High precision instrument gearhead P5 series - Farnell - Farnell Element 14 - Revenir à l'accueil
Farnell Element 14 :
Farnell-HIP4081A-Int..> 07-Jul-2014 19:47 1.0M
Farnell-ISL6251-ISL6..> 07-Jul-2014 19:47 1.1M
Farnell-DG411-DG412-..> 07-Jul-2014 19:47 1.0M
Farnell-3367-ARALDIT..> 07-Jul-2014 19:46 1.2M
Farnell-ICM7228-Inte..> 07-Jul-2014 19:46 1.1M
Farnell-Data-Sheet-K..> 07-Jul-2014 19:46 1.2M
Farnell-Silica-Gel-M..> 07-Jul-2014 19:46 1.2M
Farnell-TKC2-Dusters..> 07-Jul-2014 19:46 1.2M
Farnell-CRC-HANDCLEA..> 07-Jul-2014 19:46 1.2M
Farnell-760G-French-..> 07-Jul-2014 19:45 1.2M
Farnell-Decapant-KF-..> 07-Jul-2014 19:45 1.2M
Farnell-1734-ARALDIT..> 07-Jul-2014 19:45 1.2M
Farnell-Araldite-Fus..> 07-Jul-2014 19:45 1.2M
Farnell-fiche-de-don..> 07-Jul-2014 19:44 1.4M
Farnell-safety-data-..> 07-Jul-2014 19:44 1.4M
Farnell-A-4-Hardener..> 07-Jul-2014 19:44 1.4M
Farnell-CC-Debugger-..> 07-Jul-2014 19:44 1.5M
Farnell-MSP430-Hardw..> 07-Jul-2014 19:43 1.8M
Farnell-SmartRF06-Ev..> 07-Jul-2014 19:43 1.6M
Farnell-CC2531-USB-H..> 07-Jul-2014 19:43 1.8M
Farnell-Alimentation..> 07-Jul-2014 19:43 1.8M
Farnell-BK889B-PONT-..> 07-Jul-2014 19:42 1.8M
Farnell-User-Guide-M..> 07-Jul-2014 19:41 2.0M
Farnell-T672-3000-Se..> 07-Jul-2014 19:41 2.0M
Farnell-SL59830-Inte..> 06-Jul-2014 10:07 1.0M
Farnell-ALF1210-PDF.htm 06-Jul-2014 10:06 4.0M
Farnell-AD7171-16-Bi..> 06-Jul-2014 10:06 1.0M
Farnell-Low-Noise-24..> 06-Jul-2014 10:05 1.0M
Farnell-ESCON-Featur..> 06-Jul-2014 10:05 938K
Farnell-74LCX573-Fai..> 06-Jul-2014 10:05 1.9M
Farnell-1N4148WS-Fai..> 06-Jul-2014 10:04 1.9M
Farnell-FAN6756-Fair..> 06-Jul-2014 10:04 850K
Farnell-Datasheet-Fa..> 06-Jul-2014 10:04 861K
Farnell-ES1F-ES1J-fi..> 06-Jul-2014 10:04 867K
Farnell-QRE1113-Fair..> 06-Jul-2014 10:03 879K
Farnell-2N7002DW-Fai..> 06-Jul-2014 10:03 886K
Farnell-FDC2512-Fair..> 06-Jul-2014 10:03 886K
Farnell-FDV301N-Digi..> 06-Jul-2014 10:03 886K
Farnell-S1A-Fairchil..> 06-Jul-2014 10:03 896K
Farnell-BAV99-Fairch..> 06-Jul-2014 10:03 896K
Farnell-74AC00-74ACT..> 06-Jul-2014 10:03 911K
Farnell-NaPiOn-Panas..> 06-Jul-2014 10:02 911K
Farnell-LQ-RELAYS-AL..> 06-Jul-2014 10:02 924K
Farnell-ev-relays-ae..> 06-Jul-2014 10:02 926K
Farnell-ESCON-Featur..> 06-Jul-2014 10:02 931K
Farnell-Amplifier-In..> 06-Jul-2014 10:02 940K
Farnell-Serial-File-..> 06-Jul-2014 10:02 941K
Farnell-Both-the-Del..> 06-Jul-2014 10:01 948K
Farnell-Videk-PDF.htm 06-Jul-2014 10:01 948K
Farnell-EPCOS-173438..> 04-Jul-2014 10:43 3.3M
Farnell-Sensorless-C..> 04-Jul-2014 10:42 3.3M
Farnell-197.31-KB-Te..> 04-Jul-2014 10:42 3.3M
Farnell-PIC12F609-61..> 04-Jul-2014 10:41 3.7M
Farnell-PADO-semi-au..> 04-Jul-2014 10:41 3.7M
Farnell-03-iec-runds..> 04-Jul-2014 10:40 3.7M
Farnell-ACC-Silicone..> 04-Jul-2014 10:40 3.7M
Farnell-Series-TDS10..> 04-Jul-2014 10:39 4.0M
Farnell-03-iec-runds..> 04-Jul-2014 10:40 3.7M
Farnell-0430300011-D..> 14-Jun-2014 18:13 2.0M
Farnell-06-6544-8-PD..> 26-Mar-2014 17:56 2.7M
Farnell-3M-Polyimide..> 21-Mar-2014 08:09 3.9M
Farnell-3M-VolitionT..> 25-Mar-2014 08:18 3.3M
Farnell-10BQ060-PDF.htm 14-Jun-2014 09:50 2.4M
Farnell-10TPB47M-End..> 14-Jun-2014 18:16 3.4M
Farnell-12mm-Size-In..> 14-Jun-2014 09:50 2.4M
Farnell-24AA024-24LC..> 23-Jun-2014 10:26 3.1M
Farnell-50A-High-Pow..> 20-Mar-2014 17:31 2.9M
Farnell-197.31-KB-Te..> 04-Jul-2014 10:42 3.3M
Farnell-1907-2006-PD..> 26-Mar-2014 17:56 2.7M
Farnell-5910-PDF.htm 25-Mar-2014 08:15 3.0M
Farnell-6517b-Electr..> 29-Mar-2014 11:12 3.3M
Farnell-A-True-Syste..> 29-Mar-2014 11:13 3.3M
Farnell-ACC-Silicone..> 04-Jul-2014 10:40 3.7M
Farnell-AD524-PDF.htm 20-Mar-2014 17:33 2.8M
Farnell-ADL6507-PDF.htm 14-Jun-2014 18:19 3.4M
Farnell-ADSP-21362-A..> 20-Mar-2014 17:34 2.8M
Farnell-ALF1210-PDF.htm 04-Jul-2014 10:39 4.0M
Farnell-ALF1225-12-V..> 01-Apr-2014 07:40 3.4M
Farnell-ALF2412-24-V..> 01-Apr-2014 07:39 3.4M
Farnell-AN10361-Phil..> 23-Jun-2014 10:29 2.1M
Farnell-ARADUR-HY-13..> 26-Mar-2014 17:55 2.8M
Farnell-ARALDITE-201..> 21-Mar-2014 08:12 3.7M
Farnell-ARALDITE-CW-..> 26-Mar-2014 17:56 2.7M
Farnell-ATMEL-8-bit-..> 19-Mar-2014 18:04 2.1M
Farnell-ATMEL-8-bit-..> 11-Mar-2014 07:55 2.1M
Farnell-ATmega640-VA..> 14-Jun-2014 09:49 2.5M
Farnell-ATtiny20-PDF..> 25-Mar-2014 08:19 3.6M
Farnell-ATtiny26-L-A..> 13-Jun-2014 18:40 1.8M
Farnell-Alimentation..> 14-Jun-2014 18:24 2.5M
Farnell-Alimentation..> 01-Apr-2014 07:42 3.4M
Farnell-Amplificateu..> 29-Mar-2014 11:11 3.3M
Farnell-An-Improved-..> 14-Jun-2014 09:49 2.5M
Farnell-Atmel-ATmega..> 19-Mar-2014 18:03 2.2M
Farnell-Avvertenze-e..> 14-Jun-2014 18:20 3.3M
Farnell-BC846DS-NXP-..> 13-Jun-2014 18:42 1.6M
Farnell-BC847DS-NXP-..> 23-Jun-2014 10:24 3.3M
Farnell-BF545A-BF545..> 23-Jun-2014 10:28 2.1M
Farnell-BK2650A-BK26..> 29-Mar-2014 11:10 3.3M
Farnell-BT151-650R-N..> 13-Jun-2014 18:40 1.7M
Farnell-BTA204-800C-..> 13-Jun-2014 18:42 1.6M
Farnell-BUJD203AX-NX..> 13-Jun-2014 18:41 1.7M
Farnell-BYV29F-600-N..> 13-Jun-2014 18:42 1.6M
Farnell-BYV79E-serie..> 10-Mar-2014 16:19 1.6M
Farnell-BZX384-serie..> 23-Jun-2014 10:29 2.1M
Farnell-Battery-GBA-..> 14-Jun-2014 18:13 2.0M
Farnell-C.A-6150-C.A..> 14-Jun-2014 18:24 2.5M
Farnell-C.A 8332B-C...> 01-Apr-2014 07:40 3.4M
Farnell-CC2560-Bluet..> 29-Mar-2014 11:14 2.8M
Farnell-CD4536B-Type..> 14-Jun-2014 18:13 2.0M
Farnell-CIRRUS-LOGIC..> 10-Mar-2014 17:20 2.1M
Farnell-CS5532-34-BS..> 01-Apr-2014 07:39 3.5M
Farnell-Cannon-ZD-PD..> 11-Mar-2014 08:13 2.8M
Farnell-Ceramic-tran..> 14-Jun-2014 18:19 3.4M
Farnell-Circuit-Note..> 26-Mar-2014 18:00 2.8M
Farnell-Circuit-Note..> 26-Mar-2014 18:00 2.8M
Farnell-Cles-electro..> 21-Mar-2014 08:13 3.9M
Farnell-Conception-d..> 11-Mar-2014 07:49 2.4M
Farnell-Connectors-N..> 14-Jun-2014 18:12 2.1M
Farnell-Construction..> 14-Jun-2014 18:25 2.5M
Farnell-Controle-de-..> 11-Mar-2014 08:16 2.8M
Farnell-Cordless-dri..> 14-Jun-2014 18:13 2.0M
Farnell-Current-Tran..> 26-Mar-2014 17:58 2.7M
Farnell-Current-Tran..> 26-Mar-2014 17:58 2.7M
Farnell-Current-Tran..> 26-Mar-2014 17:59 2.7M
Farnell-Current-Tran..> 26-Mar-2014 17:59 2.7M
Farnell-DC-Fan-type-..> 14-Jun-2014 09:48 2.5M
Farnell-DC-Fan-type-..> 14-Jun-2014 09:51 1.8M
Farnell-Davum-TMC-PD..> 14-Jun-2014 18:27 2.4M
Farnell-De-la-puissa..> 29-Mar-2014 11:10 3.3M
Farnell-Directive-re..> 25-Mar-2014 08:16 3.0M
Farnell-Documentatio..> 14-Jun-2014 18:26 2.5M
Farnell-Download-dat..> 13-Jun-2014 18:40 1.8M
Farnell-ECO-Series-T..> 20-Mar-2014 08:14 2.5M
Farnell-ELMA-PDF.htm 29-Mar-2014 11:13 3.3M
Farnell-EMC1182-PDF.htm 25-Mar-2014 08:17 3.0M
Farnell-EPCOS-173438..> 04-Jul-2014 10:43 3.3M
Farnell-EPCOS-Sample..> 11-Mar-2014 07:53 2.2M
Farnell-ES2333-PDF.htm 11-Mar-2014 08:14 2.8M
Farnell-Ed.081002-DA..> 19-Mar-2014 18:02 2.5M
Farnell-F28069-Picco..> 14-Jun-2014 18:14 2.0M
Farnell-F42202-PDF.htm 19-Mar-2014 18:00 2.5M
Farnell-FDS-ITW-Spra..> 14-Jun-2014 18:22 3.3M
Farnell-FICHE-DE-DON..> 10-Mar-2014 16:17 1.6M
Farnell-Fastrack-Sup..> 23-Jun-2014 10:25 3.3M
Farnell-Ferric-Chlor..> 29-Mar-2014 11:14 2.8M
Farnell-Fiche-de-don..> 14-Jun-2014 09:47 2.5M
Farnell-Fiche-de-don..> 14-Jun-2014 18:26 2.5M
Farnell-Fluke-1730-E..> 14-Jun-2014 18:23 2.5M
Farnell-GALVA-A-FROI..> 26-Mar-2014 17:56 2.7M
Farnell-GALVA-MAT-Re..> 26-Mar-2014 17:57 2.7M
Farnell-GN-RELAYS-AG..> 20-Mar-2014 08:11 2.6M
Farnell-HC49-4H-Crys..> 14-Jun-2014 18:20 3.3M
Farnell-HFE1600-Data..> 14-Jun-2014 18:22 3.3M
Farnell-HI-70300-Sol..> 14-Jun-2014 18:27 2.4M
Farnell-HUNTSMAN-Adv..> 10-Mar-2014 16:17 1.7M
Farnell-Haute-vitess..> 11-Mar-2014 08:17 2.4M
Farnell-IP4252CZ16-8..> 13-Jun-2014 18:41 1.7M
Farnell-Instructions..> 19-Mar-2014 18:01 2.5M
Farnell-KSZ8851SNL-S..> 23-Jun-2014 10:28 2.1M
Farnell-L-efficacite..> 11-Mar-2014 07:52 2.3M
Farnell-LCW-CQ7P.CC-..> 25-Mar-2014 08:19 3.2M
Farnell-LME49725-Pow..> 14-Jun-2014 09:49 2.5M
Farnell-LOCTITE-542-..> 25-Mar-2014 08:15 3.0M
Farnell-LOCTITE-3463..> 25-Mar-2014 08:19 3.0M
Farnell-LUXEON-Guide..> 11-Mar-2014 07:52 2.3M
Farnell-Leaded-Trans..> 23-Jun-2014 10:26 3.2M
Farnell-Les-derniers..> 11-Mar-2014 07:50 2.3M
Farnell-Loctite3455-..> 25-Mar-2014 08:16 3.0M
Farnell-Low-cost-Enc..> 13-Jun-2014 18:42 1.7M
Farnell-Lubrifiant-a..> 26-Mar-2014 18:00 2.7M
Farnell-MC3510-PDF.htm 25-Mar-2014 08:17 3.0M
Farnell-MC21605-PDF.htm 11-Mar-2014 08:14 2.8M
Farnell-MCF532x-7x-E..> 29-Mar-2014 11:14 2.8M
Farnell-MICREL-KSZ88..> 11-Mar-2014 07:54 2.2M
Farnell-MICROCHIP-PI..> 19-Mar-2014 18:02 2.5M
Farnell-MOLEX-39-00-..> 10-Mar-2014 17:19 1.9M
Farnell-MOLEX-43020-..> 10-Mar-2014 17:21 1.9M
Farnell-MOLEX-43160-..> 10-Mar-2014 17:21 1.9M
Farnell-MOLEX-87439-..> 10-Mar-2014 17:21 1.9M
Farnell-MPXV7002-Rev..> 20-Mar-2014 17:33 2.8M
Farnell-MX670-MX675-..> 14-Jun-2014 09:46 2.5M
Farnell-Microchip-MC..> 13-Jun-2014 18:27 1.8M
Farnell-Microship-PI..> 11-Mar-2014 07:53 2.2M
Farnell-Midas-Active..> 14-Jun-2014 18:17 3.4M
Farnell-Midas-MCCOG4..> 14-Jun-2014 18:11 2.1M
Farnell-Miniature-Ci..> 26-Mar-2014 17:55 2.8M
Farnell-Mistral-PDF.htm 14-Jun-2014 18:12 2.1M
Farnell-Molex-83421-..> 14-Jun-2014 18:17 3.4M
Farnell-Molex-COMMER..> 14-Jun-2014 18:16 3.4M
Farnell-Molex-Crimp-..> 10-Mar-2014 16:27 1.7M
Farnell-Multi-Functi..> 20-Mar-2014 17:38 3.0M
Farnell-NTE_SEMICOND..> 11-Mar-2014 07:52 2.3M
Farnell-NXP-74VHC126..> 10-Mar-2014 16:17 1.6M
Farnell-NXP-BT136-60..> 11-Mar-2014 07:52 2.3M
Farnell-NXP-PBSS9110..> 10-Mar-2014 17:21 1.9M
Farnell-NXP-PCA9555 ..> 11-Mar-2014 07:54 2.2M
Farnell-NXP-PMBFJ620..> 10-Mar-2014 16:16 1.7M
Farnell-NXP-PSMN1R7-..> 10-Mar-2014 16:17 1.6M
Farnell-NXP-PSMN7R0-..> 10-Mar-2014 17:19 2.1M
Farnell-NXP-TEA1703T..> 11-Mar-2014 08:15 2.8M
Farnell-Nilï¬-sk-E-..> 14-Jun-2014 09:47 2.5M
Farnell-Novembre-201..> 20-Mar-2014 17:38 3.3M
Farnell-OMRON-Master..> 10-Mar-2014 16:26 1.8M
Farnell-OSLON-SSL-Ce..> 19-Mar-2014 18:03 2.1M
Farnell-OXPCIE958-FB..> 13-Jun-2014 18:40 1.8M
Farnell-PADO-semi-au..> 04-Jul-2014 10:41 3.7M
Farnell-PBSS5160T-60..> 19-Mar-2014 18:03 2.1M
Farnell-PDTA143X-ser..> 20-Mar-2014 08:12 2.6M
Farnell-PDTB123TT-NX..> 13-Jun-2014 18:43 1.5M
Farnell-PESD5V0F1BL-..> 13-Jun-2014 18:43 1.5M
Farnell-PESD9X5.0L-P..> 13-Jun-2014 18:43 1.6M
Farnell-PIC12F609-61..> 04-Jul-2014 10:41 3.7M
Farnell-PIC18F2455-2..> 23-Jun-2014 10:27 3.1M
Farnell-PIC24FJ256GB..> 14-Jun-2014 09:51 2.4M
Farnell-PMBT3906-PNP..> 13-Jun-2014 18:44 1.5M
Farnell-PMBT4403-PNP..> 23-Jun-2014 10:27 3.1M
Farnell-PMEG4002EL-N..> 14-Jun-2014 18:18 3.4M
Farnell-PMEG4010CEH-..> 13-Jun-2014 18:43 1.6M
Farnell-Panasonic-15..> 23-Jun-2014 10:29 2.1M
Farnell-Panasonic-EC..> 20-Mar-2014 17:36 2.6M
Farnell-Panasonic-EZ..> 20-Mar-2014 08:10 2.6M
Farnell-Panasonic-Id..> 20-Mar-2014 17:35 2.6M
Farnell-Panasonic-Ne..> 20-Mar-2014 17:36 2.6M
Farnell-Panasonic-Ra..> 20-Mar-2014 17:37 2.6M
Farnell-Panasonic-TS..> 20-Mar-2014 08:12 2.6M
Farnell-Panasonic-Y3..> 20-Mar-2014 08:11 2.6M
Farnell-Pico-Spox-Wi..> 10-Mar-2014 16:16 1.7M
Farnell-Pompes-Charg..> 24-Apr-2014 20:23 3.3M
Farnell-Ponts-RLC-po..> 14-Jun-2014 18:23 3.3M
Farnell-Portable-Ana..> 29-Mar-2014 11:16 2.8M
Farnell-Premier-Farn..> 21-Mar-2014 08:11 3.8M
Farnell-Produit-3430..> 14-Jun-2014 09:48 2.5M
Farnell-Proskit-SS-3..> 10-Mar-2014 16:26 1.8M
Farnell-Puissance-ut..> 11-Mar-2014 07:49 2.4M
Farnell-Q48-PDF.htm 23-Jun-2014 10:29 2.1M
Farnell-Radial-Lead-..> 20-Mar-2014 08:12 2.6M
Farnell-Realiser-un-..> 11-Mar-2014 07:51 2.3M
Farnell-Reglement-RE..> 21-Mar-2014 08:08 3.9M
Farnell-Repartiteurs..> 14-Jun-2014 18:26 2.5M
Farnell-S-TRI-SWT860..> 21-Mar-2014 08:11 3.8M
Farnell-SB175-Connec..> 11-Mar-2014 08:14 2.8M
Farnell-SMBJ-Transil..> 29-Mar-2014 11:12 3.3M
Farnell-SOT-23-Multi..> 11-Mar-2014 07:51 2.3M
Farnell-SPLC780A1-16..> 14-Jun-2014 18:25 2.5M
Farnell-SSC7102-Micr..> 23-Jun-2014 10:25 3.2M
Farnell-SVPE-series-..> 14-Jun-2014 18:15 2.0M
Farnell-Sensorless-C..> 04-Jul-2014 10:42 3.3M
Farnell-Septembre-20..> 20-Mar-2014 17:46 3.7M
Farnell-Serie-PicoSc..> 19-Mar-2014 18:01 2.5M
Farnell-Serie-Standa..> 14-Jun-2014 18:23 3.3M
Farnell-Series-2600B..> 20-Mar-2014 17:30 3.0M
Farnell-Series-TDS10..> 04-Jul-2014 10:39 4.0M
Farnell-Signal-PCB-R..> 14-Jun-2014 18:11 2.1M
Farnell-Strangkuhlko..> 21-Mar-2014 08:09 3.9M
Farnell-Supercapacit..> 26-Mar-2014 17:57 2.7M
Farnell-TDK-Lambda-H..> 14-Jun-2014 18:21 3.3M
Farnell-TEKTRONIX-DP..> 10-Mar-2014 17:20 2.0M
Farnell-Tektronix-AC..> 13-Jun-2014 18:44 1.5M
Farnell-Telemetres-l..> 20-Mar-2014 17:46 3.7M
Farnell-Termometros-..> 14-Jun-2014 18:14 2.0M
Farnell-The-essentia..> 10-Mar-2014 16:27 1.7M
Farnell-U2270B-PDF.htm 14-Jun-2014 18:15 3.4M
Farnell-USB-Buccanee..> 14-Jun-2014 09:48 2.5M
Farnell-USB1T11A-PDF..> 19-Mar-2014 18:03 2.1M
Farnell-V4N-PDF.htm 14-Jun-2014 18:11 2.1M
Farnell-WetTantalum-..> 11-Mar-2014 08:14 2.8M
Farnell-XPS-AC-Octop..> 14-Jun-2014 18:11 2.1M
Farnell-XPS-MC16-XPS..> 11-Mar-2014 08:15 2.8M
Farnell-YAGEO-DATA-S..> 11-Mar-2014 08:13 2.8M
Farnell-ZigBee-ou-le..> 11-Mar-2014 07:50 2.4M
Farnell-celpac-SUL84..> 21-Mar-2014 08:11 3.8M
Farnell-china_rohs_o..> 21-Mar-2014 10:04 3.9M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:34 2.8M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:35 2.7M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:31 2.9M
Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32 2.9M
Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32 2.9M
Farnell-ir1150s_fr.p..> 29-Mar-2014 11:11 3.3M
Farnell-manual-bus-p..> 10-Mar-2014 16:29 1.9M
Farnell-propose-plus..> 11-Mar-2014 08:19 2.8M
Farnell-techfirst_se..> 21-Mar-2014 08:08 3.9M
Farnell-testo-205-20..> 20-Mar-2014 17:37 3.0M
Farnell-testo-470-Fo..> 20-Mar-2014 17:38 3.0M
Farnell-uC-OS-III-Br..> 10-Mar-2014 17:20 2.0M
Sefram-7866HD.pdf-PD..> 29-Mar-2014 11:46 472K
Sefram-CAT_ENREGISTR..> 29-Mar-2014 11:46 461K
Sefram-CAT_MESUREURS..> 29-Mar-2014 11:46 435K
Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46 481K
Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46 442K
Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46 422K
Sefram-SP270.pdf-PDF..> 29-Mar-2014 11:46 464KHigh precision instrument gearhead P5 series P5 series instrument gearheads conform to the international ovoid standard. The units have established a reputation for excellent running consistency, strength and reliability & have been engineered to enable a wide range of permanent magnet stepper motors, ac synchronous & instrument dc servo motors to be readily fitted. Typical applications include: • Scientific instrument drives • Medical instruments drives • Laboratory & test equipment drives • Optical equipment drives • Valve actuators • Process control equipment Precision construction with built-in flexibility: P5 series gearheads incorporate precision spur cut brass gears and steel pinions mounted on spindles running in bronze alloy bearings which feature lubrication reservoirs for extended life, control accuracy and high dynamic performance. P5 series units have been designed to readily accept a wide range of motors and offer a comprehensive programme of options including integral torque limiting clutches and freewheels. These, together with three standard shaft options and the ability to offer customised versions make the P5 series gearhead an ideal choice where precision control of a wide variety of mechanisms where high control accuracy is required. Standard gear ratios: Fast-track delivery of a wide range of P5 series gearheads ensures rapid response to customer demand. The wide range of stock ratios are ideal when using permanent magnet stepper motors, ac synchronous motors and high quality dc instrument motors Order Code Ratio Efficiency ( % ) Max Output Torque ( Nm ) Steps per rev @ output using. Stepper motor * Output speed using synchronous motor ( rpm ) # Output speed Using dc motor ( rpm ) ** P5-G01 25:6 80 0.20 200 60 720-1200 P5-G03 25:4 80 0.25 300 40 500-800 P5-G04 25:3 80 0.35 400 30 360-600 P5-G05 10:1 70 0.40 480 25 300-500 P5-G06 25:2 70 0.45 600 20 240-400 P5-G08 50:3 70 0.60 800 15 180-300 P5-G09 20:1 70 0.65 960 12.5 150-250 P5-G11 25:1 70 0.70 1200 10 120-200 P5-G14 100:3 70 0.75 1600 7.5 90-150 P5-G16 125:3 70 0.80 2000 6 72-120 P5-G17 50:1 70 0.80 2400 5 60-100 P5-G19 125:2 65 0.80 3000 4 48-80 P5-G21 250:3 65 0.80 4000 3 36-60 P5-G23 125:1 65 0.80 6000 2 24-40 P5-G27 250:1 65 0.80 12000 1 12-20 P5-G34 500:1 58 0.85 24000 0.5 6-10 P5-G41 1250:1 58 0.90 60000 12 revs/hour 2.4 - 4 P5-G62 15,000:1 43 1.0 720,000 1 rev / hour 0.1-0.3 Notes: * Based on the use of a stepper motor with 7.5 degree step angle # Based on the use of a 250 rpm ac synchronous motor ** Based on the use of instrument dc motors with speed ratings of 3000 & 5000 rpm. Mclennan Servo Supplies Ltd. Tel: +44 (0)8707 700 700 www.mclennan.co.uk Construction Precision brass gears Motor Steel Pinion- shaft assembly Precision bearings Issue 001 High precision instrument gearhead P5 series P5 Gearbox Dimensions: mm. Standard output shaft dimensions: mm. L82 shaft with internal clutch & freewheel P5 series gearbox may be specified with optional internal friction clutch or freewheels. The L82C internal clutch is set to a slip torque of 0.6 Nm and is designed to protect the gearhead against damage resulting from excessive torque in a stall condition. The freewheel options provide a maximum torque of 0.4 Nm and provide free rotation in the direction of drive. Typical applications include chart recorder paper feeds. General specification: Max recommended input speed rpm 5000 Max Radial load N 50 ( @ 8 mm from mounting face ) Max Static Axial load N 150 N ( for press fit on shaft ) Ambient temperature range Deg. C -30 to +65 Max Axial shaft play μm 250 Max radial shaft play μm 25 Direction of rotation @ output with respect to input: Ratio Codes Number of stages Direction of rotation P5-G01 to G04 2 Same P5-G05 to G17 3 Opposite P5-G19-G27 4 Same P5-G34-G41 5 Opposite P5-G62 7 Opposite eneral specification: 16.5 Ls 47.6 2.8 ∅ 4 + 0 12 - 0.02 12.7 ∅ 3.2 26.2 typical motor ∅ 8.0 ( see following ) ( options ) R 24.6 1.2 20 ∅ 4.0 2.8 8.0 L81 shaft 12.8 ∅ 4.0 9 3.3 L82 shaft 36.3 12.8 ∅ 4.0 9 ∅ 4.0 3.25 L35 shaft Mclennan Servo Supplies Ltd. Tel: +44 (0)8707 700 700 www.mclennan.co.uk Friction Clutch Option Freewheel Option L82F: clockwise rotation L82C L82R: counter-clockwise rotation Output shaft dimensions as L82 standard shaft 20 20 ∅ 4 ∅ 8 . ∅ 4 . 2.8 L 3396 Shaft Issue 001 Positional Servodrive assembly P5 series The P5 positional servodrive incorporates a potentiometer which is connected to the output shaft to provide an analogue reference signal proportional to output shaft position. A variety of potentiometer options are available to provide the choice of single or multi-turn operation. Although conforming to the standard panel mount design, the feedback potentiometers utilised in P5 positional servodrives have a reinforced internal construction to provide long life in motor driven applications. The feedback potentiometer is coupled directly to the servodrive’s output shaft via a backlash-free coupling which incorporates a friction clutch to protect the potentiometer against an overtravel condition when an option fitted with end stops is specified. P5 series Servodrives may be specified with any of the gear ratios shown on earlier pages to provide a wide choice of speed options. P5 series Positional Servodrive assembly Dimensions: mm Standard Potentiometer options Gearhead ratio code Potentiometer code Description Electrical rotation P5-G01 to G62- L100 Single turn , continuous rotation > 340 degrees L101 Single turn with end stops > 300 degrees L102 Three turn with end stops > 1080 degrees L103 Ten turn with end stops > 3600 degrees 20 33.5 16.5 12.8 47.6 typical typical 9 R 16 Potentiometer coupling 2.8 ∅ 4 + 0 12 - 0.02 12.7 ∅3.2 26.2 motor ∅8 dia. motor ∅ Dm motor length R 24.6 Lm 1.2 Standard shaft with flat ∅ 4 ∅ 38 Flat length: 9 mm 3.3 + 0 - 0.1 Maximum motor diameter ( ∅ Dm ) : 36 mm Mclennan Servo Supplies Ltd. Tel: +44 (0)8707 700 700 www.mclennan.co.uk Issue 001 High precision instrument gearhead P5 series Motor options A wide range of permanent magnet stepper motors, instrument dc motors and ac synchronous motors may be fitted to the P5 gearhead using standard mounting kits. A wide variety of motors may be factory-fitted to meet a wide range of performance requirements. If alternative motors are to be fitted to the P5 gearhead the following details can be components Standard Motor mounting kits: Motor type 1 dimensions for screw mounting to P5 gearbox 8.2 min 11.4 max 1.8 Max 42 ∅36 max. ∅2 or 3 ∅3.2 ∅ 10 Motor fits directly to gearbox backplate using 2 x M2.5 screws Motor types 2 dimensions for mounting to P5 gearbox using clip 8.2 min 22 25 11.4 max Motor flange cropped as shown 1.8 Max 49.2 ∅51 max ∅ 42 ∅ 50.8 ∅2 or 3 ∅ 10 Clip type 204CLP00002 Clip type 204CLP00001 Motor types 3 dimensions for mounting to P5 gearbox via adapter 8.1 min 3.5 12.5 max KIT 3A KIT 3B 3 X M2 on 12 mm PCD 3 x M2 on 17 mm PCD 1.5 Max 3 X M2 X 6 long screws ∅29 max. ∅2 or 3 ∅ 7 ∅ 10 Use adapter 204ADT00006 Use adapter 204ADT00015 Adapter Motor type 4 dimensions for mounting to P5 gearbox via adapter 3.5 12.5 2 X M3 on 28 mm PCD 1.5 Max ∅40. ∅ 18 ∅ 3 Use adapter 204ADT00007 Adapter This motor must be factory fitted Mclennan Servo Supplies Ltd. Tel: +44 (0)8707 700 700 www.mclennan.co.uk Issue 001 High precision instrument gearhead P5 series Ordering code Example: P5-G17 L82 Gearbox Code Ratio Code Shaft or Potentiometer code • Specify motor shaft diameter so correct pinion bore is provided • Specify fitting components such as adapter or fixing clip • If in doubt please contact your local sales office • If a special output shaft is required enter details in drawing provided: Fitting the motor to P5 gearheads: The pinion is either fitted to the motor shaft by means of high strength Loctitie 638 adhesive or it is press fitted when the motor rear shaft can be supported. The pinion can be accurately located, in one of two positions, using the pinion fitting tool 204SPC00001 as shown below: Pinion Positions Order Code Ratio Pinion Position Standard Pinion bores ( motor shaft diameters ) Maximum Pinion bore ( max. motor shaft diameter ) P5-G01 25:6 H 1.8 mm 2.0 mm 3.0 mm 3 mm P5-G03 25:4 H 1.8 mm 2.0 mm 3.0 mm 4 mm P5-G04 25:3 H 1.8 mm 2.0 mm 3.0 mm 3 mm P5-G05 10:1 1.8 mm 2.0 mm 3.0 mm P5-G06 25:2 1.8 mm 2.0 mm 3.0 mm P5-G08 50:3 1.8 mm 2.0 mm 3.0 mm P5-G09 20:1 1.8 mm 2.0 mm 3.0 mm P5-G11 25:1 1.8 mm 2.0 mm 3.0 mm 5 mm P5-G14 100:3 1.8 mm 2.0 mm 3.0 mm P5-G16 125:3 1.8 mm 2.0 mm 3.0 mm P5-G17 50:1 L 1.8 mm 2.0 mm 3.0 mm 3 mm P5-G19 125:2 1.8 mm 2.0 mm 3.0 mm P5-G21 250:3 1.8 mm 2.0 mm 3.0 mm P5-G23 125:1 1.8 mm 2.0 mm 3.0 mm 5 mm P5-G27 250:1 1.8 mm 2.0 mm 3.0 mm 3 mm P5-G34 500:1 1.8 mm 2.0 mm 3.0 mm 5 mm P5-G41 1250:1 H 1.8 mm 2.0 mm 3.0 mm 3 mm P5-G62 15,000:1 L 1.8 mm 2.0 mm 3.0 mm 3 mm ( 20 max.) ( 20 max ) ∅ ( ∅ 4 max. ) ∅ ( 8 min. ) ∅ 4.0 max 2.8 Special shaft detail Motor mounted directly to gearhead Motor mounted to gearhead via adapter Pinion High (‘H’ ) position Pinion High (‘H’ ) position Pinion Low (‘L’ ) position Pinion Low (‘L’ ) position Spacer 204SPC00001 Spacer 204SPC00001 Mclennan Servo Supplies Ltd. Tel: +44 (0)8707 700 700 www.mclennan.co.uk Issue 001 High precision instrument gearhead P5 series Complete geared motor assemblies A wide range of complete assemblies with factory fitted motors can be provided, data on which is available on request. When supplied as a complete assembly the motor part number is inserted in the geared motor order code Examples: Dc servo motor 9904 120 18 105 Stepper motor 9904 112 32 101 Geared motor code: P5 18 DC 105-G17 L82 P5 32 ST 101-G17 L82 Typical factory fitted geared motor assemblies Reversible geared ac synchronous motors • Reversible fixed speed operation • Choice of two motor power options • Choice of output speeds from 1 rev/second to 1 rev/ hour • Choice of 24, 110 or 230 Vac – 50 Hz operation P532 & P531 SP series Geared reversible ac synchronous motors Geared permanent magnet stepper motors • High precision 7.5 degree stepper motors Choice of four power options • Choice of 5V or 12 V windings Optional positional feedback potentiometer assembly P531 ST series P532 ST & P535 series P542 series Geared stepper motors Geared stepper motors Geared stepper motors Geared ironless rotor dc servo motors • High precision coreless servo motors Choice of 6 power options from 22 –40 mm diameter • Choice of 6, 12 or 24 Vdc windings Optional dc tachogenerator or encoder feedback • Standard speed options from 1200 – 0.1 rpm Optional positional feedback potentiometer assembly P522 DC series P528 DC Series P518 DC series Geared dc motors Geared dc motors Geared dc motors with position feedback Mclennan Servo Supplies Ltd. Tel: +44 (0)8707 700 700 www.mclennan.co.uk Issue 001 SMU INSTRUMENTS A Greater Measure of Confidence www.keithley.com 1.888.KEITHLEY (U.S. only) A Tektronix Company 2450 SourceMeter ® SMU Instrument • Capabilities of analyzers, curve tracers, and I-V systems at a fraction of their cost. • Five-inch, high resolution capacitive touchscreen GUI • 0.012% basic measure accuracy with 6½-digit resolution • Enhanced sensitivity with new 20mV and 10nA source/ measure ranges • Source and sink (4-quadrant) operation • Four “Quickset” modes for fast setup and measurements • Built-in, context-sensitive front panel help • Front panel input banana jacks; rear panel input triaxial connections • 2450 SCPI and TSP® scripting programming modes • Model 2400 SCPI-compatible programming mode • Front panel USB memory port for data/programming/ configuration I/O The Model 2450 is Keithley’s next-generation SourceMeter source measure unit (SMU) Instrument that truly brings Ohm’s law (current, voltage, and resistance) testing right to your fingertips. Its innovative graphical user interface (GUI) and advanced, capacitive touchscreen technology allow intuitive usage and minimize the learning curve to enable engineers and scientists to learn faster, work smarter, and invent easier. The 2450 is the SMU for everyone: a versatile instrument, particularly well-suited for characterizing modern scaled semiconductors, nano-scale devices and materials, organic semiconductors, printed electronics, and other small-geometry and low-power devices. All this combined with Keithley SMU precision and accuracy allow users to Touch, Test, InventTM with the new favorite go-to instrument in the lab for years to come. Learn Faster, Work Smarter, Invent Easier Unlike conventional instruments with dedicated pushbutton technology and small, obscure, limited- character displays, the 2450 features a five-inch, full-color, high resolution touchscreen that facilitates ease of use, learning, and optimizes overall speed and productivity. A simple icon-based menu structure reduces configuration steps by as much as 50 percent and eliminates the cumbersome multi-layer menu structures typically used on soft-key instruments. Built-in, context-sensitive help enables intuitive operation and minimizes the need to review a separate manual. These capabilities combined with its application versatility make the 2450 the SMU instrument inherently easy to use for basic and advanced measurement applications, regardless of your experience level with SMU instruments. 2450 main home screen. View of 2450 menu. Fourth-Generation, All-in-One SMU Instrument The 2450 is the fourth-generation member of Keithley’s award-winning SourceMeter family of SMU instruments and leverages the proven capabilities of the Model 2400 SourceMeter SMU Instrument. It offers a highly flexible, four-quadrant voltage and current source/load coupled with precision voltage and current meters. This all-inone instrument can be used as a: • Precision power supply with V and I readback • True current source • Digital multimeter (DCV, DCI, ohms, and power with 6½-digit resolution). • Precision electronic load • Trigger controller -200V -20V +20V +200V +100mA +1A -100mA -1A Quad. II Quad. I Quad. III Quad. IV 2450 power envelope. Model 2450 SourceMeter® SMU Instrument SMU INSTRUMENTS www.keithley.com 1.888.KEITHLEY (U.S. only) A Greater Measure of Confidence A Tektronix Company Online HELP key USB 2.0 memory I/O Front/rear input selector Rotary navigation/ control knob 5˝ color graphical touchscreen display 2450 SourceMeter ® SMU Instrument Ordering Information 2450 200V, 1A, 20W SourceMeter Instrument 2450-NFP 200V, 1A, 20W SourceMeter Instrument, with No Front Panel 2450-RACK 200V, 1A, 20W SourceMeter Instrument, without Handle 2450-NFP-RACK 200V, 1A, 20W SourceMeter Instrument, with No Front Panel and No Handle Accessories Supplied 8608 High Performance Test Leads USB-B-1 USB Cable, Type A to Type B, 1m (3.3 ft) CS-1616-3 Safety Interlock Mating Connector CA-180-3A TSP-Link/Ethernet Cable Documentation CD 2450 QuickStart Guide Test Script Builder Software (supplied on CD) KickStart Startup Software (supplied on CD) LabVIEW and IVI Drivers available at www.keithley.com Model 2400 Model 2450 V-Ranges: 200mV – 200V V-Ranges: 20mV – 200V I-Ranges: 1μA – 1A I-Ranges: 10nA – 1A 0.012% Basic Accuracy 0.012% Basic Accuracy Wideband Noise: 4mVrms Typ. Wideband Noise: 2mVrms Typ. Sweep Types: Linear, Log, Custom, Source-Memory Sweep Types: Linear, Log, Dual Linear, Dual Log, Custom, Source-Memory (SCPI 2400 Mode) 5000 Point Reading Buffer >250,000 Point Reading Buffer >2000 Readings/Sec. >3000 Readings/Sec. SCPI Programming SCPI (2400 + 2450) + TSP Programming GPIB GPIB, USB, Ethernet (LXI) Front/Rear Banana Jacks Front: Banana Jacks, Rear: Triax Comparison of Model 2400 vs Model 2450. Ease of Use Beyond the Touchscreen In addition to its five-inch, color touchscreen, the 2450 front panel has many features that supplement its speed, user-friendliness, and learnability, including a USB 2.0 memory I/O port, a HELP key, a rotary navigation/control knob, a front/rear input selector button, and banana jacks for basic bench applications. The USB 2.0 memory port supports easy data storing, saving instrument configurations, loading test scripts, and system upgrades. Plus, all front panel buttons are backlit to enhance visibility in low-light environments. Model 2450 front panel with high resolution, capacitive touchscreen. Four “Quickset” modes simplify user setup. With one touch, the instrument can be quickly configured for various operating modes without the need to configure the instrument indirectly for this operation. Comprehensive Built-in Connectivity Rear panel access to rear-input triax connectors, remote control interfaces (GPIB, USB 2.0, and LXI/Ethernet), D-sub 9-pin digital I/O port (for internal/external trigger signals and handler control), instrument interlock control, and TSP-Link® jacks enables easy configuration of multiple instrument test solutions and eliminates the need to invest in additional adapter accessories. Quickset modes enable fast setup and time to measurements. Model 2450 SourceMeter® SMU Instrument SMU INSTRUMENTS A Greater Measure of Confidence www.keithley.com 1.888.KEITHLEY (U.S. only) A Tektronix Company 2450 SourceMeter ® SMU Instrument Ethernet Triax inputs Digital I/O TSP-Link GPIB Interlock USB Rear panel connections are optimized for signal integrity. Convert Raw Data to Information The 2450 provides a full plotting and sheet view to display sweeps, measurement data, and charting right on the screen. It also supports exporting to a spreadsheet for further analysis, dramatically improving productivity for research, bench-top testing, device qualification, and debugging. Full data display, charting, and export to a spreadsheet lets you convert raw data to useful information. TYPICAL APPLICATIONS Ideal for current/voltage characterization and functional test of a wide range of today’s modern electronics and devices, including: • Nanomaterials and Devices ––Graphene ––Carbon nanotubes ––Nanowires ––Low power nanostructures • Semiconductor Structures ––Wafers ––Thin films • Organic Materials and Devices ––E-inks ––Printable electronics • Energy Efficiency and Lighting ––LEDs/AMOLEDs ––Photovoltaics/Solar Cells ––Batteries • Discrete and Passive Components ––Two-leaded: Resistors, diodes, zener diodes, LEDs, disk drive heads, sensors ––Three-leaded: Small signal bipolar junction transistors (BJTs), field effect transistors (FETs), and more • Material Characterization ––Resistivity ––Hall Effect TriggerFlow™ Building Blocks for Instrument Control and Execution The 2450 incorporates Keithley’s new TriggerFlow triggering system that allows user control of instrument execution. Similar to developing a flow chart, TriggerFlow diagrams are created using four fundamental building blocks: • Wait – Waits for an event to occur before the flow continues • Branch – Branches when a condition has been satisfied • Action – Initiates an action in the instrument, for example, measure, source, delay, set digital I/O, etc. • Notify – Notifies other equipment that an event has occurred Side text Model 2450 SourceMeter® SMU Instrument SMU INSTRUMENTS www.keithley.com 1.888.KEITHLEY (U.S. only) A Greater Measure of Confidence A Tektronix Company 2450 SourceMeter ® SMU Instrument TriggerFlow building blocks let users create very simple to very complex triggering models. A TriggerFlow model using a combination of these building blocks can be created from the front panel or by sending remote commands. With the TriggerFlow system, users can build triggering models from very simple to complex with up to 255 block levels. The 2450 also includes basic triggering functions, including immediate, timer, and manual triggering. Unmatched System Integration and Programming Flexibility When the 2450 is integrated as part of a multi-channel I-V test system, the Test Script Processor (TSP®) embedded scripting capability allows test scripts to be run by the instrument, enabling the user to create powerful measurement applications with significantly reduced development times. TSP technology also offers channel expansion without a mainframe. Keithley’s TSP-Link® channel expansion bus, which uses a 100 Base T Ethernet cable, connects multiple 2450 instruments and other TSP instruments such as Keithley’s Series 2600B SourceMeter SMU instruments and Series 3700A Switch/Multimeter systems in a master-slave configuration that behaves as one integrated system. The TSP-Link expansion bus supports up to 32 units per GPIB or IP address, making it easy to scale a system to fit an application’s particular requirements. The 2450 also includes a SCPI programming mode that optimizes the instrument’s new features, as well as a SCPI 2400 mode that provides backwards compatibility with the existing Model 2400 SourceMeter instrument. Not only does this preserve your 2400 investment, but it also eliminates re-work normally associated with upgrading to a new instrument with new capabilities. Parallel Test Capability With the TSP technology in the 2450, multiple devices can be tested in parallel to meet the needs of device research, advanced semiconductor lab applications, and even high throughput production test. This parallel testing capability enables each instrument in the system to run its own complete test sequence, creating a fully multi-threaded test environment. The number of tests that can be run in parallel on a 2450 can be as high as the number of instruments in the system. Free Instrument Control Start-up Software and Web Interface KickStart, Keithley’s new instrument control non-programming start-up software, lets users start taking measurements in minutes. In most cases, users merely need to make quick measurements, graph the data, and store the data to disk to perform analysis in software environments such as Excel. KickStart offers the following functionality: • Instrument configuration control to perform I-V characterization • Native X-Y graphing, panning, and zooming • Spreadsheet/tabular viewing of data • Saving and exporting data for further analysis • Saving of test setups • Screenshot capturing of graph • Annotation of tests • Command line dialog for sending and receiving data • HTML help • GPIB, USB 2.0, Ethernet compliant With KickStart start-up software, users are ready to take measurements in minutes. Simplified Programming with Ready-to-Use Instrument Drivers For users who want to create their own customized application software, native National Instruments LabVIEW® drivers, IVI-C, and IVI-COM drivers are available at www.keithley.com. Model 2450 SourceMeter® SMU Instrument Side text SMU INSTRUMENTS A Greater Measure of Confidence www.keithley.com 1.888.KEITHLEY (U.S. only) A Tektronix Company 2450 SourceMeter ® SMU Instrument Voltage Specifications1,2 Source Measure3 Range Resolution Accuracy (23° ± 5°C) 1 Year ±(% setting + volts) Noise (RMS) (<10Hz) Resolution Input Resistance Accuracy (23° ± 5°C) 1 Year ±(% rdg. + volts) 20.00000 mV 500 nV 0.100% + 200 μV 1 μV 10 nV >10 GW 0.100% + 150 μV 200.0000 mV 5 μV 0.015% + 200 μV 1 μV 100 nV >10 GW 0.012% + 200 μV 2.000000 V 50 μV 0.020% + 300 μV 10 μV 1 μV >10 GW 0.012% + 300 μV 20.00000 V 500 μV 0.015% + 2.4 mV 100 μV 10 μV >10 GW 0.015% + 1 mV 200.0000 V 5 mV 0.015% + 24 mV 1 mV 100 μV >10 GW 0.015% + 10 mV Current Specifications1,2 Source Measure3 Range Resolution Accuracy (23° ±5°C)4 1 Year ±(% setting + amps) Noise (RMS) (<10Hz) Resolution Voltage Burden Accuracy (23° ±5°C) 1 Year ±(% rdg. + amps) 10.00000 nA5 500 fA 0.100% + 100 pA 500 fA 10 fA <100 μV 0.100% + 50 pA 100.0000 nA5 5 pA 0.060% + 150 pA 500 fA 100 fA <100 μV 0.060% + 100 pA 1.000000 μA 50 pA 0.025% + 400 pA 5 pA 1 pA <100 μV 0.025% + 300 pA 10.00000 μA 500 pA 0.025% + 1.5 nA 40 pA 10 pA <100 μV 0.025% + 700 pA 100.0000 μA 5 nA 0.020% + 15 nA 400 pA 100 pA <100 μV 0.020% + 6 nA 1.000000 mA 50 nA 0.020% + 150 nA 5 nA 1 nA <100 μV 0.020% + 60 nA 10.00000 mA 500 nA 0.020% + 1.5 μA 40 nA 10 nA <100 μV 0.020% + 600 nA 100.0000 mA 5 μA 0.025% + 15 μA 100 nA 100 nA <100 μV 0.025% + 6 μA 1.000000 A 50 μA 0.067% + 900 μA 3 μA 1 μA <100 μV 0.030% + 500 μA TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C): ±(0.15 × accuracy specification)/°C. 1. Speed = 1 PLC. 2. All specifications are guaranteed with output ON. 3. Accuracies apply to 2- and 4-wire mode when properly zeroed. 4. For sink mode, 1μA to 100mA range accuracy is ±(0.15% + offset × 4). For 1A range, accuracy is ±(1.5% + offset × 8). 5. Rear panel triax connections only. Resistance Measurement Accuracy (Local or Remote Sense)2,3 Range Default Resolution6 Default Test Current Normal Accuracy (23°C ±5°C) 1 Year, ±(% rdg. + ohms) Enhanced Accuracy7 (23°C ±5°C) 1 Year, ±(% rdg. + ohms) <2.000000 W8 1 μW User defined Source IACC + Meas. VACC Meas. IACC + Meas. VACC 20.00000 W 10 μW 100 mA 0.098% + 0.003 W 0.073% + 0.001 W 200.0000 W 100 μW 10 mA 0.077% + 0.03 W 0.053% + 0.01 W 2.000000 kW 1 mW 1 mA 0.066% + 0.3 W 0.045% + 0.1 W 20.00000 kW 10 mW 100 μA 0.063% + 3 W 0.043% + 1 W 200.0000 kW 100 mW 10 μA 0.065% + 30 W 0.046% + 10 W 2.000000 MW 1 W 1 μA 0.110% + 300 W 0.049% + 100 W 20.00000 MW 10 W 1 μA 0.110% + 1 kW 0.052% + 500 W 200.0000 MW 100 W 100 nA 0.655% + 10 kW 0.349% + 5k W >200.0000 MW8 — User defined Source IACC + Meas. VACC Meas. IACC + Meas. VACC TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C): ±(0.15 × accuracy specification)/°C. SOURCE CURRENT, MEASURE RESISTANCE MODE: Total uncertainty = Isource accuracy + Vmeasure accuracy (4-wire remote sense). SOURCE VOLTAGE, MEASURE RESISTANCE MODE: Total uncertainty = Vsource accuracy + Imeasure accuracy (4-wire remote sense). GUARD OUTPUT IMPEDANCE: 0.5W (DC) in ohms mode. 6. 6.5 digit measure resolution 7. Source readback enabled. Offset compensation ON. 8. Source Current, Measure Resistance or Source Voltage, Measure Resistance only. ACCESSORIES AVAILABLE TEST LEADS AND PROBES 1754 2-wire Universal 10-Piece Test Lead Kit 5804 Kelvin (4-Wire) Universal 10-Piece Test Lead Kit 5805 Kelvin (4-Wire) Spring-Loaded Probes 5806 Kelvin Clip Lead Set 5808 Low Cost Single-pin Kelvin Probe Set 5809 Low Cost Kelvin Clip Lead Set 8605 High Performance Modular Test Leads 8606 High Performance Modular Probe Kit 8608 High Performance Clip Lead Set CABLES, CONNECTORS, ADAPTERS 237-ALG-2 3-slot Male Triax Connector to 3 Alligator Clips 237-BAN-3A Triax to Banana Plug 2450-TRX-BAN Triax to Banana Adapter. Converts the 4 Triax adapters on the rear panel to 5 banana jacks 7078-TRX-* 3-slot, Low Noise Triax Cable 7078-TRX-GND 3-slot Male Triax To BNC Adapter (guard removed) 8607 2-wire, 1000V Banana Cables, 1m (3.3 ft) CA-18-1 Shielded Dual Banana Cable, 1.2m (4 ft) CAP-31 Protective Shield/Cap for 3-lug Triax Connectors CS-1546 Triax 3-lug Special Shorting Plug. Shorts center pin to outer shield CS-1616-3 Safety Interlock Mating Connector COMMUNICATION INTERFACES & CABLES KPCI-488LPA IEEE-488 Interface for PCI Bus KUSB-488B IEEE-488 USB-to-GPIB Interface Adapter 7007-1 Shielded GPIB Cable, 1m (3.3 ft) 7007-2 Shielded GPIB Cable, 1m (6.6 ft) CA-180-3A CAT5 Crossover Cable for TSP-Link/Ethernet USB-B-1 USB Cable, Type A to Type B, 1m (3.3 ft) TRIGGERING AND CONTROL 2450-TLINK DB-9 to Trigger Link Connector Adapter. 8501-1 Trigger Link Cable, DIN-to-DIN, 1m (3.3 ft) 8501-2 Trigger Link Cable, DIN-to-DIN, 2m (6.6 ft) RACK MOUNT KITS 4299-8 Single Fixed Rack Mount Kit 4299-9 Dual Fixed Rack Mount Kit 4299-10 Dual Fixed Rack Mount Kit. Mount one 2450 and one Series 26xxB 4299-11 Dual Fixed Rack Mount Kit. Mount one 2450 and one Series 2400, Series 2000, etc. 2450-BenchKit Ears and Handle for 2450-NFP-RACK and 2450-RACK models TEST FIXTURES 8101-PIV DC Test Fixture SERVICES AVAILABLE 2450-3Y-EW 1 Year Factory Warranty extended to 3 years from date of shipment 2450-5Y-EW 1 Year Factory Warranty extended to 5 years from date of shipment C/2450-3Y-17025 KeithleyCare® 3 Year ISO 17025 Calibration Plan C/2450-3Y-DATA KeithleyCare 3 Year Calibration w/Data Plan C/2450-3Y-STD KeithleyCare 3 Year Std. Calibration Plan C/2450-5Y-17025 KeithleyCare 5 Year ISO 17025 Calibration Plan C/2450-5Y-DATA KeithleyCare 5 Year Calibration w/Data Plan C/2450-5Y-STD KeithleyCare 5 Year Std. Calibration Plan Model 2450 specifications Model 2450 specifications SMU INSTRUMENTS www.keithley.com 1.888.KEITHLEY (U.S. only) A Greater Measure of Confidence A Tektronix Company OPERATING CHARACTERISTICS MAX. OUTPUT POWER: 20W, four-quadrant source or sink operation. SOURCE LIMITS: Vsource: ±21V (≤ 1A range), ±210V (≤ 100mA range) Isource: ±1.05A (≤ 20V range), ±105mA (≤ 200V range) OVERRANGE: 105% of range, source and measure. REGULATION: Voltage: Line: 0.01% of range. Load: 0.01% of range + 100µV. Current: Line: 0.01% of range. Load: 0.01% of range + 100pA. SOURCE LIMITS: Voltage Source Current Limit: Bipolar current limit set with single value. Min. 10% of range. Current Source Voltage Limit: Bipolar voltage limit set with single value. Min. 10% of range. V-LIMIT / I-LIMIT ACCURACY: Add 0.3% of setting and ±0.02% of reading to base specification. OVERSHOOT: Voltage Source: <0.1% typical (full scale step, resistive load, 20V range, 10mA I-Limit. Current Source: <0.1% typical (1mA step, RLoad = 10kW, 20V range) RANGE CHANGE OVERSHOOT: Overshoot into a fully resistive 100kW load, 10Hz to 20MHz BW, adjacent ranges: 250mV typical OUTPUT SETTLING TIME: Time required to reach 0.1% of final value, 20V range, 100mA I-Limit: <200µs typical. MAXIMUM SLEW RATE: 0.2V/μs, 200V range, 100mA limit into a 2kW load (typical) OVER VOLTAGE PROTECTION: User selectable values, 5% tolerance. Factory default = none. VOLTAGE SOURCE NOISE: 10Hz–1MHz (RMS): 2mV typical into a resistive load. COMMON MODE VOLTAGE: 250V DC. COMMON MODE ISOLATION: >1GW, <1000pF. NOISE REJECTION (TYPICAL): LOAD IMPEDANCE: 20nF typical (standard). Stable into 50μF typical (High-C mode). High-C mode valid for ≥100µA ranges, ≥200mV ranges. MAX. VOLTAGE DROP BETWEEN FORCE and SENSE TERMINALS: 5V. MAX. SENSE LEAD RESISTANCE: 1MW for rated accuracy. SENSE INPUT IMPEDANCE: >10GW. GUARD OFFSET VOLTAGE: <300µV, typical System Measurement Speeds 9 READING RATES (READINGS/SECOND) TYPICAL FOR 60Hz (50Hz): SCRIPT (TSP) Programmed Measure Source-Measure Sweep NPLC/Trigger Origin To Mem. To GPIB To USB To LAN To Mem. To GPIB To USB To LAN 0.01 / Internal 3130 (2800) 2830 (2570) 2825 (2600) 2790 (2530) 1710 (1620) 1620 (1540) 1630 (1540) 1620 (1540) 0.01 / External 2170 (2050) 2150 (2030) 2170 (2040) 2160 (1990) 1670 (1590) 1580 (1500) 1590 (1510) 1580 (1510) 0.1 / Internal 540 (460) 530 (450) 530 (450) 530 (450) 470 (410) 460 (400) 470 (400) 470 (400) 0.1 / External 500 (430) 490 (420) 500 (430) 500 (420) 470 (400) 460 (390) 460 (400) 460 (400) 1.00 / Internal 59 (49) 58 (49) 59 (49) 59 (49) 58 (48) 58 (48) 58 (48) 58 (48) 1.00 / External 58 (48) 57 (48) 58 (48) 58 (48) 57 (48) 57 (47) 57 (48) 57 (48) SCPI Programmed 10 Measure Source-Measure Sweep NPLC/Trigger Origin To Mem. To GPIB To USB To LAN To Mem. To GPIB To USB To LAN 0.01 / Internal 3130 (2800) 3060 (2760) 3000 (2790) 3010 (2710) 1710 (1630) 1610 (1600) 1440 (1380) 1690 (1590) 0.01 / External 2350 (2200) 2320 (2170) 2340 (2190) 2320 (2130) 1680 (1590) 1560 (1570) 1410 (1360) 1660 (1560) 0.1 / Internal 540 (460) 540 (450) 540 (460) 540 (450) 470 (410) 470 (410) 450 (390) 470 (410) 0.1 / External 510 (440) 510 (430) 510 (440) 510 (430) 470 (400) 470 (400) 450 (390) 470 (400) 1.00 / Internal 59 (49) 59 (49) 59 (49) 59 (49) 58 (48) 58 (48) 57 (48) 58 (48) 1.00 / External 58 (49) 58 (49) 58 (49) 58 (49) 58 (48) 58 (48) 57 (47) 58 (48) 9. Reading rates applicable for voltage or current measurements, autozero off, autorange off, filter off, binary reading format, and source readback off. 10. SCPI programming mode. Speeds do not apply to SCPI 2400 mode. 2450 SourceMeter ® SMU Instrument NPLC NMRR CMRR 0.01 — 60 dB 0.1 — 60 dB 1 60 dB 100 dB* * Except lowest two current ranges ~90dB. Model 2450 specifications SMU INSTRUMENTS 2450 SourceMeter ® SMU Instrument GENERAL CHARACTERISTICS (default mode unless specified) FACTORY DEFAULT STANDARD POWER-UP: SCPI MODE. SOURCE OUTPUT MODES: Fixed DC Level, Memory/Configuration List (mixed function), Stair (linear and log). SOURCE MEMORY LIST: 100 points max. (SCPI 2400 Mode only). MEMORY BUFFER: >250,000 readings. Includes selected measured value(s) and time stamp. REAL-TIME CLOCK: Lithium battery backup (3 yr. + battery life). REMOTE INTERFACES: GPIB: IEEE-488.1 compliant. Supports IEEE-488.2 common commands and status model topology. USB Device (rear panel, type B): 2.0 Full Speed USBTMC. USB Host (front panel, type A): USB 2.0, support for flash drives, FAT32. Ethernet: RJ-45 (10/100BT) PROGRAMMABILITY: SCPI or TSP command sets. TSP MODE: Embedded Test Script Processor (TSP) accessible from any host interface. IP CONFIGURATION: Static or DHCP EXPANSION INTERFACE: The TSP-Link expansion interface allows TSP enabled instruments to trigger and communicate with each other. LXI COMPLIANCE: 1.4 LXI Core 2011. DISPLAY: 5 inch capacitive touch, color TFT WVGA (800x480) with LED backlight. INPUT SIGNAL CONNECTIONS: Front: Banana. Rear: Triaxial (3-Lug) INTERLOCK: Active High Input DIGITAL I/O INTERFACE: Lines: 6 Input/Output user defined for digital I/O or triggering Connector: 9-pin female D Input Signal Levels: 0.7 V (maximum logic low), 3.7 V (minimum logic high) Input Voltage Limits: -0.25 V (Abs. minimum), +5.25 V (Abs. maximum) Maximum Source Current: +2.0 mA @ >2.7 V (per pin) Maximum Sink Current: -50 mA @ 0.7 V (per pin, solid-state fuse protected) 5 V Power Supply Pin: Limited to 500 mA @ >4V (solid-state fuse protected) Handler: User definable Start of Test, End of Test, 4 category bits COOLING: Forced air, variable speed. OVER TEMPERATURE PROTECTION: Internally sensed temperature overload puts unit in standby mode. POWER SUPPLY: 100V to 240V RMS, 50–60Hz (automatically detected at power up). VA RATING: 190 volt-amps max. ALTITUDE: Maximum 2000 meters above sea level. EMC: Conforms to European Union EMC Directive. SAFETY: NRTL listed to UL61010-1 and UL61010-2-30. Conforms with European Union Low Voltage Directive. VIBRATION: MIL-PRF-28800F Class 3 Random. WARM-UP: 1 hour to rated accuracies. DIMENSIONS: (With handle and bumpers): 106mm high × 255mm wide × 425mm deep (4.18 in × 10.05 in × 16.75 in). (Without handle and bumpers): 88mm high × 213mm wide × 403mm deep (3.46 in × 8.39 in × 15.87 in). WEIGHT: With bumpers & handle: 4.04 kg (8.9 lbs.). Without bumpers & handle 3.58 kg (7.9 lbs.). ENVIRONMENT: Operating: 0°–50°C, 70% R.H. up to 35°C. Derate 3% R.H./°C, 35°–50°C. Storage: –25°C to 65°C. ACCESSORIES SUPPLIED: Test Leads, USB Cable, Ethernet/TSP Cable, Interlock Adapter, Power Cord, Quick Start Guide, CD User’s Manual. Model 2450 specifications SMU INSTRUMENTS 2450 SourceMeter ® SMU Instrument Model 2450 SourceMeter® SMU Instrument Specifications are subject to change without notice. All Keithley trademarks and trade names are the property of Keithley Instruments, Inc. All other trademarks and trade names are the property of their respective companies. KEITHLEY INSTRUMENTS, INC. ■ 28775 AURORA RD. ■ CLEVELAND, OH 44139-1891 ■ 440-248-0400 ■ Fax: 440-248-6168 ■ 1-888-KEITHLEY ■ www.keithley.com A Greater Measure of Confidence BENELUX +31-40-267-5506 www.keithley.nl BRAZIL 55-11-4058-0229 www.keithley.com CHINA 86-10-8447-5556 www.keithley.com.cn FRANCE +33-01-69-86-83-60 www.keithley.fr GERMANY +49-89-84-93-07-40 www.keithley.de INDIA 080-30792600 www.keithley.in ITALY +39-049-762-3950 www.keithley.it JAPAN 81-120-441-046 www.keithley.jp KOREA 82-2-6917-5000 www.keithley.co.kr MALAYSIA 60-4-643-9679 www.keithley.com MEXICO 52-55-5424-7907 www.keithley.com RUSSIA +7-495-664-7564 www.keithley.ru SINGAPORE 01-800-8255-2835 www.keithley.com.sg TAIWAN 886-3-572-9077 www.keithley.com.tw UNITED KINGDOM +44-1344-39-2450 www.keithley.co.ukw For further information on how to purchase or to locate a sales partner please visit www.keithley.com/company/buy © Copyright 2013 Keithley Instruments, Inc. Printed in the U.S.A No. 3219 07.26.13 SN54HC244, SN74HC244 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS SCLS130D – DECEMBER 1982 – REVISED AUGUST 2003 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 Wide Operating Voltage Range of 2 V to 6 V High-Current Outputs Drive Up To 15 LSTTL Loads 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers Low Power Consumption, 80-μA Max ICC Typical tpd = 11 ns ±6-mA Output Drive at 5 V Low Input Current of 1 μA Max 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 1OE 1A1 2Y4 1A2 2Y3 1A3 2Y2 1A4 2Y1 GND VCC 2OE 1Y1 2A4 1Y2 2A3 1Y3 2A2 1Y4 2A1 SN54HC244 . . . J OR W PACKAGE SN74HC244 . . . DB, DW, N, NS, OR PW PACKAGE (TOP VIEW) 3 2 1 20 19 9 10 11 12 13 4 5 6 7 8 18 17 16 15 14 1Y1 2A4 1Y2 2A3 1Y3 1A2 2Y3 1A3 2Y2 1A4 SN54HC244 . . . FK PACKAGE (TOP VIEW) 2Y4 1A1 1OE 1Y4 2A2 2OE 2Y1 GND 2A1 VCC description/ordering information These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The ’HC244 devices are organized as two 4-bit buffers/drivers with separate output-enable (OE) inputs. When OE is low, the device passes noninverted data from the A inputs to the Y outputs. When OE is high, the outputs are in the high-impedance state. ORDERING INFORMATION TA PACKAGE† ORDERABLE PART NUMBER TOP-SIDE MARKING PDIP – N Tube of 20 SN74HC244N SN74HC244N –40 C to 85 C SOIC – DW Tube of 25 SN74HC244DW HC244 Reel of 2000 SN74HC244DWR 40°85°SOP – NS Reel of 2000 SN74HC244NSR HC244 SSOP – DB Reel of 2000 SN74HC244DBR HC244 Tube of 70 SN74HC244PW TSSOP – PW Reel of 2000 SN74HC244PWR HC244 Reel of 250 SN74HC244PWT 55 125 CDIP – J Tube of 20 SNJ54HC244J SNJ54HC244J –55°C to 125°C CFP – W Tube of 85 SNJ54HC244W SNJ54HC244W LCCC – FK Tube of 55 SNJ54HC244FK SNJ54HC244FK † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Copyright 2003, Texas Instruments Incorporated Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. SN54HC244, SN74HC244 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS SCLS130D – DECEMBER 1982 – REVISED AUGUST 2003 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 FUNCTION TABLE (each buffer/driver) INPUTS OUTPUT OE A Y L H H L L L H X Z logic diagram (positive logic) 1 2 4 6 8 19 11 13 15 17 3 5 7 9 12 14 16 18 1Y1 2Y1 1Y2 1Y3 1Y4 2Y2 2Y3 2Y4 1OE 2OE 2A1 2A2 2A3 2A4 1A1 1A2 1A3 1A4 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V Input clamp current, IIK (VI < 0 or VI > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Output clamp current, IOK (VO < 0 or VO > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±35 mA Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±70 mA Package thermal impedance, θJA (see Note 2): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70°C/W DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58°C/W N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69°C/W NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60°C/W PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance is calculated in accordance with JESD 51-7. SN54HC244, SN74HC244 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS SCLS130D – DECEMBER 1982 – REVISED AUGUST 2003 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 recommended operating conditions (see Note 3) SN54HC244 SN74HC244 UNIT MIN NOM MAX MIN NOM MAX VCC Supply voltage 2 5 6 2 5 6 V V VCC = 2 V 1.5 1.5 VIH High-level input voltage VCC = 4.5 V 3.15 3.15 V VCC = 6 V 4.2 4.2 V Low-level input voltage VCC = 2 V 0.5 0.5 VIL VCC = 4.5 V 1.35 1.35 V VCC = 6 V 1.8 1.8 VI Input voltage 0 VCC 0 VCC V VO Output voltage 0 VCC 0 VCC V t/ v VCC = 2 V 1000 1000 Δt/Δv Input transition rise/fall time VCC = 4.5 V 500 500 ns VCC = 6 V 400 400 TA Operating free-air temperature –55 125 –40 85 °C NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC TA = 25°C SN54HC244 SN74HC244 UNIT MIN TYP MAX MIN MAX MIN MAX V V = V or V I = –20 A 2 V 1.9 1.998 1.9 1.9 V IOH μA 4.5 V 4.4 4.499 4.4 4.4 VOH VI VIH VIL OH OH I IH IL 6 V 5.9 5.999 5.9 5.9 IOH = –6 mA 4.5 V 3.98 4.3 3.7 3.84 IOH = –7.8 mA 6 V 5.48 5.8 5.2 5.34 V V = V or V I = 20 A 2 V 0.002 0.1 0.1 0.1 V IOL μA 4.5 V 0.001 0.1 0.1 0.1 VOL VI VIH VIL OL OL I IH IL 6 V 0.001 0.1 0.1 0.1 IOL = 6 mA 4.5 V 0.17 0.26 0.4 0.33 IOL = 7.8 mA 6 V 0.15 0.26 0.4 0.33 II VI = VCC or 0 6 V ±0.1 ±100 ±1000 ±1000 nA IOZ VO = VCC or 0, VI = VIH or VIL 6 V ±0.01 ±0.5 ±10 ±5 μA ICC VI = VCC or 0, IO = 0 6 V 8 160 80 μA Ci 2 V to 6 V 3 10 10 10 pF SN54HC244, SN74HC244 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS SCLS130D – DECEMBER 1982 – REVISED AUGUST 2003 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 switching characteristics over recommended operating free-air temperature range, CL = 50 pF (unless otherwise noted) (see Figure 1) PARAMETER FROM TO VCC TA = 25°C SN54HC244 SN74HC244 UNIT (INPUT) (OUTPUT) MIN TYP MAX MIN MAX MIN MAX t 2 V 40 115 170 145 tpd A Y 4.5 V 13 23 34 29 ns 6 V 11 20 29 25 t 2 V 75 150 225 190 ten OE Y 4.5 V 15 30 45 38 ns 6 V 13 26 38 32 t 2 V 75 150 225 190 tdis OE Y 4.5 V 15 30 45 38 ns 6 V 13 26 38 32 t 2 V 28 60 90 75 tt Y 4.5 V 8 12 18 15 ns 6 V 6 10 15 13 switching characteristics over recommended operating free-air temperature range, CL = 150 pF (unless otherwise noted) (see Figure 1) PARAMETER FROM TO VCC TA = 25°C SN54HC244 SN74HC244 UNIT (INPUT) (OUTPUT) MIN TYP MAX MIN MAX MIN MAX t 2 V 56 165 245 210 tpd A Y 4.5 V 18 33 49 42 ns 6 V 15 28 42 35 t 2 V 100 200 300 250 ten OE Y 4.5 V 20 40 60 50 ns 6 V 17 34 51 43 t Y 2 V 45 210 315 265 tt 4.5 V 17 42 63 53 ns 6 V 13 36 53 45 operating characteristics, TA = 25°C PARAMETER TEST CONDITIONS TYP UNIT Cpd Power dissipation capacitance per buffer/driver No load 35 pF SN54HC244, SN74HC244 OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS SCLS130D – DECEMBER 1982 – REVISED AUGUST 2003 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 PARAMETER MEASUREMENT INFORMATION VOLTAGE WAVEFORM INPUT RISE AND FALL TIMES 50% 50% 10% 10% 90% 90% VCC 0 V tr tf Input VOLTAGE WAVEFORMS PROPAGATION DELAY AND OUTPUT TRANSITION TIMES 50% 50% 50% 10% 10% 90% 90% VCC VOH VOL 0 V tr tf Input In-Phase Output 50% tPLH tPHL 50% 50% 10% 10% 90% 90% VOH VOL tf tr tPHL tPLH Out-of-Phase Output 50% 10% 90% VCC ≈VCC VOL 0 V Output Control (Low-Level Enabling) Output Waveform 1 (See Note B) 50% tPZL tPLZ VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS VOH ≈0 V 50% 50% tPZH tPHZ Output Waveform 2 (See Note B) ≈VCC Test From Output Point Under Test CL (see Note A) RL VCC S1 S2 LOAD CIRCUIT PARAMETER CL tPZH tpd or tt tdis ten tPZL tPHZ tPLZ 1 kΩ 1 kΩ 50 pF or 150 pF 50 pF Open Closed RL S1 Closed Open S2 Open Closed Closed Open 50 pF or 150 pF –– Open Open NOTES: A. CL includes probe and test-fixture capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr = 6 ns, tf = 6 ns. D. The outputs are measured one at a time with one input transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 1. Load Circuit and Voltage Waveforms PACKAGE OPTION ADDENDUM www.ti.com 22-Feb-2014 Addendum-Page 1 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples 5962-8409601VRA ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type -55 to 125 5962-8409601VR A SNV54HC244J 5962-8409601VSA ACTIVE CFP W 20 25 TBD A42 N / A for Pkg Type -55 to 125 5962-8409601VS A SNV54HC244W 84096012A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 84096012A SNJ54HC 244FK 8409601RA ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type -55 to 125 8409601RA SNJ54HC244J 8409601SA ACTIVE CFP W 20 1 TBD A42 N / A for Pkg Type -55 to 125 8409601SA SNJ54HC244W JM38510/65705B2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 JM38510/ 65705B2A JM38510/65705BRA ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/ 65705BRA JM38510/65705BSA ACTIVE CFP W 20 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/ 65705BSA M38510/65705B2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 JM38510/ 65705B2A M38510/65705BRA ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/ 65705BRA M38510/65705BSA ACTIVE CFP W 20 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510/ 65705BSA SN54HC244J ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type -55 to 125 SN54HC244J SN74HC244ADBLE OBSOLETE SSOP DB 20 TBD Call TI Call TI -40 to 85 SN74HC244APWLE OBSOLETE TSSOP PW 20 TBD Call TI Call TI -40 to 85 SN74HC244DBLE OBSOLETE SSOP DB 20 TBD Call TI Call TI -40 to 85 SN74HC244DBR ACTIVE SSOP DB 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244DBRE4 ACTIVE SSOP DB 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 PACKAGE OPTION ADDENDUM www.ti.com 22-Feb-2014 Addendum-Page 2 Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples SN74HC244DBRG4 ACTIVE SSOP DB 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244DW ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244DWE4 ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244DWG4 ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244DWR ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244DWRE4 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244DWRG4 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244N ACTIVE PDIP N 20 20 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 SN74HC244N SN74HC244N3 OBSOLETE PDIP N 20 TBD Call TI Call TI -40 to 85 SN74HC244NE4 ACTIVE PDIP N 20 20 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 SN74HC244N SN74HC244NSR ACTIVE SO NS 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244NSRE4 ACTIVE SO NS 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244NSRG4 ACTIVE SO NS 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244PW ACTIVE TSSOP PW 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244PWE4 ACTIVE TSSOP PW 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244PWG4 ACTIVE TSSOP PW 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244PWLE OBSOLETE TSSOP PW 20 TBD Call TI Call TI -40 to 85 SN74HC244PWR ACTIVE TSSOP PW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244PWRE4 ACTIVE TSSOP PW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 PACKAGE OPTION ADDENDUM www.ti.com 22-Feb-2014 Addendum-Page 3 Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples SN74HC244PWRG4 ACTIVE TSSOP PW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244PWT ACTIVE TSSOP PW 20 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244PWTE4 ACTIVE TSSOP PW 20 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244PWTG4 ACTIVE TSSOP PW 20 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 HC244 SN74HC244QDWRG4Q1 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM HC244Q SNJ54HC244FK ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 84096012A SNJ54HC 244FK SNJ54HC244J ACTIVE CDIP J 20 1 TBD A42 N / A for Pkg Type -55 to 125 8409601RA SNJ54HC244J SNJ54HC244W ACTIVE CFP W 20 1 TBD A42 N / A for Pkg Type -55 to 125 8409601SA SNJ54HC244W (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. PACKAGE OPTION ADDENDUM www.ti.com 22-Feb-2014 Addendum-Page 4 (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF SN54HC244, SN54HC244-SP, SN74HC244 : • Catalog: SN74HC244, SN54HC244 • Automotive: SN74HC244-Q1, SN74HC244-Q1 • Enhanced Product: SN74HC244-EP, SN74HC244-EP • Military: SN54HC244 • Space: SN54HC244-SP NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects • Enhanced Product - Supports Defense, Aerospace and Medical Applications • Military - QML certified for Military and Defense Applications • Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant SN74HC244DBR SSOP DB 20 2000 330.0 16.4 8.2 7.5 2.5 12.0 16.0 Q1 SN74HC244DWR SOIC DW 20 2000 330.0 24.4 10.8 13.3 2.7 12.0 24.0 Q1 SN74HC244DWRG4 SOIC DW 20 2000 330.0 24.4 10.8 13.3 2.7 12.0 24.0 Q1 SN74HC244NSR SO NS 20 2000 330.0 24.4 8.2 13.0 2.5 12.0 24.0 Q1 SN74HC244PWR TSSOP PW 20 2000 330.0 16.4 6.95 7.1 1.6 8.0 16.0 Q1 SN74HC244PWT TSSOP PW 20 250 330.0 16.4 6.95 7.1 1.6 8.0 16.0 Q1 SN74HC244QDWRG4Q1 SOIC DW 20 2000 330.0 24.4 10.8 13.3 2.7 12.0 24.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 20-Dec-2013 Pack Materials-Page 1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) SN74HC244DBR SSOP DB 20 2000 367.0 367.0 38.0 SN74HC244DWR SOIC DW 20 2000 600.0 144.0 84.0 SN74HC244DWRG4 SOIC DW 20 2000 367.0 367.0 45.0 SN74HC244NSR SO NS 20 2000 367.0 367.0 45.0 SN74HC244PWR TSSOP PW 20 2000 367.0 367.0 38.0 SN74HC244PWT TSSOP PW 20 250 367.0 367.0 38.0 SN74HC244QDWRG4Q1 SOIC DW 20 2000 367.0 367.0 45.0 PACKAGE MATERIALS INFORMATION www.ti.com 20-Dec-2013 Pack Materials-Page 2 MECHANICAL DATA MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE 4040065 /E 12/01 28 PINS SHOWN Gage Plane 8,20 7,40 0,55 0,95 0,25 38 12,90 12,30 28 10,50 24 8,50 Seating Plane 7,90 9,90 30 10,50 9,90 0,38 5,60 5,00 15 0,22 14 A 28 1 16 20 6,50 6,50 14 0,05 MIN 5,90 5,90 DIM A MAX A MIN PINS ** 2,00 MAX 6,90 7,50 0,65 0,15 M 0°–8° 0,10 0,09 0,25 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated SLLS047L − FEBRUARY 1989 − REVISED MARCH 2004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 Meets or Exceeds TIA/EIA-232-F and ITU Recommendation V.28 Operates From a Single 5-V Power Supply With 1.0-F Charge-Pump Capacitors Operates Up To 120 kbit/s Two Drivers and Two Receivers ±30-V Input Levels Low Supply Current . . . 8 mA Typical ESD Protection Exceeds JESD 22 − 2000-V Human-Body Model (A114-A) Upgrade With Improved ESD (15-kV HBM) and 0.1-F Charge-Pump Capacitors is Available With the MAX202 Applications − TIA/EIA-232-F, Battery-Powered Systems, Terminals, Modems, and Computers description/ordering information The MAX232 is a dual driver/receiver that includes a capacitive voltage generator to supply TIA/EIA-232-F voltage levels from a single 5-V supply. Each receiver converts TIA/EIA-232-F inputs to 5-V TTL/CMOS levels. These receivers have a typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept ±30-V inputs. Each driver converts TTL/CMOS input levels into TIA/EIA-232-F levels. The driver, receiver, and voltage-generator functions are available as cells in the Texas Instruments LinASIC library. ORDERING INFORMATION TA PACKAGE† ORDERABLE PART NUMBER TOP-SIDE MARKING PDIP (N) Tube of 25 MAX232N MAX232N SOIC (D) Tube of 40 MAX232D MAX232 0°C to 70°C Reel of 2500 MAX232DR SOIC (DW) Tube of 40 MAX232DW MAX232 Reel of 2000 MAX232DWR SOP (NS) Reel of 2000 MAX232NSR MAX232 PDIP (N) Tube of 25 MAX232IN MAX232IN SOIC (D) Tube of 40 MAX232ID MAX232I −40°C to 85°C Reel of 2500 MAX232IDR 40 85 SOIC (DW) Tube of 40 MAX232IDW MAX232I Reel of 2000 MAX232IDWR † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. !"# $"%&! '#( Copyright 2004, Texas Instruments Incorporated '"! ! $#!! $# )# # #* "# '' +,( '"! $!#- '# #!#&, !&"'# #- && $##( Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. LinASIC is a trademark of Texas Instruments. 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 C1+ VS+ C1− C2+ C2− VS− T2OUT R2IN VCC GND T1OUT R1IN R1OUT T1IN T2IN R2OUT MAX232 . . . D, DW, N, OR NS PACKAGE MAX232I . . . D, DW, OR N PACKAGE (TOP VIEW) SLLS047L − FEBRUARY 1989 − REVISED MARCH 2004 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Function Tables EACH DRIVER INPUT TIN OUTPUT TOUT L H H L H = high level, L = low level EACH RECEIVER INPUT RIN OUTPUT ROUT L H H L H = high level, L = low level logic diagram (positive logic) T1IN T1OUT R1OUT R1IN T2IN T2OUT R2OUT R2IN 11 10 12 9 14 7 13 8 SLLS047L − FEBRUARY 1989 − REVISED MARCH 2004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Input supply voltage range, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V Positive output supply voltage range, VS+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC − 0.3 V to 15 V Negative output supply voltage range, VS− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to −15 V Input voltage range, VI: Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 V Output voltage range, VO: T1OUT, T2OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VS− − 0.3 V to VS+ + 0.3 V R1OUT, R2OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V Short-circuit duration: T1OUT, T2OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited Package thermal impedance, θJA (see Notes 2 and 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W DW package . . . . . . . . . . . . . . . . . . . . . . . . . . 57°C/W N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . 64°C/W Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltages are with respect to network GND. 2. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) − TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. 3. The package thermal impedance is calculated in accordance with JESD 51-7. recommended operating conditions MIN NOM MAX UNIT VCC Supply voltage 4.5 5 5.5 V VIH High-level input voltage (T1IN,T2IN) 2 V VIL Low-level input voltage (T1IN, T2IN) 0.8 V R1IN, R2IN Receiver input voltage ±30 V TA Operating free-air temperature MAX232 0 70 °C MAX232I −40 85 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note 4 and Figure 4) PARAMETER TEST CONDITIONS MIN TYP‡ MAX UNIT ICC Supply current VCC = 5.5 V, TA = 25°C All outputs open, 8 10 mA ‡ All typical values are at VCC = 5 V and TA = 25°C. NOTE 4: Test conditions are C1−C4 = 1 μF at VCC = 5 V ± 0.5 V. SLLS047L − FEBRUARY 1989 − REVISED MARCH 2004 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 DRIVER SECTION electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (see Note 4) PARAMETER TEST CONDITIONS MIN TYP† MAX UNIT VOH High-level output voltage T1OUT, T2OUT RL = 3 kΩ to GND 5 7 V VOL Low-level output voltage‡ T1OUT, T2OUT RL = 3 kΩ to GND −7 −5 V ro Output resistance T1OUT, T2OUT VS+ = VS− = 0, VO = ±2 V 300 Ω IOS§ Short-circuit output current T1OUT, T2OUT VCC = 5.5 V, VO = 0 ±10 mA IIS Short-circuit input current T1IN, T2IN VI = 0 200 μA † All typical values are at VCC = 5 V, TA = 25°C. ‡ The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only. § Not more than one output should be shorted at a time. NOTE 4: Test conditions are C1−C4 = 1 μF at VCC = 5 V ± 0.5 V. switching characteristics, VCC = 5 V, TA = 25°C (see Note 4) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT SR Driver slew rate RL = 3 kΩ to 7 kΩ, See Figure 2 30 V/μs SR(t) Driver transition region slew rate See Figure 3 3 V/μs Data rate One TOUT switching 120 kbit/s NOTE 4: Test conditions are C1−C4 = 1 μF at VCC = 5 V ± 0.5 V. RECEIVER SECTION electrical characteristics over recommended ranges of supply voltage and operating free-air temperature range (see Note 4) PARAMETER TEST CONDITIONS MIN TYP† MAX UNIT VOH High-level output voltage R1OUT, R2OUT IOH = −1 mA 3.5 V VOL Low-level output voltage‡ R1OUT, R2OUT IOL = 3.2 mA 0.4 V VIT+ Receiver positive-going input threshold voltage R1IN, R2IN VCC = 5 V, TA = 25°C 1.7 2.4 V VIT− Receiver negative-going input threshold voltage R1IN, R2IN VCC = 5 V, TA = 25°C 0.8 1.2 V Vhys Input hysteresis voltage R1IN, R2IN VCC = 5 V 0.2 0.5 1 V ri Receiver input resistance R1IN, R2IN VCC = 5, TA = 25°C 3 5 7 kΩ † All typical values are at VCC = 5 V, TA = 25°C. ‡ The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage levels only. NOTE 4: Test conditions are C1−C4 = 1 μF at VCC = 5 V ± 0.5 V. switching characteristics, VCC = 5 V, TA = 25°C (see Note 4 and Figure 1) PARAMETER TYP UNIT tPLH(R) Receiver propagation delay time, low- to high-level output 500 ns tPHL(R) Receiver propagation delay time, high- to low-level output 500 ns NOTE 4: Test conditions are C1−C4 = 1 μF at VCC = 5 V ± 0.5 V. SLLS047L − FEBRUARY 1989 − REVISED MARCH 2004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 PARAMETER MEASUREMENT INFORMATION ≤10 ns VCC R1IN or R2IN R1OUT or R2OUT RL = 1.3 kΩ See Note C CL = 50 pF (see Note B) TEST CIRCUIT ≤10 ns Input Output tPHL tPLH 1.5 V VOL VOH 0 V 3 V 10% 90% 50% 500 ns WAVEFORMS 1.5 V 90% 50% 10% NOTES: A. The pulse generator has the following characteristics: ZO = 50 Ω, duty cycle ≤ 50%. B. CL includes probe and jig capacitance. C. All diodes are 1N3064 or equivalent. Pulse Generator (see Note A) Figure 1. Receiver Test Circuit and Waveforms for tPHL and tPLH Measurements SLLS047L − FEBRUARY 1989 − REVISED MARCH 2004 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PARAMETER MEASUREMENT INFORMATION T1IN or T2IN T1OUT or T2OUT CL = 10 pF (see Note B) TEST CIRCUIT ≤10 ns ≤10 ns Input Output tPHL tPLH VOL VOH 0 V 3 V 10% 90% 50% 5 μs WAVEFORMS 90% 50% 10% RL 90% 10% 90% 10% t tTLH THL SR 0.8 (VOH – VOL) tTLH or 0.8 (VOL – VOH) tTHL NOTES: A. The pulse generator has the following characteristics: ZO = 50 Ω, duty cycle ≤ 50%. B. CL includes probe and jig capacitance. Pulse Generator (see Note A) EIA-232 Output Figure 2. Driver Test Circuit and Waveforms for tPHL and tPLH Measurements (5-μs Input) EIA-232 Output −3 V 3 V −3 V 3 V 3 kΩ 1.5 V 10% 90% WAVEFORMS 20 μs 1.5 V 90% 10% VOH VOL t tTLH THL ≤10 ns ≤10 ns TEST CIRCUIT CL = 2.5 nF Pulse Generator (see Note A) Input Output SR 6 V tTHL or tTLH NOTE A: The pulse generator has the following characteristics: ZO = 50 Ω, duty cycle ≤ 50%. Figure 3. Test Circuit and Waveforms for tTHL and tTLH Measurements (20-μs Input) SLLS047L − FEBRUARY 1989 − REVISED MARCH 2004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 APPLICATION INFORMATION 1 μF 1 μF VS+ VS− 2 6 14 7 13 8 C1+ C1− C2+ C2− 1 3 4 5 11 10 12 9 GND 15 0 V VCC 16 5 V EIA-232 Output EIA-232 Output EIA-232 Input EIA-232 Input 1 μF 8.5 V −8.5 V 1 μF From CMOS or TTL To CMOS or TTL CBYPASS = 1 μF C1 C2 C3† C4 † C3 can be connected to VCC or GND. NOTES: A. Resistor values shown are nominal. B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown. In addition to the 1-μF capacitors shown, the MAX202 can operate with 0.1-μF capacitors. + + − Figure 4. Typical Operating Circuit PACKAGE OPTION ADDENDUM www.ti.com 18-Oct-2013 Addendum-Page 1 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples MAX232D ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MAX232 MAX232DE4 ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MAX232 MAX232DG4 ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MAX232 MAX232DR ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 MAX232 MAX232DRE4 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MAX232 MAX232DRG4 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MAX232 MAX232DW ACTIVE SOIC DW 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MAX232 MAX232DWE4 ACTIVE SOIC DW 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MAX232 MAX232DWG4 ACTIVE SOIC DW 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MAX232 MAX232DWR ACTIVE SOIC DW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 MAX232 MAX232DWRE4 ACTIVE SOIC DW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MAX232 MAX232DWRG4 ACTIVE SOIC DW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MAX232 MAX232ID ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MAX232I MAX232IDE4 ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MAX232I MAX232IDG4 ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MAX232I MAX232IDR ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MAX232I MAX232IDRE4 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MAX232I PACKAGE OPTION ADDENDUM www.ti.com 18-Oct-2013 Addendum-Page 2 Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples MAX232IDRG4 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MAX232I MAX232IDW ACTIVE SOIC DW 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MAX232I MAX232IDWE4 ACTIVE SOIC DW 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MAX232I MAX232IDWG4 ACTIVE SOIC DW 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MAX232I MAX232IDWR ACTIVE SOIC DW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 85 MAX232I MAX232IDWRE4 ACTIVE SOIC DW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MAX232I MAX232IDWRG4 ACTIVE SOIC DW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MAX232I MAX232IN ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 MAX232IN MAX232INE4 ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 MAX232IN MAX232N ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 MAX232N MAX232NE4 ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 MAX232N MAX232NSR ACTIVE SO NS 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MAX232 MAX232NSRE4 ACTIVE SO NS 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MAX232 MAX232NSRG4 ACTIVE SO NS 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MAX232 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. PACKAGE OPTION ADDENDUM www.ti.com 18-Oct-2013 Addendum-Page 3 (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant MAX232DR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 MAX232DR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 MAX232DR SOIC D 16 2500 330.0 16.8 6.5 10.3 2.1 8.0 16.0 Q1 MAX232DRG4 SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 MAX232DRG4 SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 MAX232DWR SOIC DW 16 2000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1 MAX232DWRG4 SOIC DW 16 2000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1 MAX232IDR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 MAX232IDWR SOIC DW 16 2000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1 MAX232IDWRG4 SOIC DW 16 2000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 5-Oct-2013 Pack Materials-Page 1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MAX232DR SOIC D 16 2500 367.0 367.0 38.0 MAX232DR SOIC D 16 2500 333.2 345.9 28.6 MAX232DR SOIC D 16 2500 364.0 364.0 27.0 MAX232DRG4 SOIC D 16 2500 333.2 345.9 28.6 MAX232DRG4 SOIC D 16 2500 367.0 367.0 38.0 MAX232DWR SOIC DW 16 2000 366.0 364.0 50.0 MAX232DWRG4 SOIC DW 16 2000 367.0 367.0 38.0 MAX232IDR SOIC D 16 2500 333.2 345.9 28.6 MAX232IDWR SOIC DW 16 2000 366.0 364.0 50.0 MAX232IDWRG4 SOIC DW 16 2000 367.0 367.0 38.0 PACKAGE MATERIALS INFORMATION www.ti.com 5-Oct-2013 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated LM555 www.ti.com SNAS548C –FEBRUARY 2000–REVISED MARCH 2013 LM555 Timer Check for Samples: LM555 1FEATURES DESCRIPTION The LM555 is a highly stable device for generating 2• Direct Replacement for SE555/NE555 accurate time delays or oscillation. Additional • Timing from Microseconds through Hours terminals are provided for triggering or resetting if • Operates in Both Astable and Monostable desired. In the time delay mode of operation, the time Modes is precisely controlled by one external resistor and • Adjustable Duty Cycle capacitor. For astable operation as an oscillator, the free running frequency and duty cycle are accurately • Output Can Source or Sink 200 mA controlled with two external resistors and one • Output and Supply TTL Compatible capacitor. The circuit may be triggered and reset on • Temperature Stability Better than 0.005% per falling waveforms, and the output circuit can source °C or sink up to 200mA or drive TTL circuits. • Normally On and Normally Off Output • Available in 8-pin VSSOP Package APPLICATIONS • Precision Timing • Pulse Generation • Sequential Timing • Time Delay Generation • Pulse Width Modulation • Pulse Position Modulation • Linear Ramp Generator Schematic Diagram 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. 2All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Copyright © 2000–2013, Texas Instruments Incorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. LM555 SNAS548C –FEBRUARY 2000–REVISED MARCH 2013 www.ti.com Connection Diagram Top View Figure 1. PDIP, SOIC, and VSSOP Packages These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. Absolute Maximum Ratings(1) (2) Supply Voltage +18V Power Dissipation (3) LM555CM, LM555CN(4) 1180 mW LM555CMM 613 mW Operating Temperature Ranges LM555C 0°C to +70°C Storage Temperature Range −65°C to +150°C Soldering Information PDIP Package Soldering (10 Seconds) 260°C Small Outline Packages (SOIC and VSSOP) Vapor Phase (60 Seconds) 215°C Infrared (15 Seconds) 220°C (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensures specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance. (2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications. (3) For operating at elevated temperatures the device must be derated above 25°C based on a +150°C maximum junction temperature and a thermal resistance of 106°C/W (PDIP), 170°C/W (S0IC-8), and 204°C/W (VSSOP) junction to ambient. (4) Refer to RETS555X drawing of military LM555H and LM555J versions for specifications. 2 Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM555 LM555 www.ti.com SNAS548C –FEBRUARY 2000–REVISED MARCH 2013 Electrical Characteristics (1) (2) (TA = 25°C, VCC = +5V to +15V, unless otherwise specified) Limits Parameter Test Conditions LM555C Units Min Typ Max Supply Voltage 4.5 16 V Supply Current VCC = 5V, RL = ∞ 3 6 VCC = 15V, RL = ∞ 10 15 mA (Low State) (3) Timing Error, Monostable Initial Accuracy 1 % Drift with Temperature RA = 1k to 100kΩ, 50 ppm/°C C = 0.1μF, (4) Accuracy over Temperature 1.5 % Drift with Supply 0.1 %/V Timing Error, Astable Initial Accuracy 2.25 % Drift with Temperature RA, RB = 1k to 100kΩ, 150 ppm/°C C = 0.1μF, (4) Accuracy over Temperature 3.0 % Drift with Supply 0.30 %/V Threshold Voltage 0.667 x VCC Trigger Voltage VCC = 15V 5 V VCC = 5V 1.67 V Trigger Current 0.5 0.9 μA Reset Voltage 0.4 0.5 1 V Reset Current 0.1 0.4 mA Threshold Current (5) 0.1 0.25 μA Control Voltage Level VCC = 15V 9 10 11 V VCC = 5V 2.6 3.33 4 Pin 7 Leakage Output High 1 100 nA Pin 7 Sat (6) Output Low VCC = 15V, I7 = 15mA 180 mV Output Low VCC = 4.5V, I7 = 4.5mA 80 200 mV Output Voltage Drop (Low) VCC = 15V ISINK = 10mA 0.1 0.25 V ISINK = 50mA 0.4 0.75 V ISINK = 100mA 2 2.5 V ISINK = 200mA 2.5 V VCC = 5V ISINK = 8mA V ISINK = 5mA 0.25 0.35 V (1) All voltages are measured with respect to the ground pin, unless otherwise specified. (2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which ensures specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance. (3) Supply current when output high typically 1 mA less at VCC = 5V. (4) Tested at VCC = 5V and VCC = 15V. (5) This will determine the maximum value of RA + RB for 15V operation. The maximum total (RA + RB) is 20MΩ. (6) No protection against excessive pin 7 current is necessary providing the package dissipation rating will not be exceeded. Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 3 Product Folder Links: LM555 LM555 SNAS548C –FEBRUARY 2000–REVISED MARCH 2013 www.ti.com Electrical Characteristics (1) (2) (continued) (TA = 25°C, VCC = +5V to +15V, unless otherwise specified) Limits Parameter Test Conditions LM555C Units Min Typ Max Output Voltage Drop (High) ISOURCE = 200mA, VCC = 15V 12.5 V ISOURCE = 100mA, VCC = 15V 12.75 13.3 V VCC = 5V 2.75 3.3 V Rise Time of Output 100 ns Fall Time of Output 100 ns 4 Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM555 LM555 www.ti.com SNAS548C –FEBRUARY 2000–REVISED MARCH 2013 Typical Performance Characteristics Minimum Pulse Width Supply Current vs. Required for Triggering Supply Voltage Figure 2. Figure 3. High Output Voltage vs. Low Output Voltage vs. Output Source Current Output Sink Current Figure 4. Figure 5. Low Output Voltage vs. Low Output Voltage vs. Output Sink Current Output Sink Current Figure 6. Figure 7. Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 5 Product Folder Links: LM555 LM555 SNAS548C –FEBRUARY 2000–REVISED MARCH 2013 www.ti.com Typical Performance Characteristics (continued) Output Propagation Delay vs. Output Propagation Delay vs. Voltage Level of Trigger Pulse Voltage Level of Trigger Pulse Figure 8. Figure 9. Discharge Transistor (Pin 7) Discharge Transistor (Pin 7) Voltage Voltage vs. vs. Sink Current Sink Current Figure 10. Figure 11. 6 Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM555 LM555 www.ti.com SNAS548C –FEBRUARY 2000–REVISED MARCH 2013 APPLICATIONS INFORMATION MONOSTABLE OPERATION In this mode of operation, the timer functions as a one-shot (Figure 12). The external capacitor is initially held discharged by a transistor inside the timer. Upon application of a negative trigger pulse of less than 1/3 VCC to pin 2, the flip-flop is set which both releases the short circuit across the capacitor and drives the output high. Figure 12. Monostable The voltage across the capacitor then increases exponentially for a period of t = 1.1 RA C, at the end of which time the voltage equals 2/3 VCC. The comparator then resets the flip-flop which in turn discharges the capacitor and drives the output to its low state. Figure 13 shows the waveforms generated in this mode of operation. Since the charge and the threshold level of the comparator are both directly proportional to supply voltage, the timing interval is independent of supply. VCC = 5V Top Trace: Input 5V/Div. TIME = 0.1 ms/DIV. Middle Trace: Output 5V/Div. RA = 9.1kΩ Bottom Trace: Capacitor Voltage 2V/Div. C = 0.01μF Figure 13. Monostable Waveforms During the timing cycle when the output is high, the further application of a trigger pulse will not effect the circuit so long as the trigger input is returned high at least 10μs before the end of the timing interval. However the circuit can be reset during this time by the application of a negative pulse to the reset terminal (pin 4). The output will then remain in the low state until a trigger pulse is again applied. When the reset function is not in use, it is recommended that it be connected to VCC to avoid any possibility of false triggering. Figure 14 is a nomograph for easy determination of R, C values for various time delays. NOTE In monostable operation, the trigger should be driven high before the end of timing cycle. Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 7 Product Folder Links: LM555 LM555 SNAS548C –FEBRUARY 2000–REVISED MARCH 2013 www.ti.com Figure 14. Time Delay ASTABLE OPERATION If the circuit is connected as shown in Figure 15 (pins 2 and 6 connected) it will trigger itself and free run as a multivibrator. The external capacitor charges through RA + RB and discharges through RB. Thus the duty cycle may be precisely set by the ratio of these two resistors. Figure 15. Astable In this mode of operation, the capacitor charges and discharges between 1/3 VCC and 2/3 VCC. As in the triggered mode, the charge and discharge times, and therefore the frequency are independent of the supply voltage. Figure 16 shows the waveforms generated in this mode of operation. VCC = 5V Top Trace: Output 5V/Div. TIME = 20μs/DIV. Bottom Trace: Capacitor Voltage 1V/Div. RA = 3.9kΩ RB = 3kΩ C = 0.01μF Figure 16. Astable Waveforms 8 Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM555 LM555 www.ti.com SNAS548C –FEBRUARY 2000–REVISED MARCH 2013 The charge time (output high) is given by: t1 = 0.693 (RA + RB) C (1) And the discharge time (output low) by: t2 = 0.693 (RB) C (2) Thus the total period is: T = t1 + t2 = 0.693 (RA +2RB) C (3) The frequency of oscillation is: (4) Figure 17 may be used for quick determination of these RC values. The duty cycle is: (5) Figure 17. Free Running Frequency FREQUENCY DIVIDER The monostable circuit of Figure 12 can be used as a frequency divider by adjusting the length of the timing cycle. Figure 18 shows the waveforms generated in a divide by three circuit. VCC = 5V Top Trace: Input 4V/Div. TIME = 20μs/DIV. Middle Trace: Output 2V/Div. RA = 9.1kΩ Bottom Trace: Capacitor 2V/Div. C = 0.01μF Figure 18. Frequency Divider PULSE WIDTH MODULATOR When the timer is connected in the monostable mode and triggered with a continuous pulse train, the output pulse width can be modulated by a signal applied to pin 5. Figure 19 shows the circuit, and in Figure 20 are some waveform examples. Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 9 Product Folder Links: LM555 LM555 SNAS548C –FEBRUARY 2000–REVISED MARCH 2013 www.ti.com Figure 19. Pulse Width Modulator VCC = 5V Top Trace: Modulation 1V/Div. TIME = 0.2 ms/DIV. Bottom Trace: Output Voltage 2V/Div. RA = 9.1kΩ C = 0.01μF Figure 20. Pulse Width Modulator PULSE POSITION MODULATOR This application uses the timer connected for astable operation, as in Figure 21, with a modulating signal again applied to the control voltage terminal. The pulse position varies with the modulating signal, since the threshold voltage and hence the time delay is varied. Figure 22 shows the waveforms generated for a triangle wave modulation signal. Figure 21. Pulse Position Modulator 10 Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM555 LM555 www.ti.com SNAS548C –FEBRUARY 2000–REVISED MARCH 2013 VCC = 5V Top Trace: Modulation Input 1V/Div. TIME = 0.1 ms/DIV. Bottom Trace: Output 2V/Div. RA = 3.9kΩ RB = 3kΩ C = 0.01μF Figure 22. Pulse Position Modulator LINEAR RAMP When the pullup resistor, RA, in the monostable circuit is replaced by a constant current source, a linear ramp is generated. Figure 23 shows a circuit configuration that will perform this function. Figure 23. Figure 24 shows waveforms generated by the linear ramp. The time interval is given by: (6) VBE ≃ 0.6V (7) Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 11 Product Folder Links: LM555 LM555 SNAS548C –FEBRUARY 2000–REVISED MARCH 2013 www.ti.com VCC = 5V Top Trace: Input 3V/Div. TIME = 20μs/DIV. Middle Trace: Output 5V/Div. R1 = 47kΩ Bottom Trace: Capacitor Voltage 1V/Div. R2 = 100kΩ RE = 2.7 kΩ C = 0.01 μF Figure 24. Linear Ramp 50% DUTY CYCLE OSCILLATOR For a 50% duty cycle, the resistors RA and RB may be connected as in Figure 25. The time period for the output high is the same as previous, t1 = 0.693 RA C. For the output low it is t2 = (8) Thus the frequency of oscillation is: (9) Figure 25. 50% Duty Cycle Oscillator Note that this circuit will not oscillate if RB is greater than 1/2 RA because the junction of RA and RB cannot bring pin 2 down to 1/3 VCC and trigger the lower comparator. ADDITIONAL INFORMATION Adequate power supply bypassing is necessary to protect associated circuitry. Minimum recommended is 0.1μF in parallel with 1μF electrolytic. Lower comparator storage time can be as long as 10μs when pin 2 is driven fully to ground for triggering. This limits the monostable pulse width to 10μs minimum. Delay time reset to output is 0.47μs typical. Minimum reset pulse width must be 0.3μs, typical. Pin 7 current switches within 30ns of the output (pin 3) voltage. 12 Submit Documentation Feedback Copyright © 2000–2013, Texas Instruments Incorporated Product Folder Links: LM555 LM555 www.ti.com SNAS548C –FEBRUARY 2000–REVISED MARCH 2013 REVISION HISTORY Changes from Revision B (March 2013) to Revision C Page • Changed layout of National Data Sheet to TI format .......................................................................................................... 12 Copyright © 2000–2013, Texas Instruments Incorporated Submit Documentation Feedback 13 Product Folder Links: LM555 PACKAGE OPTION ADDENDUM www.ti.com 27-Mar-2014 Addendum-Page 1 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples LM555CM NRND SOIC D 8 95 TBD Call TI Call TI 0 to 70 LM 555CM LM555CM/NOPB ACTIVE SOIC D 8 95 Green (RoHS & no Sb/Br) SN | CU SN Level-1-260C-UNLIM 0 to 70 LM 555CM LM555CMM NRND VSSOP DGK 8 1000 TBD Call TI Call TI 0 to 70 Z55 LM555CMM/NOPB ACTIVE VSSOP DGK 8 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM 0 to 70 Z55 LM555CMMX/NOPB ACTIVE VSSOP DGK 8 3500 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM 0 to 70 Z55 LM555CMX NRND SOIC D 8 2500 TBD Call TI Call TI 0 to 70 LM 555CM LM555CMX/NOPB ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) SN | CU SN Level-1-260C-UNLIM 0 to 70 LM 555CM LM555CN LIFEBUY PDIP P 8 40 TBD Call TI Call TI 0 to 70 LM 555CN LM555CN/NOPB ACTIVE PDIP P 8 40 Green (RoHS & no Sb/Br) CU SN Level-1-NA-UNLIM 0 to 70 LM 555CN MC1455P1 LIFEBUY PDIP P 8 40 TBD Call TI Call TI 0 to 70 LM 555CN NE555V LIFEBUY PDIP P 8 40 TBD Call TI Call TI 0 to 70 LM 555CN (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. PACKAGE OPTION ADDENDUM www.ti.com 27-Mar-2014 Addendum-Page 2 Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant LM555CMM VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LM555CMM/NOPB VSSOP DGK 8 1000 178.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LM555CMMX/NOPB VSSOP DGK 8 3500 330.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 LM555CMX SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 LM555CMX/NOPB SOIC D 8 2500 330.0 12.4 6.5 5.4 2.0 8.0 12.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 26-Mar-2013 Pack Materials-Page 1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) LM555CMM VSSOP DGK 8 1000 210.0 185.0 35.0 LM555CMM/NOPB VSSOP DGK 8 1000 210.0 185.0 35.0 LM555CMMX/NOPB VSSOP DGK 8 3500 367.0 367.0 35.0 LM555CMX SOIC D 8 2500 367.0 367.0 35.0 LM555CMX/NOPB SOIC D 8 2500 367.0 367.0 35.0 PACKAGE MATERIALS INFORMATION www.ti.com 26-Mar-2013 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 Featuring Unitrode L293 and L293D Products Now From Texas Instruments Wide Supply-Voltage Range: 4.5 V to 36 V Separate Input-Logic Supply Internal ESD Protection Thermal Shutdown High-Noise-Immunity Inputs Functionally Similar to SGS L293 and SGS L293D Output Current 1 A Per Channel (600 mA for L293D) Peak Output Current 2 A Per Channel (1.2 A for L293D) Output Clamp Diodes for Inductive Transient Suppression (L293D) description/ordering information The L293 and L293D are quadruple high-current half-H drivers. The L293 is designed to provide bidirectional drive currents of up to 1 A at voltages from 4.5 V to 36 V. The L293D is designed to provide bidirectional drive currents of up to 600-mA at voltages from 4.5 V to 36 V. Both devices are designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well as other high-current/high-voltage loads in positive-supply applications. All inputs are TTL compatible. Each output is a complete totem-pole drive circuit, with a Darlington transistor sink and a pseudo- Darlington source. Drivers are enabled in pairs, with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN. When an enable input is high, the associated drivers are enabled, and their outputs are active and in phase with their inputs. When the enable input is low, those drivers are disabled, and their outputs are off and in the high-impedance state. With the proper data inputs, each pair of drivers forms a full-H (or bridge) reversible drive suitable for solenoid or motor applications. ORDERING INFORMATION TA PACKAGE† ORDERABLE PART NUMBER TOP-SIDE MARKING HSOP (DWP) Tube of 20 L293DWP L293DWP 0°C to 70°C PDIP (N) Tube of 25 L293N L293N PDIP (NE) Tube of 25 L293NE L293NE Tube of 25 L293DNE L293DNE † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. PRODUCTION DATA information is current as of publication date. Copyright 2004, Texas Instruments Incorporated Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. HEAT SINK AND GROUND HEAT SINK AND GROUND 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 1,2EN 1A 1Y 2Y 2A VCC2 VCC1 4A 4Y 3Y 3A 3,4EN L293 . . . N OR NE PACKAGE L293D . . . NE PACKAGE (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1,2EN 1A 1Y NC NC NC NC NC 2Y 2A VCC2 VCC1 4A 4Y NC NC NC NC NC 3Y 3A 3,4EN L293 . . . DWP PACKAGE (TOP VIEW) HEAT SINK AND GROUND HEAT SINK AND GROUND L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 description/ordering information (continued) On the L293, external high-speed output clamp diodes should be used for inductive transient suppression. A VCC1 terminal, separate from VCC2, is provided for the logic inputs to minimize device power dissipation. The L293and L293D are characterized for operation from 0°C to 70°C. block diagram 1 0 3 4 5 6 7 8 9 10 11 12 13 14 15 1 16 1 2 0 1 1 0 2 4 3 M M M 1 0 1 0 1 0 VCC2 VCC1 NOTE: Output diodes are internal in L293D. FUNCTION TABLE (each driver) INPUTS† OUTPUT A EN Y H H H L H L X L Z H = high level, L = low level, X = irrelevant, Z = high impedance (off) † In the thermal shutdown mode, the output is in the high-impedance state, regardless of the input levels. L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 logic diagram ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ 2 1 7 10 9 15 3 6 11 14 1A 1,2EN 2A 3A 3,4EN 4A 1Y 2Y 3Y 4Y schematics of inputs and outputs (L293) Input VCC2 Output GND EQUIVALENT OF EACH INPUT TYPICAL OF ALL OUTPUTS VCC1 Current Source GND L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 schematics of inputs and outputs (L293D) Input VCC2 Output GND EQUIVALENT OF EACH INPUT TYPICAL OF ALL OUTPUTS VCC1 Current Source GND absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC1 (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V Output supply voltage, VCC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V Input voltage, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V Output voltage range, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −3 V to VCC2 + 3 V Peak output current, IO (nonrepetitive, t ≤ 5 ms): L293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 A Peak output current, IO (nonrepetitive, t ≤ 100 μs): L293D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1.2 A Continuous output current, IO: L293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 A Continuous output current, IO: L293D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±600 mA Package thermal impedance, θJA (see Notes 2 and 3): DWP package . . . . . . . . . . . . . . . . . . . . . . . TBD°C/W N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W NE package . . . . . . . . . . . . . . . . . . . . . . . . . TBD°C/W Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values are with respect to the network ground terminal. 2. Maximum power dissipation is a function of TJ(max), JA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) − TA)/JA. Operating at the absolute maximum TJ of 150°C can affect reliability. 3. The package thermal impedance is calculated in accordance with JESD 51-7. L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 recommended operating conditions MIN MAX UNIT Supply voltage VCC1 4.5 7 V VCC2 VCC1 36 V High level input voltage VCC1 ≤ 7 V 2.3 VCC1 V VIH High-VCC1 ≥ 7 V 2.3 7 V VIL Low-level output voltage −0.3† 1.5 V TA Operating free-air temperature 0 70 °C † The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for logic voltage levels. electrical characteristics, VCC1 = 5 V, VCC2 = 24 V, TA = 25°C PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VOH High-level output voltage L293: IOH = −1 A L293D: IOH = − 0.6 A VCC2 − 1.8 VCC2 − 1.4 V VOL Low-level output voltage L293: IOL = 1 A L293D: IOL = 0.6 A 1.2 1.8 V VOKH High-level output clamp voltage L293D: IOK = − 0.6 A VCC2 + 1.3 V VOKL Low-level output clamp voltage L293D: IOK = 0.6 A 1.3 V I High level input current A V 7 V 0.2 100 IIH High-A EN VI = 0.2 10 μA I Low level input current A V 0 −3 −10 IIL Low-A EN VI = −2 −100 μA All outputs at high level 13 22 ICC1 Logic supply current IO = 0 All outputs at low level 35 60 mA All outputs at high impedance 8 24 All outputs at high level 14 24 ICC2 Output supply current IO = 0 All outputs at low level 2 6 mA All outputs at high impedance 2 4 switching characteristics, VCC1 = 5 V, VCC2 = 24 V, TA = 25°C PARAMETER TEST CONDITIONS L293NE, L293DNE UNIT MIN TYP MAX tPLH Propagation delay time, low-to-high-level output from A input 800 ns tPHL Propagation delay time, high-to-low-level output from A input C = 30 pF See Figure 1 400 ns tTLH Transition time, low-to-high-level output CL pF, 300 ns tTHL Transition time, high-to-low-level output 300 ns switching characteristics, VCC1 = 5 V, VCC2 = 24 V, TA = 25°C PARAMETER TEST CONDITIONS L293DWP, L293N L293DN UNIT MIN TYP MAX tPLH Propagation delay time, low-to-high-level output from A input 750 ns tPHL Propagation delay time, high-to-low-level output from A input C = 30 pF See Figure 1 200 ns tTLH Transition time, low-to-high-level output CL pF, 100 ns tTHL Transition time, high-to-low-level output 350 ns L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PARAMETER MEASUREMENT INFORMATION Output CL = 30 pF (see Note A) VCC1 Input 3 V TEST CIRCUIT tf tr 3 V 0 tPHL VOH tTHL tTLH VOLTAGE WAVEFORMS tPLH Output Input VOL tw NOTES: A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: tr ≤ 10 ns, tf ≤ 10 ns, tw = 10 μs, PRR = 5 kHz, ZO = 50 Ω. Pulse Generator (see Note B) 5 V 24 V VCC2 A EN Y 90% 90% 50% 10% 50% 10% 90% 90% 50% 10% 50% 10% Figure 1. Test Circuit and Voltage Waveforms L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 APPLICATION INFORMATION 5 V 24 V 10 kΩ VCC1 VCC2 Control A Control B 4, 5, 12, 13 GND Thermal Shutdown Motor 16 8 3 6 11 14 4Y 3Y 2Y 1Y 1,2EN 1A 2A 3,4EN 3A 4A 15 10 9 7 2 1 Figure 2. Two-Phase Motor Driver (L293) L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 APPLICATION INFORMATION 5 V 24 V 10 kΩ VCC1 VCC2 16 8 1,2EN 1 1A 2 2A 7 3,4EN 9 3A 10 4A 15 Control A Control B 4, 5, 12, 13 GND Thermal Shutdown Motor 1Y 3 2Y 6 3Y 11 4Y 14 Figure 3. Two-Phase Motor Driver (L293D) L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 APPLICATION INFORMATION EN 3A M1 4A M2 H H Fast motor stop H Run H L Run L Fast motor stop L X Free-running motor stop X Free-running motor stop L = low, H = high, X = don’t care EN 1A 2A FUNCTION H L H Turn right H H L Turn left H L L Fast motor stop H H H Fast motor stop L X X Fast motor stop L = low, H = high, X = don’t care VCC2 SES5001 1/2 L293 4, 5, 12, 13 10 SES5001 VCC1 EN 11 15 14 16 9 M2 M1 3A 4A 8 Figure 4. DC Motor Controls (connections to ground and to supply voltage) GND 2 × SES5001 1/2 L293 4, 5, 12, 13 7 6 3 8 1 2 16 VCC2 2 × SES5001 2A 1A VCC1 EN M Figure 5. Bidirectional DC Motor Control GND L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 APPLICATION INFORMATION 3 4 5 6 7 8 1 2 9 10 11 12 13 14 15 16 + + + + D7 D8 D4 D3 L2 IL2 C1 D5 D1 D6 D2 VCC1 L293 IL1/IL2 = 300 mA 0.22 μF VCC2 L1 IL1 D1−D8 = SES5001 Figure 6. Bipolar Stepping-Motor Control mounting instructions The Rthj-amp of the L293 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board or to an external heat sink. Figure 9 shows the maximum package power PTOT and the θJA as a function of the side of two equal square copper areas having a thickness of 35 μm (see Figure 7). In addition, an external heat sink can be used (see Figure 8). During soldering, the pin temperature must not exceed 260°C, and the soldering time must not exceed 12 seconds. The external heatsink or printed circuit copper area must be connected to electrical ground. L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 APPLICATION INFORMATION Copper Area 35-μm Thickness Printed Circuit Board Figure 7. Example of Printed Circuit Board Copper Area (used as heat sink) 11.9 mm 17.0 mm 38.0 mm Figure 8. External Heat Sink Mounting Example (θJA = 25°C/W) L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008C − SEPTEMBER 1986 − REVISED NOVEMBER 2004 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 APPLICATION INFORMATION 3 1 0 2 0 10 20 P 4 MAXIMUM POWER AND JUNCTION vs THERMAL RESISTANCE 30 TOT − Power Dissipation − W 60 20 0 40 80 θJA − Thermal Resistance − °C/W 40 Side − mm Figure 9 θJA PTOT (TA = 70°C) 50 5 3 1 0 2 −50 0 50 4 MAXIMUM POWER DISSIPATION vs AMBIENT TEMPERATURE 100 TA − Ambient Temperature − °C With Infinite Heat Sink Free Air Heat Sink With θJA = 25°C/W Figure 10 150 PTOT − Power Dissipation − W PACKAGE OPTION ADDENDUM www.ti.com 26-Jan-2014 Addendum-Page 1 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples L293DNE ACTIVE PDIP NE 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 L293DNE L293DNEE4 ACTIVE PDIP NE 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 L293DNE L293DWP OBSOLETE SOIC DW 28 TBD Call TI Call TI 0 to 70 L293DWP L293DWPG4 OBSOLETE SOIC DW 28 TBD Call TI Call TI 0 to 70 L293DWPTR OBSOLETESO PowerPAD DWP 28 TBD Call TI Call TI 0 to 70 L293N OBSOLETE PDIP N 16 TBD Call TI Call TI 0 to 70 L293N L293NE ACTIVE PDIP NE 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 L293NE L293NEE4 ACTIVE PDIP NE 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 L293NE L293NG4 OBSOLETE PDIP N 16 TBD Call TI Call TI 0 to 70 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. PACKAGE OPTION ADDENDUM www.ti.com 26-Jan-2014 Addendum-Page 2 (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated 1 2 3 4 8 7 6 5 GND TRIG OUT RESET VCC DISCH THRES CONT 3 2 1 20 19 9 10 11 12 13 4 5 6 7 8 18 17 16 15 14 NC DISCH NC THRES NC NC TRIG NC OUT NC NC GND NC CONT NC VCC NC NC RESET NC NC – No internal connection NA555...D OR P PACKAGE NE555...D, P, PS, OR PW PACKAGE SA555...D OR P PACKAGE SE555...D, JG, OR P PACKAGE (TOP VIEW) SE555...FK PACKAGE (TOP VIEW) NA555, NE555, SA555, SE555 www.ti.com SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 PRECISION TIMERS Check for Samples: NA555, NE555, SA555, SE555 1FEATURES • Timing From Microseconds to Hours • Adjustable Duty Cycle • Astable or Monostable Operation • TTL-Compatible Output Can Sink or Source up to 200 mA DESCRIPTION/ORDERING INFORMATION These devices are precision timing circuits capable of producing accurate time delays or oscillation. In the time-delay or monostable mode of operation, the timed interval is controlled by a single external resistor and capacitor network. In the astable mode of operation, the frequency and duty cycle can be controlled independently with two external resistors and a single external capacitor. The threshold and trigger levels normally are two-thirds and one-third, respectively, of VCC. These levels can be altered by use of the control-voltage terminal. When the trigger input falls below the trigger level, the flip-flop is set, and the output goes high. If the trigger input is above the trigger level and the threshold input is above the threshold level, the flip-flop is reset and the output is low. The reset (RESET) input can override all other inputs and can be used to initiate a new timing cycle. When RESET goes low, the flip-flop is reset, and the output goes low. When the output is low, a low-impedance path is provided between discharge (DISCH) and ground. The output circuit is capable of sinking or sourcing current up to 200 mA. Operation is specified for supplies of 5 V to 15 V. With a 5-V supply, output levels are compatible with TTL inputs. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Copyright © 1973–2010, Texas Instruments Incorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not On products compliant to MIL-PRF-38535, all parameters are necessarily include testing of all parameters. tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. NA555, NE555, SA555, SE555 SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 www.ti.com ORDERING INFORMATION(1) T VTHRES MAX A V PACKAGE(2) ORDERABLE PART NUMBER TOP-SIDE MARKING CC = 15 V PDIP – P Tube of 50 NE555P NE555P Tube of 75 NE555D SOIC – D NE555 Reel of 2500 NE555DR 0°C to 70°C 11.2 V SOP – PS Reel of 2000 NE555PSR N555 Tube of 150 NE555PW TSSOP – PW N555 Reel of 2000 NE555PWR PDIP – P Tube of 50 SA555P SA555P –40°C to 85°C 11.2 V Tube of 75 SA555D SOIC – D SA555 Reel of 2000 SA555DR PDIP – P Tube of 50 NA555P NA555P –40°C to 105°C 11.2 V Tube of 75 NA555D SOIC – D NA555 Reel of 2000 NA555DR PDIP – P Tube of 50 SE555P SE555P Tube of 75 SE555D SOIC – D SE555D –55°C to 125°C 10.6 Reel of 2500 SE555DR CDIP – JG Tube of 50 SE555JG SE555JG LCCC – FK Tube of 55 SE555FK SE555FK (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. (2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. Table 1. FUNCTION TABLE RESET TRIGGER THRESHOLD OUTPUT DISCHARGE VOLTAGE(1) VOLTAGE(1) SWITCH Low Irrelevant Irrelevant Low On High <1/3 VCC Irrelevant High Off High >1/3 VCC >2/3 VCC Low On High >1/3 VCC <2/3 VCC As previously established (1) Voltage levels shown are nominal. 2 Submit Documentation Feedback Copyright © 1973–2010, Texas Instruments Incorporated Product Folder Link(s): NA555 NE555 SA555 SE555 1 S R R1 TRIG THRES VCC CONT RESET OUT DISCH GND ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ Î ÎÎÎ 8 4 5 6 2 1 7 3 NA555, NE555, SA555, SE555 www.ti.com SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 FUNCTIONAL BLOCK DIAGRAM A. Pin numbers shown are for the D, JG, P, PS, and PW packages. B. RESET can override TRIG, which can override THRES. Copyright © 1973–2010, Texas Instruments Incorporated Submit Documentation Feedback 3 Product Folder Link(s): NA555 NE555 SA555 SE555 NA555, NE555, SA555, SE555 SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 www.ti.com Absolute Maximum Ratings(1) over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT VCC Supply voltage(2) 18 V VI Input voltage CONT, RESET, THRES, TRIG VCC V IO Output current ±225 mA D package 97 P package 85 qJA Package thermal impedance(3) (4) °C/W PS package 95 PW package 149 FK package 5.61 qJC Package thermal impedance(5) (6) °C/W JG package 14.5 TJ Operating virtual junction temperature 150 °C Case temperature for 60 s FK package 260 °C Lead temperature 1, 6 mm (1/16 in) from case for 60 s JG package 300 °C Tstg Storage temperature range –65 150 °C (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) All voltage values are with respect to GND. (3) Maximum power dissipation is a function of TJ(max), qJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) - TA)/qJA. Operating at the absolute maximum TJ of 150°C can affect reliability. (4) The package thermal impedance is calculated in accordance with JESD 51-7. (5) Maximum power dissipation is a function of TJ(max), qJC, and TC. The maximum allowable power dissipation at any allowable case temperature is PD = (TJ(max) - TC)/qJC. Operating at the absolute maximum TJ of 150°C can affect reliability. (6) The package thermal impedance is calculated in accordance with MIL-STD-883. Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT NA555, NE555, SA555 4.5 16 VCC Supply voltage V SE555 4.5 18 VI Input voltage CONT, RESET, THRES, and TRIG VCC V IO Output current ±200 mA NA555 –40 105 NE555 0 70 TA Operating free-air temperature °C SA555 –40 85 SE555 –55 125 4 Submit Documentation Feedback Copyright © 1973–2010, Texas Instruments Incorporated Product Folder Link(s): NA555 NE555 SA555 SE555 NA555, NE555, SA555, SE555 www.ti.com SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 Electrical Characteristics VCC = 5 V to 15 V, TA = 25°C (unless otherwise noted) NA555 SE555 NE555 PARAMETER TEST CONDITIONS SA555 UNIT MIN TYP MAX MIN TYP MAX VCC = 15 V 9.4 10 10.6 8.8 10 11.2 THRES voltage level V VCC = 5 V 2.7 3.3 4 2.4 3.3 4.2 THRES current(1) 30 250 30 250 nA 4.8 5 5.2 4.5 5 5.6 VCC = 15 V TA = –55°C to 125°C 3 6 TRIG voltage level V 1.45 1.67 1.9 1.1 1.67 2.2 VCC = 5 V TA = –55°C to 125°C 1.9 TRIG current TRIG at 0 V 0.5 0.9 0.5 2 mA 0.3 0.7 1 0.3 0.7 1 RESET voltage level V TA = –55°C to 125°C 1.1 RESET at VCC 0.1 0.4 0.1 0.4 RESET current mA RESET at 0 V –0.4 –1 –0.4 –1.5 DISCH switch off-state 20 100 20 100 nA current 9.6 10 10.4 9 10 11 VCC = 15 V CONT voltage TA = –55°C to 125°C 9.6 10.4 (open circuit) V 2.9 3.3 3.8 2.6 3.3 4 VCC = 5 V TA = –55°C to 125°C 2.9 3.8 0.1 0.15 0.1 0.25 VCC = 15 V, IOL = 10 mA TA = –55°C to 125°C 0.2 0.4 0.5 0.4 0.75 VCC = 15 V, IOL = 50 mA TA = –55°C to 125°C 1 2 2.2 2 2.5 VCC = 15 V, IOL = 100 mA Low-level output voltage TA = –55°C to 125°C 2.7 V VCC = 15 V, IOL = 200 mA 2.5 2.5 VCC = 5 V, IOL = 3.5 mA TA = –55°C to 125°C 0.35 0.1 0.2 0.1 0.35 VCC = 5 V, IOL = 5 mA TA = –55°C to 125°C 0.8 VCC = 5 V, IOL = 8 mA 0.15 0.25 0.15 0.4 13 13.3 12.75 13.3 VCC = 15 V, IOL = –100 mA TA = –55°C to 125°C 12 High-level output voltage VCC = 15 V, IOH = –200 mA 12.5 12.5 V 3 3.3 2.75 3.3 VCC = 5 V, IOL = –100 mA TA = –55°C to 125°C 2 VCC = 15 V 10 12 10 15 Output low, No load VCC = 5 V 3 5 3 6 Supply current mA VCC = 15 V 9 10 9 13 Output high, No load VCC = 5 V 2 4 2 5 (1) This parameter influences the maximum value of the timing resistors RA and RB in the circuit of Figure 12. For example, when VCC = 5 V, the maximum value is R = RA + RB ≉ 3.4 MΩ, and for VCC = 15 V, the maximum value is 10 MΩ. Copyright © 1973–2010, Texas Instruments Incorporated Submit Documentation Feedback 5 Product Folder Link(s): NA555 NE555 SA555 SE555 NA555, NE555, SA555, SE555 SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 www.ti.com Operating Characteristics VCC = 5 V to 15 V, TA = 25°C (unless otherwise noted) NA555 TEST SE555 NE555 PARAMETER CONDITIONS(1) SA555 UNIT MIN TYP MAX MIN TYP MAX Initial error of timing Each timer, monostable(3) TA = 25°C 0.5 1.5(4) 1 3 interval(2) % Each timer, astable(5) 1.5 2.25 Temperature coefficient of Each timer, monostable(3) TA = MIN to MAX 30 100(4) 50 ppm/ timing interval Each timer, astable(5) 90 150 °C Supply-voltage sensitivity of Each timer, monostable(3) TA = 25°C 0.05 0.2(4) 0.1 0.5 timing interval %/V Each timer, astable(5) 0.15 0.3 Output-pulse rise time CL = 15 pF, 100 200(4) 100 300 ns TA = 25°C Output-pulse fall time CL = 15 pF, 100 200(4) 100 300 ns TA = 25°C (1) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. (2) Timing interval error is defined as the difference between the measured value and the average value of a random sample from each process run. (3) Values specified are for a device in a monostable circuit similar to Figure 9, with the following component values: RA = 2 kΩ to 100 kΩ, C = 0.1 mF. (4) On products compliant to MIL-PRF-38535, this parameter is not production tested. (5) Values specified are for a device in an astable circuit similar to Figure 12, with the following component values: RA = 1 kΩ to 100 kΩ, C = 0.1 mF. 6 Submit Documentation Feedback Copyright © 1973–2010, Texas Instruments Incorporated Product Folder Link(s): NA555 NE555 SA555 SE555 ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ TA = 125°C ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ TA = 25°C IOL − Low-Level Output Current − mA ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ VCC = 5 V LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ TA = −55°C 0.1 0.04 0.01 1 2 4 7 10 20 40 70 100 0.07 1 0.4 0.7 10 4 7 0.02 0.2 2 VOL − Low-Level Output Voltage − V ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ VCC = 10 V LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT VOL − Low-Level Output Voltage − V IOL − Low-Level Output Current − mA 0.1 0.04 0.01 1 2 4 7 10 20 40 70 100 0.07 1 0.4 0.7 10 4 7 0.02 0.2 2 ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ TA = 125°C ÏÏÏÏÏÏÏÏÏÏÏÏ TA = 25°C TA= −55°C TA = 125°C TA = 25°C TA = −55°C ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ VCC = 15 V LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT VOL − Low-Level Output Voltage − V IOL − Low-Level Output Current − mA 0.1 0.04 0.01 1 2 4 7 10 20 40 70 100 0.07 1 0.4 0.7 10 4 7 0.02 0.2 2 1 0.6 0.2 0 1.4 1.8 2.0 0.4 1.6 0.8 1.2 − IOH − High-Level Output Current − mA ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ TA = 125°C ÏÏÏÏÏÏÏÏÏÏÏÏ TA = 25°C 1 2 4 7 10 20 40 70 100 ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ VCC = 5 V to 15 V ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ TA = −55°C (VCC VOH) − Voltage Drop − V DROP BETWEEN SUPPLY VOLTAGE AND OUTPUT vs HIGH-LEVEL OUTPUT CURRENT NA555, NE555, SA555, SE555 www.ti.com SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 TYPICAL CHARACTERISTICS Data for temperatures below 0°C and above 70°C are applicable for SE555 circuits only. Figure 1. Figure 2. Figure 3. Figure 4. Copyright © 1973–2010, Texas Instruments Incorporated Submit Documentation Feedback 7 Product Folder Link(s): NA555 NE555 SA555 SE555 5 4 2 1 0 9 3 5 6 7 8 9 10 11 − Supply Current − mA 7 6 8 SUPPLY CURRENT vs SUPPLY VOLTAGE 10 12 13 14 15 TA = 25°C TA = 125°C TA = −55°C Output Low, No Load ICC VCC − Supply Voltage − V 1 0.995 0.990 0.985 0 5 10 1.005 1.010 NORMALIZED OUTPUT PULSE DURATION (MONOSTABLE OPERATION) vs SUPPLY VOLTAGE 1.015 15 20 Pulse Duration Relative to Value at V C C = 10 V VCC − Supply Voltage − V 1 0.995 0.990 0.985 −75 −25 25 1.005 1.010 NORMALIZED OUTPUT PULSE DURATION (MONOSTABLE OPERATION) vs FREE-AIR TEMPERATURE 1.015 75 125 TA − Free-Air Temperature − °C −50 0 50 100 VCC = 10 V Pulse Duration Relative to Value at TA = 25C 0 100 200 300 400 500 600 700 800 900 1000 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Lowest Level of Trigger Pulse – ×VCC tPD – Propagation Delay Time – ns TA = 125°C TA = 70°C TA = 25°C TA = 0°C TA = –55°C PROPAGATION DELAY TIME vs LOWEST VOLTAGE LEVEL OF TRIGGER PULSE NA555, NE555, SA555, SE555 SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 www.ti.com TYPICAL CHARACTERISTICS (continued) Data for temperatures below 0°C and above 70°C are applicable for SE555 circuits only. Figure 5. Figure 6. Figure 7. Figure 8. 8 Submit Documentation Feedback Copyright © 1973–2010, Texas Instruments Incorporated Product Folder Link(s): NA555 NE555 SA555 SE555 VCC (5 V to 15 V) RA RL Output GND OUT CONT VCC RESET DISCH THRES Input TRIG ÎÎÎ 5 8 4 7 6 2 3 1 Pin numbers shown are for the D, JG, P, PS, and PW packages. NA555, NE555, SA555, SE555 www.ti.com SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 APPLICATION INFORMATION Monostable Operation For monostable operation, any of these timers can be connected as shown in Figure 9. If the output is low, application of a negative-going pulse to the trigger (TRIG) sets the flip-flop (Q goes low), drives the output high, and turns off Q1. Capacitor C then is charged through RA until the voltage across the capacitor reaches the threshold voltage of the threshold (THRES) input. If TRIG has returned to a high level, the output of the threshold comparator resets the flip-flop (Q goes high), drives the output low, and discharges C through Q1. Figure 9. Circuit for Monostable Operation Monostable operation is initiated when TRIG voltage falls below the trigger threshold. Once initiated, the sequence ends only if TRIG is high for at least 10 μs before the end of the timing interval. When the trigger is grounded, the comparator storage time can be as long as 10 μs, which limits the minimum monostable pulse width to 10 μs. Because of the threshold level and saturation voltage of Q1, the output pulse duration is approximately tw = 1.1RAC. Figure 11 is a plot of the time constant for various values of RA and C. The threshold levels and charge rates both are directly proportional to the supply voltage, VCC. The timing interval is, therefore, independent of the supply voltage, so long as the supply voltage is constant during the time interval. Applying a negative-going trigger pulse simultaneously to RESET and TRIG during the timing interval discharges C and reinitiates the cycle, commencing on the positive edge of the reset pulse. The output is held low as long as the reset pulse is low. To prevent false triggering, when RESET is not used, it should be connected to VCC. Copyright © 1973–2010, Texas Instruments Incorporated Submit Documentation Feedback 9 Product Folder Link(s): NA555 NE555 SA555 SE555 − Output Pulse Duration − s C − Capacitance − mF 10 1 10−1 10−2 10−3 10−4 0.01 0.1 1 10 100 10−5 0.001 tw RA = 10 MW RA = 10 kW RA = 1 kW RA = 100 kW RA = 1 MW Voltage − 2 V/div Time − 0.1 ms/div ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Capacitor Voltage Output Voltage Input Voltage ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ RA = 9.1 kW CL = 0.01 mF RL = 1 kW See Figure 9 Voltage − 1 V/div Time − 0.5 ms/div tH Capacitor Voltage tL Output Voltage ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ RA = 5 k RL = 1 k RB = 3 k See Figure 12 C = 0.15 mF GND OUT CONT VCC RESET DISCH THRES TRIG C RB RA Output RL 0.01 mF VCC (5 V to 15 V) (see Note A) ÎÎÎ NOTE A: Decoupling CONT voltage to ground with a capacitor can improve operation. This should be evaluated for individual applications. Open 5 8 4 7 6 2 3 1 Pin numbers shown are for the D, JG, P, PS, and PW packages. NA555, NE555, SA555, SE555 SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 www.ti.com Figure 10. Typical Monostable Waveforms Figure 11. Output Pulse Duration vs Capacitance Astable Operation As shown in Figure 12, adding a second resistor, RB, to the circuit of Figure 9 and connecting the trigger input to the threshold input causes the timer to self-trigger and run as a multivibrator. The capacitor C charges through RA and RB and then discharges through RB only. Therefore, the duty cycle is controlled by the values of RA and RB. This astable connection results in capacitor C charging and discharging between the threshold-voltage level (≉0.67 × VCC) and the trigger-voltage level (≉0.33 × VCC). As in the monostable circuit, charge and discharge times (and, therefore, the frequency and duty cycle) are independent of the supply voltage. Figure 12. Circuit for Astable Operation Figure 13. Typical Astable Waveforms 10 Submit Documentation Feedback Copyright © 1973–2010, Texas Instruments Incorporated Product Folder Link(s): NA555 NE555 SA555 SE555 tH 0.693 (RARB) C tL 0.693 (RB) C Other useful relationships are shown below. period tHtL 0.693 (RA2RB) C frequency 1.44 (RA2RB) C Output driver duty cycle tL tHtL RB RA2RB Output waveform duty cycle tL tH RB RARB Low-to-high ratio tH tHtL 1– RB RA2RB f − Free-Running Frequency − Hz C − Capacitance − mF 100 k 10 k 1 k 100 10 1 0.01 0.1 1 10 100 0.1 0.001 RA + 2 RB = 10 MW RA + 2 RB = 1 MW RA + 2 RB = 100 kW RA + 2 RB = 10 kW RA + 2 RB = 1 kW Time − 0.1 ms/div Voltage − 2 V/div ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ VCC = 5 V RA = 1 kW C = 0.1 mF See Figure 15 Capacitor Voltage ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Output Voltage Input Voltage VCC (5 V to 15 V) DISCH OUT RESET VCC RL RA A5T3644 C THRES GND CONT TRIG Input 0.01 mF ÎÎÎÎÎÎÎÎÎÎÎÎ Output 4 8 3 7 6 2 5 1 Pin numbers shown are shown for the D, JG, P, PS, and PW packages. NA555, NE555, SA555, SE555 www.ti.com SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 Figure 12 shows typical waveforms generated during astable operation. The output high-level duration tH and low-level duration tL can be calculated as follows: Figure . Figure 14. Free-Running Frequency Missing-Pulse Detector The circuit shown in Figure 15 can be used to detect a missing pulse or abnormally long spacing between consecutive pulses in a train of pulses. The timing interval of the monostable circuit is retriggered continuously by the input pulse train as long as the pulse spacing is less than the timing interval. A longer pulse spacing, missing pulse, or terminated pulse train permits the timing interval to be completed, thereby generating an output pulse as shown in Figure 16. Figure 15. Circuit for Missing-Pulse Detector Figure 16. Completed Timing Waveforms for Missing-Pulse Detector Copyright © 1973–2010, Texas Instruments Incorporated Submit Documentation Feedback 11 Product Folder Link(s): NA555 NE555 SA555 SE555 Voltage − 2 V/div Time − 0.1 ms/div Capacitor Voltage Output Voltage ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏInput Voltage VCC = 5 V RA = 1250 W C = 0.02 mF See Figure 9 NA555, NE555, SA555, SE555 SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 www.ti.com Frequency Divider By adjusting the length of the timing cycle, the basic circuit of Figure 9 can be made to operate as a frequency divider. Figure 17 shows a divide-by-three circuit that makes use of the fact that retriggering cannot occur during the timing cycle. Figure 17. Divide-by-Three Circuit Waveforms 12 Submit Documentation Feedback Copyright © 1973–2010, Texas Instruments Incorporated Product Folder Link(s): NA555 NE555 SA555 SE555 THRES GND C RL RA VCC (5 V to 15 V) Output DISCH OUT RESET VCC TRIG CONT Modulation Input (see Note A) Clock Input NOTE A: The modulating signal can be direct or capacitively coupled to CONT. For direct coupling, the effects of modulation source voltage and impedance on the bias of the timer should be considered. 4 8 3 7 6 2 5 Pin numbers shown are for the D, JG, P, PS, and PW packages. 1 Voltage − 2 V/div Time − 0.5 ms/div ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Capacitor VoltageÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Output Voltage ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Clock Input Voltage ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ RA = 3 kW C = 0.02 mF RL = 1 kW See Figure 18 ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Modulation Input Voltage NA555, NE555, SA555, SE555 www.ti.com SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 Pulse-Width Modulation The operation of the timer can be modified by modulating the internal threshold and trigger voltages, which is accomplished by applying an external voltage (or current) to CONT. Figure 18 shows a circuit for pulse-width modulation. A continuous input pulse train triggers the monostable circuit, and a control signal modulates the threshold voltage. Figure 19 shows the resulting output pulse-width modulation. While a sine-wave modulation signal is shown, any wave shape could be used. Figure 18. Circuit for Pulse-Width Modulation Figure 19. Pulse-Width-Modulation Waveforms Copyright © 1973–2010, Texas Instruments Incorporated Submit Documentation Feedback 13 Product Folder Link(s): NA555 NE555 SA555 SE555 Voltage − 2 V/div ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ RA = 3 kW RB = 500 W RL = 1 kW See Figure 20 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Capacitor Voltage ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Output Voltage ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Modulation Input Voltage Time − 0.1 ms/div RB Modulation Input (see Note A) CONT TRIG RESET VCC OUT DISCH VCC (5 V to 15 V) RL RA C GND THRES NOTE A: The modulating signal can be direct or capacitively coupled to CONT. For direct coupling, the effects of modulation source voltage and impedance on the bias of the timer should be considered. Pin numbers shown are for the D, JG, P, PS, and PW packages. 4 8 3 7 6 2 5 Output NA555, NE555, SA555, SE555 SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 www.ti.com Pulse-Position Modulation As shown in Figure 20, any of these timers can be used as a pulse-position modulator. This application modulates the threshold voltage and, thereby, the time delay, of a free-running oscillator. Figure 21 shows a triangular-wave modulation signal for such a circuit; however, any wave shape could be used. Figure 20. Circuit for Pulse-Position Modulation Figure 21. Pulse-Position-Modulation Waveforms 14 Submit Documentation Feedback Copyright © 1973–2010, Texas Instruments Incorporated Product Folder Link(s): NA555 NE555 SA555 SE555 S VCC RESET VCC OUT DISCH GND CONT TRIG 4 8 3 7 6 1 5 2 THRES RC CC 0.01 CC = 14.7 mF RC = 100 kW Output C RESET VCC OUT DISCH GND CONT TRIG 4 8 3 7 6 1 5 2 THRES RB 33 kW 0.001 0.01 mF CB = 4.7 mF RB = 100 kW RA = 100 kW Output A Output B CA = 10 mF mF 0.01 mF 0.001 RA 33 kW THRES 2 5 1 6 7 3 4 8 TRIG CONT GND DISCH OUT RESET VCC mF mF CA CB Pin numbers shown are for the D, JG, P, PS, and PW packages. NOTE A: S closes momentarily at t = 0. Voltage − 5 V/div t − Time − 1 s/div ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ See Figure 22 ÏÏÏÏÏÏÏÏÏÏÏÏ Output A ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ Output B ÏÏÏÏÏÏÏÏÏÏÏÏ Output C ÏÏÏÏÏÏÏÏÏÏÏÏ t = 0 ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ twC = 1.1 RCCC ÏÏÏÏÏÏ twC ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ twB = 1.1 RBCB ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ twA = 1.1 RACA ÏÏÏÏÏÏÏÏÏÏÏÏ twA ÏÏÏÏÏÏÏÏÏÏÏÏ twB NA555, NE555, SA555, SE555 www.ti.com SLFS022H –SEPTEMBER 1973–REVISED JUNE 2010 Sequential Timer Many applications, such as computers, require signals for initializing conditions during start-up. Other applications, such as test equipment, require activation of test signals in sequence. These timing circuits can be connected to provide such sequential control. The timers can be used in various combinations of astable or monostable circuit connections, with or without modulation, for extremely flexible waveform control. Figure 22 shows a sequencer circuit with possible applications in many systems, and Figure 23 shows the output waveforms. Figure 22. Sequential Timer Circuit Figure 23. Sequential Timer Waveforms Copyright © 1973–2010, Texas Instruments Incorporated Submit Documentation Feedback 15 Product Folder Link(s): NA555 NE555 SA555 SE555 PACKAGE OPTION ADDENDUM www.ti.com 2-May-2014 Addendum-Page 1 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples JM38510/10901BPA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510 /10901BPA M38510/10901BPA ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 JM38510 /10901BPA NA555D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 105 NA555 NA555DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 105 NA555 NA555DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 105 NA555 NA555DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 105 NA555 NA555P ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 105 NA555P NA555PE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 105 NA555P NE555D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 NE555 NE555DE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 NE555 NE555DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 NE555 NE555DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM 0 to 70 NE555 NE555DRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 NE555 NE555DRG3 PREVIEW SOIC D 8 2500 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM 0 to 70 NE555 NE555DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 NE555 NE555P ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU | CU SN N / A for Pkg Type 0 to 70 NE555P NE555PE3 PREVIEW PDIP P 8 50 TBD Call TI Call TI 0 to 70 PACKAGE OPTION ADDENDUM www.ti.com 2-May-2014 Addendum-Page 2 Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples NE555PE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type 0 to 70 NE555P NE555PSLE OBSOLETE SO PS 8 TBD Call TI Call TI 0 to 70 NE555PSR ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555PSRE4 ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555PSRG4 ACTIVE SO PS 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555PW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555PWE4 ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555PWG4 ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555PWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555PWRE4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555PWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 N555 NE555Y OBSOLETE 0 TBD Call TI Call TI 0 to 70 SA555D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 SA555 SA555DE4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 SA555 SA555DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 SA555 SA555DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 85 SA555 SA555DRE4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 SA555 SA555DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 SA555 SA555P ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 SA555P PACKAGE OPTION ADDENDUM www.ti.com 2-May-2014 Addendum-Page 3 Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples SA555PE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 85 SA555P SE555D ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 SE555 SE555DG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 SE555 SE555DR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 SE555 SE555DRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 SE555 SE555FKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 SE555FKB SE555JG ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 SE555JG SE555JGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type -55 to 125 SE555JGB SE555N OBSOLETE PDIP N 8 TBD Call TI Call TI -55 to 125 SE555P ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -55 to 125 SE555P (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. PACKAGE OPTION ADDENDUM www.ti.com 2-May-2014 Addendum-Page 4 (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF SE555, SE555M : • Catalog: SE555 • Military: SE555M • Space: SE555-SP, SE555-SP NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product • Military - QML certified for Military and Defense Applications • Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant NA555DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 NA555DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 NE555DR SOIC D 8 2500 330.0 12.8 6.4 5.2 2.1 8.0 12.0 Q1 NE555DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 NE555DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 NE555DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 NE555PSR SO PS 8 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1 NE555PWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 SA555DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 SA555DR SOIC D 8 2500 330.0 12.8 6.4 5.2 2.1 8.0 12.0 Q1 SA555DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 SE555DR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 SE555DRG4 SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 15-Oct-2013 Pack Materials-Page 1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) NA555DR SOIC D 8 2500 340.5 338.1 20.6 NA555DR SOIC D 8 2500 367.0 367.0 35.0 NE555DR SOIC D 8 2500 364.0 364.0 27.0 NE555DR SOIC D 8 2500 340.5 338.1 20.6 NE555DRG4 SOIC D 8 2500 340.5 338.1 20.6 NE555DRG4 SOIC D 8 2500 367.0 367.0 35.0 NE555PSR SO PS 8 2000 367.0 367.0 38.0 NE555PWR TSSOP PW 8 2000 367.0 367.0 35.0 SA555DR SOIC D 8 2500 340.5 338.1 20.6 SA555DR SOIC D 8 2500 364.0 364.0 27.0 SA555DRG4 SOIC D 8 2500 340.5 338.1 20.6 SE555DR SOIC D 8 2500 367.0 367.0 35.0 SE555DRG4 SOIC D 8 2500 367.0 367.0 35.0 PACKAGE MATERIALS INFORMATION www.ti.com 15-Oct-2013 Pack Materials-Page 2 MECHANICAL DATA MCER001A – JANUARY 1995 – REVISED JANUARY 1997 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE 0.310 (7,87) 0.290 (7,37) 0.014 (0,36) 0.008 (0,20) Seating Plane 4040107/C 08/96 5 4 0.065 (1,65) 0.045 (1,14) 8 1 0.020 (0,51) MIN 0.400 (10,16) 0.355 (9,00) 0.015 (0,38) 0.023 (0,58) 0.063 (1,60) 0.015 (0,38) 0.200 (5,08) MAX 0.130 (3,30) MIN 0.245 (6,22) 0.280 (7,11) 0.100 (2,54) 0°–15° NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification. E. Falls within MIL STD 1835 GDIP1-T8 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 PRODUCTION DATA information is current as of publication date. Copyright W 1988, Texas Instruments Incorporated Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant SN74LS85DR SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 SN74LS85NSR SO NS 16 2000 330.0 16.4 8.2 10.5 2.5 12.0 16.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 Pack Materials-Page 1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) SN74LS85DR SOIC D 16 2500 333.2 345.9 28.6 SN74LS85NSR SO NS 16 2000 367.0 367.0 38.0 PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated CC2530 ZigBee Development Kit User’s Guide swru209b swru209b 2/28 Table of contents CC2530 ZIGBEE DEVELOPMENT KIT USER’S GUIDE............................................................................. 1 1 INTRODUCTION..................................................................................................................................... 3 2 ABOUT THIS MANUAL......................................................................................................................... 3 3 ACRONYMS ............................................................................................................................................. 4 4 ZIGBEE DEVELOPMENT KIT CONTENTS ...................................................................................... 5 5 GETTING STARTED .............................................................................................................................. 7 5.1 SETTING UP THE HARDWARE........................................................................................................................ 7 5.2 RUNNING THE PREPROGRAMMED ZIGBEE SENSOR DEMO ........................................................................... 8 5.3 CC2530 PER TEST....................................................................................................................................... 8 5.4 EVALUATE THE CC2530 RADIO USING SMARTRF STUDIO .......................................................................... 8 5.5 DEVELOPING YOUR OWN SOFTWARE WITH THE CC2530............................................................................ 11 5.6 DEVELOPING YOUR OWN HARDWARE WITH THE CC2530 .......................................................................... 11 6 RF TESTING........................................................................................................................................... 12 6.1 TX PARAMETER TESTING BASICS.............................................................................................................. 12 6.2 RX PARAMETER TESTING BASICS.............................................................................................................. 13 7 CC2530EM .............................................................................................................................................. 14 8 CC2531 USB DONGLE.......................................................................................................................... 15 9 SMARTRF05 EVALUATION BOARD................................................................................................ 17 10 SMARTRF05 BATTERY BOARD ....................................................................................................... 18 10.1 JOYSTICK ................................................................................................................................................... 19 10.2 EMCONNECTORS....................................................................................................................................... 19 10.3 EMSELECTION SWITCH............................................................................................................................. 20 10.4 PROBE CONNECTORS.................................................................................................................................. 22 10.5 SOC DEBUG CONNECTOR........................................................................................................................... 22 10.6 CURRENTMEASUREMENT JUMPER ............................................................................................................ 23 11 FREQUENTLY ASKED QUESTIONS ................................................................................................ 24 12 REFERENCES........................................................................................................................................ 26 13 DOCUMENT HISTORY........................................................................................................................ 27 APPENDIX A SCHEMATICS.................................................................................................................... 28 swru209b 3/28 1 Introduction Thank you for purchasing the CC2530 ZigBee Development Kit. The CC2530 is Texas Instrument’s second generation ZigBee/IEEE 802.15.4 compliant System-on- Chip with an optimized 8051 MCU core and radio for the 2.4 GHz unlicensed ISM/SRD band. This device enables industrial grade applications by offering state-of-the-art noise immunity, excellent link budget, operation up to 125 degrees and low voltage operation. In addition, the CC2530 provides extensive hardware support for packet handling, data buffering, burst transmissions, data encryption, data authentication, clear channel assessment, link quality indication and packet timing information. Z-Stack™ is TI's ZigBee compliant protocol stack for a growing portfolio of IEEE 802.15.4 products and platforms. Z-Stack support the CC2530 and is compliant with both the ZigBee® 2007 (ZigBee and ZigBee PRO) and ZigBee® 2006 specification. The CC2530 ZigBee Development Kit is well suited for demonstration, evaluation and software development targeting IEEE 802.15.4 and ZigBee compliant applications with the CC2530. The CC2530 product folder on the web [1] has more information, with datasheets, user guides and application notes. For more information about TI’s ZigBee software implementation, refer to the ZStack product folder on the web [7]. This web site also has links for download of Z-stack. 2 About this manual This manual describes all the hardware included in the CC2530 ZigBee Development Kit (CC2530ZDK) and points to other useful information resources. Chapter 4 briefly describes the contents of the development kit and chapter 5 gives a quick introduction to how to get started with the kit. In particular, it describes how to install SmartRF Studio to get the required drivers for the evaluation board, how the hardware can be used, and lists the software that is available for the development kit. Chapter 6 explains some simple methods for performing practical RF testing with the development kit. Chapter 7, 8, and 9 describe the hardware in the kit and where to find more information about how to use it. A troubleshooting guide can be found in chapter 11. The CC2530ZDK Quick Start Guide [9] has a short tutorial on how to get started with this kit. More information and user manuals for the PC tools SmartRF Studio and SmartRF Flash Programmer can be found on their respective product sites on the web [2] [3]. Please visit the CC2530 ZigBee Development Kit [11] web page and CC2530 product page [1] for additional information. Further information can be found on the TI LPRF Online Community [16]. Refer also to the document CC2530DK User’s Guide [13] which gives a detailed description of how to set up the software development environment for the CC2530. This document also lists other available software solutions for CC2530. See chapter 12 for a list of relevant documents and links. swru209b 4/28 3 Acronyms ACM Abstract Control Model BB Battery Board CDC Communications Device Class DK Development Kit EB Evaluation Board EM Evaluation Module HID Human Interface Device IC Integrated Circuit ISM Industrial, Scientific and Medical KB Kilo Byte (1024 byte) LCD Liquid Crystal Display LED Light Emitting Diode LPRF Low Power RF MCU Micro Controller NC Not connected PER Packet Error Rate RF Radio Frequency RX Receive SoC System on Chip SPI Serial Peripheral Interface SRD Short Range Device TI Texas Instruments TX Transmit UART Universal Asynchronous Receive Transmit USB Universal Serial Bus ZDK ZigBee Development Kit Z-Stack TI’s ZigBee software implementation swru209b 5/28 4 ZigBee Development Kit contents The CC2530 ZigBee Development Kit (CC2530ZDK) includes hardware and software that allows quick testing of the CC2530 RF performance and offers a complete platform for development of advanced prototype RF systems and ZigBee applications. Evaluate the CC2530 and ZigBee right out of the box. The kit can be used to demonstrate a small sensor network application using ZigBee and the CC2530. Use the CC2530ZDK to do software development of your own ZigBee applications using ZStack ™ for CC2530. Use SmartRF Studio to perform RF measurements. The radio can be easily configured to measure sensitivity, output power and other RF parameters. Prototype development. All I/O pins from the CC2530 are available on pin connectors on the SmartRF05EB, allowing easy interconnection to peripherals on the EB board or other external sensors and devices. The CC2530ZDK contains the following components 2 x SmartRF05EB (the two large boards) 5 x SmartRF05 Battery Boards 7 x CC2530 Evaluation Modules (with the CC2530 and antenna connector) o 2 of these CC2530EM’s are pre-programmed with the SensorDemo Collector application1 o 5 of the CC2530EM’s are pre-programmed with the SensorDemo Sensor application 7 x Antennas 1 x CC2531 USB Dongle Cables Batteries Documents Figure 1 - CC2530 ZigBee Development Kit Contents 1 Consult the CC2530ZDK Quick Start Guide [9] and the CC2530ZDK Sensor Demo User’s Guide [10] for a description of the software programmed on the CC2530EM’s. swru209b 6/28 SmartRF05EB The SmartRF05EB (evaluation board) is the main board in the kit with a wide range of user interfaces: 3x16 character serial LCD Full speed USB 2.0 interface UART LEDs Serial Flash Potentiometer Joystick Buttons The EB is the platform for the evaluation modules (EM) and can be connected to the PC via USB to control the EM. CC2530EM The CC2530EM (evaluation module) contains the RF IC and necessary external components and matching filters for getting the most out of the radio. The module can be plugged into the SmartRF05EB. Use the EM as reference design for RF layout. The schematics are included at the end of this document and the layout files can be found on the web [1]. CC2531 USB Dongle The CC2531 USB Dongle is a fully operational USB device that can be plugged into a PC. The dongle has 2 LEDs, two small pushbuttons and connector holes that allow connection of external sensors or devices. The dongle also has a connector for programming and debugging of the CC2531 USB controller. The dongle comes preprogrammed with firmware such that it can be used as a packet sniffer device. SmartRF05BB The SmartRF05 Battery Board can be used as an alternative to the EB, providing a standalone node when the CC2530EM is connected. It is powered with 2 AA batteries in the sockets underneath the board. The board peripherals include 4 LED’s, 2 push buttons and a joystick. The BB also has a SoC debug connector for connection to an external debug/programming tool e.g. the SmartRF05EB. swru209b 7/28 5 Getting started 5.1 Setting up the hardware After opening the kit, make sure you have all components. Please contact your TI Sales Representative or TI Support [17] if anything is missing. Start by connecting the antennas to the SMA connector on the RF evaluation boards. Tighten the antenna’s screw firmly on to the SMA connector. If not properly connected, you might see reduced RF performance. It is also possible to connect the EM board to RF instruments via coax cables. The EM is designed to match a 50 Ohm load at the SMA connector. Figure 2 CC2530ZDK assembled hardware Next, the evaluation modules should be plugged in to the SmartRF05EB’s and to the SmartRF05BB’s. A ZigBee sensor demo application is preprogrammed on the CC2530EM’s included in this kit. The application consists of two different device types; collectors and sensors. 5 of the CC2530EM’s are programmed as the sensor device type. When running the out of the box demonstration the sensor EM’s shall be connected to the BB’s. The two EM’s programmed as collector device shall be connected to the EB’s. When not using the out of the box demonstration (i.e. the preprogrammed application) e.g, for RF evaluation or software development, all of the 7 EM’s can be used equally. The purpose of the SmartRF05EB is to serve as a general I/O board for testing of the various peripherals of the CC2530 microcontroller. The SmartRF05EB is also used for programming and debugging of the CC2530, and has several useful peripheral devices like LCD, LED’s, I/O connectors, push buttons and joystick etc. The evaluation board can be powered from several different sources: 2 x 1.5V AA batteries (included in this kit) USB (via the USB connector) DC power (4 to 10 Volt) (not included in this kit) swru209b 8/28 External regulated power source (not included in this kit) The power source can be selected using jumper P11 on the SmartRF05EB. The SmartRF05EB User’s Guide [6] provides more details. The SmartRF05 Battery Boards (BB) can be used as a standalone device when equipped with a CC2530EM. This board is powered by AA batteries. See section 10 in this document for more information about the SmartRF05BB. After assembling the hardware, you now have several options for working with the CC2530: Run the Sensor Demo ZigBee application that is preprogrammed on the CC2530’s. The CC2530ZDK Quick Start Guide document [9] included in this kit describes the necessary steps to run the demonstration. Running the packet error rate (PER) test software available for CC2530EM. Chapter 5.3 describes this application. Evaluate and explore the RF capabilities of the CC2530 using SmartRF Studio. Chapter 5.4 provides the details how to do so. Develop your own software for the CC2530. Install IAR Embedded Workbench for 8051 and set up your first software project. Section 5.5 explains how. Develop your own hardware with the CC2530. See chapter 5.6. 5.2 Running the Preprogrammed ZigBee Sensor Demo The CC2530EM’s are pre-programmed with a Sensor Demo application used to demonstrate a temperature monitoring application in a small ZigBee network. The CC2530ZDK Quick Start Guide document [9] included in this kit describes the necessary steps to run the demonstration. A software package with the source code for the Sensor Demo, and Intel HEX files ready to be programmed on the devices, is available on the CC2530ZDK web site [11]. A detailed description about the Sensor Demo application is found in the document CC2530ZDK Sensor Demo User’s Guide [10]. 5.3 CC2530 PER test A Packet Error Rate (PER) test application is also available for the CC2530. This application can be used to evaluate the RF performance of CC2530 using either the hardware included in the kit or other boards with a CC2530. More information about the PER test application can be found in the documents CC2530DK Quick Start Guide [12] and CC2530 Software Examples User's Guide [13]. A software package with the source code for the PER test application, and Intel HEX files ready to be programmed on the devices, is available on the CC2530DK web site [14]. 5.4 Evaluate the CC2530 Radio using SmartRF Studio SmartRF Studio is a PC application developed for configuration and evaluation of many of the RF-IC products from Texas Instruments, including the CC2530. The application communicates with the CC2530 via the USB controller on the SmartRF05EB board. The USB controller uses the debug interface of the CC2530 to execute commands and to read and write registers. SmartRF Studio lets you explore the radio on the CC2530, as it gives you full overview and access to the radio registers. The tool has a control interface for running basic radio performance tests from the swru209b 9/28 PC. SmartRF Studio also offers a flexible code export function of radio register settings for software developers. Before proceeding, please download and install the latest version of SmartRF Studio from the web [2]. By installing Studio, the USB drivers needed for proper interaction between the PC and the hardware of the CC2530DK will also be installed. In order to use the SmartRF Studio with CC2530, connect the CC2530EM to the SmartRF05EB. Next, connect the SmartRF05EB board to the PC via one of the USB cables included in the kit. If you have installed SmartRF Studio, select automatic installation of driver in the device wizard that appears. The device wizard will only pop up when you turn on the SmartRF05EB and only once for each board. Allow Windows to complete the driver installation before proceeding. With the board connected to the PC, you can start SmartRF Studio. The following window should appear: Figure 3 - CC2530 and SmartRF Studio Make sure you select the tab called “2.4 GHz”. The tab will indicate if there is a board/device connected, and you should see the CC2530 icon highlighted as in the screenshot above. Double click on the CC2530 icon, and a new window will appear. swru209b 10/28 Figure 4 - CC2530 control panel in SmartRF Studio Figure 4 shows the main control panel for the CC2530. It lets you perform a number of operations: Run TX Test modes for testing of RF output power and spectrum; e.g. by connecting a spectrum analyser or a power meter to the CC2530EM SMA connector to perform RF measurements. Run Packet TX and RX tests. For this test, you should have two EBs with CC2530EMs connected to the PC. o Double click on both of the devices in the device list in SmartRF Studio (Figure 3), opening two windows, giving control of the two radios at the same time. o Select one device to be the transmitter, by selecting the “Packet TX” tab shown in the lower middle of Figure 4. o On the other device (the receiver), select the “Packet RX” tab. o Set up basic test parameters and press the “Start” button for the receiver. o Now you can start transmission by pressing the “Start” button for the transmitter. o The window will show the number of packets sent on the transmitter side and the number of received packets and signal strength of the last received packet on the receiver side. Read and/or modify registers and common settings, such as RF frequency (or channel) and output power. Export RF register values in a user modifiable format by selecting “File Register Export”. SmartRF Studio offers a lot of possibilities for testing and evaluating the hardware. Download the tool and try it for yourself. swru209b 11/28 5.5 Developing your own software with the CC2530 To develop software and debug an application on the CC2530, it is recommended to use IAR Embedded Workbench. It supports debugging of CC2530 through the SmartRF05EB, so no additional hardware is required. IAR EW8051 is bundled with all the required files for CC2530 to start development: Register definition header file Linker command file Driver and device description file needed for debugging and programming Note that other compilers and linkers can be used, but these tools may have limited debugging capabilities. An evaluation version of IAR Embedded Workbench is included in the ZigBee Development Kit. To install the software, insert the CD and follow the instructions. You will be asked to register on IAR’s web site to get a license key for the product. As the owner of a CC2530 Development Kit, you are entitled to a 60 day evaluation period. The evaluation version in the kit automatically gives you 30 days. Please contact your local IAR sales representative for the additional 30-days evaluation period. For a list of sales offices and distributors in your country, please see this site: http://www.iar.com/contact. Refer also to the CC2530DK User’s Guide [13] which will guide you through the steps of setting up your own IAR project from scratch. The CC2530DK User’s Guide [13] also gives a brief overview of complete software solutions for CC2530 from Texas Instruments. TI’s ZigBee compliant protocol stack Z-Stack™ can be downloaded from the product folder [7]. This software is needed in order to develop ZigBee application for the CC2530. The product folder include downloads of Z-Stack™ for the various TI platforms. Make sure the version for CC2530 is selected. After installation refer to the Z-stack User’s Guide document found in the installation folders of ZStack ™. The default root installation path for Z-Stack is C:\Texas Instruments\. A software package with the source code for the Sensor Demo, and Intel HEX files ready to be programmed on the devices, is available on the CC2530ZDK web site [11]. This package also includes the CC2530ZDK Sensor Demo User’s Guide giving information about how to set up the software example in the IAR development environment. 5.6 Developing your own hardware with the CC2530 It is recommended to use the CC2530EM as a reference design when designing new hardware using the CC2530. The CC2530EM reference design files can be downloaded from the CC2530 product folder on the web [1]. swru209b 12/28 6 RF Testing NB! When running RF performance tests, it is recommended to disable all other peripherals on the SmartRF05EB in order to avoid unwanted noise on the on-board voltage. In particular, make sure the RS232 level converter/line driver is disabled. RF testing can be performed by using SmartRF Studio together with the Development Kit. The basic set-up is described in section 5.4. As described in that chapter, SmartRF Studio can be used to set up basic tests and tune RF registers accordingly. Since the CC2530 evaluation board is equipped with an SMA connector, both radiated (via antenna) and conducted (via cable) tests can be performed, and it is easy to hook the EM up to RF measurement equipment. The RF equipment may be connected in two different ways. To measure radiated performance, connect an appropriate antenna to the spectrum analyzer or power meter and an antenna on the EM board. To measure conducted performance, connect a 50 Ohm coaxial cable directly from the EM to the RF equipment. Figure 5 - RF Test Set-Up with a Spectrum analyzer By using good-quality RF cabling, the loss in the cabling should be negligible. However make sure that the spectrum analyzer is calibrated. If possible, check it against a calibrated instrument such as an RF signal generator. Uncalibrated spectrum analyzers can display errors of several dBs. 6.1 TX Parameter Testing Basics To investigate the TX performance of the CC2530, you can either use a Spectrum Analyzer or an RF Power Meter. Use the “Simple TX” test mode in SmartRF Studio to set up the device to transmit a signal at the desired frequency. Both a modulated or unmodulated carrier signal can be generated. Use the RF Power Meter to observe the output power or the spectrum analyzer to observe the spectrum and to measure the error vector magnitude (EVM). swru209b 13/28 6.2 RX Parameter Testing Basics To investigate the RX performance of the CC2530, you can use a signal generator or “Packet TX” in SmartRF Studio (with another EB+EM) to generate the packets to receive. The receiver can be configured by using the “Packet RX” test feature in SmartRF Studio. By adding a jammer (a third node that generates either noise on the same channel or a strong signal on an adjacent channel) it is also possible to measure co-channel rejection and selectivity/blocking performance. The PER test application, that was described in section 5.3, can be used for simple sensitivity measurements with the CC2530EM and/or with your own prototype hardware. In this case, connect the unit you want to test to a known good transmitter with coaxial cables and attenuators. Add more attenuators until the PER value is 1%. The signal strength at the receiver side is then the sensitivity limit of the system. For more information regarding sensitivity measurements, refer to “Design Note 2 – Practical Sensitivity Testing” [15]. swru209b 14/28 7 CC2530EM Figure 6 - CC2530 Evaluation Module The CC2530EM is a complete RF module based on one of the recommended reference designs for the CC2530 radio. The module is equipped with a 32 MHz crystal, a 32.768 kHz crystal, external passive components for the balun and antenna match filter, an SMA connector for the antenna or any other RF instrument connection and general IO headers/connectors. The table below shows the pin-out from the CC2530 to the two connectors on the backside of the evaluation module. CC2530 Signal P1 P1 CC2530 Signal CC2530 Signal P2 P2 CC2530 Signal GND 1 2 - - 1 2 - P0.4 3 4 P1.3 - 3 4 - P0.1 5 6 P1.0 - 5 6 - P0.2 7 8 - VDD 7 8 - P0.3 9 10 P2.1 VDD 9 10 - P0.0 11 12 P2.2 - 11 12 - P1.1 13 14 P1.4 - 13 14 - P0.6 15 16 P1.5 RESET 15 16 - P0.7 17 18 P1.6 P1.2 17 18 P0.5 GND 19 20 P1.7 P2.0 19 20 - Table 1 - CC2530EM pin-out The part number of the EM connector is SFM-110-02-SM-D-A-K-TR from Samtec. It mates with the TFM-110-02-SM-D-A-K-TR, also from Samtec. Please refer to the reference design on the web [1] for further details. CC2530F256 32 kHz Crystal 32MHz Crystal SMA antenna connector EM Connector P2 (Bottom side) EM Connector P1 (Bottom side) swru209b 15/28 8 CC2531 USB Dongle Figure 7 - CC2531 USB Dongle The USB dongle that is included in the kit comes preprogrammed such that it can be used together with the SmartRF Packet Sniffer [4] to capture packets going over the air. To use the dongle as a sniffer, just install the Packet Sniffer PC application (available on the web [4]), plug in the USB dongle and start capturing packets. The Packet Sniffer User Manual [5] has more information. The USB dongle can also be used as a general development board for USB and RF software. There is a USB firmware library available from the TI web pages with an implementation of a complete USB framework, including examples showing both HID and CDC ACM. There is a link to this library on the CC2530 DK web pages [14]. Table 2 shows which CC2531 signals are connected to what IO on the dongle. IO Connector CC2531 Dongle User IO CC2531 1 P0.2 Green LED P0.0 2 P0.3 Red LED P1.1 3 P0.4 Button S1 P1.2 4 P0.5 Button S2 P1.3 5 P1.7 6 P1.6 7 P1.5 8 P1.4 Table 2 - CC2531 USB Dongle Pinout In order to debug and program firmware on the CC2531, the CC2531 USB dongle can be connected to the SmartRF05EB as shown in the picture below. The small adapter board and flat cable is included in the development kit. IO Connector Meandred F-antenna CC2531F256 Button S1 Button S2 LEDs Debug connector Voltage regulator swru209b 16/28 Figure 8 - CC2531 USB Dongle connected to SmartRF05EB The debug connector on the CC2531 USB Dongle matches the debug connector on the SmartRF05EB (and the CC Debugger). Note that, by default, the CC2531 dongle is not powered through the debug connector, so an external power source must be used while programming. The easiest solution is to connect it to a USB port on the PC. Alternatively, resistor R2 can be mounted. The table below shows the pin out of the debug connector. Pin # Connection 1 GND 2 VCC 3 CC2531 P2.2 (DC) 4 CC2531 P2.1 (DD) 5 NC 6 NC 7 CC2531 RESET 8 NC 9 Optional external VCC (R2 must be mounted) 10 NC Table 3 – CC2531 USB Dongle Debug Connector Refer to the schematics (in the appendices) for additional details. swru209b 17/28 9 SmartRF05 Evaluation Board The SmartRF05 Evaluation Board is thoroughly described in the SmartRF05EB User’s Guide [6]. That document will describe the hardware features in detail and provide the schematics for the board. swru209b 18/28 10 SmartRF05 Battery Board Figure 9 SmartRF05 Battery Board The SmartRF05 Battery Board is a smaller and simpler board than the SmartRF05EB. The Battery Board can together with an EM be used as a standalone node. Figure 9 shows the SmartRF05 Battery Board. The Battery Board is powered with 2 AA batteries placed in the battery connectors underneath the board. The peripherals that are available include 2 push buttons, a joystick with 5 directions and 4 LED’s of different colours that can be controlled via the EM. There are 2 switches on the SmartRF05 Battery Board: The Power switch P6 used to switch the board’s power supply on/off. The EM selection switch. NB: The EM selection switch shall be placed in position SoC/TRX when using a SoC EM such as CC2530EM or a transceiver EM is connected to the Battery Board. The position MSP is used when the CCMSP-EM430F2618 board (not part of this kit) is connected. More information about the EM Selection switch is found in section 10.3. The following sections give the pin out of the different connectors on the SmartRF05 Battery Board. Refer to the schematics (in the appendices) and layout (available on the web) for additional details. 256kB SPI EM Flash Module Connectors Joystick EM Selection Switch LEDs Probe Connectors Push Buttons Power Switch swru209b 19/28 10.1 Joystick The joystick detects five positions (centre, up, down, left, right) and one event (pushed). The two aggregated signals, JOY_MOVE and JOY_LEVEL, are used to detect a joystick event when using a SoC (e.g. the CC2530). JOY_MOVE is high whenever the joystick is moved away from the centre position, including pushing. The other signal, JOY_LEVEL, is a voltage level signal that gives different values depending on the current position of the joystick. The table below shows these values. Note that the voltage levels are relative to the voltage on the board. Joystick position JOY_LEVEL (Volts) Up 0.31 Down 1.16 Left 1.62 Right 1.81 Centre 2.12 Table 4 - Voltage on JOY_LEVEL for different joystick positions (T=25°C, Vdd=3.0V) When the EM selection switch is in position MSP, there are 5 discrete signals in addition to JOY_MOVE and JOY_LEVEL to be used to distinguish which direction the joystick was pressed. These 5 discrete signals are not used with CC2530 - only with the CCMSP-EM430F2618 board (not part of this kit). The discrete signals are routed to the EM connectors. See section 10.2 for details. 10.2 EM connectors The EM connectors P1 and P2 are used to connect an EM to the Battery Board. The pin out for these connectors is shown below. Table 1 in section 7 gives information about how the signals of the EM connectors are connected to the CC2530 on the EM board. Note that some of the signals are shared, e.g. IO_LED4_SOC/IO_BUTTON1. This means that the signal is shared between IO’s on the board; in this case both LED 4 when in SoC mode and Button 1. Pressing Button 1 will affect the state of LED 4. Similarly, if a SoC is toggling LED 4, it cannot read from Button 1 at the same time. Function on BB Pin Pin Function on BB GND 1 2 GND Not in use on BB 3 4 FLASH_CS IO_LED4_SOC/IO_BUTTON1 5 6 IO_LED1 Not in use on BB 7 8 JOYSTICK_RT Not in use on BB 9 10 SoC Debug P3.4 Not in use on BB 11 12 SoC Debug P3.3 IO_LED2_SOC 13 14 CS & SoC Debug P3.5 JOY_LEVEL 15 16 SCLK & SoC Debug P3.6 Not in use on BB 17 18 MOSI & SoC Debug P3.8 GND 19 20 MISO & SoC Debug P3.10 Table 5 - EM connector P1 pin-out swru209b 20/28 Function on BB Pin Pin Function on BB JOYSTICK_PUSH 1 2 GND NC 3 4 IO_LED2_MSP Not in use on BB 5 6 IO_LED3_MSP VCC_EM 7 8 IO_LED4_MSP VCC_EM 9 10 NC JOYSTICK_UP 11 12 Not in use on BB JOYSTICK_LEFT 13 14 Not in use on BB SoC Debug P3.7 & Flash Reset 15 16 IO_BUTTON2 Not in use on BB 17 18 Not in use on BB JOY_MOVE 19 20 Not in use on BB Table 6 EM connector P2 pin out 10.3 EM Selection Switch The EM selection switch on SmartRF05BB controls a multiplexer on the board that allows either a connected RF SoC EM or an MSP430 add-on board to access all four LEDs on the evaluation board. The limitation was caused by the particular pin-out on the RF evaluation modules that needed to be backwards compatible with other boards and test equipment. Figure 10 - EM Selection Switch (P8) The switch will both affect the operation of the LEDs and Button 1. NB: The EM Selection switch shall be placed in position SoC/TRX when the CC2530EM is used with SmartRF05BB. swru209b 21/28 Figure 11 - Switch P8 effect on LED 1-4 Due to lack of pins, some of the signals are shared. The chip select signal to the EM will also be affected when LED3 is used by the SoC (e.g. CC2530). In most cases, this will not be a problem, since the SoC does not, by default, implement a SPI slave. When LED4 is used by the SoC, the signal from Button 1 might interfere. In short, Button 1 and LED 4 can not be used simultaneously by the SoC. Figure 12 - Switch P8 effect on Button 1 The EM Selection switch will change the polarity of button number 1. In the MSP position, the button is active low, i.e. low voltage when the button is pressed. In the inactive position, the level is high (signal is pulled up by a 10k Ohm resistor). In the SoC position, the button is active high, i.e. high voltage when the button is pressed. In the inactive position, the level is low (signal is pulled down by a 10k Ohm resistor). Note that it is possible to use this feature to determine the position of switch P8 (assuming the button is not pressed). swru209b 22/28 10.4 Probe connectors The probe connectors P4 and P5 bring out all the signals from the EM connectors for probing purposes. The connectors allow easy access to I/O signals and to connect prototyping boards. The pin-out of these connectors are shown below. Function on BB Signal name Pin Pin Signal name Function on BB NC NC 1 2 NC NC Not in use on BB EM_P2_14 3 4 EM_P1_04 FLASH_CS Not in use on BB EM_P2_12 5 6 EM_P1_13 IO_LED2_SOC IO_LED4_SOC/IO_BUT TON1 EM_P1_05 7 8 EM_P1_10 SoC Debug P3.4 Not in use on BB EM_P1_07 9 10 EM_P1_12 SoC Debug P3.3 Not in use on BB EM_P1_09 11 12 EM_P1_20 MISO & SoC Debug P3.10 Not in use on BB EM_P1_03 13 14 EM_P1_14 IO_LED3_SOC & SoC Debug P3.5 Not in use on BB EM_P2_18 15 16 EM_P1_16 SCLK & SoC Debug P3.6 Not in use on BB EM_P1_17 17 18 EM_P1_18 MOSI & SoC Debug P3.8 Not in use on BB EM_P2_20 19 20 GND GND Table 7 I/O connector P4 pin out Function on BB Signal name Pin Pin Signal name Function on BB NC NC 1 2 NC NC VCC_EM VCC_EM 3 4 EM_P1_06 IO_LED1 Not in use on BB EM_P2_05 5 6 EM_P2_04 IO_LED2_MSP JOYSTICK_RT EM_P1_08 7 8 EM_P2_06 IO_LED3_MSP JOYSTICK_DN EM_P1_02 9 10 EM_P2_08 IO_LED4_MSP JOYSTICK_UP EM_P2_11 11 12 EM_P1_11 Not in use on BB JOYSTICK_LEFT EM_P2_13 13 14 EM_P2_15 SoC Debug P3.7 & Flash Reset JOYSTICK_PUSH EM_P2_01 15 16 EM_P2_16 IO_BUTTON2 JOY_LEVEL EM_P1_15 17 18 EM_P2_17 Not in use on BB JOY_MOVE EM_P2_19 19 20 GND GND Table 8 I/O connector P5 pin out 10.5 SoC Debug connector The SoC debug connector P3 is used to program and debug the SoC on the connected EM with an external programmer/debug tool. The SmartRF05EB can be used for this purpose by connecting a cable to P3 on the Battery Board as shown in Figure 13 below. swru209b 23/28 Figure 13 Program/debug with SmartRF05EB The pin out of this connector is depicted below. For debugging and programming of the SoC the following signals are used; SoC RESET_N, DD and DC. In addition GND and +3.3V shall be connected. Figure 14 SmartRF05BB SoC Debug Connector As seen on Figure 14 also the SPI signals CS, MISO, MOSI and SCLK can be found on this connector. 10.6 Current Measurement Jumper Jumper P7, also called V_EM, has been added to the board to simplify current consumption measurements. By removing the jumper, an Ampere Meter can easily be connected to the board to perform current consumption measurements. Similarly, a separate, regulated power supply for the EM can be connected. Refer to the schematics (in the appendices) for further details. swru209b 24/28 11 Frequently Asked Questions Q1 When connecting the SmartRF05EB to my PC via USB, the dialog window below appears. Why? What should I do? A1 The SmartRF05EB will be recognized as a USB device by the operating system, and it will ask the user to provide information about which USB driver that should be associated with the device. If you have installed SmartRF Studio, just follow the instructions and select “Automatic installation”. Windows should find the required driver (cebal2.sys), as specified in an .inf file. Both files (.inf and .sys) are included in the SmartRF installation. If you have not installed SmartRF Studio, it is recommended that you do so before proceeding. Both the SmartRF Studio User Manual and SmartRF05EB User’s Guide has more details. Q2 SmartRF05EB with the CC2530EM is not detected by IAR/SmartRF Studio. Why? A2 Make sure you have installed SmartRF Studio as described in section 5.4. Then verify that the device is associated with the correct driver by opening the Device Manager on your PC. When the EB is connected, the “Cebal controlled devices” list contains “SmartRF05EB”. If the board is listed as an unknown device, please follow the steps outlined in the SmartRF05EB User’s Guide. swru209b 25/28 Q3 How can I measure the current consumption of the CC2530? A3 The easiest way to measure current consumption of the chip in various modes is to connect the EM directly to the SmartRF05EB and disconnect everything on the board that consumes power by removing all jumpers. The jumper on header P13 should not be removed. Connect the ampere meter between the two terminals on P15. On P10, the jumper for the EM_RESET signal (connector 35-36) should be mounted. On P1, no jumpers are required, but in order to control the SoC from a debugger, mount a jumper between 19-20 (DBG_DD) and 21-22 (DBG_DD). Make sure the RS232 Enable switch is in the “disable” position. Use SmartRF Studio to set the radio in different modes (RX, TX, etc.), or download an application on the CC2530 setting the device in the preferred state. Q4 Can I use another compiler than IAR to develop software for CC2530? A4 Yes, there are several tools available that can be used for CC2530. Any 8051 compiler (e.g. Keil, GCC, and SDCC) can, in theory, be used. Note that these tools may have limited debugging support for CC2530. When working with the TI Z-Stack (and RemoTI) stack for CC253x, you must use IAR Embedded Workbench for 8051. swru209b 26/28 12 References [1] CC2530 product web site http://focus.ti.com/docs/prod/folders/print/cc2530.html [2] SmartRF Studio product web site http://focus.ti.com/docs/toolsw/folders/print/smartrftm-studio.html [3] SmartRF Flash Programmer product web site http://focus.ti.com/docs/toolsw/folders/print/flash-programmer.html [4] SmartRF Packet Sniffer http://focus.ti.com/docs/toolsw/folders/print/packet-sniffer.html [5] SmartRF Packet Sniffer User Manual http://www.ti.com/lit/swru187 [6] SmartRF05EB User’s Guide http://www.ti.com/lit/swru210 [7] Z-Stack http://www.ti.com/z-stack [8] CC2530 Software Examples User’s Guide http://www.ti.com/lit/swru137 [9] CC2530ZDK Quick Start Guide http://www.ti.com/lit/swra274 [10]CC2530ZDK Sensor Demo User’s Guide http://www.ti.com/lit/swru225 [11]CC2530ZDK web site http://focus.ti.com/docs/toolsw/folders/print/cc2530zdk.html [12]CC2530DK Quick Start Guide http://www.ti.com/lit/swra273 [13]CC2530DK User’s Guide http://www.ti.com/lit/swru208 [14]CC2530DK web site http://focus.ti.com/docs/toolsw/folders/print/cc2530dk.html [15]DN002 -- Practical Sensitivity Testing http://www.ti.com/lit/swra097 [16] Texas Instruments Low Power RF Online Community http://www.ti.com/lprf-forum [17] Texas Instruments Support http://support.ti.com swru209b 27/28 13 Document history Revision Date Description/Changes B 2011-04-05 Clarified that IAR EW8051 is required when working with the Z-Stack. Updated screenshots of SmartRF Studio. Include updated schematics. Fixed a few typos. A 2009-08-04 Added SmartRF05 Battery Board schematics - 2009-06-08 First revision. swru209b 28/28 Appendix A Schematics Please refer to the following pages for the schematics for CC2530 Evaluation Module CC2531 USB Dongle SmartRF05 Evaluation Board SmartRF05 Battery Board The reference design for the CC2530 evaluation module can be found on the CC2530 web page [1]. P0.5 VDD VDD 3 1 X1 X_32.000/10/15/30/16 1 2 C254 C_2P2_0402_NP0_C_50 2 1 L261 L_2N0_0402_S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 P1.5 P1.4 P1.3 P1.1 P1.0 P0.7 P0.6 P0.4 P0.3 P0.2 P0.1 P0.0 Reset P2.2 P2.1 P1.7 P1.6 P0_5 XOSC32M_Q1 P1_5 DVDD RBIAS AVDD2 AVDD5/AVDD_SOC P0_6 P0_7 P0_4 P1_6 P0_2 P1_7 AVDD_DREG P0_0 DVDD_USB DGND_USB USB_M P0_1 P0_3 GND USB_P AVDD4 AVDD3 DCOUPL P1_0 P1_4 AVDD1 AVDD_GUARD RESET_N P2_4 XOSC32M_Q2 P1_1 P1_3 P1_2 RF_P P2_2 P2_3 P2_0 RF_N P2_1 U1 CC2530_TX_REDES 1 2 C251 C_18P_0402_NP0_J_50 1 2 L1 L_BEAD_102_0402 2 1 C401 C_1U_0402_X5R_K_6P3 1 2 C271 C_100N_0402_X5R_K_10 1 2 P4 PINROW_1x2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 P0.4 P1.3 P0.1 P1.0 P0.2 P0.3 P2.1 P0.0 P2.2 P1.1 P1.4 P0.6 P1.5 P0.7 P1.6 P1.7 P1 SMD_SOCKET_2X10 1 2 3 4 5 P3 SMA_SMD 1 2 C211 C_100N_0402_X5R_K_10 1 2 R301 R_56K_0402_F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 P1.2 P2.0 P2 SMD_SOCKET_2X10 1 2 L252 L_2N0_0402_S 1 2 L251 L_0402 1 2 C311 C_100N_0402_X5R_K_10 1 2 C241 C_100N_0402_X5R_K_10 1 2 C101 C_100N_0402_X5R_K_10 4 1 X2 X_32.768/20/50/40/12 1 2 C221 C_27P_0402_NP0_J_50 1 2 C252 C_1P0_0402_NP0_C_50 1 2 C1 C_2U2_0402_X5R_M_4VDC 1 2 C253 C_0402 1 2 C231 C_27P_0402_NP0_J_50 1 2 C391 C_1U_0402_X5R_K_6P3 1 2 C272 C_220P_0402_NP0_J_50 1 2 C261 C_18P_0402_NP0_J_50 1 2 C262 C_1P0_0402_NP0_C_50 1 2 C255 C_0402 1 2 C331 C_15P_0402_NP0_J_50 1 2 C321 C_15P_0402_NP0_J_50 FM2 FIDUCIAL_MARK FM1 FIDUCIAL_MARK FM3 FIDUCIAL_MARK FM4 FIDUCIAL_MARK FM5 FIDUCIAL_MARK FM6 FIDUCIAL_MARK A4 SCALE SHEET APPROVALS DATE DWG NO. REV. DWG COMPANY NAME ISSUED CHECKED DRAWN SIZE FSCM NO. CONTRACT NO. Texas Instruments 1 (1) NN 1.3.1 CC2530EM Discrete 025104 TIK VOLTAGE REGULATOR SoC periferials RF-SoC PART P1_1/LED P1_2 P0_2 P0_3 PA_DM P0_0 PA_DP P1_4 P1_5 P1_6 P1_7 P2_1 P2_2 RESET_N P0_4 P0_5 P1_0/LED P1_3 P0_0 P0_2 P0_3 P0_4 P0_5 P1_0/LED P1_1/LED P1_2 P1_3 P1_4 P1_5 P1_6 P1_7 P2_1 P2_2 PA_DP PA_DM RESET_N 1 FM2 FIDUCIAL_MARK_1mm 1 FM3 FIDUCIAL_MARK_1mm 1 FM1 FIDUCIAL_MARK_1mm Including PCB antenna CONTRACT NO. SIZE FSCM NO. DRAWN CHECKED ISSUED COMPANY NAME DWG DWG NO. REV. APPROVALS DATE SCALE SHEET A4 1(4) - USB Connector - Buttons - LEDs - SMD sockets Generated voltage: 3.3 V for CC2531 Texas Instruments CC2531 USB dongle 2.4 025104 TIK MAP VCC_EXT 3.3V VBUS Gnd In Out /EN NC VREG U2 TPS76933 1 2 R2 R_0402 1 2 C2 C_4U7_0603_X5R_K_6 1 2 C1 C_1U_0603_X5R_L_6P3 1 2 R1 R_2_0402_F 1 2 R3 R_0_0402 1 2 C3 C_0402 CONTRACT NO. SIZE FSCM NO. DRAWN CHECKED ISSUED COMPANY NAME DWG DWG NO. REV. APPROVALS DATE SCALE SHEET A4 CC2531 USB DONGLE VOLTAGE REGULATOR Not mount: C3, R2 2(4) To CC2531 From PC Texas Instruments 2.4 025104 TIK MAP P0_0 P0_2 P0_3 P0_4 P0_5 P1_0/LED P1_1/LED P1_2 P1_3 P1_4 P1_5 P1_6 P1_7 P2_1 P2_2 PA_DP PA_DM RESET_N VCC 3.3V 1 2 C241 C_100N_0402_X5R_K_10 1 2 C211 C_100N_0402_X5R_K_10 C5 C_0P5_0402_NP0_B_50 1 2 C311 C_100N_0402_X5R_K_10 1 2 C271 C_100N_0402_X5R_K_10 1 2 C221 C_27P_0402_NP0_J_50 1 2 C4 C_2U2_0402_X5R_M_4VDC 1 2 C272 C_220P_0402_NP0_J_50 1 2 C391 C_1U_0402_X5R_K_6P3 1 2 C201 C_1N_0402_NP0_J_50 1 2 R301 R_56K_0402_F 2 1 C401 C_1U_0402_X5R_K_6P3 1 2 C41 C_10P_0402_NP0_J_50 3 1 X1 X_32.000/10/15/30/16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 P0_5 P1_5 RBIAS AVDD2 P0_6 P0_7 P0_4 P1_6 P0_2 P1_7 P0_0 DVDD_USB DGND_USB P0_1 P0_3 GND AVDD4 AVDD3 DCOUPL P1_0 P1_4 AVDD1 RESET_N P2_4 P1_1 P1_3 P1_2 RF_P P2_2 P2_3 P2_0 RF_N P2_1 DVDD2 DVDD1 AVDD5 AVDD6 XOSC_Q2 XOSC_Q1 USB_M USB_P U1 CC2531 1 2 C231 C_27P_0402_NP0_J_50 1 2 L1 L_BEAD_102_0402 2 1 A2 ANTENNA_IIFA_1_LEFT 2 R9 R_0_0402 1 3 2 4 5 6 B1 JTI_2450BM15A0002 1 2 R201 R_2K2_0402_G 1 2 C101 C_100N_0402_X5R_K_10 L301 L_6N8_0402_J CONTRACT NO. SIZE FSCM NO. DRAWN CHECKED ISSUED COMPANY NAME DWG DWG NO. REV. APPROVALS DATE SCALE SHEET A4 3(4) Texas Instruments CC2531 USB DONGLE RF-PART 2.4 025104 TIK MAP P1_1/LED P1_2 P0_2 P0_3 PA_DM P0_0 PA_DP P1_4 P1_5 P1_6 P1_7 P2_2 P2_1 RESET_N P0_4 P0_5 P1_0/LED P1_3 3.3V VBUS 3.3V 3.3V VCC_EXT 8 7 6 5 4 3 2 1 IO BL_31_008U_NO_SILK 1 2 3 4 5 6 DVBUS Shield GND D+ Shield P1 USB_A 1 2 R21 R_33_0402_G 1 2 R31 R_33_0402_G 1 2 R91 R_0_0402 1 2 R71 R_270_0402_F 2 1 D2 LED_EL19-21SYGC 1 2 R92 R_0402 1 2 C31 C_47P_0402_NP0_J_50 1 2 R11 R_270_0402_F 1 2 R32 R_1K5_0402_G 1 2 S2 PUSH_BUTTON_SKRK 1 2 S1 PUSH_BUTTON_SKRK 2 1 D1 LED_EL19-21SURC 1 2 3 4 5 6 7 8 9 10 DEBUG STL21 1 2 C21 C_47P_0402_NP0_J_50 CONTRACT NO. SIZE FSCM NO. DRAWN CHECKED ISSUED COMPANY NAME DWG DWG NO. REV. APPROVALS DATE SCALE SHEET A4 4(4) LED_Green CC2531 USB dongle USB circuitry SoC debug/flash button_P_1_3 Texas Instruments LED_Red button_P_1_2 2.4 025104 USB Interface Not mount: R92, IO TIK Additional testpins MAP Power Supply Joystick RS-232 User Interface USB Interface EM Interface POWER_PS VCC_EM VCC_IO VBUS +3.3V USB JOYSTICK_PUSH JOYSTICK_UP JOYSTICK_RT JOYSTICK_DN JOYSTICK_LT JOY_MOVE JOY_LEVEL EM_UART_TX EM_UART_RTS EM_UART_RX EM_UART_CTS VCC_IO IO_POT_R IO_BUTTON2 IO_LED1 IO_LED2_MSP IO_LED2_SOC IO_LED3_MSP IO_LED3_SOC IO_LED4_MSP IO_BUTTON1/IO_LED4_SOC IO_LCD_MODE IO_LCD_CS IO_FLASH_CS VCC_IO USB_IO_RESET IO_MISO IO_MOSI IO_SCLK USB_EM_RESET IO_EM_RESET USB_EM_RESET USB_SCLK USB_CS USB_MOSI USB_MISO USB_LCD_CS USB_UART_RX USB_UART_TX USB_UART_CTS USB_UART_RTS USB_DBG_DC USB_DBG_DD USB_LCD_MODE +3.3V USB VBUS USB_IO_RESET USB_JOY_MOVE USB_DBG_DD_DIR EM_UART_CTS EM_UART_RTS EM_UART_TX EM_UART_RX EM_SCLK EM_MISO EM_MOSI EM_CS/EM_LED3_SOC EM_LCD_CS EM_LCD_MODE EM_FLASH_CS VCC_EM POWER_PS EM_BUTTON1/EM_LED4_SOC EM_BUTTON2 EM_JOY_LEVEL EM_POT_R EM_LED2_MSP EM_LED3_MSP EM_LED2_SOC EM_LED4_MSP JOYSTICK_UP JOYSTICK_DN JOYSTICK_LT JOYSTICK_RT JOYSTICK_PUSH EM_DBG_DD EM_DBG_DC EM_RESET EM_LED1 EM_JOY_MOVE EM_DBG_DD_DIR EM_SNIFF_CLK EM_SNIFF_DATA EM_SNIFF_SFD EM_SNIFF_MISO FM1 FIDUCIAL_MARK FM2 FIDUCIAL_MARK FM4 FIDUCIAL_MARK FM3 FIDUCIAL_MARK FM6 FIDUCIAL_MARK H1 PCB_FEET_19 H2 PCB_FEET_19 H3 PCB_FEET_19 H4 PCB_FEET_19 FM5 FIDUCIAL_MARK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 P10 PINROW_2X18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 P1 PINROW_2X18 A3 SCALE SHEET APPROVALS DATE DWG NO. REV. DWG COMPANY NAME ISSUED CHECKED DRAWN SIZE FSCM NO. - LCD - Flash - Potmeter - Buttons - LEDs Sheet 7 Sheet 3 1.8.1 Sheet 6 - CC2511 - CC2511 debug - USB port - RS232 driver - RS232 port - On/Off jumper - EM connection - External SoC debug TI Norway, LPW Sheet 2 02587 1(7) IO peripherals jumpers All mount as default CONTRACT NO. - Regulators - Power jumpers - Battery - Joystick (EM_CS/EM_LED3_SOC) Sheet 4 USB MCU IO jumpers Default setting: 1-2: open 3-4: open 5-6: mount 7-8: mount 9-10: open 11-12: open 13-14: open 15-16: open 17-18: mount 19-20: mount 21-22: mount 23-24: mount 25-26: mount 27-28: mount 29-30: mount 31-32: mount 33-34: mount 35-36: mount Sheet 5 PEH SmartRF05EB Top Level USB_EM_RESET USB_SCLK USB_CS USB_MOSI USB_MISO USB_LCD_CS USB_UART_RX USB_UART_TX USB_UART_CTS USB_UART_RTS USB_DBG_DC USB_DBG_DD USB_LCD_MODE +3.3V USB VBUS USB_IO_RESET USB_JOY_MOVE USB_DBG_DD_DIR USB_RESET USB_RESET +3.3V USB +3.3V USB +3.3V USB VCC_IO VCC_IO +3.3V USB VCC_IO 1 2 3 4 5 6 7 8 9 10 P2 PINROW_2X5 1 2 3 4 GND X1 X_48.000/15/18/60/16 1 2 C35 C_100N_0603_X7R_K_50 1 2 C37 C_2U2_0603_X5R_K_10 1 2 3 4 56789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 AVDD AVDD AVDD AVDD P2_0 RESET_N RF_N RF_P PADM P2_2 PADP XOSC_Q1 XOSC_Q2 DGUARD P1_7 P2_1 DCOUPL P1_6 P1_4 P1_1/LED P1_0/LED P1_2 P1_3 P1_5 P0_0/ATEST P0_3 P0_1 P0_2 P0_4 P0_5 P2_4/XOSC32_Q2 P2_3/XOSC32_Q1 DVDD DVDD RBIAS GND Exposed AVDD_DREG U3 CC2511 1 2 3 4 5 6 DVBUS Shield GND D+ Shield P12 USB_B 1 2 C17 C_100N_0603_X7R_K_50 1 2 C18 C_100N_0603_X7R_K_50 1 2 C2 C_47P_0603_NP0_J_50 1 2 R18 R_0603 1 2 R10 R_0_0603 1 2 R11 R_33_0603_G 1 2 L4 L_BEAD_102_0603 1 2 R9 R_1K5_0603_G 1 2 C3 C_47P_0603_NP0_J_50 1 2 R42 R_10K_0603_G 1 2 R12 R_33_0603_G 1 2 C6 C_10N_0603_X7R_K_50 1 2 C34 C_220P_0603_NP0_J_50 1 2 C36 C_100N_0603_X7R_K_50 1 2 R44 R_56K_0603_F 1 2 C20 C_33P_0603_NP0_J_50 1 2 C19 C_33P_0603_NP0_J_50 1 2 C33 C_220P_0603_NP0_J_50 1 2 R43 R_270_0603_J 1 2 D6 LED_CL150YCD 1 2 R52 R_10K_0603_G 1 2 R41 R_10K_0603_G 1 2 R60 R_10K_0603_G 1 2 S3 PUSH_BUTTON_SKRK 1 2 S4 PUSH_BUTTON_SKRK 1 2 C16 C_1U_0603_X5R_K_10 A3 SCALE SHEET APPROVALS DATE DWG NO. REV. DWG COMPANY NAME ISSUED CHECKED DRAWN SIZE FSCM NO. USB Interface 1.8.1 TI Norway, LPW Do Not Mount USB LED USB BUTTON 02587 2(7) CONTRACT NO. USB SoC Debug PEH EM_UART_CTS EM_UART_RTS EM_UART_TX EM_UART_RX EM_SCLK EM_MISO EM_MOSI EM_CS/EM_LED3_SOC EM_LCD_CS EM_LCD_MODE EM_FLASH_CS VCC_EM EM_BUTTON1/EM_LED4_SOC POWER_PS EM_JOY_LEVEL EM_BUTTON2 EM_POT_R EM_LED2_MSP EM_LED3_MSP EM_LED2_SOC EM_LED4_MSP JOYSTICK_UP JOYSTICK_DN JOYSTICK_LT JOYSTICK_RT JOYSTICK_PUSH EM_DBG_DD EM_DBG_DC EM_RESET EM_LED1 EM_JOY_MOVE EM_DBG_DD_DIR EM_SNIFF_CLK EM_SNIFF_DATA EM_SNIFF_SFD EM_SNIFF_MISO EM_DBG_DD_DIR EM_UART_RTS EM_DBG_DD EM_DBG_DC EM_MISO EM_UART_CTS JOYSTICK_UP JOYSTICK_LT EM_LCD_CS EM_FLASH_CS EM_POT_R EM_UART_TX EM_JOY_MOVE EM_LED4_MSP EM_LED1 EM_LED3_MSP EM_LCD_MODE EM_RESET EM_BUTTON2 EM_LED2_MSP JOYSTICK_RT POWER_PS JOYSTICK_DN JOYSTICK_PUSH EM_JOY_LEVEL VCC_EM EM_BUTTON1/EM_LED4_SOC EM_SCLK EM_MOSI EM_UART_RX EM_RESET EM_DBG_DD DUT_DD DUT_VCC DUT_VCC EM_DBG_DC DUT_DD VCC_EM VCC_IO VCC_EM 1 2 3 4 5 6 7 8 9 10 DUT_VCC DUT_DD P4 PINROW_SMD_2X5_1.27MM 1 2 3 4 5 6 7 8 9 10 P3 PINROW_2X5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 EM_USB1 EM_USB2 EM_LED2_SOC EM_CS/EM_LED3_SOC EM_DBG_DD_DIR P18 PINROW_2X10 1 2 C21 C_10U_0805_X5R_K_10 1 2 C28 C_100N_0603_X7R_K_50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 EM_USB2 EM_USB1 P6 SMD_HEADER_2x10 1 2 R33 R_0603 1 2 C29 C_100N_0603_X7R_K_50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 GND VCCA 1A1 1A2 2DIR 2A1 2A2 1B1 2B1 VCCB 2B2 1DIR GND 1B2 U9 SN74AVC4T245 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 P5 SMD_HEADER_2x10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 P20 PINROW_2X10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 P22 SMD_HEADER_2x10 1 2 C27 C_100N_0603_X7R_K_50 1 2 C30 C_100N_0603_X7R_K_50 1 2 R30 R_0603 A3 SCALE SHEET APPROVALS DATE DWG NO. REV. DWG COMPANY NAME ISSUED CHECKED DRAWN SIZE FSCM NO. DO NOT MOUNT External SOC Debug R33 DO NOT MOUNT Mount 0 ohm resistor in position R30 to power DUT from +3.3V USB through connector P3 1.8.1 EM Connectors TI Norway, LPW EM Interface 02587 Debug Connectors CONTRACT NO. 3(7) PEH POWER_PS VCC_EM VCC_IO VBUS +3.3V USB 1 2 C9 C_4U7_0805_X5R_K_25 4 5 8 6 7 9 11 3 10 1 2 GND EN FB PGND VIN PPAD L1 VINA L2 VOUT PS/SYNC U4 TPS63030 1 2 R34 R_0_0603 2 L1 1 LPS3015-222ML 1 2 R63 R_6K2_0603_G 2 1 3 6 5 In 4 Gnd Gnd Out ADJ U2 TPS7A4501 A K D8 BAT254 1 P13 2 STRAP_1 1 2 R45 R_1M0_0603_J 2 1 + B1 1xAA_1_5V 1 2 R68 R_1M0_0603_J 1 2 R65 R_0603 123 P11 PINROW_1X3 1 2 C1 C_10U_0805_X5R_L_25 1 2 R35 R_0_0603 1 2 C38 C_100N_0603_X7R_K_50 1 2 C8 C_10U_0805_X5R_K_10 1 2 3 6 5 4 P8 Switch_6pin 1 2 R70 R_0603 1 2 C10 C_4U7_0805_X5R_K_25 1 2 R64 R_3K6_0603_G 2 1 + B2 1xAA_1_5V 1P15 2 STRAP_1 1 2 3 P7 DC_JACK_2.5 1 2 C11 C_10U_0805_X5R_K_10 1 2 R2 R_0_0603 A K D5 BAT254 1 2 R29 R_0_0603 1 2 R7 R_0603 1 2 R69 R_180K_0603_G TP2 TESTPOINT_PAD TP3 TP1 TESTPOINT_PAD TESTPOINT_PAD TP4 TESTPOINT_PAD A3 SCALE SHEET APPROVALS DATE DWG NO. REV. DWG COMPANY NAME ISSUED CHECKED DRAWN SIZE FSCM NO. Power supply Power source jumper: 1-2: Battery 2-3: USB/DC (default) Do Not Mount 1.8.1 VCC_EM jumper TI Norway, LPW Current is drawn from input with highest voltage 02587 4(7) 2.2uH Do Not Mount Do Not Mount CONTRACT NO. VCC_IO jumper Power On/Off PEH Battery IO_POT_R IO_BUTTON2 IO_LED1 IO_LED2_MSP IO_LED2_SOC IO_LED3_MSP IO_LED3_SOC IO_LED4_MSP IO_BUTTON1/IO_LED4_SOC IO_LCD_MODE IO_LCD_CS IO_FLASH_CS VCC_IO USB_IO_RESET IO_MOSI IO_MISO IO_SCLK USB_EM_RESET IO_EM_RESET BUTTON1_POWER_MSP BUTTON1_POWER_SOC USB_IO_RESET VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO 12 34 S2 PUSH_BUTTON 1 2 R39 R_270_0603_J 1 2 3 4 56 7 8 C Reset TSL Vcc Q Vss D S U5 M25PEx0 1 2 3 6 5 4 P19 Switch_6pin 1 2 C5 C_100N_0603_X7R_K_50 12 34 BUTTON1_POWER_SOC S1 PUSH_BUTTON 2 1 R13 R_10K_0603_G 1 2 R37 R_270_0603_J 1 2 R20 R_10K_0603_G 11 10 U11-E SN74ALVC14 1 2 R40 R_1K0_0603_J 13 12 U11-F SN74ALVC14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 4B1 S 3B1 2B2 OE VDD GND 4B2 1A 2A 3A 4A 1B1 1B2 2B1 3B2 U10 SN74CBTLV3257PW 12 34 S5 PUSH_BUTTON 2 1 14 U11-A 7 SN74ALVC14 1 2 LED4 LED_CL150DCD 2 1 R15 R_10K_0603_G LCD 7 - not use 8 - not use 12- not use 13- not use 14- not use 15- not use 16- not use 1 - backlight supply - 2 - backlight supply + 3 - logic power supply - 4 - logic power supply + 5 - Reset (active low) 6 - register selection 9 - serial data in 10- serial clock input 11- chip select M1 HMC16311SF-PY 8 9 U11-D SN74ALVC14 1 2 LED1 LED_CL150GCD 1 2 3 CW RT1 R_0-10K_TRIM 1 2 R14 R_10K_0603_G 1 2 R53 R_100K_0603_F 1 2 R38 R_270_0603_J 6 5 U11-C SN74ALVC14 1 2 R8 R_0_0603 1 2 C7 C_100N_0603_X7R_K_50 1 2 R36 R_270_0603_J 123456789 10 11 12 13 14 15 16 P9 HMC_CON 2 1 R16 R_10K_0603_G 1 2 LED3 LED_CL150YCD 1 2 C4 C_100N_0603_X7R_K_50 1 2 BUTTON1_POWER_MSP R21 R_10K_0603_G 1 2 LED2 LED_CL150URCD 1 2 C13 C_1U_0603_X5R_K_10 4 3 U11-B SN74ALVC14 A3 SCALE SHEET APPROVALS DATE DWG NO. REV. DWG COMPANY NAME ISSUED CHECKED DRAWN SIZE FSCM NO. Orange 1.8.1 EM RESET FLASH BUTTON 2 TI Norway, LPW Yellow 02587 User Interface POTMETER 5(7) Red LED BUTTON 1 CONTRACT NO. LCD Green PEH EM_UART_TX EM_UART_RTS EM_UART_RX EM_UART_CTS VCC_IO VCC_IO 3 2 1 4 5 6 P14 Switch_6pin 1 2 C15 C_1U_0603_X5R_K_10 1 2 C14 C_100N_0603_X7R_K_50 1 2 C22 C_100N_0603_X7R_K_50 1 2 C25 C_100N_0603_X7R_K_50 1 2 C23 C_100N_0603_X7R_K_50 1 2 C24 C_100N_0603_X7R_K_50 1 2 3 4 5 6 7 8 9 P16 DSUB_9F 1 2 R47 R_0_0603 1 2 R49 R_0_0603 1 2 R48 R_0_0603 1 2 R28 R_0_0603 1 2 R46 R_0_0603 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 C1+ 28 R2OUT R1OUT T1IN R3OUT R4OUT V+ VCC GND R2OUTB FORCEON T3IN T2IN T3OUT R5OUT C1- T2OUT T1OUT R5IN R4IN R3IN R2IN R1IN VC2- C2+ U6 SN65C3243DBR A3 SCALE SHEET APPROVALS DATE DWG NO. REV. DWG COMPANY NAME ISSUED CHECKED DRAWN SIZE FSCM NO. PC RS232-port 2-RXD 3-TXD 5-GND 7-RTS 8-CTS 1.8.1 RS-232 Interface 02587 TI Norway, LPW 6(7) CONTRACT NO. PEH JOYSTICK_PUSH JOYSTICK_UP JOYSTICK_RT JOYSTICK_LT JOYSTICK_DN JOY_MOVE JOY_LEVEL UP DN PUSH LT RT UP RT VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO VCC_IO 4 5 6 U7-B SN74HC32 1 2 3 U7-A SN74HC32 1 2 R26 R_100K_0603_F 1 2 3 4 5 6 A COMMON C left CENTRE down up right B D push U1 skrhab_e010 1 2 C32 C_100N_0603_X7R_K_50 1 2 C12 C_100N_0603_X7R_K_50 1 2 R55 R_10K_0603_G 2 1 R22 R_100K_0603_F 1 2 C31 C_100N_0603_X7R_K_50 14 VDD 7 POWER CONN. GND U7-E SN74HC32 1 2 R62 R_0_0603 3 2 1 8 4 V+ V- + - U8-A TLV272 1 2 R56 R_10K_0603_G 5 6 + 7 - U8-B TLV272 1 2 C26 C_100P_0603_NP0_J_50 13 12 11 PUSH U7-D SN74HC32 1 2 DN R17 R_200K_0603_F 1 2 R6 R_100K_0603_F 1 2 R59 R_0_0603 1 2 R61 R_0_0603 1 2 R57 R_0_0603 1 2 R23 R_100K_0603_F 2 1 R24 R_100K_0603_F 1 2 R51 R_330K_0603_F 1 2 R50 R_330K_0603_F 1 2 R32 R_200K_0603_F LT 1 2 R31 R_200K_0603_F 2 1 R25 R_100K_0603_F 10 9 8 U7-C SN74HC32 1 2 R1 R_220K_0603_F 2 1 R3 R_100K_0603_F 1 2 R4 R_100K_0603_F 1 2 R5 R_100K_0603_F 1 2 R58 R_0_0603 1 2 R54 R_47K_0603_G A3 SCALE SHEET APPROVALS DATE DWG NO. REV. DWG COMPANY NAME ISSUED CHECKED DRAWN SIZE FSCM NO. Joystick 1.8.1 02587 TI Norway, LPW 7(7) CONTRACT NO. JOYSTICK PEH IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and www.ti.com/automotive Automotive Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps RF/IF and ZigBee® Solutions www.ti.com/lprf TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated www.dedicatedmicros.com INSTALLATION MANUAL MANUEL D’INSTALLATION INSTALLATIONSHANDBUCH MANUAL DE INSTALACIÓN MANUALE D'INSTALLAZIONE 2020 1. Introduction Congratulations on choosing the Dedicated Micros Type 2020/300 (300Watt) &/or 2020/500 (500Watt) infra-red illuminators designed to offer a cost effective solution to night surveillance by providing a source of illumination for cameras with spectrol responses that extend into the infra-red region. Clean designs with pressure die cast componentry ensure high quality finishes & fits with a striking & innovative appearance to complement the series 2000 range of products currently offered by Dedicated Micros. The units are weatherproof to BS.EN 60529 Level IP66 2. Index 1. Introduction 1 2. Index 1 3. List of contents 2 4. Mounting instructions 3 5. Wiring instructions 4 6. Bulb replacement 5 7. Optional equipment 6 8. Component spares 7 9. Troubleshooting 7 This product guide will provide all the necessary information to set-up, install and run the Type 2020 illuminator. Type 2020 Installation Manual Page. 1 3. List of contents Components supplied Before installation please remove the unit from the packaging and check that all items listed below have been supplied. A. 1 x Type 2020 Infra-red Illuminator B. 1 x Stone Guard ( Optional ) C. 1 x 4mm A/F Hexagonal socket key D. 1 x Fixing bag containing the following: 2 x M10 x 16 Hex. hd. screws 2 x M10 Plain washers 2 x M10 Spring washers In addition to the above components, a type 2020 product guide and a final test procedure are supplied. Type 2020 Installation Manual Page. 2 Fig.1 Components supplied B C D A 4. Mounting instruction Mounting configurations. Fig. 2 & 3 show typical positions for I.R. Illuminators when mounted to a remotely controlled pan & tilt head. Mount the Type 2020 Illuminator via the cradle (fig.4 item A) and secure using 2 off M10x16 Hex. hd. machine screws (fig.4 item D), 2 off M10 spring washers (fig.4 item C) and 2 off M10 plain washers (fig.4 item B) supplied with unit. Note: Please ensure the lamp bulb filament is mounted horizontally to receive the required life expectantcy and beam coverage. See bulb replacement (page 5) Bulb filament is factory set to comply with this type of mounting. See page 7 to re-orientate the bulb if mounting in other orientations Type 2020 Installation Manual Page. 3 Fig.2 Twin lamp mounting Pan & Tilt (Type 2000) Type 2020 IR.Illuminator B C D A Fig.3 Single lamp mount Fig.4 Mounting fixings 5. Wiring instructions Wiring connections Electrical connections to the Type 2020 I.R. illuminator are made via a terminal block situated inside the rear polycarbonate photo-electric switch enclosure as shown in fig.5. Access to which is achieved by unscrewing the four captive cover fixings and removing the cover as shown in fig.6. Using a suitable 3 core x 0.75mm2 230V.ac rated outdoor cable (Dedicated Micros recommend the use of a silicon covered cable due to the extreme temperatures generated by the illuminator) prepare the cable end for connection and feed the cable through the spare cable gland and terminate as shown in figs 7 & 8. Replace and secure the cover to finish. The cable gland should be tightened sufficiently to ensure that any strain put upon the cable is not transmitted to the terminal connections and that a watertight seal is achieved. It is recommended that the incoming electrical supply is protected by a fuse rated at 2 Amp for a type 2020/300 (300Watt) and 3 Amp for a type 2020/500 (500Watt) illuminator. Type 2020 Installation Manual Page. 4 Fig.5 Fig.6 Fig.7 Earth 230V.ac Customer input Fig.8 Live Terminal block Photoelectric Switch To Bulb Neutral 6. Bulb replacement Bulb replacement. HAVING TURNED OFF POWER TO THE UNIT open the casing by releasing the 4 off fastenings (item A, fig.9) a quarter turn anti-clockwise using a No.2 Philips screwdriver. The front assembly can now be removed from the rear and suspended on the safety/earth bond to expose the bulb. Remove the push on spade terminals (item B, fig.10) from the rear of the bulb and release the bulb from its mounting clips by springing one of the 3 clips outward while lifting the bulb free. Note: The bulb filament lies directly in-line between the spade terminals (item C, fig.11) please align by rotating the bulb within its spring clips ensuring the filament is horizontal when mounting the I.R Illuminator. The spade terminal connections can be made to either terminal. Type 2020 Installation Manual Page. 5 A B Fig.9 Opening illuminator enclosure Fig.10 Terminals Fig.11 Bulb removal Fig.12 Spring clips C C 7. Optional equipment Optional Stone guard. An optional stone guard (order suffix /SG) is available for the Type 2020 illuminator. Designed to protect the filter from flying objects / vandalism the guard can be fitted in seconds with 4 off fixings supplied. (fig.13) Optional Voltage reducer. The Manufacturers stated life expectancy for the 300W bulb is 2000 hours and 4000 hours for the 500W. This stated life is conditional on the supply being 230V, a 5% increase in voltage will reduce lamp life by 50%. NB. There are some parts of the UK where the standing voltage is over 250V, in a situation such as this Dedicated Micros can supply a Type 621 voltage reduction device which will reduce the incoming supply by 9% to increase the bulbs life. (fig.14) Box dimensions 110W x 130L x 50H for indoor use only. Optional ‘no photoelectric switch’ version A optional version is available without the rear photoelectric switch installed. (order suffix / No PE) Optional White light illuminator. An optional white light version of the Type 2020 can be supplied to any bulb variant. (order suffix /WL) Type 2020 Installation Manual Page. 6 Fig.13 Fig.14 8. Component spares 9. Troubleshooting Under normal operating conditions the stated bulb life times should be readily achieved, but there are circumstances under which life expectancy is much reduced. Spikes & surges: Illuminators running from supplies that are subject to spikes & power surges will have reduced life. Orientation: Bulb filaments must be horizontal, a filament positioned vertically will burn out before the stated life time. Operation: When mounted on a pan & tilt head the illuminator will be subject to vibration which, if sufficiently severe, could cause a reduction in life. Although the 500 Watt bulbs have been designed specifically for this use, 300 Watt bulbs are of standard manufacture and as such are more susceptible to damage. The information contained in this document is for guidance only. Specification and availability of goods are subject to change without notice Type 2020 Installation Manual Page. 7 Ref. No. F56 F57 F2 F3 F4 F42 H92,a & b 1-2020/13 1-2020/17 F14 F15 F48 1-2020/22 BS152 1-2020/6 Qty. 1 1 1 1 1 1 1 3 1 1 1 1 1 1 4 1 Description 500W Spot Bulb 500W M/Flood Bulb 300W Spot Bulb 300W M/Flood Bulb 300W W/Flood Bulb Photo-electric switch Cable gland assembly Bulb mounting clips Stone guard Filter assembly 715nm Filter assembly 830nm Filter assembly Dichroic Front ‘O’ ring seal Rear ‘O’ ring seal Quarter-turn fastenings External Safety bond 1. Introduction Nous vous félicitons d’avoir choisi les projecteurs infrarouge Type 2020/300 (300 Watts) et/ou 2020/500 (500 Watts) conçus pour offrir une solution rentable à la surveillance nocturne, qui consiste à assurer aux caméras une source d’éclairage à réponses spectrales s’étendant à la zone infrarouge. Des conceptions nettes avec composants moulés sous pression garantissent des finitions et ajustements de haute qualité, avec un look impressionant et innovateur pour compléter la gamme de produits de la série 2000 actuellement offerts par Dedicated Micros. Les boîtiers sont résistants aux intempéries conformément à la norme BS.EN 60529, indice IP66 2. Index 1. Introduction 8 2. Index 8 3. Sommaire 9 4. Instructions de montage 10 5. Instructions de câblage 11 6. Remplacement de l’ampoule 12 7. Equipement en option 13 8. Pièces de rechange 14 9. Dépannage 14 Ce guide de produit offre toutes les informations nécessaires pour la configuration, l’installation et le fonctionnement du projecteur Type 2020. Type 2020 Manuel d’installation Page. 8 Type 2020 Manuel d’installation Page. 9 3. Sommaire Composants fournis Avant de procéder à l’installation, veuillez sortir le projecteur de l’emballage et vérifier que tous les éléments listés ci-dessous sont inclus. A. 1 projecteur à infrarouge Type 2020 B. 1 grille de protection (en option) C. 1 clé hexagonale de 4 mm D. 1 sachet de fixations contenant: 2 vis à tête hexagonale M10 x 16 2 rondelles lisses M10 2 rondelles élastiques M10 En plus des composants ci-dessus, un guide de produit pour le projecteur Type 2020 et une procédure d’essai final sont fournis. Fig. 1 Composants fournis B C D A Type 2020 Manuel d’installation Page. 10 4. Instructions de montage Configurations de montage Les Fig. 2 et 3 illustrent les positions typiques des projecteurs infrarouge lorsqu’ils sont montés sur une tête panoramique et inclinaison télécommandée. Montez le projecteur Type 2020 en utilisant le support (fig. 4 repère A) et immobilisez-le à l’aide des 2 vis à tête hexagonale M10x16 (fig. 4 repère D), 2 rondelles élastiques M10 (fig. 4 repère C) et 2 rondelles lisses M10 (fig. 4 repère B) fournies avec le projecteur. Remarque: Veillez à ce que le filament de l’ampoule du projecteur soit monté bien à l’horizontale pour une durée de vie utile et une couverture de faisceau optimales. Voir remplacement de l’ampoule (page 12) Le filament de l’ampoule est réglé en usine pour assurer sa conformité avec ce type de montage. Voir la page 14 pour la réorientation de l’ampoule en cas de montage dans d’autres orientations. Fig. 2 Montage à deux projecteurs Panoramique et inclinaison (Type 2000) Projecteur infrarouge Type 2020 B C D A Fig. 4 Fixations de Fig. 3 Montage à un projecteur montage Type 2020 Manuel d’installation Page. 11 5. Instructions de câblage Raccordements de câbles Les raccordements électriques au projecteur infrarouge Type 2020 s’effectuent au moyen d’un bornier situé à l’intérieur du boîtier arrière en polycarbonate du commutateur photoélectrique, comme illustré à la fig. 5. Pour accéder à ce boîtier, dévissez les quatres vis prisonnières du couvercle et retirez le couvercle comme illustré à la fig. 6. A l’aide d’un câble pour extérieur à 3 âmes x 0,75 mm2 de 230 V. c.a. (Dedicated Micros recommande l’utilisation d’un câble siliconé en raison des températures extrêmes générées par le projecteur), préparez l’extrémité du câble pour le raccordement, et passez le câble dans le presse-étoupe libre et terminez-le comme illustré aux figs 7 et 8. Remettez et immobilisez le couvercle pour terminer. Le presseétoupe doit être suffisamment serré pour éviter de transmettre les contraintes exercées sur le câble aux raccordements de bornes et pour produire un joint étanche à l’eau. Il est recommandé de protéger l’entrée de l’alimentation électrique par un fusible de 2 A pour un projecteur type 2020/300 (300 Watts) et de 3 A pour un projecteur type 2020/500 (500 Watts). Fig. 5 Fig. 6 Fig. 7 Terre Entrée 230 V c.a. client Fig. 8 Conducteur Bornier Commutateur photoélectrique A l’ampoule Neutre Type 2020 Manuel d’installation Page. 12 6. Remplacement de l’ampoule Remplacement de l’ampoule APRES AVOIR MIS LE PROJECTEUR HORS TENSION ouvrez le boîtier en dévissant les 4 vis de fixation (repère A, fig. 9) d’un quart de tour à l’aide d’un tournevis Philips No. 2. L’ensemble avant peut maintenant être retiré de l’arrière et suspendu à l’élingue pour exposer l’ampoule. Retirez les bornes enfichables (repère B, fig. 10) à l’arrière de l’ampoule et libérez l’ampoule de ses pattes élastiques en poussant l’une des 3 pattes vers l’extérieur tout en soulevant l’ampoule pour la dégager. Remarque: Le filament de l’ampoule est positionné directement en ligne entre les bornes enfichables (repère C, fig. 11), veuillez aligner l’ampoule en la tournant dans ses pattes élastiques pour que le filament soit bien à l’horizontale lors du montage du projecteur infragrouge. Les raccordements de bornes enfichables peuvent être effectués à n’importe quelle borne. A B Fig. 9 Ouverture du boîtier du projecteur Fig. 10 Bornes Fig. 11 Retrait de l’ampoule Fig. 12 Pattes élastiques C C Type 2020 Manuel d’installation Page. 13 7. Equipement en option Grille de protection en option. Une grille de protection (indiquez le suffixe /SG lors de la commande) est disponible en option pour le projecteur Type 2020. Conçu pour protéger le filtre des projectiles / vandalisme, la grille de protection se pose en quelques secondes avec les 4 vis de fixation fournies. (fig. 13) Réducteur de tension en option. La durée de vie indiquée par les fabricants est de 2000 heures pour l’ampoule de 300 W et de 4000 heures pour l’ampoule de 500 W. Cette durée de vie indiquée correspond à une alimentation de 230 V, une augmentation de 5 % de la tension réduit la durée de vie du projecteur de moitié. NB. Dans certaines régions du Royaume-Uni, la tension normale est supérieure à 250 V : dans ce cas, Dedicated Micros peut fournir un dispositif de réduction de tension Type 621 qui réduit l’entrée de l’alimentation de 9 % pour augmenter la durée de vie de l’ampoule. (fig. 14) Dimensions du boîtier 110 l x 130 L x 50 H pour usage intérieur uniquement. Version ‘sans commutateur photoélectrique’ en option Un version en option est disponible sans commutateur photoélectrique arrière. (indiquez le suffixe / No PE lors de la commande) Projecteur blanc en option. Une version à éclairage blanc du projecteur Type 2020 est disponible en option et peut être fournie dans tous les types d’ampoule. (indiquez le suffixe /WL lors de la commande) Fig. 13 Fig. 14 Type 2020 Manuel d’installation Page. 14 8. Pièces de rechange 9. Dépannage Dans les conditions d’utilisation normales, les durées de vie d’ampoule indiquées sont parfaitement possibles, mais dans certains cas, la durée de vie est fortement réduite. Pointes et surtensions : La durée de vie des projecteurs dont l’alimentation électrique est soumise à des pointes et surtensions sera réduite. Orientation : Les filaments des ampoules doivent être posés bien à l’horizontale, un filament posé verticalement grillera avant la fin de sa durée de vie indiquée. Fonctionnement : Monté sur une tête panoramique et inclinaison, le projecteur sera soumis à des vibrations qui, si suffisamment sévères, sont susceptibles d’entraîner une réduction de sa vie utile. Bien que les ampoules de 500 Watts aient été conçues spécialement pour cet usage, les ampoules de 300 Watts sont de fabrication standard et de ce fait plus vulnérables aux dégâts. Les informations figurant dans le présent document sont fournies à titre indicatif uniquement. Les spécifications et la disponibilité des produits peuvent faire l’objet de modifications sans préavis. Réf. F56 F57 F2 F3 F4 F42 H92,a & b 1-2020/13 1-2020/17 F14 F15 F48 1-2020/22 BS152 1-2020/6 Qté. 1 1 1 1 1 1 1 3 1 1 1 1 1 1 4 1 Désignation Ampoule faisceau concentré (spot) 500 W Ampoule Faisceau moyen 500 W Ampoule faisceau concentré (spot) 300 W Ampoule faisceau moyen 300 W Ampoule faisceau large 300 W Commutateur photoélectrique Ensemble presse-étoupe Pattes élastique de montage d’ampoule Grille de protection Ensemble filtre 715 nm Ensemble filtre 830 nm Ensemble filtre Dichroïque Joint torique avant Joint torique arrière Fixations quart de tour Elingue 1. Einleitung Herzlichen Glückwunsch zur Wahl der Infrarot-Illuminatoren aus der Serie 2020/300 (300 Watt) und/oder 2020/500 (500 Watt) von Dedicated Micros. Diese Serien stellen eine kostengünstige Lösung zur Überwachung bei Nacht dar. Sie bieten eine Lichtquelle für Kameras, deren Spektralempfindlichkeit sich auf den Infrarotbereich erstreckt. Klares Design und druckgegossene Bauteile gewährleisten hochwertige Verarbeitung und Passform. Das beeindruckende und innovative Äußere ergänzt die Produktpallette der Serie 2000 von Dedicated Micros. Die Illuminatoren sind nach Schutzklasse IP66 (BS EN 60529) wettergeschützt. 2. Inhaltsverzeichnis 1. Einleitung 15 2. Inhaltsverzeichnis 15 3. Lieferumfang 16 4. Montageanleitung 17 5. Verkabelungsanleitung 18 6. Auswechseln der Glühlampe 19 7. Optionale Ausstattung 20 8. Ersatzteilliste 21 9. Fehlersuche 21 Dieses Produkthandbuch bietet alle erforderlichen Informationen für die Einrichtung, Installation und den Betrieb der Illuminatoren aus der Serie 2020. Serie 2020 Installationshandbuch Seite. 15 3. Lieferumfang Im Lieferumfang enthaltene Komponenten Entnehmen Sie den Illuminator vor der Installation bitte aus der Verpackung und vergewissern Sie sich, dass alle nachfolgend aufgeführten Artikel vorhanden sind. A. 1 x Infrarot-Illuminator der Serie 2020 B. 1 x Steinschlagschutz ( optional ) C. 1 x 4mm Sechskantschlüssel D. 1 x Befestigungssatz mit folgendem Inhalt: 2 x M10 x 16 Sechskantschrauben 2 x M10 Unterlegscheiben 2 x M10 Federscheiben Neben den oben aufgeführten Bestandteilen ist im Lieferumfang ein Produkthandbuch für die Serie 2020 und ein Abschlusstestverfahren enthalten. Serie 2020 Installationshandbuch Seite. 16 Abb.1 Im Lieferumfang enthaltene Komponenten B C D. A 4. Montageanleitung Montagekonfigurationen Abb. 2 & 3 zeigen typischen Positionen für Infrarot-Illuminatoren, die an einem ferngesteuerten Schwenk- und Neigekopf befestigt sind. Befestigen Sie den Illuminator der Serie 2020 mithilfe der Gabel (Abb. 4 Artikel A) und sichern Sie ihn mit den beiden M10x16 Sechskantschrauben mit Ganzgewinde (Abb. 4 Artikel D), zwei M10 Federscheiben (Abb. 4 Artikel C) und zwei M10 Unterlegscheiben (Abb. 4 Artikel B), die im Lieferumfang enthalten sind. Hinweis: Achten Sie darauf, dass der Glühwendel der Lampe horizontal montiert wird, um maximale Lebensdauer und Reichweite des Lichtstrahls zu gewährleisten. Siehe Auswechseln der Glühlampe (Seite 19) Der Glühwendel ist werkseitig auf diese Art der Montage eingestellt. Auf Seite 21 finden Sie Informationen zur Neuausrichtung der Lampe im Falle einer Montage mit anderer Ausrichtung. Serie 2020 Installationshandbuch Seite. 17 Abb .2 Befestigung einer Doppellampe Schwenk- und Neigekopf (Serie 2000) Infrarot-Illuminator Serie 2020 B C D. A Abb. 4 Befestigungsarmaturen Abb. 3 Befestigung einer Einzellampe 5. Verkabelungsanleitung Leitungsanschlüsse Die Elektroanschlüsse an den Infrarot-Illuminator der Serie 2020 werden über einen Klemmenblock vorgenommen, der sich auf der Rückseite im Polycarbonat-Gehäuse des fotoelektrischen Schalters befindet. Für den Zugang zu diesem Klemmenblock lösen Sie die vier unverlierbaren Schrauben des Gehäuses und nehmen Sie die Abdeckung ab, wie in Abb. 6 dargestellt. Verwenden Sie ein geeignetes 3 x 0,75 mm2 Freileitungskabel mit 230 VAC Nennleistung (Dedicated Micros empfiehlt aufgrund der extremen Temperaturen, die vom Illuminator erzeugt werden, die Verwendung eines silikonbeschichteten Kabels). Bereiten Sie das Kabelende für den Anschluss vor, führen Sie das Kabel durch den freien Kabelstutzen und terminieren Sie es, wie in Abb. 7 & 8 dargestellt. Setzen Sie zum Abschluss die Abdeckung wieder auf und befestigen Sie sie. Der Kabelstutzen sollte ausreichend fest angezogen werden, damit eine eventuelle Belastung des Kabels sich nicht auf die Kabelanschlüsse überträgt und damit eine wasserfeste Dichtung entsteht. Wir empfehlen, die Stromzufuhr für Modelle der Serie 2020/300 (300 Watt) mit einer 2 A Sicherung bzw. Modelle der Serie 2020/500 (500 Watt) mit einer 3 A Sicherung abzusichern. Serie 2020 Installationshandbuch Seite.18 Abb. 5 Abb. 6 Abb. 7 Erde 230 VAC Kundenseitiger Eingang Abb. 8 Spannungsführend Klemmenblock Fotoelektrischer Schalter Zur Lampe Neutral 6. Auswechseln der Glühlampe Auswechseln der Glühlampe SCHALTEN SIE DIE STROMZUFUHR ZUM GERÄT AUS. Öffnen Sie das Gehäuse, indem Sie die 4 Befestigungen (Artikel A, Abb. 9) eine Vierteldrehung entgegen dem Uhrzeigersinn drehen. Verwenden Sie dazu einen Kreuzschlitzschraubendreher Nr. 2. Jetzt kann der vordere Teil des Illuminators von der hinteren Hälfte gelöst und am Sicherungsseil/Erdungsseil abgehängt werden, um die Glühlampe freizulegen. Nehmen Sie die aufgesetzten Kabelschuhe (Artikel B, Abb. 10) von der Rückseite der Lampe ab und lösen Sie die Lampe aus den Befestigungsklemmen. Drücken Sie dazu eine der 3 Klemmen zurück, während Sie die Glühlampe heraus heben. Hinweis: Der Glühwendel liegt direkt zwischen den Kabelschuhen (Artikel C, Abb. 11). Richten Sie ihn durch Drehen der Lampe in den Federklemmen so aus, dass der Wendel horizontal liegt, wenn der Infrarot-Illuminator montiert wird. Die Kabelschuhe können beliebig an einer der beiden Klemmen angeschlossen werden. Serie 2020 Installationshandbuch Seite. 19 A B Abb. 9 Öffnen des Illuminatorgehäuses Abb. 10 Anschlussklemmen Abb. 11 Ausbau der Glühlampe Abb. 12 Federklemmen C C 7. Optionale Ausstattung Optionaler Steinschlagschutz. Für den Illuminator der Serie 2020 ist ein optionaler Steinschlagschutz (Bestellendung /SG) lieferbar. Er dient dazu, den Filter vor umherfliegenden Objekten / Vandalismus zu schützen und kann innerhalb weniger Sekunden mithilfe der 4 im Lieferumfang enthaltenen Schrauben installiert werden. (Abb.13) Optionaler Spannungswandler Die vom Hersteller angegebenen Lebensdauer liegt für die 300 W Glühlampe bei 2000 Stunden und für die 500 W Lampe bei 4000 Stunden. Die angegebenen Lebensdauer hängt von einer Stromzufuhr bei 230 V ab; eine Steigerung der Spannung um 5% reduziert die Lebensdauer der Lampe um 50%. NB. In einigen Teilen Großbritanniens liegt die Standspannung über 250 V. In einer derartigen Situation kann Dedicated Micros einen Spannungswandler (Typ 621) liefern, der die Eingangsspannung um 9% reduziert, um die Lebensdauer der Glühbirne zu verlängern. (Abb. 14) Kastenmaße 110B x 130L x 50H, nur zur Verwendung im Innenbereich. Optionales Modell ‘ohne fotoelektrischen Schalter’ Wir bieten auch ein Modell ohne fotoelektrischen Schalters an der Rückseite. (Bestellendung / No PE) Optionaler Weißlicht-Illuminator Für jede Glühlampe der Serie 2020 kann eine optionale Weißlichtvariante geliefert werden. (Bestellendung /WL) Serie 2020 Installationshandbuch Seite. 20 Abb. 13 Abb. 14 8. Ersatzteilliste 9. Fehlersuche Unter normalen Betriebsbedingungen sollte die angegebene Lebensdauer der Glühlampe problemlos erreicht werden. Es gib jedoch einige Umstände, unter denen die Lebensdauer stark reduziert wird. Spannungsstöße und -spitzen: Illuminatoren, die an eine Stromquelle angeschlossen sind, welche Spannungsstößen und -spitzen unterliegt, haben eine verkürzte Lebensdauer. Ausrichtung: Glühwendel müssen horizontal ausgerichtet sein; ein vertikal ausgerichteter Wendel wird vor Ablauf der angegebenen Lebensdauer ausbrennen. Betrieb: Bei der Installation auf einem Schwenk- und Neigekopf ist der Illuminator Schwingungen ausgesetzt, die je nach Schweregrad eine Reduktion der Lebensdauer verursachen könnten. Obwohl die 500 W Glühlampen speziell für diesen Einsatz konzipiert wurden, handelt es sich bei den 300 W Lampen um Standardprodukte, die deshalb wesentlich anfälliger für Schäden sind. Die Informationen in diesem Dokumenten dienen ausschließlich zur Orientierung. Die technischen Details und die Verfügbarkeit der Waren können jederzeit ohne Vorankündigung geändert werden. Serie 2020 Installationshandbuch Seite. 21 Ref. Nr. F56 F57 F2 F3 F4 F42 H92,a & b 1-2020/13 1-2020/17 F14 F15 F48 1-2020/22 BS152 1-2020/6 Stck. 1 1 1 1 1 1 1 3 1 1 1 1 1 1 4 1 Beschreibung 500 W Punktlampe 500 W M/Flutlicht 300 W Punktlampe 300 W M/Flutlicht 300 W W/Flutlicht Fotoelektrischer Schalter Kabelstutzen Befestigungsklemmen für Lampe Steinschlagschutz Filtersatz 715 nm Filtersatz 830 nm Dichroitischer Filter Dichtungsring Vorderseite Dichtungsring Rückseite Bajonettverschlüsse Externes Sicherheitsseil Type 2020 Manual de instalación Página. 22 1. Introducción Felicidades por elegir los proyectores por infrarrojos Dedicated Micros Type 2020/300 (300 vatios) y/o 2020/500 (500 vatios) diseñados para ofrecer una solución económica para la vigilancia nocturna facilitando una fuente de luz para las cámaras con respuesta espectral que cubran la zona de infrarrojos. Su diseño impecable con componentes fundidos a presión garantizan un acabado y montaje de primera calidad con un aspecto sorprendente e innovador que completan la gama de productos de la serie 2000 comercializada actualmente por Dedicated Micros. Las unidades son a prueba de intemperie en cumplimiento de BS.EN 60529 Nivel IP66 2. Índice 1. Introducción 22 2. Índice 22 3. Índice 23 4. Instrucciones de montaje 24 5. Instrucciones de cableado 25 6. Cambio de la lámpara 26 7. Equipamiento opcional 27 8. Repuestos de componentes 28 9. Resolución de problemas 28 La guía de este producto le proporcionara toda la información necesaria para configurar, instalar y utilizar el proyector del type 2020. Type 2020 Manual de instalación Página. 23 3. Índice Componentes suministrados Antes de proceder a la instalación extraiga la unidad de la caja y asegúrese de que se han suministrado todos los elementos que se indican a continuación. A. 1 x Proyector por infrarrojos Type 2020 B. 1 x Protección contra pedradas (opcional) C. 1 x Llave de enchufe hexagonal A/F de 4mm D. 1 x Bolsa de piezas de fijación que incluye lo siguiente: 2 x M10 x 16 Tornillos con cabeza hex. 2 x Arandelas planas M10 2 x Arandelas elásticas M10 Además de los componentes anteriores, se proporciona una guía de producto del type 2020 y un procedimiento para una prueba final. Fig.1 Componentes suministrados B C D A Type 2020 Manual de instalación Página. 24 4. Instrucciones de montaje Parámetros de montaje. Las Fig. 2 y 3 muestran las posiciones típicas de los proyectores por infrarrojos cuando se montan en un cabezal de toma panorámica e inclinación controlado de forma remota. Monte el proyector Type 2020 con el soporte (fig.4 elemento A) y asegúrelo con los 2 M10x16 tornillos de cabeza hexagonal (fig.4 elemento D), las 2 arandelas elásticas M10 (fig.4 elemento C) y las 2 arandelas planas M10 (fig.4 elemento B) que se suministran con la unidad. Nota: Asegúrese de que el filamento de la bombilla esté colocado horizontalmente para obtener la expectativa de vida y la cobertura esperada. Consulte cómo reemplazar la bombilla (página 26) El filamento de la bombilla viene preajustado de fábrica para este tipo de montaje. Consulte la página 27 para volver a orientar la bombilla si la coloca en otras posiciones Fig.2 Montaje de lámpara doble Toma panorámica e inclinación (Type 2000) Proyector por infrarrojos Type 2020 B C D A Fig.4 Piezas de fijación del montaje Fig.3 Montaje de lámpara sencilla Type 2020 Manual de instalación Página. 25 5. Instrucciones de cableado Conexiones de cableado Las conexiones eléctricas del proyector por infrarrojos Type 2020 se realizan con el bloque de terminales situado en el interior de la caja de policarbonato del conmutador fotoeléctrico de la parte posterior, tal y como se muestra en la fig.5. El acceso se logra aflojando las cuatro piezas de fijación imperdibles de la tapa y retirando ésta, tal y como se muestra en la fig.6. Utilice un cable para exteriores adecuado de 3 hilos x 0,75mm2 230V de C.A. (Dedicated Micros recomienda el uso de un cable con cobertura de silicona debido a las temperaturas extremas que genera el proyectos), prepare el extremo del cable para la conexión e introdúzcalo a través del casquillo. Finalice la operación tal y como se muestra en las figuras 7 y 8. Para acabar vuelva a colocar la tapa, y fíjela. El casquillo para cables deberá estar lo suficientemente apretado para que cualquier tirón que sufra el cable no se transmita a las conexiones de los terminales, así como para lograr una estanqueidad al agua. Se aconseja proteger la corriente eléctrica de entrada con un fusible de 2A para el proyector type 2020/300 (300Watt) y uno de 3A para el type 2020/500 (500Watt). Fig.5 Fig.6 Fig.7 Tierra Entrada del cliente de 230V de C.A. Fig.8 Activo Bloque de terminales Conmutador fotoeléctrico A la bombilla Neutro Type 2020 Manual de instalación Página. 26 6. Cambio de la lámpara Cambio de la lámpara. UNA VEZ APAGADA LA UNIDAD, abra la carcasa soltando las 4 piezas de sujeción (elemento A, fig.9) girándolos un cuarto de vuelta en el sentido contrario a las agujas del reloj con un destornillador Philips Nº2. Ahora podrá separar la plataforma delantera de la trasera y dejarla suspendida de la toma de tierra o anclaje de seguridad para descubrir la bombilla. Retire los terminales de pala (elemento b, fig.10) de la parte posterior de la bombilla y suéltela de sus abrazaderas de montaje accionando hacia afuera una de las tres, mientras libera la bombilla. Nota: El filamento de la bombilla está alineado directamente con los terminales de pala (elemento C, fig.11). Alinéelo girando la bombilla en las abrazaderas y asegúrese de que esté horizontal cuando coloque el proyector por infrarrojos. Las conexiones de los terminales de pala puede realizarse a cada terminal. A B Fig.9 Cómo abrir la carcasa del proyector Fig.10 Terminales Fig.11 Cómo retirar la bombilla Fig.12 Abrazaderas C C Type 2020 Manual de instalación Página. 27 7. Equipamiento opcional Rejilla de protección opcional. Existe una rejilla de protección opcional (código de pedido /SG) para el proyector Type 2020. Diseñada para proteger el filtro de objetos voladores o vandalismo, la protección puede colocarse en segundos con las cuatro piezas de fijación suministradas. (fig.13) Reductor de tensión opcional. Para el fabricante, la expectativa de vida de la bombilla de 300W es de 2.000 horas y de 4.000 horas para la de 500W. Dicha expectativa está condicionada a una tensión de 230V y un incremento del 5% en el voltaje reducirá dicha expectativa de vida en un 50%. Nota: Hay lugares en el Reino Unido donde la tensión es de 250V. En este tipo de casos, Dedicated Micros puede suministrar un dispositivo reductor Type 621 que reducirá la tensión en un 9% para prolongar la vida de la bombilla. (fig.14) Dimensiones de la caja 110 Ancho x 130 Largo x 50 Alto sólo para usarse en interior. Versión opcional “sin conmutador fotoeléctrico” Existe una versión opcional sin conmutador fotoeléctrico instalado en la parte trasera. (código de pedido / No PE) Proyector de luz blanca opcional. Puede suministrarse una versión opcional de luz blanca del Type 2020 para cualquier variante de bombilla. (código de pedido /WL) Fig.13 Fig.14 Type 2020 Manual de instalación Página. 28 8. Repuestos de componentes 9. Resolución de problemas En condiciones normales de funcionamiento la expectativa de vida de la bombilla debe alcanzarse facilmente, pero hay circunstancias en las que puede verse seriamente reducida. Picos y sobretensiones: Los proyectores que funcionan con tensiones con picos y sobretensiones tendrán una vida más breve. Orientación: Los filamentos de la bombilla deberá estar horizontal. Un filamento colocado verticalmente se quemará antes de lo previsto. Funcionamiento: Cuando coloque el proyector en un cabezal de toma panorámica e inclinación sufrirá vibraciones que, si son lo bastante fuertes, provocarán una reducción en la vida de la bombilla. Aunque las bombillas de 500 vatios se han diseñado específicamente para este uso, las lámpara de 300 vatios son de fabricación estándar y son más susceptibles de sufrir daños. La información incluida en este documento es meramente orientativa. Las características técnicas y disponibilidad de los materiales está sujetos a cambio sin previo aviso Núm. de ref. F56 F57 F2 F3 F4 F42 H92,a y b 1-2020/13 1-2020/17 F14 F15 F48 1-2020/22 BS152 1-2020/6 Cant. 1 1 1 1 1 1 1 3 1 1 1 1 1 1 4 1 Descripción Bombilla de haz fino de 500W Bombilla de luz ambiente/M de 500W Bombilla de haz fino de 300W Bombilla de luz ambiente/M de 300W Bombilla de luz ambiente/W de 300W Conmutador fotoeléctrico Plataforma del casquillo de cables Abrazaderas de montaje de la bombilla Protección contra pedradas. Plataforma de filtro de 715nm Plataforma de filtro de 830nm Plataforma de filtro dicroico Junta tórica delantera Junta tórica trasera Sujeciones de cuarto de vuelta Anclaje de seguridad externa Type 2020 Manuale d’installazione Pag. 29 1. Introduzione Congratulazioni per aver scelto i proiettori a infrarossi Type 2020/300 (300 Watt) e/o Type 2020/500 (500 Watt) di Dedicated Micros, progettati per la sorveglianza notturna e in grado di fornire una fonte di illuminazione per telecamere con tecnologia Spectrol che si estende nell’area degli infrarossi. Il design essenziale con componenti pressofusi garantisce l’alta qualità di finiture e accessori con un aspetto originale e innovativo per completare la gamma di prodotti della serie 2000 offerta da Dedicated Micros. Le unità offrono un livello di protezione dall’acqua IP66 conforme alla normativa BS.EN 60529. 2. Indice 1. Introduzione 29 2. Indice 29 3. Elenco dei contenuti 30 4. Istruzioni per il montaggio 31 5. Istruzioni per il cablaggio 32 6. Sostituzione della lampadina 33 7. Apparecchiatura opzionale 34 8. Componenti di ricambio 35 9. Risoluzione dei problemi 35 Questa guida del prodotto fornirà tutte le informazioni necessarie per la configurazione, l’installazione e l’esecuzione del proiettore Type 2020. Type 2020 Manuale d’installazione Pag. 30 3. Elenco dei contenuti Componenti forniti Prima di procedere all’installazione, rimuovere l’unità dall’imballaggio e verificare che siano presenti tutti gli elementi elencati di seguito. A. 1 Proiettore a infrarossi Type 2020 B. 1 Griglia di protezione (opzionale) C. 1 chiave esagonale A/F da 4mm D. 1 kit di fissaggio contenente i seguenti elementi: 2 viti a testa esagonale M10 x 16 2 rondelle piane M10 2 rondelle elastiche M10 Oltre ai componenti elencati, vengono fornite una guida del prodotto e una procedura di prova finale del Type 2020. Fig.1 Componenti forniti B C D A Type 2020 Manuale d’installazione Pag. 31 4. Istruzioni per il montaggio Configurazione di montaggio Le figure 2 e 3 mostrano il posizionamento tipico dei proiettori a infrarossi, quando vengono montati su un gruppo panoramica e illuminazione controllato remotamente. Montare il proiettore Type 2020 tramite il supporto (elemento A. fig. 4) e fissarlo utilizzando 2 viti a testa esagonale (elemento D, fig. 4), 2 rondelle elastiche M10 (elemento C, fig. 4) e 2 rondelle piane M10 (elemento B, fig. 4), in dotazione con l’unità. Nota: verificare che il filamento della lampadina sia montato orizzontalmente per ottenere la durata della lampadina e la copertura del fascio luminoso previste. Consultare le istruzioni per la sostituzione della lampadina (pagina 5) Il filamento della lampadina è adatto per questo tipo di montaggio. Consultare le istruzioni a pagina 7 per riorientare la lampadina se si esegue il montaggio con un orientamento diverso Fig.2 Montaggio a lampada doppia Panoramica e inclinazione (Type 2000) Proiettore a infrarossi Type 2020 B C D A Fig.4 Supporti di fissaggio per il montaggio Fig.2 Montaggio a lampada singola Type 2020 Manuale d’installazione Pag. 32 5. Istruzioni per il cablaggio Connessioni per il cablaggio Le connessioni elettriche del proiettore a infrarossi Type 2020 vengono effettuate tramite la morsettiera posizionata all’interno dell’alloggiamento in policarbonato dell’interruttore fotoelettrico sul retro, come mostrato nella figura 5. Per accedere all’alloggiamento è necessario rimuovere la copertura svitando le quattro viti di fissaggio della stessa come mostrato nella figura 6. Utilizzare un cavo a tre anime per esterni da 0,75 mm2 e 230 V CA (Dedicated Micros consiglia l’utilizzo di un cavo rivestito in silicone a causa delle temperature estreme generate del proiettore). Preparare l’estremità del cavo per la connessione, inserire il cavo attraverso il pressacavi libero e terminarlo come mostrato nelle figure 7 e 8. Al termine, riposizionare la copertura e fissarla nuovamente. È necessario stringere sufficientemente il pressacavi per assicurare che una eventuale tensione esercitata sul cavo venga trasmessa alle connessioni dei morsetti e per garantire l’impermeabilità. Si consiglia di proteggere l’alimentazione in entrata tramite un fusibile da 2 A per il proiettore Type 2020/300 (300 Watt) e da 3 A per il Type 2020/500 (500 Watt). Fig.5 Fig.6 Fig.7 Terra Ingresso utente 230 V CA Fig.8 Fase Morsettiera Interruttore fotoelettrico Alla lampadina Neutro Type 2020 Manuale d’installazione Pag. 33 6. Sostituzione della lampadina Sostituzione della lampadina. DOPO AVER SCOLLEGATO L’UNITÀ DALL’ALIMENTAZIONE aprire l’alloggiamento: rilasciare le 4 chiusure (elemento A, fig.9) ruotandole di un quarto di giro in senso antiorario utilizzando un cacciavite a stella No.2. A questo punto sarà possibile rimuovere il gruppo frontale da quello posteriore e lasciarlo sospeso sui cavi della messa a terra per esporre la lampadina. Rimuovere i terminali a forcella (elemento B, fig.10) dal retro della lampadina e rilasciare la lampadina dalle 3 molle d’ancoraggio, spostandone una verso l’esterno e sollevando contemporaneamente la lampadina. Nota: il filamento della lampadina è posizionato direttamente tra i terminali a forcella (elemento C, fig.11). Per allinearlo, ruotare la lampadina all’interno delle molle d’ancoraggio per assicurarsi che il filamento sia in posizione orizzontale durante il montaggio del proiettore a infrarossi. È possibile effettuare le connessioni del terminale a forcella su uno dei due terminali. A B Fig.9 Apertura dell’alloggiamento del proiettore Fig.10 Terminali Fig.11 Rimozione della lampadina Fig.12 Molle d’ancoraggio C C Type 2020 Manuale d’installazione Pag. 34 7. Apparecchiatura opzionale Griglia di protezione opzionale. Una griglia di protezione opzionale (suffisso ordinazione: /SG) è disponibile per il proiettore Type 2020. Progettata per proteggere il filtro da oggetti in volo e da attacchi vandalici, la protezione può essere montata in pochi secondi, utilizzando i 4 supporti di fissaggio in dotazione (fig.13). Riduttore di tensione opzionale. La durata prevista dichiarata dai produttori è di 2000 ore per la lampadina da 300 W e di 4000 ore per quella da 500W. La durata prevista dichiarata è calcolata sulla base di un’alimentazione a 230 V. In caso di un aumento del 5% del voltaggio, la durata della lampada si ridurrà del 50%. NB. In alcune parti del Regno Unito il voltaggio in vigore è superiore ai 250 V. In questi casi Dedicated Micros può fornire un dispositivo di riduzione del voltaggio Type 621 in grado di ridurre il voltaggio dell’alimentazione del 9% per aumentare la durata della lampadina. (fig.14). Dimensioni del dispositivo, utilizzabile solo in interni: L 110 x P 130 lunghezza x A 50. Versione opzionale “senza interruttore fotoelettrico” È disponibile una versione opzionale priva del selettore fotoelettrico sul retro (suffisso ordinazione: / No PE) Proiettore a luce bianca opzionale Il proiettore Type 2020 è disponibile in una versione opzionale a luce bianca per qualsiasi tipo di lampadina (suffisso ordinazione: /WL) Fig.13 Fig.14 Type 2020 Manuale d’installazione Pag. 35 8. Componenti di ricambio 9. Risoluzione dei problemi In condizioni di funzionamento normali, la durata della lampadina dovrebbe corrispondere a quella dichiarata. Tuttavia alcune circostanze potrebbero ridurre sensibilmente la durata. Picchi e sovracorrenti: Se l’alimentazione è soggetta a picchi e sovracorrenti, si ridurrà la durata dei proiettori. Orientamento: I filamenti della lampadina devono trovarsi in posizione orizzontale. Un filamento posizionato verticalmente si brucerà prima del tempo previsto. Funzionamento: Se viene montato su un gruppo panoramica e inclinazione, il proiettore sarà soggetto a vibrazioni le quali, se raggiungono un’intensità eccessiva, potrebbero ridurne la durata. Mentre le lampadine da 500 Watt sono progettate specificamente per questo scopo, quelle da 300 W sono progettate per l’utilizzo normale e pertanto non garantiscono le stesse prestazioni. Il presente documento viene fornito soltanto a scopo informativo. Le specifiche e la disponibilità dei prodotti sono soggette a modifica senza preavviso. Numero rif. F56 F57 F2 F3 F4 F42 H92, a e b 1-2020/13 1-2020/17 F14 F15 F48 1-2020/22 BS152 1-2020/6 Quantità 1 1 1 1 1 1 1 3 1 1 1 1 1 1 4 1 Descrizione Lampadina spot da 500 W Lampadina a media diffusione da 500 W Lampadina spot da 300 W Lampadina a media diffusione da 300 W Lampadina ad ampia diffusione da 300 W Interruttore fotoelettrico Gruppo pressacavi Molle d’ancoraggio della lampadina Griglia di protezione Gruppo filtro 715 nm Gruppo filtro 830 nm Gruppo filtro dicroico Guarnizione toroidale frontale Guarnizione toroidale posteriore Chiusure a un quarto di giro Fissaggio di sicurezza esterno Issue 1 Doc 74 0009 www.dedicatedmicros.com UK Technical Help Dennard Limited Unit 4, Park Iron Works, Kingsley, Nr Bordon, Hampshire GU35 9LY Tel: +44 (0)1420 485713 Fax: +44 (0)1420 485714 e-mail: sales@dennard-cctv.com European Technical Help Dedicated Micros Europa Neckarstraße 15, 41836 Hückelhoven, Deutschland Tel.: +49 (0) 24 33 52 58 26 Fax: +49 (0) 24 33 52 58 20. E-Mail: eusupport@dmicros.com Dedicated Micros France 9-13 rue du Moulinet, 75013 Paris, France Tél. : +33 1 45 81 99 99, Fax : +33 1 45 81 99 89. e-mail: dmfrance@dmicros.com Dedicated Micros Belgique Joseph Chantraineplantsoen 1, 3070 Kortenberg, Belgique Tél. : +32 2751 3480, Fax : +32 2751 3481 e-mail: dmbenelux@dmicros.com Dedicated Micros Ltd. Slovenija Delavska cesta 26, 4208 Sencur-Slovenija Tel: +386 (4) 279 18 90, Fax: +386 (4) 279 18 91 e-mail: dmslovenia@dmicros.com tesasas 15rueduBoisdesSaintsPères FR-77176SavignyleTemple Tel:+33(0)1.64.87.82.30 Fax:+33(0).1.64.87.82.50 contact.france@tesa.com www.tesa.fr Touslesproduitstesa®sontsoumisàdescontrôlesrigoureuxquigarantissentunequalitéirréprochable.Lesconseils etrecommandationssontdonnésdebonnefoisurlabasedenotreexpérience.Cependant,tesaSEnepeutdonnerde garantiesexpressesouimplicitesdequalitémarchandeoud'adéquationàunusageparticulier.C'estpourquoiilestdu devoirdel'acheteur(duclient)detesterl'adéquationdesproduitsàunusagespécifiqueparuntestapproprié.Encas dedoute,notreservicetechniqueseferaunplaisirdevousvenirenaide. tesa®pack6300Dévidoirmanuel Dévidoiréconomiquepouradhésifsd'emballage INFORMATIONPRODUIT Descriptionproduit Ledévidoirmanueltesa®6300estd'unbonrapportqualité/prixpourlafermetureprofessionnelleetreçoittouttyped'adhésif d'emballagetesa®.Ledévidoirestmunid'uncontrôledetensionpermettantainsid'utilisersansdifficultélesadhésifstesa®,mêmeceux avecundéroulementrapide.Lalameestprotégéepourévitertouteblessure. Principaleapplication Placezledévidoirsurlecartonettirezleversvous.Lerouleauencaoutchoucappuiefortementsurl'adhésifpendantqu'ils'applique. L'adhésifestensuitecoupéparlalamedenteléeeninclinantledévidoir.Lafindel'adhésifestappliquésurlecartongrâceàlaplaque d'applicationsouple.Miseenplace:Lerouleautesa®estposésurleporte-mandrinaveclafaceadhésivesedéroulantverslapoignée. Placerlafindurouleauentrelerouleaudeguidagedel'adhésifetlaplaqueenmétaljusqu'àcequelerubannefasseplusdeplis. Donnéestechniques Typed'applicateur main Largeurmaximaledurouleau 50mm Propriétés Objectifdel'application emballage Longueur 220mm Largeur 65mm Hauteur 150mm Poids 400gram Diamètremaximumdurouleau 120mm Diamètremaximumdumandrin 3pouce Infoscomplémentaires • dévidoirmanuelsolidegrâceàsastructureenmétal • lameprotégéepouruneutilisationentoutesécurité • contrôledetensionréglableàlamain Page1sur1/Endatedu25.02.2010 Encodeur USB Série 450 Manuel de l'utilisateur www.storm-interface.com Encodeur USB Série 450 Manuel FR Ver 1.02 août 2013 Page 1 / 8 Contenu Page Présentation du produit, caractéristiques 2 Gamme et accessoires Téléchargements Guide de prise en main rapide 3 Installation Initialisation unique Questions fréquentes et spécifications 4 Produits compatibles 5 Disposition des claviers 6 Tables des codes – Valeurs par défaut 7 Encodeur USB Série 450 Manuel de l'utilisateur www.storm-interface.com Encodeur USB Série 450 Manuel FR Ver 1.02 août 2013 Page 2 / 8 Présentation du produit Ce dispositif autonome est prêt à l'utilisation. Il peut être facilement fixé sur la surface arrière de la plupart des claviers Storm afin d'offrir la connectivité et la communication nécessaires pour des systèmes hôtes compatibles. Configuré en usine pour la saisie de données numériques standard, ce dispositif polyvalent peut aussi être programmé par l'utilisateur pour produire tout code compatible USB. Cette caractéristique fait de l'encodeur Série 450 l'interface idéale pour la plupart des applications. Caractéristiques Périphérique clavier générique (Interface Homme Machine) – Ne nécessite aucun pilote additionnel Configuration usine pour encoder les claviers numériques selon les dispositions téléphone ou calculatrice Table des codes de sortie personnalisable grâce à un utilitaire de configuration Storm Alimentation intégrée pour l'éclairage des claviers La version 450i possède des contrôles additionnels pour l'éclairage des claviers La version 450i comporte un avertisseur sonore piézo-électrique pour la confirmation optionnelle de la frappe ou pour un générer un signal d'état piloté par l'applicatif. Connexion unique par prise USB Mini-B Forme compacte, autonome Compatible avec la plupart des claviers Storm en dispositions 4, 12 et 16 touches (y compris les claviers Storm des séries 700, 720, 1000, 2000, 3000, GFX et PLX) Gamme et accessoires Référence Description 4500-10 450i Encodeur avec buzzer et contrôle d'éclairage 4500-00 450 Encodeur 4500-01 Câble USB 1 mètre - type A vers mini B coudé Note : Pour commander en ligne directement chez Storm Interface, utiliser les références ci-dessus. Les références approvisionnées par les circuits de distribution possèdent un suffixe pour permettre des étiquetages/marquages spécifiques. Exemple : 4500-102 450i Encodeur avec Buzzer Téléchargements 4500-SW01 Utilitaire de configuration USB 450i-LIT-01 Brochure 450-xx-08KT Notice d'installation 450 USB Manual FR Manuel de l'utilisateur ( ce document ) Encodeur USB Série 450 Manuel de l'utilisateur www.storm-interface.com Encodeur USB Série 450 Manuel FR Ver 1.02 août 2013 Page 3 / 8 Guide de prise en main rapide Avant de commencer, vérifiez que vous avez : • L'encodeur • Un clavier compatible Storm • Un câble USB avec une prise mini-B entre votre clavier et votre ordinateur • Un panneau déjà découpé aux dimensions de votre clavier • Une copie de l'utilitaire de configuration si vous voulez personnaliser la configuration Installation • Vérifiez que votre ordinateur est sous tension avant de connecter l'encodeur. • Notez que pour la connexion avec le clavier il y a deux connecteurs distincts pour brancher les claviers 4 touches ou les claviers 12/16 touches. Bien s'assurer du connecteur utilisé avant de positionner les plaquettes autocollantes et fixer l'encodeur en place. Connecteur pour clavier 4 touches Connecteur pour claviers 12/16 touches Les plaquettes autocollantes se placent ici (Une seule par emplacement, exception faite pour la Série 700 qui nécessite 2 plaquettes par position) • Pressez l'encodeur sur le clavier et vérifiez que les plaquettes soient bien collées • Connectez la prise mini-B du câble USB sur le côté de l'encodeur Initialisation unique Cette procédure d'initialisation devra être faite à la première mise en service. L'encodeur doit reconnaître le clavier et vous devez choisir la disposition des touches correspondant au type de clavier utilisé. a) APPUYEZ ET MAINTENIR la touche en bas à droite du clavier – ceci indique à l'encodeur quel clavier est connecté b) Branchez le câble de l'encodeur au PC. c) RELACHEZ LA TOUHE SI vous souhaitez une table de codes pour les dispositions 4 touches de fonction et 12/16 touches téléphone ou d) MAINTENEZ LA TOUCHE ENFONCEE 10 SECONDES SI vous souhaitez une table de codes pour les dispositions 4 touches fléchées et 12/16 touches calculatrice Vérifiez maintenant que l'écran affiche les caractères corrects. Si vous avez besoin de reconfigurer l'encodeur, vous pouvez changer la table des codes ou réinitialiser l'unité avec une table pré-chargée au moyen de l'utilitaire de configuration USB disponible sur www.storm-interface.com Encodeur USB Série 450 Manuel de l'utilisateur www.storm-interface.com Encodeur USB Série 450 Manuel FR Ver 1.02 août 2013 Page 4 / 8 Questions fréquentes Est-ce que cet encodeur a besoin d'un pilote particulier? Non – il est reconnu par le pilote de clavier USB standard Est-ce que l'utilitaire fonctionne sur tout type de PC? Actuellement il ne fonctionne pas ni sous Linux, ni sous Mac OS L'utilitaire nécessite Windows XP ou plus Quelle est la connexion USB? Prise mini-B Est-ce que j'ai besoin d'utiliser les plaquettes auto-collantes? Elles sont inclues pour maintenir l'encodeur en service Quels codes USB personnalisables puis-je assigner? Voir les tables de codes page 11 Que dois-je faire si j'ai mal initialisé l'encodeur? Télécharger et utiliser l'utilitaire de configuration pour réinitialiser les valeurs par défaut Pourquoi la prise du clavier est plus longue que la barrette? Les broches d'extrémité servent à éclairer les claviers Spécifications Température d'utilisation -20ºC à +60ºC Température de stockage -20ºC à +70ºC Humidité 10% à 90% sans condensation Vibrations et chocs ETSI 300 019 5M3 Résistance d'isolement 50 Mohms (minimum) Tension de claquage 500V a.c. (60 secondes) Tension d'utilisation 5V +/- 5% (USB) Consommation 20mA (Le courant nécessaire à éclairer le clavier est en plus) Sécurité EU Directive Basse Tension EMC: Emissions et immunité : FCC part 15 class A EN55022, EN55024 ESD: Décharge dans l'air jusqu'à +/- 15kV, +/- 7.5kV par contact EU RoHS Conforme à la Directive WEEE Encodeur USB Série 450 Manuel de l'utilisateur www.storm-interface.com Encodeur USB Série 450 Manuel FR Ver 1.02 août 2013 Page 5 / 8 Produits compatibles 4 touches 12 touches 16 touches Note Série 700 Fixer la Série 700 sous panneau avec les plaquettes autocollantes additionnelles Série 720 Série 1000 Série PLX Série 2000 GFX Série 3000 3000 Illuminator L'éclairage n'est supporté que pour les claviers fabriqués à partir de septembre 2013 GFX Illuminator L'éclairage n'est supporté que pour les claviers fabriqués à partir de septembre 2013 Utiliser la prise 7 broches pour les claviers 4 touches Utiliser la prise 10 broches pour les claviers 12/16 touches Encodeur USB Série 450 Manuel de l'utilisateur www.storm-interface.com Encodeur USB Série 450 Manuel FR Ver 1.02 août 2013 Page 6 / 8 Dispositions des claviers Dispositions des claviers Dispositions des claviers Table des codes par défaut (US English) Table des codes alternatifs (US English) Encodeur USB Série 450 Manuel de l'utilisateur www.storm-interface.com Encodeur USB Série 450 Manuel FR Ver 1.02 août 2013 Page 7 / 8 Tables des codes hexa par défaut (rappel : un hôte paramétré UK English produit £ au lieu de #) Ligne Colonne 4 touches fonction 12 touches téléphone 16 touches téléphone A 1 F1 (3A) 1 (1E) 1 (1E) B 1 F2 (3B) 4 (21) 4 (21) C 1 F3 (3C) 7 (24) 7 (24) D 1 F4 (3D) * (E1, 25) * (E1, 25) A 2 - 2 (1F) 2 (1F) B 2 - 5 (22) 5 (22) C 2 - 8 (25) 8 (25) D 2 - 0 (27) 0 (27) A 3 - 3 (20) 3 (20) B 3 - 6 (23) 6 (23) C 3 - 9 (26) 9 (26) D 3 - # (E1, 20) # (E1, 20) A 4 - - A (04) B 4 - - B (05) C 4 - - C (06) D 4 - - . (37) Tables des codes hexa alternatifs Ligne Colonne 4 touches fléchées 12 touches calculatrice 16 touches calculatrice avec NumLock off A 1 ↑ (52) 7 (5F) 7 (5F) HOME B 1 ← (50) 4 (5C) 4 (5C) ← C 1 → (4F) 1 (59) 1 (59) END D 1 ↓ (51) * (E1, 25) * (E1, 25) * A 2 - 8 (60) 8 (60) ↑ B 2 - 5 (5D) 5 (5D) C 2 - 2 (5A) 2 (5A) ↓ D 2 - 0 (62) 0 (62) A 3 - 9 (61) 9 (61) PgUp B 3 - 6 (5E) 6 (5E) → C 3 - 3 (5B) 3 (5B) PgDn D 3 - # (E1, 20) # (E1, 20) # A 4 - - A (04) A B 4 - - B (05) B C 4 - - C (06) C D 4 - - . (37) . Encodeur USB Série 450 Manuel de l'utilisateur www.storm-interface.com Encodeur USB Série 450 Manuel FR Ver 1.02 août 2013 Page 8 / 8 Page laissée intentionnellement blanche imagine making the impossible possible 2000 Series controllers Built on our experience of design and applications knowledge spanning more than 40 years, the Eurotherm® 2000 series brings you performance you can rely on and accuracy you can trust. At the same time no other range of controllers makes operation so easy. Menu driven operation provides easy intuitive and consistent access to all the controller functions. www.eurotherm.com/2000 Ultimate performance Simply imagine process excellence… and with Eurotherm you will achieve it. Our ranges of controllers provide world class control and versatility with clear, user friendly, operator interfaces. Add to this, a strong sales team of qualified engineers who understand your process, an absolute commitment to innovation by continuously re-investing in research and development; we can and do imagine making the impossible possible for our customers. Internal timer – A 5 mode timer suitable for simple time based profiling applications Universal input – 9 different thermocouples, PT100, DC linear and a downloadable custom curve Four outputs – up to 4 outputs including 2 modular with many options including DC outputs Communication protocols – Modbus RTU, EI-Bisynch, DeviceNet® Three internal alarms – Configurable as High, Low, Deviation and Deviation High or Low alarms Two outputs – 1 relay and 1 logic (can be used as a relay with an external module) Suitable for • Small ovens • Chillers • Sterilisers • Trace heating • Heat sealing • Dwell timer – simple ramp dwell profile applications Four internal alarms – configurable as High, Low, Deviation, Deviation High, Deviation Low, High and Low current alarms Suitable for • Cold stores • Ovens and furnaces • Plastic extrusion • Packaging machines • Food and brewing applications • www.eurotherm.com/2000 Every 2000 Series controller can be tailored to provide the control solution you need. Modular design and easy, onsite configuration matches application requirements and gives you a temperature and process control solution that’s ready to run the first time you switch it on. The 2000 Series provides control strategies ranging from simple ON/OFF to PID with advanced overshoot protection, providing the best control for the widest range of applications including valve positioning. Within the 2000 Series there is also the 2500 Modular Controller and the 2604/2704 Controllers which, with their enhanced functionality and multiloop capability, offer a powerful addition to the range. Please consult Eurotherm sales for more information on these products. Customisable to your control requirements imagine process excellence... Programming – up to 20, 16 segment programs (4 in the 2416) are available with 8 digital event outputs Four internal alarms – configurable as High, Low, Deviation, Deviation High or Low, high and Low Current alarms high and low output, high and low input 2, High and low setpoint and one Rate of change alarm Modular – up to 4 outputs of which 3 are modular with many different options within the different modules Modules – up to 16 different types of module are available Communication protocols – Modbus RTU, EI-Bisynch, DeviceNet, Profibus DP Suitable for • Single and multi-zone furnaces • Kilns • Environmental chambers • Simple ratio • Humidity • Chemical and pharmaceutical • Applications • Glass furnaces and lehrs • For the full stories and all our successes go to www.eurotherm.com/success Success stories commercial benefits Prompt, accurate flow detection rate and response Case Study 2400 series Feedforward control is excellent for chemical dosing applications Customer Challenge The 2400 process controller is very suitable in the treatment of waste water, petrochemical processes and other additive dosing applications because any possible disturbance to the levels of chemicals added are detected before they can affect the ongoing process. Solution Feedforward is a method for detecting disturbances in the upstream flow and forwarding this information to the controller so that it can change the output before the disturbance affects the downstream ratio. So, in the diagram shown, the upstream flow rate from the flow meter (FT) forces an immediate change to the output of the controller (OP) and so causes an immediate change in the Dosing Pump speed. This Feedforward method is ideal for any process that is subject to upstream disturbances. This type of disturbance is invariably found in either liquid or gas systems. Customer Benefits • Feedforward control can avoid the slowness of integral feedback control because the disturbances are measured and accounted for before they have time to affect • The dosing rate immediately tracks any changes in flow rate and so prevents any possibility of over or under dosing Typical use of technology • Liquid Level - Boiler Drum Level • Chemical Dosing - Paint Mixing, Brewing, • Industrial Distillation – Brewing, Petroleum Refineries, Petrochemical, Chemical Plants, and Natural Gas Processing Plants. Setpoint FF OP Flow Meter FT AT Analytical Sensor PID Loop PV + 2400 Dosing Pump Setpoint Easy to use controllers for greater flexibility Case Study 2100 series 5 Mode Timer feature enables cost effective temperature and process control Customer Challenges faced in the food beverage industry Global market forces are driving the continual evolution of the food and beverage industry. Consolidation, changing consumer preferences and increasing government regulations are dramatically impacting manufacturing and business strategy. In this fiercely competitive marketplace, consistent high quality and cost effectiveness are critical to meet consumer demand. Solution 2100 Controller Eurotherm acknowledge these commercial pressures and our products ensure simple cost effective process control. Even one of our simplest, compact controllers has useful cost effective features. The 5 mode timer in the 2100 temperature process controller may be used to control batch operations, e.g. food production, ovens, sterilisers, fryers. An ideal application would be single dwell at the end of either a controlled ramp rate or natural approach to setpoint without the need for an additional timing device. Available Timer Operation Modes are: • Dwell and Switch Off • Time from Cold and Switch Off • Delayed Switch On Benefits • This maintains a target temperature at the end of a ramp rate without the need for an additional device, thereby simplifying the process • Easy operation with customised interface that presents only the parameters that the operator needs to see. All other parameters can be locked away under password protection. Typical use of technology • Small Ovens, Fryers, Sterilisers, Incubators Time Temperature Setpoint Dwell time Switch off Ramp control Dwell Timer Functionality For the full stories and all our successes go to www.eurotherm.com/success Highly flexible temperature values Case Study 2400 controller 8 segment program, repeatable and simple to change Customer Challenges faced in Autoclave and Environmental Chamber applications Many applications need their process values (i.e. Temperature, Pressure, Flow etc) to be varied with time. Amongst other applications Autoclaves are used for Sterilisation and for Vacuum Forming. In these applications there are invariably a number of ramps, and dwell times required to ensure that the material has been adequately processed. In Environmental Chambers programmed profiles are generally run repeatedly for some time and this is a method that is used to produce accelerated ageing. This process is therefore very useful for determining the likely longevity of a product before it fails. Solution 2400 Controller • The 2400 series process controller offer setpoint programming as an option. The program is stored as a series of segments which can be ramps, dwells, steps etc. • All 2400 programmer/controllers have an 8 segment program as standard, and can optionally have up to 20 off 16 segment programs each with 8 digital events. The digital events are used to control other ancillary equipment at predetermined segments in the program. For instance; it may switch on a vibration table at some stage in the process. • All of these features make the 2400 programmer/controller ideal for Furnaces, Environmental Chambers, and Autoclave applications. Customer Benefits • Minimises the need for extra equipment which becomes costly to install and maintain, time and space saving • Offers high integrity, repeatable processing thus increasing yield consistency and high product quality Typical use of technology • Autoclaves – Steam Sterilization of medical, pharmaceutical and laboratory equipment • Environmental chambers –test the effects of environmental conditions such as accelerated aging on industrial products, materials, biological items and electronic devices • Industrial furnaces – Heat Treatment, Glass Furnaces, and Lehrs Temperature End Type = Dwell Time Holdback at End Type = Off start of dwell www.eurotherm.com/2000 Real-world applications Master Programmer Slave Controllers PDS communications M P g S C In 2000 Series controllers it is possible to use the PDS communication link to send a setpoint from one controller to a network of slave devices - providing the economical creation of multi-zone temperature control solutions. PDS setpoint retransmission Ratiometric Pyrometer Thermocouple Output Switchover between 4-20mA two points mocouple Master Output Slave PDS Retransmission with Feedforward Modbus RTU Modbus Master The 2000 Series uses industry standard protocols such as Modbus RTU, DeviceNet or Profibus DP to communicate with supervisory systems and PLCs over EIA232, EIA485 (2 wire) or EIA422 (4 wire). This carries the information and overall control into the supervisory system while maintaining local access to the local equipment ensuring overall plant integrity in all situations. Communication Sometimes it is desirable to control a process using two separate inputs to derive the PV (process value). This could be based on a highest wins, lowest wins, some function of the two inputs, or switching between the two inputs at some pre-determined point in the process. For example, an application could consist of a thermocouple for measuring up to 800°C and a Ratiometric Pyrometer for measuring the range between 700°C and 1,400°C. Typically when the temperature is below 740°C the thermocouple provides the PV and, when between 740°C and 780°C the controller switches gently from the thermocouple to the Pyrometer which provides the PV up to 1,400°C. Derived inputs Using Eurotherm setpoint retransmission over PDS communications it is possible to use two 2400 controllers as a cascade control system with the output of the first (or master controller) forming the setpoint of the second (or slave controller). Eurotherm advanced algorithms enable the use of either setpoint or PV feedforward to limit the slave setpoint - for example ±10% of the master setpoint or PV. Cascade control From a simple ramp and dwell to a 16 segment program with event outputs, the 2000 Series provides a powerful platform for setpoint profiling. Programs can be edited from the instrument HMI and for the 2400 instruments, using iTools Setpoint Program Editor. iTools configuration software enables you to store and clone controller configurations, as well as commission your process control system. This facility significantly reduces installation and commissioning time while improving the security of the process. The Eurotherm advanced customer sensor linearisation tool also provides for the download of special sensor response characteristics to the controller. Reduced installation and commissioning time Easy setpoint programming From fixed build to modular construction, the Eurotherm flexible 2000 Series offers a truly versatile solution to all your requirements. www.eurotherm.com/2000 Selection guide Features Panel size (DIN) IP Rating Single Loop Display Type Supply Voltage Input Type PV Accuracy Control Types SP Programmer Analogue IP/OP Digital IP/OP Digital Comms Alarm Types PC Configuration 2116 1/32 1/16 IP65 2100 2216e 2208e 1/16 DIN rail 1/8 IP65 2200 2204e 1/4 TC, RTD, mV, mA, V 1 x 4 dig LED TC, RTD, mV, mA, Volts 2 x 4 dig LED <0.25% On/Off. PID none In: 1 Out: 0 In: 1 Out: 2 none none none none none none none none none none none none none List based <0.25% On/Off. PID, VP none none none In: 1 Out: 1 In: 3 Out: 4 Modbus, DeviceNet List based 24V dc/ac 85-264V ac 85-264V ac 2132 Dual input control Hi, Lo, Dev, Sensor break, Event, Heater fail Hi, Lo, Dev, Sensor break, Event, Heater fail Hi, Lo, Dev, Sensor break, 2416 2408 2404 1/16 1/8 1/4 IP65 2400 TC, RTD, mV, mA, Volts 2 x 4 dig LED <0.2% On/Off. PID, VP 20 x 16 segments In: 2 Out: 3 In: 11 Out: 11 List based 24V dc/ac 85-264V ac Modbus, DeviceNet, Profibus Special Features Maths Equation Combinational Logic Timers/Counters/Totals Real Time Clock © Copyright Eurotherm Limited 2011 Invensys, Eurotherm, the Eurotherm logo, Chessell, EurothermSuite, Mini8, Eycon, Eyris, EPower, nanodac and Wonderware are trademarks of Invensys plc, its subsidiaries and affiliates. All other brands may be trademarks of their respective owners. All rights are strictly reserved. No part of this document may be reproduced, modified, or transmitted in any form by any means, nor may it be stored in a retrieval system other than for the purpose to act as an aid in operating the equipment to which the document relates, without the prior written permission of Eurotherm limited. Eurotherm Limited pursues a policy of continuous development and product improvement. The specifications in this document may therefore be changed without notice. The information in this document is given in good faith, but is intended for guidance only. Eurotherm Limited will accept no responsibility for any losses arising from errors in this document. Part No. HA026587 Issue 5 Printed in England on recycled paper 03.11 Represented by: Eurotherm is also represented in the Eurotherm: following countries: International sales and service www.eurotherm.com Afghanistan Albania Algeria Angola Argentina Armenia Azerbaijan Bahrain Bangladesh Barbados Belarus Bermuda Bolivia Bosnia and Herzegovina Botswana Brazil Brunei Darussalam Bulgaria Cambodia Cameroon Canada Central African Republic Chad Chile Colombia Congo Costa Rica Côte d’Ivoire Croatia Cyprus Czech Republic Denmark Djibouti Ecuador Egypt El Salvador Eritrea Estonia Ethiopia Fiji Finland Georgia Ghana Greece Greenland Guinea Hungary Iceland Indonesia Iraq Israel Jamaica Japan Jordan Kazakhstan Kenya Kuwait Kyrgyzstan Laos Latvia Lesotho Libya Lithuania Macedonia Madagascar Malaysia Malta Micronesia Moldova Morocco Mozambique Myanmar Namibia Nicaragua Niger Nigeria Norway Oman Pakistan Palestinian Territory Papua New Guinea Paraguay Peru Philippines Poland Qatar Romania Russia Rwanda Saudi Arabia Senegal Serbia and Montenegro Sierra Leone Singapore Slovakia Slovenia Somalia South Africa Sri Lanka Sudan Swaziland Syria Tajikistan Tanzania Thailand The Gambia Tunisia Turkey Turkmenistan Uganda Ukraine United Arab Emirates Uruguay Uzbekistan Venezuela Vietnam Yemen Zambia Zimbabwe AUSTRALIA Melbourne Invensys Process Systems Australia Pty. Ltd. T (+61 0) 8562 9800 F (+61 0) 8562 9801 E info.eurotherm.au@invensys.com AUSTRIA Vienna Eurotherm GmbH T (+43 1) 7987601 F (+43 1) 7987605 E info.eurotherm.at@invensys.com BELGIUM & LUXEMBOURG Moha Eurotherm S.A/N.V. T (+32) 85 274080 F (+32) 85 274081 E info.eurotherm.be@invensys.com BRAZIL Campinas-SP Eurotherm Ltda. T (+5519) 3707 5333 F (+5519) 3707 5345 E info.eurotherm.br@invensys.com CHINA Eurotherm China T (+86 21) 61451188 F (+86 21) 61452602 E info.eurotherm.cn@invensys.com Beijing Office T (+86 10) 5909 5700 F (+86 10) 5909 5709/5909 5710 E info.eurotherm.cn@invensys.com FRANCE Lyon Eurotherm Automation SA T (+33 478) 664500 F (+33 478) 352490 E info.eurotherm.fr@invensys.com GERMANY Limburg Eurotherm Deutschland GmbH T (+49 6431) 2980 F (+49 6431) 298119 E info.eurotherm.de@invensys.com INDIA Mumbai Invensys India Pvt. Ltd. T (+91 22) 67579800 F (+91 22) 67579999 E info.eurotherm.in@invensys.com IRELAND Dublin Eurotherm Ireland Limited T (+353 1) 4691800 F (+353 1) 4691300 E info.eurotherm.ie@invensys.com ITALY Como Eurotherm S.r.l T (+39 031) 975111 F (+39 031) 977512 E info.eurotherm.it@invensys.com KOREA Seoul Invensys Operations Management Korea T (+82 2) 2090 0900 F (+82 2) 2090 0800 E info.eurotherm.kr@invensys.com NETHERLANDS Alphen a/d Rijn Eurotherm B.V. T (+31 172) 411752 F (+31 172) 417260 E info.eurotherm.nl@invensys.com POLAND Katowice Invensys Eurotherm Sp z o.o. T (+48 32) 7839500 F (+48 32) 7843608/7843609 E info.eurotherm.pl@invensys.com SPAIN Madrid Eurotherm España SA T (+34 91) 6616001 F (+34 91) 6619093 E info.eurotherm.es@invensys.com SWEDEN Malmo Eurotherm AB T (+46 40) 384500 F (+46 40) 384545 E info.eurotherm.se@invensys.com SWITZERLAND Wollerau Eurotherm Produkte (Schweiz) AG T (+41 44) 7871040 F (+41 44) 7871044 E info.eurotherm.ch@invensys.com UNITED KINGDOM Worthing Eurotherm Limited T (+44 1903) 268500 F (+44 1903) 265982 E info.eurotherm.uk@invensys.com U.S.A. Ashburn VA Eurotherm Inc. T (+1 703) 724 7300 F (+1 703) 724 7301 E info.eurotherm.us@invensys.com ED63 2116/2132 PID temperature controllers User Guide Manuel Utilisateur Bedienungsanleitung ENG FRA GER This booklet includes: User Guide (HA026270 Issue 5) Manuel Utilisateur (HA026270FRA Indice 5) Bedienungsanleitung (HA026270GER Ausgabe 5) Part Number HA026270 Issue 5.0 Aug 07 1 2132 and 2116 PID Temperature Controllers Thank you for choosing the 2132 or 2116 Temperature Controller. Supplied in 1/32 and 1/16 DIN panel sizes they are designed for accurate, stable control of ovens, chillers, sterilisers and other heating and cooling processes. Two outputs are configurable for heating, cooling and alarms. The controller is supplied configured according to the order code given in section 5. Check this on the side labels to determine the configuration of your particular controller. 1. Dimensions and Installation Model 2132 Model 2116 48mm (1.89in) 45 x 45 mm -0.0, + 0.6 1.77 x 1.77in -0.00, +0.02 48mm 24mm Panel cut-out 103mm (4.01in) 45mm -0.0, +0.6 1.77in -0.0, +0.02 Latching ears Panel retaining clips 22mm -0.0, +0.3 0.88in -0.0, +0.10 Panel cut-out 103mm (4.01in) 48mm (1.89in) 2 Part Number HA026270 Issue 5.0 Aug 07 1.1 To Install the Controller Please read the safety information in sections 7 before proceeding. 1. Prepare the panel cut-out to the size shown 2. Insert the controller through the cut-out. 3. Spring the panel retaining clips into place. Secure the controller in position by holding it level and pushing both retaining clips forward. 4. Peel off the protective cover from the display 1.2 Unplugging the Controller The controller can be unplugged from its sleeve by easing the latching ears outwards and pulling it forward out of the sleeve. When plugging it back into its sleeve, ensure that the latching ears click back into place to maintain the IP65 sealing. 1.3 Recommended Minimum Spacing of Controllers 10mm (0.4 in) 38mm (1.5 in) (Not to scale) Part Number HA026270 Issue 5.0 Aug 07 3 2. Electrical Connections 2.1 Wire Sizes The screw terminals accept wire sizes from 0.5 to 1.5 mm (16 to 22AWG). Hinged covers prevent hands or metal making accidental contact with live wires. The rear terminal screws should be tightened to 0.4Nm (3.5lb in). Output ratings Logic Output: 9Vdc, 12mA (non-isolated from sensor input). Used for: Heating, Cooling or Alarm. Relay Output: 2A, 264V ac resistive. Used for: Heating, Cooling or Alarm. Contact Closure Input (replaces Logic Output). Used for: Alarm Acknowledge or Timer start/reset Model 2116 OR Solid State Relay (SSR) + - Logic I/O Line Neutral Output 2 Relay T/C Pt100 mA Sensor Inputs L N A AB V+ V- 1A 1B 2.49Ω 85-264Vac 50/60Hz 1B 1A Pt100 T/C Output 2 Relay Neutral Line Logic I/O Model 2132 External Relay Module (Operated by the logic output) OR Solid State Relay (SSR) 2.49Ω Sensor Inputs V- V+ AB A N L - + mA 85-264Vac 50/60Hz 1B 1A 20-29 Vac/dc Low voltage supply 24 24 20-29 Vac/dc Low voltage 24 supply 24 4 Part Number HA026270 Issue 5.0 Aug 07 2.2 Typical Wiring Diagram Safety requirements for permanently connected equipment state: • A switch or circuit breaker shall be included in the building installation • It shall be in close proximity to the equipment and within easy reach of the operator It shall be marked as the disconnecting device for the equipment * When switching inductive loads such as contactors or solenoid valves, wire the 22nF/100Ω ‘snubber’ supplied across relay terminals AA & AB. This will prolong contact life and reduce interference. ! WARNING Snubbers pass 0.6mA at 110V and 1.2mA at 230Vac, which may be sufficient to hold on high impedance loads. Do not use in these installations. Relay output fuse 2A type T Neutral Controller fuse 2A type T Heater fuse Heater Thermocouple Solid State Relay (e.g. TE10) Snubber* Line + - Model 2132 V+ A 1B V- 1A A L N Cooling or alarm relay Circuit Breaker Part Number HA026270 Issue 5.0 Aug 07 5 3. Operation Switch on the controller. Following a 3 second selftest sequence, you will see the display shown below. It is called the HOME display. OP1 illuminates when the logic output is ON (normally heating). OP2 illuminates when the relay output is ON (normally cooling or alarm). If OP1 or OP2 are configured as alarm outputs (instead of heating and cooling), they will flash when a new ‘unacknowledged’ alarm occurs and go steady when the alarm is acknowledged but still true. 3.1 To Adjust The Required Temperature (Setpoint) Press and release quickly the or button. The setpoint will be displayed for 2 seconds. 20 Output 1 Output 2 Actual Temperature (or Process Value ‘PV’) OP1 OP2 Press and hold to raise the setpoint Press and hold to lower the setpoint 60 OP1 OP2 Required temperature (Setpoint) Actual temperature 20 OP1 OP2 6 Part Number HA026270 Issue 5.0 Aug 07 3.2 To View The Display Units Press and release quickly the or button. The display units will be flashed for 0.5 sec. If you get lost, pressing and together will always return you to the HOME display. If, at any time, no key is pressed within 45 seconds, the display will always return to the HOME display. 3.3 To Acknowledge a New Alarm Press and together. This will also reset any latched alarms that are no longer true. 3.4 Alarm Messages If an alarm occurs a message will be flashed in the display. This alternates with the measured temperature as shown below: Possible messages -fsH Alarm - Full Scale High -FSL Alarm - Full Scale Low -deV Alarm - Deviation -dHi Alarm - Deviation High -dLo Alarm - Deviation Low Sbr Sensor Break Lbr Loop Break Ldf Load Fail End End of Timing In place of the dash the alarm number is shown - Alarm 1 or 2 or 3. Display Units *C Deg Centigrade *F Deg Fahrenheit *K Deg Kelvin Linear inputs - no units displayed 0.5 sec or oC 20 Alarm 1 Full Scale Low Actual temperature 1fsL 20 Part Number HA026270 Issue 5.0 Aug 07 7 3.5 To View The Output Power Do this if you want to see how much heating or cooling energy is being demanded by the controller. Note: This is not a measure of actual power. Warning! In manual standby mode (see ‘To Use The Timer’) the output power can be adjusted by the operator, causing heating or cooling to be permanently applied. To prevent this make the OP parameter read only (see ‘To Hide, Reveal And Promote Parameters’) HOME display 20.0 Press twice quickly OP 100.0 *C Press Controller is demanding 100% heat Press or to view the value 8 Part Number HA026270 Issue 5.0 Aug 07 3.6 To Select or Change Other Parameters Parameters are settings in the controller which you can change to suit the process. They are found under list headings. Press the button to step through the list headings as shown below. Turn to paragraph 3.8 to see all of the list headings. These lists are used to: • Change alarm setpoints • Tune the controller to the process • Manually select PID values • Change setpoint limits and access the in-built timer • Change input and output limits Keep pressing to select more list headings, eventually returning to the HOME display. This is a continuous loop. HOME display 20.0 aL Atun X2 Part Number HA026270 Issue 5.0 Aug 07 9 3.7 To Adjust The Alarm Setpoints (Trip Levels) Press twice to choose the AL list. There are three Alarms. The setpoint for each alarm is found under the AL list. If an alarm has been disabled, it will not appear in this list. Note: The other parameters listed in section 3.8 are accessed and adjusted in exactly the same way as this example. 0.5 sec 1st press 2nd press *C 20 2 secs Next list Press or displays List indicating a list heading LiSt AL 0 1--- -FSL = Low alarm -FSH = High alarm -dEV = Deviation -dHi = Deviation High -dLo = Deviation Low - = the alarm number 0 2--- 0 3--- Press and together to return to the HOME display. Alarm 1 * Alarm 2 * Alarm 3 * * Press or to change the setpoint. Press 10 Part Number HA026270 Issue 5.0 Aug 07 3.8 Parameter Lists Shaded boxes are hidden when shipped from the factory. To reveal see ‘’To Hide, Reveal and Promote Parameters” section 3.10 HC.db Hys.C HYS.H Ont.C Ont.H OP.Hi OP.Lo CJCO SPrr SP H SP L AdC Lb t diSP HY m A w.SP Home List Alarm List Autotune List PID List(2) Setpoint List Input List Output List(2) On/Off List Access List 20.0 AL Atun Pid SP iP oP On.Of ACCS 1---(1) 2---(1) 3---(1) OP tunE Pb ti td rES Lcb Hcb rEL.C OFS.H FiLt mV OFS CAL.P CAL Pnt.L OFS.L Pnt.H CYC.H CYC.C codE Goto Conf tmr dwel StAt tm.OP (2) Either the PID list or the On/Off list will be present depending upon the configuration of the controller. X2 (1) In place of dashes, the last three letters depend on the alarm type. Part Number HA026270 Issue 5.0 Aug 07 11 3.8.1 Summary 1. Press to step across list headings. 2. Press to step down parameters 3. Press to view the value of a parameter. Keep pressing to decrease the value. 4. Press to view the value of a parameter. Keep pressing to increase the value 12 Part Number HA026270 Issue 5.0 Aug 07 3.9 Parameter Tables Home List Adjustable Range Default setting Customer setting Op Output Power -100% = max cooling, 100.0% = max heating. w.SP Working Setpoint Only appears when setpoint rate limit enabled Read only Read only m-A Manual/ Auto Select Auto mAn Automatic control selected Manual standby selected Auto disp Home Display Options Std OP NonE PV AL.SP pv.aL Standard - Shows the process value with the setpoint accessed by pressing the and buttons. Displays the output power - for use as a manual station. (Only applies to software version 1.4) Blank Display (only alarm messages flashed) Displays the Process Value only Displays the Alarm 2 Setpoint only Displays the Process Value with Alarm 2 Setpoint accessed by and . Std Part Number HA026270 Issue 5.0 Aug 07 13 AL Alarm List (See section 3.7) Adjustable Range Default Setting Customer setting 1--- Alarm 1 Setpoint 0 2--- Alarm 2 Setpoint 0 3--- Alarm 3 Setpoint In place of dashes, the last three letters indicate the alarm type: Between low and high setpoint limits 0 -FSL Full Scale Low -FSH Full Scale High -dEv Deviation -dHi Deviation High -dLo Deviation Low HY Alarm Hysteresis 1 to 9999 in display units (This value is common to all alarms) Hysterisis is used to prevent the alarm output ‘chattering’ by setting a difference between the alarm switch ON and switch OFF points 1 Lb t Loop Break Time OFF to 9999 minutes OFF 14 Part Number HA026270 Issue 5.0 Aug 07 Atun Automatic Tuning List (See section 4.3) Adjustable Range Default Setting Customer setting tunE Automatic Tune Enable OFF or on Off Adc Automatic Manual reset calculation (when P+D control) man or caLc man PiD PID List (See section 4.3) Adjustable Range Default Setting Customer setting Pb Proportional Band 1 to 999.9 display units 20 ti Integral Time OFF to 9999 seconds 360 td Derivative Time OFF to 9999 seconds 60 rES Manual Reset Value (only present if ti= OFF) -100 to 100.0 % 0.0 Lcb Low Cutback Auto to 999.9 display units Auto Hcb High Cutback Auto to 999.9 display units Auto rEL.C Relative Cool Gain 0.01 to 10.00 1.00 Part Number HA026270 Issue 5.0 Aug 07 15 SP Setpoint List (See also ‘To Use the Timer’ section 3.11) Adjustable Range Default Setting Customer setting SP L Setpoint Low Limit -1999 to 999.9 As per order SP H Setpoint High Limit -1999 to 999.9 As per order sprr Setpoint Rate Limit 0FF to 999.9 display units per minute Off tm.OP Timer Operating Mode Opt.1 to Opt.5 OPt.1 tmr Time Remaining 0 to 9999 minutes 0 dwEl Dwell Time 0FF to 9999 minutes OFF StAt Timer Status OFF or on OFF 16 Part Number HA026270 Issue 5.0 Aug 07 iP Input List (See also ‘User Calibration’ section 4.2) Adjustable Range Default Setting Customer setting FiLt Input Filter Time Constant 0FF to 999.9 seconds 1.6 CJC* Cold Junction Temperature measured at rear terminals Read only mV Millivolt Input measured at the rear terminals Read only OFS Process value Offset -1999 to 9999 display units 0 CAL.P Calibration Password 0 to 9999 3 CAL User Calibration Enable FACt Re-instates factory calibration USEr Re-instates user calibration FACt Pnt.L Low Calibration Point 0 OFS.L Low Point Calibration Offset 0 Pnt.H High Calibration Point 100 OFS.H High Point Calibration Offset -1999 to 9999 display units 0 Part Number HA026270 Issue 5.0 Aug 07 17 oP Output List Adjustable Range Default Setting Customer setting OP.Lo Low Output Power Limit -100 to 100.0 % 0 OP.Hi High Output Power Limit -100 to 100.0 % 100.0 CYC.H Heating Output Cycle Time 0.2 to 999.9 seconds 1.0 Lgc 20 Rly CYC.C Cooling Output Cycle Time 0.2 to 999.9 seconds 5.0 Lgc 20 Rly ont.H Heating Output Minimum On Time Auto to 999.9 seconds (Auto = 50ms) Auto ont.C Cooling Output Minimum On Time Auto to 999.9 seconds (Auto = 50ms) auto onOF On Off Output List Adjustable Range Default Setting Customer setting hYS.H Heating Hysteresis 1 to 9999 display units 1 hYS.C Cooling Hysteresis 1 to 9999 display units 1 HC.db Heat/Cool Deadband 0 to 9999 display units 0 ACCS Access List (See “To Hide, Reveal and Promote” parameters section 3.10) Adjustable Range Default Setting Customer setting codE Access Pass Number 0 to 9999 1 Goto Go To Required Access Level Oper, Ful, Edit, conf OPEr Conf Configuration Pass Number 0 to 9999 2 18 Part Number HA026270 Issue 5.0 Aug 07 3.10 To Hide, Reveal and Promote Parameters You are now in Edit level. Press and to select a parameter in the normal way. Press to return to the Access list header. ACCS PASS codE Press or to enter the password. The factory default is 1. ‘PASS’ will be displayed when the correct password has been entered. Press Press until the Access List Heading is reached. Press or to select ‘Edit’ level. Other options are: OPEr Operator level - shows selected parameters FuLL Reveals the ‘FULL’ set of parameters ConF Gives access to configuration level. Edit Goto Press ACCS High alarm 2 has been selected. When or is pressed, instead of displaying the parameter value, its availability to in Operator level is shown as follows: ALtr The parameter will be alterable HidE The parameter will be hidden . rEAd The parameter will be read-only Pro The parmeter will be ‘promoted’ into the HOME list (see below). Example: HidE 2FSH Part Number HA026270 Issue 5.0 Aug 07 19 3.10.1 The Pro (Promote) option Up to twelve commonly used parameters can be ‘promoted’ into the HOME list. This will give the operator quick access to them by simply pressing the button. This feature, used in combination with ‘hide’ and ‘ read only’, allows you to organise the way in which you want your controller formatted. The parameter tmr will now appear in the HOME list. Repeat the procedure for any other parameters you wish to promote. To remove a parameter go to edit level, select the parameter from the relevant list and change the choice from Pro back to ALtr, rEAd or HidE. 3.10.2 Returning to Operator level Repeat the above procedure for all the parameters you wish to hide, promote, or make read-only then return to operator level: Example: Time remaining has been selected. Press or to choose Pro. Pro tmr 1. Press until you reach the ACCS list heading 2. Press until you reach Goto 3. Press or to select Oper 4. Press to return to Operator level OPer Goto 20 Part Number HA026270 Issue 5.0 Aug 07 3.11 To Use The Timer • Press until you reach the SP list • Press until you reach the tM.OP parameter • Press or to select the timer operating mode, Opt.1 to Opt.5 as follows: 3.11.1 Opt.1 - Mode 1, Dwell and Switch Off In reset In reset, you can switch between automatic control and standby mode, using the parameter m-A in the HOME list. The controller is supplied with the m-A parameter hidden. You must first reveal it. See ‘To Hide, Reveal and Promote Parameters’. Standby mode Temperature Setpoint Reset Timing Running End Waiting to End flashes reach temperature Auto m-A From the HOME display press until the m-A parameter is displayed. Press or to select: Auto Automatic control mAn Standby mode. (the MAN beacon below OP2 will illuminate) Press and together to return to the HOME display Part Number HA026270 Issue 5.0 Aug 07 21 ‘Automatic control’ means control at setpoint, with heating (and cooling) being applied. ‘Standby mode’ means: the controller is in manual with zero output power. See ‘Warning!’ in section 3.5. During Running The controller will always switch to automatic control. Heating (or cooling) will be applied and the temperature will rise (or cool) to the setpoint. When the temperature is within 1oC of setpoint, the timer will start counting down. During End When the timer times out, the controller will switch to standby mode. The MAN beacon will light and End will be flashed in the main display. The process will cool down. The timer will remain indefinitely in this state until reset. When Reset End will stop flashing. The controller will return to reset in standby mode. It can be returned to automatic control by setting the parameter m-A in the HOME list to Auto. 3.11.2 Opt.2 - Mode 2, Dwell No Switch Off Indefinite dwell at setpoint Temperature Setpoint Reset Timing Running End End flashes Waiting to reach temperature This is the same as mode 1 except that at the end of the timing period the controller will continue indefinitely in automatic control. 22 Part Number HA026270 Issue 5.0 Aug 07 3.11.3 Opt.3 - Mode 3, Time from Cold and Switch Off This is the same as mode 1 except that the timer will start counting down immediately without waiting for the temperature to reach setpoint. 3.11.4 Opt.4 Mode 4, Time from Cold No Switch Off This is the same as mode 2 except that the timer will start counting down without waiting for the controller to reach setpoint. Standby mode Temperature Setpoint Reset Timing End End flashes Temperature Setpoint Reset Timing End End flashes Indefinite dwell at setpoint Part Number HA026270 Issue 5.0 Aug 07 23 3.11.5 Opt.5 Mode 5, Delayed Switch On This mode applies a time delay before turning on the heating (or cooling). When the timer is started, the controller will always switch to standby mode and start counting down. When the timer has timed out, the controller will switch into automatic control, apply heating (or cooling) and control indefinitely at the setpoint. 3.11.6 To Program a Ramp-Dwell profile A simple ramp-dwell profile can be programmed using Sprr (setpoint rate limit) in combination with the timer. To use this feature, first reveal Sprr and w.SP (the working setpoint) using the method described in “To Hide, Reveal and Promote” parameters. w.SP will then appear in the HOME list. Set Sprr to the required ramp rate. It is adjustable in 1/10th of the least significant display units per minute. That is if the display is configured 0 to 1000oC, setpoint rate limit can be adjusted between 0.1 and 999.9 oC per minute. When setpoint rate limit has been enabled and the timer is started, the working setpoint, wsp, will first step to the measured temperature and then ramp at the setpoint rate limit, sprr, to the target setpoint. In modes 1 and 2 timing will start when the measured temperature is within 1oC of the target setpoint. In modes 3 and 4 it will start when wsp is within 1oC of the target setpoint. Indefinite dwell at setpoint Temperature Setpoint Reset Timing Reset 24 Part Number HA026270 Issue 5.0 Aug 07 3.12 To Start And Reset The Timer There are two methods: Method 1. This is the simplest method to control the timer. • Press until you reach the SP list • Press until you reach the tMr parameter (time remaining). TIP: Promote tmr to the HOME list for quick access, as described in ‘To Hide, Revealing and Promote Parameters. As soon as a value is entered into tmr timing will commence. tmr will count down towards zero. During the timing period tmr can be increased or decreased according to the demands of the process. Setting the value to zero will end the timing period. When tmr reaches zero. ‘end’ will flash in the main display. The timer will remain indefinitely in this state until a new value is entered, when the timer will restart. To reset the timer, press and together. ‘end’ will stop flashing . To restart the timer, enter a new value into tmr. 1234 Tmr Press or to enter the required timing period in minutes. (0 to 9999). Press to return to the HOME display Part Number HA026270 Issue 5.0 Aug 07 25 Method 2. Use this method if you want to set a fixed time and use the stat parameter to start and stop the timer. The stat parameter can also be switched between Off and run by configuring the logic I/O as a Off/run contact closure input. Open the external contact to select run. This is an edge triggered action. Close the contact to select Off. Off is forced whenever the contact is closed. 1234 dwel run stat sp Press to reach the SP List heading. Press until you reach dwel Dwell time Press or to enter a timing period in minutes (0-9999). Timer Status To start the timer, press or to select run. The dwell time will be loaded into tmr and timing will commence. To reset the timer, select Off. The time remaining tmr will be set to 0. Press and together to return to the HOME display. 26 Part Number HA026270 Issue 5.0 Aug 07 4. Configuring the Controller Select configuration level to change: •The type of control •The display units •The input sensor type• The scaling of linear inputs •The alarm configuration • The passwords. 4.1 To select configuration level Press to step across the configuration list headings. Having selected a list heading, press to select a parameter within a particular list. Press and to change the setting. inSt iP AL AA Exit pASS 1A To Instrument Configuration Tables Press Press Press Goto conF Press or to select conf ACCS Press to reach the Access List Heading. codE PASS Press or to enter the password. The factory default is 1. PASS will be displayed when the correct password has been entered. ConF PASS Press or to enter the configuration level password. The factory default is 2. PASS will be displayed when the correct password has been entered. Press to enter configuration level. Part Number HA026270 Issue 5.0 Aug 07 27 4.1.1 Instrument Configuration inst Instr Conf Options Description *C Centigrade *F Fahrenheit *K Kelvin unit Display units nonE None nnnn None nnn.n One dEC.P Decimal places in display nn.nn Two Pid PID Control On.OF On/off Control CtrL Control type AL Convert to an alarm unit rEv Reverse (normal action for temperature control) Act Control action dir Direct (output decreases as PV falls below SP) Inst Instr Conf Options Description HoLd In Auto holds manual reset value Pd.tr Manual reset tracking (PD control) trAc In Auto tracks output for bumpless A/M transfer 28 Part Number HA026270 Issue 5.0 Aug 07 4.1.2 Input Configuration iP Sensor Input Options Meaning j.tc J thermocouple k.tc K thermocouple L.tc L thermocouple r.tc R thermocouple b.tc B thermocouple n.tc N thermocouple t.tc T thermocouple S.tc S thermocouple PL 2 Platinell II rtd 100Ω PRT mV Linear mV inPt Input type C.tc Custom input C=default Auto Automatic 0*C 0°C external ref. 45*C 45°C external ref. CJC (TC only) Cold junction compen sation 50*C 50°C external ref. Linear input scaling (Range -12 to +80mV) InP.L mV input low InP.H mV input high VaL.L Displayed value low VAL.H Displayed value high OFF Off (Linear inputs only) Auto 1.5KΩ Hi 5KΩ ImP Sensor break input impedance HiHi 15KΩ, Inp.L Inp.H VAL.H VAL.L mV Displayed value Part Number HA026270 Issue 5.0 Aug 07 29 4.1.3 Alarm Configuration The AL list configures the three internal ‘soft’ alarms and causes the appropriate alarm message to be flashed in the HOME display. At this stage the alarm is indication only (known as a ‘soft alarm’). To make the alarms operate the relay or logic outputs, follow the instructions under “Relay and Logic input/output Configuration. AL Alarm Type Meaning OFF The alarm is disabled fsL Full Scale Low alarm fsH Full Scale High alarm dEv Deviation band alarm dHi Deviation high alarm AL 1 Alarm 1 dLo Deviation low alarm AL Alarm Type Meaning no Non-latching YES Latched with automatic* resetting. Ltch Alarm latching mAn Latched with manual** resetting. bLoc Alarm No No blocking blocking YES Blocked until first good The above sequence is repeated for: AL 2 (Alarm 2) and AL 3 (Alarm 3) diS Limited by display range Sp.Li Alarm setpoint limits Con Limited by setpoint limits * Automatic resetting means that, once the alarm has been acknowledged, it will automatically clear when it is no longer true. ** Manual resetting means that the alarm must first clear before it can be reset. 30 Part Number HA026270 Issue 5.0 Aug 07 4.1.4 Relay and Logic input/output Configuration The logic I/O can be configured as an output or a contact closure input for alarm acknowledge, keylock, or timer run/reset. Aa Relay 1a Logic I/O Options Meaning id Identity of rELy Relay output LOG Logic diG Digital (alarm) output HEAt Heating output Function COOL Cooling output SSr.1 PDSIO mode 1 Ac.AL Alarm Acknowledge Loc.b Keylock digital input Func These functions only appear for the logic I/O rres Run/reset timer noch No change CLr Clear all alarms 1FSL Alarm 1 (Note 1) diG.F Digital output functions See ‘To 2FSH Alarm 2 (Note 1) Aa Relay 1a Logic I/O Options Meaning 3FSL Alarm 3 (Note 1) NW * New alarm SBR* Sensor break LBR* Loop break LDF* Load fail alarm MAn * Man mode active EnD* End of timing TMG* Timer running Operate the Relay or Logic Output from an Alarm or Digital Function section 4.1.5” TMG* Timer counting down (Note 2) TMG3* Timer running TMG4* Timer counting down SenS Sense of nor Normal (Note 3) the output Inv Inverted (Note 3) * Alarms always non-latching. Process alarms 1, 2 and 3 are configurable as alarm latching or nonlatching, see the ‘AL’ List Part Number HA026270 Issue 5.0 Aug 07 31 Note 1: The last three letters will correspond to the alarm type configured in the AL list. If the alarm is disabled, AL1 or AL2 or AL3 will be shown. Note 2: If tmg.3 and tmG.4 are selected, they illuminate the logic or relay output beacons, OP1 and OP2, without operating the actual output. They are used to indicate that timing is in progress while leaving the actual outputs to be operated by the other digital functions such as the END condition which can be used to operate an external klaxen. Note 3: Normal is the usual setting for heating or cooling. Inverted is the normal setting for alarms - de-energise in alarm. 4.1.5 To Operate the Relay or Logic output from an alarm or digital function. 1. Press until you reach Func 2. Press or to select Func = diG 3. Press to reach diG.F 4. Press or to select a alarm or digital function 5. Leave for 2 seconds. The display returns to diG.F and connects the selected alarm or digital function to the relay or logic output. 6. Press or again. Two decimal points will appear in the function that has been added to the output. 4.1.6 Multiple Alarms on one Output Any number of alarms or digital functions can be added to the relay or logic output by repeating steps 4, 5 and 6 above. Two decimal points will appear in those functions that has been added to the output. 4.1.7 To Clear Alarms from an Output 1. Press until to reach diG.F 2. Press or to select CLr 3. Leave for 2 seconds. The display returns to diG.F which disconnects all alarms from the relay. 32 Part Number HA026270 Issue 5.0 Aug 07 4.1.8 Passwords PASS Passwords Range Default ACC.P Full and Edit level password 0-9999 1 CnF.P Configuration level password 0-9999 2 CAL.P User calibration password 0-9999 3 4.1.9 To leave Configuration level Press to reach the ‘exit’ display Press or to select ‘YES’ After 2 secs the display will blink and return to the HOME display in Operator level. Exit YES Part Number HA026270 Issue 5.0 Aug 07 33 4.1.10 Diagnostic Alarms In addition to the normal process alarms, the following diagnostics alarm messages are provided. Message Meaning and (Action) EE.Er Electrically Erasable Memory Error: A parameter value has been corrupted. Contact Eurotherm Controls. HW.Er Hardware error: (Return for repair) LLLL Low display range exceeded: (Check input signal) HHHH High display range exceeded: (Check input signal) Err1 Error 1: ROM self-test fail. (Return for repair) Err2 Error 2: RAM self-test fail. (Return for repair) Message Meaning and (Action) Err3 Error 3: Watchdog fail. (Return for repair) Err4 Error 4: Keyboard failure. Stuck button, or a button was pressed during power up. Err5 Error 5: Input circuit failure. (Return for repair) Pwr.F Power failure. The line voltage is too low. TU.Er Tune Error. Appears if auto-tuning exceeds 2 hours. 34 Part Number HA026270 Issue 5.0 Aug 07 4.2 User Calibration Your controller has been calibrated for life against known reference sources. User calibration allows you to apply offsets to compensate for sensor and other system errors. The parameter OFS in the IP list applies a fixed offset over the whole display range. You may also apply a 2-point calibration as follows: • Press until you reach the iP list • Press until you reach the CAL.P parameter • Press or to enter the password. The factory default is 3. PASS will be displayed when the correct has been entered. • Press to reach the CAL parameter • Press or , to select User (FAct will restore the factory calibration) • Press to select in turn the four parameters shown in the graph below. Use or to set the desired calibration points and the offsets to be applied at each point. The iP list on section 3.9 describes each of the parameters. Factory calibration Displayed Value Factory calibration Pnt.H OFS.H OFS.L Pnt.L User calibration Part Number HA026270 Issue 5.0 Aug 07 35 4.3 Automatic Tuning In PID control, the output from the controller is the sum of three terms: Proportional, Integral and Derivative. These three terms deliver just the right amount of power to hold the temperature at setpoint without oscillation. For stable control, the PID values must be ‘tuned’ to the characteristics of the process being controlled. In the 2132 and 2116 this is done automatically using advanced tuning techniques. Automatic tuning is performed by switching the output of the controller On and Off to induce an oscillation in the measured temperature. From the amplitude and period of the oscillation, the PID values, shown in the table below, are calculated. Parameter Display Meaning or Function Proportional band Pb The bandwidth in °C or °f over which the output power is proportioned between minimum and maximum. Integral time ti Determines the time taken by the controller to remove steady-state error signals. Parameter Display Meaning or Function Derivative time td Determines how strongly the controller will react to the rate-of-change of temperature. Low cutback Lcb The number of °C or °f below setpoint at which the controller will cutback the output power to prevent overshoot on heat up. High Cutback Hcb The number of °C or °f above setpoint at which the controller will increase the output power to prevent undershoot on cool down. Relative cool gain rEL.C Only present if cooling has been configured. Sets the cooling proportional band by dividing the Pb value by the rEL.C value. 36 Part Number HA026270 Issue 5.0 Aug 07 If the process cannot tolerate 100% heating or cooling during tuning, the power can be restricted by the heating and cooling limits in the Output list. However, the measured value must oscillate to some degree for the tuner to determine values. Tuning is normally performed only once during the initial commissioning of the process. However, if the process under control subsequently becomes unstable (because its characteristics have changed), you can retune again at any time. It is best to tune starting with the process at ambient temperature. This allows the tuner to calculate more accurately. 4.3.1 Heating & Cooling Output Cycle Times Before commencing a tuning cycle, set the values of CYC.H (heating output cycle time) and CYC.C (cooling output cycle time) in the oP (output) list. For a logic heating output (switching a SSR), set CYC.H to 1.0 sec. For a relay output, set CYC.H to 20.0 sec. For a logic cooling output used to control a solenoid valve, set CYC.C to 5.0 sec. 4.3.2 Tuning Procedure 1. Set the setpoint to the value at which you will normally operate the process. 2. In the ‘Atun’ list, select ‘tunE’ and set it to ‘on’ 3. Press the Page and Scroll buttons together to return to the HOME display. The display will flash ‘tunE’ to indicate that tuning is in progress. 4. The controller will induce an oscillation in the temperature by turning the heating on and then off. 5. After two cycles of oscillation the tuning will be completed and the tuner will switch itself off. 6. The controller will then calculate the tuning parameters and resume normal control action. If you want ‘Proportional only’ or ‘P+D’ or ‘P+I’ control, you should set the ‘ti’ or ‘td’ parameters to OFF before commencing the tuning cycle. The tuner will leave them off and will not calculate a value for them. Part Number HA026270 Issue 5.0 Aug 07 37 4.3.3 Typical automatic tuning cycle 4.3.4 Calculation of the cutback values When low cutback or high cutback is set to ‘AuTo’ their values will be fixed at three times the proportional band, and will not be altered during automatic tuning. If set to any other value, they will be calculated as part of the tuning process. 4.4 Manual Tuning If for any reason automatic tuning gives unsatisfactory results, you can manually tune the controller. Proceed as follows: With the process at its normal running temperature: 1. Set the Integral Time ‘ti’ and Derivative Time ‘td’ to OFF. 2. Set High Cutback ‘Hcb’ and Low Cutback ‘Lcb’, to ‘Auto’ 3. Ignore the fact that the temperature may not settle precisely at the setpoint 4. Reduce the proportional band ‘Pb’ until the temperature just starts to oscillate. If the temperature is already oscillating, increase the proportional band until it just stops oscillating. Allow enough time between each adjustment for the temperature to stabilise. Make a note of the proportional band value ‘B’ and the period of oscillation ‘T’. 5. Set the PID parameter values according to the formula below: Type of control Proportional band ‘Pb’ Integral time ‘ti’ Derivative time ‘td’ Proportional only 2xB OFF OFF P + I 2.2xB 0.8xT OFF P + I + D 1.7xB 0.5xT 0.12xT Temperature Time 38 Part Number HA026270 Issue 5.0 Aug 07 4.4.1 Setting the cutback values The above procedure sets up the parameters for optimum steady state control. If unacceptable levels of overshoot or undershoot occur during start-up or for large step changes in temperature, then manually set the cutback parameters Lcb and Hcb. Proceed as follows: 1. Set the low and high cutback settings to 3 x the proportional band (that is to say, Lcb = Hcb = 3 x PB). 2. Note the level of overshoot or undershoot that occurs for large temperature changes (see the diagrams below). In example (a) increase Lcb by the overshoot value. In example (b) reduce Lcb by the undershoot value. Example (a) Example (b) When the temperature approaches the setpoint from above, you can set Hcb in a similar manner. 4.4.2 Manual reset When ti = OFF manual reset (rES) appears in the PiD List. This parameter sets the output power when the error signal is zero. It can be manually adjusted to remove steady state error - the function normally performed by the Integral term. Temperature Time Overshoot Temperature Time Undershoot Part Number HA026270 Issue 5.0 Aug 07 39 5. Ordering Code The controller is supplied configured according to the ordering code shown below. Model number Function Supply voltage Manual Output 1 (Logic) Output 2 (Relay) Function CC PID controller NF On/Off controller TC PID controller + timer TN On/Off controller + timer Supply voltage VH 85-264Vac VL 20 -29Vdc or ac Manual XXX None ENG English FRA French GER German NED Dutch SPA Spanish SWE Swedish ITA Italian Output 2: Relay XX Disabled RH Heating RC Cooling FH High alarm 2 FL Low alarm 2 AL High alarm 2 & low alarm 3 DB Dev band alarm 2 DL Dev. low alarm 2 DH Dev. high alarm 2 NW New alarm Output 1: Logic XX Disabled Logic output LH Heating LC Cooling M1 PDSIO mode 1 FH High alarm 1 FL Low alarm 1 DB Dev band alarm 1 DL Dev. low alarm 1 DH Dev. high alarm 1 NW New alarm Logic input AC Alarm ack/reset KL Keylock TM Timer Run/Reset Model Number 2132 1/16 DIN 2116 1/8 DIN 40 Part Number HA026270 Issue 5.0 Aug 07 Sensor input Setpoint min Setpoint max Units Ext relay module Input adaptor External relay module XX Not fitted R7 Fitted (Operated by the logic output) Units C °C F ° F K Kelvin X Linear I/P Input Adaptor XX None V1 0-10Vdc A1 0-20mA sense resistor (2.49Ω. 0.1%) Sensor input Display range and Setpoint min & max limits Thermocouples °C ° F J Type J -210 to 1200 -340 to 2192 K Type K -200 to 1372 -325 to 2500 T Type T -200 to 400 -325 to 750 L Type L -200 to 900 -325 to 1650 N Type N -200 to 1300 -325 to 2370 R Type R -50 to 1768 58 to 3200 S Type S -50 to 1768 -58 to 3200 B Type B 0 to 1820 32 to 3308 P Platinell II 0 to 1369 32 to 2496 Resistance thermometer Z Pt100 -200 to 850 -325 to 1562 Custom downloaded inputs Range OC Range OF C Type C -W5%Re/W26%Re (default custom sensor) 0 to 2319 32 to 4200 D Type D - W3%Re/W25%Re 0 to 2399 32 to 4350 E E thermocouple -200 to 999 -325 to 1830 1 Ni/Ni18%Mo 0 to 1399 32 to 2550 2 Pt20%Rh/Pt40%Rh 0 to 1870 32 to 3398 3 W/W26%Re (Engelhard) 0 to 2000 32 to 3632 4 W/W26%Re (Hoskins) 0 to 2010 32 to 3650 5 W5%Re/W26%Re (Engelhard) 10 to 2300 50 to 4172 6 W5%Re/W26%Re(Bucose) 0 to 2000 32 to 3632 7 Pt10%Rh/Pt40%/Rh 200 to 1800 392 to 3272 8 Exegen K80 I.R. Pyrometer -45 to 650 -49 to 1202 Process inputs (linear) Scaleable -999 to 9999 M -9.99 to +80mV Y 0 to 20mA A 4 to 20mA V 0 to 10Vdc (input adapter required) Part Number HA026270 Issue 5.0 Aug 07 41 6. Technical Specification Panel sealing IP65 (EN 60529), or 4X (NEMA 250) Operating ambient 0 to 55oC. Ensure that the enclosure is adequately ventilated. 5 to 95%RH, non condensing Storage temperature -30oC to +75oC. (Protect from humidity and dust) Atmosphere Not suitable for use above 2000m or in explosive or corrosive atmospheres Power supply High voltage unit: 100 to 240Vac -15%, +10%, 48-62Hz, 5Watts maximum consumption Low voltage unit: 24Vdc/ac +/- 20%. DC to 62Hz, 5Watts maximum consumption Relay rating (isolated) Maximum: 264Vac, 2A resistive. Minimum: 12Vdc, 100mA Mechanical life > 107 operations. Electrical life at 1A, 240vac resistive load > 5 x106 operations Wire sizes Use a minimum of 0.5mm2 or 16awg wire for plant connections. Over current protection Use independent 2A fuses for the supply and relay output. Suitable fuses are EN60127 (type T) Logic I/O rating 9V at 12mA, non-isolated from sensor input Electrical safety Meets EN 61010 (Voltage transients on the power supply must not exceed 2.5kV). Pollution degree 2. Isolation: All isolated inputs and outputs have reinforced insulation to protect against electric shock. (See live sensor note) Cold Junction Compensation >30 to 1 rejection of ambient temperature changes in automatic mode. Uses INSTANT ACCURACY TM sensing technology to reduce warm up drift and respond quickly to ambient temperature changes. Installation Category Category II or CAT II 42 Part Number HA026270 Issue 5.0 Aug 07 7. Safety and EMC Information This controller is intended for industrial temperature and process control applications when it will meet the requirements of the European Directives on Safety and EMC. Use in other applications, or failure to observe the installation instructions of this handbook may impair safety or EMC. The installer must ensure the safety and EMC of any particular installation. Safety This controller complies with the European Low Voltage Directive 73/23/EEC by the application of the safety standard EN 61010. Electromagnetic compatibility It conforms with the essential protection requirements of the EMC Directive 89/336/EEC, by the application of a Technical Construction file. It satisfies the general requirements of the industrial environment defined in EN 61326. For more information on product compliance refer to the Technical Construction File. GENERAL The information contained in these instructions is subject to change without notice. While every effort has been made to ensure the accuracy of the information, Eurotherm shall not be held liable for errors contained herein. Unpacking and storage The packaging should contain an instrument mounted in its sleeve, two mounting brackets for panel installation and an Installation & Operating guide. Certain ranges are supplied with an input adapter. If on receipt, the packaging or the instrument is damaged, do not install the product but contact your supplier. If the instrument is to be stored before use, protect from humidity and dust in an ambient temperature range of -30oC to +75oC. SERVICE AND REPAIR This controller has no user serviceable parts. Contact your supplier for repair. Caution: Charged capacitors Before removing the controller from its sleeve, switch off the supply and wait at least two minutes to allow capacitors to discharge. Failure to observe this Part Number HA026270 Issue 5.0 Aug 07 43 precaution may damage the indicator or cause some discomfort to the user. Electrostatic discharge precautions When the controller is removed from its sleeve, it is vulnerable to damage by electrostatic discharge from someone handling the controller. To avoid this, before handling the unplugged controller discharge yourself to ground. Cleaning Do not use water or water based products to clean labels or they will become illegible. Isopropyl alcohol may be used to clean labels. A mild soap solution may be used to clean other exterior surfaces of the product. Safety Symbols The following safety symbols are used on the controller: Caution. Refer to the ! accompanying documents Personnel Installation must only be carried out by qualified personnel in accordance with instructions given in this handbook. Enclosure of live parts The controller must be installed in an enclosure to prevent hands or metal tools touching parts that may be electrically live. Caution: Live sensors The logic input/output is electrically connected to the sensor input (e.g. thermocouple). In some installations the temperature sensor may become live. The controller is designed to operate under these conditions, but you must ensure that this will not damage other equipment connected to the logic input/output and that service personnel do not touch this connection while it is live. With a live sensor, all cables, connectors and switches for connecting the sensor and non-isolated inputs and outputs must be mains rated for use in 240V ac CATII. Wiring Wire the controller in accordance with the wiring data given in these instructions. Take particular care not to connect AC supplies to the low voltage sensor input or other low level inputs or outputs. Only use copper conductors for connections, (except thermocouple). Ensure that the installation complies with local wiring regulations. In the UK use the latest version of the 44 Part Number HA026270 Issue 5.0 Aug 07 IEE wiring regulations (BS7671) and in USA use NEC Class 1 wiring methods. Power Isolation The installation must include a power isolating switch or circuit breaker. This device should be in close proximity to the controller, within easy reach of the operator and marked as the disconnecting device for the instrument. Voltage rating The maximum continuous voltage applied between any of the following terminals must not exceed 240Vac: • relay output to logic, dc or sensor connections; • any connection to ground. The controller must not be wired to a three phase supply with an unearthed star connection. Under fault conditions such a supply could rise above 240Vac with respect to ground and the product would not be safe Conductive pollution Electrically conductive pollution must be excluded from the cabinet in which the controller is mounted. For example, carbon dust is a form of electrically conductive pollution. To secure a suitable atmosphere in conditions of conductive pollution, fit an air filter to the air intake of the cabinet. Where condensation is likely, for example at low temperatures, include a thermostatically controlled heater in the cabinet. This product has been designed to conform to BSEN61010 installation category II, pollution degree 2. These are defined as follows:- Installation Category II (CAT II) The rated impulse voltage for equipment on nominal 230V supply is 2500V. Pollution Degree 2 Normally only non conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation shall be expected. Over-temperature protection When designing any control system it is essential to consider what will happen if any part of the system should fail. In temperature control applications the primary danger is that the heating will remain constantly on. This could damage the product, the machinery being controlled, or even cause a fire. Part Number HA026270 Issue 5.0 Aug 07 45 Reasons why the heating might remain constantly on include: • the temperature sensor becoming detached from the process • thermocouple wiring becoming short circuit; • the controller failing with its heating output constantly on • an external valve or contactor sticking in the heating condition • The controller setpoint too high Where damage or injury is possible, we recommend fitting a separate over-temperature protection unit, with an independent temperature sensor, which will isolate the heating circuit. Please note that the alarm relays within the controller will not give protection under all failure conditions. Installation requirements for EMC • For general guidance refer to Eurotherm Controls EMC Installation Guide, HA025464. • It may be necessary to fit a filter across the relay output to suppress conducted emissions. The filter requirements will depend on the type of load. For typical applications we recommend Schaffner FN321 or FN612. • If the unit is used in table top equipment which is plugged into a standard power socket, then it is likely that compliance to the commercial and light industrial emissions standard is required. In this case to meet the conducted emissions requirement, a suitable mains filter should be installed. We recommend Schaffner types FN321 and FN612. Routing of wires To minimise the pick-up of electrical noise, the sensor input wiring should be routed away from high-current power cables. Where this is impractical, shielded cables should be used for the signal wiring. Where signal wiring is carrying (or could carry, under fault conditions) hazardous voltages*, double insulation should be used. * A full definition of ‘Hazardous’ voltages appears under ‘Hazardous Live’ in BS EN61010. Briefly, under normal operating conditions Hazardous voltage levels are defined as >30V RMS (42.2V peak) or >60V dc. 46 Part Number HA026270 Issue 5.0 Aug 07 8. RoHS Certificate Product group 2100 Table listing restricted substances Chinese 产 2100 铅镉铬溴联苯溴苯醚 线组X O X O O O 属O O O O O O 显X O O O O O 块X O X O O O O X English Product 2100 Pb Hg Cd Cr(VI) PBB PBDE PCBA X O X O O O Enclosure O O O O O O Display X O O O O O Modules X O X O O O O X Approval Name: Position: Signature: Date: Martin Greenhalgh Quality Manager IA029470U450 (CN23172) Issue 1 Feb 07 Indicates that this toxic or hazardous substance contained in at least one of the homogeneous materials used for this part is above the limit requirement in SJ/T11363-2006. 该质该质SJ/T11363-2006 标规 Toxic and hazardous substances and elements Indicates that this toxic or hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement in SJ/T11363-2006. Restricted Materials Table Restriction of Hazardous Substances (RoHS) 览 质 该质该质SJ/T11363-2006 标规 2116/2132 Régulateurs de Température PID Manuel Utilisateur FRA N0 Réf HA026270FRA Indice 5.0 08/07 1 2132 et 2116 Régulateurs de Température PID Merci d'avoir choisi le régulateur de température 2132 ou 2116. Disponibles en formats de panneau 1/32 et 1/16 DIN, ils sont conçus pour une régulation précise et stable des fours, compresseurs frigorifiques, stérilisateurs et autres procédés de chauffage et de refroidissement. Deux sorties sont configurables pour le chauffage, le refroidissement et les alarmes. Ce régulateur est livré configuré selon le code de commande de la paragraphe 5. Regarder sur les étiquettes latérales pour déterminer la configuration du régulateur 1 Dimensions et Installation Modèle 2132 Modèle 2116 48mm 45 x 45 mm -0.0, + 0.6 103mm 48mm Découpe du 24mm panneau 48mm 103mm 45mm -0.0, +0.6 Clips de verrouillage Clips de fixation 22mm -0.0, +0.3 Découpe du panneau 2 N0 Réf HA026270FRA Indice 5.0 08/07 1.1 Installation du régulateur Il est conseillé de lire les informations relatives à la sécurité, paragraphe 7, avant de continuer. 1. Préparer la découpe du panneau à la taille indiquée. 2. Insérer le régulateur par la découpe du panneau. 3. Mettre en place les clips de fixation. Immobiliser le régulateur en le tenant horizontal et en poussant les deux clips de fixation vers l'avant. 4. Retirer le film de protection de la face avant. 1.2 Retrait du régulateur Il est possible de retirer le régulateur de son manchon en tirant les clips de verrouillage vers l'extérieur et en le sortant du manchon. Lorsqu'on replace le régulateur dans son manchon, il faut veiller à ce que les clips de verrouillage s'encliquètent afin que l'étanchéité IP65 soit assurée. 1.3 Espace minimal recommandé entre régulateurs 10mm 38mm (Cette figure n'est pas à l'échelle) N0 Réf HA026270FRA Indice 5.0 08/07 3 2 Branchements 2.1 Section des fils Les bornes à vis acceptent des fils de section 0,5 à 1,5 mm². Des caches articulés empêchent tout contact accidental avec les fils sous tension. Les vis des bornes arrière doivent être serrées à 0,4 Nm Caractéristiques nominales des sorties Sortie logique : 9 Vdc, 12 mA (pas isolée de l'entrée capteur). Utilisée pour : le chauffage, le refroidissement ou les alarmes. Sortie relais : 2 A, 264 V ac résistive. Utilisée pour : le chauffage, le refroidissement ou les alarmes. Entrée de fermeture des contacts (remplace la sortie logique). Utilisée pour : l'acquittement des alarmes ou le démarrage et la réinitialisation du timer. Modèle 2116 OU + - Ligne Neutre Sortie 2 Relais T/C Pt100 mA Entrées capteurs L N A AB V+ V- 1A 1B 2,49Ω 85-264Vac 50/60Hz 1B 1A Pt100 T/C Sortie 2 Relais Neutre Ligne E/S Logiques Modèle 2132 Module relais externe (actionné par la sortie logique) OU Contacteur statique (SSR) 2,49Ω Entrées capteurs V- V+ AB A N L - + mA 85-264Vac 50/60Hz 1B 1A Contacteur statique (SSR) - + E/S Logiques + - 20-29 Vac/dc Alimentation 24 basse tension 24 20-29 Vac/dc Alimentation basse tension 24 24 4 N0 Réf HA026270FRA Indice 5.0 08/07 2.2 Schéma de Câblage Type Conditions de sécurité pour les équipements connectés en permanence : • Un interrupteur ou disjoncteur sera inclus dans l'installation • Il devra être situé à proximité de l'équipement et à portée de l'opérateur. • Il sera clairement identifié comme dispositif de sectionnement de l'équipement * En cas de commutation de charges conductrices comme les contacteurs ou les électrovannes, brancher un RC de 22 nF/100 Ω fourni entre les bornes AA & AB, ce qui prolonge la durée de vie des contacts et diminue les interférences ATTENTION Le RC laisse passer 0,6 mA à 110 V et 1,2 mA à 230 Vac, ce qui peut être suffisant pour maintenir les charges d'impédance élevée. Ne pas utiliser dans ces installations. Fusible de la sortie relais 2A type T Neutre Fusible du régulateuer 2A type T Fusible pour le chauffage Chauffage Thermocouple Contacteur statique (par exemple (e.g. TE10) Circuit RC* Ligne Modèle 2132 V+ A 1B V- 1A A L N Relais de refroidissement ou d'alarme Interrupteur N0 Réf HA026270FRA Indice 5.0 08/07 5 3 Utilisation Mettre le régulateur sous tension. Il effectue une suite de tests automatiques pendant environ 3 secondes puis affiche ce qui est représenté ci-dessous. Cet affichage est appelé PAGE DE REPOS. OP1 s'allume lorsque la sortie logique est sur ON (chauffage normalement). OP2 s'allume lorsque la sortie relais est sur ON (refroidissement ou alarme normalement). Si OP1 ou OP2 ou les deux est(sont) configuré(es) comme sortie(s) d'alarme (à la place du chauffage et du refroidissement), elle(s) clignote(nt) si une alarme ‘non acquittée’ se produit et s'allume(nt) à feu fixe lorsque l'alarme est acquittée mais reste vraie. 3.1 Reglage de la temperature souhaitee (consigne) Enfoncer puis relâcher rapidement la touche ou . La consigne est affichée pendant 2 secondes. 20 Sortie 1 Sortie 2 Température mesurée (ou valeur de régulation ‘PV’) OP1 OP2 Maintenir enfoncée pour augmenter la consigne Maintenir enfoncée pour diminuer la consigne 60 OP1 OP2 Température souhaitée (consigne) Température mesurée 20 OP1 OP2 6 N0 Réf HA026270FRA Indice 5.0 08/07 3.2 Visualisation des unites affichees Enfoncer puis relâcher rapidement la touche ou . Les unités affichées clignotent pendant 0,5 sec. Si l'on est "perdu", l'appui simultané sur et provoque le retour systématique à la PAGE DE REPOS. Si aucune touche n'est enfoncée pendant 45 secondes, l'affichage revient toujours à la PAGE DE REPOS. 3.3 Acquittement d'une alarme nouvelle Appuyer simultanément sur et . Cette opération réinitialise également les alarmes mémorisées qui ne sont plus vraies. 3.4 Messages d'alarme Si une alarme se produit, un message clignote sur l'affichage. Ce message apparaît en alternance avec la température mesurée, comme le montre la figure cidessous: Ce tableau montre tous les messages possibles. Messages possibles -fsH Alarme - pleine échelle haute -FSL Alarme - pleine échelle basse -deV Alarme - écart -dHi Alarme - écart haut -dLo Alarme - écart bas Sbr Rupture capteur Lbr Rupture boucle Ldf Défaut de charge End Fin de timing Le numéro de l'alarme est indiqué à la place du tiret : alarme 1, 2 ou 3. Alarme 1 pleine échelle basse Température mesurée 1fsL 20 Unités affichées *C Centigrade *F Fahrenheit *K Kelvin Entrées linéaires - aucune unité n'est affichée 0,5 sec oC 20 ou N0 Réf HA026270FRA Indice 5.0 08/07 7 3.5 Visualisation de la Puissance de Sortie On peut effectuer cette opération si l'on souhaite voir la quantité d'énergie de chauffage ou de refroidissement demandée par le régulateur. N.B. : il ne s'agit pas d'une mesure de la puissance effective. ATTENTION En mode manuel attente (standby) (voir Utilisation du timer), l'opérateur peut régler la puissance de sortie, ce qui provoquera une chauffe ou un refroidissement permanent. Pour éviter ceci, mettre le paramètre OP en lecture seulement (Voir Paramètres cachés, visibles personnalisés) Page de repos 20.0 Appuyer deux fois rapidement OP 100.0 *C Appuyer Le régulateur demande 100 % de chauffage Appuyer sur ou pour visualiser la valeur 8 N0 Réf HA026270FRA Indice 5.0 08/07 3.6 Selection ou Modification d'autres Parametres Les paramètres sont des valeurs du régulateur que l'on peut modifier pour les adapter au procédé. Ils se trouvent sous les en-têtes de listes. Appuyer sur la touche pour faire défiler les entêtes de listes, comme le montre la figure ci-dessous. Aller à la paragraphe 3.8 pour voir l'ensemble des entêtes de listes. Ces listes servent à : • modifier les consignes d'alarme • adapter le régulateur au procédé • sélectionner manuellement les valeurs PID • modifier les limites de consignes et accéder au timer intégré • modifier les limites des entrées et des sorties Maintenir la touche enfoncée pour sélectionner d'autres en-têtes de listes (retour à la PAGE DE REPOS après le dernier en-tête). La boucle est continue. Page de repos 20.0 aL Atun X2 N0 Réf HA026270FRA Indice 5.0 08/07 9 3.7 Reglage des consignes d'alarme (niveaux de declenchement) Il existe trois consignes d'alarme. Les consignes d'alarme se trouvent dans la liste AL. Si une alarme a été désactivée, elle n'apparaît pas dans cette liste. Appuyer deux fois sur pour choisir la liste AL. N.B. : les autres paramètres énumérés paragraphe 3.8 sont accessibles et modifiables de la même manière que dans cet exemple 0,5 sec 1er appui 2ème appui *C 20 2 sec Liste suivante L'appui sur ou provoque l'affichage de List pour indiquer qu'il s'agit d'un en-tête de liste. LiSt AL 0 1--- -FSL = Alarme basse -FSH = Alarme haute -dEV = Ecart -dHi = Ecart hau -dHL = Ecart bas - = numéro d'alarme 0 2--- 0 3--- * Appuyer sur ou pour modifier la consigne Alarme 1 * Alarme 2 * Alarme 3 * Appuyer simultanément sur et pour revenir à la PAGE DE REPOS. Appuyer 10 N0 Réf HA026270FRA Indice 5.0 08/07 3.8 Listes de Parametres (2) La liste PID ou la liste On/Off est affichée, selon la configuration du Les cases grisées sont normalement cachées lorsque l'appareil sort régulateur. d'usine. Pour les faire apparaître, cf. ‘’Paramètres cachés, visibles et personnalisés”, paragraphe 3.10 HC.db Hys.C HYS.H Ont.C Ont.H OP.Hi OP.Lo CJCO SPrr SP H SP L AdC Lb t diSP HY m A w.SP Page de repos Liste Alarme Liste Autoréglage Liste PID(2) Liste Consigne Liste Entrée Liste Sortie Liste On/Off (2) Liste Accès 20.0 AL Atun Pid SP iP oP On.Of ACCS 1---(1) 2---(1) 3---(1) OP tunE Pb ti td rES Lcb Hcb rEL.C OFS.H FiLt mV OFS CAL.P CAL Pnt.L OFS.L Pnt.H CYC.H CYC.C codE Goto Conf tmr dwel StAt tm.OP X2 (1) A la place des tirets, les trois dernières lettres dépendent du type d'alarme. Cf. “Réglage des consignes d'alarme paragraphe 3.7. N0 Réf HA026270FRA Indice 5.0 08/07 11 3.8.1 Résumé 1. Appuyer sur pour passer d'un en-tête de liste à l'autre. 2. Appuyer sur pour se déplacer dans les paramètres d'une liste donnée. Une fois que la fin de la liste est atteinte, on revient à l'en-tête de la liste. 3. Appuyer sur pour voir la valeur d'un paramètre sélectionné. Maintenir cette touche enfoncée pour diminuer la valeur. 4. Appuyer sur pour voir la valeur d'un paramètre sélectionné. Maintenir cette touche enfoncée pour augmenter la valeur. 12 N0 Réf HA026270FRA Indice 5.0 08/07 3.9 Tableaux des Paramètres Page de repos Plage réglable Réglage par défaut Réglage client Op Puissance de sortie demandée -100% = refroidissement maximal, 100,0% = chauffage maximal. w.SP Consigne de travail Apparaît uniquement lorsque la limite de la vitesse de consigne est activée Lecture seule Lecture seule m-A Sélection Auto Régulation automatique sélectionnée Manuel/Auto mAn Attente manuelle sélectionnée Auto Std Standard - Montre la valeur de régulation avec la consigne accessible par appui sur les touches et . OP Affiche la puissance - de sortie pour une utilisation du régulateur en station manuelle (Version 1.4 seulement) NonE Affichage vide (seuls les messages d'alarme clignotent) PV Affiche uniquement la valeur de régulation AL.SP Affiche uniquement la consigne de l'alarme 2 disp Options de la page de repos pv.aL Affiche la valeur de régulation avec la consigne de l'alarme 2 accessible par les touches et Std N0 Réf HA026270FRA Indice 5.0 08/07 13 AL Liste Alarmes (cf. para 3.7) Plage réglable Réglage par défaut Réglage client 1--- Consigne de l'alarme 1 0 2--- Consigne de l'alarme 2 0 3--- Consigne de l'alarme 3 A la place des tirets, les trois dernières lettres indiquent le type de l'alarme Entre les limites haute et basse des consignes 0 -FSL Pleine échelle basse -FSH Pleine échelle haute -dEv Ecart -dHi Ecart haut -dLo Ecart bas HY Hystérésis d'alarme 1 à 9999 en unités affichées (cette valeur est commune à toutes les alarmes). L'hystérésis sert à empêcher la sortie d'alarme de ‘déclencher trop souvent’ en fixant une différence entre les points d’activation et de désactivation de l'alarme 1 Lb t Temps de rupture de boucle OFF à 9999 minutes OFF 14 N0 Réf HA026270FRA Indice 5.0 08/07 Atun Liste Auto-réglage (cf. paragraphe 4.3) Plage réglable Réglage par défaut Réglage client tunE Activation du réglage automatique OFF ou on Off Adc Calcul de réinitialisation manuelle automatique (régulation P+D) man ou caLc man PiD Liste PID (cf paragraphe 4.3) Plage réglable Réglage par défaut Réglage client Pb Bande proportionnelle 1 à 999.9 unités affichées 20 ti Temps d'intégrale OFF à 9999 secondes 360 td Temps de dérivée OFF à 9999 secondes 60 rES Valeur de l'intégrale manuelle (uniquement si ti= OFF) -100 à 100.0 % 0.0 Lcb Cutback bas Auto à 999.9 unités affichées Auto Hcb Cutback haut Auto à 999.9 unités affichées Auto rEL.C Gain relatif de refroidissement 0.01 à 10.00 1.00 N0 Réf HA026270FRA Indice 5.0 08/07 15 SP Liste Consignes (cf. paragraphe 3.11) Plage réglable Réglage par défaut Réglage client SP L Limite basse de la consigne -1999 à 999,9 Selon la commande SP H Limite haute de la consigne -1999 à 999,.9 Selon la commande sprr Limite de vitesse de la consigne 0FF à 999,9 unités affichées par minute Off tm.OP Mode de fonctionnement du timer Opt.1 à Opt.5 OPt.1 tmr Temps restant 0 à 9999 minutes 0 dwEl Temps de palier 0FF à 9999 minutes OFF StAt Etat du timer OFF ou on OFF 16 N0 Réf HA026270FRA Indice 5.0 08/07 iP Liste Entrées (cf. paragraphe 4.2) Plage réglable Réglage par défaut Réglage client FiLt Constante de temps de filtrage des entrées 0FF to 999.9 seconds 1.6 CJC* Température de soudure froide mesurée aux bornes arrière Lecture seule mV Entrée mV mesurée aux bornes arrière Lecture seule OFS Offset de la valeur de régulation -1999 à 9999 unités affichées 0 CAL.P Code d'accès de la calibration 0 à 9999 3 CAL Activation de la Calibration utilisateur FACt Réactive la calibration usine USEr Réactive la calibration utilisateur FACt Pnt.L Point bas de calibration -1999 à 9999 unités affichées 0 OFS.L Offset de la calibration du point bas -1999 à 9999 unités affichées 0 Pnt.H Point haut de calibration -1999 à 9999 unités affichées 100 OFS.H Offset de la calibration du point haut -1999 à 9999 unités affichées 0 N0 Réf HA026270FRA Indice 5.0 08/07 17 oP Liste Sorties Plage réglable Réglage par défaut Réglage client OP.Lo Limite basse de puissance -100 à 100,0 % 0 OP.Hi Limite haute de puissance -100 à 100,0 % 100.0 CYC.H Durée du cycle de chauffage 0,2 à 999,9 secondes CYC.C Durée du cycle de refroidissement 0,2 à 999,9 secondes 1.0 Lgc 20 Rly ont.H Durée minimale de chauffage ont.C Durée minimale de refroidissement Auto à 999,9 secondes (Auto = 50 msec) Auto onOF Liste Sorties On Off Plage réglable Réglage par défaut Réglage client hYS.H Hystérésis de chauffage 1 à 9999 unités affichées 1 hYS.C Hystérésis de refroidissement 1 à 9999 unités affichées 1 HC.db Bande morte de chauffage/refroidissement 0 à 9999 unités affichées 0 ACCS Liste Accès (Cf. paramètres “Cachés, Visibles et Personnalisés” paragraphe 3.10) Plage réglable Réglage par défaut Réglage client codE Code d'accès 0 à 9999 1 Goto Niveau d'accès sélectionné Oper, Ful, Edit, conf OPEr Conf Code d'accès de configuration 0 à 9999 2 18 N0 Réf HA026270FRA Indice 5.0 08/07 3.10 Parametres Caches, Visibles et Personnalises Exemple: HidE 2FSH L'alarme haute 2 a été sélectionnée. Lors de l'appui sur ou , au lieu d'afficher la valeur du paramètre, sa disponibilité au niveau Opérateur est indiquée de la manière suivante : ALtr Le paramètre est modifiable HidE Le paramètre est caché. rEAd Le paramètre est en lecture seule Pro Le paramètre est ‘personnalisé’ dans a PAGE DE REPOS (voir ci-après). On est maintenant au niveau Modification. Appuyer sur et pour sélectionner normalement un paramètre ACCS PASS codE Appuyer sur ou pour saisir le code d'accès. La valeur par défaut réglée en usine est 1. ‘PASS’ apparaît lorsque le code d'accès correct a été saisi Appuyer sur jusqu'à l'en-tête de liste Accès. Appuyer sur ou pour sélectionner le niveau ‘Edit. Autres options : OPEr Niveau Opérateur - montre les paramètres sélectionnés FuLL Montre le jeu de paramètres ‘FULL’ ConF Donne accès au niveau configuration Edit Goto ACCS Appuyer sur cette touche Appuyer sur cette touche Appuyer sur cette touche pour revenir à l'en-tête de liste Accès. N0 Réf HA026270FRA Indice 5.0 08/07 19 3.10.1 Option Pro (personnaliser) Il est possible de ‘personnaliser’ un maximum de douze paramètres couramment utilisés dans la PAGE DE REPOS. L'opérateur peut ainsi y accéder rapidement en appuyant simplement sur la touche . Cette fonction, utilisée en association avec ‘caché’ et ‘lecture seule’, permet d'organiser la manière dont on souhaite formater le régulateur. Le paramètre tmr apparaît alors dans la PAGE DE REPOS. Répéter l'opération pour les autres paramètres que l'on souhaite personnaliser. Pour supprimer un paramètre, aller au niveau edit, sélectionner le paramètre dans la liste qui convient et passer de Pro à ALtr, rEAd ou HidE. 3.10.2 Retour au niveau Opérateur Répéter l'opération ci-dessus pour tous les autres paramètres que l'on souhaite cacher, personnaliser ou faire passer en lecture seule, puis revenir au niveau opérateur: Exemple: Le temps restant a été sélectionné. Appuyer sur ou pour choisir Pro Pro tmr OPer Goto 1. Appuyer sur jusqu'à l'en-tête de liste ACCS 2. Appuyer sur jusqu'à Goto 3. Appuyer sur ou pour sélectionner Oper 4. Appuyer sur pour revenir au niveau Opérateur 20 N0 Réf HA026270FRA Indice 5.0 08/07 3.11 Utilisation du Timer • Appuyer sur jusqu'à la liste SP • Appuyer sur jusqu'au paramètre tM.OP • Appuyer sur ou pour sélectionner le mode de fonctionnement du timer, Opt.1 à Opt.5, de la manière suivante: 3.11.1 Opt.1 - Mode 1, palier et coupure Lors de la Réinitialisation Lors de la réinitialisation, on peut alterner entre régulation automatique et attente, avec le paramètre m-A dans la PAGE DE REPOS. Le régulateur est livré avec le paramètre m-A caché. Il faut commencer par le faire apparaître. Cf. ‘Paramètres cachés, visibles et personnalisés’. Mode attente (Standby) Température Consigne Réinitialisation Chrono-métrage Exécution Fin End clignote Attente jusqu'à ce que la température soit atteinte Auto m-A Dans la PAGE DE REPOS, appuyer sur jusqu'à ce que le paramètre m-A apparaisse. Appuyer sur ou pour sélectionner : Auto Régulation automatique mAn Mode attente. (le voyant MAN en-dessous d'OP2 s'éclaire) Appuyer simultanément sur et pour revenir à la PAGE DE REPOS N0 Réf HA026270FRA Indice 5.0 08/07 21 ‘Régulation automatique’ désigne la régulation à la consigne, avec le chauffage (et le refroidissement) en service. ‘Mode attente’(Standby) désigne le régulateur en mode manuel avec une puissance de sortie nulle. (Voir ‘ATTENTION’ paragraphe 3.5) Pendant "Exécution" Le régulateur passe toujours en régulation automatique. Le chauffage (ou le refroidissement) est appliqué et la température augmente (ou diminue) jusqu'à la consigne. Lorsque la température diffère de la consigne de moins d'1oC, le timer commence le compte à rebours. Pendant "Fin" Lorsque le timer est arrivé à la fin de la temporisation, le régulateur passe en mode attente. Le voyant MAN s'allume et End clignote sur l'affichage principal. Le procédé refroidit. Le timer reste indéfiniment dans cet état jusqu'à la réinitialisation. Retour à la réinitialisation End arrête de clignoter. Le régulateur revient en mode attente. Il est possible de le faire revenir en régulation automatique en réglant le paramètre m-A de la PAGE DE REPOS sur Auto. 3.11.2 Opt.2 - Mode 2, sans coupure palier Palier indéfini à la consigne Température Consigne Réinitialisation Chronométrage Ex écution Fin End clignote Attente jusqu'à ce que la température soit atteinte Ce mode est identique au mode 1, avec une différence : à la fin de la période de chronométrage, le régulateur continue indéfiniment en mode de régulation automatique. 22 N0 Réf HA026270FRA Indice 5.0 08/07 3.11.3 Opt.3 - Mode 3, durée à partir de la position froide puis coupure Identique au mode 1, sauf que le timer commence immédiatement le compte à rebours sans attendre que la température ait atteint la consigne. 3.11.4 Opt.4 - Mode 4, durée à partir de la position froide sans coupure Identique au mode 2, sauf que le timer commence immédiatement le compte à rebours sans attendre que le régulateur ait atteint la consigne. Mode attente Température Consigne Réinitialisation Chronométrage Fin End clignote Réinitialisation Palier indéfini à la consigne Température Consigne Chronométrage End clignote Réinitialisation N0 Réf HA026270FRA Indice 5.0 08/07 23 3.11.5 Opt.5 Mode 5, temporisation de la mise sous tension Ce mode applique une temporisation avant d'activer le chauffage (ou le refroidissement). Lorsque le timer démarre, le régulateur passe toujours en mode attente et commence le compte à rebours. Lorsque le timer a terminé sa tâche, le régulateur passe en mode automatique, applique le chauffage (ou le refroidissement) et régule indéfiniment à la consigne. 3.11.6 Programmation d'un profil rampepalier Il est possible de programmer un profil simple rampepalier à l'aide de Sprr (limite de vitesse de consigne) en combinaison avec le timer. Pour utiliser cette fonction, commencer par faire apparaître Sprr et w.SP (consigne de travail) à l'aide de la méthode décrite dans “Paramètres cachés, visibles et personnalisés”. w.SP apparaît alors dans la PAGE DE REPOS. Positionner Sprr sur la vitesse de rampe souhaitée. Ce paramètre est réglable par pas de 1/10 d’ unités affichées les moins significatives par minute. Cela signifie que, si l'affichage est configuré de 0 à 1000oC, la limite de vitesse de consigne peut être réglée entre 0,1 et 999,9 oC par minute. Lorsque la limite de vitesse de consigne a été activée et que le timer a démarré, la consigne de travail w.sp commence par passer à la température mesurée puis passe en rampe à la limite de vitesse de consigne sprr jusqu'à la consigne cible. Dans les modes 1 et 2, le compte à rebours commence lorsque la température mesurée diffère de la consigne cible de moins d'1oC. Dans les modes 3 et 4, il commence lorsque w.sp diffère de la consigne cible de moins d'1oC. Réinitialisation Palier indéfini à la consigne Température Consigne Chronométrage Fin 24 N0 Réf HA026270FRA Indice 5.0 08/07 3.12 Demarrage et reinitialisation du timer Il existe deux méthodes : Méthode 1. Il s'agit de la méthode la plus simple pour commander le timer. • Appuyer sur jusqu'à la liste SP • Appuyer sur jusqu'au paramètre tMr (temps restant). CONSEIL : personnaliser tmr dans la PAGE DE REPOS pour un accès rapide, comme le décrit la section ‘Paramètres cachés, visibles et personnalisés'. Dès qu'une valeur est saisie dans tmr, le chronométrage commence. tmr effectue le compte à rebours vers zéro. Au cours de la période de chronométrage, tmr peut augmenter ou diminuer en fonction des demandes du procédé. Le positionnement de la valeur sur zéro met fin à la période de chronométrage. Lorsque tmr atteint zéro, ‘end’ clignote sur l'affichage principal. Le timer reste indéfiniment dans cet état jusqu'à ce qu'une nouvelle valeur soit saisie : le timer redémarre alors. Pour réinitialiser le timer, appuyer simultanément sur et . ‘end’ arrête de clignoter. Pour redémarrer le timer, saisir une nouvelle valeur dans tmr. 1234 Tmr Appuyer sur ou pour saisir la période de temporisation souhaitée en minutes. (0 à 9999) Appuyer sur pour revenir à la PAGE DE REPOS N0 Réf HA026270FRA Indice 5.0 08/07 25 Méthode 2. Utiliser cette méthode si l'on souhaite définir une durée fixe et utiliser le paramètre stat pour démarrer et arrêter le timer. Il est également possible de faire alterner le paramètre stat entre Off et run en configurant l'E/S logique comme entrée de fermeture de contact arrêt/marche. Ouvrir le contact externe pour sélectionner run. C'est une action déclenchée par les flancs. Fermer le contact pour sélectionner Off. Off est forcé à chaque fermeture du contact. 1234 dwel run stat sp Appuyer sur pour atteindre l'entête de liste SP. Appuyer sur cette touche jusqu'à dwel Temps de palier Appuyer sur ou pour saisir une période de chronométrage en minutes (0-9999). Etat du timer Pour démarrer le timer, appuyer sur ou pour sélectionner run. Le temps de palier est chargé dans tmr et la temporisation commence. Pour réinitialiser le timer, sélectionner Off. Le temps restant tmr est fixé à 0. Appuyer simultanément sur et pour revenir à la PAGE DE REPOS. 26 N0 Réf HA026270FRA Indice 5.0 08/07 4 Configuration du Regulateur Sélectionner le niveau configuration pour modifier : •le type de régulation •les unités affichées •le type de capteur d'entrée • la mise à l'échelle des entrées linéaires • la configuration des alarmes • les codes d'accès. 4.1 Sélection du niveau configuration Appuyer sur pour se déplacer dans les en-têtes de listes configuration. Une fois qu'un en-tête de liste a été sélectionné, appuyer sur pour sélectionner un paramètre dans une liste donnée. Appuyer sur et pour modifier le réglage. inSt iP AL AA Exit pASS 1A Configuration de l'appareil Appuyer Appuyer Appuyer sur ou pour sélectionner Conf Appuyer sur pour atteindre l'en-tête de liste Accès. Appuyer sur ou pour saisir le code d'accès. La valeur par défaut réglée en usine est 1. PASS apparaît lorsque le code d'accès correct a été saisi. Appuyer sur ou pour saisir le code d'accès du niveau configuration. La valeur par défaut réglée en usine est 2. PASS apparaît lorsqu'un code d'accès correct a été saisi. Appuyer sur cette touche pour passer au niveau configuration. Goto conF ACCS codE PASS ConF PASS Appuyer N0 Réf HA026270FRA Indice 5.0 08/07 27 4.1.1 Configuration de l'appareil inst Configuration de l'appareil Options Signification *C Celsius *F Fahrenheit *K Kelvin unit Unités affichées nonE Pas d'unité nnnn Néant nnn.n Une décimale dEC.P Résolution de l'affichage nn.nn Deux décimales Pid PID On.OF Tout ou rien CtrL Type de régulation AL Convertit le régulateur en unité d'alarme inst Configuration de l'appareil Options Signification rEv Inverse (action normale pour la régulation de la température) Act Action de régulation dir Directe (la sortie diminue lorsque la valeur de régulation passe en-dessous de la consigne) Pd.tr Suivi de l’intégrale manuelle (régulation PD) HoLd En mode Auto, maintient la valeur de l'intégrale manuelle trAc En mode Auto, suit la sortie pour le transfert progressif Auto/Manuel 28 N0 Réf HA026270FRA Indice 5.0 08/07 4.1.2 Configuration des Entrées iP Entrée capteur Options Signification j.tc Thermocouple J k.tc Thermocouple K L.tc Thermocouple L r.tc Thermocouple R b.tc Thermocouple B n.tc Thermocouple N t.tc Thermocouple T S.tc Thermocouple S PL 2 Platinell II rtd Sonde platine 100 Ω mV Millivolt linéaire inPt Type d'entrée C.tc Entrée personnalisée (C = valeur par défaut) Auto Automatique 0*C Référence externe 0°C 45*C Référence externe 45°C CJC (TC seule ment) Compensat ion de soudure froide 50*C Référence externe 50°C Mise à l'échelle des entrées linéaires (plage -12 à +80 mV) InP.L Entrée mV basse InP.H Entrée mV haute VaL.L Valeur affichée basse VAL.H Valeur affichée haute OFF Off (entrées linéaires uniquement) Auto 1.5KΩ Hi 5KΩ ImP Adaptation d'impédance pour rupture capteur HiHi 15KΩ, Inp.L Inp.H VAL.H VAL.L mV Valeur affichée N0 Réf HA026270FRA Indice 5.0 08/07 29 4.1.3 Configuration des Alarmes La liste AL configure les trois alarmes internes ‘non bloquantes' et fait clignoter le message d'alarme qui convient sur la PAGE DE REPOS. A ce stade, l'alarme est simplement une indication (‘alarme non bloquante’). Pour provoquer l'activation des sorties relais ou logiques par les alarmes, suivre les instructions de “Configuration des entrées/sorties relais et logiques". AL Alarme Type Signification OFF Alarme désactivée fsL Alarme pleine échelle basse fsH Alarme pleine échelle haute dEv Alarme bande dHi Alarme écart haut AL 1 Alarme 1 dLo Alarme écart bas Ltch Alarme no Non mémorisée mémorisée YES Mémorisée avec réinitisalisation automatique * AL Alarme Type Signification mAn Mémorisée avec réinitialisation manuelle **. bLoc Alarme no Non bloquante bloquante YES Bloquée jusqu'au premier état hors alarme La séquence ci-dessus se répète pour: AL 2 (Alarme 2) et AL 3 (Alarme 3) diS Limité par la plage d'affichage Du capteur Sp.Li Limites de la consigne d'alarme Con Limité par les limites de la consigne * La réinitialisation automatique signifie que, une fois que l'alarme a été acquittée, elle s'efface automatiquement lorsqu'elle n'est plus vraie. ** La réinitialisation manuelle signifie que l'alarme doit être tout d'abord effacée avant de pouvoir être réinitialisée. 30 N0 Réf HA026270FRA Indice 5.0 08/07 4.1.4 Configuration des Entrées/Sorties Relais et Logiques N.B: il est possible de configurer les E/S logiques comme sorties ou comme entrées de fermeture de contact pour l'acquittement des alarmes, le verrouillage du clavier ou la mise en marche/réinitialisation du timer. Aa Sortie relais 1a E/S logiques Options Signification id Identité de la rELy Relais sortie LOG Logique diG Sortie logique (alarme) HEAt Sortie chauffage Fonction COOL Sortie refroidissement SSr.1 Mode PDSIO 1 Ac.AL Acquittement des alarmes Loc.b Entrée logique verrouillage du clavier Func Ces fonctions apparaissent uniquement pour les E/S logiques rres Mise en marche /réinitialisation du Aa Sortie relais 1a E/S logiques Options Signification timer noch Aucun changement CLr Suppression de toutes les alarmes 1FSL Alarme 1 (Cf. remarque 1) 2FSH Alarme 2 (Cf. remarque 1) 3FSL Alarme 3 (Cf. remarque 1) nw * Alarme nouvelle Sbr* Alarme rupture capteur Lbr* Alarme rupture de boucle LdF* Alarme défaut de charge mAn* Mode manuel actif End* Fin du chronométrage tmG1* Timer en marche diG.F Fonctions sorties Numériques Cf. ci-dessous “Utilisation de la sortie relais ou logique à partir d'une fonction logique" Paragraphe 4.1.5. tmG2* Timer en compte N0 Réf HA026270FRA Indice 5.0 08/07 31 Aa Sortie relais 1a E/S logiques Options Signification à rebours (Cf. remarque tmG3* Timer en marche 2) tmG4* Timer en compte à rebours nor Normal (sorties chauffage ou refroidissement) SenS Sens de la sortie Inv Inversé (pour les alarmes, se coupe en état d'alarme) *Ces alarmes sont toujours non mémorisées. Les alarmes 1,2 et 3 sur la mesure sont configurables en alarmes mémorisées ou non mémorisées (Voir lisete Al) Les Remarque 1 : les trois dernières lettres correspondent au type d'alarme configuré dans la liste AL. Si l'alarme est désactivée, AL 1 ou AL 2 ou AL 3 est affiché. Remarque 2 : tmg.3 et tmG.4 sont des fonctions spéciales. Si elles sont sélectionnées, elles provoquent l'allumage des voyants de sorties relais ou logiques OP1 et OP2 sans actionner la sortie correspondante. Elles servent à indiquer que le chronométrage est en cours, tout en laissant les autres fonctions logiques activer les sorties effectives (état FIN qui peut servir à faire fonctionner un klaxon externe, par exemple). 4.1.5 Utilisation de la sortie relais ou logique à partir d'une fonction alarme ou logique. 1. Appuyer sur jusqu'à Func 2. Appuyer sur ou pour sélectionner Func = diG 3. Appuyer sur pour atteindre diG.F 4. Appuyer sur ou pour sélectionner une fonction alarme ou logique 5. Attendre 2 secondes. L'affichage revient à diG.F et relie la fonction alarme ou logique sélectionnée à la sortie relais ou logique. 6. Appuyer à nouveau sur ou . Deux décimales apparaissent dans la fonction qui a été ajoutée à la sortie. 32 N0 Réf HA026270FRA Indice 5.0 08/07 4.1.6 Alarmes multiples sur une seule sortie Il est possible de réaliser le « ou » d’un nombre quelconque de fonctions alarmes ou logiques à la sortie relais ou logique en répétant les étapes 4, 5 et 6 ci-dessus. Deux décimales apparaissent sur les fonctions qui ont été ajoutées à la sortie. 4.1.7 Suppression des alarmes d'une sortie 1. Appuyer sur jusqu'à diG.F 2. Appuyer sur ou pour sélectionner CLr 3. Attendre 2 secondes. L'affichage revient à diG.F qui annule toutes les alarmes du relais. 4.1.8 Codes d'accès PASS Codes d'accès Plage Valeur par défaut ACC.P Code d'accès des niveaux Régleur et Modification 0-9999 1 CnF.P Code d'accès du niveau Configuration 0-9999 2 CAL.P Code d'accès de la Calibration utilisateur 0-9999 3 4.1.9 Sortie du niveau Configuration Appuyer sur pour atteindre l'affichage ‘exit’. Appuyer sur ou pour sélectionner ‘YES’. Après 2 sec, l'affichage clignote et revient à la PAGE DE REPOS au niveau Opérateur. Exit YES N0 Réf HA026270FRA Indice 5.0 08/07 33 4.1.10 Alarmes de diagnostic Outre les alarmes de procédé normales, les messages d'alarme de diagnostic suivants sont disponibles. Message Signification et (intervention) EE.Er Electrically Erasable Memory Error (erreur de mémoire effaçable électriquement) : La valeur d'un paramètre a été altérée. Appeler Eurotherm Automation. HW.Er Erreur matérielle : (envoyer le régulateur en réparation) LLLL Plage basse d'affichage dépassée : (vérifier le signal d'entrée) HHHH Plage haute d'affichage dépassée : (vérifier le signal d'entrée) Err1 Erreur 1 : échec du test automatique de la ROM. (envoyer le régulateur en réparation) Err2 Erreur 2 : échec du test automatique de la RAM. (envoyer le régulateur en réparation) Err3 Erreur 3 : échec du chien de garde. (envoyer le régulateur en réparation) Err4 Erreur 4 : défaut du clavier. Touche Message Signification et (intervention) bloquée ou une touche a été enfoncée lors de la mise en route. Err5 Erreur 5 : défaut sur circuit d'entrée. (envoyer le régulateur en réparation) Pwr.F Défaut alimentation. La tension de ligne est trop faible. TU.Er Erreur Réglage. Apparaît si le temps d’auto-reglage dépasse 2 heures. 34 N0 Réf HA026270FRA Indice 5.0 08/07 4.2 Calibration Utilisateur Le régulateur a été calibré à vie par rapport à des sources de référence connues. La calibration utilisateur permet d'appliquer des offsets afin de compenser les erreurs de capteurs et autres erreurs système. Le paramètre OFS de la liste IP applique un offset fixe sur toute la plage d'affichage. Il est également possible d'appliquer une calibration bi-point de la manière suivante : • Appuyer sur jusqu'à la liste iP • Appuyer sur jusqu'au paramètre CAL.P • Appuyer sur ou pour saisir le code d'accès. La valeur par défaut réglée en usine est 3. PASS apparaît lorsque le code d'accès correct a été saisi. • Appuyer sur pour atteindre le paramètre CAL • Appuyer sur ou pour sélectionner User (FAct rétablit la calibration réglée en usine) • Appuyer sur pour sélectionner sucessivement les quatre paramètres représentés sur le graphique ci-dessous. Utiliser ou pour définir les points de calibration souhaités et les offsets à appliquer à chaque point. La liste iP de la page 5 décrit chaque paramètre. Calibration usine Valeur affichée Calibration usine Pnt.H OFS.H OFS.L Pnt.L Calibration utilisateur N0 Réf HA026270FRA Indice 5.0 08/07 35 4.3 Réglage Automatique En régulation PID, la sortie du régulateur est la somme de trois termes : Proportionnel, Intégral et Dérivé. Ces trois termes délivrent la quantité de puissance qui est suffisante pour maintenir la température à la consigne sans oscillation. Pour une régulation stable, les valeurs PID doivent être ‘réglées’ pour correspondre aux caractéristiques du procédé régulé. Sur les modèles 2132 et 2116, cela est effectué automatiquement à l'aide de techniques de réglage évoluées. Le réglage automatique consiste à activer et désactiver la sortie du régulateur pour induire une oscillation de la température mesurée. Les valeurs PID, indiquées dans le tableau ci-dessous, sont calculées à partir de l'amplitude et de la période de l'oscillation. Paramètre Affichage Signification ou fonction Bande proportionnelle Pb Largeur de bande, exprimée en °C ou °f sur laquelle la puissance de sortie est proportionnée entre le minimum et le maximum. Temps d'intégrale ti Détermine le temps nécessaire au régulateur pour supprimer l'erreur de statisme en régime Paramètre Affichage Signification ou fonction permanent. Temps de dérivée td Détermine l'ampleur de la réaction du régulateur à la vitesse de variation de la température. Cutback bas Lcb Nombre de °C ou °f endessous de la consigne auquel le régulateur va diminuer la puissance de sortie pour empêcher un dépassement de la consigne lors du chauffage. Cutback haut Hcb Nombre de °C ou °f audessus de la consigne auquel le régulateur va augmenter la puissance de sortie pour empêcher que l'on soit endessous de la consigne lors du refroidissement. Gain relatif de refroidissement rEL.C Uniquement présent si le refroidissement a été configuré. Définit la bande proportionnelle de refroidissement en divisant la valeur Pb par la valeur rEL.C. 36 N0 Réf HA026270FRA Indice 5.0 08/07 Si le procédé ne peut pas tolérer l'application du chauffage ou du refroidissement total au cours du réglage, il est possible de limiter la puissance en fixant les limites de chauffage et de refroidissement dans la liste Sorties. Toutefois, la valeur mesurée doit osciller pour que le régulateur puisse calculer les valeurs. Le réglage est normalement effectué une seule fois lors de la mise en service initiale du procédé. Toutefois, si le procédé régulé devient ensuite instable (à cause d'un changement de ses caractéristiques), il est possible d'effectuer un nouveau réglage à tout moment. Il est préférable de commencer le réglage avec le procédé à température ambiante. Le régulateur peut ainsi effectuer les calculs de manière plus précise. 4.3.1 Temps de cycle des sorties Chauffage et Refroidissement Avant de commencer un cycle de réglage, définir les valeurs de CYC.H (temps de cycle de la sortie Chauffage) et CYC.C (temps de cycle de la sortie Refroidissement) dans la liste oP (sorties). Pour une sortie logique de chauffage (commutant un contacteur statique), positionner CYC.H sur 1.0 sec. Pour une sortie relais, positionner CYC.H sur 20.0 sec. Pour une sortie logique de refroidissement servant à réguler une électrovanne, positionner CYC.C sur 5.0 sec N0 Réf HA026270FRA Indice 5.0 08/07 37 4.3.2 Procédure de réglage • Régler la consigne sur la valeur à laquelle le procédé fonctionnera normalement. • Dans la liste ‘Atun’, sélectionner ‘tunE’ et le régler sur ‘on’ • Appuyer simultanément sur les touches Page et Défilement pour revenir à la PAGE DE REPOS. L'affichage fait clignoter ‘tunE’ pour indiquer que le réglage est en cours. • Le régulateur induit une oscillation de la température en activant puis en désactivant le chauffage. • Après deux cycles d'oscillation, le réglage est terminé et le régulateur s'arrête de lui-même. • Le régulateur calcule ensuite les paramètres de réglage et reprend son action normale de régulation. Si l'on souhaite une régulation ‘Proportionnelle uniquement’ ou ‘P+D’ ou ‘P+I’, il faut positionner les paramètres ‘ti’ ou ‘td’ sur OFF avant de commencer le cycle de réglage. Le régulateur les laissera sur la position off (désactivée) et ne calculera aucune valeur pour ces paramètres. 4.3.3 Cycle type de réglage automatique 4.3.4 Calcul des valeurs de cutback Lorsque le cutback bas ou haut est positionné sur ‘AuTo’, les valeurs sont fixées à trois fois la bande proportionnelle et ne seront pas modifiées au cours du réglage automatique. Si le cutback est positionné sur une autre valeur, il sera calculé comme faisant partie du réglage. Temps Température 38 N0 Réf HA026270FRA Indice 5.0 08/07 4.4 Réglage Manuel Si, pour une raison quelconque, le réglage automatique ne donne pas des résultats satisfaisants, il est possible de régler manuellement le régulateur. Procéder de la manière suivante : Le procédé étant à sa température normale de fonctionnement : • Positionner le temps d'intégrale ‘ti’et le temps de dérivée ‘td’ sur OFF. • Positionner Cutback haut ‘Hcb’ et Cutback bas ‘Lcb’ sur ‘Auto’ • Ne pas tenir compte du fait que la température peut ne pas se stabiliser avec précision à la consigne • Réduire la bande proportionnelle ‘Pb’ jusqu'à ce que la température commence à osciller. Si la température oscille déjà, augmenter la bande proportionnelle jusqu'à ce qu'elle arrête d'osciller. Laisser suffisamment de temps entre chaque réglage pour que la température se stabilise. Noter la valeur de la bande proportionnelle ‘B’ et la période d'oscillation ‘T’. • Fixer les valeurs des paramètres PID selon la formule ci-dessous: Type de régulation ‘Pb’ ‘ti’ ‘td’ Proportionnelle uniquement 2xB OFF OFF P + I 2,2xB 0,8xT OFF P + I + D 1,7xB 0,5xT 0,12xT N0 Réf HA026270FRA Indice 5.0 08/07 39 4.4.1 Configuration des valeurs de cutback La procédure ci-dessus indique comment configurer les paramètres pour une régulation optimale en régime permanent. Si, au cours du démarrage ou des variations importantes de la température, on atteint des niveaux inacceptables de dépassement ou de mesures en-dessous de la consigne, il faut configurer manuellement les paramètres de cutback Lcb et Hcb. Procéder de la manière suivante : 1. Configurer les valeurs de cutback haut et bas au triple de la largeur de la bande proportionnelle (c'est-à-dire Lcb = Hcb = 3 x PB). 2. Noter le niveau de dépassement ou de mesure endessous de la consigne pour les changements importants de la température (cf. les courbes cidessous). Dans l'exemple (a), augmenter Lcb de la valeur du dépassement. Dans l'exemple (b), diminuer Lcb de la valeur des mesures en-dessous de la consigne. Exemple (a) Exemple (b) Lorsque la température se rapproche de la consigne par le haut, il est possible de configurer Hcb de la même manière. 4.4.2 Réinitialisation manuelle Lorsque ti = OFF réinitialisation manuelle (rES) apparaît dans PiD List. Ce paramètre règle la puissance de sortie lorsque le signal d'erreur est égal à zéro. Il est possible de le corriger manuellement afin d'éliminer l'erreur en régime permanent (fonction normalement exécutée par le terme intégral). Température Temps Dépassement Température Temps Mesures en-dessous de la consigne 40 N0 Réf HA026270FRA Indice 5.0 08/07 5 Code de Commande Le régulateur est livré configuré selon le code de commande indiqué ci-dessous. Numéro du modèle Fonction Tension d’alimentation Manuel Sortie 1 (logique) Sortie 2 (relais) Fonction CC RégulateurPID NF Régulateur Tout ou rien TC Régulateur PID + timer TN Régulateur Tout ou rien + timer Tension d’alimetation VH 85-264Vac VL 20 -29Vdc ou ac Manuel XXX Pas de manuel ENG Anglais FRA Français GER Allemand NED Néerlandais SPA Espagnol SWE Suédois ITA Italien Sortie 2 (relais) XX Désactivé RH Chauffage RC Refroidissement FH Alarme haute 2 FL Alarme basse 2 AL Alarme haute 2 & alarme basse 3 DB Alarme de bande 2 DL Alarme 2 écart bas DH Alarme 2 écart haut NW Nouvelle alarme Sortie 1 (logique) XX Désactivé Sortie logique LH Chauffage LC Refroidissement M1 Mode PDSIO 1 FH Alarme haute 1 FL Alarme basse1 DB Alarme de bande 1 DL Alarme 1 écart bas DH Alarme 1 écart haut NW Nouvelle alarme Entrée logique AC Alarme acquit./réinit. KL Verrouillage clavier TM Timer Marche/Réinit. Numéro du modèle 2132 1/16 DIN 2116 1/8 DIN N0 Réf HA026270FRA Indice 5.0 08/07 41 Entrée capteur Consigne mini Consigne maxi Unités Module relais externe Adaptateur d'entrée Module relais externe XX Pas installé R7 Installé (actionné par la sortie logique) Unités C °C F ° F K Kelvin X Entrée linéaire Adaptateur d'entrée XX Néant V1 0-10 Vdc A1 Résistance 0- 20mA (2,49 Ω. 0,1 %) Entrée capteur Plage d'affichage et limites mini & maxi de consigne Thermocouples °C ° F J Type J -210 à 1200 -340 à 2192 K Type K -200 à 1372 -325 à 2500 T Type T -200 à 400 -325 à 750 L Type L -200 à 900 -325 à 1650 N Type N -200 à 1300 -325 à 2370 R Type R -50 à 1768 58 à 3200 S Type S -50 à 1768 -58 à 3200 B Type B 0 à 1820 32 à 3308 P Platinell II 0 à 1369 32 à 2496 Sonde Z Pt100 -200 à 850 -325 à 1562 Entrées personnalisées OC OF C Type C -W5%Re/W26%Re (capteur personnalisé par défaut) 0 à 2319 32 à 4200 D Type D - W3%Re/W25%Re 0 à 2399 32 à 4350 E Thermocouple E -200 à 999 -325 à 1830 1 Ni/Ni18%Mo 0 à 1399 32 à 2550 2 Pt20%Rh/Pt40%Rh 0 à 1870 32 à 3398 3 W/W26%Re (Engelhard) 0 à 2000 32 à 3632 4 W/W26%Re (Hoskins) 0 à 2010 32 à 3650 5 W5%Re/W26%Re (Engelhard) 10 à 2300 50 à 4172 6 W5%Re/W26%Re(Bucose) 0 à 2000 32 à 3632 7 Pt10%Rh/Pt40%/Rh 200 à 1800 392 à 3272 8 Pyromètre Exegen K80 I.R. -45 à 650 -49 à 1202 Entrées de procédé (linéaires) M -9,99 mV à +80mV Y 0 à 20mA A 4 à 20mA V 0 à 10Vdc (adaptateur d'entrée nécessaire) 42 N0 Réf HA026270FRA Indice 5.0 08/07 5.1 Specification Technique Etanchéité de la face avant IP65 (EN 60529), ou 4X (NEMA 250) Conditions ambiantes de fonctionnement 0 à 55oC. Vérifier que l'armoire est correctement ventilée. Humidité relative 5 à 95%, sans condensation Température de stockage -30oC à +75oC. (Protéger contre l'humidité et la poussière) Atmosphère L'appareil ne doit être utilisé ni à une altitude supérieure à 2000 m ni en atmosphère explosive ou corrosive Alimentation Unité haute tension : 100 à 240Vac -15%, +10%, 48-62Hz, puissance consommée 5 Watts maximum Unité basse tension : 24Vdc/ac +/- 20%. DC à 62Hz, puissance consommée 5 Watts maximum Relais (isolé) Maximum: 264Vac, charge résistive 2A. Minimum: 12Vdc, 100mA Longévité mécanique > 107 opérations. Longévité électrique sous une charge résistive de 1 A, 240 vac > 5 x106 opérations Sections des fils Utiliser un fil de section minimale de 0,5mm2 (16awg) pour les branchements de l'installation. Protection contre Utiliser des fusibles indépendants 2A pour l'alimentation de l'indicateur et les sorties N0 Réf HA026270FRA Indice 5.0 08/07 43 les surintensités relais. Les fusibles à utiliser sont de type EN60127 (type T) Entrées/sorties logiques 9V à 12mA, pas isolées de l'entrée capteur Sécurité électrique EN 61010 (Les surtensions transitoires ne doivent pas dépasser 2,5 kV). Degré de pollution 2. Isolation: L'ensemble des entrées et sorties isolées ont une isolation renforcée qui assure une protection contre l'électrocution (cf. la remarque sur les capteurs sous tension). Compensation de soudure froide Taux de réjection 30:1 pour une variation de température ambiante en mode automatique. Utilisation d'un procédé de mesure ultra-précis INSTANT ACCURACY TM qui vise à éliminer les dérives en température lors de la mise en chauffe et à répondre très rapidement à toute variation de température ambiante. Catégorie d'installation Catégorie II ou CAT II 44 N0 Réf HA026270FRA Indice 5.0 08/07 6 Sécurité compatibilité électromagnétique (CEM) Ce régulateur a été fabriqué au Royaume-Uni par Eurotherm Ltd. Veuillez lire attentivement ce paragraphe avant d'installer le régulateur Ce régulateur est conçu pour les applications industrielles de régulation de procédés et de température. Il satisfait aux exigences des directives européennes en matière de sécurité et de compatibilité électromagnétique. Son utilisation dans le cadre d'autres applications ou le non-respect des consignes d'installation contenues dans ce manuel pourrait affecter la sécurité ou la compatibilité électromagnétique de cet instrument. Il incombe à l'installateur de veiller à la sécurité et à la compatibilité électromagnétique de chaque installation. 1.1 GENERALITES Les informations contenues dans ce manuel sont sujettes à modification sans préavis. Bien que tous les efforts aient été consentis pour assurer l'exactitude des informations, votre fournisseur décline toute responsabilité pour les erreurs contenues dans ce manuel 6.1.1 Sécurité Ce régulateur est conforme à la directive européenne sur les basses tensions 73/23/EEC et à la norme de sécurité EN 61010. 6.1.2 Compatibilité électromagnétique Ce régulateur est conforme aux exigences de protection essentielles de la directive EMC 89/336/EEC, sur la base d'un dossier technique de construction. Cet instrument satisfait aux exigences générales en matière de milieu industriel définies par la norme EN 61326. Pour de plus amples informations sur la conformité de ce produit, veuillez consulter le dossier de construction technique. N0 Réf HA026270FRA Indice 5.0 08/07 45 6.1.3 Conditionnement et stockage L'emballage contient un instrument monté sur son manchon, deux clips de fixation pour l'installation sur panneau ainsi qu'un guide d'installation et d'utilisation. Certaines gammes sont fournies avec un adaptateur d'entrée. Si l'emballage ou l'instrument est endommagé à la livraison, n'installez pas le produit et contactez votre fournisseur. Si l'instrument doit être stocké avant utilisation, protégez-le contre l'humidité et la poussière à une température ambiante comprise entre -10oC et +70oC. 1.2 Entretien et réparation Ce régulateur ne contient aucune pièce réparable par l'utilisateur. Contactez votre fournisseur pour les réparations. 6.1.4 Attention : Condensateurs chargés Avant de retirer un instrument de son manchon, débranchez l'alimentation et attendez au moins deux minutes pour permettre aux condensateurs de se décharger. Il peut s'avérer plus pratique de retirer partiellement l'instrument de son manchon et de marquer ensuite une pause avant de le sortir complètement. Dans tous les cas, évitez de toucher aux composants électroniques de l'instrument lors de son retrait du manchon. Le non-respect de ces consignes pourra endommager les composants de l'instrument et exposer l'utilisateur à des risques. 6.1.5 Précautions en matière de décharges électrostatiques Une fois le régulateur retiré de son manchon, certains de ses composants électroniques exposés pourront être endommagés par les décharges électrostatiques accumulées dans le corps. Pour prévenir tout risque, déchargez-vous de cette énergie en touchant régulièrement un objet métallique relié à la terre, avant de manipuler le régulateur débranché. 6.1.6 Nettoyage N'utilisez pas d'eau ni de produits à base d'eau pour nettoyer les étiquettes car elles deviendraient alors illisibles. Utilisez de l'alcool isopropylique pour le nettoyage des étiquettes. Utilisez une solution savonneuse douce pour nettoyer les autres surfaces extérieures du produit. 46 N0 Réf HA026270FRA Indice 5.0 08/07 1.3 Consignes de sécurité lors de l'installation 6.1.7 Symboles de sécurité Cet instrument utilise divers symboles ayant les significations suivantes : ! Attention (renvoie aux documents d'accompagnement) 6.1.8 Personnel L'installation doit être uniquement confiée à du personnel adéquatement qualifié. 6.1.9 Protection des composants sous tension Afin d'éviter que les mains ou les outils en métal n'entrent au contact de composants sous tension, le régulateur devra être installé dans une armoire. 6.1.10 Attention : Capteurs sous tension Ce régulateur est conçu pour fonctionner avec le capteur de température directement relié à un élément de chauffage électrique. Veillez à ce que le personnel d'entretien ne touche pas ces connexions lorsqu'elles sont sous tension. Tous les câbles, connecteurs et commutateurs de connexion d'un capteur sous tension devront être dimensionnés pour la tension du secteur. L’E/S logique n’est pas isolée des entrées PV, et tous les câbles, connecteurs et interrupteurs de connexion du capteur doivent être dimensionnés pour la tension du secteur. 6.1.11 Raccordement Il est important de connecter le régulateur conformément aux informations de câblage figurant dans ce guide. Veillez tout particulièrement à ne pas connecter les alimentations alternatives à l'entrée basse tension du capteur ou à d'autres entrées et sorties de bas niveau. Utilisez uniquement des conducteurs en cuivre pour les connexions (à l'exception des entrées de thermocouple) et assurez-vous que le câblage des installations est conforme à toutes les réglementations N0 Réf HA026270FRA Indice 5.0 08/07 47 locales en vigueur. Au Royaume-Uni, utilisez la version la plus récente des réglementations de câblage IEE (BS7671). Aux Etats-Unis, utilisez les méthodes de câblage NEC Classe 1. 6.1.12 Isolation de l'alimentation L'installation doit être équipée d'un sectionneur ou d'un disjoncteur. Ce dispositif devra être monté à proximité immédiate du régulateur, être facilement accessible pour l'opérateur et être clairement désigné comme appareil de coupure et de déconnexion de l'instrument. 6.1.13 Protection de surintensité L'alimentation du système doit être dotée de fusibles de capacité suffisante pour protéger le câblage des unités. 6.1.14 Tension nominale La tension maximale permanente appliquée entre les bornes suivantes ne doit pas dépasser 264 Vac: • sortie de relais à connexions logiques dc ou de capteur ; • toute connexion à la terre. Le régulateur ne doit pas être relié à une alimentation triphasée par une connexion en étoile non mise à la terre. En cas de défaillance, une telle alimentation pourrait excéder 264 Vac par rapport à la terre et le produit présenterait alors des dangers. 6.1.15 Pollution conductrice L'armoire dans laquelle le régulateur est monté doit être exempte de toute pollution électriquement conductrice. La poussière de carbone est une forme de pollution électriquement conductrice. Pour assurer une atmosphère convenable, installez un filtre à air sur l'entrée d'air de l'armoire. Si des risques de condensation sont probables, par exemple à des températures basses, montez un chauffage à commande thermostatique dans l'armoire. Ce produit a été conçu pour satisfaire aux exigences de la norme BSEN61010, catégorie d'installation II, degré de pollution 2, telles qu'elles sont définies ci-après : 48 N0 Réf HA026270FRA Indice 5.0 08/07 6.1.16 Catégorie d'installation II La tension de choc nominale pour un équipement ayant une alimentation de 230 V nominale est de 2500 V. 6.1.16.1 Degré de pollution 2 Dans des conditions d'utilisation normales, seule une pollution non conductrice peut se produire. Une conductivité temporaire due à la condensation pourra cependant se produire dans certaines circonstances. 6.1.17 Mise à la terre du blindage du capteur de température Certaines installations prévoient généralement le remplacement du capteur de température, alors que le régulateur est toujours sous tension. Dans ces circonstances et afin de renforcer la protection contre les chocs électriques, il est recommandé de mettre le blindage du capteur de température à la terre. La mise à la terre du châssis de la machine n'est pas suffisante. 6.1.18 Protection contre les températures excessives Lors de la conception de tout système de commande, il est essentiel d'examiner les conséquences d'une défaillance de chaque composant du système. Dans les applications de régulation de la température, le principal danger vient d'un chauffage qui resterait constamment activé. Outre les dommages subis par le produit, une telle défaillance pourrait endommager les machines contrôlées ou même provoquer un incendie. Le chauffage pourra rester constamment activé pour plusieurs raisons : • Le capteur de température s'est détaché ; • Il y a un court-circuit dans le câblage du thermocouple ; • Il y a une défaillance du régulateur alors que la sortie de chauffage est constamment activée ; • Une vanne ou un contacteur externe est bloqué en position de chauffage ; • Le point de consigne du régulateur est trop élevé. Pour prévenir les risques de dommages ou d'accidents, il est recommandé d'installer une unité séparée de protection contre les températures excessives, munie N0 Réf HA026270FRA Indice 5.0 08/07 49 d'un capteur de température indépendant qui isolera le circuit de chauffage. Attention : Les relais d'alarme du régulateur n'assurent pas une protection totale pour toutes les conditions de panne. 1.4 Exigences d'installation en matière de compatibilité électromagnétique Afin d'assurer la conformité à la directive EMC européenne, les précautions d'installation suivantes devront être prises : • Pour de plus amples informations, veuillez-vous reporter au guide d'installation CEM, HA025464FRA. • Lors de l'utilisation des sorties de relais, il pourra s'avérer nécessaire de monter un filtre afin de supprimer les émissions conduites. Les caractéristiques du filtre dépendront du type de charge. Pour les applications typiques, l'utilisation du modèle Schaffner FN321 ou FN612 est préconisée. • Si l'unité doit être utilisée avec un matériel sur table, branché sur une prise d'alimentation standard, la conformité aux normes d'émissions commerciales et de l'industrie légère devra être observée. Dans un tel cas et afin de satisfaire aux exigences en matière d'émissions conduites, un filtre secteur adéquat devra être installé. Nous recommandons des filtres Schaffner de type FN321 et FN612. 6.1.19 Cheminement des câbles Pour réduire les bruits électriques, les connexions dc basse tension et le câblage d'entrée du capteur devront être acheminés à l'écart des câbles d'alimentation haute tension. Si cela est impossible, utilisez des câbles blindés en prenant soin de relier le câblage à la terre aux deux extrémités. Il est préférable de réduire au minimum la longueur des câbles. Lorsque le signal est une tension dangereuse * (ou pourrait le devenir sous des conditions anormales de fonctionnement), une double isolation est nécessaire. * Une définition plus complète de ‘tensions dangereuse’ est donnée dans le paragraphe ‘Tension dangereuse’ dans la BS EN61010. En résumé, dans des conditions normales de fonctionnement des niveaux de tension dangereuse sont définis comme étant >30V RMS (42,2 V crête) ou >60Vdc. 50 N0 Réf HA026270FRA Indice 5.0 08/07 7 RoHS Product group 2100 Table listing restricted substances Chinese 产 2100 铅镉铬溴联苯溴苯醚 线组X O X O O O 属O O O O O O 显X O O O O O 块X O X O O O O X English Product 2100 Pb Hg Cd Cr(VI) PBB PBDE PCBA X O X O O O Enclosure O O O O O O Display X O O O O O Modules X O X O O O O X Approval Name: Position: Signature: Date: Martin Greenhalgh Quality Manager IA029470U450 (CN23172) Issue 1 Feb 07 Indicates that this toxic or hazardous substance contained in at least one of the homogeneous materials used for this part is above the limit requirement in SJ/T11363-2006. 该质该质SJ/T11363-2006 标规 Toxic and hazardous substances and elements Indicates that this toxic or hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement in SJ/T11363-2006. Restricted Materials Table Restriction of Hazardous Substances (RoHS) 览 质 该质该质SJ/T11363-2006 标规 2116/2132 PID Temperature oder Ein/Aus Regler GER Bedienungsanleitung HA026270GER Ausgabe 5.0 08/07 1 PID Temperatur- oder EIN/AUS- Regler Typ 2132 und 2116 Die Reglermodelle 2132 und 2116 sind kompakte PID-Temperatur oder EIN/AUS-Regler im Format 48x24 (2132) bzw. 48x48 (2116) mit Selbstoptimierung. Den Eingang können Sie für Widerstandsthermometer, Thermoelement oder als Lineareingang konfigurieren. Die Regler bieten Ihnen Relais- und einen Logikausgang zur Ansteuerung eines Solid-State-Relais. Beide Ausgänge können Sie für Heizen. Kühlen oder Alarm konfigurieren. Das Gerät wird im Werk nach Ihrer Bestellung konfiguriert. Bitte überprüfen Sie mit Hilfe des Geräteaufklebers auf der Regler-seite, ob die Konfiguration Ihren Anwendungen entspricht. Die Regler entsprechen den Anforderungen an Sicherheit und elektromagnetische Verträglichkeit. 1. Abmessungen und Installation Abmessungen 2132 Abmessungen 2116 48mm 45mm -0.0, + 0.6 48mm Schalttafel- 24mm ausschnitt 103mm 45mm -0.0, +0.6 Außenklammern Haltelammen 22mm -0.0, +0.3 Schalttafelausschnitt 103mm 48mm 45mm -0.0, +0.6 2 HA026270GER Ausgabe 5.0 08/07 1.1 Installation Lesen Sie bitte zuerst die Sicherheitsinformationen auf den Seiten 15. Bauen Sie das Gerät nach den folgenden Angaben ein: 1. Bereiten Sie den Ausschnitt nach den angegebenen Maßen vor. 2. Stecken Sie das Gerät in den Ausschnitt (ohne Halteklammern). 3. Bringen Sie die Halteklammern an ihren Platz. Zum Sichern des Reglers halten Sie das Gerät in Position und schieben Sie beide Klammern gegen den Schalttafelausschnitt . 4. Entfernen Sie die Schutzfolie vom Display. Anmerkung : Die Halteklammern können Sie einfach mit den Fingern oder einem Schraubendreher entfernen. 1.2 Gerätewechsel Durch Auseinanderziehen der Außenklammern und nach vorne ziehen des Reglers können Sie das Gerät aus dem Gehäuse entnehmen. Wenn Sie das Gerät zurück in das Gehäuse stecken, versichern Sie sich, daß die Außenklammern einrasten. Ansonsten kann die Schutzart IP65 nicht garantiert werden. HA026270GER Ausgabe 5.0 08/07 3 2. Elektrische Installation 3.22.1 Kabelgrößen Verwenden Sie Kabel mit Querschnitten zwischen 0,5 und 1,5 mm2. Die Klemmen sind durch eine Kunststoffabdeckung gesichert. Halten Sie bei den rückseitigen Klemmen einen Drehmoment von 0,4Nm ein. Ausgänge Logik: 9Vdc, 12mA (nicht isoliert). Anwendung Heizen, Kühlen oder Alarm. Relais: 2A, 264V ac ohm’sch. Anwendung Heizen, Kühlen oder Alarm. Schließkontakteingang (an Stelle des Logikausgangs). Anwendung: Alarmquitterung oder Timersart/-stop. Anschlüsse 2116 + - Phase Null Alarm 2 Relaisausgang T/C Pt100 mA Eingang L N A AB V+ V- 1A 1B 2.49Ω 85-264Vac 50/60Hz 1B 1A Pt100 T/C Relais Null Phase Logikein/-ausgang Anschlüsse 2132 Alarm 1 externes Relais oder Alarmquittierung/Rücksetzen 2.49Ω Eingang V- V+ AB A N L - + mA 85-264Vac 50/60Hz 24 24 20-29 Vac/dc 20-29 Vac/dc 24 24 - + Logikein/-ausgang oder Alarm 1 externes Relais Alarmquittierung/ Rücksetzen + - 4 HA026270GER Ausgabe 5.0 08/07 2.2 Beispiel Anschlussdiagramm Sicherheitsanforderungen für permanent angeschlossene Anlagenbauteile: • Die Schaltschrankinstallation muss einen Schalter oder Unterbrechungskontakt beinhalten. • Dieses Bauteil sollte in der Nähe der Anlage und in direkter Reichweite des Bedieners sein. • Kennzeichnen Sie dieses Bauteil als trennende Einheit. Anmerkung: Sie können einen Schalter oder Trennkontakt für mehrere Geräte verwenden. * Schalten Sie induktive Lasten (Schütze), verbinden Sie die Klemmen AA und AB mit einem 22nF/100Ω RCGlied. Dieser erhöht die Lebensdauer des Kontaktes und unterdrückt Störspitzen bei schalten den Induktivitäten. ! WARNUNG Bei geöffnetem Relaiskontakt fließen über den RC-Kreis 0,6mA bei 110Vac und 1,2mA bei 240Vac. Achten Sie darauf, daß durch diesen Strom keine niedrigen Lasten angezogen werden. Relaisausgang Sicherung 2A typ T N Regler Sicherung 2A typ T Heiz-element Sicherung Heizelement T/C Solid State Relais (e.g. TE10) RC-Glied * L + - Model 2132 V+ A 1B V- 1A A L N Küh-Relais HA026270GER Ausgabe 5.0 08/07 5 3. Anzeige und Tastenfunktionen Nachdem Sie den Regler eingeschaltet haben, durchläuft dieser für ca. 3. Sekunden einen Selbsttest, bei dem die Softwareversion angezeigt wird. Danach zeigt das Gerät die Hauptanzeige. Haben Sie einen der Ausgänge als Alarm konfiguriert, wechselt die Alarmmeldung mit dem Prozeßwert, wenn ein neuer, noch nicht bestätigter Alarm ansteht. Steht die Alarmbedingung nach der Bestätigung noch an, erlischt die Alarmmeldung. Der Alarmkontakt bleibt geschaltet. 3.1 Erklärung der Anzeige und der Tastenfunktionen Taste/ Anzeige Name Erklärung Bild Taste Auswahl eines anderen Parametermenüs Parameter Taste Auswahl eines Parameters innerhalb eines Menüs Mehr Taste Ein Parameterwert kann vergroßert werden. Weniger Taste Ein Parameterwert kann verkleinert werden. OP1 Ausgang 1 Zeigt an, wenn der Logikausgang aktiv ist. OP2 Ausgang 2 Zeigt an, wenn der Relaisausgang aktiv ist MAN Handbetrieb Zeigt an, wenn sich der Regler im Handbetrieb befindet. 20 Ausgang 1 Ausgang 2 Prozeßwert ‘PV’) OP1 OP2 6 HA026270GER Ausgabe 5.0 08/07 Beispiel der Tastenfunktionen: EIN/AUS Regler für Heizen/Kühlen Anmerkung: In diesem Beispiel sind nur die Parameter gezeigt, die nach der entsprechenden Konfiguration tatsächlich im Regler vorhanden sind. Die Erklärung der einzelnen Parameter sowie ein vollständiges Parameterdiagramm finden Sie in Kapitel 6. FiLt CJC mV OFS CAL.P CAL Pnt.L OFS.L Pnt.H OFS.H 20.0 AL SP iP oP On.Of ACCS X2 & & & & & & oC OP w.SP3 m-A disp 1---(1) 2---(1) 3---(1) HY Lbt spL SPH SPrr (2) CYC.H CYC.C Ont.H Ont.C (2) HYS.H HYS.C HC.db codE Goto Conf (2) Abhängig von der eingestellten Regelart wird entweder das PID- oder das EIN/AUS- Menü angezeit (1) Die letzten 3 Ziffern bezeichnen den Alarmtyp HA026270GER Ausgabe 5.0 08/07 7 4. Zugriffsebenen Der Regler bietet Ihnen zwei Bedien-, eine Editier- und eine Konfigurationsebene. Nach dem Selbsttest arbeitet der Regler automatisch in der Bedienebene. Der nachstehenden Tabelle können Sie die Möglichkeiten, die Sie in den einzelnen Ebenen haben, entnehmen. Zugriffsebenen Anzeige Möglichkeiten Paßwortschutz Bedienebene Oper In dieser Ebene können Sie die freigegebenen Parameter auslesen bzw. ändern. Die Freigabe erfolgt in der Edit- Ebene. (Kapitel 5) Nein Full-Ebene Ful Alle im Regler vorhandenen Parameter können von Ihnen ausgelesen und geändert werden. (Kapitel 6) Ja Edit-Ebene Edit In dieser Ebene können Sie den Bedienerzugriff auf Parameter und Menüs festelgen. (Kapitel 7) Wählen Sie zwischen: - Änderbar (ALtr) - Nur lesbar (read) - Versteckt (Hide) oder - Promote (Pro) (Laden des Parameters in die Bedienebene, siehe Abschnitt 7.3) Ja Konfigurationsebene Conf Diese spezielle Ebene erlaubt es Ihnen, die grundlegende Charakteristik des Reglers zu ändern. (Kapitel 8) Ja Bedienbene Oper Ful Edit Conf Bedien-und Editereben, erreichbar über Accs Code, paßwortgeschützt. Konfigurationsebene erreichbar über Accs Code, paßwortgeschützt. 8 HA026270GER Ausgabe 5.0 08/07 4.1 Auswahl einer Zugriffsebene Zugriffs-Menü Drücken Sie die -Taste, bis Sie in das Zugriffs-Menü (accs) gelangen. Mit der -Taste kommen Sie in die code Anzeige. Paßwort Drücken Sie einmal oder , um zur Paßworteingabe zu gelangen. Pass zeigt an, daß kein Paßwort für den weiteren Zugriff benötigt wird. ‘0’ zeigt an, daß Sie sich in der Bedienebene befinden und ein Paßwort erwartet wird. Mit Hilfe der und der Taste können Sie das Paßwort eingeben. 2s nach Eingabeende zeigt die Anzeige PASS und springt in die Code Anzeige zurück. Mit oder , können Sie testen, ob Sie das richtige Paßwort eingegeben haben. Wird nicht Pass angezeigt, müssen Sie das Paßwort erneut eingeben. Anmerkung: Das Paßwort für die Parameterebenen wird vom Werk auf ‘1’ eingestellt. Die Freigabe der Ebenen bleibt solange bestehen, bis Sie entweder den Regler neu starten oder erneut im Zugriffs-Menü ein anderes falsches) Paßwort eingeben. Wie Sie das Paßwort ändern können, erfahren Sie in Kapitel 8, ‘Konfiguration’. Wählen Sie ‘0’ als Paßwort, sind die unteren Ebenen nicht gesperrt. Mit Hilfe der -Taste kommen Sie in die GOTO Anzeige (Siehe nächste Seite). Accs code 1 pass oder HA026270GER Ausgabe 5.0 08/07 9 Zurück zur Bedienebene Nachdem Sie die Arbeit in einer der unteren Ebenen beendet haben, sollten Sie zurück in die Bedienebene (oper) gehen. Aus der ful- oder der Edit-Ebene kommen Sie in die Bedienebene zurück, indem Sie im Zugriffs-Menü wie vorne beschrieben ein “falsches” Paßwort eingeben. Wählen Sie nur oper, ohne das Paßwort zu ändern, bleibt der Zugriff auf die weiteren Ebenen frei. Aus der Edit-Ebene geht der Regler nach 45s ohne Tastendruck in die Bedienebene zurück Ebenenauswahl Wähleischen Sie den mit folgenden Ebenen: Oper; Bedienebene edit: Edit-Ebene Ful: Full-Ebene conf: Konfigurationsebene 2s nach Eingabeende springt die Anzeige in die goto Anzeige zurück Zugriffs-Menü Haben Sie oper, ful oder edit gewählt, befinden Sie sich nun in der gewählten Ebene. Mit den Tasten und können Sie die gewünschten Parameter erreichen. Paßwort Haben Sie conf gewählt, müssen Sie an dieser Stelle erneut ein Paßwort eingeben. Führen Sie dafür die oben beschriebenen Schritte durch. Anmerkung: Das Paßwort für die Konfigurationsebene ist werksseitig auf ‘2’ gesetzt. Wie Sie das Paßwort ändern können, erfahren Sie in Kapitel 8, ‘Konfiguration’. Konfigurationsebene Die erste Anzeige der Konfigurationsebene erscheint. Informationen über die einzelnen Parameter bekommen Sie in Kapitel 8 ‘Konfiguration’. Dort wird auch beschrieben, wie Sie die Konfigurationsebene wieder verlassen können. goto Oper Ful edit conf pass goto Conf accs 2 inst bzw. 10 HA026270GER Ausgabe 5.0 08/07 5. Bedienung 5.1 Oper-Ebene Die Oper-Ebene enthält nur die für die Bedienung wichtigen Parameter. Möchtien Sie Parameter freigeben oder sperren oder nur den Schreibzugriff verweigern, müssen Sie diese Einstellungen in der Edit-Ebene vornehmen (Kapital 7). 5.2 Einstellen des Sollwertes Damit der Sollwert angzeigt wird, drücken Sie kurz auf die Taste oder . Der Sollwert wird für 2 Sekunden angezeigt. Den Sollwert ändern können Sie auch durch Drücken von oder . 5.3 Anzeigeeinheiten Möchten Sie die anzeigeeinheiten sehen, drücken Sie kurz die Taste oder . Die Einheit wird für 0,5 Sekunden angezeigt. Anmerkung: Durch gleichzeitiges Drücken der Tasten und kommen Sie jederzeit in die Hauptanzeige zurück. Außerdem erscheint die Hauptanzeige, wenn für 45s keine Taste betätigt wird. OC 200.0 Dr ücken einer der beiden Tasten Anzeigeeinheiten *C Grad Cenlsius *F Grad Fahrenheit *K Grad Kelvin Keine Anzeige - Linear 0,5s Sollwert 220.0 200.0 Istwert Drücken, um den Sollwert zu ändern 2s HA026270GER Ausgabe 5.0 08/07 11 5.4 Ausgangsleistung Um die Ausgangsleistung ansehen zu können, müssen Sie zweimal hintereinander die Taste drücken. Es erscheint der Parameter OP. Drücken Sie oder , wird der Wert der Ausgangsleistung angezeigt. Diesen Wert können Sie nicht ändern. Achtung: Im manuellen Standby-Modus (siehe auch “Verwendung des Timers”) können Sie die Ausgangsleistung auf einen Wert einstellen, das heißt, der Heiz-oder Kühlausgang ist permanent aktiviert. Damit der Wert für die Ausgangsleistung nicht ungewollt verstellt wird, können Sie den Parameter OP in der Edit-Ebene auf “read only” setzen (siehe auch “Parameterzugriff ändern”). 20.0 Kurz drücken OP 100.0 *C Der Regler hat einen100% Heizausgang Drücken Sie oder um den Wert zu sehen. 12 HA026270GER Ausgabe 5.0 08/07 5.5 Auswahl eines Parameters Die Einstellung der Parameter bestimmt die Arbeitsweise Ihres Reglers. Damit Sie einfach auf Parameter zugreifen können, sind diese in verschiedene Menüs eingeteilt. Mit der Taste können Sie nacheinander alle Menüüberschriften aufrufen. Auf Kapitel 6 finden Sie alle vorhandenen Listen aufgeführt. Einen Parameter innerhalb der Liste können Sie mit aufrufen. In der Anzeige erscheint der Parametername. Den Wert des Parameters rufen Sie mit oder auf. Mit diesen Tasten können Sie den Parameterwert (wenn in der Edit-Ebene freigegben, sonst in die Full-Ebene wechseln) auch ändern. Ca. 2s nach der Änderung blinkt der Parameter kurz auf und der Regler übernimmt den neuen Wert. Den nächsten Parameter in der Liste erreichen Sie wieder durch Drücken von . Die Parameter der Liste werden der Reihenfoge nach aufgerufen. Nach dem letzten Parameter der Liste erscheint wieder die Menüüberschrift. Mit den Parametern in den einzelnen Listen können Sie: • die Alarmsollwerte einstellen • den Regler optimieren • die PID Werte manuell einstellen • die sollwertgrenzen ändern und auf den Timer zugreifen • die Eingangs- und Ausgangsgrenzen ändern Drücken Sie die Taste weiter, werden nacheinander alle Menüüberschriften angezeigt. Nach der letzten Überschrift kommen Sie zurück zur Hauptanzeige. 20.0 aL Atun X2 HA026270GER Ausgabe 5.0 08/07 13 5.6 Ändern der Alarmsollwerte Im erstem Menü (AL) können Sie die Alarmsollwerte einstellen. Die Alarme finden Sie in Kapital 9 beschrieben. Ein nicht konfigurierter Alarm erscheint nicht in dem Menü. Anmerkung: Sie können auf alle Parameter in den einzelnen Menüs mit dem hier beschriebenen Vorgehen zugreifen 4. 0.5 s *C 200.0 Nächst liste Drücken Sie oder wird List angezeight LiSt AL 0 1--- -FSL = Minimalalarm -FSH = Maximalalarm -dEV = Abweichungsbandalarm -dHi = Abweichungsalarm Übersollwert -dLo = Abweichungsalarm Untersollwert - = Alarmnummer 0 2--- 0 3--- Weiteres Drücken der Taste zeigt alle Menüs. Am Ende springt der Anzeiger in die Hauptanzeiger zurück. Alarm 1 * Alarm 2 * Alarm 3 * * Mit oder sollwert ändern. 14 HA026270GER Ausgabe 5.0 08/07 6. Parameterübersicht In der Full-Ebene sehen Sie alle in Ihrem Regler vorhandenen Bedienparameter. Diese können Sie wie unter 4.1 beschrieben, aufrufen und/oder ändern. Die Einstellungen der Edit-Ebene haben hier keine Bedeutung. Deshalb ist die Full -Ebene durch ein Paßwort (1) geschützt. In der folgenden Übersicht sind alle möglichen Parameter dargestellt. Die Anzahl und die Reihenfolge der Parameter, die in Ihrem Gerät erscheinen, ist abhängig von der Konfiguration. Den Zugriff auf Parameter sperren oder freigeben können Sie in der Edit-Ebene, Kapital 7. Die grau hinterlegten Felder bezeichnen die Parameter und Menüs, die in der Oper-Ebene standardmäßig nicht sichtbar sind. 3. W.sP erscheint nur, wenn die Sollwertrampe aktiv ist. Hauptanzeige Alarm Menü Selbstoptimierungs Menü PID(2) Menü Sollwert Menü Eingangs Menü Ausgangs Menü EIN/AUS(2) Menü Zugriffs Menü 20.0 AL Atun Pid SP iP oP On.Of ACCS X2 oC OP w.SP3 m-A disp 1---(1) 2---(1) 3---(1) HY Lbt Tune adc Pb Ti Td Res Lcb Hcb reL.C spL SPH SPrr Tm.Op Tmr Dwel stat fiLt CJCo MV OFS CAL.P CAL Pnt.L OFS.L Pnt.H OFS.H OP.Lo OP.Hi CYC.H CYC.C ont.H ont.C HYS.H HYS.C HC.db code Goto Conf (2) Abhängig von der eingestellten Regelart wird entweder das PID- oder das EIN/AUS- Menü angezeit (1) Die letzten 3 Ziffern bezeichnen den Alarmtyp. HA026270GER Ausgabe 5.0 08/07 15 6.1 Parameterlisten Hauptmenü Einstellbarer Bereich Vorgabe Einstellung Op Ausgangsleistung -100% bis 0.0% = Kühlen; 0.0% bis 100.0% = Heizen. w.SP Arbeitssollwert Erscheint, wenn Sollwertrampe aktiviert ist. Nur-Lessen Nur-Lessen m-A Automatik-Hand Auto Automatikbetrieb gewählt Umschaltung mAn Handbetrieb gewählt Auto Std Standard – zeight den Istwert und nach Drücken der Mehr- /Weniger-Taste den sollwert OP Zeigt die Ausgangleistung an – für die Benutzung als Handstation NonE Keine Anzeige, nur Alarme erscheinen blinkend PV Zeigt nur den Istwert AL.SP Zeigt nur den Alarm 2 Sollwert disp Hauptanzeige- Optionen pv.aL Zeigt Istwert und Alarm 2 Sollwert nach Drücken der Mehr- /Weniger-Taste Std Plus zusätzliche Promote-Parameter (Abschnitt 7.3) 16 HA026270GER Ausgabe 5.0 08/07 AL Alarm-Menü Einstellbarer Bereich Vorgabe Einstellung 1--- Sollwert für Alarm 1 0 2--- Sollwert für Alarm 2 0 3--- Sollwert für Alarm 3 0 Es erscheinen nur die konfigurieten Alarme. Die letzten 3 Ziffern zeigen den Alarmtyp. Die Werte sind innerhalb der Sollwertgrenzen einstellbar. -FSL Vollbereichsminimalalarm -FSH Vollbereichsmaximalalarm -dEv Regelabweichungsbandalarm -dLo Regelabweichungsalarm Untersollwert -dHi Regelabweichungsalarm Übersollwert HY Alarmhysterese 1 bis 9999 Anzeigeeinheiten. Dieser Wert bezieht sich auf alle Alarme. Die Hysterese verhindert ein ‘Springen’ des Alarms, wenn der Wert um den Alarmwert schwankt. 1 Lb t Regelkreis-überwachungszeit OFF bis 9999 Minuten OFF HA026270GER Ausgabe 5.0 08/07 17 Atun Selbstoptimierungs-Menü Einstellbarer Bereich Vorgabe Einstellung tunE Selbstoptimierung OFF oder on Off Adc Automatische Arbeitspunktorrektur (bei PD Regelung) mAn oder caLc mAn PiD PID-Menü Einstellbarer Bereich Vorgabe Einstellung Pb Proportionalband 1 bis 999.9 Anzeigeeinheiten 20 ti Nachstellzeit OFF bis 9999 Sekunden 360 td Vorhaltzeit OFF bis 9999 Sekunden 60 rES Maueller Reset Nur, wenn ti = OFF; -100 bis 100.0% 0.0 Lcb Cutback Low Auto bis 999.9 Anzeigeeinheiten Auto Hcb Cutback High Auto bis 999.9 Anzeigeeinheiten Auto rEL.C Relative Kühlverstärkung 0.01 bis 10.00 1.00 18 HA026270GER Ausgabe 5.0 08/07 SP Sollwert-Menü Einstellbarer Bereich Vorgabe Einstellung SP L Sollwert, untere Grenze -1999 bis 999.9, je nach Meßbereich It. Bestellg. SP H Sollwert, obere Grenze -1999 bis 999.9, je nach Meßbereich It. Bestellg. sprr Sollwertrampe 0FF bis 999.9 Anzeigeeinheiten pro Minute Off tm.OP Timer Betriebsart Opt.1 bis Opt.5 OPt.1 tmr Verbleibende Timerzeit 0 bis 9999 minuten 0 dwEl Haltzeit 0FF bis 9999 minuten OFF StAt Timer Status OFF oder on Ab Softwareversion 1.43 OFF HA026270GER Ausgabe 5.0 08/07 19 iP Eingangs-Menü Einstellbarer Bereich Vorgabe Einstellung FiLt Zeitkonstante des Eingangsfilters 0FF bis 999.9 Sekunden 1.6 CJC* Vergleichsstellentemperatur an den Klemmen Nur Lesen mV Millivolt-Eingang, gemessen an den Klemmen Nur Lesen OFS Istwert Offset -1999 bis 9999 Anzeigeeinheiten 0 CAL.P Anpassung Paßwort 0 bis 9999 3 Die folgenden Parameter erscheinen nur, wenn Sie das richtige Paßwort für die Anpassung eingegeben haben. FACt Stellt die Werkseinstellung wieder her CAL Anpassungsart FACt USEr Benutzerdefinierte Anpassung Pnt.L Unterer Anpassungspunkt 0 OFS.L Offset am unteren Punkt 0 Pnt.H Oberer Anpassungspunkt 100 OFS.H Offset am oberen Punkt -1999 bis 9999 Anzeigeeinheiten 0 20 HA026270GER Ausgabe 5.0 08/07 oP Ausgangsleistungs-Menü Einstellbarer Bereich Vorgabe Einstellung OP.Lo Ausgangsleistungs untere Grenze -100 bis 100.0% 0 OP.Hi Ausgangsleistungs obere Grenze -100 bis 100.0% 100.0 CYC.H Zykluszeit Heizen 0.2 bis 999.9 Sekunden 1.0 Lgk 20 Rls CYC.C Zykluszeit Kühlen 0.2 bis 999.9 Sekunden 5.0 Lgk 20 Rls ont.H min. EIN-Zeit für Heizausgang Auto bis 999.9 Sekunden (Auto = 50ms) Auto ont.C min. EIN-Zeit für Kühlausgang Auto bis 999.9 Sekunden (Auto = 50ms) auto onOF EIN/AUS-Menü Einstellbarer Bereich Vorgabe Einstellung hYS.H Heizhysterese 1 bis 9999 Anzeigeeinheiten 1 hYS.C Kühlhysterese 1 bis 9999 Anzeigeeinheiten 1 HC.db Todband Heizen/Kühlen 0 bis 9999 Anzeigeeinheiten 0 ACCS Zugriffs-Menü Einstellbarer Bereich Vorgabe Einstellung codE Zugriffs-Paßwort 0 bis 9999 1 Goto Auswahl der Parameterebene Oper, Ful, Edit, conf OPEr Conf Konfigurations-Paßwort 0 bis 9999 2 HA026270GER Ausgabe 5.0 08/07 21 7. Edit-Ebene In der Edit-Ebene können Sie die Menüs der Bedienebene (Oper) gestalten. Sie haben die Möglichkeit, Parameter für den normalen Bediener in der Oper-Ebene auszublenden oder mit einem Schreibschutz zu versehen. Mit der Promote-Funktion können Sie Parameter in das Hauptmenü kopieren und so eine benutzerspezifische Parameterliste erstellen. Dies gilt nur für Parameter, die standardmäßig nicht in der Hauptanzeige vorhanden sind. In der Edit-Ebene sehen Sie nicht die Parameterwerte, sondern die Zugriffsmöglichkeit auf den Parameter. 7.1 Ändern des Parameterzugriffs Sie haben vier Möglichkeiten für den Zugriff auf einen Parameter oder ein Menü: • ALtr Parameterwert läßt sich in der Bedienebene ändern. • read Parameter oder Menü kann in der Bedienebene nur gelesen werden. • Hide Parameter oder Menü erscheinen nicht in der Bedienebene. • Pro Kopiert einen Parameter in die Hauptanzeige (s. Abschnitt 7.3). Gehen Sie bei der Zugriffsauswahl wie folgt vor: - Wahlen Sie wie zuvor beschrieben die Edit-Ebene. - Suchen Sie mit Hilfe der Tasten und den gewünschten Parameter oder das gewünschte Menü. - Mit den Tasten und können Sie den Parameterzugriff ändern. Beispeil: Haben Sie z. B. Alarm 2 (2FSH) gewählt, erscheint nach Drücken der Taste oder der Zugriffsmodus des Parameters. Mit den gleichen Tasten können Sie einen neuen Zugriffsmodus auswählen. 22 HA026270GER Ausgabe 5.0 08/07 7.2 Ausblenden eines Menüs Bei der Zugriffsänderung auf ein ganzes Menü haben Sie nur die Auswahl zwischen read und Hide. Blenden Sie ein ganzes Menü aus, werden alle zugehörigen Parameter ausgeblendet. Das Zugriffs- Menü (ACCS) läßt sich nicht ausblenden. 7.3 Promote Sie haben die Möglichkeit, dem Hauptmenü bis zu 12 Parameter hinzuzufügen: - Gehen Sie in die Edit-Ebene - Wählen Sie den gewünschten Parameter - Versehen Sie ihn mit dem Kürsel Pro. Der Parameter wird an das Ende des Hauptmenüs kopiert. Sie haben somit im Hauptmenü und im Originalmenü Zugriff auf diesen Parameter. Diese Parameter können Sie nicht mit einem Schreibschutz versehen. Beispeil: Haben Sie z. B. den Parameter tmr (verbleibende Timerzeit) gewählt, können Sie mit oder Pro wählen. Der Parameter tmr erscheint nun im Hauptmenü. Wiederholen Sie diesen Vorgang mit den gewünschten Parametern. Möchten Sie einen Parameter aus dem Hauptmenü entfernen, gehen Sie in die Edit-Ebene und wählen Sie ALtr, read oder Hide. HA026270GER Ausgabe 5.0 08/07 23 8. Konfiguration In der Konfigurationsebene können Sie die Anzeigeeinheiten, den Sensortyp, die Skalierung, die Alarmkonfiguration und die Paßworter ändern. 8.1 Auswahl der Konfigurationsebene In der Konfigurationsebene können Sie mit Hilfe der Taste die einzelnen Konfigurations-Menüs aufrufen. Innerhalb der Menüs werden die Parameter mit der Taste aufgerufen. Sie können die Einstellungen der Parameter mit den Tasten und ändern. inSt iP AL AA Exit pASS 1A Geräte-Konfiguration Goto conF Wählen Sie mit Hilfe der Tasten oder die Konfigurationsebene conf ACCS Drücken Sie die Taste bis Sie das ACCSMenü erreichen. codE PASS Geben Sie mit Hilfe der Tasten oder das Paßwort ein. Werksseitig eingesteltes Paßwort ist 1. PASS erscheint, wenn Sie das richtige Paßwort eingegeben haben. ConF PASS Geben Sie mit Hilfe der Tasten oder das Paßwort ein. Paßwort Vorgabe ist 2. PASS erscheint, wenn Sie das richtige Paßwort eingegeben haben. 24 HA026270GER Ausgabe 5.0 08/07 Geräte-Konfiguration inst Geräte- Konfiguration Wert Bedeutung *C Celsius *F Fahrenheit *K Kelvin unit Anzeigeeinheiten nonE Keine Einheit (Linear) nnnn Keine nnn.n Eine dEC.P Dezimalstelle nn.nn Zwei Pid PID On.OF EIN/AUS CtrL Regelverhalten AL Gerät als Alarmeinheit Act Ausgangskennlinie rEv Revers dir Direkt HoLd Keine Stoßfreie Umschaltung Pd.tr Stoßfreie Automatik/ Hand Umschaltung bei PD-Regelung trAc Stoßfreie Umschaltung HA026270GER Ausgabe 5.0 08/07 25 Eingangs-Konfiguration iP Eingangs- Konfiguration Wert Bedeutung j.tc Thermoelement J k.tc Thermoelement K L.tc Thermoelement L r.tc Thermoelement R b.tc Thermoelement B n.tc Thermoelement N t.tc Thermoelement T S.tc Thermoelement S PL 2 Platinell II rtd PT 100 mV Linear mV inPt Eingangstyp C.tc Thermoelement C * Linerisierung Off Nur bei Lineareingang Auto Automatisch 0*C 0°C ext. Referenz 45*C 45°C ext. Referenz CJC (nur T/C) Vergleichsstellentempuratur 50*C 50°C ext. Referenz Folgende Parameter erscheinen nur bei Linereingang (-12 bis +80mV) InP.L mV–Eingang min InP.H mV–Eingang max VaL.L Angezeigter Wert min VAL.H Angezeigter Wert max OFF Aus (nur Lineareing) Auto 1,5KΩ Hi 5KΩ ImP HiHi 15KΩ, * Thermoelement C kann durch eine alternative kundenspezifische Linearisierung ersetzt werden. Inp.L Inp.H VAL.H VAL.L mV Anzeigewert 26 HA026270GER Ausgabe 5.0 08/07 Alarm-Konfiguration In der Alarm-Konfiguration können Sie bis zu drei Soft-alarme konfigurieren. Soft-alarme werden nur angezeigt. Möchten Sie, daß ein Alarm auf einen Ausgang gelegt wird, müssen Sie diesen Alarm in der Relais- /Logikein-/ausgangs-Konfiguration einem Ausgang zuweisen. AL Alarmsollwert -Konfig. Wert Bedeutung OFF Kein alarm fsL Vollbereichsminimalalarm fsH Vollbereichsmaximalalarm dEv Abweichungsbandalalarm dHi Abweichungsalarm Übersollwert AL 1 Alarm 1 dLo Abweichungsalarm Untersollwert AL Alarmsollwert -Konfig. Wert Bedeutung no Nicht speichern YES Gespeichert (Auto) * Ltch Alarm speichern mAn Gespeichert (Hand) ** bLoc Alarm no Keine Unterdrückung Unterdrücken YES Alarmunterdrückung Für die Alarme 2 und 3 (AL 2 und AL 3) erscheinen die gleichen Parameter. Sp.Li Alarmsollwert diS Anzeigebereich -grenzen Con Eingestellte Grenzen *D. h., wurde der Alarm bestätigt, wird der Alarm automatisch zurückgesetzt, sobald die Alarmbedingung erlischt. ** D. h., der Alarm kann erst zurückgesetzt werden, wenn die Alarmbedingung nicht mehr ansteht. HA026270GER Ausgabe 5.0 08/07 27 Relaisausgangs-Konfiguration Aa Relaisausgangs Wert Bedeutung id Art des Ausgangs rELy Relais diG Digitalausgang (Alarm) HEAt Heizausgang Func Funktion COOL Kühlausgang noch Kein Wechsel CLr Löschen aller Alarme 1FSL Alarm 1 * 2FSH Alarm 2 * 3FSL Alarm 3 * NW Neuer alarm SBR Fühlerbruch LBR Regelkeisüberwachung LDF Lastfehler MAn Handbetrieb EnD Ende des Timers TMG1 Timer läuft TMG2 Timer zählt abwärts diG.F Funktion des Digitalausgangs (erscheint nicht bei HEAt und COOL) Siehe unten, “Ansteuern eines Relais-oder Logikausgangs über eine Digitalfunktion” Die Parameter tmg1 bis tmg4 erscheinen nur bei einem Regler mit Timer. TMG3 Timer läuft ** Aa Relaisausgangs Wert Bedeutung TMG4 Timer zählt abwärts ** nor Normal (im Alarmfall stromführend) SenS Kennlinie des Ausgangs Inv Invertiert (im Alarmfall stromlos) * Die letzen drei Ziffern entsprechen den konfigurierten Alarmen. Haben Sie keinen Alarm konfiguriert, erscheint AL1, AL2, und AL3. ** tmg3 und tmg4 sind Spezialfunktionen. Haben Sie diese gewählt, leuchten die Anzeigen OP1 und OP2, ohne daß ein Ausgang aktiv ist. Mit dieser Funktion kann angezeit werden, ob der Timer noch läuft, während die Ausgänge über andere Digitalfunktionen, z. B. Ende des Timers, angesteuert werden. 28 HA026270GER Ausgabe 5.0 08/07 Logikeingangs-Konfiguration Wählen Sie bei Logik zwischen einem Ausgang oder einen Eingang zur Alarmquittierung, Tastensperre oder Timerstart/-stop. 1a Relaisausgangs Wert Bedeutung id Art des Ausgangs Log Logik diG Digitalausgang HEAt Heizausgang COOL Kühlausgang Funktion (Ausgang) Ssr.1 PDSIO Mode 1 Ac.aL Alarmquittierung Loc.d Tastensperre Digitaleingang Func Funktion (Eingang) rres Timerstart/-stop noch Kein Wechsel CLr Löschen aller Alarme 1FSL Alarm 1 * 2FSH Alarm 2 * 3FSL Alarm 3 * NW Neuer alarm SBR Fühlerbruch diG.F Funktion des Digitalausgangs (erscheint nicht bei HEAt und COOL) Siehe unten, “Ansteuern eines Relais-oder Logikausgangs LBR Regelkeisüberwachung 1a Relaisausgangs Wert Bedeutung LDF Lastfehler MAN Handbetrieb END Ende des Timers TMG1 Timer läuft TMG2 Timer zählt abwärts TMG3 Timer läuft ** über eine Digitalfunktion” Die Parameter tmg1 bis tmg4 erscheinen nur bei einem Regler mit Timer. TMG4 Timer zählt abwärts ** nor Normal (im Alarmfall stromführend) SenS Kennlinie des Ausgangs Inv Invertiert (im Alarmfall stromlos) * Die letzen drei Ziffern entsprechen den konfigurierten Alarmen. Haben Sie keinen Alarm konfiguriert, erscheint AL1, AL2, und AL3. ** tmg3 und tmg4 sind Spezialfunktionen. Haben Sie diese gewählt, leuchten die Anzeigen OP1 und OP2, ohne daß ein Ausgang aktiv ist. Mit dieser Funktion kann angezeigt werden, ob der Timer noch läuft, während die Ausgänge über andere Digitalfunktionen, z. B. Ende des Timers, angesteuert werden. HA026270GER Ausgabe 5.0 08/07 29 Ansteuern eine Relais- oder Logikausgangs über eine Digitalfunktion 1. Drücken Sie die Taste , bis Func erscheint. 2. Wählen Sie mit Hilfe von oder dig. 3. Drücken Sie die Taste , bis dig.f erscheint. 4. Mit Hilfe der Tasten oder können Sie eine Digitalfunktion wählen 5. Nach 2s springt die Anzeige zurück auf dig.F. Die gewählte Digitalfunktion ist nun mit dem Ausgang verbunden. 6. Drücken Sie erneut die Tasten oder . Die ausgewählte Funktion erscheint mit zwei Dezimalpukten (z. B. L. b. r.) 7. Möchten Sie keine Veränderung mehr vornehmen, gehen Sie mit oder auf noch. Mehrere Digitalfunktionen auf einem Ausgang Sie haben die Möglichkeit, mehrere oder auch alle Digitalfunktionen auf einem Ausgang zu kombinieren, indem Sie die Schritte 4-6 für jede Funktion wiederholen. Löschen von zugeordneten Digitalfunktionen 1. Drücken Sie die Taste , bis dig.f erscheint. 2. Mit Hilfe der Tasten oder können Sie CLr wählen 3. Nach 2s springt die Anzeige zurück auf dig.F. Alle Verknüpfungen sind gelöscht. Paßwort-Konfiguration PASS Paßwort-Konfiguration Wert Vorgabe ACC.P Paßwort für Ful und Edit 0-9999 1 Cnf.P Paßwort für Konfiguration 0-9999 2 CAL.P Paßwort für Anpassung 0-9999 3 8.2 Verlassen der Konfigurationsebene Drücken Sie die Taste , bis Sie Exit erreichen. Wahlen Sie mit oder YES. Nach 2s blinkt die Anzeige und kehrt in die Bedienebene zurück. Exit YES 30 HA026270GER Ausgabe 5.0 08/07 9. Alarme Die Regler der Serie 2100 können Ihnen zwei verschiedenen Arten von Alarmmeldungen anzeigen: 1. Regelkreisalarme (z. B. Vollbereichsalarme, Abweichungsalarme) 2. Diagnosealarme (z. B. Fühlerbruch) Regelkreisalarme können Sie selbst konfigurieren, einem Ausgang zuweisen und speichern. Diese gespeicherten Alarm müssen Sie dann bestätigen. 9.1 Alarmmeldungen Steht ein Alarm an, wird in der Anzeige eine Alarmmeldung dargestellt. Die Alarmmeldung wechselt mit dem aktuellen Prozeßwert. Folgende Alarmmeldungen können in der Anzeige erscheinen: Kürzel Erklärung Regelkreisalarme -fsh Vollbereichsmaximalalarm -fsL Vollbereichsminimalalarm -deV Abweichungsbandalarm -dHi Abweichungsalarm Übersollwert -dLo Abweichungsalarm Untersollwert Diese Alarme können gespeichert und bestätigt werden. Diagnosealarme Sbr Fühlerbruch Lbr Regelkreisfehler Ldf Lastfehler End Ende des Timers An Stelle des Striches erscheint bei einem Regelkreisalarm die Alarmnummer (1, 2 oder 3), z. B. 1FSH (Alarm 1, Vollbereichsmaximalalarm). Alarm1 Vollbereichsminimalalarm 1FSL 200.0 Atueller Prozeßwert HA026270GER Ausgabe 5.0 08/07 31 9.2 Alarmbestätigung Zur Alarmbestätigung müssen Sie die Tasten und gemeinsam drücken. Es werden neben den aktuellen dann auch noch gespeicherte, nicht mehr anstehende Alarm bestätigt. Nicht gespeichterte Alarme müssen Sie nicht bestätigen. 9.3 Diagnosealarme Zusätzlich zu den Prozeßalarmen bietet Ihnen der Regler die folgenden Diagnosealarme Kürzel Erklärung EE.Er Electrically Erasable Memory Error: Der wert eines Bedien-oder Konfigurationsparameters wurde zerstört. Wenden Sie sich an Eurotherm. HW.Er Hardware-Fehler: Geben Sie den Regler in Reparatur. LLLL Unterhalb des Anzeigebereichs: Überprüfen Sie den Eingang. HHHH Oberhalb des Anzeigebereichs: Überprüfen Sie den Eingang. Err1 Error 1: ROM Selbsttest Fehlerhaft: Geben Sie den Regler in Reparatur. Kürzel Erklärung Err2 Error 2: RAM Selbsttest Fehlerhaft: Geben Sie den Regler in Reparatur. Err3 Error 3: Watchdog Fehler: Geben Sie den Regler in Reparatur. Err4 Error 4: Tastatur-Fehler: Fehlende Taste oder Taste während des Starts gedrückt. Err5 Error 5:. Fehler in der Eingangsschaltung: Geben Sie den Regler in Reparatur. Pwr.F Versorgungsfehler. Die Versorgungsspannung ist zu niedrig. Überprüfen Sie, daß die Spannung innerhalb der Grenzen ist. TU.Er Selbstoptimierungsfehler: Erscheint wenn der Optimierungsprozeß über 2 Stunden dauert. Kontrollieren Sie Ihren Regelkreis. Bestätigung wie vorher beschrieben. Sbr Fühlerbruch: Überprüfen Sie den Fühler. Lbr Regelkreisfehler: Die Rückführung ist ohne Signal. Überprüfen Sie die gesamte Regelstreke. Ldf Lastfehler: Fehler in Heizkreis oder Solid State Relais (SSR). Überprüfen Sie den Heizkreis und das SSR. End Ende des Timers: Siehe Kapitel 10. 32 HA026270GER Ausgabe 5.0 08/07 10. Timer Der Timer gibt Ihnen die Möglichkeit, die Regelung zeitlich zu steuern. Die für den Timer wichtigen Parameter finden Sie im Sollwert-Menü: Tm.OP Auswahl der Betriebsart des Timers Tmr Verbleibende Timerzeit in Minuten Dwel Eingestelle Timerzeit in Minuten Stat Status des Timers 10.1 Auswahl der Betreibsart • Drücken Sie die Taste , bis Sie Sollwert- Menü erreichen. • Rufen Sie mit Hilfe der Taste den Parameter tm.OP auf • Mit den Tasten oder können Sie die Betriebsart des Timers wählen (Opt.1 bis Opt.5) 10.1.1 Opt.1 - Betriebsart 1, Haltezeit und Ausschalten Reset Ist der Timer zurückgesetzt, arbeitet der Regler in der von Ihnen konfigurierten Regelart. Mit dem Parameter m-A können Sie zwischen Automatikbetrieb (Auto) und Handbetrieb (MAN) umschalten. Den Parameter finden Sie im Hauptmenü. Im Automatikbetrieb wird der Istwert auf den Sollwert ausgeregelt. Im Stanby-Mode befindet sich der Regler im Handbetrieb. Die Ausgangsleistung ist an allen Ausgängen Null. (Siehe Warnung auf Seite 11). Bei der Auslieferung ist der Parameter m-A in der Bedienebene gesperrt. Sie müssen den Parameter erst in der Edit-Ebene freigeben. Standby Temperatur Sollwert Reset Timing Timer Laufzeit Ende End blinkt auf der Aufwärmzeit Anzeige HA026270GER Ausgabe 5.0 08/07 33 Während der Timerlaufzeit Startet der Timer, springt der Regler in den Automatikbetrieb. Der Istwert wird an den Sollwert herangefürt (Aufwärmzeit). Befindet sich der Istwert ca. 1oC entfernt vom Sollwert, beginnt der Timer zu zählen (Timing in Minuten). Ende Am Ende der Zeit (Timing) schaltet der Regler in den Standby-Mode um. Die Ausgänge werden auf Null gesetzt. MAN leuchtet und in der Regleranzeige erscheint blinkend End. Das bedeutet, daß Ihr Prozeß abkühlt. Der Timer bleibt in diesem Zustand, bis er erneut mit und zurückgesetzt wird. Neuer Reset Haben Sie den Timer zurückgesetzt ( und gleichzeitig drücken), erlischt End auf der Anzeige. Der Regler befindet sich weiterhin in Standby-Mode. Möchten Sie zum normalen Reglerbetreib wechseln, setzen Sie den Parameter m-A in Haupt-Menü auf Auto. 10.1.2 Opt.2 - Betriebsart 2, Haltezeit und nicht Ausschalten Diese Betriebsart entspricht der Betriebsart 1, nur daß nach Ablauf der Zeit (Timing) der Regler im Automatikbetrieb bleibt. Unendliche Haltezeit auf Sollwerttemperatur Temperatur Sollwert Reset Timing Timer Laufzeit Ende End blinkt auf der Anzeige Aufwärmzeit Auto m-A Drücken Sie solange , bis der Parameter m-A erscheint. Wählen Sie mit oder Auto Automatikbetreib mAn Standby (Hand - MAN leuchet) Drücken Sie gleichzeitig und , um in die Hauptanzeige zurückzukehren. 34 HA026270GER Ausgabe 5.0 08/07 10.1.3 Opt.3 (Betriebsart 3), Aufheizen, Haltezeit und Ausschalten Auch die Betriebsart 3 entspricht der Betriebsart 1. Der einzige Unterschied ist, daß die Zeit sofort bei Start des Timers losläuft, d. h. die Aufwärmzeit entfällt. Somit ist die Zeit bis zum Erreichen des Sollwerts Teil des Timings. 10.1.4 Opt.4 (Betriebsart 4), Aufheizen, Haltezeit und nicht Ausschalten Die Betriebsart 4 arbeitet entsprechend der Betriebsart 2, nur daß auch hier die Zeit bis zum Erreichen des Sollwerts Teil des Timings ist. Standby Temperatur Sollwert Reset Timing Ende End blinkt auf der Anzeige Reset Unendliche Haltezeit auf Sollwerttempuratur Sollwert Timing Ende End blinkt auf der Anzeige Temperatur HA026270GER Ausgabe 5.0 08/07 35 10.1.5 Opt.5 (Betriebsart 5) - Einschaltverzögerung Haben Sie die Betriebsart 5 gewählt, wird das Einschalten des Reglers um die Timerzeit verzögert. Sobald Sie den Timer starten, schaltet das Gerät in den Stanby-Modus und startet das Timing. Am Ende der Zeit schaltet der Regler in den Automatikbetrieb. 10.1.6 Rampe/Haltezeit Profil Sie haben die Möglichkeit, mit Hilfe der Sollwertrampe (Sprr) und des Timers ein einfaches Rampe/Haltezeit Profil zu programmieren. Um die Programmierung zu vereinfachen, kopieren Sie zuerst die Parameter Sprr und w.SP in die Bedienebene (Abschnitt 7.3, Promote). Geben Sie für den Parameter eine gewünschte Rampensteigung ein. Sie können den Wert in Schritten von 1/10 des eingestellten Anzeigebereichs wählen. Das heißt, haben Sie einen Anzeigebereich, von 1 bis 1000oC können Sie für die Rampensteigung einen Wert zwischen 0,01 und 999,9 oC pro Minute wählen. Haben Sie die Rampensteigung eingestellt und den Timer gestartet, springt der Arbeitssollwert w.sp, zur aktuellen Temperatur und läuft dann mit der eingestellten Rampensteigung bis zum Zielsollwert. Haben Sie für den Timer Betriebsart 1 oder 2 gewählt, startet die Zeit (Timing), wenn Istwert und Sollwert eine Differenz von 1oC haben. In den Betriebarten 3 und 4 startet der Timer, wenn der Arbeitsollwert w.sp noch 1oC vom Zielsollwert entfernt ist. Unendliche Haltezeit auf Sollwerttemperatur Temperatur Sollwert Reset Timing Reset Standby 36 HA026270GER Ausgabe 5.0 08/07 10.2 Starten und Rücksetzen des Timers Es stehen Inhen zwei Metoden zur Verfügung: Methode 1. Dies ist die einfachste Methode, um den Timer zu überwachen. • Drücken Sie , bis Sie das Sollwert-Menü erreichen. • Drücken Sie , bis Sie den Parameter tMr aufrufen. Anmerkung: Um diesen Vorgang zu vereinfachen, können Sie den Parameter tmr in die Hauptanzeige kopieren (s. Abschnitt 7.3, Promote). Sobald Sie den Wert für die verbleibende Zeit (tmr) geändert haben, startet der Timer mit der angegebenen Zeit. Tmr zählt abwärts bis Null. Sie können auch während der Laufzeit des Timers die verbleibende Zeit verändern, um den Timer den Erfordernissen Ihres Prozesses anzupassen. Setzen Sie tmr auf Null, wird der Timer gestoppt. Anmerkung: Bei dieser Methode werden die Parameter dwel und stat nicht geändert, d. h. Status und Gesamtlaufzeit des Timers werden nicht übernommen. Ist der Timer abgelaufen, erscheint die blinkende Meldung End auf der Anzeige. Diese bleibt solange bestehen, bis Sie einen neuen Wert für tmr eingeben und so den Timer neu starten. Den Timer können Sie zurücksetzen, indem Sie die Tasten und gleichzeitig drücken. ‘end’ erlischt. Stellen Sie in dem Parameter tmr einen neuen Wert ein, startet der Timer erneut. 1234 Tmr Betätigen Sie die Tasten oder , um die verbleibende Zeit (0 bis 9999 Minuten) einzustellen. HA026270GER Ausgabe 5.0 08/07 37 Methode 2. Mit dieser Methode können Sie einen festen Wert für den Timer vorgeben und ihn über den Parameter stat starten und stoppen. Wenn Sie den Logikein-/-ausgang als EIN/AUSSchließkontakteingang kongfigurieren, können Sie den Parameter stat über diesen Eingang umschalten. Öffnen Sie den Kontakt (flankengetriggert), wird der Parameter auf run gesetzt, schließen Sie den Kontakt, steht der Parameter auf Off. Der Parameter wird immer auf OFF gesetzt (tmr = 0), wenn der Kontakt geschlossen ist. 1234 dwel run stat sp Drücken Sie die Taste , bis Sie das sollwert-Menü erreichen. Wählen Sie dann mit Hilfe der Taste den Parameter dwel Haltezeit Wählen Sie mit den Tasten oder die Timerzeit (0 bis 9999 Minuten). Timer Status Möchten Sie den Timer starten, wählen Sie mit den Tasten oder run. Die eingegebene Haltzeit wird in den Parameter tmr kopiert und der Timer läuft. Möchten Sie den Timer rücksetzen, wählen Sie Off. tmr wird sofort auf Null gesetzt. 38 HA026270GER Ausgabe 5.0 08/07 11. Anpassung Die Werkskalibrierung ist hochgenau. Zur Kompensation von Sensor-oder Systemfehlern können Sie der Kalibrierung einen Offset hinzufügen. Möchten Sie über den gesamten Anzeigerbereich einen festen Offset einstellen, wählen Sie im Eingangs-Menü (iP) den Parameter OFS und geben Sie den Wert ein. Sie können auch die Kurve an zwei Punkten ausrichten. Gehen Sie bei der Zwei-Punkt-Anpassung wie folgt vor: • Drücken Sie die Taste , bis Sie das Eingangs- Menü erreichen. • Wählen Sie mit Hilfe der Taste den Parameter CAL.P • Geben Sie mit den Tasten oder das Paßwort ein. Vorgabe ist 3. Pass wird angezeigt, wenn Sie das richtige Paßwort eingegeben haben. • Wählen Sie mit der Taste den Parameter CAL. • Wählen Sie mit oder User (Fact ist die Werkseinstellung) • Mit der Taste können Sie nacheinander die vier Anpassungsparameter aufrufen (s. unten). Stellen Sie mit Hilfe der Tasten oder den gewünschten Punkt der Anpassung und den entsprechenden Offset ein. Die Parameter pnt.H und OFS.H erscheinen nur, wenn Sie ersten zwei Parameter eingestellt haben. Eingang Anzeigewert Werkskalibrierung Pnt.H OFS.H OFS.L Pnt.L Angepaßter Wert Oberer Anpassungspunkt Unterer Anpassungspunkt Angepaßter Wert Anpassung HA026270GER Ausgabe 5.0 08/07 39 12. Selbstoptimierung Bei einer PID Regelung wird der Ausgang durch die Proportional-Integral- und Differentialanteile bestimmt. Sind diese Komponenten richtig dimensioniert, kann der Regler den Ausgang so regeln, daß der Istwert dem Sollwert entspricht und keine Schwingungen auftreten. Die Einstellung der Werte ist abhängig von Ihrem Prozeß. Die Reglermodelle 2132 und 2116 arbeiten mit einem ‘One-shot’-Tuner. Der Regelausgang wird an- und ausgeschaltet und simuliert somit ein Oszillation der Stellgröße. Der Regler errechnet die Parameterwerte aus Amplitude und Schwingungsdauer der Oszillation. Parameter Kürzel Funktion Proportionalband Pb Die Bandbreite in Anzeigeeinheiten, über welche die Ausgangsleistung zwischen min und max proportional verstellt wird. Nachstellzeit ti Die Zeitspanne, welche bei der Sprungantwort benötigt wird, um aufgrund einer I-Wirkung eine gleich große Parameter Kürzel Funktion Stellgrößenänderung zu erzielen, wie sie infolge des PAnteils entsteht. Vorhaltzeit td Die Zeitspanne, um welche die Anstiegsantwort eines PDReglers einen bestimmten Wert der Stellgröße früher erreicht als er ihn infolge seines PAnteils allein erreichen würde. High Cutback Hcb Die Anzahl der Anzeigeeinheiten oberhalb des Sollwertes, bei denen der Regler die Ausgangsleistung erhöht, um Unterschwinger zu vermeiden. Low cutback Lcb Die Anzahl der Anzeigeeinheiten unterhalb des Sollwertes, bei denen der Regler die Ausgangsleistung vermindert, um Überschwinger zu vermeiden. Relative Kühlverstärkung rEL.C Ermittelt das Proportionalband für die Kühlung, indem es Pb durch rEL dividiert 40 HA026270GER Ausgabe 5.0 08/07 Besteht bei voller Heiz- oder Kühlleistung Gefahr für Ihren Prozeß, können Sie die Grenzen dieser Leistungen verändern. Passen Sie die Parameter für die Grenzen der Ausgangsleistung Ihrem Prozeß an (siehe op-Menü) Aktivieren Sie die Selbstoptimierung einmal bei Inbetriebnahme eines Prozesses. Sollte die Regelung instabil werden, können Sie jederzeit eine neue Selbstoptimierung starten. Starten Sie die Selbstoptimierung bei Umgebungstemperatur des Prozesses, damit der Tuner die Cutbackwerte bestimmen kann. Einstellen der Zykluszeiten Stellen Sie vor der Selbstoptimierung die Parameter CYC.H (Zykluszeit Heizen) und CYC.C (Zykluszeit Kühlen) im Ausgangsleistungs-Menü ein. Setzen Sie die Werte für einen Logikheizausgang auf CYC.H = 1s, für einen Relaisausgang auf CYC.H = 20s und für einen Logikkühlausgang auf CYC.C = 5,0s. 12.1 Aktivierung der Selbstoptimierung Die Selbstoptimierung ist nur bei ausgeschalteter Sollwertrampe möglich (sprr = OFF) 1. Geben Sie den Arbeitssollwert ein. 2. Setzen Sie den Parameter ‘tunE’ im Atun- Menü auf ‘on’ 3. Drücken Sie gleichzeitig die Tasten und , damit Sie in die Hauptanzeige zurückkehren. Die Anzeige tune gibt an, daß die Selbstoptimierung gestartet ist (tune wechselt mit Istwert). 4. Der Regler induziert eine Oszillation in der Temperatur, indem er die Heizung erst ein- dann wieder ausschaltet. 5. Nach Beenden der Selbstoptimierung (2 Zyklen) berechnet der Regler die Parameter und geht zum normalen Regelbetrieb über. Arbeiten Sie mit P, PD oder PI – Regelung, setzen Sie die nicht benötigten Parameter td bzw. ti auf OFF bevor Sie die Selbstoptimierung starten. Der Tuner berechnet dann keine Werte für diese Parameter. HA026270GER Ausgabe 5.0 08/07 41 12.1.1 Berechnung der Cutbackwerte Mit Hilfe der Parameter Low und High Cutback werden Über- bzw. Unterschwinger bei großen Temperaturänderungen vermieden. Haben Sie die Parameter auf Auto gesetzt, werden sie auf das Dreifache des Proportionalbandes eingestellt. Diese Werte werden dann während der Selbstopmierung nicht mehr geändert. 12.2 Manuelle Optimierung Sie können den Regler manuell optimieren. In diesem Abschnitt wird die Optimierung nach dem Ziegler- Nichols- Verfahren beschrieben. Der prozeß befindet sich auf Arbeitstemperatur. 1. Setzen Sie die Parameter ti und td auf OFF. 2. Stellen Sie die Parameter Hcb und Lcb, auf Auto. 3. Der Istwert weicht vom Sollwert ab (PAbweichung). 4. Sobald sich die Temperatur stabilisiert hat, reduzieren Sie den Wert des Proportionalbandes Pb, bis die Temperatur anfängt zu schwingen. Erhöhen Sie den Wert des Proportionalbandes wieder soweit, daß die Temperatur gerade aufhört zu schwingen. Nehmen Sie sich für diese Einstellung viel Zeit. Notieren Sie sich den Wert des Proportionalbandes B und die Periodendauer T. 5. Berechnen Sie die Werte für ti, td und Pb nach der folgenden Tabelle. Stellen Sie die berechneten Werte im Regler ein. Regelart Pb ti td Proportional 2xB OFF OFF P + I 2,2xB 0,8xT OFF P + I + D 1,7xB 0,5xT 0,12xT Prozeßgröße Optimierungssollwert Fiktiver sollwert Geräte mit Heizund Kühlausgang Zeit Optimierung beendet (Heizund Kühlausgang) Optimierung beendet nur (Heizausgang) Ausgang 0% -100% 100% 42 HA026270GER Ausgabe 5.0 08/07 12.2.1 Einstellen der Cutbackwerte Haben Sie die Parameter wie vorher beschrieben eingestellt, ist der Regler für eine Geradeausregelung optimiert. Treten während der Startphase oder bei größeren Temperatursprüngen unakzeptable Über- oder Unterschwinger auf, sollten Sie die Parameter Lcb und Hcb einstellen. 1. Setzen Sie Lcb = Hcb = 3 x PB. 2. Notieren Sie sich die werte der Über- bzw. Unterschwinger für einen großen Temperatursprung (siehe unten). 3. Beispiel a) Erhöhen Sie den Parameter Lcb um den Wert des Überschwingers. Beispiel b) Verringern Sie den Parameter Lcb um den wert des Unterschwingers. Beispiel (a) Beispiel (b) Nähert sich der Iswert dem Sollwert von oben, können Sie Hcb nach dem gleichen Verfahren berechnen. 12.2.2 Manual Reset Arbeiten Sie mit einem PD-Regler, ist der Parameter ti auf OFF gesetzt und es bleibt eine Abweichung zwischen Soll- und Iswert. In diesem Fall erscheint im PID-Menü der parameter für den Manual reset (res). Mit diesem Parameter wird der Ausgangsleistung ein Offset aufgeschatet, um die Abweichung auszuregeln. Geben Sie diesen Parameterwert manuell ein, um eine bleibende Abweichung zu vermeiden. Prozeßgröße Unterschwingen Zeit Sollwert Prozeßgröße Zeit Sollwert Uberschwingen HA026270GER Ausgabe 5.0 08/07 43 13. Bestellcodierung Codieren Sie den gewünschten Regler nach dem vorliegenden Schema. Modell Funktion Versorgung Anleitung Logikein/ausgang Relais Funktion CC PID Regler NF EIN/AUS Regler TC PID + Timer TN EIN/AUS + Timer Versorgung VH 85-264V AC VL 20 -29V AC/DC Anleitung XXX Keine Anleitung ENG Englisch FRA Französisch GER Deutsch NED Holländisch SPA Spanisch SWE Schwedisch ITA Italienisch Relais XX Keine Ausgang RH Heizen RC Kühlen FH Max Alarm 2 FL Min Alarm 2 AL Max Alarm 2 & Min Alarm 3 DB Abweichungsband DL Abw. Untersollwert DH Abw. Übersollwert NW Neuer Alarm Logikein/ausgang XX Keine Logikausgang Logikausgang LH Heizen LC Kühlen M1 PDSIO mode 1 FH Max alarm 1 FL Min alarm 1 DB Abweichungsband DL Abw. Untersollwert DH Abw. Übersollwert NW Neuer alarm Logikeingang AC Alarmquittierung KL Tastensperre TM Timer Start/Stop Modell 2132 1/16 DIN 2116 1/8 DIN 44 HA026270GER Ausgabe 5.0 08/07 Sensor Bereich min Bereich max Einheit Externes relais Eingangsadapter Externes relais XX Kein Relais R7 Relais (über Logikausgang) Einheit C °C F ° F K Kelvin X Linear Adapter (0-10V) XX Kein Adapter V1 0-10Vdc A1 0-20mA Widerstand (2,49Ω. 0,1%) Sensor Bereich min & max Thermoelement °C J Typ J -210 bis 1200 K Typ K -200 bis 1372 T Typ T -200 bis 400 L Typ L -200 bis 900 N Typ N -200 bis 1300 R Typ R -50 bis 1768 S Typ S -50 bis 1768 B Typ B 0 bis 1820 P Platinell II 0 bis 1369 Widerstandsthermometer Z Pt100 -200 bis 850 Kundenspezifische Eingänge (kein Standard) OC C Typ C -W5%Re/W26%Re (Vorgabe) 0 bis 2319 D Typ D - W3%Re/W25%Re 0 bis 2399 E Typ E -200 bis 999 1 Ni/Ni18%Mo 0 bis 1399 2 Pt20%Rh/Pt40%Rh 0 bis 1870 3 W/W26%Re (Engelhard) 0 bis 2000 4 W/W26%Re (Hoskins) 0 bis 2010 5 W5%Re/W26%Re (Engelhard) 10 bis 2300 6 W5%Re/W26%Re(Bucose) 0 bis 2000 7 Pt10%Rh/Pt40%/Rh 200 bis 1800 8 Exegen K80 I.R. Pyrometer -45 bis 650 Linear M -9.99 bis +80mV Y 0 bis 20mA A 4 bis 20mA V 0 bis 10Vdc -1999 bis 9999 HA026270GER Ausgabe 5.0 08/07 45 14. Technische Daten Schutzart IP65 (EN 60529), oder 4X (NEMA 250) Umgebungstemperatur Betrieb: 0 bis 55oC. Sorgen Sie für genügend Luftzirkulation; Lagerung: -30oC bis +75oC. Relative Feuchte 5 bis 95%, nicht kondensierend Umgebung Die Geräte sind nicht geeignet für den Gebrauch in explosiver oder korrosiver Umgebung; alle Angaben beziehen sich auf Einsatzbereich unter 2000m NN Elektrische Voraussetzungen Netzspannung 100 bis 240Vac -15%, +10%, 48-62Hz, 5Watts max Kleinspannung 24VDC/AC + 20%. DC bis 62Hz, 5Watts Relaisausgang (isoliert) Max: 264VAC, 2A ohm’sch;. Min: 12VDC, 100mA Lebensdauer: Mech: 107 Schaltungen: Elektr: 5 x106 Schaltungen Verdrahtung Der Kabelquerschnitt darf 0,5mm2 (16AWG) nicht unterschreiten. Überstromschutz Verwenden Sie unabhängige 2A Sicherungen für Versorgung und Relais, z. B. EN60127 (typ T) Logikein-und-ausgang 9V bei 12mA, nicht isoliert; der Digitaleingang ist nicht vom Sensoreingang getrennt Elektrische Sicherheit (nach EN 61010) Überspannungstransienten Überspannungstransienten der Netzspannung an allen Spannungsversorgungen zum Gerät maximal 2,5kV Verschmutzungsgrad 2 Leitend Verschmutzungen dürfen nicht in das Gerät gelangen Isolation Alle isolierten Ein- und Ausgänge sind durch eine verstärkte Isolierung galvanisch getrennt Vergleichsstelle >30 bis 1, interne Vergleichsstelle. Überspannungskategorie Kategorie II oder CAT II 46 HA026270GER Ausgabe 5.0 08/07 15. Informationen zu Sicherheit und EMV Dieser Regler wurde in Großbritannien von Eurotherm Ltd hergestellt. Bitte lesen Sie dieses Kapitel, bevor Sie den Regler installieren. Der Regler ist für industrielle Anwendungen im Bereich der Temperaturregelung vorgesehen und entspricht den Europäischen Richtlinien für Sicherheit und EMV. Andere Anwendungen oder Nichtbeachtung der Anweisungen in dieser Bedienungsanleitung kann die Sicherheit des Reglers beeinträchtigen. Es liegt in der Verantwortlichkeit des Inbetriebnehmers, diese Richtlinien bei der Installation des Geräts einzuhalten. 15.1 Allgemein Die Informationen in dieser Anleitung können ohne besondere Hinweise geändert werden. Trotz aller Bemühungen für die Richtigkeit der Angaben kann der Lieferant nicht für in der Anleitung enthaltene Fehler verantwortlich gemacht werden. 15.1.1 Sicherheit Dieses Gerät entspricht der Europäischen Niederspannungsrichtlinie 73/23/EWG, ergänzt durch 93/68/EWG, unter Anwendung des Sicherheitsstandards EN 61010. 15.1.2 Elektromagnetische Verträglichkeit Dieser Regler ist konform zu der EMV Richtlinie 89/336/EWG und den erforderlichen Schutzanforderungen. Die Konformität ist durch eine Drittstelle geprüft und die technischen Unterlagen sind dort abgelegt. Das Gerät ist für Anwendungen im Industriebereich nach EN 61326 vorgesehen. HA026270GER Ausgabe 5.0 08/07 47 15.1.3 Auspacken und Lagerung Die Verpackung sollte ein Gerät in einem Gehäuse, zwei Halteklammern und eine Bedienungsanleitung enthalten. Geräte für bestimmte Bereiche benötigen zusätzlich einen Eingangsadapter. Ist die Verpackung beschädigt, sollten Sie das Gerät nicht einbauen und Kontakt mit der nächsten Eurotherm Niederlassung aufnehmen. Möchten Sie das Gerät vor der Benutzung lagern, schützen Sie es vor Feuchtigkeit und Verschmutzungen und halten Sie die Lagertemperaturen von –10 oC bis +70 oC ein. 15.2 Service und Reparatur Dieses Gerät ist wartungsfrei. Sollte das Gerät einen Fehler aufweisen, kontaktieren Sie bitte die nächste Eurotherm Niederlassung. 15.2.1 Achtung: Geladene Kondensatoren Bevor Sie den Regler aus dem Gehäuse entfernen, nehmen Sie das Gerät vom Netz und warten Sie etwa 2 Minuten, damit sich Kondensatoren entladen können. Es ist sinnvoll, den Regler zum Teil aus dem Gehäuse zu ziehen und dann zu warten, bis Sie ihn ganz aus dem Gehäuse entfernen. Halten Sie diese Zeit nicht ein, können Kondensatoren mit gefährlicher Spannung geladen sein. Vermeiden Sie auf jeden Fall jede Berührung der Elektronik, wenn Sie das Gerät aus dem Gehäuse entfernen. 15.2.2 Elektrostatische Entladung Haben Sie den Regler aus dem Gehäuse entfernt, können einige der freiliegenden Bauteile durch elektrostatische Entladungen beschädigt werden. Beachten Sie deshalb alle Vorsichtsmaßnahmen bezüglich statischer Entladungen. 15.2.3 Reinigung Verwenden Sie für die Reinigung der Geräteaufkleber kein Wasser oder auf Wasser basierende Reinigungsmittel sondern Isopropyl Alkohol. Die Oberfläche der Geräte können Sie mit einer milden Seifenlösung reinigen. 48 HA026270GER Ausgabe 5.0 08/07 15.3 Installation Sicherheitshinweise 15.3.1 Sicherheits Symbole Folgende Symbole können am Gerät angebracht sein: ! Achtung (siehe Dokumentation) 15.3.2 Personal Lassen Sie die Installation dieses Geräts nur von qualifiziertem Personal durchführen. 15.3.3 Berührung Bauen Sie das System zum Schutz vor Berührung in ein Gehäuse ein. 15.3.4 Achtung: Fühler unter Spannung Der Regler ist so konstruiert, dass der Temperaturfühler direkt mit einem elektrischen Heizelement verbunden werden kann. Es liegt in Ihrer Verantwortung dafür zu sorgen, dass Servicepersonal nicht an unter Spannung stehende Elemente gelangen kann. Ist der Fühler mit dem Heizelement verbunden, müssen alle Leitungen, Anschlüsse und Schalter, die mit dem Fühler verbunden sind, für 240 V AC CATII ausgestattet sein. Der Logik EA ist nicht von den PV Eingängen isoliert. 15.3.5 Verdrahtung Die Verdrahtung muss korrekt, entsprechend den Angaben in dieser Bedienungsanleitung und den jeweils gültigen Vorschriften, erfolgen. Achten Sie besonders darauf, dass die AC Spannungsversorgung nicht mit dem Sensoreingang oder anderen Niederspannungsein- oder -ausgängen verbunden wird. Verwenden Sie Kupferleitung (außer für Thermoelementanschluss) und achten Sie darauf, dass alle Zuleitungen und Anschlussklemmen für die entsprechende Stromstärke dimensioniert sind. Weiterhin sind alle Anschlüsse nach den gültigen VDE-Vorschriften bzw. den jeweiligen Landesvorschriften vorzunehmen. 15.3.6 Isolation Die Installation muss einen Trennschalter oder einen Leistungsschalter beinhalten. Bauen Sie diesen Schalter in der Nähe des Systems und gut erreichbar für den Bediener ein. Kennzeichnen Sie den Schalter als trennende Einheit. HA026270GER Ausgabe 5.0 08/07 49 15.3.7 Überstromschutz Sichern Sie die DC Spannungsversorgung des Reglers mit einer Sicherung. Das schützt die Regler-Platinen vor Überstrom. 15.3.8 Maximalspannungen Die maximal anliegende Spannung der folgenden Klemmen muss weniger als 264 V AC betragen: • Relaisausgang zu Logik-, DC oder Fühlerverbindungen; • jede Verbindung gegen Erde. Schließen Sie den Regler nicht an Drehstromnetze ohne geerdeten Mittelpunkt an. Im Falle eines Fehlers kann es bei dieser Versorgung zu Spannungen über 264 V AC kommen. Das Gerät kann dadurch zerstört werden. 15.3.9 Umgebung Leitende Verschmutzungen dürfen nicht in den Schaltschrank gelangen. Um eine geeignete Umgebungsluft zu erreichen, bauen Sie einen Luftfilter in den Lufteintritt des Schaltschranks ein. Sollte der Regler in kondensierender Umgebung stehen (niedrige Temperaturen), bauen Sie eine thermostatgeregelte Heizung in den Schaltschrank ein. Dieses Produkt entspricht der Norm BS EN61010 Überspannungskategorie II, Verschmutzungsgrad 2. Diese sind wie folgt definiert: 15.3.10 Überspannungskategorie II Nennspannung: 230 V. Vorzugswerte von Steh- Stoßspannungen für Überspannungskategorie 2: 2500 V 15.3.10.1 Verschmutzungsgrad 2 Übliche, nicht leitfähige Verschmutzung; gelegentlich muss mit vorübergehender Leitfähigkeit durch Betauung gerechnet werden. 15.3.11 Erdung des Fühlerschirms In manchen Anwendungen wird der Sensor bei laufendem System gewechselt. In diesem Fall sollten Sie als zusätzlichen Schutz vor Stromschlag den Schirm des Temperatursensors erden. Verbinden Sie den Schirm nicht mit dem Maschinengehäuse. 50 HA026270GER Ausgabe 5.0 08/07 15.3.12 Anlagen- und Personensicherheit Beim Entwurf eines Regelsystems sollten Sie sich auch über die Folgen bei Fehlfunktionen Gedanken machen. Bei einem Temperatur-Regelsystem besteht die Gefahr einer ständig laufenden Heizung. Das kann zu Personen- und Anlagenschäden führen. Gründe für eine fehlerhafte Heizung können sein: • Beschädigung des Sensors durch den Prozess • Die Verdrahtung des Thermoelementes wird kurzgeschlossen • Reglerausfall in der Heizperiode • Eine externe Klappe oder Schütz ist in Heizposition blockiert • Der Reglersollwert ist zu hoch. Schützen Sie sich und die Anlage durch eine zusätzliche Temperatur-Schutzeinheit. Diese sollte einen unabhängigen Temperaturfühler und ein Schütz besitzen, der den Heizkreis abschalten kann. Anmerkung: Das Alarmrelais im Regler dient nicht zum Schutz der Anlage, sondern nur zum Erkennen und Anzeigen der Alarme. 15.4 EMV Installationshinweise Um sicherzustellen, dass die EMV-Anforderungen eingehalten werden, treffen Sie folgende Maßnahmen: • Stellen Sie sicher, dass die Installation gemäß den "Eurotherm EMV-Installationshinweisen", Bestellnummer HA025464, durchgeführt wird. • Bei Relaisausgängen müssen Sie eventuell einen geeigneten Filter einsetzen, um die Störaussendung zu unterdrücken. Bei typischen Anwendungen empfehlen wir Schaffner FN321 oder FN612. Bitte beachten Sie, dass die Anforderungen an die Filter jedoch von der verwendeten Lastart abhängen. • Verwenden Sie den Regler in einem Tischgehäuse, sind unter Umständen die Anforderungen der Fachgrundnorm EN 50081-1 (Wohn-, Geschäft- und Gewerbebereich) gültig. Bauen Sie in diesem Fall einen passenden Filter in das Gehäuse ein. Wir empfehlen Schaffner FN321 und FN612. HA026270GER Ausgabe 5.0 08/07 51 15.4.1 Leitungsführung Um die Aufnahme von elektrischem Rauschen zu minimieren, verlegen Sie die Leitungen von Logikund Stetigausgang und Sensoreingang weitab von Netzspannungsleitungen. Ist dies nicht möglich, verwenden Sie bitte abgeschirmte Kabel. Die Abschirmung muss an einem Ende geerdet sein. Achten Sie darauf, die Leitungslänge so kurz wie möglich zu halten. Führt die Signalverdrahtung gefährliche Spannungswerte (oder kann unter Fehlerbedingungen gefährliche Spannungswerte führen), ist eine doppelte Isolierung notwendig. * Eine vollständige Erklärung der 'gefährlichen Spannung' finden Sie unter 'Hazardous Live' in der Norm BS EN61010. Zusammengefasst besagt diese, dass im Normabetrieb Spannungswerte über 30 Veff (42,2 V Spitze) oder über 60 V DC als gefährlich eingestuft werden. 52 HA026270GER Ausgabe 5.0 08/07 16. RoHS Product group 2100 Table listing restricted substances Chinese 产 2100 铅镉铬溴联苯溴苯醚 线组X O X O O O 属O O O O O O 显X O O O O O 块X O X O O O O X English Product 2100 Pb Hg Cd Cr(VI) PBB PBDE PCBA X O X O O O Enclosure O O O O O O Display X O O O O O Modules X O X O O O O X Approval Name: Position: Signature: Date: Martin Greenhalgh Quality Manager IA029470U450 (CN23172) Issue 1 Feb 07 Indicates that this toxic or hazardous substance contained in at least one of the homogeneous materials used for this part is above the limit requirement in SJ/T11363-2006. 该质该质SJ/T11363-2006 标规 Toxic and hazardous substances and elements Indicates that this toxic or hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement in SJ/T11363-2006. Restricted Materials Table Restriction of Hazardous Substances (RoHS) 览 质 该质该质SJ/T11363-2006 标规 AUSTRALIA Sydney Eurotherm Pty. Ltd. Telephone (+61 2) 9838 0099 Fax (+61 2) 9838 9288 E-mail info.au@eurotherm.com AUSTRIA Vienna Eurotherm GmbH Telephone (+43 1) 7987601 Fax (+43 1) 7987605 E-mail info.at@eurotherm.com BELGIUM & LUXEMBURG Moha Eurotherm S.A/N.V. Telephone (+32) 85 274080 Fax (+32 ) 85 274081 E-mail info.be@eurotherm.com BRAZIL Campinas-SP Eurotherm Ltda. Telephone (+5519) 3707 5333 Fax (+5519) 3707 5345 E-mail info.br@eurotherm.com DENMARK Copenhagen Eurotherm Danmark AS Telephone (+45 70) 234670 Fax (+45 70) 234660 E-mail info.dk@eurotherm.com FINLAND Abo Eurotherm Finland Telephone (+358) 22506030 Fax (+358) 22503201 E-mail info.fi@eurotherm.com FRANCE Lyon Eurotherm Automation SA Telephone (+33 478) 664500 Fax (+33 478) 352490 E-mail info.fr@eurotherm.com GERMANY Limburg Eurotherm Deutschland GmbH Telephone (+49 6431) 2980 Fax (+49 6431) 298119 E-mail info.de@eurotherm.com HONG KONG & CHINA Eurotherm Limited North Point Telephone (+85 2) 28733826 Fax (+85 2) 28700148 E-mail info.hk@eurotherm.com Guangzhou Office Telephone (+86 20) 8755 5099 Fax (+86 20) 8755 5831 E-mail info.cn@eurotherm.com Beijing Office Telephone (+86 10) 6567 8506 Fax (+86 10) 6567 8509 E-mail info.cn@eurotherm.com Shanghai Office Telephone (+86 21) 6145 1188 Fax (+86 21) 6145 1187 E-mail info.cn@eurotherm.com International Sales and Service http://www.eurotherm.co.uk HA026270EFG/5 CN23704 INDIA Chennai Eurotherm India Limited Telephone (+9144) 24961129 Fax (+9144) 24961831 E-mail info.in@eurotherm.com IRELAND Dublin Eurotherm Ireland Limited Telephone (+353 1) 469 1800 Fax (+353 1) 469 1300 E-mail info.ie@eurotherm.com ITALY Como Eurotherm S.r.l Telephone (+39 31) 975111 Fax (+39 31) 977512 E-mail info.it@eurotherm.com KOREA Seoul Eurotherm Korea Limited Telephone (+82 31) 273 8507 Fax (+82 31) 273 8508 E-mail info.kr@eurotherm.com NETHERLANDS Alphen a/d Rijn Eurotherm B.V. Telephone (+31 172) 411752 Fax (+31 172) 417260 E-mail info.nl@eurotherm.com NORWAY Oslo Eurotherm A/S Telephone (+47 67) 592170 Fax (+47 67) 118301 E-mail info.no@eurotherm.com POLAND Katowice Eurotherm A/S Telephone (+48 32) 2185100 Fax (+48 32) 2177171 E-mail info.pl@eurotherm.com SPAIN Madrid Eurotherm España SA Telephone (+34 91) 6616001 Fax (+34 91) 6619093 E-mail info.es@eurotherm.com SWEDEN Malmo Eurotherm AB Telephone (+46 40) 384500 Fax (+46 40) 384545 E-mail info.se@eurotherm.com SWITZERLAND Wollerau Eurotherm Produkte (Schweiz) AG Telephone (+41 44) 787 1040 Fax (+41 44) 787 1044 E-mail info.ch@eurotherm.com UNITED KINGDOM Worthing Eurotherm Limited Telephone (+44 1903) 268500 Fax (+44 1903) 265982 E-mail info.uk@eurotherm.com U.S.A Leesburg VA Eurotherm Inc. Telephone (+1 703) 443 0000 Fax (+1 703) 669 1300 E-mail info.us@eurotherm.com ED52 © Copyright Eurotherm Limited 2007 All rights are strictly reserved. No part of this document may be reproduced, modified, or transmitted in any form by any means, nor may it be stored in a retrieval system other than for the purpose to act as an aid in operating the equipment to which the document relates, without the prior written permission of Eurotherm limited. Eurotherm Limited pursues a policy of continuous development and product improvement. The specifications in this document may therefore be changed without notice. The information in this document is given in good faith, but is intended for guidance only. Eurotherm Limited will accept no responsibility for any losses arising from errors in this document. BK889B PONT DE MESURE RLC DE TABLE AVEC INTERFACE USB MANUEL D’UTILISATION RÉSUMÉ DES RÈGLES DE SÉCURITÉ GÉNÉRALITÉS – Les informations générales de sécurité données ici sont valables à la fois pour le personnel qui utilise l’appareil et pour le personnel de maintenance. TERMES – Dans ce manuel, l’indication ATTENTION identifie les conditions ou pratiques qui peuvent occasionner des dommages à l’équipement ou autres biens, et l’indication DANGER identifie les conditions ou pratiques qui peuvent occasionner des blessures ou présenter un risque vital pour le personnel. Ne pas passer outre les indications ATTENTION et DANGER avant d’avoir bien compris et rempli les conditions indiquées. FONCTIONNEMENT – Avant la mise sous tension, respecter les instructions d’installation et d’utilisation. MISE À LA TERRE – Cet appareil est mis à la terre par le conducteur de terre du câble d’alimentation. Ne pas détériorer cette connexion. En cas d’absence de protection par mise à la terre, toutes les parties conductrices accessibles (y compris les boutons et commandes) peuvent provoquer un choc électrique. ADDITIONNELLEMENT – Toute opération de réglage, maintenance ou réparation ne doit être effectuée que par un personnel qualifié. – Pour éviter les risques de dommages corporels, ne pas utiliser cet appareil avec le couvercle ou les panneaux démontés. – Utiliser uniquement des fusibles du type spécifié dans la liste des composants. Ne jamais utiliser des fusibles réparés ni court-circuiter les porte fusibles. – N’effectuer aucune modification non-autorisée de l’instrument. – Ne pas utiliser l’instrument en présence de gaz inflammables ou en atmosphère explosive. – Déconnecter le câble d’alimentation avant de démonter les panneaux de protection, de souder ou de remplacer des composants. – Ne pas entreprendre de manipulations ou réglages internes hors de la présence d’une personne capable de porter les premiers secours et de pratiquer une réanimation. Sommaire SOMMAIRE......................................................................................................................................................................................... 3 1. INTRODUCTION ...................................................................................................................................................................... 3 1.1 GENERAL................................................................................................................................................................................................................................3 1.2 PARAMÈTRES D’IMPÉDANCE .................................................................................................................................................................................................4 1.3 SPÉCIFICATIONS .....................................................................................................................................................................................................................5 1.4 ACCESSOIRES .......................................................................................................................................................................................................................12 2. UTILISATION.......................................................................................................................................................................... 13 2.1 DESCRIPTION........................................................................................................................................................................................................................13 2.2 MESURES..............................................................................................................................................................................................................................14 2.2.1 Calibration ouverte/fermée ..........................................................................................................................................................................................................................................14 2.2.2 Mode Relatif..................................................................................................................................................................................................................................................................14 2.2.3 Range Hold (maintien de la gamme) ...........................................................................................................................................................................................................................14 2.2.4 Mesure de la résistance continue.................................................................................................................................................................................................................................14 2.2.5 Mesure de l’impédance AC...........................................................................................................................................................................................................................................15 2.2.6 Mesure de la capacité ...................................................................................................................................................................................................................................................15 2.2.7 Mesure de l’inductance.................................................................................................................................................................................................................................................15 3. MODES................................................................................................................................................................................... 15 3.1 SYNTAXE DE LA COMMANDE DU MODE REMOTE MODE....................................................................................................................................................19 3.2 COMMANDES DU MODE REMOTE........................................................................................................................................................................................19 4. APPLICATION ........................................................................................................................................................................ 25 4.1 CONNEXION DES FILS DE MESURE .......................................................................................................................................................................................25 4.2 COMPENSATION OUVERTE/FERMÉE.....................................................................................................................................................................................27 4.3 CHOIX DU MODE SÉRIE OU PARALLÈLE ...............................................................................................................................................................................28 3 1. Introduction 1.1Général Le pont de mesure RLC de table avec interface USB BK889B est un instrument très précis utilisé pour mesurer les inductances, capacités et résistances avec une précision de base de 0.1%. Grâce à ses fonctions intégrées de mesures de tension/courant AC/DC et de vérifications de la continuité et de test diode, le BK889B ne permet pas seulement de comprendre les caractéristiques des composants électroniques, c’est aussi un outil essentiel pour tout usage en laboratoire. Le BK889B est par défaut en mode gammes automatiques. Cependant, il peut aussi être utilisé en gammes automatiques et manuelles en appuyant sur la touche Range Hold. Lorsque le mode mesure LCR est sélectionné, l’une des fréquences de test (100Hz, 120Hz, 1KHz, 10KHz, 100KHz ou 200KHz) peut être sélectionnée sur toutes les gammes applicables. L’une des tensions de test (50mVeff, 0.25Veff, 1Veff ou 1VDC) (DCR uniquement) peut aussi être sélectionnée sur toutes les gammes applicables. Le double affichage permet d’effectuer des mesures en simultané. Lorsque le mode mesure tension/courant DC/AC ou le mode Vérification de la continuité de la diode/audible est sélectionné, seul l’affichage secondaire sera utilisé pour afficher la mesure. Le BK889B peut effectuer virtuellement toutes les fonctions des ponts RLC de table. Grâce à sa précision de base de 0.1%, l’instrument économique peut remplacer un pont plus cher dans divers cas. De plus, avec une précision de base de 0.4% dans les mesures de tension et de courant, le BK889B possède les mêmes fonctions qu’un multimètre numérique, vous disposez ainsi de plusieurs instruments en un. Le BK889B peut servir à vérifier les valeurs ESR des condensateurs, régler et/ou sélectionner des composants, mesurer des composants banalisés et inconnus, puis mesurer la capacité, l’inductance ou la résistance des câbles, des commutateurs, des circuits imprimés, etc. Les caractéristiques principales sont les suivantes : 1. Mesures de la tension : · AC : True RMS, jusqu’à 600Veff @ 40~1 kHz · DC : jusqu’à 600V · Impédance d’entrée : 1M-Ohm 2. Mesures du courant : · AC : True RMS, jusqu’à 2Aeff @ 40~1 kHz · DC : jusqu’à 2A · Shunt du courant : 0.1 Ohm@>20mA ; 10Ohm @<20mA 3. Vérifications continuité Diode/Audible : · Tension en circuit ouvert : 5Vdc · Courant de court-circuit : 2.5mA · Buzzer activé : < 25 · Buzzer désactivé : > 50 4. Mesures LCR : · Conditions de test · Fréquence : 100Hz/120Hz/ 1KHz/ 100KHz / 200KHz · Niveau : 1Veff/0.25Veff/50mVeff/1VDC (DCR uniquement) · Paramètres de mesure : Z, Ls, Lp, Cs, Cp, DCR, ESR, D, Q et θ · Précision de base : 0.1% · Double affichage LCD · Gamme automatique ou gamme Hold · Interface USB · Calibration ouverte/fermée · Affichage principal des paramètres : · Z : Impédance alternative · DCR : Résistance continue · Ls : Inductance série · Lp : Inductance parallèle · Cs : Capacité série · Cp : Capacité parallèle · Affichage secondaire · θ: Angle de phase · ESR : Résistance série équivalente · D : Facteur de dissipation · Q : Facteur de qualité · Combinaisons d’affichage : · Mode Série : Z-θ, Cs – Q, Cs – ESR, Ls – D, Ls – Q, Ls – ESR Mode Parallèle : Cp – D, Cp – Q, Lp – D, Lp – Q 4 1.2 Paramètres d’impédance A cause des différents signaux de test sur l’instrument de mesure d’impédance, il y a l’impédance DC et l’impédance AC. Le multimètre numérique classique peut uniquement mesurer l'impédance DC mais le BK889B peut mesurer les deux. Il est très important de comprendre les paramètres d’impédance des composants électroniques. Lorsque nous analysons l’impédance avec le plan de mesure d’impédance (figure 1.1), elle peut être visualisée par un élément réel sur l’axe X et un élément imaginaire sur l’axe Y. Le plan de mesure d’impédance peut aussi être perçu comme des coordonnées polaires. Le Z représente la magnitude et le θ est la phase de l’impédance. ( ) ( ) ( ) ( ) (Ohm ) Reactance Resistance Impedance W = = = = = = - = = + = + = Ð W S S X R Z Rs X s X s Z Sin Tan Rs Z Cos Z Rs X s Z Rs jX s Z 1 2 2 q q q q Il existe deux types de réactance : Inductive (XL) et Capacitive (XC) pouvant être définies de la manière suivante : Il y a aussi le facteur de Qualité (Q) et le facteur de Dissipation (D) qui doivent être traités. Le facteur Qualité sert de mesure de la pureté de la réactance pour le composant. En réalité, il y a toujours une résistance associée qui dissipe la puissance en augmentant la quantité d’énergie qui peut être récupérée. Le facteur Qualité peut être défini comme le rapport énergie stockée (réactance)/énergie dissipée (résistance). Q sert généralement pour les inductances et D pour les condensateurs. X s R s Z (R s , X s ) Z q Axe imaginaire Axe réel Figure 1.1 C fC XC X L L fL w p w p 2 1 1 2 = = = = C p R p L p R p X p R p G B Rs C s Rs Ls Rs X s D Q w w w w d = = = = = = = = = 1 tan 1 1 L = Inductance (H) C = Capacité (F) f = Fréquence (Hz) 5 Il existe deux types de circuits : le mode série et le mode parallèle. Regarder la figure 1.2 pour découvrir la relation des modes série et parallèle. 1.3 Spécifications Gamme de mesure: Paramètre Gamme Z 0.000 W à 500.0 MW L 0.030 μH à 9999 H C 0.003 pF à 80.00 mF DCR 0.000 W à 500.0 MW ESR 0.000 W à 9999 W D 0.000 à 9999 Q 0.000 à 9999 θ -180.0 ° à 180.0 ° Mesure de tension/courant V 0.0 mV à +/- 600 V A 0.000 mA à +/- 2 A Précision (Ae): 1. Mesure de la tension continue : Gamme : 2V, 20V, 200V et 600V Résolution : 1mV, 10mV, 100mV et 1V Précision :+/- (0.4% + 3 digits) Impédance d’entrée : 1M-Ohm 2. Mesure de la tension alternative (True RMS) Gamme : 2V, 20V, 200V et 600V Résolution : 1mV, 10mV, 100mV et 1V Précision :+/- (0.8% + 5 digits) Impédance d’entrée : 1M-Ohm 3. Mesure du courant continu : Gamme : 2mA, 20mA, 200mA et 2000mA Résolution : 1μA, 10μA, 100μA et 1μA Précision :+/- (0.4% + 3 digits) Shunt du courant : 0.1 Ohm @ >20mA, 10 Ohm @ £20mA 4. Mesure du courant alternatif (True RMS) Gamme : 2mA, 20mA, 200mA et 2000mA Résolution : 1μA, 10μA, 100μA et 1μA Précision :+/- (0.8% + 5 digits) Shunt du courant : 0.1 Ohm @ >20mA, 10 Ohm @ £20mA Figure 1.2 Les composants réels et imaginaires sont en série Z = Rs + jXs Rs jXs Les composants réels et imaginaires sont en parallèle G=1/Rp jB=1/jXp Y =G+ jB jXp Rp jXP 1 RP 1 Y = + 6 Note : La précision des mesures de tension/courant DC/AC s’applique uniquement sur 5%-10% de la gamme 5. Mesure LCR: Précision Z (Ae) : |Zx| Freq. 20M ~ 10M (W) 10M ~ 1M (W) 1M ~ 100K (W) 100K ~ 10K (W) 10K ~ 1K (W) 1K ~ 100 (W) 100 ~ 1 (W) 1 ~ 0.1 (W) DCR 0.1% ±1 0.2% ±1 100Hz 120Hz 1KHz 2% ±1 1% ±1 10KHz 5% ±1 2% ±1 0.5% ±1 0.2% ±1 0.5% ±1 1% ±1 100KHz 200KHz NA 5% ±1 2% ±1 1% ±1 0.4% ±1 1% ±1 2% ±1 5% ±1 Note: 1. La précision s’applique lorsque le niveau de test est à 1Veff 2. Ae multiplie 1,25 lorsque le niveau de test est à 250mVeff 3. Ae multiplie 1,50 lorsque le niveau de test est à 50mVeff 4. Lorsque l’on mesure L et C, multiplier Ae par 1+Dx2 si Dx>0.1 : Ae s’applique uniquement lorsque le niveau de test est à 1Vrms. Précision C : 79.57pF | 159.1pF 159.1pF | 1.591nF 1.591nF | 15.91nF 15.91nF | 159.1uF 159.1nF | 1.591uF 1.591uF | 15.91uF 15.91uF | 1591uF 1591uF | 100Hz 15.91mF 2% ± 1 1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1 66.31pF | 132.6pF 132.6pF | 1.326nF 1.326nF | 13.26nF 13.26nF | 132.6nF 132.6nF | 1.326uF 1.326uF | 13.26uF 13.26uF | 1326uF 1326uF | 120Hz 13.26mF 2% ± 1 1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1 7.957pF | 15.91pF 15.91pF | 159.1pF 159.1pF | 1.591nF 1.591nF | 15.91nF 15.91nF | 159.1nF 159.1nF | 1.591uF 1.591uF | 159.1uF 159.1uF | 1KHz 1.591mF 2% ± 1 1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1 10KHz 0.795pF | 1.591pF 1.591pF | 15.91pF 15.91pF | 159.1pF 159.1pF | 1.591nF 1.591nF | 15.91nF 15.91nF | 159.1nF 159.1nF | 15.91uF 15.91uF | 159.1uF 7 5% ± 1 2% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1 NA 0.159pF | 1.591pF 1.591pF | 15.91pF 15.91pF | 159.1pF 159.1pF | 1.591nF 1.591nF | 15.91nF 15.91nF | 1.591uF 1.591uF | 15.91uF 100KHz NA 5% ± 1 2%± 1 1%± 1 0.4%± 1 1%± 1 2%± 1 5% ± 1 NA 0.079pF | 0.795pF 0.795pF | 7.957pF 7.957pF | 79.57pF 79.57pF | 795.7pF 795.7pF | 7.957nF 7.957nF | 795.7nF 795.7nF | 7.957uF 200KHz NA 5% ± 1 2%± 1 1%± 1 0.4%± 1 1%± 1 2%± 1 5% ± 1 Précision L: 31.83KH | 15.91KH 15.91KH | 1591H 1591H | 159.1H 159.1H | 15.91H 15.91H | 1.591H 1.591H | 159.1mH 159.1mH | 1.591mH 1.591mH | 100Hz 159.1uH 2% ± 1 1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1 26.52KH | 13.26KH 13.26KH | 1326H 1326H | 132.6H 132.6H | 13.26H 13.26H | 1.326H 1.326H | 132.6mH 132.6mH | 1.326mH 1.326mH | 120Hz 132.6uH 2% ± 1 1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1 3.183KH | 1.591KH 1.591KH | 159.1H 159.1H | 15.91H 15.91H | 1.591H 1.591H | 159.1mH 159.1mH | 15.91mH 15.91mH | 159.1uH 159.1uH | 1KHz 15.91uH 2% ± 1 1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1 318.3H | 159.1H 159.1H | 15.91H 15.91H | 1.591H 1.591H | 159.1mH 159.1mH | 15.91mH 15.91mH | 1.591mH 1.591mH | 15.91uH 15.91uH | 10KHz 1.591uH 5% ± 1 2% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1 31.83H | 15.91H 15.91H | 1.591H 1.591H | 159.1mH 159.1mH | 15.91mH 15.91mH | 1.591mH 1.591mH | 159.1uH 159.1uH | 1.591uH 1.591uH | 0.159uH 100KHz NA 5% ± 1 2%± 1 1% ± 1 0.4% ± 1 1% ± 1 2%± 1 5% ± 1 15.91H | 7.957H 7.957H | 795.7mH 795.7mH | 79.57mH 79.57mH | 7.957mH 7.957mH | 795.7uH 795.7uH | 79.57uH 79.57uH | 0.795uH 0.795uH | 0.079uH 200KHz NA 5% ± 1 2%± 1 1% ± 1 0.4% ± 1 1% ± 1 2%± 1 5% ± 1 Précision D: 8 |Zx| Freq. 20M ~ 10M (W) 10M ~ 1M (W) 1M ~ 100K (W) 100K ~ 10K (W) 10K ~ 1K (W) 1K ~ 100 (W) 100 ~ 1 (W) 1 ~ 0.1 (W) 100Hz ±0.002 ±0.002 120Hz 1KHz ±0.020 ±0.010 10KHz ±0.050 ±0.020 ±0.005 ±0.002 ±0.005 ±0.010 100KHz 200KHz NA ±0.050 ±0.020 ±0.010 ±0.004 ±0.010 ±0.020 ±0.050 Précision q: |Zx| Freq. 20M ~ 10M (W) 10M ~ 1M (W) 1M ~ 100K (W) 100K ~ 10K (W) 10K ~ 1K (W) 1K ~ 100 (W) 100 ~ 1 (W) 1 ~ 0.1 (W) 100Hz ±0.105 ±0.105 120Hz 1KHz ±1.046 ±0.523 10KHz ±2.615 ±1.046 ±0.261 ±0.105 ±0.261 ±0.523 100KHz 200KHz NA ±2.615 ±1.046 ±0.409 ±0.209 ±0.409 ±1.046 ±2.615 Précision Z: Voir tableau 1. Précision C: f Cx Zx × × × = 2 p 1 CAe = Ae of C f : Fréquence de test (Hz) Cx : Valeur de capacité mesurée (F) |Zx| : Valeur d’impédance mesurée () La précision s’applique lorsque Dx (valeur D mesurée) < 0.1 Lorsque Dx>0.1, multiplier CAe par 1 + Dx2 Exemple : Condition de test : Fréquence : 1KHz Niveau : 1Veff DUT : 100nF Donc 9 - = W × × × × = × × × = 1590 2 103 100 10 9 1 2 1 p p f Cx Zx Lire le tableau de précision, obtenir CAe=±0.1% Précision L: Zx = 2 ×p × f × Lx LAe = Ae of L f : Fréquence de test (Hz) Lx : Valeur d’inductance mesurée (F) |Zx| : Valeur d’impédance mesurée () La précision s’applique lorsque Dx (valeur D mesurée) < 0.1 Lorsque Dx>0.1, multiplier LAe par 1 + Dx2 Exemple : Condition de test : Fréquence : 1KHz Niveau : 1Veff DUT : 1mH Donc = × × × - = W = × × × 2 10 3 10 3 6.283 2 p Zx p f Lx Lire le tableau de précision, obtenir LAe = ±0.5% Précision ESR: 100 Ae ESRAe = ±Xx × f Cx Xx f Lx × × × = × × × = p p 2 1 2 ESRAe = Ae de ESR f :Fréquence de test (Hz) Xx :Valeur de réactance mesurée () Lx :Valeur d’inductance mesurée (H) Cx : Valeur de capacité mesurée (F) La précision s’applique lorsque Dx (valeur D mesurée) £ 0.1 Exemple: Condition de test : Fréquence : 1KHz Niveau : 1Veff DUT : 100nF Donc - = W × × × × = × × × = 1590 2 10 3 100 10 9 1 2 1 p p f Cx Zx Lire le tableau de précision, obtenir CAe=±0.1%, 10 = ± × = ±1.59W 100 Ae ESR Ae Xx Précision D: 100 Ae D Ae = ± DAe = Ae de D La précision s’applique lorsque Dx (valeur D mesurée) £ 0.1 Lorsque Dx > 0.1, multiplier Dx par (1+Dx) Exemple : Condition de test : Fréquence : 1KHz Niveau : 1Veff DUT : 100nF Donc - = W × × × × = × × × = 1590 2 10 3 100 10 9 1 2 1 p p f Cx Zx Lire le tableau de précision, obtenir CAe=±0.1%, 0.002 100 = ± × = ± Ae D Ae Précision Q: Qx De Qx De Ae Q × = ± × 1 m 2 QAe = Ae de Q Qx : Valeur du facteur Qualité mesuré De : Valeur de précision relative La précision s’applique lorsque Qx × De < 1 Exemple : Condition de test : Fréquence : 1KHz Niveau : 1Veff DUT : 1mH Donc = × × × - = W = × × × 2 10 3 10 3 6.283 2 p Zx p f Lx Lire le tableau de précision, obtenir LAe=±0.5%, 0.005 100 = ± × = ± Ae De Si Qx = 20 Donc 11 1 0.1 2 1 2 m m = ± × = ± × Qx De Qx De Q Ae Précision θ: 100 Ae π 180 = × Ae q Exemple : Condition de test : Fréquence : 1KHz Niveau : 1Veff DUT : 100nF Donc - = W × × × × = × × × = 1590 2 10 3 100 10 9 1 2 1 p p f Cx Zx Lire le tableau de précision, obtenir ZAe=±0.1%, 0 .057 deg 100 180 0 .1 100 180 = ± × = ± = ± × p p q Ae Ae Signal de test : Précision du niveau : + 10% Précision de la fréquence : 0.1% Impédance de sortie : 100W ± 5% Température : 0°C à 40°C (Utilisation) -20°C à 70°C (Stockage) Humidité relative : Jusqu’à 85% Puissance AC : 110/220V, 60/50Hz Dimensions : 300mm x 220mm x 150mm Masse : 4500g Attention Lorsque le mode de mesure RLC est sélectionné, les facteurs suivants doivent être pris en compte. Fréquence de test : elle peut être choisie et modifiée par l’utilisateur. En général, un signal de test de 1KHz ou plus élevé sert à mesurer les condensateurs qui sont de 0.01μF ou moins, et un signal de test de 120Hz sert pour les condensateurs de 10 μF ou plus. Un signal de test de 1KHz ou plus sert à mesurer les inductances utilisés dans les circuits audio et RF (fréquence radio). C’est parce que ces types d’inductances fonctionnent à de hautes fréquences et exigent d’être mesurés à haute fréquence. En général, les inductances inférieures à 2mH devraient être mesurées à la fréquence de test de 1KHz ou plus, et les inductances supérieures à 200H devraient être mesurées à 120Hz ou moins. Il est recommandé de vérifier la feuille des données du composant pour déterminer la meilleure fréquence de test. Condensateurs chargés : Toujours décharger un condensateur avant d’effectuer des mesures car cela pourrait endommager l’instrument. 12 Effet de D sur la précision A: diminuer la mesure D (Facteur de dissipation) est désirable. Les condensateurs électrolytiques possèdent un facteur de dissipation élevé dû à leur perte normalement élevée. Si D (facteur de dissipation) est trop élevé, la précision de la mesure de capacité peut se dégrader. Il est recommandé de vérifier la feuille des données du composant pour déterminer la valeur D souhaitable du composant. Capacité de mesure des câbles, commutateurs ou autres éléments : mesurer la capacité des câbles coaxiaux est très utile pour déterminer la longueur du câble. La majorité des spécifications donnant la capacité/unité de longueur de câble, c’est pour cela que la longueur du câble peut être déterminée en mesurant la capacité de ce câble. Par exemple : les spécifications exigent un certain câble pour avoir une capacité de 10pF par pied. Après avoir mesuré le câble, la valeur de capacité qui s’affiche est 1.000nF. Diviser 1000pF (1.000nF) par 10pF par pied donne une longueur du câble d’environ 100 pieds. Même si les spécifications sont inconnues, la capacité d’une longueur mesuré du câble (comme 10 pieds) peut être utilisée pour déterminer la capacité/pied. Ne pas utiliser une longueur trop courte car toute erreur sur les calculs de la longueur totale est proportionnelle. Mesures série ou Parallèle (pour inductances) : le mode série affiche la mesure la plus précise dans tous les cas. Le mode série équivalent est essentiel pour obtenir une mesure Q précise de faibles inductances. Là où le risque de pertes sont plus importantes, le mode série équivalent est préférable. Cependant, il existe des cas où le mode parallèle équivalent est le plus approprié. Pour le fonctionnement des inductances en fer (hautes fréquences) où l’hystérésis et les courants de Foucault deviennent important, la mesure en mode parallèle équivalent est préférable. 1.4Accessoires · Un manuel d’utilisation · Un cordon d’alimentation AC · Une pince Kelvin · Un câble de mesure pour multimètre numérique 13 2. Utilisation 2.1 Description 1. Affichage du paramètre primaire 2. Affichage du paramètre secondaire 3. Touche Fonction L/C/Z/DCR 4. Touche Fonction DCA/ACA 5. Touche Fréquence de mesure 6. Borne LCUR 7. Touche Niveau de mesure 8. Touche Range Hold (maintenir la gamme) 9. Référence du modèle 10. Borne LPOT 11. Touche Fonction D/Q/θ/ESR 12. Borne HPOT 13. Touche Calibration ouverte 14. Touche Fonction DCV/ACV 15. Touche Relatif 16. Borne HCUR 17. Touche Calibration 18. Touche Fonction Diode/Continuité 19. Touche Fonction à distance 21. Marche/Arrêt 23. Puissance AC 25. Borne A 20. Borne COM 22. Borne V/Diode/Continuité 24. Port USB 26. Fusible 2A 14 2.2 Mesures 2.2.1 Calibration circuit ouvert/court-circuit Le BK889B effectue des calibrations circuit ouvert/court-circuit qui permettent à l’utilisateur d’obtenir plus de précision pour mesurer une impédance haute ou basse. Nous vous recommandons d’effectuer ce type de calibration si le niveau ou la fréquence de test a été modifiée. Calibration en circuit ouvert Les bornes de mesure étant à l’état circuit ouvert, appuyer sur la touche Open puis l’écran suivant apparaît: Cette calibration dure environ 15 secondes. Une fois la calibration terminée, le BK889B émettra un bip pour indiquer la fin de la calibration. Calibration en court-circuit Pour effectuer une calibration en court-circuit, insérer un court-circuit sur les bornes de mesure. Appuyer sur Short puis l’écran suivant s’affiche: Cette calibration dure environ 15 secondes. Une fois la calibration terminée, le BK889B émettra un bip pour indiquer la fin de la calibration. 2.2.2 Mode Relatif Le mode relatif permet de trier rapidement les composants. Insérer le composant de la valeur de référence pour lire la valeur standard. (Environ 5 secondes pour une lecture stable.) Puis appuyer sur Relative , l’affichage principal se remettra à zéro. Retirer le composant de la valeur de référence et insérer un composant inconnu, l’écran indiquera la valeur qui représente la différence entre la valeur de référence et la valeur inconnue. 2.2.3 Range Hold (maintien de la gamme) Pour mettre l’appareil sur Range Hold, insérer un composant de référence sur cette gamme de mesure. (Environ 5 secondes pour une lecture stable.) Puis appuyer sur Range Hold , cela maintiendra la gamme de 0.5 à 2 fois la gamme de mesure du courant. Lorsque l’on appuie sur Range Hold , l’écran suivant s’affiche: 2.2.4 Mesure de la résistance continue La mesure de la résistance continue permet de mesurer la résistance d’un composant inconnu sous 1VDC. Appuyer sur L/C/Z/DCR pour sélectionner la mesure DCR. L’écran affiche: 15 2.2.5 Mesure de l’impédance AC (Z) La mesure de l‘impédance AC permet de mesurer le Z d’un appareil inconnu. Appuyer sur L/C/Z/DCR pour sélectionner la mesure Z. L’écran affiche: Le niveau et la fréquence de test peuvent être sélectionnés en appuyant sur Level et Freq. 2.2.6 Mesure de la capacité Pour mesurer la capacité d’un composant, appuyer sur L/C/Z/DCR pour sélectionner le mode de mesure Cs (Mode Série) ou Cp (Mode Parallèle). Si le mode série (Cs) est sélectionné, le D, Q et ESR s’affichent sur l’afficheur secondaire. Si le mode Parallèle (Cp) est sélectionné, seuls le D et Q s’affichent sur l’afficheur secondaire. Voici des exemples de mesures de capacité : Le niveau et la fréquence de test peuvent être sélectionnés en appuyant sur Level et Freq. 2.2.7 Mesure de l’inductance Appuyer sur L/C/Z/DCR pour sélectionner le mode Ls ou Lp pour mesurer l’inductance en mode série ou en mode parallèle. Si le mode série (Ls) est sélectionné, le D, Q et ESR s’affichent sur l’afficheur secondaire. Si le mode Parallèle (Lp) est sélectionné, seuls le D et Q s’affichent sur l’afficheur secondaire. Voici des exemples de mesures d’inductance : Le niveau et la fréquence de test peuvent être sélectionnés en appuyant sur Level et Freq. 3. Modes Le BK889B possède quatre modes de fonctionnement : Normal, Binning , Remote et Remote Binning. En appuyant sur Remote , l’utilisateur peut sélectionner l’un des 4 modes ci-dessus. Mode Normal: 16 Le mode Normal est le mode par défaut. C’est un mode local qui fait que le BK889B est piloté par le clavier et les résultats seront envoyés à l’afficheur et au PC équipé d’un port USB. Mode Binning: Le mode Binning est réservé au prochain usage (comme GPIB). Il est réglé pour fonctionner de la même façon que le mode Normal qui reçoit des commandes depuis le clavier et qui envoie les résultats à l’afficheur et au PC équipé d’un port USB. Mode Remote Binning: En mode Remote Binning, le “RMT Bin” sur l’écran s’allumera, le fonctionnement du BK889B est piloté par un PC équipé d’un port USB ou par une borne, les résultats seront envoyés à l’afficheur local et au poste de travail via le port USB. Dans ce mode, toutes les touches sauf Remote sont verrouillées. Le mode Remote Binning permet une meilleure et plus rapide utilisation les programmes d’application. L’utilisateur peut créer un serveur ou un pilote (n’importe quel composant de logiciel peut effectuer la tâche d’un serveur) avec l’interface Graphic, le modèle de réseau OSI, et le puissant interprète intégré à l’afficheur Graphique du support, la connectivité du réseau, les interprétations de la commande de structure (SCPI, IEEE488 etc.) et fera un pont entre le programme d’application de haut niveau comme VB, VISUAL C++, EXCEL, ACCESS etc. et le BK889B. Voir la figure suivante : Le protocole de communication entre le BK889B et un PC équipé d’un port USB se décrit de la manière suivante : 1. Les commandes qui seront envoyées d’un PC à distance à un BK889B sont utilisées pour paramétrer la machine sur un mode de mesure sélectionné. La syntaxe de la commande est: MOD current-state-code Elle commence toujours par MOD suivi par un espace puis par le code d’état actuel. Le code d’état actuel qui est défini dans le tableau ci-dessous fait 3 octets (24 bits), bit-23, 22, 21… bit-0, où bit-23 est le MSB et bit-0 est le LSB. Position du bit LCR DC/AC V/A Bit 2 – Bit 0 (freq test) Réservé 000 100 Hz 001 120 Hz 010 1K Hz 011 10K Hz 100 100K Hz Modèle BK889B Serveur: COM, DCOM, ATL, CONTROL, AUTOMATION EXE Intégrés: Graphic interface, Réseau OSI, et/ou puissant Interprète ou Analyseur VB, VISUAL C++, EXCEL, ACCESS etc. 17 101 200K Hz 110 Réservé 111 Réservé Bit 4 – Bit 3 (niveau test) Réservé 00 50 mVeff 01 250 mVeff 10 1 Veff 11 Réservé Bit 5 Réservé 0 Défaut Défaut 1 Réservé Réservé Bit 6 0 Relatif Relatif 1 Normal Normal Bit 7 0 Calibration Calibration 1 Normal Normal Bit 10 – Bit 8 Réservé 000 Lp 001 Ls 010 Cp 011 Cs 100 Z 101 DCR 110 Réservé 111 Réservé Bit 12 – Bit 11 Réservé 00 D 01 Q 10 DEG 11 ESR Bit 16 – Bit 13 0000 RH nH Réservé 0001 RH uH RH mV, mA 0010 RH mH RH V, A 0011 RH H Réservé 0100 RH pF 0101 RH nF 0110 RH uF 0111 RH mF 1000 RH F 1001 RH Ohm 1010 RH K-Ohm 1011 RH M-Ohm 1100 Réservé 1101 1110 1111 Gamme automatique Gamme automatique Bit 17 0 Calibration court-circuit Calibration court-circuit 1 Calibration circuit ouvert Réservé 18 Bit 21 – Bit 18 Modes de mesure 0000 Réservé 0001 LCR 0010 DCV 0011 ACV 0100 Diode 0101 Continuité 0110 DCA 0111 ACA Autres Réservé Bit 23 – Bit 22 Réservé 00 01 10 11 Par exemple : si la fonction LCR, Cp en mode mesure D est sélectionné en gamme automatique en calibration relative ouverte/fermée sont désactivés et le signal du test est à 1 Veff dans 1KHz, la commande est la suivante : MOD 000001111110001011010010 2. Les résultats qui seront envoyés du BK889B au PC à distance seront empaquetés dans un format de 7 octets ou de 11 octets. Lorsque les données doubles (comme Cp avec D) seront envoyées, les données seront empaquetées dans un format de 11 octets comme indiqué ci-dessous: Lead_code1 : 02 Lead_code2 : 09 Data_code : mesure 8 octets; deux formats de nombre de points instables de 32 bits ; les 4 premiers octets sont la mesure principale (Cp) et la deuxième série de 4 octets représentent la mesure secondaire (D) Checksum : -((02+09+data_code) && 0x00FF) 02 09 M-B0 M-B1 M-B2 M-B3 S-B0 S-B1 S-B2 S-B3 CS Où M-Bx et S-Bx sont la mesure principale et secondaire. Lorsque seule la mesure principale (comme DCR) est envoyée, les données sont empaquetées dans un format de 7 octets décrits ci-dessous: Lead_code1 : 02 Lead_code2 : 03 Data_code : mesure 4 octets Checksum : -((02+03+data_code) && 0x00FF) 02 03 M-B0 M-B1 M-B2 M-B3 CS Lorsque seule la mesure secondaire (comme DCV) est envoyée, les données sont empaquetées dans un format de 11 octets décrits ci-dessous: Lead_code1 : 02 Lead_code2 : 09 Data_code : mesure 8 octets Checksum : -((02+09+data_code) && 0x00FF) 02 09 S-B0 S-B1 S-B2 S-B3 S-B0 S-B1 S-B2 S-B3 CS 19 Mode Remote: En mode Remote, le “RMT” sur l’écran s’allumera et le BK889B pourra communiquer avec le PC équipé d’une interface USB ou une borne via le port USB. Voici le paramétrage de la connexion : Mode Transmission : Semi-duplex Vitesse de transmission : 9600 Parité : Aucune Bits de données : 8 Stop : 1 Liaison : Aucune Dans ce mode, l’écran et toutes les touches sauf Remote seront verrouillés. Le programme externe pilote le BK889B via le port USB. 3.1 Syntaxe de la commande du Mode Remote La syntaxe de la commande est la suivante: COMMAND(?) (PARAMETER) Le format de COMMAND et PARAMETER est le suivant: 1. Il y a au moins un espace entre COMMAND et PARAMETER. 2. Le PARAMETER doit uniquement utiliser la chaîne ASCII pas le code numérique. 3. Le paramètre de la valeur peut être un entier, instable ou exposant avec l’unité. Par exemple : 50mV 0.05V 5.0e1mV 4. Le point d’interrogation (?) à la fin de COMMAND représente une demande ou une commande de mesure. Par exemple : “CpD” fixe le mode de mesure sur Cp et D. “CpD?” fixe le mode de mesure sur Cp et D, mesure les valeurs et les renvoie. 5. COMMAND et PARAMETER peuvent être soit en majuscule soit en minuscule. Mais pour décrire la valeur dans le PARAMETER, il devrait y avoir une différence entre milli (m) et méga (M). Par exemple: 1mV équivaut à 0.001V. 1MV équivaut à 1000000V. 6. Le caractère à la “fin de la commande” doit être placé à la fin: ASCII CR (0DH) ou ASCII LF (0AH) 3.2 Commandes du Mode Remote Commande de paramétrage (ou de demande) de la mesure Le paramétrage suivant et les commandes de demande sont pris en charge par le BK889B. Lorsque la commande de paramétrage du mode de mesure est entrée, le BK889B renvoie “OK” lorsque le paramétrage est terminé. Lorsque la commande de demande est entrée, le BK889B revoie les valeurs de mesure. DCR(?) Paramétrage ou commande de demande du mode de mesure de la résistance continue. CpRp(?) Paramétrage ou commande de demande du mode de mesure de la capacité parallèle et de la résistance parallèle. CpQ(?) Paramétrage ou commande de demande du mode de mesure de la capacité parallèle et du facteur de qualité. CpD(?) Paramétrage ou commande de demande du mode de mesure de la capacité parallèle et du facteur de dissipation. CsRs(?) Paramétrage ou commande de demande du mode de mesure de la capacité série et de la 20 résistance série. CsQ(?) Paramétrage ou commande de demande du mode de mesure de la capacité série et du facteur de qualité. CsD(?) Paramétrage ou commande de demande du mode de mesure de la capacité série et du facteur de dissipation. LpRp(?) Paramétrage ou commande de demande du mode de mesure de la résistance parallèle et de l’inductance parallèle. LpQ(?) Paramétrage ou commande de demande du mode de mesure de l’inductance parallèle et du facteur de qualité. LpD(?) Paramétrage ou commande de demande du mode de mesure de l’inductance parallèle et du facteur de dissipation. LsRs(?) Paramétrage ou commande de demande du mode de mesure de l’inductance série et la résistance série. LsQ(?) Paramétrage ou commande de demande du mode de mesure de l’inductance série et le facteur de qualité. LsD(?) Paramétrage ou commande de demande du mode de mesure de l’inductance série et du facteur de dissipation. RsXs(?) Paramétrage ou commande de demande du mode de mesure de l’inductance série et la réactance série. RpXp(?) Paramétrage ou commande de demande du mode de mesure de la résistance parallèle et de la réactance parallèle. ZTD(?) Paramétrage ou commande de demande du mode de mesure de l’impédance et de l’angle (Deg). ZTR(?) Paramétrage ou commande de demande du mode de mesure de l’impédance et de l’angle (Rad). DCV(?) Paramétrage ou commande de demande du mode de mesure de la tension continue. ACV(?) Paramétrage ou commande de demande du mode de mesure de la tension alternative. DCA(?) Paramétrage ou commande de demande du mode de mesure du courant continu. ACA(?) Paramétrage ou commande de demande du mode de mesure du courant alternatif. Exemple: CPD (sur Cp- mode D) OK CPD? 0.22724 0.12840 (retour des valeurs) DCR? 5.1029 (retour de la valeur) *IDN? Demande l’identité du BK889B. Cette commande sert à identifier les informations de base du BK889B. La valeur retournée a quatre champs séparés par une virgule (,). La longueur totale n’est pas supérieure à 100 caractères. Les quatre champs sont: 1. Nom du fabricant 2. Numéro du modèle 3. Numéro de série 4. Numéro de la version du logiciel Exemple: *IDN? B&K PRECISION CORP. MODEL889B,123456789,4.096 21 *RST Remet le BK889B dans son état par défaut. L’état par défaut est : 1KHz 1Vrms CpD uF Une fois le BK889B remis à zéro, il retournera la chaîne d’identité. ASC Définit le format de la valeur de retour. Cette commande fixe le retour de la chaîne ASCII ou du code numérique. PARAMETER: ON chaîne ASCII OFF code numérique Exemple: ASC ON OK (retour) FREQ? 1KHz (retour) ASC OFF OK (retour) FREQ? 2 (retour) CORR OPEN Effectue la calibration circuit ouvert. CORR SHORT Effectue la calibration court-circuit. FREQ(?) PARAMETER Définit (demande) la fréquence de mesure. FREQ PARAMETER Définit la fréquence de mesure en fonction du paramètre. Lorsque la commande de paramétrage est entrée, le BK889B retourne “OK” à la fin du paramétrage. PARAMETER: Chaîne ASCII Code numérique 100Hz 0 120Hz 1 1KHz 2 10KHz 3 100KHz 4 200KHz 5 Exemple: FREQ 100KHz OK (retour) FREQ? Retourne le paramètre de fréquence de la mesure. Exemple: ASC ON OK FREQ? 1KHz (valeur de retour) ASC OFF OK 22 FREQ? 2 (valeur de retour) LEV(?) PARAMETER Définit (demande) le niveau de mesure. LEV PARAMETER Définit le niveau de mesure en fonction du paramètre. Lorsque le paramétrage est terminé, le BK889B retourne “OK”. PARAMETER: Chaîne ASCII Code numérique 1VDC 0 1Vrms 1 250mVrms 2 50mVrms 3 Exemple: LEV 1V OK LEV? Retourne le paramètre du niveau de mesure. Exemple: ASC ON OK LEV? 1Vrms (valeur de retour) ASC OFF OK LEV? 1 (valeur de retour) MODE? Demande du mode de mesure. Si en mode LCR, six champs doivent être retournés. 1. Fréquence 2. Niveau 3. Mode de mesure 4. Unité de l’affichage principal 5. Unité de l’affichage secondaire L’existence du champ 5 dépend du mode de mesure. Par exemple, il n’y a pas de champ 5 si le mode de mesure est le mode DCR. Les champs sont séparés par un espace (ASCII 20H). Exemple: ASC ON OK CPD OK MODE? 1KHz 1Vrms CpD uF (valeur de retour) ASC ON OK CPRP OK MODE? 1KHz 1Vrms CpRp uF Ohm (valeur de retour) 23 Si en mode de mesure de la tension, les trois champs sont retournés. 1. Mode de mesure 2. Unité de l’affichage principal Exemple: ASC ON OK DCV OK MODE? DCV V (valeur de retour) RANG mV OK MODE? DCV mV (valeur de retour) RANG(?) PARAMETER Définit (demande) l’unité de mesure. RANG PARAMETER Définit l’unité de mesure en fonction du paramètre. L’instrument retourne “OK” à la fin du paramétrage. PARAMETER: ASCII Code numérique pF 0 nF 1 uF 2 mF 3 F 4 nH 8 uH 9 mH 10 H 11 KH 12 mOhm 17 Ohm 18 KOhm 19 MOhm 20 mV 21 V 22 mA 23 A 24 Exemple: RANG pF OK RANG? Retourne le paramètre de l’unité de mesure du courant. Exemple: ASC ON OK RANG? pF (valeur de retour) 24 ASC OFF OK RANG? 0 (valeur de retour) READ? Retourne la valeur de mesure. Cette commande mesurera en fonction du mode de mesure en cours et retournera la valeur mesurée. Exemple: CPD OK READ? 0.22724 0.12840 (valeur de retour) DCR OK READ? 5.1029 (valeur de retour) Les mesures “DCR”, “DCV”, and “ACV” n’enverront qu’une seule valeur mesurée. Les autres modes de mesure enverront deux valeurs mesurées séparées par un espace (ASCII 20H). 25 4.Application 4.1 Connexion des fils de mesure Un pont d’équilibre automatique possède 4 bornes (HCUR, HPOT, LCUR and LPOT) à connecter sur l’appareil à tester (DUT). Il faut comprendre quelle méthode de connexion affectera la précision de la mesure. Borne 2 (2T) – Mesure 2 fils La Borne 2 est la manière la plus simple de connecter le DUT, mais elle contient de nombreuses erreurs qui sont l’inductance et la résistance ainsi que la capacité parasite des câbles de mesure (Figure 4.1).A cause de ces erreurs, la gamme de mesure d’impédance efficace sera limitée de 100W à 10KW. R HCUR HPOT DUT (b) BLOCK DIAGRAM V DUT A Co o Lo Ro Lo (a) CONNECTION (c) TYPICAL IMPEDANCE MEASUREMENT RANGE(£[) 2T 1m 10m 100m 1 10 100 1K 10K 100K 1M 10M LPOT LCUR Figure 4.1 Borne 3 (3T) – Mesure 3 fils La borne 3 utilise la câble coaxial pour réduire l’effet du condensateur parasite (Figure 4.2). Le blindage du câble coaxial doit être relié au boîtier de l’instrument pour augmenter la gamme de mesure jusqu’à 10MW. DUT V A (d) 2T CONNECTION WITH SHILDING HCUR HPOT DUT (b) BLOCK DIAGRAM V DUT A Co Ro Lo Ro Lo Co doesn't effect measurement result (a) CONNECTION (c) TYPICAL IMPEDANCE MEASUREMENT RANGE(£[) 3T 1m 10m 100m 1 10 100 1K 10K 100K 1M 10M LPOT LCUR Figure 4.2 Borne 4 (4T) – Mesure 4 fils La connexion de la borne 4 réduit l’effet de la résistance du fil de mesure (Figure 4.3). Cette connexion peut améliorer la gamme de mesure jusqu’à 10mW min. Cependant, l’effet de l’inductance du fil de mesure ne peut être éliminée. 26 HCUR HPOT DUT (b) BLOCK DIAGRAM V DUT A (a) CONNECTION (c) TYPICAL IMPEDANCE MEASUREMENT RANGE (£[) 4T 1m 10m 100m 1 10 100 1K 10K 100K 1M 10M LPOT LCUR Figure 4.3 Borne 5 (5T) La connexion de la borne 5 est une combinaison de 3T et 4T (Figure 4.4). Elle possède 4 câbles coaxiaux. Grâce à son avantage de 3T et 4T, cette connexion permet une gamme de mesure de10mW à 10MW. (d) WRONG 4T CONNECTION HPOT DUT (a) CONNECTION (b) BLOCK DIAGRAM (c) TYPICAL IMPEDANCE MEASUREMENT RANGE (£[) 5T 1m 10m 100m 1 10 100 1K 10K 100K 1M 10M HCUR V DUT A V DUT A LPOT LCUR Figure 4.4 Chemin borne 4 (4TP) Cette connexion résout le problème causé par l’inductance du câble de mesure. Le 4TP utilise quatre câbles coaxiaux pour isoler le chemin actuel et le câble de prise de tension (Figure 4.5). Le courant de retour circulera dans le câble coaxial ainsi que dans le blindage. Le flux magnétique généré par le conducteur interne neutralisera donc le flux magnétique généré par le conducteur externe (blindage). La connexion du 4TP augmente la gamme de mesure de 1mW à 10MW. 27 (a) CONNECTION (b) BLOCK DIAGRAM DUT V A (c) TYPICAL IMPEDANCE MEASUREMENT RANGE(£[) 4T 1m 10m100m 1 10 100 1K 10K 100K 1M 10M HPOT DUT HCUR LCUR LPOT HPOT DUT HCUR LCUR LPOT (d) 4T CONNECTION WITH SHILDING Figure 4.5 Elimination de l’effet du condensateur parasite Lorsqu’un composant d’impédance élevée est mesuré (i.e. condensateur de faible valeur), le condensateur parasite devient un problème important (Figure 4.6). Sur la figure 4.6(a), le condensateur parasite Cd est mis en parallèle avec le DUT ainsi que le Ci et le Ch. Pour corriger ce problème, ajouter une protection (Figure 4.6(b)) entre les bornes H et L pour freiner le Cd. Si la protection est connecté à la garde de l’instrument, l’effet de Ci et Ch sera supprimé. (a) Parastic Effect HCUR HPOT LPOT LCUR Cd Connection Point DUT Ch Cl Ground (b) Guard Plant reduces Parastic Effect HCUR HPOT LPOT LCUR Guard Plant Figure 4.6 4.2 Compensation circuit ouvert/court circuit Pour ces instruments de mesure d’impédance de précision, la compensation circuit ouvert/court-circuit doit être utilisée afin de réduire l ‘effet parasite de l’installation de mesure. L’effet parasite de l’installation de mesure peut être traité comme les composants passifs simples sur la figure 4.7(a). Lorsque le DUT est ouvert, l’instrument a une conductance Yp = Gp + jwCp (Figure 4.7(b)). Lorsque le DUT est fermé, l’instrument a une impédance Zs = Rs + jwLs (Figure 4.7(c)). Après la compensation ouverte et fermée, Yp et Zs peuvent donc être utilisés pour le vrai calcul Zdut (Figure 4.7(d)). 28 HCUR HPOT LCUR LPOT Co Zdut Rs Ls Zm Go Redundant Impedance (Zs) Parastic Conductance (Yo) Parastic of the Test Fixture (a) Parastic Effect of the Test Fixture HCUR HPOT LCUR LPOT Co Rs Ls Go (b) OPEN Measurement Yo OPEN Yo = Go + j£sCo 1 (Rs + j£s<< ) Go+j£sCo HCUR HPOT LCUR LPOT Co Rs Ls Go (c) SHORT Measurement Zs SHORT Zs = Rs + j£sLs Zm Yo Zdut Zm - Zs Zdut = 1-(Zm-Zs)Yo (d) Compensation Equation Zs Figure 4.7 4.3 Choix du mode série ou parallèle En fonction du besoin de mesure différent, il existe des modes série et parallèle pour décrire les résultats de mesure. Le choix du mode dépend de la valeur élevée ou basse de l’impédance. Condensateur L’impédance et la capacité dans le condensateur sont inversement proportionnelles. La capacité la plus élevée signifie donc l’impédance la plus basse, la capacité la plus petite signifie l’impédance la plus élevée. La figure 4.8 indique le circuit équivalent du condensateur. Si la capacité est petite, le Rp est plus important que le Rs. Si la capacité est grande, le Rs ne doit pas être évitée. Il est donc préférable d‘utiliser le mode parallèle pour une mesure de capacité basse et le mode série pour une mesure de capacité élevée. CIRCUIT OUVERT COURT-CIRCUIT 29 Inductance L’impédance et l’inductance sont directement proportionnelles lorsque la fréquence test est fixée. C’est pour cela que l’inductance plus élevée équivaut à l’impédance la plus élevée et vice versa. La figure 4.9 indique le circuit équivalent de l’inductance. Lorsque l’inductance est faible, le Rs devient plus important que le Rp. Lorsque l’inductance est importante, le Rp doit être prix en considération. Il est donc convenable d’utiliser le mode série pour mesurer une inductance basse et le mode parallèle pour mesurer une inductance élevée. Small capacitor (High impedance) C RP RS Effect No Effect Large capacitor (Low impedance) C RP RS Effect No Effect Figure 4.9 Small inductor (Low impedance) L RP RS Large inductor (High impedance) Effect No Effect L RP RS No Effect Effect 30 DECLARATION OF CE CONFORMITY according to EEC directives and NF EN 45014 norm DECLARATION DE CONFORMITE CE suivant directives CEE et norme NF EN 45014 SEFRAM INSTRUMENTS & SYSTEMES 32, rue Edouard MARTEL 42100 SAINT-ETIENNE ( FRANCE) Declares, that the below mentionned product complies with : Déclare que le produit désigné ci-après est conforme à : The European low voltage directive 2006/95/EEC : La directive Européenne basse tension 2006/95/CE NF EN 61010-031 Safety requirements for electrical equipement for measurement, control and laboratory use. Règles de sécurité pour les appareils électriques de mesurage, de régulation et de laboratoire. The European EMC directive 2004/108/EEC : Emission standard EN 50081-1. Immunity standard EN 50082-1. La directive Européenne CEM 2004/108/CE : En émission selon NF EN 50081-1. En immunité selon NF EN 50082-1. Pollution degree Degré de pollution : 2 Product name Désignation : LCR/ESR meter RLC mètre Model Type : BK889B Compliance was demonstrated in listed laboratory and record in test report number La conformité à été démontrée dans un laboratoire reconnu et enregistrée dans le rapport numéro RC BK889B SAINT-ETIENNE the : Name/Position : Tuesday, April 28, 2009 T. TAGLIARINO / Quality Manager 31 SEFRAM 32, rue E. Martel – BP55 F42009 – Saint-Etienne Cedex 2 France Tel : 0825.56.50.50 (0,15€TTC/mn) Fax : 04.77.57.23.23 Web : www.sefram.fr E-mails : Service commercial : sales@sefram.fr Support technique : support@sefram.fr Manuel d’utilisation_BK1550_Alimentation Alimentation à découpage BK1550 Manuel d’utilisation Manuel d’utilisation_BK1550_Alimentation Manuel d’utilisation_BK1550_Alimentation SOMMAIRE TERMES ET SYMBOLES DE SÉCURITÉ.............................................................................................. 1 CONDITIONS D’UTILISATION............................................................................................................... 2 INTRODUCTION........................................................................................................................................ 2 UTILISER L’ALIMENTATION À DÉCOUPAGE 1550 ......................................................................................... 2 UTILISER LE PORT USB............................................................................................................................... 3 COMMANDES ET INDICATEURS.......................................................................................................... 4 MISE EN OEUVRE....................................................................................................................................... 5 CONNEXION À LA TERRE ............................................................................................................................. 5 MODE DE FONCTIONNEMENT....................................................................................................................... 5 TENSION CONSTANTE (CV), TRANSITION AUTOMATIQUE ET COURANT CONSTANT (CC) ............................ 6 PRÉRÉGLAGE DE LA VALEUR LIMITE DU COURANT (CC) ............................................................................. 6 PROCÉDURE DE CONNEXION ET DE MISE EN ROUTE ..................................................................................... 6 PROTECTION DE LA SORTIE CONTRE LA SURTENSION (OVP) ...................................................................... 7 PROTECTION CONTRE LA SURCHAUFFE........................................................................................................ 7 SPÉCIFICATIONS ...................................................................................................................................... 7 Manuel d’utilisation_BK1550_Alimentation Manuel d’utilisation_BK1550_Alimentation 1 Termes et symboles de sécurité Les termes suivants peuvent être utilisés dans ce manuel ou sur l’instrument : Attention. Se référer au manuel DANGER ! Haute tension – Risque de chocs électriques Terre de protection (Terre) Conducteur de terre Terre (châssis) Prescriptions de sécurité : • L’utilisateur doit être informé des risques liés aux chocs électriques et prendre les précautions nécessaires. • Le raccordement au secteur doit impérativement se faire avec une prise de terre • Toute intervention interne sur le produit (réglages ou réparation) doit se faire par du personnel qualifié Manuel d’utilisation_BK1550_Alimentation 2 Conditions d’utilisation • Humidité relative 10 à 80% • Humidité relative maximum de 80% pour une température maximum de 31°C (dégression linéaire pour 50% d’humidité relative à 40°C). • Altitude maximum de fonctionnement: 2000m • Catégorie d’installation : CAT 2 • Degré de pollution: 2 • Fluctuation de la tension du secteur jusqu’à ±10% de la tension normale. Introduction Utiliser l’alimentation à découpage 1550 Cette alimentation est pilotée par microcontrôleur qui assiste la gestion de la tension et du courant de sortie avec une capacité d’alimentation totale de 100W. Le contrôle de l’alimentation est réalisé par un système de commande originale associé à un affichage digital, ainsi vous pouvez facilement configurer la tension et le courant de sortie. C’est une alimentation faible bruit et ondulation et silencieuse, idéale pour le travail en laboratoire, en atelier ou dans l’éducation ou l’espace de travail est limité. Le 1550 a une borne USB, un fonctionnement en courant constant, une protection contre les surtensions, les sorties sont isolées, touche activation/désactivation de la sortie, facteur de formes faibles. Manuel d’utilisation_BK1550_Alimentation 3 Utiliser le port USB La sortie USB est destinée à une alimentation USB standard (5VDC et 0.4A). Vous pouvez mettre en marche ou charger vos portables (I-Pod, lecteur MP3 ou téléphone cellulaire*) possédant des connecteurs d’alimentation USB pour obtenir un courant continu de l’ordinateur. * Remarques Tous les téléphones cellulaires ne peuvent pas être rechargés par USB. Certains nouveaux modèles requièrent une tension plus élevée que 5V. Veuillez vous référez à la documentation de l’appareil pour les problèmes de compatibilité. Manuel d’utilisation_BK1550_Alimentation 4 Commandes et indicateurs 1. Interrupteur marche/arrêt : Allumer ou éteindre l’alimentation, lorsqu’elle est mise en marche l’écran s’allume. 2. Prise secteur avec fusible 3. Boîtier fusible masqué ( ôter le cache pour avoir accès au fusible) 4. V: Touche de réglage de la tension de sortie 5. A: Touche de réglage du courant de sortie 6. “+” appuyer sur cette touche pour augmenter les valeurs numériques Manuel d’utilisation_BK1550_Alimentation 5 7. “-” appuyer sur cette touche pour diminuer les valeurs numériques 8. Bouton Output On/Off (activer/désactiver la sortie) 9. Prise USB Norme USB courant continu 5V, 400mA Pour charger ou mettre en marche des ordinateurs portables et téléphones cellulaires 10. Borne de sortie polarité positive (rouge) 11. Borne de terre (:) verte Borne de mise à la masse, normalement elle doit être court-circuitée avec les bornes (+) ou (-) 12. Borne de sortie polarité négative (noir) 13. Ecran LCD affichant: La tension et le courant sur 3 digits, l’indication (CV) mode tension constante, l’indication (CC) mode courant constant, l’état de la borne de sortie (activée/désactivée) Mise en oeuvre Connexion à la terre Suivant l’application, les bornes de sortie de l’alimentation peuvent être mises à la terre dans n’importe laquelle des conditions suivantes : La borne – ou la borne + peuvent être réunies à la borne terre GND (verte). Mode de fonctionnement Cette alimentation a été conçue pour fonctionner comme source de tension constante ou comme source de courant constant. Passage automatique à l’un de ces deux modes, lorsque la condition de charge varie d’une des manières suivantes: Configuration de la valeur de tension: tout d’abord, appuyer sur le clavier (4), puis ajuster la valeur de tension comme désiré en utilisant le clavier (6) et (7). Manuel d’utilisation_BK1550_Alimentation 6 Configuration de la valeur du courant: Appuyer sur le clavier (5), puis ajuster la valeur du courant comme désiré en utilisant le clavier (6) et (7). Tension constante (CV), Transition automatique et courant constant (CC) L’alimentation fonctionne comme source de tension constante (CV) aussi longtemps que la charge du courant est inférieure à la valeur prédéfinie de limitation du courant. Lorsque la charge du courant est égale ou supérieure à cette valeur de limitation du courant, l’alimentation passe automatiquement en mode courant constant, la tension baisse, (CC) apparaît à l’écran et l’unité fonctionne en source de courant constant. Lorsque le charge de courant repasse en dessous de la valeur prédéfinie de limitation de courant, l’alimentation repasse en mode de tension constante (CV). Préréglage de la valeur limite du courant (CC) Allumer l’alimentation, régler la tension de sortie sur 3V, désactiver la borne de sortie en appuyant sur la touche (8), l’icône devient . Court-circuiter les bornes de sortie rouge et noire et activer la borne de sortie en appuyant sur la touche (8), l’icône devient , régler la valeur de limitation du courant à la limite désirée en utilisant les touches incrémenter et décrémenter. Désactiver la borne de sortie et enlever le courtcircuit des bornes. La limite de courant de l’alimentation a été réglée à x Amp pour toute la gamme de tension de sortie. Procédure de connexion et de mise en route 1. Après avoir contrôlé les références brancher l’alimentation au secteur 2. Mettre en marche l’alimentation, l’écran LCD doit s’allumer en même temps. 3. L’icône (CV) doit apparaître à l’écran. Manuel d’utilisation_BK1550_Alimentation 7 4. Régler la valeur de courant au maximum en appuyant sur la touche (6) si vous n’avez besoin d’aucune valeur de limitation de courant plus basse, sinon effectuer la procédure de limitation (CC). 5. Régler la tension de sortie à la valeur désirée puis désactiver la borne de sortie en appuyant sur la touche (8). 6. Connecter le point chaud de votre charge avec la borne positive et le point froid de votre charge avec la borne négative. 7. Activer de nouveau la borne de sortie et vérifier que l’écran affiche (CV). 8. Si l’écran affiche (CC), soit votre valeur prédéfinie de limitation de courant est trop basse soit votre charge requière plus de tension et de courant. Vous devez ré-ajuster la tension et le courant de la charge ou augmenter la tension ou le courant jusqu’à ce que (CV) apparaisse. Protection de la sortie contre la surtension (OVP) Ceci sert à protéger la charge connectée dans l’éventualité d’un dysfonctionnement du circuit de contrôle de la tension de sortie, la tension de sortie maximum n’excèdera pas 40% de la valeur de tension ajustée au moment de l’opération. Protection contre la surchauffe Lorsque la température à l’intérieur de l’alimentation devient plus élevée que la valeur prédéterminée, la tension et le courant de sortie de l’alimentation diminuera automatiquement à zéro pour prévenir tout risques de dommages de l’appareil. Lorsque la température à l’intérieur de l’alimentation retombe à 65°C, l’appareil se remet automatiquement en fonction. Spécifications Tension d’entrée 200 – 240Vac (50~60Hz) Pleine charge du courant d’entrée 120Vac 0.95A (+10%) Manuel d’utilisation_BK1550_Alimentation 8 Principale sortie: Gamme d’ajustement de tension de sortie 1.0 – 36VDC Gamme d’ajustement du courant de sortie 0 – 3A Régulation de tension pour une variation de charge de 10% à 100% < 50mV de secteur < 20mV d’ondulation (mV eff.) < 5mV de bruit (Crête-à-crête) < 50mV Régulation de courant pour une variation de charge de 10% à 100% < 20mA de secteur < 20mA Fréquence de découpage 80KHz à 120KHz Rendement 83% (+10%) Affichage voltmètre et ampèremètre 3 Digit Précision du voltmètre +1% + 5rdg. Précision de l’ampèremètre +1% + 5rdg. SORTIE USB: Tension de sortie 5V (+10%) Courant de sortie 400mA (+10%) Régulation tension de charge < 80mV (+10%) Ondulation et Bruit (sans charge) < 8mV (+10%) Manuel d’utilisation_BK1550_Alimentation 9 Voyants à l’écran CC, CV, Amp, Volt, Output ON-OFF Protection Court-circuit, Surcharge, Echauffement Système de refroidissement Convection naturelle Dimensions (lxLxP) 2.8 x 6.0 x 9.8 (70 x 150 x 250mm) Masse 4.4lbs. (2Kgs) Manuel d’utilisation_BK1550_Alimentation Manuel d’utilisation_BK1550_Alimentation SEFRAM Instruments et Systèmes 32, Rue Edouard MARTEL F42100 – SAINT-ETIENNE Tel : 0825 56 50 50 (0,15€TTC/mn) Fax: +33 (0)4 77 57 23 23 Site WEB : www.sefram.fr e-mail : sales@sefram.fr CC2531 USB Hardware User’s Guide swru221a swru221a 2/14 Table of Contents 1 Introduction ..................................................................................................................................3 2 About this Manual ........................................................................................................................3 3 Acronyms .....................................................................................................................................4 4 Definitions.....................................................................................................................................5 5 Getting Started .............................................................................................................................7 6 Using SmartRF05EB as an In-Circuit Emulator (ICE)..................................................................9 6.1 The Debug Interface................................................................................................................9 7 USB Dongle Hardware Description............................................................................................10 7.1 User Interface........................................................................................................................10 7.2 Debug Connector ..................................................................................................................10 7.3 RF Performance of Antenna ..................................................................................................11 8 USB Dongle Reference Design and Schematics.......................................................................12 9 References..................................................................................................................................13 10 General Information ...................................................................................................................14 10.1 Document History ..............................................................................................................14 swru221a 3/14 1 Introduction Thank you for purchasing a CC2530 Development Kit. The CC2530 is Texas Instrument’s second generation ZigBee/IEEE 802.15.4 compliant System-on- Chip with an optimized 8051 MCU core and radio for the 2.4 GHz unlicensed ISM/SRD band. This device enables industrial grade applications by offering state-of-the-art noise immunity, excellent link budget, operation up to 125 degrees and low voltage operation. In addition, the CC2530 provides extensive hardware support for packet handling, data buffering, burst transmissions, data encryption, data authentication, clear channel assessment, link quality indication and packet timing information. The CC2530 product folder on the web [10] has more information, with datasheets, user guides and application notes. The CC2531 is identical to CC2530, with the addition of a built in full speed USB 2.0 compliant interface. The CC2530 Development Kit includes all the necessary hardware to properly evaluate, demonstrate, prototype and develop software targeting not only IEEE802.15.4 or ZigBee compliant applications, but also proprietary applications for which a DSSS radio is required or wanted. 2 About this Manual This manual covers the CC2531 USB dongle found in the CC2530 Development Kit and the CC2530 ZigBee Development Kit. The manual covers the CC2531 USB Dongle hardware component of a USB development framework. Please refer to [3] for a description of the accompanying USB Firmware Library and application examples. swru221a 4/14 3 Acronyms CDC Communications Device Class DK Development Kit EB Evaluation Board EM Evaluation Module EMK Evaluation Module Kit HID Human Interface Device IC Integrated Circuit ICE In Circuit Emulator KB Kilo Byte (1024 byte) LED Light Emitting Diode LPRF Low Power RF MCU Micro Controller NC Not connected RF Radio Frequency RX Receive SoC System on Chip TI Texas Instruments TX Transmit UART Universal Asynchronous Receive Transmit USB Universal Serial Bus swru221a 5/14 4 Definitions SmartRF05EB The SmartRF05EB (evaluation board) is the main board in the kit with a wide range of user interfaces: 3x16 character serial LCD Full speed USB 2.0 interface UART LEDs Serial Flash Potentiometer Joystick Buttons The EB is the platform for the evaluation modules (EM) and can be connected to the PC via USB to control the EM. CC2530EM The CC2530EM (evaluation module) contains the RF IC and necessary external components and matching filters for getting the most out of the radio. The module can be plugged into the SmartRF05EB. Use the EM as reference design for RF layout. The schematics are included at the end of this document and the layout files can be found on the web CC2530 Product Page [10]. CC2531 USB Dongle The CC2531 USB Dongle is a fully operational USB device that can be plugged into a PC. The dongle has 2 LEDs, two small push-buttons and connector holes that allow connection of external sensors or devices. The dongle also has a connector for programming and debugging of the CC2531 USB controller. The dongle comes preprogrammed with firmware such that it can be used as a packet sniffer device. Antenna 2.4 GHz antenna Titanis from Antenova. swru221a 6/14 SoC System on Chip. A collective term used to refer to Texas Instruments ICs with on-chip MCU and RF transceiver. Used in this document to reference the CC2530 and 2531. ICE In Circuit Emulator. ICE functionality is built into the SmartRF05EB and the CC Debugger USB software application examples Application examples using the CC2531 USB Dongle together with a CC2530EM. USB Firmware Library A library of low level USB firmware which is used by all the USB software examples. swru221a 7/14 5 Getting Started Make sure to install SmartRF Studio before connecting the SmartRF05EB to a PC. By installing it, the required Windows drivers will be provided when connecting the SmartRF05EB. SmartRF Studio [4] is a PC application for Windows that helps you find and adjust the radio register settings. Please see [4] for instructions on downloading and installation. The dongle comes preprogrammed with firmware such that it can be used as a packet sniffer device. For programming the device with other firmware an external ICE is needed. The SmartRF05EB1 can be used to program the USB dongle. The CC2531 has a 2 wire debug interface that is used for chip programming and debugging. When connecting this interface to the SmartRF05EB, the CC2531 can be programmed from the SmartRF Flash Programmer software [2] and debugged from IAR Embedded Workbench. To connect the CC2531 USB Dongle to the SmartRF05EB, follow these steps: 1. Turn off the SmartRF05EB power by moving the power switch shown in Figure 2 to the left position. 2. Remove any evaluation modules (EMs) attached to the SmartRF05EB. 3. Connect the SmartRF05EB to a PC with the supplied USB cable. 4. Connect the USB Dongle to the ExtSoC Debug header (P3) on SmartRF05EB with the supplied 10 pin cable and adapter board (see Figure 1). Make sure pin 1 on the dongle is connected to pin 1 on P3. This cable connects the debug interface and GND between the two devices; however the USB Dongle is not powered through this cable. 5. Power the CC2531 USB Dongle. To power the dongle there are two options: Powered with a USB Cable Use the supplied USB extension cable to connect the USB Dongle to the PC (see Figure 1). Powered from the SmartRF05EB Mount resistor R2 on the CC2531 USB Dongle and resistor R30 on the SmartRF05EB. The CC2531 USB Dongle should only be powered by one of the two sources at a time. Do not connect the USB cable to the USB Dongle while it is powered from the SmartRF05EB. 6. Turn on the power on the SmartRF05EB (see Figure 2). 1 It is also possible to use the SmartRF04EB or the CC Debugger to program the device. swru221a 8/14 Figure 1 - CC2531 USB Dongle connected to SmartRF05EB Figure 2 - SmartRF05EB power switch, power on. The CC2531 can now be programmed with the SmartRF Flash Programmer software. The firmware on the CC2531 can also be debugged using the IAR Embedded Workbench debugger. Please see the “SmartRF Flash Programmer User’s Manual” for more details [2]. Please see the “CC2530 Development Kit User Manual” [1] for more information on the SmartRF05EB and how to use the CC2530EM. swru221a 9/14 6 Using SmartRF05EB as an In-Circuit Emulator (ICE) The debug interface on the SmartRF05EB is controlled by the USB MCU. This allows both programming and an emulator interface over USB, which makes the SmartRF05EB usable as an ICE for the CC2531 dongle. To use the SmartRF05EB as ICE, the IAR Embedded Workbench software for 8051 architecture (EW8051) must be installed. The Embedded Workbench is an integrated development environment with a complete tool-chain such as C Compiler, Simulator, and ICE debugger. Please see [1] for instructions on how to set up the ICE debugger for use as an ICE. When the SmartRF05EB with a SoC is connected to a PC with the USB port, the debugger in IAR EW8051 will connect to it when started. If several SmartRF05EBs are connected to USB ports simultaneously, a selection window will display the connected evaluation boards, and the user can select which device to load. 6.1 The Debug Interface For custom PCB’s with the CC2531 SoC, it is recommended to include a pin header or test points to allow in-circuit emulation or programming using a SmartRF05EB or other 3rd party programming tools. The USB Dongle can be used as a reference. VDD note: The SmartRF05EB includes a voltage converter to support programming and debugging of external systems with different voltage than the SmartRF05EB. When using SmartRF05EB as emulator for external target debugging any evaluation module (EM) must be removed. Figure 3 shows the required signal for a minimum connector layout on external target. Figure 3 - Minimum Debug Connector Pinout (top view) swru221a 10/14 7 USB Dongle Hardware Description Figure 4 - CC2531 USB Dongle 7.1 User Interface The CC2531 USB Dongle has two buttons and two LEDs that can be used to interact with the user. Table 1 shows which CC2531 signals are connected to what IO on the dongle. IO Connector CC2531 Dongle User IO CC2531 1 P0.2 Green LED P0.0 2 P0.3 Red LED P1.1 3 P0.4 Button S1 P1.2 4 P0.5 Button S2 P1.3 5 P1.7 6 P1.6 7 P1.5 8 P1.4 Table 1 - CC2531 USB Dongle Pinout 7.2 Debug Connector The CC2531 USB dongle can be connected to a SmartRF Evaluation Board for debugging and programming. IO Connector Meandred F-antenna CC2531F256 Button S1 Button S2 LEDs Debug connector Voltage regulator swru221a 11/14 Figure 5 - CC2531 USB Dongle connected to SmartRF05EB The debug connector on the CC2531 USB Dongle matches the debug connector on the SmartRF05EB (and the CC Debugger). Note that, by default, the CC2531 dongle is not powered through the debug connector, so an external power source must be used while programming. The easiest solution is to connect it to a USB port on the PC. Alternatively, resistor R2 can be mounted. The table below shows the pin out of the debug connector. Pin # Connection 1 GND 2 VCC 3 CC2531 P2.2 (DC) 4 CC2531 P2.1 (DD) 5 NC 6 NC 7 CC2531 RESET 8 NC 9 Optional external VCC (R2 must be mounted) 10 NC Table 2 - CC2531 USB Dongle Debug Connector 7.3 RF Performance of Antenna While the CC2531 USB Dongle has a PCB antenna designed as a meandered inverted F antenna. The performance of the PCB antenna on the USB Dongle will be affected by its nearby surroundings. Therefore, when plugged into different computers or a USB extension cable differences in the RF performance must be expected. Also, if the USB Dongle is put inside a casing, the material and design of the enclosure will influence the antenna’s performance. For the CC2531 USB Dongle the maximum antenna gain measured is 5.3 dBi. This means that duty cycling or reduction of output power might be needed to ensure compliance with regulatory limits. Please see [8] for more information about SRD regulations in the 2.4 GHz ISM band. The performance of the antenna of the CC2531 USB Dongle is further described in [9]. swru221a 12/14 8 USB Dongle Reference Design and Schematics Refer to [1] for the schematics of the CC2531 USB Dongle. swru221a 13/14 9 References [1] CC2530 DK Development Kit User Manual (swru208) [2] SmartRF Flash Programmer (swrc044) [3] SmartRF Packet Sniffer (swrc045) [4] SmartRF Studio (swrc046) [5] CC USB Firmware Library and Examples (swrc088) [6] CC USB Software Examples User’s Guide (swru222) [7] SmartRF05EB User’s Guide (swru210) [8] AN032 – SRD Regulation for License-Free Transceiver Operation in the 2.4 GHz Band (swra060) [9] AN043 – Small Size 2.4 GHz PCB Antenna (swra117) [10] CC2530 Product Web Site (http://focus.ti.com/docs/prod/folders/print/cc2530.html) swru221a 14/14 10 General Information 10.1 Document History Revision Date Description/Changes SWRU221A 2009.07.31 Updated info about how to connect dongle to SmartRF05EB. Corrected typos. SWRU221 2009.05.08 Initial release IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DLP® Products www.dlp.com Broadband www.ti.com/broadband DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Military www.ti.com/military Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony RFID www.ti-rfid.com Video & Imaging www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated MSP430 Hardware Tools User's Guide Literature Number: SLAU278Q May 2009–Revised February 2014 Contents Preface ....................................................................................................................................... 7 1 Get Started Now! ............................................................................................................... 10 1.1 Flash Emulation Tool (FET) Overview .................................................................................. 11 1.2 Kit Contents, MSP-FET430PIF .......................................................................................... 12 1.3 Kit Contents, eZ430-F2013 .............................................................................................. 12 1.4 Kit Contents, eZ430-T2012 .............................................................................................. 12 1.5 Kit Contents, eZ430-RF2500 ............................................................................................ 12 1.6 Kit Contents, eZ430-RF2500T ........................................................................................... 12 1.7 Kit Contents, eZ430-RF2500-SEH ...................................................................................... 12 1.8 Kit Contents, eZ430-Chronos-xxx ....................................................................................... 13 1.9 Kit Contents, MSP-FET430UIF .......................................................................................... 13 1.10 Kit Contents, MSP-FET430xx ............................................................................................ 13 1.11 Kit Contents, FET430F6137RF900 ..................................................................................... 14 1.12 Kit Contents, MSP-TS430xx ............................................................................................. 14 1.13 Kit Contents, EM430Fx1x7RF900 ....................................................................................... 16 1.14 Hardware Installation, MSP-FET430PIF ............................................................................... 16 1.15 Hardware Installation, MSP-FET430UIF ............................................................................... 17 1.16 Hardware Installation, eZ430-XXXX, MSP-EXP430G2, MSP-EXP430FR5739, MSP-EXP430F5529 ......... 17 1.17 Hardware Installation, MSP-FET430Uxx, MSP-TS430xxx, FET430F6137RF900, EM430Fx137RF900 ...... 17 1.18 Important MSP430 Documents on the Web ........................................................................... 18 2 Design Considerations for In-Circuit Programming ............................................................... 19 2.1 Signal Connections for In-System Programming and Debugging ................................................... 20 2.2 External Power ............................................................................................................. 24 2.3 Bootstrap Loader (BSL) .................................................................................................. 24 A Frequently Asked Questions and Known Issues ................................................................... 25 A.1 Hardware FAQs ............................................................................................................ 26 A.2 Known Issues .............................................................................................................. 28 B Hardware .......................................................................................................................... 29 B.1 MSP-TS430D8 ............................................................................................................. 31 B.2 MSP-TS430PW14 ......................................................................................................... 34 B.3 MSP-TS430L092 .......................................................................................................... 37 B.4 MSP-TS430L092 Active Cable .......................................................................................... 40 B.5 MSP-TS430PW24 ......................................................................................................... 43 B.6 MSP-TS430DW28 ......................................................................................................... 46 B.7 MSP-TS430PW28 ......................................................................................................... 49 B.8 MSP-TS430PW28A ....................................................................................................... 52 B.9 MSP-TS430DA38 .......................................................................................................... 55 B.10 MSP-TS430QFN23x0 ..................................................................................................... 58 B.11 MSP-TS430RSB40 ........................................................................................................ 61 B.12 MSP-TS430RHA40A ...................................................................................................... 64 B.13 MSP-TS430DL48 .......................................................................................................... 67 B.14 MSP-TS430RGZ48B ...................................................................................................... 70 B.15 MSP-TS430RGZ48C ...................................................................................................... 73 B.16 MSP-TS430PM64 ......................................................................................................... 76 2 Contents SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com B.17 MSP-TS430PM64A ....................................................................................................... 79 B.18 MSP-TS430RGC64B ..................................................................................................... 82 B.19 MSP-TS430RGC64C ..................................................................................................... 85 B.20 MSP-TS430RGC64USB .................................................................................................. 89 B.21 MSP-TS430PN80 .......................................................................................................... 93 B.22 MSP-TS430PN80A ........................................................................................................ 96 B.23 MSP-TS430PN80USB .................................................................................................... 99 B.24 MSP-TS430PZ100 ....................................................................................................... 103 B.25 MSP-TS430PZ100A ..................................................................................................... 106 B.26 MSP-TS430PZ100B ..................................................................................................... 109 B.27 MSP-TS430PZ100C ..................................................................................................... 112 B.28 MSP-TS430PZ5x100 .................................................................................................... 115 B.29 MSP-TS430PZ100USB ................................................................................................. 118 B.30 MSP-TS430PEU128 ..................................................................................................... 122 B.31 EM430F5137RF900 ..................................................................................................... 125 B.32 EM430F6137RF900 ..................................................................................................... 129 B.33 EM430F6147RF900 ..................................................................................................... 133 B.34 MSP-FET430PIF ......................................................................................................... 137 B.35 MSP-FET430UIF ......................................................................................................... 139 B.35.1 MSP-FET430UIF Revision History .......................................................................... 144 C Hardware Installation Guide .............................................................................................. 145 C.1 Hardware Installation .................................................................................................... 146 Document Revision History ........................................................................................................ 151 SLAU278Q–May 2009–Revised February 2014 Contents 3 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com List of Figures 2-1. Signal Connections for 4-Wire JTAG Communication................................................................ 21 2-2. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire) Used by MSP430F2xx, MSP430G2xx, and MSP430F4xx Devices............................................................................. 22 2-3. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire) Used by MSP430F5xx and MSP430F6xx Devices .................................................................................................... 23 B-1. MSP-TS430D8 Target Socket Module, Schematic ................................................................... 31 B-2. MSP-TS430D8 Target Socket Module, PCB .......................................................................... 32 B-3. MSP-TS430PW14 Target Socket Module, Schematic ............................................................... 34 B-4. MSP-TS430PW14 Target Socket Module, PCB ...................................................................... 35 B-5. MSP-TS430L092 Target Socket Module, Schematic................................................................. 37 B-6. MSP-TS430L092 Target Socket Module, PCB........................................................................ 38 B-7. MSP-TS430L092 Active Cable Target Socket Module, Schematic................................................. 40 B-8. MSP-TS430L092 Active Cable Target Socket Module, PCB........................................................ 41 B-9. MSP-TS430PW24 Target Socket Module, Schematic ............................................................... 43 B-10. MSP-TS430PW24 Target Socket Module, PCB ...................................................................... 44 B-11. MSP-TS430DW28 Target Socket Module, Schematic ............................................................... 46 B-12. MSP-TS430DW28 Target Socket Module, PCB ...................................................................... 47 B-13. MSP-TS430PW28 Target Socket Module, Schematic ............................................................... 49 B-14. MSP-TS430PW28 Target Socket Module, PCB ...................................................................... 50 B-15. MSP-TS430PW28A Target Socket Module, Schematic.............................................................. 52 B-16. MSP-TS430PW28A Target Socket Module, PCB (Red) ............................................................. 53 B-17. MSP-TS430DA38 Target Socket Module, Schematic ................................................................ 55 B-18. MSP-TS430DA38 Target Socket Module, PCB ....................................................................... 56 B-19. MSP-TS430QFN23x0 Target Socket Module, Schematic ........................................................... 58 B-20. MSP-TS430QFN23x0 Target Socket Module, PCB .................................................................. 59 B-21. MSP-TS430RSB40 Target Socket Module, Schematic .............................................................. 61 B-22. MSP-TS430RSB40 Target Socket Module, PCB ..................................................................... 62 B-23. MSP-TS430RHA40A Target Socket Module, Schematic ............................................................ 64 B-24. MSP-TS430RHA40A Target Socket Module, PCB ................................................................... 65 B-25. MSP-TS430DL48 Target Socket Module, Schematic ................................................................ 67 B-26. MSP-TS430DL48 Target Socket Module, PCB ....................................................................... 68 B-27. MSP-TS430RGZ48B Target Socket Module, Schematic ............................................................ 70 B-28. MSP-TS430RGZ48B Target Socket Module, PCB ................................................................... 71 B-29. MSP-TS430RGZ48C Target Socket Module, Schematic ............................................................ 73 B-30. MSP-TS430RGZ48C Target Socket Module, PCB ................................................................... 74 B-31. MSP-TS430PM64 Target Socket Module, Schematic................................................................ 76 B-32. MSP-TS430PM64 Target Socket Module, PCB....................................................................... 77 B-33. MSP-TS430PM64A Target Socket Module, Schematic .............................................................. 79 B-34. MSP-TS430PM64A Target Socket Module, PCB ..................................................................... 80 B-35. MSP-TS430RGC64B Target Socket Module, Schematic ............................................................ 82 B-36. MSP-TS430RGC64B Target Socket Module, PCB ................................................................... 83 B-37. MSP-TS430RGC64C Target Socket Module, Schematic............................................................ 86 B-38. MSP-TS430RGC64C Target Socket Module, PCB................................................................... 87 B-39. MSP-TS430RGC64USB Target Socket Module, Schematic ........................................................ 89 B-40. MSP-TS430RGC64USB Target Socket Module, PCB ............................................................... 90 B-41. MSP-TS430PN80 Target Socket Module, Schematic ................................................................ 93 B-42. MSP-TS430PN80 Target Socket Module, PCB ....................................................................... 94 B-43. MSP-TS430PN80A Target Socket Module, Schematic .............................................................. 96 4 List of Figures SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com B-44. MSP-TS430PN80A Target Socket Module, PCB ..................................................................... 97 B-45. MSP-TS430PN80USB Target Socket Module, Schematic .......................................................... 99 B-46. MSP-TS430PN80USB Target Socket Module, PCB ................................................................ 100 B-47. MSP-TS430PZ100 Target Socket Module, Schematic ............................................................. 103 B-48. MSP-TS430PZ100 Target Socket Module, PCB .................................................................... 104 B-49. MSP-TS430PZ100A Target Socket Module, Schematic............................................................ 106 B-50. MSP-TS430PZ100A Target Socket Module, PCB................................................................... 107 B-51. MSP-TS430PZ100B Target Socket Module, Schematic............................................................ 109 B-52. MSP-TS430PZ100B Target Socket Module, PCB................................................................... 110 B-53. MSP-TS430PZ100C Target Socket Module, Schematic ........................................................... 112 B-54. MSP-TS430PZ100C Target Socket Module, PCB .................................................................. 113 B-55. MSP-TS430PZ5x100 Target Socket Module, Schematic .......................................................... 115 B-56. MSP-TS430PZ5x100 Target Socket Module, PCB.................................................................. 116 B-57. MSP-TS430PZ100USB Target Socket Module, Schematic........................................................ 118 B-58. MSP-TS430PZ100USB Target Socket Module, PCB............................................................... 119 B-59. MSP-TS430PEU128 Target Socket Module, Schematic ........................................................... 122 B-60. MSP-TS430PEU128 Target Socket Module, PCB .................................................................. 123 B-61. EM430F5137RF900 Target board, Schematic....................................................................... 125 B-62. EM430F5137RF900 Target board, PCB.............................................................................. 126 B-63. EM430F6137RF900 Target board, Schematic....................................................................... 129 B-64. EM430F6137RF900 Target board, PCB.............................................................................. 130 B-65. EM430F6147RF900 Target Board, Schematic ...................................................................... 133 B-66. EM430F6147RF900 Target Board, PCB ............................................................................. 134 B-67. MSP-FET430PIF FET Interface Module, Schematic ................................................................ 137 B-68. MSP-FET430PIF FET Interface Module, PCB....................................................................... 138 B-69. MSP-FET430UIF USB Interface, Schematic (1 of 4) ............................................................... 139 B-70. MSP-FET430UIF USB Interface, Schematic (2 of 4) ............................................................... 140 B-71. MSP-FET430UIF USB Interface, Schematic (3 of 4) ............................................................... 141 B-72. MSP-FET430UIF USB Interface, Schematic (4 of 4) ............................................................... 142 B-73. MSP-FET430UIF USB Interface, PCB ................................................................................ 143 C-1. Windows XP Hardware Wizard ........................................................................................ 146 C-2. Windows XP Driver Location Selection Folder....................................................................... 147 C-3. Device Manager Using USB Debug Interface using VID/PID 0x2047/0x0010................................... 148 C-4. Device Manager Using USB Debug Interface with VID/PID 0x0451/0xF430 .................................... 149 C-5. Device Manager Using USB Debug Interface with VID/PID 0x0451/0xF432 .................................... 150 SLAU278Q–May 2009–Revised February 2014 List of Figures 5 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com List of Tables 1-1. Flash Emulation Tool (FET) Features and Device Compatibility.................................................... 11 1-2. Individual Kit Contents, MSP-TS430xx ................................................................................. 14 B-1. MSP-TS430D8 Bill of Materials.......................................................................................... 33 B-2. MSP-TS430PW14 Bill of Materials...................................................................................... 36 B-3. MSP-TS430L092 Bill of Materials ....................................................................................... 39 B-4. MSP-TS430L092 JP1 Settings .......................................................................................... 41 B-5. MSP-TS430L092 Active Cable Bill of Materials ....................................................................... 42 B-6. MSP-TS430PW24 Bill of Materials...................................................................................... 45 B-7. MSP-TS430DW28 Bill of Materials...................................................................................... 48 B-8. MSP-TS430PW28 Bill of Materials ..................................................................................... 51 B-9. MSP-TS430PW28A Bill of Materials .................................................................................... 54 B-10. MSP-TS430DA38 Bill of Materials ...................................................................................... 57 B-11. MSP-TS430QFN23x0 Bill of Materials.................................................................................. 60 B-12. MSP-TS430RSB40 Bill of Materials .................................................................................... 63 B-13. MSP-TS430RHA40A Bill of Materials................................................................................... 66 B-14. MSP-TS430DL48 Bill of Materials....................................................................................... 69 B-15. MSP-TS430RGZ48B Bill of Materials................................................................................... 72 B-16. MSP-TS430RGZ48C Revision History ................................................................................. 74 B-17. MSP-TS430RGZ48C Bill of Materials .................................................................................. 75 B-18. MSP-TS430PM64 Bill of Materials ...................................................................................... 78 B-19. MSP-TS430PM64A Bill of Materials .................................................................................... 81 B-20. MSP-TS430RGC64B Bill of Materials .................................................................................. 84 B-21. MSP-TS430RGC64C Bill of Materials .................................................................................. 88 B-22. MSP-TS430RGC64USB Bill of Materials............................................................................... 91 B-23. MSP-TS430PN80 Bill of Materials ...................................................................................... 95 B-24. MSP-TS430PN80A Bill of Materials .................................................................................... 98 B-25. MSP-TS430PN80USB Bill of Materials ............................................................................... 101 B-26. MSP-TS430PZ100 Bill of Materials.................................................................................... 105 B-27. MSP-TS430PZ100A Bill of Materials.................................................................................. 108 B-28. MSP-TS430PZ100B Bill of Materials.................................................................................. 111 B-29. MSP-TS430PZ100C Bill of Materials.................................................................................. 114 B-30. MSP-TS430PZ5x100 Bill of Materials................................................................................. 117 B-31. MSP-TS430PZ100USB Bill of Materials .............................................................................. 120 B-32. MSP-TS430PEU128 Bill of Materials ................................................................................. 124 B-33. EM430F5137RF900 Bill of Materials .................................................................................. 127 B-34. EM430F6137RF900 Bill of Materials .................................................................................. 131 B-35. EM430F6147RF900 Bill of Materials .................................................................................. 135 C-1. USB VIDs and PIDs Used in MSP430 Tools......................................................................... 146 6 List of Tables SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Preface SLAU278Q–May 2009–Revised February 2014 Read This First About This Manual This manual describes the hardware of the Texas Instruments MSP-FET430 Flash Emulation Tool (FET). The FET is the program development tool for the MSP430™ ultra-low-power microcontroller. Both available interface types, the parallel port interface and the USB interface, are described. How to Use This Manual Read and follow the instructions in Chapter 1. This chapter lists the contents of the FET, provides instructions on installing the hardware and according software drivers. After you see how quick and easy it is to use the development tools, TI recommends that you read all of this manual. This manual describes the setup and operation of the FET but does not fully describe the MSP430™ microcontrollers or the development software systems. For details of these items, see the appropriate TI documents listed in Section 1.18. This manual applies to the following tools (and devices): • MSP-FET430PIF (debug interface with parallel port connection, for all MSP430 flash-based devices) • MSP-FET430UIF (debug interface with USB connection, for all MSP430 flash-based devices) • eZ430-F2013 (USB stick form factor interface with attached MSP430F2013 target, for all MSP430F20xx, MSP430G2x01, MSP430G2x11, MSP430G2x21, and MSP430G2x31 devices) • eZ430-T2012 (three MSP430F2012 based target boards) • eZ430-RF2500 (USB stick form factor interface with attached MSP430F2274 and CC2500 target, for all MSP430F20xx, MSP430F21x2, MSP430F22xx, MSP430G2x01, MSP430G2x11, MSP430G2x21, and MSP430G2x31 devices) • eZ430-RF2500T (one MSP430F2274 and CC2500 target board including battery pack) • eZ430-RF2500-SEH (USB stick form factor interface with attached MSP430F2274 and CC2500 target and solar energy harvesting module) • eZ430-Chronos-xxx (USB stick form factor interface with CC430F6137 based development system contained in a watch. Includes <1 GHz RF USB access point) Stand-alone target-socket modules (without debug interface) named as MSP-TS430TSxx. Tools named as MSP-FET430Uxx contain the USB debug interface (MSP-FET430UIF) and the respective target socket module MSP-TS430TSxx, where 'xx' is the same for both names. Following tools contain also the USB debug interface (MSP-FET430UIF): • FET430F5137RF900 (for CC430F513x devices in 48-pin RGZ packages) (green PCB) • FET430F6137RF900 (for CC430F612x and CC430F613x devices in 64-pin RGC packages) (green PCB) These tools contain the most up-to-date materials available at the time of packaging. For the latest materials (data sheets, user's guides, software, application information, and so on), visit the TI MSP430 web site at www.ti.com/msp430 or contact your local TI sales office. SLAU278Q–May 2009–Revised February 2014 Read This First 7 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Information About Cautions and Warnings www.ti.com Information About Cautions and Warnings This document may contain cautions and warnings. CAUTION This is an example of a caution statement. A caution statement describes a situation that could potentially damage your software or equipment. WARNING This is an example of a warning statement. A warning statement describes a situation that could potentially cause harm to you. The information in a caution or a warning is provided for your protection. Read each caution and warning carefully. Related Documentation From Texas Instruments MSP430 development tools documentation: Code Composer Studio v5.4 for MSP430 User's Guide (literature number SLAU157) Code Composer Studio v5.x Core Edition (CCS Mediawiki) IAR Embedded Workbench Version 3+ for MSP430(tm) User's Guide (literature number SLAU138) IAR Embedded Workbench KickStart installer (literature number SLAC050) eZ430-F2013 Development Tool User's Guide (literature number SLAU176) eZ430-RF2480 Demonstration Kit User's Guide (literature number SWRU151) eZ430-RF2500 Development Tool User's Guide (literature number SLAU227) eZ430-RF2500-SEH Development Tool User's Guide (literature number SLAU273) eZ430-Chronos Development Tool User's Guide (literature number SLAU292) Spectrum Analyzer (MSP-SA430-SUB1GHZ) User's Guide (literature number SLAU371) MSP-EXP430F5529 Experimenter Board User's Guide (literature number SLAU330) MSP-EXP430F5438 Experimenter Board User's Guide (literature number SLAU263) MSP-EXP430G2 LaunchPad Experimenter Board User's Guide (literature number SLAU318) MSP Gang Programmer (MSP-GANG) User's Guide (literature number SLAU358) MSP430 Gang Programmer (MSP-GANG430) User's Guide (literature number SLAU101) MSP430 device user's guides: MSP430x1xx Family User's Guide (literature number SLAU049) MSP430x2xx Family User's Guide (literature number SLAU144) MSP430x3xx Family User's Guide (literature number SLAU012) MSP430x4xx Family User's Guide (literature number SLAU056) MSP430x5xx and MSP430x6xx Family User's Guide (literature number SLAU208) CC430 Family User's Guide (literature number SLAU259) 8 Read This First SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com If You Need Assistance MSP430FR57xx Family User's Guide (literature number SLAU272) MSP430FR58xx and MSP430FR59xx Family User's Guide (literature number SLAU367) If You Need Assistance Support for the MSP430 devices and the FET development tools is provided by the Texas Instruments Product Information Center (PIC). Contact information for the PIC can be found on the TI web site at www.ti.com/support. The Texas Instruments E2E Community support forums for the MSP430 provide open interaction with peer engineers, TI engineers, and other experts. Additional device-specific information can be found on the MSP430 web site. SLAU278Q–May 2009–Revised February 2014 Read This First 9 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Chapter 1 SLAU278Q–May 2009–Revised February 2014 Get Started Now! This chapter lists the contents of the FET and provides instruction on installing the hardware. Topic ........................................................................................................................... Page 1.1 Flash Emulation Tool (FET) Overview .................................................................. 11 1.2 Kit Contents, MSP-FET430PIF ............................................................................. 12 1.3 Kit Contents, eZ430-F2013 .................................................................................. 12 1.4 Kit Contents, eZ430-T2012 .................................................................................. 12 1.5 Kit Contents, eZ430-RF2500 ................................................................................ 12 1.6 Kit Contents, eZ430-RF2500T .............................................................................. 12 1.7 Kit Contents, eZ430-RF2500-SEH ........................................................................ 12 1.8 Kit Contents, eZ430-Chronos-xxx ........................................................................ 13 1.9 Kit Contents, MSP-FET430UIF ............................................................................. 13 1.10 Kit Contents, MSP-FET430xx .............................................................................. 13 1.11 Kit Contents, FET430F6137RF900 ........................................................................ 14 1.12 Kit Contents, MSP-TS430xx ................................................................................ 14 1.13 Kit Contents, EM430Fx1x7RF900 ......................................................................... 16 1.14 Hardware Installation, MSP-FET430PIF ................................................................ 16 1.15 Hardware Installation, MSP-FET430UIF ................................................................ 17 1.16 Hardware Installation, eZ430-XXXX, MSP-EXP430G2, MSP-EXP430FR5739, MSPEXP430F5529 .................................................................................................... 17 1.17 Hardware Installation, MSP-FET430Uxx, MSP-TS430xxx, FET430F6137RF900, EM430Fx137RF900 ............................................................................................ 17 1.18 Important MSP430 Documents on the Web ........................................................... 18 10 Get Started Now! SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com Flash Emulation Tool (FET) Overview 1.1 Flash Emulation Tool (FET) Overview TI offers several flash emulation tools according to different requirements. Table 1-1. Flash Emulation Tool (FET) Features and Device Compatibility(1) eZ430-F2013 eZ430-RF2500 eZ430-RF2480 eZ430-RF2560 MSP-WDSxx Metawatch eZ430-Chronos MSP-FET430PIF MSP-FET430UIF LaunchPad (MSP-EXP430G2) MSP-EXP430FR5739 MSP-EXP430F5529 Supports all programmable MSP430 and CC430 devices (F1xx, F2xx, F4xx, F5xx, F6xx, G2xx, L092, FR57xx, FR59xx, x x MSP430TCH5E) Supports only F20xx, G2x01, G2x11, x G2x21, G2x31 Supports MSP430F20xx, F21x2, F22xx, x G2x01, G2x11, G2x21, G2x31, G2x53 Supports MSP430F20xx, F21x2, F22xx, x x G2x01, G2x11, G2x21, G2x31 Supports F5438, F5438A x Supports BT5190, F5438A x Supports only F552x x Supports FR57xx, F5638, F6638 x Supports only CC430F613x x Allows fuse blow x Adjustable target supply voltage x Fixed 2.8-V target supply voltage x Fixed 3.6-V target supply voltage x x x x x x x x x 4-wire JTAG x x 2-wire JTAG(2) x x x x x x x x x x Application UART x x x x x x x x Supported by CCS for Windows x x x x x x x x x x x Supported by CCS for Linux x Supported by IAR x x x x x x x x x x x (1) The MSP-FET430PIF is for legacy device support only. This emulation tool will not support any new devices released after 2011. (2) The 2-wire JTAG debug interface is also referred to as Spy-Bi-Wire (SBW) interface. SLAU278Q–May 2009–Revised February 2014 Get Started Now! 11 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Kit Contents, MSP-FET430PIF www.ti.com 1.2 Kit Contents, MSP-FET430PIF • One READ ME FIRST document • One MSP-FET430PIF interface module • One 25-conductor cable • One 14-conductor cable NOTE: This part is obsolete and is not recommended to use in new design. 1.3 Kit Contents, eZ430-F2013 • One QUICK START GUIDE document • One eZ430-F2013 development tool including one MSP430F2013 target board 1.4 Kit Contents, eZ430-T2012 • Three MSP430F2012-based target boards 1.5 Kit Contents, eZ430-RF2500 • One QUICK START GUIDE document • One eZ430-RF2500 CD-ROM • One eZ430-RF2500 development tool including one MSP430F2274 and CC2500 target board • One eZ430-RF2500T target board • One AAA battery pack with expansion board (batteries included) 1.6 Kit Contents, eZ430-RF2500T • One eZ430-RF2500T target board • One AAA battery pack with expansion board (batteries included) 1.7 Kit Contents, eZ430-RF2500-SEH • One MSP430 development tool CD containing documentation and development software • One eZ430-RF USB debugging interface • Two eZ430-RF2500T wireless target boards • One SEH-01 solar energy harvester board • One AAA battery pack with expansion board (batteries included) 12 Get Started Now! SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com Kit Contents, eZ430-Chronos-xxx 1.8 Kit Contents, eZ430-Chronos-xxx '433, '868, '915 • One QUICK START GUIDE document • One ez430-Chronos emulator • One screwdriver • Two spare screws eZ430-Chronos-433: – One 433-MHz eZ430-Chronos watch (battery included) – One 433-MHz eZ430-Chronos access point eZ430-Chronos-868: – One 868-MHz eZ430-Chronos watch (battery included) – One 868-MHz eZ430-Chronos access point eZ430-Chronos-915: – One 915-MHz eZ430-Chronos watch (battery included) – One 915-MHz eZ430-Chronos access point 1.9 Kit Contents, MSP-FET430UIF • One READ ME FIRST document • One MSP-FET430UIF interface module • One USB cable • One 14-conductor cable 1.10 Kit Contents, MSP-FET430xx • One READ ME FIRST document • One MSP-FET430UIF USB interface module. This is the unit that has a USB B-connector on one end of the case, and a 2×7-pin male connector on the other end of the case. • One USB cable • One 32.768-kHz crystal from Micro Crystal, if the board has an option to use the quartz. • A 2×7-pin male JTAG connector is also present on the PCB (see different setup for L092) • One 14-Pin JTAG conductor cable • One small box containing two MSP430 device samples (See table for Sample Type) • One target socket module. To determine the devices used for each board and a summary of the board, see Table 1-2. The name of MSP-TS430xx board can be derived from the name of the MSP-FET430xx kit; for example, the MSP-FET430U28A kit contains the MSP-TS430PW28A board. Refer to the device data sheets for device specifications. Device errata can be found in the respective device product folder on the web provided as a PDF document. Depending on the device, errata may also be found in the device bug database at www.ti.com/sc/cgi-bin/buglist.cgi. SLAU278Q–May 2009–Revised February 2014 Get Started Now! 13 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Kit Contents, FET430F6137RF900 www.ti.com 1.11 Kit Contents, FET430F6137RF900 • One READ ME FIRST document • One legal notice • One MSP-FET430UIF interface module • Two EM430F6137RF900 target socket modules. This is the PCB on which is soldered a CC430F6137 device in a 64-pin RGC package. A 2×7-pin male connector is also present on the PCB. • Two CC430EM battery packs • Four AAA batteries • Two 868-MHz or 915-MHz antennas • Two 32.768-kHz crystals • 18 PCB 2x4-pin headers • One USB cable • One 14-pin JTAG conductor cable 1.12 Kit Contents, MSP-TS430xx • One READ ME FIRST document • One 32.768-kHz crystal from Micro Crystal (except MSP-TS430PW24) • One target socket module • A 2×7-pin male JTAG connector is also present on the PCB (see different setup for L092) • MSP430 Device samples (see Table 1-2 for sample type) Table 1-2. Individual Kit Contents, MSP-TS430xx Part Number Socket Type Supported Devices Included Devices Headers and Comment MSP-TS430D8 8-pin D MSP430G2210, 1 x MSP430G2210 and Two PCB 1×4-pin headers (two male and (green PCB) (TSSOP ZIF) MSP430G2230 1 x MSP430G2230 two female) MSP430F20xx, MSP-TS430PW14 14-pin PW MSP430G2x01, Four PCB 1×7-pin headers (two male and (green PCB) (TSSOP ZIF) MSP430G2x11, 2 x MSP430F2013IPW two female) MSP430G2x21, MSP430G2x31 Four PCB 1×7-pin headers (two male and two female). A "Micro-MaTch" 10-pin MSP-TS430L092 14-pin PW female connector is also present on the (green PCB) (TSSOP ZIF) MSP-TS430L092 2 x MSP430L092IPW PCB which connects the kit with an 'Active Cable' PCB; this 'Active Cable' PCB is connected by 14-pin JTAG cable with the FET430UIF MSP-TS430PW24 24-pin PW MSP430AFE2xx 2 x MSP430AFE253IPW Four PCB 1×12-pin headers (two male (green PCB) (TSSOP ZIF) and two female) MSP430F11x1, MSP430F11x2, MSP-TS430DW28 28-pin DW MSP430F12x, Four PCB 1×12-pin headers (two male (green PCB) (SSOP ZIF) MSP430F12x2, 2 x MSP430F123IDW and two female) MSP430F21xx Supports devices in 20- and 28-pin DA packages MSP430F11x1, MSP-TS430PW28 28-pin PW MSP430F11x2, Four PCB 1×12-pin headers (two male (green PCB) (TSSOP ZIF) MSP430F12x, 2 x MSP430F2132IPW and two female) MSP430F12x2, MSP430F21xx MSP430F20xx, MSP-TS430PW28A 28-pin PW MSP430G2xxx in 14-, 20-, Four PCB 1×12-pin headers (two male (red PCB) (TSSOP ZIF) and 28-pin PW packages, 2 x MSP430G2452IPW20 and two female) MSP430TCH5E in PW package MSP-TS430DA38 38-pin DA MSP430F22xx, 2 x MSP430F2274IDA Four PCB 1×19-pin headers (two male (green PCB) (TSSOP ZIF) MSP430G2x44, 2 x MSP430G2744IDA and two female) MSP430G2x55 2 x MSP430G2955IDA MSP-TS430QFN23x0 40-pin RHA MSP430F23x0 2 x MSP430F2370IRHA Eight PCB 1×10-pin headers (four male (green PCB) (QFN ZIF) and four female) 14 Get Started Now! SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com Kit Contents, MSP-TS430xx Table 1-2. Individual Kit Contents, MSP-TS430xx (continued) Part Number Socket Type Supported Devices Included Devices Headers and Comment MSP-TS430RSB40 40-pin RSB MSP430F51x1, 2 x MSP430F5172IRSB Eight PCB 1×10-pin headers (four male (green PCB) (QFN ZIF) MSP430F51x2 and four female) MSP-TS430RHA40A 40-pin RHA MSP430FR572x, 2 x MSP430FR5739IRHA Eight PCB 1×10-pin headers (four male (red PCB) (QFN ZIF) MSP430FR573x and four female) MSP-TS430DL48 48-pin DL MSP430F42x0 2 x MSP430F4270IDL Four PCB 2×12-pin headers (two male (green PCB) (TSSOP ZIF) and two female) MSP-TS430RGZ48B 48-pin RGZ MSP430F534x 2 x MSP430F5342IRGZ Eight PCB 1×12-pin headers (four male (blue PCB) (QFN ZIF) and four female) MSP-TS430RGZ48C 48-pin RGZ MSP430FR58xx and 2 x MSP430FR5969IRGZ Eight PCB 1×12-pin headers (four male (black PCB) (QFN ZIF) MSP430FR59xx and four female) MSP430F13x, MSP430F14x, MSP430F14x1, MSP430F15x, MSP430F16x, MSP430F16x1, MSP430F23x, TS Kit: MSP-TS430PM64 64-pin PM MSP430F24x, 2 x MSP430F2618IPM; Eight PCB 1×16-pin headers (four male (green PCB) (QFP ZIF) MSP430F24xx, FET Kit: and four female) MSP430F261x, 2 x MSP430F417IPM and MSP430F41x, 2 x MSP430F169IPM MSP430F42x, MSP430F42xA, MSP430FE42x, MSP430FE42xA, MSP430FE42x2, MSP430FW42x MSP-TS430PM64A 64-pin PM MSP430F41x2 2 x MSP430F4152IPM Eight PCB 1×16-pin headers (four male (red PCB) (QFP ZIF) and four female) MSP-TS430RGC64B 64-pin RGC MSP430F530x 2 x MSP430F5310IRGC Eight PCB 1×16-pin headers (four male (blue PCB) (QFN ZIF) and four female) MSP430F522x, MSP-TS430RGC64C 64-pin RGC MSP430F521x , Eight PCB 1×16-pin headers (four male (black PCB) (QFN ZIF) MSP430F523x, 2 x MSP430F5229IRGC and four female) MSP430F524x, MSP430F525x MSP-TS430RGC64USB 64-pin RGC MSP430F550x, 2 x MSP430F5510IRGC or Eight PCB 1×16-pin headers (four male (green PCB) (QFN ZIF) MSP430F551x, 2 x MSP430F5528IRGC and four female) MSP430F552x MSP430F241x, MSP430F261x, MSP-TS430PN80 80-pin PN MSP430F43x, Eight PCB 1×20-pin headers (four male (green PCB) (QFP ZIF) MSP430F43x1, 2 x MSP430FG439IPN and four female) MSP430FG43x, MSP430F47x, MSP430FG47x MSP-TS430PN80A 80-pin PN MSP430F532x 2 x MSP430F5329IPN Eight PCB 1×20-pin headers (four male (red PCB) (QFP ZIF) and four female) MSP-TS430PN80USB 80-pin PN MSP430F552x, 2 x MSP430F5529IPN Eight PCB 1×20-pin headers (four male (green PCB) (QFP ZIF) MSP430F551x and four female) MSP430F43x, MSP-TS430PZ100 100-pin PZ MSP430F43x1, Eight PCB 1×25-pin headers (four male (green PCB) (QFP ZIF) MSP430F44x, 2 x MSP430FG4619IPZ and four female) MSP430FG461x, MSP430 F47xx MSP-TS430PZ100A 100-pin PZ MSP430F471xx 2 x MSP430F47197IPZ Eight PCB 1×25-pin headers (four male (red PCB) (QFP ZIF) and four female) MSP-TS430PZ100B 100-pin PZ MSP430F67xx 2 x MSP430F6733IPZ Eight PCB 1×25-pin headers (four male (blue PCB) (QFP ZIF) and four female) MSP430F645x, MSP-TS430PZ100C 100-pin PZ MSP430F643x, 2 x MSP430F6438IPZ Eight PCB 1×25-pin headers (four male (black PCB) (QFP ZIF) MSP430F535x, and four female) MSP430F533x MSP-TS430PZ5x100 100-pin PZ MSP430F543x, Eight PCB 1×25-pin headers (four male (green PCB) (QFP ZIF) MSP430BT5190, 2 x MSP430F5438IPZ and four female) MSP430SL5438A SLAU278Q–May 2009–Revised February 2014 Get Started Now! 15 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated Kit Contents, EM430Fx1x7RF900 www.ti.com Table 1-2. Individual Kit Contents, MSP-TS430xx (continued) Part Number Socket Type Supported Devices Included Devices Headers and Comment MSP-TS430PZ100USB 100-pin PZ MSP430F665x, Eight PCB 1×25-pin headers (four male (green PCB) (QFP ZIF) MSP430F663x, 2 x MSP430F6638IPZ and four female) MSP430F563x MSP430F677x, MSP430F676x, Four PCB 1x26-pin headers (two male MSP-TS430PEU128 128-pin PEU MSP430F674x, 2 x MSP430F67791IPEU and two female) and four PCB 1x38-pin (green PCB) (QFP ZIF) MSP430F677x1, headers (two male and two female) MSP430F676x1, MSP430F674x1 See the device data sheets for device specifications. Device errata can be found in the respective device product folder on the web provided as a PDF document. Depending on the device, errata may also be found in the device bug database at www.ti.com/sc/cgi-bin/buglist.cgi. 1.13 Kit Contents, EM430Fx1x7RF900 • One READ ME FIRST document • One legal notice • Two target socket module MSP-EM430F5137RF900: Two EM430F5137RF900 target socket modules. This is the PCB on which is soldered a CC430F5137 device in a 48-pin RGZ package. A 2×7-pin male connector is also present on the PCB MSP-EM430F6137RF900: Two EM430F6137RF900 target socket modules. This is the PCB on which is soldered a CC430F6137 device in a 64-pin RGC package. A 2×7-pin male connector is also present on the PCB MSP-EM430F6147RF900: Two EM430F6147RF900 target socket modules. This is the PCB on which is soldered a CC430F6147 device in a 64-pin RGC package. A 2×7-pin male connector is also present on the PCB • Two CC430EM battery packs • Four AAA batteries • Two 868- or 915-MHz antennas • Two 32.768-kHz crystals • 18 PCB 2×4-pin headers 1.14 Hardware Installation, MSP-FET430PIF Follow these steps to install the hardware for the MSP-FET430PIF tools: 1. Use the 25-conductor cable to connect the FET interface module to the parallel port of the PC. The necessary driver for accessing the PC parallel port is installed automatically during CCS or IAR Embedded Workbench installation. Note that a restart is required after the CCS or IAR Embedded Workbench installation for the driver to become active. 2. Use the 14-conductor cable to connect the parallel-port debug interface module to a target board, such as an MSP-TS430xxx target socket module. Module schematics and PCBs are shown in Appendix B. 16 Get Started Now! SLAU278Q–May 2009–Revised February 2014 Submit Documentation Feedback Copyright © 2009–2014, Texas Instruments Incorporated www.ti.com Hardware Installation, MSP-FET430UIF 1.15 Hardware Installation, MSP-FET430UIF Follow these steps to install the hardware for the MSP-FET430UIF tool: 1. Install the IDE (CCS or IAR) you plan to use before connecting USB-FET interface to PC. The IDE installation installs drivers automatically. 2. Use the USB cable to connect the USB-FET interface module to a USB port on the PC. The USB FET should be recognized, as the USB device driver is installed automatically. If the driver has not been installed yet, the install wizard starts. Follow the prompts and point the wizard to the driver files. The default location for CCS is c:\ti\ccsv5\ccs_base\emulation\drivers\msp430\USB_CDC or c:\ti\ccsv5\ccs_base\emulation\drivers\msp430\USB_FET_XP_XX, depending of firmware version of the tool. The default location for IAR Embedded Workbench is