l’oscilloscope Cela risque de provoquer un repliement du spectre ; certaines impulsions étroites risquent d’être oubliées. Si c’est le cas, vous devriez utiliser le mode Détect Créte pour acquérir les données. (Voir page 32, Repliement du spectre temporel.) Détect Créte. Dans ce mode d’acquisition, l’oscilloscope recherche les valeurs les plus élevées et les plus faibles du signal d’entrée sur chaque intervalle d’échantillonnage et les utilise pour afficher la courbe du signal. L’appareil peut ainsi acquérir et afficher les impulsions étroites, qui risqueraient d’être oubliées en mode Normale. Le bruit sera plus élevé dans ce mode. Moyenne. Dans ce mode d’acquisition, l’oscilloscope acquiert plusieurs signaux, il en fait la moyenne et affiche la courbe du signal qui en résulte. Vous pouvez utiliser ce mode pour réduire le bruit aléatoire. Base de temps L’oscilloscope numérise les signaux en faisant l’acquisition de la valeur d’un signal d’entrée à des intervalles discrets. La base de temps vous permet de contrôler la fréquence à laquelle les valeurs sont numérisées. Pour ajuster la base de temps sur une échelle horizontale correspondant à vos besoins, utilisez la molette SEC/DIV. Mise à l’échelle et positionnement de signaux Vous pouvez modifier l’affichage des signaux en ajustant l’échelle et la position. Si vous modifiez l’échelle, la taille de l’affichage du signal va augmenter ou diminuer. Si vous modifiez la position, le signal sera déplacé vers le haut, le bas, la droite ou la gauche. L’indicateur de voie (situé à gauche du réticule) permet d’identifier chacun des signaux affichés. L’indicateur pointe vers le niveau de référence de terre de l’enregistrement du signal. Vous pouvez voir la zone d’affichage et les mesures. (Voir page 11, Zone d’affichage.) Echelle et position verticales Vous pouvez modifier la position verticale des signaux en les déplaçant vers le haut ou le bas de l’affichage. Pour comparer des données, vous 30 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope pouvez aligner un signal sur un autre ou aligner des signaux les uns sur les autres. Vous pouvez modifier l’échelle verticale d’un signal. L’affichage du signal se réduit ou augmente par rapport au niveau de référence de terre. Pour obtenir des informations spécifiques sur l’oscilloscope, reportez-vous au chapitre Principes de fonctionnement. (Voir page 17, Réglages verticaux.) Reportez-vous également au chapitre Référence. (Voir page 140, Réglages verticaux.) Informations sur l’échelle horizontale et la position horizontale et sur le pré-déclenchement Vous pouvez régler la commande HORIZONTAL POSITION pour afficher les données du signal avant le déclenchement, après le déclenchement, ou les deux. Lorsque vous modifiez la position horizontale d’un signal, vous modifiez le temps qui s’écoule entre le déclenchement et le centre de l’écran (cela revient à déplacer le signal vers la droite ou la gauche de l’affichage). Par exemple, si vous souhaitez rechercher la cause d’un parasite dans votre circuit de test, vous pouvez effectuer un déclenchement sur le parasite et allonger la période de pré-déclenchement de façon à capturer les données avant le parasite. Vous pouvez alors analyser les données de pré-déclenchement et peut-être trouver la cause du parasite. Vous pouvez modifier l’échelle horizontale de tous les signaux en actionnant la molette SEC/DIV. Par exemple, vous pouvez avoir besoin de visualiser une seule période de courbe de signal pour mesurer la sur-oscillation sur le front montant. L’oscilloscope affiche l’échelle horizontale en temps par division sur le facteur d’échelle. Comme tous les signaux actifs utilisent la même base de temps, l’oscilloscope affiche uniquement une valeur pour toutes les voies actives, sauf lorsque vous utilisez la Zone retardée. Reportez-vous à la section Zone retardée pour obtenir des informations sur l’utilisation de la fonction fenêtre. (Voir page 114, Zone retardée.) Pour obtenir des informations spécifiques sur l’oscilloscope, reportez-vous au chapitre Principes de fonctionnement. (Voir page 18, POSITION.) Reportez-vous également au chapitre Référence.(Voir page 112, Horizontal.) Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 31 Compréhension des fonctions de l’oscilloscope Repliement du spectre temporel. Un repliement du spectre se produit lorsque l’oscilloscope n’échantillonne pas le signal assez rapidement pour en constituer un enregistrement exact. Lorsque cela se produit, l’oscilloscope affiche un signal dont la fréquence est plus basse que celle du signal d’entrée, ou bien déclenche et affiche un signal instable. Signal de fréquence réelle élevée Signal de fréquence apparente basse en raison du repliement du spectre Points d’échantillonnage L’oscilloscope représente les signaux de façon précise, mais il est limité par la bande passante de la sonde, celle de l’oscilloscope et la fréquence d’échantillonnage. Pour éviter le repliement du spectre, l’oscilloscope doit échantillonner le signal au moins deux fois plus vite que la composante de fréquence la plus élevée de ce signal. La fréquence la plus élevée pouvant être représentée par la fréquence d’échantillonnage de l’oscilloscope est appelée fréquence de Nyquist. La fréquence d’échantillonnage est appelée cadence de Nyquist et elle est égale à deux fois la fréquence de Nyquist. Les fréquences d’échantillonnage maximum de l’oscilloscope sont au moins dix fois supérieures à la bande passante. Ces fréquences d’échantillonnage élevées aident à réduire le risque de repliement du spectre. 32 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope Il existe plusieurs façons de contrôler le repliement du spectre : Tournez la molette SEC/DIV pour modifier l’échelle horizontale. Si la forme du signal change de manière significative, cela signifie que vous observez peut-être un repliement du spectre. Sélectionnez le mode d’acquisition Détect Créte. (Voir page 30, Détect Créte.) Ce mode échantillonne les valeurs les plus élevées et les plus faibles afin que l’oscilloscope puisse détecter les signaux les plus rapides. Si la forme du signal change de manière significative, cela signifie que vous observez peut-être un repliement du spectre. Si la fréquence du déclenchement est plus rapide que les informations affichées à l’écran, cela signifie que vous observez peut-être un repliement du spectre ou un signal qui traverse plusieurs fois le niveau de déclenchement. L’examen du signal permet de déterminer si la forme du signal autorise un déclenchement unique par cycle au niveau du déclenchement sélectionné. Si plusieurs déclenchements se produisent, sélectionnez un niveau de déclenchement ne générant qu’un seul déclenchement par cycle. Si la fréquence du déclenchement demeure plus rapide que l’affichage à l’écran, cela signifie que vous observez peut-être un repliement du spectre. Si la fréquence du déclenchement est plus lente, cela signifie que ce test est inutile. Si le signal que vous visualisez est également la source du déclenchement, utilisez le réticule ou les curseurs pour estimer la fréquence du signal affiché. Comparez ce résultat avec la mesure de la fréquence du déclenchement située dans le coin inférieur droit de l’écran. Si ces deux résultats sont très différents, cela signifie que vous observez peut-être un repliement du spectre. Le tableau suivant dresse la liste des bases de temps que vous pouvez utiliser pour éviter le repliement du spectre sur différentes fréquences, ainsi que les fréquences d’échantillonnage correspondantes. Si le bouton SEC/DIV est réglé sur la position la plus élevée, il ne devrait pas y avoir de repliement du spectre grâce aux limites de bande passante des amplificateurs d’entrée de l’oscilloscope. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 33 Compréhension des fonctions de l’oscilloscope Réglages permettant d’éviter le repliement du spectre en mode Echantillon Base de temps Echantillons par seconde Maximum 2,5 ns 2 G éch./s 200 MHz † de 5 à 250 ns 1 G éch./s ou 2 G éch./s * 200 MHz † 500 ns 500 M éch./s 200 MHz † 1 ms 250 M éch./s 125 MHz † 2,5 ms 100 M éch./s 50 MHz † 5 ms 50 M éch./s 25 MHz † 10 ms 25 M éch./s 12,5 MHz † 25 ms 10 M éch./s 5 MHz 50 ms 5 M éch./s 2,5 MHz 100 ms 2,5 M éch./s 1,25 MHz 250 ms 1 M éch./s 500 kHz 500 ms 500 k éch./s 250 kHz 1 ms 250 k éch./s 125 kHz 2,5 ms 100 k éch./s 50 kHz 5 ms 50 k éch./s 25 kHz 10 ms 25 k éch./s 12,5 kHz 25 ms 10 k éch./s 5 kHz 50 ms 5 k éch./s 2,5 kHz 100 ms 2,5 k éch./s 1,25 kHz 250 ms 1 k éch./s 500 Hz 500 ms 500 éch./s 250 Hz 1 s 250 éch/s 125 Hz 2,5 s 100 éch./s 50 Hz 5 s 50 éch./s 25 Hz 10 s 25 éch./s 12,5 Hz 25 s 10 éch./s 5 Hz 50 s 5 éch./s 2,5 Hz * En fonction du modèle d’oscilloscope. † Bande passante réduite à 6 MHz avec une sonde P2220 réglée sur 1X. 34 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Compréhension des fonctions de l’oscilloscope Prise de mesures L’oscilloscope trace des graphes de la tension par rapport au temps et vous aide à mesurer le signal affiché. Il existe plusieurs façons de prendre des mesures. Vous pouvez utiliser le réticule, les curseurs ou une mesure automatique. Réticule Cette méthode vous permet d’effectuer une estimation visuelle rapide. Vous pouvez par exemple examiner l’amplitude d’un signal et constater qu’elle est légèrement supérieure à 100 mV. Vous pouvez effectuer des mesures simples en comptant les divisions de réticule majeures et mineures concernées et en les multipliant par le facteur d’échelle. Ainsi, si vous comptez cinq divisions de réticule verticales majeures entre les valeurs minimale et maximale d’un signal et si le facteur d’échelle est 100 mV/division, vous pouvez alors calculer la tension crête à crête comme suit : 5 divisions x 100 mV/division = 500 mV Curseur Curseurs Cette méthode vous permet de prendre des mesures en déplaçant les curseurs, qui s’affichent toujours par paires, et en lisant les valeurs numériques correspondantes qui s’affichent à l’écran. Il existe deux types de curseurs : Amplitude et Temps. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 35 Compréhension des fonctions de l’oscilloscope Lorsque vous utilisez les curseurs, assurez-vous de définir la source en fonction du signal affiché à l’écran que vous souhaitez mesurer. Pour utiliser les curseurs, appuyez sur le bouton CURSEURS. Curseurs d’amplitude. Les curseurs d’amplitude s’affichent sous forme de lignes horizontales à l’écran et permettent de mesurer les paramètres verticaux. Les amplitudes sont référencées au niveau de référence. Pour la fonction Math FFT, ces curseurs mesurent l’amplitude. Curseurs de temps. Les curseurs de temps s’affichent sous la forme de lignes verticales à l’écran et permettent de mesurer les paramètres horizontaux et verticaux. Les temps sont référencés au point de déclenchement. Pour la fonction Math FFT, ces curseurs mesurent la fréquence. Les curseurs de temps comprennent également un affichage de l’amplitude du signal au point où celui-ci croise le curseur. Automatique Le menu MESURES peut traiter jusqu’à cinq mesures automatiques. Si vous prenez des mesures automatiques, l’oscilloscope effectue tous les calculs à votre place. Ces mesures utilisent les points qui composent l’enregistrement du signal. Elles sont donc plus précises que les mesures du réticule ou du curseur. Le résultat des mesures automatiques est affiché à l’écran. Ces mesures sont mises à jour périodiquement lorsque l’oscilloscope reçoit de nouvelles données. Pour obtenir des informations sur les mesures, reportez-vous au chapitre Référence. (Voir page 117, Prise de mesures.) 36 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Cette section présente une série d’exemples d’application. Ces exemples simplifiés mettent en évidence les fonctions de l’oscilloscope et vous expliquent comment l’utiliser pour résoudre les problèmes rencontrés lors des tests effectués. Prise de mesures simples Utilisation de la fonction de réglage automatique (Autoset) Utilisation du menu Mesures pour effectuer des mesures automatiques Mesure de deux signaux et calcul du gain Utilisation de la fonction de calibrage automatique (Autorange) pour examiner une série de points de test Prise de mesures par curseur Mesure de la fréquence et de l’amplitude d’anneau Mesure de la largeur d’impulsion Mesure du temps de montée Analyse du détail du signal Examen d’un signal bruyant Utilisation de la fonction de moyenne pour séparer un signal du bruit Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 37 Exemples d’application Acquisition d’un signal monocoup Optimisation de l’acquisition Mesure du retard de propagation Déclenchement sur une largeur d’impulsion Déclenchement sur un signal vidéo Déclenchement sur les trames et les lignes vidéo Utilisation de la fonction fenêtre pour visualiser les détails du signal Analyse d’un signal de communication différentiel avec les fonctions mathématiques Affichage des changements d’impédance dans un réseau en utilisant le mode XY et la persistance Prise de mesures simples Vous devez observer un signal dans un circuit, mais vous ne connaissez ni l’amplitude ni la fréquence de ce signal. Vous souhaitez afficher rapidement le signal et mesurer la fréquence, la période et l’amplitude crête à crête. 38 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Utilisation de la fonction de réglage automatique (Autoset) Pour afficher rapidement un signal, procédez comme suit : 1. Appuyez sur le bouton CH 1 MENU. 2. Appuyez sur Sonde ► Tension ►Atténuation ► 10X. 3. Réglez le commutateur de la sonde P2220 sur 10X. 4. Connectez l’extrémité de la sonde de voie 1 au signal. Raccordez le câble de référence au point de référence du circuit. 5. Appuyez sur le bouton AUTOSET. L’oscilloscope définit automatiquement les réglages verticaux, horizontaux et de déclenchement. Si vous souhaitez optimiser l’affichage du signal, vous pouvez ajuster manuellement ces commandes. REMARQUE. L’oscilloscope affiche les mesures automatiques adéquates dans la zone du signal de l’écran en fonction du type de signal détecté. Pour obtenir des informations spécifiques sur l’oscilloscope, reportez-vous au chapitre Référence. (Voir page 103, Réglage automatique (Autoset).) Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 39 Exemples d’application Mesures automatiques L’oscilloscope peut mesurer automatiquement la plupart des signaux affichés. REMARQUE. Si un point d’interrogation (?) apparaît dans la zone d’affichage Valeur, le signal est en dehors du champ de mesure. Réglez la molette VOLTS/DIV de façon à réduire la sensibilité de la voie appropriée ou changez le réglage de SEC/DIV. Pour mesurer la fréquence du signal, la période, l’amplitude crête à crête, le temps de montée et la largeur positive, procédez comme suit : 1. Appuyez sur le bouton MESURES pour afficher le menu correspondant. 2. Appuyez sur le bouton d’option supérieur ; le menu Mesure 1 s’affiche. 3. Appuyez sur Type ► Fréq. La zone d’affichage Valeur affiche la mesure et les mises à jour. 4. Appuyez sur le bouton d’option Retour. 5. Appuyez sur le deuxième bouton d’option en partant du haut ; le menu Mesure 2 s’affiche. 6. Appuyez sur Type ► Période. La zone d’affichage Valeur affiche la mesure et les mises à jour. 7. Appuyez sur le bouton d’option Retour. 8. Appuyez sur le bouton d’option du milieu ; le menu Mesure 3 s’affiche. 40 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application 9. Appuyez sur Type ► C-C. La zone d’affichage Valeur affiche la mesure et les mises à jour. 10. Appuyez sur le bouton d’option Retour. 11. Appuyez sur le deuxième bouton d’option en partant du bas ; le menu Mesure 4 s’affiche. 12. Appuyez sur Type ► Tps montée. La zone d’affichage Valeur affiche la mesure et les mises à jour. 13. Appuyez sur le bouton d’option Retour. 14. Appuyez sur le bouton d’option inférieur ; le menu Mesure 5 s’affiche. 15. Appuyez sur Type ► Largeur pos. La zone d’affichage Valeur affiche la mesure et les mises à jour. 16. Appuyez sur le bouton d’option Retour. CH1 Fréq. 1 000 kHz CH1 Période 1 000 ms CH1 C-C 5,04 V CH1 Tps montée 2 611 μs ? CH1 Largeur pos. 500 μs Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 41 Exemples d’application Mesure de deux signaux Si vous testez un équipement et devez mesurer le gain de l’amplificateur audio, vous aurez besoin d’un générateur audio capable d’injecter un signal de test à l’entrée de l’amplificateur. Connectez deux voies de l’oscilloscope à l’entrée et à la sortie de l’amplificateur (voir schéma). Mesurez les niveaux des deux signaux et utilisez les mesures pour calculer le gain. CH1 C-C 2,04 V CH2 C-C 206 mV CH1 Aucune CH1 Aucune CH1 Aucune 42 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Pour activer et afficher les signaux connectés aux voies 1 et 2 et sélectionner des mesures pour les deux voies, procédez comme suit : 1. Appuyez sur le bouton AUTOSET. 2. Appuyez sur le bouton MESURES pour afficher le menu correspondant. 3. Appuyez sur le bouton d’option supérieur ; le menu Mesure 1 s’affiche. 4. Appuyez sur Source ► CH1. 5. Appuyez sur Type ► C-C. 6. Appuyez sur le bouton d’option Retour. 7. Appuyez sur le deuxième bouton d’option en partant du haut ; le menu Mesure 2 s’affiche. 8. Appuyez sur Source ► CH2. 9. Appuyez sur Type ► C-C. 10. Appuyez sur le bouton d’option Retour. Lisez les amplitudes crête à crête affichées pour les deux voies. 11. Pour calculer le gain de tension de l’amplificateur, utilisez ces équations : Gain de tension = amplitude de sortie/amplitude d’entrée Gain de tension (dB) = 20 × log (Gain de tension) Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 43 Exemples d’application Utilisation de la fonction de calibrage automatique (Autorange) pour examiner une série de points de test Si votre machine fonctionne mal, vous devrez peut-être trouver la fréquence et la tension efficace de plusieurs points de test et comparer ces valeurs à des valeurs idéales. Vous ne pouvez pas accéder aux commandes du panneau avant car vous avez besoin de vos deux mains pour sonder des points de test difficiles à atteindre physiquement. 1. Appuyez sur le bouton CH 1 MENU. 2. Appuyez sur Sonde ► Tension ► Atténuation et effectuez votre réglage pour que l’atténuation corresponde à celle de la sonde connectée à la voie 1. 3. Appuyez sur le bouton CALIBRAGE AUTO pour activer l’ajustement automatique et sélectionnez l’option Vertical et Horizontal. 4. Appuyez sur le bouton MESURES pour afficher le menu correspondant. 5. Appuyez sur le bouton d’option supérieur ; le menu Mesure 1 s’affiche. 6. Appuyez sur Source ► CH1. 7. Appuyez sur Type ► Fréquence. 8. Appuyez sur le bouton d’option Retour. 9. Appuyez sur le deuxième bouton d’option en partant du haut ; le menu Mesure 2 s’affiche. 10. Appuyez sur Source ► CH1. 11. Appuyez sur Type ► Efficace. 12. Appuyez sur le bouton d’option Retour. 13. Connectez l’extrémité de la sonde et le câble de référence au premier point de test. Lisez la fréquence et la valeur efficace du cycle sur l’écran de l’oscilloscope, puis comparez ces valeurs aux valeurs idéales. 14. Répétez l’étape 13 pour chaque point de test, jusqu’à ce que vous trouviez le composant défaillant. 44 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application REMARQUE. Lorsque la fonction de calibrage automatique (Autorange) est active, chaque fois que vous déplacez la sonde vers un autre point de test, l’oscilloscope réajuste l’échelle horizontale, l’échelle verticale et le niveau de déclenchement pour vous donner un affichage utile. Mesures par curseur Vous pouvez utiliser les curseurs pour prendre rapidement des mesures d’amplitude et de temps sur un affichage. Mesure de l’amplitude et de la fréquence d’anneau Pour mesurer la fréquence d’anneau au front montant d’un signal, procédez comme suit : 1. Appuyez sur le bouton CURSEURS pour afficher le menu correspondant. 2. Appuyez sur Type ► Temps. 3. Appuyez sur Source ► CH1. 4. Appuyez sur le bouton d’option Curseur 1. 5. Tournez le bouton multifonctionnel pour placer un curseur sur la première crête de l’anneau. 6. Appuyez sur le bouton d’option Curseur 2. 7. Tournez le bouton multifonctionnel pour placer un curseur sur la seconde crête de l’anneau. Vous pouvez visualiser le temps Δ (delta) et la fréquence (fréquence d’anneau mesurée) dans le menu Curseurs. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 45 Exemples d’application Type Temps Source CH1 Δt 540 ns 1/Δt 1 852 MHz ΔV 0,44 V Curseur 1 180 ns 1,40 V Curseur 2 720 ns 0,96 V 8. Appuyez sur Type ► Amplitude. 9. Appuyez sur le bouton d’option Curseur 1. 10. Tournez le bouton multifonctionnel pour placer un curseur sur la première crête de l’anneau. 11. Appuyez sur le bouton d’option Curseur 2. 12. Tournez le bouton multifonctionnel pour placer le Curseur 2 sur le point le plus bas de l’anneau. Vous pouvez voir l’amplitude de l’anneau dans le menu Curseurs. Type Amplitude Source CH1 ΔV 640 mV Curseur 1 1,46 V Curseur 2 820 mV 46 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Mesure de la largeur d’impulsion Si vous analysez un affichage d’impulsion et que vous souhaitez connaître la largeur de l’impulsion, procédez comme suit : 1. Appuyez sur le bouton CURSEURS pour afficher le menu correspondant. 2. Appuyez sur Type ► Temps. 3. Appuyez sur Source ► CH1. 4. Appuyez sur le bouton d’option Curseur 1. 5. Tournez le bouton multifonctionnel pour placer un curseur sur le front montant de l’impulsion. 6. Appuyez sur le bouton d’option Curseur 2. 7. Tournez le bouton multifonctionnel pour placer un curseur sur le front descendant de l’impulsion. Vous pouvez accéder aux mesures suivantes dans le menu Curseurs : Le temps au Curseur 1, par rapport au déclenchement. Le temps au Curseur 2, par rapport au déclenchement. Le temps Δ (delta), à savoir la mesure de la largeur d’impulsion. Type Temps Source CH1 Δt 500 μs 1/Δt 2 000 kHz ΔV 1,38 V Curseur 1 0 s 0,98 V Curseur 2 500 μs -1 V Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 47 Exemples d’application REMARQUE. La mesure de largeur positive est exprimée sous forme de mesure automatique dans le menu Mesures. (Voir page 117, Prise de mesures.) REMARQUE. La mesure de largeur positive s’affiche également lorsque vous sélectionnez l’option Carré à simple cycle dans le menu AUTOSET. (Voir page 106, Onde ou impulsion carrée.) 48 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Mesure du temps de montée Après avoir mesuré la largeur d’impulsion, vous décidez de vérifier le temps de montée de l’impulsion. Généralement, vous mesurez le temps de montée entre les niveaux égaux à 10 % et 90 % du signal. Pour mesurer le temps de montée, procédez comme suit : 1. Tournez la molette SEC/DIV pour afficher le front montant du signal. 2. Tournez les molettes VOLTS/DIV et VERTICAL POSITION pour régler l’amplitude du signal sur cinq divisions environ. 3. Appuyez sur le bouton CH 1 MENU. 4. Appuyez sur Volts/div ► Fin. 5. Tournez la molette VOLTS/DIV pour régler l’amplitude du signal sur cinq divisions exactement. 6. Tournez la molette VERTICAL POSITION pour centrer le signal ; positionnez la ligne de base du signal à 2,5 divisions sous le réticule central. 7. Appuyez sur le bouton CURSEURS pour afficher le menu correspondant. 8. Appuyez sur Type ► Temps. 9. Appuyez sur Source ► CH1. 10. Appuyez sur le bouton d’option Curseur 1. 11. Tournez le bouton multifonctionnel pour placer un curseur sur le point de croisement du signal et de la deuxième ligne du réticule située sous le centre de l’écran. Il s’agit du niveau égal à 10 % du signal. 12. Appuyez sur le bouton d’option Curseur 2. 13. Tournez le bouton multifonctionnel pour placer un curseur sur le point de croisement du signal et de la deuxième ligne du réticule située au-dessus du centre de l’écran. Il s’agit du niveau égal à 90 % du signal. L’affichage Δt apparaissant dans le menu Curseurs est le temps de montée du signal. Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B 49 Exemples d’application 5 divisions Type Temps Source CH1 Δt 140 ns 1/Δt 7 143 MHz ΔV 2,08 V Curseur 1 -80 ns -1,02 V Curseur 2 60 ns 1,06 V REMARQUE. La mesure du temps de montée est exprimée sous forme de mesure automatique dans le menu Mesures. (Voir page 117, Prise de mesures.) REMARQUE. La mesure du temps de montée s’affiche également lorsque vous sélectionnez l’option Front montant dans le menu AUTOSET. (Voir page 106, Onde ou impulsion carrée.) Analyse détaillée du signal Un signal bruyant est affiché sur l’oscilloscope et vous avez besoin d’en connaître le détail. Vous suspectez que le signal contient bien plus de détails que ce qui est affiché. 50 Manuel de l’utilisateur de l’oscilloscope TDS1000B/2000B Exemples d’application Examen d’un signal bruyant Le signal paraît bruyant et vous suspectez que ce bruit est à l’origine de problèmes dans votre circuit. Pour mieux analyser le bruit, procédez comme suit : 1. Appuyez sur le bouton ACQUISITION pour afficher le menu correspondant. 2. Appuyez sur le bouton d’option Détect Créte. 3. Si besoin, appuyez sur le bouton AFFICHAGE pour afficher le menu correspondant. Utilisez le bouton d’option Contraste avec le bouton multifonctionnel pour régler l’affichage et voir plus facilement le bruit. La Détect Créte déterm