Consent Manager Tag v2.0 (for TCF 2.0) -->
Farnell PDF
T672 3000 Series Brochure 12PP (Page 2) - Eurotherm - Farnell Element 14
T672 3000 Series Brochure 12PP (Page 2) - Eurotherm - Farnell Element 14
- Revenir à l'accueil
Farnell Element 14 :
Farnell-HIP4081A-Int..> 07-Jul-2014 19:47 1.0M
Farnell-ISL6251-ISL6..> 07-Jul-2014 19:47 1.1M
Farnell-DG411-DG412-..> 07-Jul-2014 19:47 1.0M
Farnell-3367-ARALDIT..> 07-Jul-2014 19:46 1.2M
Farnell-ICM7228-Inte..> 07-Jul-2014 19:46 1.1M
Farnell-Data-Sheet-K..> 07-Jul-2014 19:46 1.2M
Farnell-Silica-Gel-M..> 07-Jul-2014 19:46 1.2M
Farnell-TKC2-Dusters..> 07-Jul-2014 19:46 1.2M
Farnell-CRC-HANDCLEA..> 07-Jul-2014 19:46 1.2M
Farnell-760G-French-..> 07-Jul-2014 19:45 1.2M
Farnell-Decapant-KF-..> 07-Jul-2014 19:45 1.2M
Farnell-1734-ARALDIT..> 07-Jul-2014 19:45 1.2M
Farnell-Araldite-Fus..> 07-Jul-2014 19:45 1.2M
Farnell-fiche-de-don..> 07-Jul-2014 19:44 1.4M
Farnell-safety-data-..> 07-Jul-2014 19:44 1.4M
Farnell-A-4-Hardener..> 07-Jul-2014 19:44 1.4M
Farnell-CC-Debugger-..> 07-Jul-2014 19:44 1.5M
Farnell-MSP430-Hardw..> 07-Jul-2014 19:43 1.8M
Farnell-SmartRF06-Ev..> 07-Jul-2014 19:43 1.6M
Farnell-CC2531-USB-H..> 07-Jul-2014 19:43 1.8M
Farnell-Alimentation..> 07-Jul-2014 19:43 1.8M
Farnell-BK889B-PONT-..> 07-Jul-2014 19:42 1.8M
Farnell-User-Guide-M..> 07-Jul-2014 19:41 2.0M
Farnell-T672-3000-Se..> 07-Jul-2014 19:41 2.0M
See the trailer for the next exciting episode of The Ben Heck show. Check back on Friday to be among the first to see the exclusive full show on element…
Connect your Raspberry Pi to a breadboard, download some code and create a push-button audio play project.
Puce électronique / Microchip :
Sans fil - Wireless :
Texas instrument :
Ordinateurs :
Logiciels :
Tutoriels :
Autres documentations :
Farnell-SL59830-Inte..> 06-Jul-2014 10:07 1.0M
Farnell-ALF1210-PDF.htm 06-Jul-2014 10:06 4.0M
Farnell-AD7171-16-Bi..> 06-Jul-2014 10:06 1.0M
Farnell-Low-Noise-24..> 06-Jul-2014 10:05 1.0M
Farnell-ESCON-Featur..> 06-Jul-2014 10:05 938K
Farnell-74LCX573-Fai..> 06-Jul-2014 10:05 1.9M
Farnell-1N4148WS-Fai..> 06-Jul-2014 10:04 1.9M
Farnell-FAN6756-Fair..> 06-Jul-2014 10:04 850K
Farnell-Datasheet-Fa..> 06-Jul-2014 10:04 861K
Farnell-ES1F-ES1J-fi..> 06-Jul-2014 10:04 867K
Farnell-QRE1113-Fair..> 06-Jul-2014 10:03 879K
Farnell-2N7002DW-Fai..> 06-Jul-2014 10:03 886K
Farnell-FDC2512-Fair..> 06-Jul-2014 10:03 886K
Farnell-FDV301N-Digi..> 06-Jul-2014 10:03 886K
Farnell-S1A-Fairchil..> 06-Jul-2014 10:03 896K
Farnell-BAV99-Fairch..> 06-Jul-2014 10:03 896K
Farnell-74AC00-74ACT..> 06-Jul-2014 10:03 911K
Farnell-NaPiOn-Panas..> 06-Jul-2014 10:02 911K
Farnell-LQ-RELAYS-AL..> 06-Jul-2014 10:02 924K
Farnell-ev-relays-ae..> 06-Jul-2014 10:02 926K
Farnell-ESCON-Featur..> 06-Jul-2014 10:02 931K
Farnell-Amplifier-In..> 06-Jul-2014 10:02 940K
Farnell-Serial-File-..> 06-Jul-2014 10:02 941K
Farnell-Both-the-Del..> 06-Jul-2014 10:01 948K
Farnell-Videk-PDF.htm 06-Jul-2014 10:01 948K
Farnell-EPCOS-173438..> 04-Jul-2014 10:43 3.3M
Farnell-Sensorless-C..> 04-Jul-2014 10:42 3.3M
Farnell-197.31-KB-Te..> 04-Jul-2014 10:42 3.3M
Farnell-PIC12F609-61..> 04-Jul-2014 10:41 3.7M
Farnell-PADO-semi-au..> 04-Jul-2014 10:41 3.7M
Farnell-03-iec-runds..> 04-Jul-2014 10:40 3.7M
Farnell-ACC-Silicone..> 04-Jul-2014 10:40 3.7M
Farnell-Series-TDS10..> 04-Jul-2014 10:39 4.0M
Farnell-03-iec-runds..> 04-Jul-2014 10:40 3.7M
Farnell-0430300011-D..> 14-Jun-2014 18:13 2.0M
Farnell-06-6544-8-PD..> 26-Mar-2014 17:56 2.7M
Farnell-3M-Polyimide..> 21-Mar-2014 08:09 3.9M
Farnell-3M-VolitionT..> 25-Mar-2014 08:18 3.3M
Farnell-10BQ060-PDF.htm 14-Jun-2014 09:50 2.4M
Farnell-10TPB47M-End..> 14-Jun-2014 18:16 3.4M
Farnell-12mm-Size-In..> 14-Jun-2014 09:50 2.4M
Farnell-24AA024-24LC..> 23-Jun-2014 10:26 3.1M
Farnell-50A-High-Pow..> 20-Mar-2014 17:31 2.9M
Farnell-197.31-KB-Te..> 04-Jul-2014 10:42 3.3M
Farnell-1907-2006-PD..> 26-Mar-2014 17:56 2.7M
Farnell-5910-PDF.htm 25-Mar-2014 08:15 3.0M
Farnell-6517b-Electr..> 29-Mar-2014 11:12 3.3M
Farnell-A-True-Syste..> 29-Mar-2014 11:13 3.3M
Farnell-ACC-Silicone..> 04-Jul-2014 10:40 3.7M
Farnell-AD524-PDF.htm 20-Mar-2014 17:33 2.8M
Farnell-ADL6507-PDF.htm 14-Jun-2014 18:19 3.4M
Farnell-ADSP-21362-A..> 20-Mar-2014 17:34 2.8M
Farnell-ALF1210-PDF.htm 04-Jul-2014 10:39 4.0M
Farnell-ALF1225-12-V..> 01-Apr-2014 07:40 3.4M
Farnell-ALF2412-24-V..> 01-Apr-2014 07:39 3.4M
Farnell-AN10361-Phil..> 23-Jun-2014 10:29 2.1M
Farnell-ARADUR-HY-13..> 26-Mar-2014 17:55 2.8M
Farnell-ARALDITE-201..> 21-Mar-2014 08:12 3.7M
Farnell-ARALDITE-CW-..> 26-Mar-2014 17:56 2.7M
Farnell-ATMEL-8-bit-..> 19-Mar-2014 18:04 2.1M
Farnell-ATMEL-8-bit-..> 11-Mar-2014 07:55 2.1M
Farnell-ATmega640-VA..> 14-Jun-2014 09:49 2.5M
Farnell-ATtiny20-PDF..> 25-Mar-2014 08:19 3.6M
Farnell-ATtiny26-L-A..> 13-Jun-2014 18:40 1.8M
Farnell-Alimentation..> 14-Jun-2014 18:24 2.5M
Farnell-Alimentation..> 01-Apr-2014 07:42 3.4M
Farnell-Amplificateu..> 29-Mar-2014 11:11 3.3M
Farnell-An-Improved-..> 14-Jun-2014 09:49 2.5M
Farnell-Atmel-ATmega..> 19-Mar-2014 18:03 2.2M
Farnell-Avvertenze-e..> 14-Jun-2014 18:20 3.3M
Farnell-BC846DS-NXP-..> 13-Jun-2014 18:42 1.6M
Farnell-BC847DS-NXP-..> 23-Jun-2014 10:24 3.3M
Farnell-BF545A-BF545..> 23-Jun-2014 10:28 2.1M
Farnell-BK2650A-BK26..> 29-Mar-2014 11:10 3.3M
Farnell-BT151-650R-N..> 13-Jun-2014 18:40 1.7M
Farnell-BTA204-800C-..> 13-Jun-2014 18:42 1.6M
Farnell-BUJD203AX-NX..> 13-Jun-2014 18:41 1.7M
Farnell-BYV29F-600-N..> 13-Jun-2014 18:42 1.6M
Farnell-BYV79E-serie..> 10-Mar-2014 16:19 1.6M
Farnell-BZX384-serie..> 23-Jun-2014 10:29 2.1M
Farnell-Battery-GBA-..> 14-Jun-2014 18:13 2.0M
Farnell-C.A-6150-C.A..> 14-Jun-2014 18:24 2.5M
Farnell-C.A 8332B-C...> 01-Apr-2014 07:40 3.4M
Farnell-CC2560-Bluet..> 29-Mar-2014 11:14 2.8M
Farnell-CD4536B-Type..> 14-Jun-2014 18:13 2.0M
Farnell-CIRRUS-LOGIC..> 10-Mar-2014 17:20 2.1M
Farnell-CS5532-34-BS..> 01-Apr-2014 07:39 3.5M
Farnell-Cannon-ZD-PD..> 11-Mar-2014 08:13 2.8M
Farnell-Ceramic-tran..> 14-Jun-2014 18:19 3.4M
Farnell-Circuit-Note..> 26-Mar-2014 18:00 2.8M
Farnell-Circuit-Note..> 26-Mar-2014 18:00 2.8M
Farnell-Cles-electro..> 21-Mar-2014 08:13 3.9M
Farnell-Conception-d..> 11-Mar-2014 07:49 2.4M
Farnell-Connectors-N..> 14-Jun-2014 18:12 2.1M
Farnell-Construction..> 14-Jun-2014 18:25 2.5M
Farnell-Controle-de-..> 11-Mar-2014 08:16 2.8M
Farnell-Cordless-dri..> 14-Jun-2014 18:13 2.0M
Farnell-Current-Tran..> 26-Mar-2014 17:58 2.7M
Farnell-Current-Tran..> 26-Mar-2014 17:58 2.7M
Farnell-Current-Tran..> 26-Mar-2014 17:59 2.7M
Farnell-Current-Tran..> 26-Mar-2014 17:59 2.7M
Farnell-DC-Fan-type-..> 14-Jun-2014 09:48 2.5M
Farnell-DC-Fan-type-..> 14-Jun-2014 09:51 1.8M
Farnell-Davum-TMC-PD..> 14-Jun-2014 18:27 2.4M
Farnell-De-la-puissa..> 29-Mar-2014 11:10 3.3M
Farnell-Directive-re..> 25-Mar-2014 08:16 3.0M
Farnell-Documentatio..> 14-Jun-2014 18:26 2.5M
Farnell-Download-dat..> 13-Jun-2014 18:40 1.8M
Farnell-ECO-Series-T..> 20-Mar-2014 08:14 2.5M
Farnell-ELMA-PDF.htm 29-Mar-2014 11:13 3.3M
Farnell-EMC1182-PDF.htm 25-Mar-2014 08:17 3.0M
Farnell-EPCOS-173438..> 04-Jul-2014 10:43 3.3M
Farnell-EPCOS-Sample..> 11-Mar-2014 07:53 2.2M
Farnell-ES2333-PDF.htm 11-Mar-2014 08:14 2.8M
Farnell-Ed.081002-DA..> 19-Mar-2014 18:02 2.5M
Farnell-F28069-Picco..> 14-Jun-2014 18:14 2.0M
Farnell-F42202-PDF.htm 19-Mar-2014 18:00 2.5M
Farnell-FDS-ITW-Spra..> 14-Jun-2014 18:22 3.3M
Farnell-FICHE-DE-DON..> 10-Mar-2014 16:17 1.6M
Farnell-Fastrack-Sup..> 23-Jun-2014 10:25 3.3M
Farnell-Ferric-Chlor..> 29-Mar-2014 11:14 2.8M
Farnell-Fiche-de-don..> 14-Jun-2014 09:47 2.5M
Farnell-Fiche-de-don..> 14-Jun-2014 18:26 2.5M
Farnell-Fluke-1730-E..> 14-Jun-2014 18:23 2.5M
Farnell-GALVA-A-FROI..> 26-Mar-2014 17:56 2.7M
Farnell-GALVA-MAT-Re..> 26-Mar-2014 17:57 2.7M
Farnell-GN-RELAYS-AG..> 20-Mar-2014 08:11 2.6M
Farnell-HC49-4H-Crys..> 14-Jun-2014 18:20 3.3M
Farnell-HFE1600-Data..> 14-Jun-2014 18:22 3.3M
Farnell-HI-70300-Sol..> 14-Jun-2014 18:27 2.4M
Farnell-HUNTSMAN-Adv..> 10-Mar-2014 16:17 1.7M
Farnell-Haute-vitess..> 11-Mar-2014 08:17 2.4M
Farnell-IP4252CZ16-8..> 13-Jun-2014 18:41 1.7M
Farnell-Instructions..> 19-Mar-2014 18:01 2.5M
Farnell-KSZ8851SNL-S..> 23-Jun-2014 10:28 2.1M
Farnell-L-efficacite..> 11-Mar-2014 07:52 2.3M
Farnell-LCW-CQ7P.CC-..> 25-Mar-2014 08:19 3.2M
Farnell-LME49725-Pow..> 14-Jun-2014 09:49 2.5M
Farnell-LOCTITE-542-..> 25-Mar-2014 08:15 3.0M
Farnell-LOCTITE-3463..> 25-Mar-2014 08:19 3.0M
Farnell-LUXEON-Guide..> 11-Mar-2014 07:52 2.3M
Farnell-Leaded-Trans..> 23-Jun-2014 10:26 3.2M
Farnell-Les-derniers..> 11-Mar-2014 07:50 2.3M
Farnell-Loctite3455-..> 25-Mar-2014 08:16 3.0M
Farnell-Low-cost-Enc..> 13-Jun-2014 18:42 1.7M
Farnell-Lubrifiant-a..> 26-Mar-2014 18:00 2.7M
Farnell-MC3510-PDF.htm 25-Mar-2014 08:17 3.0M
Farnell-MC21605-PDF.htm 11-Mar-2014 08:14 2.8M
Farnell-MCF532x-7x-E..> 29-Mar-2014 11:14 2.8M
Farnell-MICREL-KSZ88..> 11-Mar-2014 07:54 2.2M
Farnell-MICROCHIP-PI..> 19-Mar-2014 18:02 2.5M
Farnell-MOLEX-39-00-..> 10-Mar-2014 17:19 1.9M
Farnell-MOLEX-43020-..> 10-Mar-2014 17:21 1.9M
Farnell-MOLEX-43160-..> 10-Mar-2014 17:21 1.9M
Farnell-MOLEX-87439-..> 10-Mar-2014 17:21 1.9M
Farnell-MPXV7002-Rev..> 20-Mar-2014 17:33 2.8M
Farnell-MX670-MX675-..> 14-Jun-2014 09:46 2.5M
Farnell-Microchip-MC..> 13-Jun-2014 18:27 1.8M
Farnell-Microship-PI..> 11-Mar-2014 07:53 2.2M
Farnell-Midas-Active..> 14-Jun-2014 18:17 3.4M
Farnell-Midas-MCCOG4..> 14-Jun-2014 18:11 2.1M
Farnell-Miniature-Ci..> 26-Mar-2014 17:55 2.8M
Farnell-Mistral-PDF.htm 14-Jun-2014 18:12 2.1M
Farnell-Molex-83421-..> 14-Jun-2014 18:17 3.4M
Farnell-Molex-COMMER..> 14-Jun-2014 18:16 3.4M
Farnell-Molex-Crimp-..> 10-Mar-2014 16:27 1.7M
Farnell-Multi-Functi..> 20-Mar-2014 17:38 3.0M
Farnell-NTE_SEMICOND..> 11-Mar-2014 07:52 2.3M
Farnell-NXP-74VHC126..> 10-Mar-2014 16:17 1.6M
Farnell-NXP-BT136-60..> 11-Mar-2014 07:52 2.3M
Farnell-NXP-PBSS9110..> 10-Mar-2014 17:21 1.9M
Farnell-NXP-PCA9555 ..> 11-Mar-2014 07:54 2.2M
Farnell-NXP-PMBFJ620..> 10-Mar-2014 16:16 1.7M
Farnell-NXP-PSMN1R7-..> 10-Mar-2014 16:17 1.6M
Farnell-NXP-PSMN7R0-..> 10-Mar-2014 17:19 2.1M
Farnell-NXP-TEA1703T..> 11-Mar-2014 08:15 2.8M
Farnell-Nilï¬-sk-E-..> 14-Jun-2014 09:47 2.5M
Farnell-Novembre-201..> 20-Mar-2014 17:38 3.3M
Farnell-OMRON-Master..> 10-Mar-2014 16:26 1.8M
Farnell-OSLON-SSL-Ce..> 19-Mar-2014 18:03 2.1M
Farnell-OXPCIE958-FB..> 13-Jun-2014 18:40 1.8M
Farnell-PADO-semi-au..> 04-Jul-2014 10:41 3.7M
Farnell-PBSS5160T-60..> 19-Mar-2014 18:03 2.1M
Farnell-PDTA143X-ser..> 20-Mar-2014 08:12 2.6M
Farnell-PDTB123TT-NX..> 13-Jun-2014 18:43 1.5M
Farnell-PESD5V0F1BL-..> 13-Jun-2014 18:43 1.5M
Farnell-PESD9X5.0L-P..> 13-Jun-2014 18:43 1.6M
Farnell-PIC12F609-61..> 04-Jul-2014 10:41 3.7M
Farnell-PIC18F2455-2..> 23-Jun-2014 10:27 3.1M
Farnell-PIC24FJ256GB..> 14-Jun-2014 09:51 2.4M
Farnell-PMBT3906-PNP..> 13-Jun-2014 18:44 1.5M
Farnell-PMBT4403-PNP..> 23-Jun-2014 10:27 3.1M
Farnell-PMEG4002EL-N..> 14-Jun-2014 18:18 3.4M
Farnell-PMEG4010CEH-..> 13-Jun-2014 18:43 1.6M
Farnell-Panasonic-15..> 23-Jun-2014 10:29 2.1M
Farnell-Panasonic-EC..> 20-Mar-2014 17:36 2.6M
Farnell-Panasonic-EZ..> 20-Mar-2014 08:10 2.6M
Farnell-Panasonic-Id..> 20-Mar-2014 17:35 2.6M
Farnell-Panasonic-Ne..> 20-Mar-2014 17:36 2.6M
Farnell-Panasonic-Ra..> 20-Mar-2014 17:37 2.6M
Farnell-Panasonic-TS..> 20-Mar-2014 08:12 2.6M
Farnell-Panasonic-Y3..> 20-Mar-2014 08:11 2.6M
Farnell-Pico-Spox-Wi..> 10-Mar-2014 16:16 1.7M
Farnell-Pompes-Charg..> 24-Apr-2014 20:23 3.3M
Farnell-Ponts-RLC-po..> 14-Jun-2014 18:23 3.3M
Farnell-Portable-Ana..> 29-Mar-2014 11:16 2.8M
Farnell-Premier-Farn..> 21-Mar-2014 08:11 3.8M
Farnell-Produit-3430..> 14-Jun-2014 09:48 2.5M
Farnell-Proskit-SS-3..> 10-Mar-2014 16:26 1.8M
Farnell-Puissance-ut..> 11-Mar-2014 07:49 2.4M
Farnell-Q48-PDF.htm 23-Jun-2014 10:29 2.1M
Farnell-Radial-Lead-..> 20-Mar-2014 08:12 2.6M
Farnell-Realiser-un-..> 11-Mar-2014 07:51 2.3M
Farnell-Reglement-RE..> 21-Mar-2014 08:08 3.9M
Farnell-Repartiteurs..> 14-Jun-2014 18:26 2.5M
Farnell-S-TRI-SWT860..> 21-Mar-2014 08:11 3.8M
Farnell-SB175-Connec..> 11-Mar-2014 08:14 2.8M
Farnell-SMBJ-Transil..> 29-Mar-2014 11:12 3.3M
Farnell-SOT-23-Multi..> 11-Mar-2014 07:51 2.3M
Farnell-SPLC780A1-16..> 14-Jun-2014 18:25 2.5M
Farnell-SSC7102-Micr..> 23-Jun-2014 10:25 3.2M
Farnell-SVPE-series-..> 14-Jun-2014 18:15 2.0M
Farnell-Sensorless-C..> 04-Jul-2014 10:42 3.3M
Farnell-Septembre-20..> 20-Mar-2014 17:46 3.7M
Farnell-Serie-PicoSc..> 19-Mar-2014 18:01 2.5M
Farnell-Serie-Standa..> 14-Jun-2014 18:23 3.3M
Farnell-Series-2600B..> 20-Mar-2014 17:30 3.0M
Farnell-Series-TDS10..> 04-Jul-2014 10:39 4.0M
Farnell-Signal-PCB-R..> 14-Jun-2014 18:11 2.1M
Farnell-Strangkuhlko..> 21-Mar-2014 08:09 3.9M
Farnell-Supercapacit..> 26-Mar-2014 17:57 2.7M
Farnell-TDK-Lambda-H..> 14-Jun-2014 18:21 3.3M
Farnell-TEKTRONIX-DP..> 10-Mar-2014 17:20 2.0M
Farnell-Tektronix-AC..> 13-Jun-2014 18:44 1.5M
Farnell-Telemetres-l..> 20-Mar-2014 17:46 3.7M
Farnell-Termometros-..> 14-Jun-2014 18:14 2.0M
Farnell-The-essentia..> 10-Mar-2014 16:27 1.7M
Farnell-U2270B-PDF.htm 14-Jun-2014 18:15 3.4M
Farnell-USB-Buccanee..> 14-Jun-2014 09:48 2.5M
Farnell-USB1T11A-PDF..> 19-Mar-2014 18:03 2.1M
Farnell-V4N-PDF.htm 14-Jun-2014 18:11 2.1M
Farnell-WetTantalum-..> 11-Mar-2014 08:14 2.8M
Farnell-XPS-AC-Octop..> 14-Jun-2014 18:11 2.1M
Farnell-XPS-MC16-XPS..> 11-Mar-2014 08:15 2.8M
Farnell-YAGEO-DATA-S..> 11-Mar-2014 08:13 2.8M
Farnell-ZigBee-ou-le..> 11-Mar-2014 07:50 2.4M
Farnell-celpac-SUL84..> 21-Mar-2014 08:11 3.8M
Farnell-china_rohs_o..> 21-Mar-2014 10:04 3.9M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:34 2.8M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:35 2.7M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:31 2.9M
Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32 2.9M
Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32 2.9M
Farnell-ir1150s_fr.p..> 29-Mar-2014 11:11 3.3M
Farnell-manual-bus-p..> 10-Mar-2014 16:29 1.9M
Farnell-propose-plus..> 11-Mar-2014 08:19 2.8M
Farnell-techfirst_se..> 21-Mar-2014 08:08 3.9M
Farnell-testo-205-20..> 20-Mar-2014 17:37 3.0M
Farnell-testo-470-Fo..> 20-Mar-2014 17:38 3.0M
Farnell-uC-OS-III-Br..> 10-Mar-2014 17:20 2.0M
Sefram-7866HD.pdf-PD..> 29-Mar-2014 11:46 472K
Sefram-CAT_ENREGISTR..> 29-Mar-2014 11:46 461K
Sefram-CAT_MESUREURS..> 29-Mar-2014 11:46 435K
Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46 481K
Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46 442K
Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46 422K
Sefram-SP270.pdf-PDF..> 29-Mar-2014 11:46 464K
imagine making the
impossible possible
2000
Series controllers
Built on our experience of design and applications
knowledge spanning more than 40 years, the Eurotherm®
2000 series brings you performance you can rely on and
accuracy you can trust.
At the same time no other range of controllers makes
operation so easy. Menu driven operation provides easy
intuitive and consistent access to all the controller
functions.
www.eurotherm.com/2000
Ultimate performance
Simply imagine process excellence… and with Eurotherm you will achieve it. Our ranges
of controllers provide world class control and versatility with clear, user friendly, operator
interfaces. Add to this, a strong sales team of qualified engineers who understand your
process, an absolute commitment to innovation by continuously re-investing in research and
development; we can and do imagine making the impossible possible for our customers.
Internal timer
– A 5 mode timer suitable for simple
time based profiling applications
Universal input
– 9 different thermocouples, PT100, DC
linear and a downloadable custom
curve
Four outputs
– up to 4 outputs including 2 modular
with many options including DC
outputs
Communication protocols
– Modbus RTU, EI-Bisynch, DeviceNet®
Three internal alarms
– Configurable as High, Low, Deviation
and Deviation High or Low alarms
Two outputs
– 1 relay and 1 logic (can be used as a
relay with an external module)
Suitable for • Small ovens • Chillers • Sterilisers • Trace heating • Heat sealing •
Dwell timer
– simple ramp dwell profile applications
Four internal alarms
– configurable as High, Low, Deviation,
Deviation High, Deviation Low, High
and Low current alarms
Suitable for • Cold stores • Ovens and furnaces • Plastic extrusion • Packaging machines • Food and brewing applications •
www.eurotherm.com/2000
Every 2000 Series controller can be tailored to provide the
control solution you need. Modular design and easy, onsite
configuration matches application requirements and
gives you a temperature and process control solution that’s
ready to run the first time you switch it on.
The 2000 Series provides control strategies ranging from
simple ON/OFF to PID with advanced overshoot
protection, providing the best control for the widest range
of applications including valve positioning. Within the 2000
Series there is also the 2500 Modular Controller and the
2604/2704 Controllers which, with their enhanced
functionality and multiloop capability, offer a powerful
addition to the range. Please consult Eurotherm sales for
more information on these products.
Customisable to your control
requirements
imagine process
excellence...
Programming
– up to 20, 16 segment programs (4 in
the 2416) are available with 8 digital
event outputs
Four internal alarms
– configurable as High, Low, Deviation,
Deviation High or Low, high and Low
Current alarms high and low output,
high and low input 2, High and low
setpoint and one Rate of change
alarm
Modular
– up to 4 outputs of which 3 are
modular with many different options
within the different modules
Modules
– up to 16 different types of module
are available
Communication protocols
– Modbus RTU, EI-Bisynch, DeviceNet,
Profibus DP
Suitable for • Single and multi-zone furnaces • Kilns • Environmental chambers • Simple ratio • Humidity • Chemical and pharmaceutical •
Applications • Glass furnaces and lehrs •
For the full stories and all our successes go to www.eurotherm.com/success
Success stories commercial benefits
Prompt, accurate flow detection rate and response
Case Study
2400 series Feedforward control is excellent for chemical dosing
applications
Customer Challenge
The 2400 process controller is very suitable in the treatment of waste water,
petrochemical processes and other additive dosing applications because any
possible disturbance to the levels of chemicals added are detected before they can
affect the ongoing process.
Solution
Feedforward is a method for detecting disturbances in the upstream flow and
forwarding this information to the controller so that it can change the output before
the disturbance affects the downstream ratio.
So, in the diagram shown, the upstream flow rate from the flow meter (FT) forces an
immediate change to the output of the controller (OP) and so causes an immediate
change in the Dosing Pump speed.
This Feedforward method is ideal for any process that is subject to upstream
disturbances. This type of disturbance is invariably found in either liquid or gas
systems.
Customer Benefits
• Feedforward control can avoid the slowness of integral feedback control because
the disturbances are measured and accounted for before they have time to affect
• The dosing rate immediately tracks any changes in flow rate and so prevents any
possibility of over or under dosing
Typical use of technology
• Liquid Level - Boiler Drum Level
• Chemical Dosing - Paint Mixing, Brewing,
• Industrial Distillation – Brewing, Petroleum Refineries, Petrochemical, Chemical
Plants, and Natural Gas Processing Plants.
Setpoint
FF OP
Flow
Meter
FT AT
Analytical
Sensor
PID
Loop PV
+
2400
Dosing
Pump
Setpoint
Easy to use controllers for greater flexibility
Case Study
2100 series 5 Mode Timer feature enables cost effective temperature and
process control
Customer Challenges faced in the food beverage industry
Global market forces are driving the continual evolution of the food and beverage
industry. Consolidation, changing consumer preferences and increasing government
regulations are dramatically impacting manufacturing and business strategy. In this
fiercely competitive marketplace, consistent high quality and cost effectiveness are
critical to meet consumer demand.
Solution 2100 Controller
Eurotherm acknowledge these commercial pressures and our products ensure
simple cost effective process control. Even one of our simplest, compact controllers
has useful cost effective features.
The 5 mode timer in the 2100 temperature process controller may be used to
control batch operations, e.g. food production, ovens, sterilisers, fryers. An ideal
application would be single dwell at the end of either a controlled ramp rate or
natural approach to setpoint without the need for an additional timing device.
Available Timer Operation Modes are:
• Dwell and Switch Off
• Time from Cold and Switch Off
• Delayed Switch On
Benefits
• This maintains a target temperature at the end of a ramp rate without the need for
an additional device, thereby simplifying the process
• Easy operation with customised interface that presents only the parameters that
the operator needs to see. All other parameters can be locked away under
password protection.
Typical use of technology
• Small Ovens, Fryers, Sterilisers, Incubators
Time
Temperature
Setpoint
Dwell
time
Switch off
Ramp
control
Dwell Timer Functionality
For the full stories and all our successes go to www.eurotherm.com/success
Highly flexible temperature values
Case Study
2400 controller 8 segment program, repeatable and simple to change
Customer Challenges faced in Autoclave and Environmental Chamber applications
Many applications need their process values (i.e. Temperature, Pressure, Flow etc) to
be varied with time.
Amongst other applications Autoclaves are used for Sterilisation and for Vacuum
Forming. In these applications there are invariably a number of ramps, and dwell
times required to ensure that the material has been adequately processed.
In Environmental Chambers programmed profiles are generally run repeatedly for
some time and this is a method that is used to produce accelerated ageing. This
process is therefore very useful for determining the likely longevity of a product
before it fails.
Solution 2400 Controller
• The 2400 series process controller offer setpoint programming as an option. The
program is stored as a series of segments which can be ramps, dwells, steps etc.
• All 2400 programmer/controllers have an 8 segment program as standard, and
can optionally have up to 20 off 16 segment programs each with 8 digital events.
The digital events are used to control other ancillary equipment at predetermined
segments in the program. For instance; it may switch on a vibration
table at some stage in the process.
• All of these features make the 2400 programmer/controller ideal for Furnaces,
Environmental Chambers, and Autoclave applications.
Customer Benefits
• Minimises the need for extra equipment which becomes costly to install and
maintain, time and space saving
• Offers high integrity, repeatable processing thus increasing yield consistency and
high product quality
Typical use of technology
• Autoclaves – Steam Sterilization of medical, pharmaceutical and laboratory
equipment
• Environmental chambers –test the effects of environmental conditions such as
accelerated aging on industrial products, materials, biological items and
electronic devices
• Industrial furnaces – Heat Treatment, Glass Furnaces, and Lehrs
Temperature
End Type = Dwell
Time
Holdback at End Type = Off
start of dwell
www.eurotherm.com/2000
Real-world applications
Master
Programmer
Slave
Controllers
PDS communications
M
P g
S
C
In 2000 Series controllers it is possible to use the PDS communication link to
send a setpoint from one controller to a network of slave devices - providing
the economical creation of multi-zone temperature control solutions.
PDS setpoint retransmission
Ratiometric
Pyrometer
Thermocouple
Output
Switchover
between
4-20mA two points
mocouple
Master
Output
Slave
PDS
Retransmission
with
Feedforward
Modbus RTU
Modbus Master
The 2000 Series uses industry standard protocols
such as Modbus RTU, DeviceNet or Profibus DP
to communicate with supervisory systems and
PLCs over EIA232, EIA485 (2 wire) or EIA422 (4
wire). This carries the information and overall
control into the supervisory system while
maintaining local access to the local equipment
ensuring overall plant integrity in all situations.
Communication
Sometimes it is desirable to control a process using two separate inputs to
derive the PV (process value). This could be based on a highest wins, lowest
wins, some function of the two inputs, or switching between the two inputs at
some pre-determined point in the process.
For example, an application could consist of a thermocouple for measuring up
to 800°C and a Ratiometric Pyrometer for measuring the range between
700°C and 1,400°C.
Typically when the temperature is below 740°C the thermocouple provides
the PV and, when between 740°C and 780°C the controller switches gently
from the thermocouple to the Pyrometer which provides the PV up to 1,400°C.
Derived inputs
Using Eurotherm setpoint retransmission over PDS
communications it is possible to use two 2400 controllers
as a cascade control system with the output of the first (or
master controller) forming the setpoint of the second (or
slave controller).
Eurotherm advanced algorithms enable the use of either
setpoint or PV feedforward to limit the slave setpoint - for
example ±10% of the master setpoint or PV.
Cascade control
From a simple ramp and dwell to a 16 segment
program with event outputs, the 2000 Series provides a
powerful platform for setpoint profiling. Programs can
be edited from the instrument HMI and for the 2400
instruments, using iTools Setpoint Program Editor.
iTools configuration software enables you to store and
clone controller configurations, as well as commission
your process control system. This facility significantly
reduces installation and commissioning time while
improving the security of the process. The Eurotherm
advanced customer sensor linearisation tool also
provides for the download of special sensor response
characteristics to the controller.
Reduced installation and
commissioning time
Easy setpoint programming
From fixed build to modular construction, the
Eurotherm flexible 2000 Series offers a truly versatile
solution to all your requirements.
www.eurotherm.com/2000
Selection guide
Features
Panel size (DIN)
IP Rating
Single Loop
Display Type
Supply Voltage
Input Type
PV Accuracy
Control Types
SP Programmer
Analogue IP/OP
Digital IP/OP
Digital Comms
Alarm Types
PC Configuration
2116
1/32 1/16
IP65
2100
2216e 2208e
1/16
DIN rail
1/8
IP65
2200
2204e
1/4
TC, RTD,
mV, mA, V
1 x 4
dig LED
TC, RTD, mV,
mA, Volts
2 x 4 dig LED
<0.25%
On/Off. PID
none
In: 1 Out: 0
In: 1 Out: 2
none
none
none
none
none
none
none
none
none
none
none
none
none
List based
<0.25%
On/Off. PID, VP
none
none none
In: 1 Out: 1
In: 3 Out: 4
Modbus, DeviceNet
List based
24V dc/ac
85-264V ac
85-264V ac
2132
Dual input control
Hi, Lo, Dev,
Sensor break,
Event, Heater fail
Hi, Lo, Dev,
Sensor break,
Event, Heater fail
Hi, Lo, Dev,
Sensor break,
2416 2408 2404
1/16 1/8 1/4
IP65
2400
TC, RTD, mV,
mA, Volts
2 x 4 dig LED
<0.2%
On/Off. PID, VP
20 x 16 segments
In: 2 Out: 3
In: 11 Out: 11
List based
24V dc/ac
85-264V ac
Modbus, DeviceNet,
Profibus
Special Features
Maths Equation
Combinational Logic
Timers/Counters/Totals
Real Time Clock
© Copyright Eurotherm Limited 2011
Invensys, Eurotherm, the Eurotherm logo, Chessell, EurothermSuite, Mini8, Eycon, Eyris, EPower, nanodac and Wonderware are trademarks of
Invensys plc, its subsidiaries and affiliates. All other brands may be trademarks of their respective owners.
All rights are strictly reserved. No part of this document may be reproduced, modified, or transmitted in any form by any means, nor may it be stored
in a retrieval system other than for the purpose to act as an aid in operating the equipment to which the document relates, without
the prior written permission of Eurotherm limited.
Eurotherm Limited pursues a policy of continuous development and product improvement. The specifications in this document
may therefore be changed without notice. The information in this document is given in good faith, but is intended for guidance
only.
Eurotherm Limited will accept no responsibility for any losses arising from errors in this document.
Part No. HA026587 Issue 5 Printed in England on recycled paper 03.11
Represented by:
Eurotherm is also represented in the
Eurotherm: following countries:
International sales and service
www.eurotherm.com
Afghanistan
Albania
Algeria
Angola
Argentina
Armenia
Azerbaijan
Bahrain
Bangladesh
Barbados
Belarus
Bermuda
Bolivia
Bosnia and
Herzegovina
Botswana
Brazil
Brunei Darussalam
Bulgaria
Cambodia
Cameroon
Canada
Central African
Republic
Chad
Chile
Colombia
Congo
Costa Rica
Côte d’Ivoire
Croatia
Cyprus
Czech Republic
Denmark
Djibouti
Ecuador
Egypt
El Salvador
Eritrea
Estonia
Ethiopia
Fiji
Finland
Georgia
Ghana
Greece
Greenland
Guinea
Hungary
Iceland
Indonesia
Iraq
Israel
Jamaica
Japan
Jordan
Kazakhstan
Kenya
Kuwait
Kyrgyzstan
Laos
Latvia
Lesotho
Libya
Lithuania
Macedonia
Madagascar
Malaysia
Malta
Micronesia
Moldova
Morocco
Mozambique
Myanmar
Namibia
Nicaragua
Niger
Nigeria
Norway
Oman
Pakistan
Palestinian Territory
Papua New Guinea
Paraguay
Peru
Philippines
Poland
Qatar
Romania
Russia
Rwanda
Saudi Arabia
Senegal
Serbia and
Montenegro
Sierra Leone
Singapore
Slovakia
Slovenia
Somalia
South Africa
Sri Lanka
Sudan
Swaziland
Syria
Tajikistan
Tanzania
Thailand
The Gambia
Tunisia
Turkey
Turkmenistan
Uganda
Ukraine
United Arab Emirates
Uruguay
Uzbekistan
Venezuela
Vietnam
Yemen
Zambia
Zimbabwe
AUSTRALIA Melbourne
Invensys Process Systems
Australia Pty. Ltd.
T (+61 0) 8562 9800
F (+61 0) 8562 9801
E info.eurotherm.au@invensys.com
AUSTRIA Vienna
Eurotherm GmbH
T (+43 1) 7987601
F (+43 1) 7987605
E info.eurotherm.at@invensys.com
BELGIUM & LUXEMBOURG
Moha
Eurotherm S.A/N.V.
T (+32) 85 274080
F (+32) 85 274081
E info.eurotherm.be@invensys.com
BRAZIL Campinas-SP
Eurotherm Ltda.
T (+5519) 3707 5333
F (+5519) 3707 5345
E info.eurotherm.br@invensys.com
CHINA
Eurotherm China
T (+86 21) 61451188
F (+86 21) 61452602
E info.eurotherm.cn@invensys.com
Beijing Office
T (+86 10) 5909 5700
F (+86 10) 5909 5709/5909 5710
E info.eurotherm.cn@invensys.com
FRANCE Lyon
Eurotherm Automation SA
T (+33 478) 664500
F (+33 478) 352490
E info.eurotherm.fr@invensys.com
GERMANY Limburg
Eurotherm Deutschland GmbH
T (+49 6431) 2980
F (+49 6431) 298119
E info.eurotherm.de@invensys.com
INDIA Mumbai
Invensys India Pvt. Ltd.
T (+91 22) 67579800
F (+91 22) 67579999
E info.eurotherm.in@invensys.com
IRELAND Dublin
Eurotherm Ireland Limited
T (+353 1) 4691800
F (+353 1) 4691300
E info.eurotherm.ie@invensys.com
ITALY Como
Eurotherm S.r.l
T (+39 031) 975111
F (+39 031) 977512
E info.eurotherm.it@invensys.com
KOREA Seoul
Invensys Operations Management
Korea
T (+82 2) 2090 0900
F (+82 2) 2090 0800
E info.eurotherm.kr@invensys.com
NETHERLANDS Alphen a/d Rijn
Eurotherm B.V.
T (+31 172) 411752
F (+31 172) 417260
E info.eurotherm.nl@invensys.com
POLAND Katowice
Invensys Eurotherm Sp z o.o.
T (+48 32) 7839500
F (+48 32) 7843608/7843609
E info.eurotherm.pl@invensys.com
SPAIN Madrid
Eurotherm España SA
T (+34 91) 6616001
F (+34 91) 6619093
E info.eurotherm.es@invensys.com
SWEDEN Malmo
Eurotherm AB
T (+46 40) 384500
F (+46 40) 384545
E info.eurotherm.se@invensys.com
SWITZERLAND Wollerau
Eurotherm Produkte (Schweiz) AG
T (+41 44) 7871040
F (+41 44) 7871044
E info.eurotherm.ch@invensys.com
UNITED KINGDOM Worthing
Eurotherm Limited
T (+44 1903) 268500
F (+44 1903) 265982
E info.eurotherm.uk@invensys.com
U.S.A. Ashburn VA
Eurotherm Inc.
T (+1 703) 724 7300
F (+1 703) 724 7301
E info.eurotherm.us@invensys.com
ED63
2116/2132
PID temperature controllers
User Guide
Manuel Utilisateur
Bedienungsanleitung
ENG
FRA
GER
This booklet includes:
User Guide (HA026270 Issue 5)
Manuel Utilisateur (HA026270FRA Indice 5)
Bedienungsanleitung (HA026270GER Ausgabe 5)
Part Number HA026270 Issue 5.0 Aug 07 1
2132 and 2116 PID Temperature Controllers
Thank you for choosing the 2132 or 2116 Temperature Controller. Supplied in 1/32 and 1/16 DIN panel sizes they
are designed for accurate, stable control of ovens, chillers, sterilisers and other heating and cooling processes.
Two outputs are configurable for heating, cooling and alarms.
The controller is supplied configured according to the order code given in section 5. Check this on the side labels
to determine the configuration of your particular controller.
1. Dimensions and Installation
Model 2132
Model 2116
48mm (1.89in)
45 x 45 mm
-0.0, + 0.6
1.77 x 1.77in
-0.00, +0.02
48mm
24mm Panel cut-out
103mm (4.01in)
45mm -0.0, +0.6
1.77in -0.0, +0.02
Latching ears Panel retaining clips
22mm -0.0, +0.3
0.88in -0.0, +0.10
Panel cut-out
103mm (4.01in)
48mm (1.89in)
2 Part Number HA026270 Issue 5.0 Aug 07
1.1 To Install the Controller
Please read the safety information in sections 7 before proceeding.
1. Prepare the panel cut-out to the size shown
2. Insert the controller through the cut-out.
3. Spring the panel retaining clips into place. Secure the controller in position by holding it level and pushing
both retaining clips forward.
4. Peel off the protective cover from the display
1.2 Unplugging the Controller
The controller can be unplugged from its sleeve by easing the latching ears outwards and pulling it forward out of
the sleeve. When plugging it back into its sleeve, ensure that the latching ears click back into place to maintain the
IP65 sealing.
1.3 Recommended Minimum Spacing of Controllers
10mm (0.4 in) 38mm (1.5 in)
(Not to scale)
Part Number HA026270 Issue 5.0 Aug 07 3
2. Electrical Connections
2.1 Wire Sizes
The screw terminals accept wire sizes from 0.5 to 1.5 mm
(16 to 22AWG). Hinged covers prevent hands or metal
making accidental contact with live wires. The rear
terminal screws should be tightened to 0.4Nm (3.5lb in).
Output ratings
Logic Output: 9Vdc, 12mA (non-isolated from
sensor input).
Used for: Heating, Cooling or Alarm.
Relay Output: 2A, 264V ac resistive.
Used for: Heating, Cooling or Alarm.
Contact Closure Input (replaces Logic Output).
Used for: Alarm Acknowledge or Timer start/reset
Model 2116
OR
Solid
State
Relay
(SSR)
+
-
Logic
I/O
Line
Neutral
Output 2 Relay
T/C Pt100 mA
Sensor Inputs
L
N
A
AB
V+
V-
1A
1B
2.49Ω
85-264Vac
50/60Hz
1B 1A
Pt100
T/C Output 2
Relay Neutral
Line
Logic
I/O
Model 2132
External Relay
Module (Operated
by the logic
output)
OR
Solid
State
Relay
(SSR)
2.49Ω
Sensor Inputs
V- V+ AB A N L
- +
mA
85-264Vac 50/60Hz
1B 1A
20-29 Vac/dc
Low voltage supply
24 24
20-29 Vac/dc
Low voltage
24 supply
24
4 Part Number HA026270 Issue 5.0 Aug 07
2.2 Typical Wiring Diagram
Safety requirements for permanently connected equipment state:
• A switch or circuit breaker shall be included in the building installation
• It shall be in close proximity to the equipment and within easy reach of the operator
It shall be marked as the disconnecting device for the equipment
* When switching
inductive loads such as
contactors or solenoid
valves, wire the
22nF/100Ω ‘snubber’
supplied across relay
terminals AA & AB. This
will prolong contact life
and reduce interference.
! WARNING
Snubbers pass 0.6mA at
110V and 1.2mA at
230Vac, which may be
sufficient to hold on high
impedance loads. Do not
use in these installations.
Relay
output
fuse
2A type T
Neutral
Controller fuse
2A type T
Heater fuse
Heater Thermocouple
Solid State
Relay
(e.g. TE10)
Snubber*
Line
+
-
Model 2132
V+ A
1B
V-
1A
A L N
Cooling or
alarm relay
Circuit
Breaker
Part Number HA026270 Issue 5.0 Aug 07 5
3. Operation
Switch on the controller. Following a 3 second selftest
sequence, you will see the display shown below.
It is called the HOME display.
OP1 illuminates when the logic output is ON
(normally heating).
OP2 illuminates when the relay output is ON
(normally cooling or alarm).
If
OP1 or
OP2 are configured as alarm outputs
(instead of heating and cooling), they will flash when a
new ‘unacknowledged’ alarm occurs and go steady
when the alarm is acknowledged but still true.
3.1 To Adjust The Required
Temperature (Setpoint)
Press and release quickly the or button.
The setpoint will be displayed for 2 seconds.
20 Output 1
Output 2
Actual
Temperature
(or Process
Value ‘PV’)
OP1
OP2
Press and hold to raise the setpoint
Press and hold to lower the setpoint
60 OP1
OP2
Required
temperature
(Setpoint)
Actual temperature
20 OP1
OP2
6 Part Number HA026270 Issue 5.0 Aug 07
3.2 To View The Display Units
Press and release quickly the or button. The
display units will be flashed for 0.5 sec.
If you get lost, pressing and together will
always return you to the HOME display.
If, at any time, no key is pressed within 45 seconds,
the display will always return to the HOME display.
3.3 To Acknowledge a New Alarm
Press and together. This will also reset any
latched alarms that are no longer true.
3.4 Alarm Messages
If an alarm occurs a message will be flashed in the
display. This alternates with the measured temperature
as shown below:
Possible messages
-fsH Alarm - Full Scale High
-FSL Alarm - Full Scale Low
-deV Alarm - Deviation
-dHi Alarm - Deviation High
-dLo Alarm - Deviation Low
Sbr Sensor Break
Lbr Loop Break
Ldf Load Fail
End End of Timing
In place of the dash the alarm number is shown -
Alarm 1 or 2 or 3.
Display Units
*C Deg Centigrade
*F Deg Fahrenheit
*K Deg Kelvin
Linear inputs - no
units displayed
0.5 sec
or
oC
20
Alarm 1
Full Scale
Low
Actual
temperature
1fsL
20
Part Number HA026270 Issue 5.0 Aug 07 7
3.5 To View The Output Power
Do this if you want to see how much heating or
cooling energy is being demanded by the controller.
Note: This is not a measure of actual power.
Warning!
In manual standby mode (see ‘To Use The Timer’) the
output power can be adjusted by the operator, causing
heating or cooling to be permanently applied. To
prevent this make the OP parameter read only (see ‘To
Hide, Reveal And Promote Parameters’)
HOME display
20.0
Press twice quickly
OP 100.0
*C
Press
Controller is
demanding 100% heat
Press or to view the value
8 Part Number HA026270 Issue 5.0 Aug 07
3.6 To Select or Change Other
Parameters
Parameters are settings in the controller which you can
change to suit the process. They are found under list
headings.
Press the button to step through the list headings
as shown below.
Turn to paragraph 3.8 to see all of the list headings.
These lists are used to:
• Change alarm setpoints
• Tune the controller to the process
• Manually select PID values
• Change setpoint limits and access the in-built
timer
• Change input and output limits
Keep pressing to select
more list headings, eventually
returning to the HOME display.
This is a continuous loop.
HOME display
20.0 aL Atun
X2
Part Number HA026270 Issue 5.0 Aug 07 9
3.7 To Adjust The Alarm Setpoints
(Trip Levels)
Press twice to choose the AL list.
There are three Alarms. The setpoint for each alarm is
found under the AL list. If an alarm has been disabled, it
will not appear in this list.
Note: The other parameters listed in section 3.8 are
accessed and adjusted in exactly the same way as this
example.
0.5 sec
1st press
2nd press
*C
20
2 secs
Next list
Press or displays List indicating a list heading
LiSt
AL
0
1---
-FSL = Low alarm
-FSH = High alarm
-dEV = Deviation
-dHi = Deviation High
-dLo = Deviation Low
- = the alarm number
0
2---
0
3---
Press and together to return to the HOME display.
Alarm 1
*
Alarm 2
*
Alarm 3
*
* Press or to
change the setpoint.
Press
10 Part Number HA026270 Issue 5.0 Aug 07
3.8 Parameter Lists
Shaded boxes are hidden when shipped from the factory.
To reveal see ‘’To Hide, Reveal and Promote Parameters” section 3.10
HC.db
Hys.C
HYS.H
Ont.C
Ont.H
OP.Hi
OP.Lo
CJCO
SPrr
SP H
SP L
AdC
Lb t
diSP HY
m A
w.SP
Home
List
Alarm
List
Autotune
List
PID
List(2)
Setpoint
List
Input
List
Output
List(2)
On/Off
List
Access List
20.0 AL Atun Pid SP iP oP On.Of ACCS
1---(1)
2---(1)
3---(1)
OP tunE Pb
ti
td
rES
Lcb
Hcb
rEL.C
OFS.H
FiLt
mV
OFS
CAL.P
CAL
Pnt.L
OFS.L
Pnt.H
CYC.H
CYC.C
codE
Goto
Conf
tmr
dwel
StAt
tm.OP
(2) Either the PID list or the On/Off list
will be present depending upon the
configuration of the controller.
X2
(1) In place of dashes, the last
three letters depend on the
alarm type.
Part Number HA026270 Issue 5.0 Aug 07 11
3.8.1 Summary
1. Press to step across list headings.
2. Press to step down parameters
3. Press to view the value of a parameter. Keep pressing to decrease the value.
4. Press to view the value of a parameter. Keep pressing to increase the value
12 Part Number HA026270 Issue 5.0 Aug 07
3.9 Parameter Tables
Home List Adjustable Range Default setting Customer setting
Op Output
Power
-100% = max cooling, 100.0% = max heating.
w.SP Working
Setpoint
Only appears when setpoint rate limit enabled Read only Read only
m-A Manual/
Auto Select
Auto
mAn
Automatic control selected
Manual standby selected
Auto
disp Home
Display
Options
Std
OP
NonE
PV
AL.SP
pv.aL
Standard - Shows the process value
with the setpoint accessed by pressing
the and buttons.
Displays the output power - for use as
a manual station. (Only applies to
software version 1.4)
Blank Display (only alarm messages
flashed)
Displays the Process Value only
Displays the Alarm 2 Setpoint only
Displays the Process Value with Alarm
2 Setpoint accessed by and .
Std
Part Number HA026270 Issue 5.0 Aug 07 13
AL Alarm List (See
section 3.7)
Adjustable
Range
Default
Setting
Customer setting
1--- Alarm 1 Setpoint 0
2--- Alarm 2 Setpoint 0
3--- Alarm 3 Setpoint
In place of dashes, the last
three letters indicate the
alarm type:
Between low
and high
setpoint limits 0
-FSL Full Scale Low
-FSH Full Scale High
-dEv Deviation
-dHi Deviation High
-dLo Deviation Low
HY Alarm Hysteresis 1 to 9999 in display units (This value is
common to all alarms) Hysterisis is used to
prevent the alarm output ‘chattering’ by setting
a difference between the alarm switch ON and
switch OFF points
1
Lb t Loop Break Time OFF to 9999 minutes OFF
14 Part Number HA026270 Issue 5.0 Aug 07
Atun Automatic Tuning List (See section 4.3) Adjustable
Range
Default Setting Customer setting
tunE Automatic Tune Enable OFF or on Off
Adc Automatic Manual reset calculation (when P+D
control)
man or
caLc
man
PiD PID List (See section 4.3) Adjustable Range Default Setting Customer setting
Pb Proportional Band 1 to 999.9 display units 20
ti Integral Time OFF to 9999 seconds 360
td Derivative Time OFF to 9999 seconds 60
rES Manual Reset Value
(only present if ti= OFF)
-100 to 100.0 % 0.0
Lcb Low Cutback Auto to 999.9 display units Auto
Hcb High Cutback Auto to 999.9 display units Auto
rEL.C Relative Cool Gain 0.01 to 10.00 1.00
Part Number HA026270 Issue 5.0 Aug 07 15
SP Setpoint List (See also ‘To Use
the Timer’ section 3.11)
Adjustable Range Default Setting Customer setting
SP L Setpoint Low Limit -1999 to 999.9 As per order
SP H Setpoint High Limit -1999 to 999.9 As per order
sprr Setpoint Rate Limit 0FF to 999.9 display units
per minute
Off
tm.OP Timer Operating Mode Opt.1 to Opt.5 OPt.1
tmr Time Remaining 0 to 9999 minutes 0
dwEl Dwell Time 0FF to 9999 minutes OFF
StAt Timer Status OFF or on OFF
16 Part Number HA026270 Issue 5.0 Aug 07
iP Input List (See also ‘User
Calibration’ section 4.2)
Adjustable Range Default Setting Customer setting
FiLt Input Filter Time Constant 0FF to 999.9 seconds 1.6
CJC* Cold Junction Temperature measured at rear terminals Read only
mV Millivolt Input measured at the rear terminals Read only
OFS Process value Offset -1999 to 9999 display
units
0
CAL.P Calibration Password 0 to 9999 3
CAL User Calibration Enable FACt Re-instates factory
calibration
USEr Re-instates user
calibration
FACt
Pnt.L Low Calibration Point 0
OFS.L Low Point Calibration Offset 0
Pnt.H High Calibration Point 100
OFS.H High Point Calibration Offset
-1999 to 9999 display
units
0
Part Number HA026270 Issue 5.0 Aug 07 17
oP Output List Adjustable Range Default Setting Customer setting
OP.Lo Low Output Power Limit -100 to 100.0 % 0
OP.Hi High Output Power Limit -100 to 100.0 % 100.0
CYC.H Heating Output Cycle Time 0.2 to 999.9 seconds 1.0 Lgc 20 Rly
CYC.C Cooling Output Cycle Time 0.2 to 999.9 seconds 5.0 Lgc 20 Rly
ont.H Heating Output Minimum On
Time
Auto to 999.9 seconds
(Auto = 50ms)
Auto
ont.C Cooling Output Minimum On
Time
Auto to 999.9 seconds
(Auto = 50ms)
auto
onOF On Off Output List Adjustable Range Default Setting Customer setting
hYS.H Heating Hysteresis 1 to 9999 display units 1
hYS.C Cooling Hysteresis 1 to 9999 display units 1
HC.db Heat/Cool Deadband 0 to 9999 display units 0
ACCS Access List (See “To Hide, Reveal and
Promote” parameters section 3.10)
Adjustable Range Default
Setting
Customer setting
codE Access Pass Number 0 to 9999 1
Goto Go To Required Access Level Oper, Ful, Edit, conf OPEr
Conf Configuration Pass Number 0 to 9999 2
18 Part Number HA026270 Issue 5.0 Aug 07
3.10 To Hide, Reveal and Promote
Parameters
You are now in Edit level.
Press and to select a parameter
in the normal way.
Press to return to the Access list header.
ACCS
PASS
codE
Press or to enter the password.
The factory default is 1. ‘PASS’ will be
displayed when the correct password has
been entered.
Press
Press until the Access List Heading is
reached.
Press or to select ‘Edit’ level.
Other options are:
OPEr Operator level - shows selected
parameters
FuLL Reveals the ‘FULL’ set of
parameters
ConF Gives access to configuration
level.
Edit
Goto
Press
ACCS
High alarm 2 has been selected.
When or is pressed, instead of
displaying the parameter value, its
availability to in Operator level is shown as
follows:
ALtr The parameter will be alterable
HidE The parameter will be hidden
.
rEAd The parameter will be read-only
Pro The parmeter will be ‘promoted’
into the HOME list (see below).
Example:
HidE
2FSH
Part Number HA026270 Issue 5.0 Aug 07 19
3.10.1 The Pro (Promote) option
Up to twelve commonly used parameters can be
‘promoted’ into the HOME list. This will give the
operator quick access to them by simply pressing the
button. This feature, used in combination with
‘hide’ and ‘ read only’, allows you to organise the way
in which you want your controller formatted.
The parameter tmr will now appear in the HOME
list. Repeat the procedure for any other parameters
you wish to promote.
To remove a parameter go to edit level, select the
parameter from the relevant list and change the choice
from Pro back to ALtr, rEAd or HidE.
3.10.2 Returning to Operator level
Repeat the above procedure for all the parameters you
wish to hide, promote, or make read-only then return
to operator level:
Example:
Time remaining has been selected.
Press or to choose Pro.
Pro
tmr
1. Press until you reach the
ACCS list heading
2. Press until you reach
Goto
3. Press or to select
Oper
4. Press to return to Operator
level
OPer
Goto
20 Part Number HA026270 Issue 5.0 Aug 07
3.11 To Use The Timer
• Press until you reach the SP list
• Press until you reach the tM.OP parameter
• Press or to select the timer operating
mode, Opt.1 to Opt.5 as follows:
3.11.1 Opt.1 - Mode 1, Dwell and Switch Off
In reset
In reset, you can switch between automatic control and
standby mode, using the parameter m-A in the HOME
list.
The controller is supplied with the m-A parameter
hidden. You must first reveal it. See ‘To Hide, Reveal
and Promote Parameters’.
Standby mode
Temperature
Setpoint
Reset Timing
Running
End
Waiting to End flashes
reach
temperature
Auto
m-A
From the HOME display press
until the m-A parameter is displayed.
Press or to select:
Auto Automatic control
mAn Standby mode. (the MAN
beacon below OP2 will
illuminate)
Press and together to return to the HOME
display
Part Number HA026270 Issue 5.0 Aug 07 21
‘Automatic control’ means control at setpoint, with
heating (and cooling) being applied.
‘Standby mode’ means: the controller is in manual
with zero output power. See ‘Warning!’ in section 3.5.
During Running
The controller will always switch to automatic control.
Heating (or cooling) will be applied and the
temperature will rise (or cool) to the setpoint. When
the temperature is within 1oC of setpoint, the timer will
start counting down.
During End
When the timer times out, the controller will switch to
standby mode. The MAN beacon will light and End
will be flashed in the main display. The process will
cool down. The timer will remain indefinitely in this
state until reset.
When Reset
End will stop flashing. The controller will return to
reset in standby mode. It can be returned to automatic
control by setting the parameter m-A in the HOME list
to Auto.
3.11.2 Opt.2 - Mode 2, Dwell No Switch Off
Indefinite dwell
at setpoint
Temperature
Setpoint
Reset Timing
Running
End
End flashes
Waiting to
reach
temperature
This is the same as mode 1 except that at the end of the
timing period the controller will continue indefinitely in
automatic control.
22 Part Number HA026270 Issue 5.0 Aug 07
3.11.3 Opt.3 - Mode 3, Time from Cold and
Switch Off
This is the same as mode 1 except that the timer will
start counting down immediately without waiting for
the temperature to reach setpoint.
3.11.4 Opt.4 Mode 4, Time from Cold No
Switch Off
This is the same as mode 2 except that the timer will
start counting down without waiting for the controller
to reach setpoint.
Standby mode
Temperature
Setpoint
Reset Timing End
End flashes
Temperature
Setpoint
Reset Timing End
End flashes
Indefinite dwell
at setpoint
Part Number HA026270 Issue 5.0 Aug 07 23
3.11.5 Opt.5 Mode 5, Delayed Switch On
This mode applies a time delay before turning on the
heating (or cooling). When the timer is started, the
controller will always switch to standby mode and start
counting down. When the timer has timed out, the
controller will switch into automatic control, apply
heating (or cooling) and control indefinitely at the
setpoint.
3.11.6 To Program a Ramp-Dwell profile
A simple ramp-dwell profile can be programmed using
Sprr (setpoint rate limit) in combination with the
timer. To use this feature, first reveal Sprr and w.SP
(the working setpoint) using the method described in
“To Hide, Reveal and Promote” parameters. w.SP will
then appear in the HOME list.
Set Sprr to the required ramp rate. It is adjustable
in 1/10th of the least significant display units per
minute. That is if the display is configured 0 to
1000oC, setpoint rate limit can be adjusted between 0.1
and 999.9 oC per minute.
When setpoint rate limit has been enabled and the
timer is started, the working setpoint, wsp, will first
step to the measured temperature and then ramp at the
setpoint rate limit, sprr, to the target setpoint.
In modes 1 and 2 timing will start when the measured
temperature is within 1oC of the target setpoint. In
modes 3 and 4 it will start when wsp is within 1oC of
the target setpoint.
Indefinite dwell
at setpoint
Temperature
Setpoint
Reset Timing Reset
24 Part Number HA026270 Issue 5.0 Aug 07
3.12 To Start And Reset The Timer
There are two methods:
Method 1.
This is the simplest method to control the timer.
• Press until you reach the SP list
• Press until you reach the tMr parameter
(time remaining).
TIP: Promote tmr to the HOME list for quick access,
as described in ‘To Hide, Revealing and Promote
Parameters.
As soon as a value is entered into tmr timing will
commence. tmr will count down towards zero.
During the timing period tmr can be increased or
decreased according to the demands of the process.
Setting the value to zero will end the timing period.
When tmr reaches zero. ‘end’ will flash in the main
display. The timer will remain indefinitely in this state
until a new value is entered, when the timer will
restart.
To reset the timer, press and together.
‘end’ will stop flashing .
To restart the timer, enter a new value into tmr.
1234
Tmr
Press or to enter
the required timing period in
minutes. (0 to 9999).
Press to return to the HOME display
Part Number HA026270 Issue 5.0 Aug 07 25
Method 2.
Use this method if you want to set a fixed time and use
the stat parameter to start and stop the timer.
The stat parameter can also be switched between
Off and run by configuring the logic I/O as a
Off/run contact closure input.
Open the external contact to select run. This is an
edge triggered action. Close the contact to select Off.
Off is forced whenever the contact is closed.
1234
dwel
run
stat
sp Press to reach the SP List heading.
Press until you reach dwel
Dwell time
Press or to enter a
timing period in minutes
(0-9999).
Timer Status
To start the timer, press or to
select run.
The dwell time will be loaded into tmr
and timing will commence.
To reset the timer, select Off.
The time remaining tmr will be set to
0.
Press and together to return to the HOME display.
26 Part Number HA026270 Issue 5.0 Aug 07
4. Configuring the Controller
Select configuration level to change: •The type of control •The display units •The input sensor type• The
scaling of linear inputs •The alarm configuration • The passwords.
4.1 To select configuration level
Press to step across the configuration list headings.
Having selected a list heading, press to select a
parameter within a particular list.
Press and to change the setting.
inSt iP AL AA
Exit pASS 1A
To Instrument Configuration Tables
Press
Press
Press
Goto conF Press or to select conf
ACCS Press to reach the Access List Heading.
codE PASS
Press or to enter the
password. The factory default is 1.
PASS will be displayed when the
correct password has been entered.
ConF PASS
Press or to enter the
configuration level password. The
factory default is 2. PASS will be
displayed when the correct password
has been entered.
Press to enter configuration level.
Part Number HA026270 Issue 5.0 Aug 07 27
4.1.1 Instrument Configuration
inst Instr Conf Options Description
*C Centigrade
*F Fahrenheit
*K Kelvin
unit Display units
nonE None
nnnn None
nnn.n One
dEC.P Decimal
places in
display nn.nn Two
Pid PID Control
On.OF On/off Control
CtrL Control type
AL Convert to an
alarm unit
rEv Reverse
(normal action
for
temperature
control)
Act Control
action
dir Direct (output
decreases as
PV falls below
SP)
Inst Instr Conf Options Description
HoLd
In Auto holds
manual reset
value
Pd.tr Manual
reset
tracking (PD
control) trAc
In Auto tracks
output for
bumpless A/M
transfer
28 Part Number HA026270 Issue 5.0 Aug 07
4.1.2 Input Configuration
iP Sensor
Input
Options Meaning
j.tc J thermocouple
k.tc K thermocouple
L.tc L thermocouple
r.tc R thermocouple
b.tc B thermocouple
n.tc N thermocouple
t.tc T thermocouple
S.tc S thermocouple
PL 2 Platinell II
rtd 100Ω PRT
mV Linear mV
inPt Input
type
C.tc Custom input
C=default
Auto Automatic
0*C 0°C external ref.
45*C 45°C external ref.
CJC
(TC
only)
Cold
junction
compen
sation
50*C 50°C external ref.
Linear input scaling (Range -12 to +80mV)
InP.L mV input
low
InP.H mV input
high
VaL.L Displayed
value low
VAL.H Displayed
value high
OFF Off (Linear
inputs only)
Auto 1.5KΩ
Hi 5KΩ
ImP Sensor
break
input
impedance
HiHi 15KΩ,
Inp.L Inp.H
VAL.H
VAL.L
mV
Displayed value
Part Number HA026270 Issue 5.0 Aug 07 29
4.1.3 Alarm Configuration
The AL list configures the three internal ‘soft’ alarms
and causes the appropriate alarm message to be flashed
in the HOME display.
At this stage the alarm is indication only (known as a
‘soft alarm’). To make the alarms operate the relay or
logic outputs, follow the instructions under “Relay and
Logic input/output Configuration.
AL Alarm Type Meaning
OFF The alarm is
disabled
fsL Full Scale Low
alarm
fsH Full Scale High
alarm
dEv Deviation band
alarm
dHi Deviation high
alarm
AL 1 Alarm 1
dLo Deviation low
alarm
AL Alarm Type Meaning
no Non-latching
YES Latched with
automatic*
resetting.
Ltch Alarm
latching
mAn Latched with
manual**
resetting.
bLoc Alarm No No blocking
blocking YES Blocked until
first good
The above sequence is repeated for:
AL 2 (Alarm 2) and AL 3 (Alarm 3)
diS Limited by
display range
Sp.Li Alarm
setpoint
limits Con Limited by
setpoint limits
* Automatic resetting means that, once the alarm has
been acknowledged, it will automatically clear when it
is no longer true.
** Manual resetting means that the alarm must first
clear before it can be reset.
30 Part Number HA026270 Issue 5.0 Aug 07
4.1.4 Relay and Logic input/output
Configuration
The logic I/O can be configured as an output or a
contact closure input for alarm acknowledge, keylock,
or timer run/reset.
Aa Relay
1a Logic I/O
Options Meaning
id Identity of rELy Relay
output LOG Logic
diG Digital (alarm)
output
HEAt Heating output
Function
COOL Cooling output
SSr.1 PDSIO mode 1
Ac.AL Alarm
Acknowledge
Loc.b Keylock digital
input
Func
These
functions
only
appear for
the logic
I/O rres Run/reset timer
noch No change
CLr Clear all alarms
1FSL Alarm 1 (Note 1)
diG.F Digital
output
functions
See ‘To 2FSH Alarm 2 (Note 1)
Aa Relay
1a Logic I/O
Options Meaning
3FSL Alarm 3 (Note 1)
NW * New alarm
SBR* Sensor break
LBR* Loop break
LDF* Load fail alarm
MAn * Man mode active
EnD* End of timing
TMG* Timer running
Operate
the Relay
or Logic
Output
from an
Alarm or
Digital
Function
section
4.1.5”
TMG* Timer counting
down
(Note 2) TMG3* Timer running
TMG4* Timer counting
down
SenS Sense of nor Normal (Note 3)
the
output
Inv Inverted (Note 3)
* Alarms always non-latching. Process alarms 1, 2
and 3 are configurable as alarm latching or nonlatching,
see the ‘AL’ List
Part Number HA026270 Issue 5.0 Aug 07 31
Note 1: The last three letters will correspond to the
alarm type configured in the AL list. If the alarm is
disabled, AL1 or AL2 or AL3 will be shown.
Note 2: If tmg.3 and tmG.4 are selected, they
illuminate the logic or relay output beacons, OP1 and
OP2, without operating the actual output. They are
used to indicate that timing is in progress while leaving
the actual outputs to be operated by the other digital
functions such as the END condition which can be
used to operate an external klaxen.
Note 3: Normal is the usual setting for heating or
cooling.
Inverted is the normal setting for alarms - de-energise
in alarm.
4.1.5 To Operate the Relay or Logic output
from an alarm or digital function.
1. Press until you reach Func
2. Press or to select Func = diG
3. Press to reach diG.F
4. Press or to select a alarm or digital
function
5. Leave for 2 seconds. The display returns to
diG.F and connects the selected alarm or digital
function to the relay or logic output.
6. Press or again. Two decimal points will
appear in the function that has been added to the
output.
4.1.6 Multiple Alarms on one Output
Any number of alarms or digital functions can be
added to the relay or logic output by repeating steps 4,
5 and 6 above. Two decimal points will appear in
those functions that has been added to the output.
4.1.7 To Clear Alarms from an Output
1. Press until to reach diG.F
2. Press or to select CLr
3. Leave for 2 seconds. The display returns to
diG.F which disconnects all alarms from the
relay.
32 Part Number HA026270 Issue 5.0 Aug 07
4.1.8 Passwords
PASS Passwords Range Default
ACC.P Full and Edit
level password
0-9999 1
CnF.P Configuration
level password
0-9999 2
CAL.P User
calibration
password
0-9999 3
4.1.9 To leave Configuration level
Press to reach the ‘exit’ display
Press or to select ‘YES’ After 2 secs the display
will blink and return to the HOME display in Operator level.
Exit YES
Part Number HA026270 Issue 5.0 Aug 07 33
4.1.10 Diagnostic Alarms
In addition to the normal process alarms, the following
diagnostics alarm messages are provided.
Message Meaning and (Action)
EE.Er Electrically Erasable Memory Error:
A parameter value has been corrupted.
Contact Eurotherm Controls.
HW.Er Hardware error:
(Return for repair)
LLLL Low display range exceeded:
(Check input signal)
HHHH High display range exceeded:
(Check input signal)
Err1 Error 1: ROM self-test fail.
(Return for repair)
Err2 Error 2: RAM self-test fail.
(Return for repair)
Message Meaning and (Action)
Err3 Error 3: Watchdog fail.
(Return for repair)
Err4 Error 4: Keyboard failure. Stuck
button, or a button was pressed during
power up.
Err5 Error 5: Input circuit failure.
(Return for repair)
Pwr.F Power failure. The line voltage is too
low.
TU.Er Tune Error. Appears if auto-tuning
exceeds 2 hours.
34 Part Number HA026270 Issue 5.0 Aug 07
4.2 User Calibration
Your controller has been calibrated for life against
known reference sources. User calibration allows you
to apply offsets to compensate for sensor and other
system errors. The parameter OFS in the IP list
applies a fixed offset over the whole display range.
You may also apply a 2-point calibration as follows:
• Press until you reach the iP list
• Press until you reach the CAL.P parameter
• Press or to enter the password. The
factory default is 3. PASS will be displayed
when the correct has been entered.
• Press to reach the CAL parameter
• Press or , to select User (FAct will
restore the factory calibration)
• Press to select in turn the four parameters
shown in the graph below. Use or to set
the desired calibration points and the offsets to be
applied at each point. The iP list on section 3.9
describes each of the parameters.
Factory
calibration
Displayed Value
Factory calibration
Pnt.H
OFS.H
OFS.L
Pnt.L
User calibration
Part Number HA026270 Issue 5.0 Aug 07 35
4.3 Automatic Tuning
In PID control, the output from the controller is the
sum of three terms: Proportional, Integral and
Derivative. These three terms deliver just the right
amount of power to hold the temperature at setpoint
without oscillation. For stable control, the PID values
must be ‘tuned’ to the characteristics of the process
being controlled. In the 2132 and 2116 this is done
automatically using advanced tuning techniques.
Automatic tuning is performed by switching the output
of the controller On and Off to induce an oscillation in
the measured temperature. From the amplitude and
period of the oscillation, the PID values, shown in the
table below, are calculated.
Parameter Display Meaning or Function
Proportional
band
Pb The bandwidth in °C or °f
over which the output
power is proportioned
between minimum and
maximum.
Integral time ti Determines the time taken
by the controller to
remove steady-state error
signals.
Parameter Display Meaning or Function
Derivative
time
td Determines how strongly
the controller will react to
the rate-of-change of
temperature.
Low cutback Lcb The number of °C or °f
below setpoint at which
the controller will cutback
the output power to
prevent overshoot on heat
up.
High
Cutback
Hcb The number of °C or °f
above setpoint at which
the controller will increase
the output power to
prevent undershoot on
cool down.
Relative cool
gain
rEL.C Only present if cooling has
been configured. Sets the
cooling proportional band
by dividing the Pb value by
the rEL.C value.
36 Part Number HA026270 Issue 5.0 Aug 07
If the process cannot tolerate 100% heating or cooling
during tuning, the power can be restricted by the
heating and cooling limits in the Output list. However,
the measured value must oscillate to some degree for
the tuner to determine values.
Tuning is normally performed only once during the
initial commissioning of the process. However, if the
process under control subsequently becomes unstable
(because its characteristics have changed), you can retune
again at any time.
It is best to tune starting with the process at ambient
temperature. This allows the tuner to calculate more
accurately.
4.3.1 Heating & Cooling Output Cycle Times
Before commencing a tuning cycle, set the values of
CYC.H (heating output cycle time) and CYC.C
(cooling output cycle time) in the oP (output) list.
For a logic heating output (switching a SSR), set
CYC.H to 1.0 sec.
For a relay output, set CYC.H to 20.0 sec.
For a logic cooling output used to control a solenoid
valve, set CYC.C to 5.0 sec.
4.3.2 Tuning Procedure
1. Set the setpoint to the value at which you will
normally operate the process.
2. In the ‘Atun’ list, select ‘tunE’ and set it to
‘on’
3. Press the Page and Scroll buttons together to
return to the HOME display. The display will
flash ‘tunE’ to indicate that tuning is in progress.
4. The controller will induce an oscillation in the
temperature by turning the heating on and then
off.
5. After two cycles of oscillation the tuning will be
completed and the tuner will switch itself off.
6. The controller will then calculate the tuning
parameters and resume normal control action.
If you want ‘Proportional only’ or ‘P+D’ or ‘P+I’
control, you should set the ‘ti’ or ‘td’ parameters to
OFF before commencing the tuning cycle. The tuner
will leave them off and will not calculate a value for
them.
Part Number HA026270 Issue 5.0 Aug 07 37
4.3.3 Typical automatic tuning cycle
4.3.4 Calculation of the cutback values
When low cutback or high cutback is set to ‘AuTo’
their values will be fixed at three times the
proportional band, and will not be altered during
automatic tuning. If set to any other value, they will
be calculated as part of the tuning process.
4.4 Manual Tuning
If for any reason automatic tuning gives unsatisfactory
results, you can manually tune the controller.
Proceed as follows:
With the process at its normal running temperature:
1. Set the Integral Time ‘ti’ and Derivative Time
‘td’ to OFF.
2. Set High Cutback ‘Hcb’ and Low Cutback
‘Lcb’, to ‘Auto’
3. Ignore the fact that the temperature may not settle
precisely at the setpoint
4. Reduce the proportional band ‘Pb’ until the
temperature just starts to oscillate. If the
temperature is already oscillating, increase the
proportional band until it just stops oscillating.
Allow enough time between each adjustment for
the temperature to stabilise. Make a note of the
proportional band value ‘B’ and the period of
oscillation ‘T’.
5. Set the PID parameter values according to the
formula below:
Type of
control
Proportional
band ‘Pb’
Integral
time
‘ti’
Derivative
time ‘td’
Proportional
only
2xB OFF OFF
P + I 2.2xB 0.8xT OFF
P + I + D 1.7xB 0.5xT 0.12xT
Temperature
Time
38 Part Number HA026270 Issue 5.0 Aug 07
4.4.1 Setting the cutback values
The above procedure sets up the parameters for
optimum steady state control. If unacceptable levels of
overshoot or undershoot occur during start-up or for
large step changes in temperature, then manually set
the cutback parameters Lcb and Hcb.
Proceed as follows:
1. Set the low and high cutback settings to 3 x the
proportional band (that is to say, Lcb = Hcb =
3 x PB).
2. Note the level of overshoot or undershoot that
occurs for large temperature changes (see the
diagrams below).
In example (a) increase Lcb by the overshoot value.
In example (b) reduce Lcb by the undershoot value.
Example (a)
Example (b)
When the temperature approaches the setpoint from
above, you can set Hcb in a similar manner.
4.4.2 Manual reset
When ti = OFF manual reset (rES) appears in the
PiD List. This parameter sets the output power
when the error signal is zero. It can be manually
adjusted to remove steady state error - the function
normally performed by the Integral term.
Temperature
Time
Overshoot
Temperature
Time
Undershoot
Part Number HA026270 Issue 5.0 Aug 07 39
5. Ordering Code
The controller is supplied configured according to the ordering code shown below.
Model number Function Supply voltage Manual Output 1 (Logic) Output 2 (Relay)
Function
CC PID controller
NF On/Off
controller
TC PID controller
+ timer
TN On/Off
controller +
timer
Supply voltage
VH 85-264Vac
VL 20 -29Vdc or
ac
Manual
XXX None
ENG English
FRA French
GER German
NED Dutch
SPA Spanish
SWE Swedish
ITA Italian
Output 2: Relay
XX Disabled
RH Heating
RC Cooling
FH High alarm 2
FL Low alarm 2
AL High alarm 2 & low
alarm 3
DB Dev band alarm 2
DL Dev. low alarm 2
DH Dev. high alarm 2
NW New alarm
Output 1: Logic
XX Disabled
Logic output
LH Heating
LC Cooling
M1 PDSIO mode 1
FH High alarm 1
FL Low alarm 1
DB Dev band alarm 1
DL Dev. low alarm 1
DH Dev. high alarm 1
NW New alarm
Logic input
AC Alarm ack/reset
KL Keylock
TM Timer Run/Reset
Model Number
2132 1/16 DIN
2116 1/8 DIN
40 Part Number HA026270 Issue 5.0 Aug 07
Sensor input Setpoint min Setpoint max Units Ext relay module Input adaptor
External relay module
XX Not fitted
R7 Fitted
(Operated by
the logic
output)
Units
C °C
F ° F
K Kelvin
X Linear I/P
Input Adaptor
XX None
V1 0-10Vdc
A1 0-20mA sense
resistor (2.49Ω.
0.1%)
Sensor input Display range and
Setpoint min & max limits
Thermocouples
°C ° F
J Type J -210 to
1200
-340 to
2192
K Type K -200 to
1372
-325 to
2500
T Type T -200 to 400 -325 to
750
L Type L -200 to 900 -325 to
1650
N Type N -200 to
1300
-325 to
2370
R Type R -50 to 1768 58 to 3200
S Type S -50 to 1768 -58 to 3200
B Type B 0 to 1820 32 to 3308
P Platinell
II
0 to 1369 32 to 2496
Resistance thermometer
Z Pt100 -200 to 850 -325 to
1562
Custom downloaded inputs Range OC Range OF
C Type C -W5%Re/W26%Re (default
custom sensor)
0 to 2319 32 to 4200
D Type D - W3%Re/W25%Re 0 to 2399 32 to 4350
E E thermocouple -200 to 999 -325 to 1830
1 Ni/Ni18%Mo 0 to 1399 32 to 2550
2 Pt20%Rh/Pt40%Rh 0 to 1870 32 to 3398
3 W/W26%Re (Engelhard) 0 to 2000 32 to 3632
4 W/W26%Re (Hoskins) 0 to 2010 32 to 3650
5 W5%Re/W26%Re (Engelhard) 10 to 2300 50 to 4172
6 W5%Re/W26%Re(Bucose) 0 to 2000 32 to 3632
7 Pt10%Rh/Pt40%/Rh 200 to 1800 392 to 3272
8 Exegen K80 I.R. Pyrometer -45 to 650 -49 to 1202
Process inputs (linear) Scaleable -999 to 9999
M -9.99 to +80mV
Y 0 to 20mA
A 4 to 20mA
V 0 to 10Vdc (input adapter required)
Part Number HA026270 Issue 5.0 Aug 07 41
6. Technical Specification
Panel sealing IP65 (EN 60529), or 4X (NEMA 250)
Operating ambient 0 to 55oC. Ensure that the enclosure is adequately ventilated. 5 to 95%RH, non condensing
Storage temperature -30oC to +75oC. (Protect from humidity and dust)
Atmosphere Not suitable for use above 2000m or in explosive or corrosive atmospheres
Power supply High voltage unit: 100 to 240Vac -15%, +10%, 48-62Hz, 5Watts maximum consumption
Low voltage unit: 24Vdc/ac +/- 20%. DC to 62Hz, 5Watts maximum consumption
Relay rating (isolated) Maximum: 264Vac, 2A resistive. Minimum: 12Vdc, 100mA
Mechanical life > 107 operations. Electrical life at 1A, 240vac resistive load > 5 x106 operations
Wire sizes Use a minimum of 0.5mm2 or 16awg wire for plant connections.
Over current protection Use independent 2A fuses for the supply and relay output. Suitable fuses are EN60127 (type T)
Logic I/O rating 9V at 12mA, non-isolated from sensor input
Electrical safety Meets EN 61010 (Voltage transients on the power supply must not exceed 2.5kV). Pollution
degree 2.
Isolation: All isolated inputs and outputs have reinforced insulation to protect against electric shock. (See live
sensor note)
Cold Junction
Compensation
>30 to 1 rejection of ambient temperature changes in automatic mode. Uses INSTANT
ACCURACY TM sensing technology to reduce warm up drift and respond quickly to ambient
temperature changes.
Installation Category Category II or CAT II
42 Part Number HA026270 Issue 5.0 Aug 07
7. Safety and EMC Information
This controller is intended for industrial temperature
and process control applications when it will meet the
requirements of the European Directives on Safety and
EMC. Use in other applications, or failure to observe
the installation instructions of this handbook may
impair safety or EMC. The installer must ensure the
safety and EMC of any particular installation.
Safety
This controller complies with the European Low
Voltage Directive 73/23/EEC by the application of the
safety standard EN 61010.
Electromagnetic compatibility
It conforms with the essential protection requirements
of the EMC Directive 89/336/EEC, by the application
of a Technical Construction file. It satisfies the
general requirements of the industrial environment
defined in EN 61326. For more information on
product compliance refer to the Technical
Construction File.
GENERAL
The information contained in these instructions is
subject to change without notice. While every effort
has been made to ensure the accuracy of the
information, Eurotherm shall not be held liable for
errors contained herein.
Unpacking and storage
The packaging should contain an instrument mounted
in its sleeve, two mounting brackets for panel
installation and an Installation & Operating guide.
Certain ranges are supplied with an input adapter.
If on receipt, the packaging or the instrument is
damaged, do not install the product but contact your
supplier. If the instrument is to be stored before use,
protect from humidity and dust in an ambient
temperature range of -30oC to +75oC.
SERVICE AND REPAIR
This controller has no user serviceable parts. Contact
your supplier for repair.
Caution: Charged capacitors
Before removing the controller from its sleeve, switch
off the supply and wait at least two minutes to allow
capacitors to discharge. Failure to observe this
Part Number HA026270 Issue 5.0 Aug 07 43
precaution may damage the indicator or cause some
discomfort to the user.
Electrostatic discharge precautions
When the controller is removed from its sleeve, it is
vulnerable to damage by electrostatic discharge from
someone handling the controller. To avoid this, before
handling the unplugged controller discharge yourself
to ground.
Cleaning
Do not use water or water based products to clean
labels or they will become illegible. Isopropyl alcohol
may be used to clean labels. A mild soap solution may
be used to clean other exterior surfaces of the product.
Safety Symbols
The following safety symbols are used on the
controller:
Caution. Refer to the
! accompanying documents
Personnel
Installation must only be carried out by qualified
personnel in accordance with instructions given in this
handbook.
Enclosure of live parts
The controller must be installed in an enclosure to
prevent hands or metal tools touching parts that may
be electrically live.
Caution: Live sensors
The logic input/output is electrically connected to the
sensor input (e.g. thermocouple). In some installations
the temperature sensor may become live. The
controller is designed to operate under these
conditions, but you must ensure that this will not
damage other equipment connected to the logic
input/output and that service personnel do not touch
this connection while it is live. With a live sensor, all
cables, connectors and switches for connecting the
sensor and non-isolated inputs and outputs must be
mains rated for use in 240V ac CATII.
Wiring
Wire the controller in accordance with the wiring data
given in these instructions. Take particular care not to
connect AC supplies to the low voltage sensor input or
other low level inputs or outputs. Only use copper
conductors for connections, (except thermocouple).
Ensure that the installation complies with local wiring
regulations. In the UK use the latest version of the
44 Part Number HA026270 Issue 5.0 Aug 07
IEE wiring regulations (BS7671) and in USA use NEC
Class 1 wiring methods.
Power Isolation
The installation must include a power isolating switch
or circuit breaker. This device should be in close
proximity to the controller, within easy reach of the
operator and marked as the disconnecting device for
the instrument.
Voltage rating
The maximum continuous voltage applied between
any of the following terminals must not exceed
240Vac:
• relay output to logic, dc or sensor connections;
• any connection to ground.
The controller must not be wired to a three phase
supply with an unearthed star connection. Under fault
conditions such a supply could rise above 240Vac with
respect to ground and the product would not be safe
Conductive pollution
Electrically conductive pollution must be excluded
from the cabinet in which the controller is mounted.
For example, carbon dust is a form of electrically
conductive pollution. To secure a suitable atmosphere
in conditions of conductive pollution, fit an air filter to
the air intake of the cabinet. Where condensation is
likely, for example at low temperatures, include a
thermostatically controlled heater in the cabinet.
This product has been designed to conform to
BSEN61010 installation category II, pollution degree 2.
These are defined as follows:-
Installation Category II (CAT II)
The rated impulse voltage for equipment on nominal
230V supply is 2500V.
Pollution Degree 2
Normally only non conductive pollution occurs.
Occasionally, however, a temporary conductivity caused
by condensation shall be expected.
Over-temperature protection
When designing any control system it is essential to
consider what will happen if any part of the system
should fail. In temperature control applications the
primary danger is that the heating will remain
constantly on. This could damage the product, the
machinery being controlled, or even cause a fire.
Part Number HA026270 Issue 5.0 Aug 07 45
Reasons why the heating might remain constantly on
include:
• the temperature sensor becoming detached from
the process
• thermocouple wiring becoming short circuit;
• the controller failing with its heating output
constantly on
• an external valve or contactor sticking in the
heating condition
• The controller setpoint too high
Where damage or injury is possible, we recommend
fitting a separate over-temperature protection unit,
with an independent temperature sensor, which will
isolate the heating circuit.
Please note that the alarm relays within the controller
will not give protection under all failure conditions.
Installation requirements for EMC
• For general guidance refer to Eurotherm Controls
EMC Installation Guide, HA025464.
• It may be necessary to fit a filter across the relay
output to suppress conducted emissions. The filter
requirements will depend on the type of load. For
typical applications we recommend Schaffner
FN321 or FN612.
• If the unit is used in table top equipment which is
plugged into a standard power socket, then it is
likely that compliance to the commercial and light
industrial emissions standard is required. In this
case to meet the conducted emissions requirement,
a suitable mains filter should be installed. We
recommend Schaffner types FN321 and FN612.
Routing of wires
To minimise the pick-up of electrical noise, the sensor
input wiring should be routed away from high-current
power cables. Where this is impractical, shielded
cables should be used for the signal wiring. Where
signal wiring is carrying (or could carry, under fault
conditions) hazardous voltages*, double insulation
should be used.
* A full definition of ‘Hazardous’ voltages appears
under ‘Hazardous Live’ in BS EN61010. Briefly,
under normal operating conditions Hazardous voltage
levels are defined as >30V RMS (42.2V peak) or
>60V dc.
46 Part Number HA026270 Issue 5.0 Aug 07
8. RoHS Certificate
Product group 2100
Table listing restricted substances
Chinese
产
2100 铅镉铬溴联苯溴苯醚
线组X O X O O O
属O O O O O O
显X O O O O O
块X O X O O O
O
X
English
Product
2100 Pb Hg Cd Cr(VI) PBB PBDE
PCBA X O X O O O
Enclosure O O O O O O
Display X O O O O O
Modules X O X O O O
O
X
Approval
Name: Position: Signature: Date:
Martin Greenhalgh Quality Manager
IA029470U450 (CN23172) Issue 1 Feb 07
Indicates that this toxic or hazardous substance contained in at least one of the homogeneous
materials used for this part is above the limit requirement in SJ/T11363-2006.
该质该质SJ/T11363-2006
标规
Toxic and hazardous substances and elements
Indicates that this toxic or hazardous substance contained in all of the homogeneous materials for
this part is below the limit requirement in SJ/T11363-2006.
Restricted Materials Table
Restriction of Hazardous Substances (RoHS)
览
质
该质该质SJ/T11363-2006
标规
2116/2132
Régulateurs de Température PID
Manuel Utilisateur
FRA
N0 Réf HA026270FRA Indice 5.0 08/07 1
2132 et 2116 Régulateurs de Température PID
Merci d'avoir choisi le régulateur de température 2132 ou 2116. Disponibles en formats de panneau 1/32 et 1/16
DIN, ils sont conçus pour une régulation précise et stable des fours, compresseurs frigorifiques, stérilisateurs et
autres procédés de chauffage et de refroidissement. Deux sorties sont configurables pour le chauffage, le
refroidissement et les alarmes.
Ce régulateur est livré configuré selon le code de commande de la paragraphe 5. Regarder sur les étiquettes
latérales pour déterminer la configuration du régulateur
1 Dimensions et Installation
Modèle 2132
Modèle 2116
48mm
45 x 45 mm
-0.0, + 0.6
103mm
48mm
Découpe du
24mm panneau
48mm 103mm 45mm -0.0, +0.6
Clips de verrouillage Clips de fixation
22mm -0.0, +0.3
Découpe du
panneau
2 N0 Réf HA026270FRA Indice 5.0 08/07
1.1 Installation du régulateur
Il est conseillé de lire les informations relatives à la sécurité, paragraphe 7, avant de continuer.
1. Préparer la découpe du panneau à la taille indiquée.
2. Insérer le régulateur par la découpe du panneau.
3. Mettre en place les clips de fixation. Immobiliser le régulateur en le tenant horizontal et en poussant les deux
clips de fixation vers l'avant.
4. Retirer le film de protection de la face avant.
1.2 Retrait du régulateur
Il est possible de retirer le régulateur de son manchon en tirant les clips de verrouillage vers l'extérieur et en le
sortant du manchon. Lorsqu'on replace le régulateur dans son manchon, il faut veiller à ce que les clips de
verrouillage s'encliquètent afin que l'étanchéité IP65 soit assurée.
1.3 Espace minimal recommandé entre régulateurs
10mm 38mm
(Cette figure n'est pas à l'échelle)
N0 Réf HA026270FRA Indice 5.0 08/07 3
2 Branchements
2.1 Section des fils
Les bornes à vis acceptent des fils de section 0,5 à 1,5
mm². Des caches articulés empêchent tout contact
accidental avec les fils sous tension. Les vis des
bornes arrière doivent être serrées à 0,4 Nm
Caractéristiques nominales des sorties
Sortie logique : 9 Vdc, 12 mA (pas isolée de l'entrée capteur).
Utilisée pour : le chauffage, le refroidissement ou les alarmes.
Sortie relais : 2 A, 264 V ac résistive.
Utilisée pour : le chauffage, le refroidissement ou les alarmes.
Entrée de fermeture des contacts (remplace la sortie logique).
Utilisée pour : l'acquittement des alarmes ou le
démarrage et la réinitialisation du timer.
Modèle 2116
OU
+
-
Ligne
Neutre
Sortie 2 Relais
T/C Pt100 mA
Entrées capteurs
L
N
A
AB
V+
V-
1A
1B
2,49Ω
85-264Vac
50/60Hz
1B 1A
Pt100
T/C Sortie 2
Relais
Neutre
Ligne
E/S Logiques
Modèle 2132
Module relais
externe (actionné
par la sortie
logique)
OU
Contacteur
statique
(SSR)
2,49Ω
Entrées capteurs
V- V+ AB A N L
- +
mA
85-264Vac 50/60Hz
1B 1A
Contacteur
statique
(SSR)
- +
E/S Logiques
+
-
20-29 Vac/dc
Alimentation
24 basse tension
24
20-29 Vac/dc
Alimentation
basse tension
24 24
4 N0 Réf HA026270FRA Indice 5.0 08/07
2.2 Schéma de Câblage Type
Conditions de sécurité pour les équipements connectés en permanence :
• Un interrupteur ou disjoncteur sera inclus dans l'installation
• Il devra être situé à proximité de l'équipement et à portée de l'opérateur.
• Il sera clairement identifié comme dispositif de sectionnement de l'équipement
* En cas de commutation
de charges conductrices
comme les contacteurs ou
les électrovannes,
brancher un RC de 22
nF/100 Ω fourni entre les
bornes AA & AB, ce qui
prolonge la durée de vie
des contacts et diminue les
interférences
ATTENTION
Le RC laisse passer 0,6
mA à 110 V et 1,2 mA à
230 Vac, ce qui peut être
suffisant pour maintenir
les charges d'impédance
élevée. Ne pas utiliser
dans ces installations.
Fusible de
la sortie
relais
2A type T
Neutre
Fusible du
régulateuer
2A type T
Fusible pour le chauffage
Chauffage
Thermocouple
Contacteur
statique
(par exemple
(e.g. TE10)
Circuit RC*
Ligne
Modèle 2132
V+ A
1B
V-
1A
A L N
Relais de refroidissement
ou d'alarme
Interrupteur
N0 Réf HA026270FRA Indice 5.0 08/07 5
3 Utilisation
Mettre le régulateur sous tension. Il effectue une suite
de tests automatiques pendant environ 3 secondes puis
affiche ce qui est représenté ci-dessous. Cet affichage
est appelé PAGE DE REPOS.
OP1 s'allume lorsque la sortie logique est sur ON
(chauffage normalement).
OP2 s'allume lorsque la sortie relais est sur ON
(refroidissement ou alarme normalement).
Si
OP1 ou
OP2 ou les deux est(sont)
configuré(es) comme sortie(s) d'alarme (à la place du
chauffage et du refroidissement), elle(s) clignote(nt) si
une alarme ‘non acquittée’ se produit et s'allume(nt) à
feu fixe lorsque l'alarme est acquittée mais reste vraie.
3.1 Reglage de la temperature
souhaitee (consigne)
Enfoncer puis relâcher rapidement la touche ou
. La consigne est affichée pendant 2 secondes.
20 Sortie 1
Sortie 2
Température
mesurée
(ou valeur de
régulation ‘PV’)
OP1
OP2
Maintenir enfoncée pour augmenter la consigne
Maintenir enfoncée pour diminuer la consigne
60 OP1
OP2
Température
souhaitée
(consigne)
Température
mesurée
20 OP1
OP2
6 N0 Réf HA026270FRA Indice 5.0 08/07
3.2 Visualisation des unites affichees
Enfoncer puis relâcher rapidement la touche ou
. Les unités affichées clignotent pendant 0,5 sec.
Si l'on est "perdu", l'appui simultané sur et
provoque le retour systématique à la PAGE DE
REPOS.
Si aucune touche n'est enfoncée pendant 45 secondes,
l'affichage revient toujours à la PAGE DE REPOS.
3.3 Acquittement d'une alarme
nouvelle
Appuyer simultanément sur et . Cette
opération réinitialise également les alarmes
mémorisées qui ne sont plus vraies.
3.4 Messages d'alarme
Si une alarme se produit, un message clignote sur
l'affichage. Ce message apparaît en alternance avec la
température mesurée, comme le montre la figure cidessous:
Ce tableau montre tous les messages possibles.
Messages possibles
-fsH Alarme - pleine échelle haute
-FSL Alarme - pleine échelle basse
-deV Alarme - écart
-dHi Alarme - écart haut
-dLo Alarme - écart bas
Sbr Rupture capteur
Lbr Rupture boucle
Ldf Défaut de charge
End Fin de timing
Le numéro de l'alarme est indiqué à la place du tiret :
alarme 1, 2 ou 3.
Alarme
1 pleine
échelle
basse
Température
mesurée 1fsL
20
Unités affichées
*C Centigrade
*F Fahrenheit
*K Kelvin
Entrées linéaires - aucune
unité n'est affichée
0,5 sec
oC
20
ou
N0 Réf HA026270FRA Indice 5.0 08/07 7
3.5 Visualisation de la Puissance de
Sortie
On peut effectuer cette opération si l'on souhaite voir
la quantité d'énergie de chauffage ou de
refroidissement demandée par le régulateur. N.B. : il
ne s'agit pas d'une mesure de la puissance effective.
ATTENTION
En mode manuel attente (standby) (voir Utilisation du
timer), l'opérateur peut régler la puissance de sortie, ce
qui provoquera une chauffe ou un refroidissement
permanent. Pour éviter ceci, mettre le paramètre OP en
lecture seulement (Voir Paramètres cachés, visibles
personnalisés)
Page de repos
20.0
Appuyer deux fois rapidement
OP 100.0
*C
Appuyer
Le régulateur
demande 100 % de
chauffage
Appuyer sur ou pour
visualiser la valeur
8 N0 Réf HA026270FRA Indice 5.0 08/07
3.6 Selection ou Modification d'autres
Parametres
Les paramètres sont des valeurs du régulateur que l'on
peut modifier pour les adapter au procédé. Ils se
trouvent sous les en-têtes de listes.
Appuyer sur la touche pour faire défiler les entêtes
de listes, comme le montre la figure ci-dessous.
Aller à la paragraphe 3.8 pour voir l'ensemble des entêtes
de listes.
Ces listes servent à :
• modifier les consignes d'alarme
• adapter le régulateur au procédé
• sélectionner manuellement les valeurs PID
• modifier les limites de consignes et accéder au
timer intégré
• modifier les limites des entrées et des sorties
Maintenir la touche
enfoncée pour sélectionner
d'autres en-têtes de listes (retour
à la PAGE DE REPOS après le
dernier en-tête). La boucle est
continue.
Page de repos
20.0 aL Atun
X2
N0 Réf HA026270FRA Indice 5.0 08/07 9
3.7 Reglage des consignes d'alarme
(niveaux de declenchement)
Il existe trois consignes d'alarme. Les consignes d'alarme
se trouvent dans la liste AL. Si une alarme a été
désactivée, elle n'apparaît pas dans cette liste.
Appuyer deux fois sur pour choisir la liste AL.
N.B. : les autres paramètres énumérés paragraphe 3.8
sont accessibles et modifiables de la même manière
que dans cet exemple
0,5 sec
1er appui
2ème appui
*C
20
2 sec
Liste suivante
L'appui sur ou provoque l'affichage de List
pour indiquer qu'il s'agit d'un en-tête de liste.
LiSt
AL
0
1---
-FSL = Alarme basse
-FSH = Alarme haute
-dEV = Ecart
-dHi = Ecart hau
-dHL = Ecart bas
- = numéro d'alarme
0
2---
0
3---
* Appuyer sur ou
pour modifier la consigne
Alarme 1
*
Alarme 2
*
Alarme 3
*
Appuyer simultanément sur et pour revenir à
la PAGE DE REPOS.
Appuyer
10 N0 Réf HA026270FRA Indice 5.0 08/07
3.8 Listes de Parametres
(2) La liste PID ou la liste On/Off est
affichée, selon la configuration du
Les cases grisées sont normalement cachées lorsque l'appareil sort régulateur.
d'usine.
Pour les faire apparaître, cf. ‘’Paramètres cachés, visibles et
personnalisés”, paragraphe 3.10
HC.db
Hys.C
HYS.H
Ont.C
Ont.H
OP.Hi
OP.Lo
CJCO
SPrr
SP H
SP L
AdC
Lb t
diSP HY
m A
w.SP
Page de
repos
Liste
Alarme
Liste Autoréglage
Liste
PID(2)
Liste
Consigne
Liste
Entrée
Liste
Sortie
Liste
On/Off (2)
Liste Accès
20.0 AL Atun Pid SP iP oP On.Of ACCS
1---(1)
2---(1)
3---(1)
OP tunE Pb
ti
td
rES
Lcb
Hcb
rEL.C
OFS.H
FiLt
mV
OFS
CAL.P
CAL
Pnt.L
OFS.L
Pnt.H
CYC.H
CYC.C
codE
Goto
Conf
tmr
dwel
StAt
tm.OP
X2
(1) A la place des tirets, les trois
dernières lettres dépendent du type
d'alarme. Cf. “Réglage des consignes
d'alarme paragraphe 3.7.
N0 Réf HA026270FRA Indice 5.0 08/07 11
3.8.1 Résumé
1. Appuyer sur pour passer d'un en-tête de liste à l'autre.
2. Appuyer sur pour se déplacer dans les paramètres d'une liste donnée. Une fois que la fin de la liste est
atteinte, on revient à l'en-tête de la liste.
3. Appuyer sur pour voir la valeur d'un paramètre sélectionné. Maintenir cette touche enfoncée pour
diminuer la valeur.
4. Appuyer sur pour voir la valeur d'un paramètre sélectionné. Maintenir cette touche enfoncée pour
augmenter la valeur.
12 N0 Réf HA026270FRA Indice 5.0 08/07
3.9 Tableaux des Paramètres
Page de repos Plage réglable Réglage
par défaut
Réglage
client
Op Puissance de
sortie demandée
-100% = refroidissement maximal, 100,0% = chauffage
maximal.
w.SP Consigne de
travail
Apparaît uniquement lorsque la limite de la vitesse de
consigne est activée
Lecture
seule
Lecture
seule
m-A Sélection Auto Régulation automatique sélectionnée
Manuel/Auto mAn Attente manuelle sélectionnée
Auto
Std Standard - Montre la valeur de régulation avec la
consigne accessible par appui sur les touches
et .
OP Affiche la puissance - de sortie pour une
utilisation du régulateur en station manuelle
(Version 1.4 seulement)
NonE Affichage vide (seuls les messages d'alarme
clignotent)
PV Affiche uniquement la valeur de régulation
AL.SP Affiche uniquement la consigne de l'alarme 2
disp Options de la
page de repos
pv.aL Affiche la valeur de régulation avec la consigne de
l'alarme 2 accessible par les touches et
Std
N0 Réf HA026270FRA Indice 5.0 08/07 13
AL Liste Alarmes (cf. para
3.7)
Plage réglable Réglage
par défaut
Réglage
client
1--- Consigne de l'alarme 1 0
2--- Consigne de l'alarme 2 0
3--- Consigne de l'alarme 3
A la place des tirets, les trois
dernières lettres indiquent le type
de l'alarme
Entre les limites
haute et basse
des consignes 0
-FSL Pleine échelle basse
-FSH Pleine échelle haute
-dEv Ecart
-dHi Ecart haut
-dLo Ecart bas
HY Hystérésis d'alarme 1 à 9999 en unités affichées (cette valeur est
commune à toutes les alarmes). L'hystérésis sert à
empêcher la sortie d'alarme de ‘déclencher trop
souvent’ en fixant une différence entre les points
d’activation et de désactivation de l'alarme
1
Lb t Temps de rupture de
boucle
OFF à 9999 minutes OFF
14 N0 Réf HA026270FRA Indice 5.0 08/07
Atun Liste Auto-réglage (cf. paragraphe 4.3) Plage réglable Réglage
par défaut
Réglage
client
tunE Activation du réglage automatique OFF ou on Off
Adc Calcul de réinitialisation manuelle automatique
(régulation P+D)
man ou caLc man
PiD Liste PID (cf paragraphe 4.3) Plage réglable Réglage
par défaut
Réglage
client
Pb Bande proportionnelle 1 à 999.9 unités affichées 20
ti Temps d'intégrale OFF à 9999 secondes 360
td Temps de dérivée OFF à 9999 secondes 60
rES Valeur de l'intégrale
manuelle
(uniquement si ti= OFF)
-100 à 100.0 % 0.0
Lcb Cutback bas Auto à 999.9 unités affichées Auto
Hcb Cutback haut Auto à 999.9 unités affichées Auto
rEL.C Gain relatif de
refroidissement
0.01 à 10.00 1.00
N0 Réf HA026270FRA Indice 5.0 08/07 15
SP Liste Consignes (cf.
paragraphe 3.11)
Plage réglable Réglage par
défaut
Réglage
client
SP L Limite basse de la consigne -1999 à 999,9 Selon la
commande
SP H Limite haute de la consigne -1999 à 999,.9 Selon la
commande
sprr Limite de vitesse de la consigne 0FF à 999,9 unités affichées par
minute
Off
tm.OP Mode de fonctionnement du
timer
Opt.1 à Opt.5 OPt.1
tmr Temps restant 0 à 9999 minutes 0
dwEl Temps de palier 0FF à 9999 minutes OFF
StAt Etat du timer OFF ou on OFF
16 N0 Réf HA026270FRA Indice 5.0 08/07
iP Liste Entrées (cf. paragraphe
4.2)
Plage réglable Réglage par
défaut
Réglage
client
FiLt Constante de temps de filtrage
des entrées
0FF to 999.9 seconds 1.6
CJC* Température de soudure froide mesurée aux bornes arrière Lecture
seule
mV Entrée mV mesurée aux bornes arrière Lecture
seule
OFS Offset de la valeur de régulation -1999 à 9999 unités affichées 0
CAL.P Code d'accès de la calibration 0 à 9999 3
CAL Activation de la Calibration
utilisateur
FACt Réactive la calibration usine
USEr Réactive la calibration
utilisateur
FACt
Pnt.L Point bas de calibration -1999 à 9999 unités affichées 0
OFS.L Offset de la calibration du point
bas
-1999 à 9999 unités affichées 0
Pnt.H Point haut de calibration -1999 à 9999 unités affichées 100
OFS.H Offset de la calibration du point
haut
-1999 à 9999 unités affichées 0
N0 Réf HA026270FRA Indice 5.0 08/07 17
oP Liste Sorties Plage réglable Réglage
par défaut
Réglage
client
OP.Lo Limite basse de puissance -100 à 100,0 % 0
OP.Hi Limite haute de puissance -100 à 100,0 % 100.0
CYC.H Durée du cycle de chauffage 0,2 à 999,9 secondes
CYC.C Durée du cycle de refroidissement 0,2 à 999,9 secondes
1.0 Lgc
20 Rly
ont.H Durée minimale de chauffage
ont.C Durée minimale de refroidissement
Auto à 999,9 secondes (Auto =
50 msec)
Auto
onOF Liste Sorties On Off Plage réglable Réglage
par défaut
Réglage
client
hYS.H Hystérésis de chauffage 1 à 9999 unités affichées 1
hYS.C Hystérésis de refroidissement 1 à 9999 unités affichées 1
HC.db Bande morte de chauffage/refroidissement 0 à 9999 unités affichées 0
ACCS Liste Accès (Cf. paramètres “Cachés,
Visibles et Personnalisés” paragraphe 3.10)
Plage réglable Réglage
par défaut
Réglage
client
codE Code d'accès 0 à 9999 1
Goto Niveau d'accès sélectionné Oper, Ful, Edit, conf OPEr
Conf Code d'accès de configuration 0 à 9999 2
18 N0 Réf HA026270FRA Indice 5.0 08/07
3.10 Parametres Caches, Visibles et
Personnalises
Exemple:
HidE
2FSH
L'alarme haute 2 a été sélectionnée.
Lors de l'appui sur ou , au lieu
d'afficher la valeur du paramètre, sa
disponibilité au niveau Opérateur est
indiquée de la manière suivante :
ALtr Le paramètre est modifiable
HidE Le paramètre est caché.
rEAd Le paramètre est en lecture
seule
Pro Le paramètre est
‘personnalisé’ dans a PAGE
DE REPOS (voir ci-après).
On est maintenant au niveau Modification.
Appuyer sur et pour
sélectionner normalement un paramètre
ACCS
PASS
codE
Appuyer sur ou pour saisir le
code d'accès. La valeur par défaut réglée en
usine est 1. ‘PASS’ apparaît lorsque le
code d'accès correct a été saisi
Appuyer sur jusqu'à l'en-tête de liste
Accès.
Appuyer sur ou pour
sélectionner le niveau ‘Edit.
Autres options :
OPEr Niveau Opérateur - montre les
paramètres sélectionnés
FuLL Montre le jeu de paramètres ‘FULL’
ConF Donne accès au niveau
configuration
Edit
Goto
ACCS
Appuyer sur cette touche
Appuyer sur cette touche
Appuyer sur cette touche pour revenir à l'en-tête de liste
Accès.
N0 Réf HA026270FRA Indice 5.0 08/07 19
3.10.1 Option Pro (personnaliser)
Il est possible de ‘personnaliser’ un maximum de
douze paramètres couramment utilisés dans la PAGE
DE REPOS. L'opérateur peut ainsi y accéder
rapidement en appuyant simplement sur la touche
. Cette fonction, utilisée en association avec
‘caché’ et ‘lecture seule’, permet d'organiser la
manière dont on souhaite formater le régulateur.
Le paramètre tmr apparaît alors dans la PAGE DE
REPOS. Répéter l'opération pour les autres
paramètres que l'on souhaite personnaliser.
Pour supprimer un paramètre, aller au niveau edit,
sélectionner le paramètre dans la liste qui convient et
passer de Pro à ALtr, rEAd ou HidE.
3.10.2 Retour au niveau Opérateur
Répéter l'opération ci-dessus pour tous les autres
paramètres que l'on souhaite cacher, personnaliser ou
faire passer en lecture seule, puis revenir au niveau
opérateur:
Exemple:
Le temps restant a été sélectionné.
Appuyer sur ou pour
choisir Pro
Pro
tmr
OPer
Goto
1. Appuyer sur jusqu'à
l'en-tête de liste ACCS
2. Appuyer sur jusqu'à
Goto
3. Appuyer sur ou
pour sélectionner Oper
4. Appuyer sur pour
revenir au niveau Opérateur
20 N0 Réf HA026270FRA Indice 5.0 08/07
3.11 Utilisation du Timer
• Appuyer sur jusqu'à la liste SP
• Appuyer sur jusqu'au paramètre tM.OP
• Appuyer sur ou pour sélectionner le
mode de fonctionnement du timer, Opt.1 à
Opt.5, de la manière suivante:
3.11.1 Opt.1 - Mode 1, palier et coupure
Lors de la Réinitialisation
Lors de la réinitialisation, on peut alterner entre
régulation automatique et attente, avec le paramètre
m-A dans la PAGE DE REPOS.
Le régulateur est livré avec le paramètre m-A caché. Il
faut commencer par le faire apparaître. Cf. ‘Paramètres
cachés, visibles et personnalisés’.
Mode attente
(Standby)
Température
Consigne
Réinitialisation
Chrono-métrage
Exécution
Fin
End clignote
Attente
jusqu'à ce
que la
température
soit atteinte
Auto
m-A
Dans la PAGE DE REPOS, appuyer sur
jusqu'à ce que le paramètre m-A
apparaisse.
Appuyer sur ou pour
sélectionner :
Auto Régulation automatique
mAn Mode attente. (le voyant MAN
en-dessous d'OP2 s'éclaire)
Appuyer simultanément sur et pour revenir à la
PAGE DE REPOS
N0 Réf HA026270FRA Indice 5.0 08/07 21
‘Régulation automatique’ désigne la régulation à la
consigne, avec le chauffage (et le refroidissement) en
service.
‘Mode attente’(Standby) désigne le régulateur en
mode manuel avec une puissance de sortie nulle. (Voir
‘ATTENTION’ paragraphe 3.5)
Pendant "Exécution"
Le régulateur passe toujours en régulation
automatique. Le chauffage (ou le refroidissement) est
appliqué et la température augmente (ou diminue)
jusqu'à la consigne. Lorsque la température diffère de
la consigne de moins d'1oC, le timer commence le
compte à rebours.
Pendant "Fin"
Lorsque le timer est arrivé à la fin de la temporisation,
le régulateur passe en mode attente. Le voyant MAN
s'allume et End clignote sur l'affichage principal. Le
procédé refroidit. Le timer reste indéfiniment dans cet
état jusqu'à la réinitialisation.
Retour à la réinitialisation
End arrête de clignoter. Le régulateur revient en mode
attente. Il est possible de le faire revenir en régulation
automatique en réglant le paramètre m-A de la PAGE
DE REPOS sur Auto.
3.11.2 Opt.2 - Mode 2, sans coupure
palier
Palier indéfini
à la consigne
Température
Consigne
Réinitialisation
Chronométrage
Ex écution
Fin
End clignote
Attente
jusqu'à ce
que la
température
soit atteinte
Ce mode est identique au mode 1, avec une
différence : à la fin de la période de chronométrage,
le régulateur continue indéfiniment en mode de
régulation automatique.
22 N0 Réf HA026270FRA Indice 5.0 08/07
3.11.3 Opt.3 - Mode 3, durée à partir de la
position froide puis coupure
Identique au mode 1, sauf que le timer commence
immédiatement le compte à rebours sans attendre que
la température ait atteint la consigne.
3.11.4 Opt.4 - Mode 4, durée à partir de
la position froide sans coupure
Identique au mode 2, sauf que le timer commence
immédiatement le compte à rebours sans attendre que
le régulateur ait atteint la consigne.
Mode attente
Température
Consigne
Réinitialisation
Chronométrage
Fin
End clignote
Réinitialisation
Palier indéfini
à la consigne
Température
Consigne
Chronométrage
End clignote
Réinitialisation
N0 Réf HA026270FRA Indice 5.0 08/07 23
3.11.5 Opt.5 Mode 5, temporisation de la
mise sous tension
Ce mode applique une temporisation avant d'activer le
chauffage (ou le refroidissement). Lorsque le timer
démarre, le régulateur passe toujours en mode attente
et commence le compte à rebours. Lorsque le timer a
terminé sa tâche, le régulateur passe en mode
automatique, applique le chauffage (ou le
refroidissement) et régule indéfiniment à la consigne.
3.11.6 Programmation d'un profil rampepalier
Il est possible de programmer un profil simple rampepalier
à l'aide de Sprr (limite de vitesse de consigne) en
combinaison avec le timer. Pour utiliser cette fonction,
commencer par faire apparaître Sprr et w.SP (consigne
de travail) à l'aide de la méthode décrite dans “Paramètres
cachés, visibles et personnalisés”. w.SP apparaît alors
dans la PAGE DE REPOS.
Positionner Sprr sur la vitesse de rampe souhaitée. Ce
paramètre est réglable par pas de 1/10 d’ unités affichées
les moins significatives par minute. Cela signifie que, si
l'affichage est configuré de 0 à 1000oC, la limite de vitesse
de consigne peut être réglée entre 0,1 et 999,9 oC par
minute.
Lorsque la limite de vitesse de consigne a été activée et
que le timer a démarré, la consigne de travail w.sp
commence par passer à la température mesurée puis passe
en rampe à la limite de vitesse de consigne sprr jusqu'à
la consigne cible.
Dans les modes 1 et 2, le compte à rebours commence
lorsque la température mesurée diffère de la consigne cible
de moins d'1oC. Dans les modes 3 et 4, il commence
lorsque w.sp diffère de la consigne cible de moins d'1oC.
Réinitialisation
Palier indéfini
à la consigne
Température
Consigne
Chronométrage
Fin
24 N0 Réf HA026270FRA Indice 5.0 08/07
3.12 Demarrage et reinitialisation du
timer
Il existe deux méthodes :
Méthode 1.
Il s'agit de la méthode la plus simple pour commander
le timer.
• Appuyer sur jusqu'à la liste SP
• Appuyer sur jusqu'au paramètre tMr (temps
restant).
CONSEIL : personnaliser tmr dans la PAGE DE
REPOS pour un accès rapide, comme le décrit la
section ‘Paramètres cachés, visibles et personnalisés'.
Dès qu'une valeur est saisie dans tmr, le
chronométrage commence. tmr effectue le compte à
rebours vers zéro. Au cours de la période de
chronométrage, tmr peut augmenter ou diminuer en
fonction des demandes du procédé. Le positionnement
de la valeur sur zéro met fin à la période de
chronométrage.
Lorsque tmr atteint zéro, ‘end’ clignote sur
l'affichage principal. Le timer reste indéfiniment dans
cet état jusqu'à ce qu'une nouvelle valeur soit saisie : le
timer redémarre alors.
Pour réinitialiser le timer, appuyer simultanément sur
et . ‘end’ arrête de clignoter.
Pour redémarrer le timer, saisir une nouvelle valeur
dans tmr.
1234
Tmr
Appuyer sur ou pour
saisir la période de temporisation
souhaitée en minutes. (0 à 9999)
Appuyer sur pour revenir à la PAGE DE REPOS
N0 Réf HA026270FRA Indice 5.0 08/07 25
Méthode 2.
Utiliser cette méthode si l'on souhaite définir une durée
fixe et utiliser le paramètre stat pour démarrer et
arrêter le timer.
Il est également possible de faire alterner le paramètre
stat entre Off et run en configurant l'E/S
logique comme entrée de fermeture de contact
arrêt/marche.
Ouvrir le contact externe pour sélectionner run. C'est
une action déclenchée par les flancs. Fermer le contact
pour sélectionner Off. Off est forcé à chaque
fermeture du contact.
1234
dwel
run
stat
sp Appuyer sur pour atteindre l'entête
de liste SP.
Appuyer sur cette touche jusqu'à dwel
Temps de palier
Appuyer sur ou pour
saisir une période de chronométrage
en minutes (0-9999).
Etat du timer
Pour démarrer le timer, appuyer sur
ou pour sélectionner run.
Le temps de palier est chargé dans
tmr et la temporisation commence.
Pour réinitialiser le timer,
sélectionner Off.
Le temps restant tmr est fixé à 0.
Appuyer simultanément sur et pour revenir à la PAGE
DE REPOS.
26 N0 Réf HA026270FRA Indice 5.0 08/07
4 Configuration du Regulateur
Sélectionner le niveau configuration pour modifier :
•le type de régulation •les unités affichées •le type de
capteur d'entrée • la mise à l'échelle des entrées
linéaires • la configuration des alarmes • les codes
d'accès.
4.1 Sélection du niveau configuration
Appuyer sur pour se déplacer dans les en-têtes de
listes configuration.
Une fois qu'un en-tête de liste a été sélectionné,
appuyer sur pour sélectionner un
paramètre dans une liste donnée. Appuyer sur
et pour modifier le réglage.
inSt iP AL AA
Exit pASS 1A
Configuration de l'appareil
Appuyer
Appuyer
Appuyer sur ou pour
sélectionner Conf
Appuyer sur pour atteindre l'en-tête de
liste Accès.
Appuyer sur ou pour saisir le
code d'accès. La valeur par défaut réglée
en usine est 1. PASS apparaît lorsque le
code d'accès correct a été saisi.
Appuyer sur ou pour saisir le
code d'accès du niveau configuration.
La valeur par défaut réglée en usine est
2. PASS apparaît lorsqu'un code
d'accès correct a été saisi.
Appuyer sur cette touche pour passer au niveau configuration.
Goto conF
ACCS
codE PASS
ConF PASS
Appuyer
N0 Réf HA026270FRA Indice 5.0 08/07 27
4.1.1 Configuration de l'appareil
inst Configuration
de l'appareil
Options Signification
*C Celsius
*F Fahrenheit
*K Kelvin
unit
Unités affichées
nonE Pas d'unité
nnnn Néant
nnn.n Une décimale
dEC.P
Résolution de
l'affichage
nn.nn Deux décimales
Pid PID
On.OF Tout ou rien
CtrL
Type de
régulation
AL Convertit le
régulateur en
unité d'alarme
inst Configuration
de l'appareil
Options Signification
rEv
Inverse (action
normale pour la
régulation de la
température)
Act
Action de
régulation
dir Directe (la
sortie diminue
lorsque la
valeur de
régulation passe
en-dessous de
la consigne)
Pd.tr Suivi de
l’intégrale
manuelle
(régulation PD)
HoLd
En mode Auto,
maintient la
valeur de
l'intégrale
manuelle
trAc
En mode Auto,
suit la sortie
pour le transfert
progressif
Auto/Manuel
28 N0 Réf HA026270FRA Indice 5.0 08/07
4.1.2 Configuration des Entrées
iP Entrée
capteur
Options Signification
j.tc Thermocouple J
k.tc Thermocouple K
L.tc Thermocouple L
r.tc Thermocouple R
b.tc Thermocouple B
n.tc Thermocouple N
t.tc Thermocouple T
S.tc Thermocouple S
PL 2 Platinell II
rtd Sonde platine 100 Ω
mV Millivolt linéaire
inPt
Type
d'entrée
C.tc Entrée personnalisée
(C = valeur par
défaut)
Auto Automatique
0*C Référence externe
0°C
45*C Référence externe
45°C
CJC
(TC
seule
ment)
Compensat
ion de
soudure
froide
50*C Référence externe
50°C
Mise à l'échelle des entrées linéaires (plage -12 à +80 mV)
InP.L Entrée mV
basse
InP.H Entrée mV
haute
VaL.L Valeur
affichée
basse
VAL.H Valeur
affichée
haute
OFF Off (entrées
linéaires
uniquement)
Auto 1.5KΩ
Hi 5KΩ
ImP Adaptation
d'impédance
pour rupture
capteur
HiHi 15KΩ,
Inp.L Inp.H
VAL.H
VAL.L
mV
Valeur affichée
N0 Réf HA026270FRA Indice 5.0 08/07 29
4.1.3 Configuration des Alarmes
La liste AL configure les trois alarmes internes ‘non
bloquantes' et fait clignoter le message d'alarme qui
convient sur la PAGE DE REPOS.
A ce stade, l'alarme est simplement une indication
(‘alarme non bloquante’). Pour provoquer l'activation
des sorties relais ou logiques par les alarmes, suivre les
instructions de “Configuration des entrées/sorties relais
et logiques".
AL Alarme Type Signification
OFF Alarme désactivée
fsL Alarme pleine
échelle basse
fsH Alarme pleine
échelle haute
dEv Alarme bande
dHi Alarme écart haut
AL 1 Alarme 1
dLo Alarme écart bas
Ltch Alarme no Non mémorisée
mémorisée YES Mémorisée avec
réinitisalisation
automatique *
AL Alarme Type Signification
mAn Mémorisée avec
réinitialisation
manuelle **.
bLoc Alarme no Non bloquante
bloquante YES Bloquée jusqu'au
premier état hors
alarme
La séquence ci-dessus se répète pour:
AL 2 (Alarme 2) et AL 3 (Alarme 3)
diS Limité par la plage
d'affichage
Du capteur
Sp.Li Limites de
la consigne
d'alarme
Con Limité par les
limites de la
consigne
* La réinitialisation automatique signifie que, une fois
que l'alarme a été acquittée, elle s'efface
automatiquement lorsqu'elle n'est plus vraie.
** La réinitialisation manuelle signifie que l'alarme
doit être tout d'abord effacée avant de pouvoir être
réinitialisée.
30 N0 Réf HA026270FRA Indice 5.0 08/07
4.1.4 Configuration des Entrées/Sorties
Relais et Logiques
N.B: il est possible de configurer les E/S logiques
comme sorties ou comme entrées de fermeture de
contact pour l'acquittement des alarmes, le verrouillage
du clavier ou la mise en marche/réinitialisation du
timer.
Aa Sortie relais
1a E/S logiques
Options Signification
id Identité de la rELy Relais
sortie LOG Logique
diG Sortie logique
(alarme)
HEAt Sortie chauffage
Fonction
COOL Sortie
refroidissement
SSr.1 Mode PDSIO 1
Ac.AL Acquittement des
alarmes
Loc.b Entrée logique
verrouillage du
clavier
Func
Ces fonctions
apparaissent
uniquement
pour les E/S
logiques
rres Mise en marche
/réinitialisation du
Aa Sortie relais
1a E/S logiques
Options Signification
timer
noch Aucun
changement
CLr Suppression de
toutes les alarmes
1FSL Alarme 1 (Cf.
remarque 1)
2FSH Alarme 2 (Cf.
remarque 1)
3FSL Alarme 3 (Cf.
remarque 1)
nw * Alarme nouvelle
Sbr* Alarme rupture
capteur
Lbr* Alarme rupture de
boucle
LdF* Alarme défaut de
charge
mAn* Mode manuel actif
End* Fin du
chronométrage
tmG1* Timer en marche
diG.F Fonctions
sorties
Numériques
Cf. ci-dessous
“Utilisation
de la
sortie relais
ou
logique à
partir d'une
fonction
logique"
Paragraphe
4.1.5.
tmG2* Timer en compte
N0 Réf HA026270FRA Indice 5.0 08/07 31
Aa Sortie relais
1a E/S logiques
Options Signification
à rebours
(Cf. remarque tmG3* Timer en marche
2) tmG4* Timer en compte
à rebours
nor Normal (sorties
chauffage ou
refroidissement)
SenS Sens de la
sortie
Inv Inversé (pour les
alarmes, se coupe
en état d'alarme)
*Ces alarmes sont toujours non mémorisées. Les
alarmes 1,2 et 3 sur la mesure sont configurables en
alarmes mémorisées ou non mémorisées (Voir lisete
Al)
Les Remarque 1 : les trois dernières lettres
correspondent au type d'alarme configuré dans la liste
AL. Si l'alarme est désactivée, AL 1 ou AL 2 ou
AL 3 est affiché.
Remarque 2 : tmg.3 et tmG.4 sont des fonctions
spéciales. Si elles sont sélectionnées, elles provoquent
l'allumage des voyants de sorties relais ou logiques
OP1 et OP2 sans actionner la sortie correspondante.
Elles servent à indiquer que le chronométrage est en
cours, tout en laissant les autres fonctions logiques
activer les sorties effectives (état FIN qui peut servir à
faire fonctionner un klaxon externe, par exemple).
4.1.5 Utilisation de la sortie relais ou
logique à partir d'une fonction
alarme ou logique.
1. Appuyer sur jusqu'à Func
2. Appuyer sur ou pour sélectionner Func
= diG
3. Appuyer sur pour atteindre diG.F
4. Appuyer sur ou pour sélectionner une
fonction alarme ou logique
5. Attendre 2 secondes. L'affichage revient à diG.F
et relie la fonction alarme ou logique
sélectionnée à la sortie relais ou logique.
6. Appuyer à nouveau sur ou . Deux
décimales apparaissent dans la fonction qui a été
ajoutée à la sortie.
32 N0 Réf HA026270FRA Indice 5.0 08/07
4.1.6 Alarmes multiples sur une seule
sortie
Il est possible de réaliser le « ou » d’un nombre
quelconque de fonctions alarmes ou logiques à la
sortie relais ou logique en répétant les étapes 4, 5 et 6
ci-dessus. Deux décimales apparaissent sur les
fonctions qui ont été ajoutées à la sortie.
4.1.7 Suppression des alarmes d'une sortie
1. Appuyer sur jusqu'à diG.F
2. Appuyer sur ou pour sélectionner CLr
3. Attendre 2 secondes. L'affichage revient à diG.F
qui annule toutes les alarmes du relais.
4.1.8 Codes d'accès
PASS Codes d'accès Plage Valeur
par
défaut
ACC.P Code d'accès
des niveaux
Régleur et
Modification
0-9999 1
CnF.P Code d'accès
du niveau
Configuration
0-9999 2
CAL.P Code d'accès de
la Calibration
utilisateur
0-9999 3
4.1.9 Sortie du niveau Configuration
Appuyer sur pour atteindre l'affichage ‘exit’.
Appuyer sur ou pour sélectionner ‘YES’.
Après 2 sec, l'affichage clignote et revient à la PAGE
DE REPOS au niveau Opérateur.
Exit YES
N0 Réf HA026270FRA Indice 5.0 08/07 33
4.1.10 Alarmes de diagnostic
Outre les alarmes de procédé normales, les messages
d'alarme de diagnostic suivants sont disponibles.
Message Signification et (intervention)
EE.Er Electrically Erasable Memory Error (erreur
de mémoire effaçable électriquement) :
La valeur d'un paramètre a été altérée.
Appeler Eurotherm Automation.
HW.Er Erreur matérielle :
(envoyer le régulateur en réparation)
LLLL Plage basse d'affichage dépassée :
(vérifier le signal d'entrée)
HHHH Plage haute d'affichage dépassée :
(vérifier le signal d'entrée)
Err1 Erreur 1 : échec du test automatique de
la ROM. (envoyer le régulateur en
réparation)
Err2 Erreur 2 : échec du test automatique de
la RAM. (envoyer le régulateur en
réparation)
Err3 Erreur 3 : échec du chien de garde.
(envoyer le régulateur en réparation)
Err4 Erreur 4 : défaut du clavier. Touche
Message Signification et (intervention)
bloquée ou une touche a été enfoncée
lors de la mise en route.
Err5 Erreur 5 : défaut sur circuit d'entrée.
(envoyer le régulateur en réparation)
Pwr.F Défaut alimentation. La tension de ligne
est trop faible.
TU.Er Erreur Réglage. Apparaît si le temps
d’auto-reglage dépasse 2 heures.
34 N0 Réf HA026270FRA Indice 5.0 08/07
4.2 Calibration Utilisateur
Le régulateur a été calibré à vie par rapport à des
sources de référence connues. La calibration
utilisateur permet d'appliquer des offsets afin de
compenser les erreurs de capteurs et autres erreurs
système. Le paramètre OFS de la liste IP applique un
offset fixe sur toute la plage d'affichage. Il est
également possible d'appliquer une calibration bi-point
de la manière suivante :
• Appuyer sur jusqu'à la liste iP
• Appuyer sur jusqu'au paramètre CAL.P
• Appuyer sur ou pour saisir le code
d'accès. La valeur par défaut réglée en usine est
3. PASS apparaît lorsque le code d'accès correct
a été saisi.
• Appuyer sur pour atteindre le paramètre
CAL
• Appuyer sur ou pour sélectionner User
(FAct rétablit la calibration réglée en usine)
• Appuyer sur pour sélectionner sucessivement
les quatre paramètres représentés sur le
graphique ci-dessous. Utiliser ou pour
définir les points de calibration souhaités et les
offsets à appliquer à chaque point. La liste iP
de la page 5 décrit chaque paramètre.
Calibration usine
Valeur affichée
Calibration usine
Pnt.H
OFS.H
OFS.L
Pnt.L
Calibration utilisateur
N0 Réf HA026270FRA Indice 5.0 08/07 35
4.3 Réglage Automatique
En régulation PID, la sortie du régulateur est la somme
de trois termes : Proportionnel, Intégral et Dérivé. Ces
trois termes délivrent la quantité de puissance qui est
suffisante pour maintenir la température à la consigne
sans oscillation. Pour une régulation stable, les valeurs
PID doivent être ‘réglées’ pour correspondre aux
caractéristiques du procédé régulé. Sur les modèles
2132 et 2116, cela est effectué automatiquement à
l'aide de techniques de réglage évoluées.
Le réglage automatique consiste à activer et désactiver
la sortie du régulateur pour induire une oscillation de
la température mesurée. Les valeurs PID, indiquées
dans le tableau ci-dessous, sont calculées à partir de
l'amplitude et de la période de l'oscillation.
Paramètre Affichage Signification ou fonction
Bande
proportionnelle
Pb Largeur de bande, exprimée en
°C ou °f sur laquelle la
puissance de sortie est
proportionnée entre le
minimum et le maximum.
Temps
d'intégrale
ti Détermine le temps nécessaire
au régulateur pour supprimer
l'erreur de statisme en régime
Paramètre Affichage Signification ou fonction
permanent.
Temps de
dérivée
td Détermine l'ampleur de la
réaction du régulateur à la
vitesse de variation de la
température.
Cutback bas Lcb Nombre de °C ou °f endessous
de la consigne auquel
le régulateur va diminuer la
puissance de sortie pour
empêcher un dépassement de
la consigne lors du chauffage.
Cutback
haut
Hcb Nombre de °C ou °f audessus
de la consigne auquel le
régulateur va augmenter la
puissance de sortie pour
empêcher que l'on soit endessous
de la consigne lors du
refroidissement.
Gain relatif
de refroidissement
rEL.C Uniquement présent si le
refroidissement a été
configuré. Définit la bande
proportionnelle de
refroidissement en divisant la
valeur Pb par la valeur rEL.C.
36 N0 Réf HA026270FRA Indice 5.0 08/07
Si le procédé ne peut pas tolérer l'application du
chauffage ou du refroidissement total au cours du
réglage, il est possible de limiter la puissance en fixant
les limites de chauffage et de refroidissement dans la
liste Sorties. Toutefois, la valeur mesurée doit osciller
pour que le régulateur puisse calculer les valeurs.
Le réglage est normalement effectué une seule fois lors
de la mise en service initiale du procédé. Toutefois, si
le procédé régulé devient ensuite instable (à cause d'un
changement de ses caractéristiques), il est possible
d'effectuer un nouveau réglage à tout moment.
Il est préférable de commencer le réglage avec le
procédé à température ambiante. Le régulateur peut
ainsi effectuer les calculs de manière plus précise.
4.3.1 Temps de cycle des sorties Chauffage
et Refroidissement
Avant de commencer un cycle de réglage, définir les
valeurs de CYC.H (temps de cycle de la sortie
Chauffage) et CYC.C (temps de cycle de la sortie
Refroidissement) dans la liste oP (sorties).
Pour une sortie logique de chauffage (commutant un
contacteur statique), positionner CYC.H sur 1.0 sec.
Pour une sortie relais, positionner CYC.H sur 20.0
sec.
Pour une sortie logique de refroidissement servant à
réguler une électrovanne, positionner CYC.C sur 5.0
sec
N0 Réf HA026270FRA Indice 5.0 08/07 37
4.3.2 Procédure de réglage
• Régler la consigne sur la valeur à laquelle le
procédé fonctionnera normalement.
• Dans la liste ‘Atun’, sélectionner ‘tunE’ et le
régler sur ‘on’
• Appuyer simultanément sur les touches Page et
Défilement pour revenir à la PAGE DE REPOS.
L'affichage fait clignoter ‘tunE’ pour indiquer
que le réglage est en cours.
• Le régulateur induit une oscillation de la
température en activant puis en désactivant le
chauffage.
• Après deux cycles d'oscillation, le réglage est
terminé et le régulateur s'arrête de lui-même.
• Le régulateur calcule ensuite les paramètres de
réglage et reprend son action normale de
régulation.
Si l'on souhaite une régulation ‘Proportionnelle
uniquement’ ou ‘P+D’ ou ‘P+I’, il faut positionner les
paramètres ‘ti’ ou ‘td’ sur OFF avant de
commencer le cycle de réglage. Le régulateur les
laissera sur la position off (désactivée) et ne calculera
aucune valeur pour ces paramètres.
4.3.3 Cycle type de réglage automatique
4.3.4 Calcul des valeurs de cutback
Lorsque le cutback bas ou haut est positionné sur
‘AuTo’, les valeurs sont fixées à trois fois la bande
proportionnelle et ne seront pas modifiées au cours du
réglage automatique. Si le cutback est positionné sur
une autre valeur, il sera calculé comme faisant partie
du réglage.
Temps
Température
38 N0 Réf HA026270FRA Indice 5.0 08/07
4.4 Réglage Manuel
Si, pour une raison quelconque, le réglage automatique
ne donne pas des résultats satisfaisants, il est possible
de régler manuellement le régulateur.
Procéder de la manière suivante :
Le procédé étant à sa température normale de
fonctionnement :
• Positionner le temps d'intégrale ‘ti’et le temps
de dérivée ‘td’ sur OFF.
• Positionner Cutback haut ‘Hcb’ et Cutback bas
‘Lcb’ sur ‘Auto’
• Ne pas tenir compte du fait que la température
peut ne pas se stabiliser avec précision à la
consigne
• Réduire la bande proportionnelle ‘Pb’ jusqu'à ce
que la température commence à osciller. Si la
température oscille déjà, augmenter la bande
proportionnelle jusqu'à ce qu'elle arrête
d'osciller. Laisser suffisamment de temps entre
chaque réglage pour que la température se
stabilise. Noter la valeur de la bande
proportionnelle ‘B’ et la période d'oscillation
‘T’.
• Fixer les valeurs des paramètres PID selon la
formule ci-dessous:
Type de
régulation
‘Pb’ ‘ti’ ‘td’
Proportionnelle
uniquement
2xB OFF OFF
P + I 2,2xB 0,8xT OFF
P + I + D 1,7xB 0,5xT 0,12xT
N0 Réf HA026270FRA Indice 5.0 08/07 39
4.4.1 Configuration des valeurs de cutback
La procédure ci-dessus indique comment configurer
les paramètres pour une régulation optimale en régime
permanent. Si, au cours du démarrage ou des
variations importantes de la température, on atteint des
niveaux inacceptables de dépassement ou de mesures
en-dessous de la consigne, il faut configurer
manuellement les paramètres de cutback Lcb et Hcb.
Procéder de la manière suivante :
1. Configurer les valeurs de cutback haut et bas au
triple de la largeur de la bande proportionnelle
(c'est-à-dire Lcb = Hcb = 3 x PB).
2. Noter le niveau de dépassement ou de mesure endessous
de la consigne pour les changements
importants de la température (cf. les courbes cidessous).
Dans l'exemple (a), augmenter Lcb de la valeur du
dépassement. Dans l'exemple (b), diminuer Lcb de la
valeur des mesures en-dessous de la consigne.
Exemple (a)
Exemple (b)
Lorsque la température se rapproche de la consigne par
le haut, il est possible de configurer Hcb de la même
manière.
4.4.2 Réinitialisation manuelle
Lorsque ti = OFF réinitialisation manuelle (rES)
apparaît dans PiD List. Ce paramètre règle la
puissance de sortie lorsque le signal d'erreur est égal à
zéro. Il est possible de le corriger manuellement afin
d'éliminer l'erreur en régime permanent (fonction
normalement exécutée par le terme intégral).
Température
Temps
Dépassement
Température
Temps
Mesures en-dessous de la consigne
40 N0 Réf HA026270FRA Indice 5.0 08/07
5 Code de Commande
Le régulateur est livré configuré selon le code de commande indiqué ci-dessous.
Numéro du modèle Fonction Tension d’alimentation Manuel Sortie 1 (logique) Sortie 2 (relais)
Fonction
CC RégulateurPID
NF Régulateur
Tout ou rien
TC Régulateur PID
+ timer
TN Régulateur Tout
ou rien + timer
Tension d’alimetation
VH 85-264Vac
VL 20 -29Vdc ou
ac
Manuel
XXX Pas de
manuel
ENG Anglais
FRA Français
GER Allemand
NED Néerlandais
SPA Espagnol
SWE Suédois
ITA Italien
Sortie 2 (relais)
XX Désactivé
RH Chauffage
RC Refroidissement
FH Alarme haute 2
FL Alarme basse 2
AL Alarme haute 2 &
alarme basse 3
DB Alarme de bande 2
DL Alarme 2 écart bas
DH Alarme 2 écart haut
NW Nouvelle alarme
Sortie 1 (logique)
XX Désactivé
Sortie logique
LH Chauffage
LC Refroidissement
M1 Mode PDSIO 1
FH Alarme haute 1
FL Alarme basse1
DB Alarme de bande 1
DL Alarme 1 écart bas
DH Alarme 1 écart haut
NW Nouvelle alarme
Entrée logique
AC Alarme
acquit./réinit.
KL Verrouillage clavier
TM Timer
Marche/Réinit.
Numéro du modèle
2132 1/16 DIN
2116 1/8 DIN
N0 Réf HA026270FRA Indice 5.0 08/07 41
Entrée capteur Consigne mini Consigne maxi Unités Module relais externe Adaptateur d'entrée
Module relais externe
XX Pas installé
R7 Installé
(actionné par la
sortie logique)
Unités
C °C
F ° F
K Kelvin
X Entrée linéaire
Adaptateur d'entrée
XX Néant
V1 0-10 Vdc
A1 Résistance 0-
20mA (2,49 Ω.
0,1 %)
Entrée
capteur
Plage d'affichage et
limites mini & maxi de
consigne
Thermocouples
°C ° F
J Type J -210 à
1200
-340 à
2192
K Type K -200 à
1372
-325 à
2500
T Type T -200 à 400 -325 à 750
L Type L -200 à 900 -325 à
1650
N Type N -200 à
1300
-325 à
2370
R Type R -50 à 1768 58 à 3200
S Type S -50 à 1768 -58 à 3200
B Type B 0 à 1820 32 à 3308
P Platinell
II
0 à 1369 32 à 2496
Sonde
Z Pt100 -200 à 850 -325 à
1562
Entrées personnalisées OC OF
C Type C -W5%Re/W26%Re (capteur
personnalisé par défaut)
0 à 2319 32 à 4200
D Type D - W3%Re/W25%Re 0 à 2399 32 à 4350
E Thermocouple E -200 à 999 -325 à 1830
1 Ni/Ni18%Mo 0 à 1399 32 à 2550
2 Pt20%Rh/Pt40%Rh 0 à 1870 32 à 3398
3 W/W26%Re (Engelhard) 0 à 2000 32 à 3632
4 W/W26%Re (Hoskins) 0 à 2010 32 à 3650
5 W5%Re/W26%Re (Engelhard) 10 à 2300 50 à 4172
6 W5%Re/W26%Re(Bucose) 0 à 2000 32 à 3632
7 Pt10%Rh/Pt40%/Rh 200 à 1800 392 à 3272
8 Pyromètre Exegen K80 I.R. -45 à 650 -49 à 1202
Entrées de procédé (linéaires)
M -9,99 mV à +80mV
Y 0 à 20mA
A 4 à 20mA
V 0 à 10Vdc (adaptateur d'entrée nécessaire)
42 N0 Réf HA026270FRA Indice 5.0 08/07
5.1 Specification Technique
Etanchéité de la
face avant
IP65 (EN 60529), ou 4X (NEMA 250)
Conditions
ambiantes de
fonctionnement
0 à 55oC. Vérifier que l'armoire est correctement ventilée. Humidité relative 5 à 95%,
sans condensation
Température de
stockage
-30oC à +75oC. (Protéger contre l'humidité et la poussière)
Atmosphère L'appareil ne doit être utilisé ni à une altitude supérieure à 2000 m ni en atmosphère
explosive ou corrosive
Alimentation Unité haute tension : 100 à 240Vac -15%, +10%, 48-62Hz, puissance consommée 5
Watts maximum
Unité basse tension : 24Vdc/ac +/- 20%. DC à 62Hz, puissance consommée 5 Watts
maximum
Relais (isolé) Maximum: 264Vac, charge résistive 2A. Minimum: 12Vdc, 100mA
Longévité mécanique > 107 opérations. Longévité électrique sous une charge résistive de
1 A, 240 vac > 5 x106 opérations
Sections des fils Utiliser un fil de section minimale de 0,5mm2 (16awg) pour les branchements de
l'installation.
Protection contre Utiliser des fusibles indépendants 2A pour l'alimentation de l'indicateur et les sorties
N0 Réf HA026270FRA Indice 5.0 08/07 43
les surintensités relais. Les fusibles à utiliser sont de type EN60127 (type T)
Entrées/sorties
logiques
9V à 12mA, pas isolées de l'entrée capteur
Sécurité électrique EN 61010 (Les surtensions transitoires ne doivent pas dépasser 2,5 kV). Degré de
pollution 2.
Isolation: L'ensemble des entrées et sorties isolées ont une isolation renforcée qui assure une
protection contre l'électrocution (cf. la remarque sur les capteurs sous tension).
Compensation de
soudure froide
Taux de réjection 30:1 pour une variation de température ambiante en mode automatique.
Utilisation d'un procédé de mesure ultra-précis INSTANT ACCURACY TM qui vise à
éliminer les dérives en température lors de la mise en chauffe et à répondre très
rapidement à toute variation de température ambiante.
Catégorie
d'installation
Catégorie II ou CAT II
44 N0 Réf HA026270FRA Indice 5.0 08/07
6 Sécurité compatibilité
électromagnétique (CEM)
Ce régulateur a été fabriqué au Royaume-Uni par
Eurotherm Ltd.
Veuillez lire attentivement ce paragraphe avant
d'installer le régulateur
Ce régulateur est conçu pour les applications
industrielles de régulation de procédés et de
température. Il satisfait aux exigences des directives
européennes en matière de sécurité et de compatibilité
électromagnétique. Son utilisation dans le cadre
d'autres applications ou le non-respect des consignes
d'installation contenues dans ce manuel pourrait
affecter la sécurité ou la compatibilité
électromagnétique de cet instrument. Il incombe à
l'installateur de veiller à la sécurité et à la compatibilité
électromagnétique de chaque installation.
1.1 GENERALITES
Les informations contenues dans ce manuel sont
sujettes à modification sans préavis. Bien que tous les
efforts aient été consentis pour assurer l'exactitude des
informations, votre fournisseur décline toute
responsabilité pour les erreurs contenues dans ce
manuel
6.1.1 Sécurité
Ce régulateur est conforme à la directive européenne
sur les basses tensions 73/23/EEC et
à la norme de sécurité EN 61010.
6.1.2 Compatibilité électromagnétique
Ce régulateur est conforme aux exigences de
protection essentielles de la directive EMC
89/336/EEC, sur la base d'un dossier technique de
construction. Cet instrument satisfait aux exigences
générales en matière de milieu industriel définies par
la norme EN 61326. Pour de plus amples informations
sur la conformité de ce produit, veuillez consulter le
dossier de construction technique.
N0 Réf HA026270FRA Indice 5.0 08/07 45
6.1.3 Conditionnement et stockage
L'emballage contient un instrument monté sur son
manchon, deux clips de fixation pour l'installation sur
panneau ainsi qu'un guide d'installation et d'utilisation.
Certaines gammes sont fournies avec un adaptateur
d'entrée.
Si l'emballage ou l'instrument est endommagé à la
livraison, n'installez pas le produit et contactez votre
fournisseur. Si l'instrument doit être stocké avant
utilisation, protégez-le contre l'humidité et la poussière
à une température ambiante comprise entre -10oC et
+70oC.
1.2 Entretien et réparation
Ce régulateur ne contient aucune pièce réparable par
l'utilisateur. Contactez votre fournisseur pour les
réparations.
6.1.4 Attention : Condensateurs chargés
Avant de retirer un instrument de son manchon,
débranchez l'alimentation et attendez au moins deux
minutes pour permettre aux condensateurs de se
décharger. Il peut s'avérer plus pratique de retirer
partiellement l'instrument de son manchon et de
marquer ensuite une pause avant de le sortir
complètement. Dans tous les cas, évitez de toucher
aux composants électroniques de l'instrument lors de
son retrait du manchon.
Le non-respect de ces consignes pourra endommager
les composants de l'instrument et exposer l'utilisateur à
des risques.
6.1.5 Précautions en matière de décharges
électrostatiques
Une fois le régulateur retiré de son manchon, certains
de ses composants électroniques exposés pourront être
endommagés par les décharges électrostatiques
accumulées dans le corps. Pour prévenir tout risque,
déchargez-vous de cette énergie en touchant
régulièrement un objet métallique relié à la terre, avant
de manipuler le régulateur débranché.
6.1.6 Nettoyage
N'utilisez pas d'eau ni de produits à base d'eau pour
nettoyer les étiquettes car elles deviendraient alors
illisibles. Utilisez de l'alcool isopropylique pour le
nettoyage des étiquettes. Utilisez une solution
savonneuse douce pour nettoyer les autres surfaces
extérieures du produit.
46 N0 Réf HA026270FRA Indice 5.0 08/07
1.3 Consignes de sécurité lors de
l'installation
6.1.7 Symboles de sécurité
Cet instrument utilise divers symboles ayant les
significations suivantes :
! Attention (renvoie aux documents
d'accompagnement)
6.1.8 Personnel
L'installation doit être uniquement confiée à du
personnel adéquatement qualifié.
6.1.9 Protection des composants sous
tension
Afin d'éviter que les mains ou les outils en métal
n'entrent au contact de composants sous tension, le
régulateur devra être installé dans une armoire.
6.1.10 Attention : Capteurs sous tension
Ce régulateur est conçu pour fonctionner avec le
capteur de température directement relié à un élément
de chauffage électrique. Veillez à ce que le personnel
d'entretien ne touche pas ces connexions lorsqu'elles
sont sous tension. Tous les câbles, connecteurs et
commutateurs de connexion d'un capteur sous tension
devront être dimensionnés pour la tension du secteur.
L’E/S logique n’est pas isolée des entrées PV, et tous
les câbles, connecteurs et interrupteurs de connexion
du capteur doivent être dimensionnés pour la tension
du secteur.
6.1.11 Raccordement
Il est important de connecter le régulateur
conformément aux informations de câblage figurant
dans ce guide. Veillez tout particulièrement à ne pas
connecter les alimentations alternatives à l'entrée basse
tension du capteur ou à d'autres entrées et sorties de
bas niveau. Utilisez uniquement des conducteurs en
cuivre pour les connexions (à l'exception des entrées
de thermocouple) et assurez-vous que le câblage des
installations est conforme à toutes les réglementations
N0 Réf HA026270FRA Indice 5.0 08/07 47
locales en vigueur. Au Royaume-Uni, utilisez la
version la plus récente des réglementations de câblage
IEE (BS7671). Aux Etats-Unis, utilisez les méthodes
de câblage NEC Classe 1.
6.1.12 Isolation de l'alimentation
L'installation doit être équipée d'un sectionneur ou d'un
disjoncteur. Ce dispositif devra être monté à proximité
immédiate du régulateur, être facilement accessible
pour l'opérateur et être clairement désigné comme
appareil de coupure et de déconnexion de l'instrument.
6.1.13 Protection de surintensité
L'alimentation du système doit être dotée de fusibles
de capacité suffisante pour protéger le câblage des
unités.
6.1.14 Tension nominale
La tension maximale permanente appliquée entre les
bornes suivantes ne doit pas dépasser 264 Vac:
• sortie de relais à connexions logiques dc ou de
capteur ;
• toute connexion à la terre.
Le régulateur ne doit pas être relié à une alimentation
triphasée par une connexion en étoile non mise à la
terre. En cas de défaillance, une telle alimentation
pourrait excéder 264 Vac par rapport à la terre et le
produit présenterait alors des dangers.
6.1.15 Pollution conductrice
L'armoire dans laquelle le régulateur est monté doit
être exempte de toute pollution électriquement
conductrice. La poussière de carbone est une forme de
pollution électriquement conductrice. Pour assurer une
atmosphère convenable, installez un filtre à air sur
l'entrée d'air de l'armoire. Si des risques de
condensation sont probables, par exemple à des
températures basses, montez un chauffage à
commande thermostatique dans l'armoire.
Ce produit a été conçu pour satisfaire aux exigences de
la norme BSEN61010, catégorie d'installation II, degré
de pollution 2, telles qu'elles sont définies ci-après :
48 N0 Réf HA026270FRA Indice 5.0 08/07
6.1.16 Catégorie d'installation II
La tension de choc nominale pour un équipement
ayant une alimentation de 230 V nominale est de 2500
V.
6.1.16.1 Degré de pollution 2
Dans des conditions d'utilisation normales, seule une
pollution non conductrice peut se produire.
Une conductivité temporaire due à la condensation
pourra cependant se produire dans certaines
circonstances.
6.1.17 Mise à la terre du blindage du
capteur de température
Certaines installations prévoient généralement le
remplacement du capteur de température, alors que le
régulateur est toujours sous tension. Dans ces
circonstances et afin de renforcer la protection contre
les chocs électriques, il est recommandé de mettre le
blindage du capteur de température à la terre. La mise
à la terre du châssis de la machine n'est pas suffisante.
6.1.18 Protection contre les températures
excessives
Lors de la conception de tout système de commande, il
est essentiel d'examiner les conséquences d'une
défaillance de chaque composant du système. Dans les
applications de régulation de la température, le
principal danger vient d'un chauffage qui resterait
constamment activé. Outre les dommages subis par le
produit, une telle défaillance pourrait endommager les
machines contrôlées ou même provoquer un incendie.
Le chauffage pourra rester constamment activé pour
plusieurs raisons :
• Le capteur de température s'est détaché ;
• Il y a un court-circuit dans le câblage du
thermocouple ;
• Il y a une défaillance du régulateur alors que la
sortie de chauffage est constamment activée ;
• Une vanne ou un contacteur externe est bloqué en
position de chauffage ;
• Le point de consigne du régulateur est trop élevé.
Pour prévenir les risques de dommages ou d'accidents,
il est recommandé d'installer une unité séparée de
protection contre les températures excessives, munie
N0 Réf HA026270FRA Indice 5.0 08/07 49
d'un capteur de température indépendant qui isolera le
circuit de chauffage.
Attention :
Les relais d'alarme du régulateur n'assurent pas une
protection totale pour toutes les conditions de panne.
1.4 Exigences d'installation en matière
de compatibilité
électromagnétique
Afin d'assurer la conformité à la directive EMC
européenne, les précautions d'installation suivantes
devront être prises :
• Pour de plus amples informations, veuillez-vous
reporter au guide d'installation CEM,
HA025464FRA.
• Lors de l'utilisation des sorties de relais, il pourra
s'avérer nécessaire de monter un filtre afin de
supprimer les émissions conduites. Les
caractéristiques du filtre dépendront du type de
charge. Pour les applications typiques,
l'utilisation du modèle Schaffner FN321 ou
FN612 est préconisée.
• Si l'unité doit être utilisée avec un matériel sur
table, branché sur une prise d'alimentation
standard, la conformité aux normes d'émissions
commerciales et de l'industrie légère devra être
observée. Dans un tel cas et afin de satisfaire
aux exigences en matière d'émissions conduites,
un filtre secteur adéquat devra être installé. Nous
recommandons des filtres Schaffner de type
FN321 et FN612.
6.1.19 Cheminement des câbles
Pour réduire les bruits électriques, les connexions dc
basse tension et le câblage d'entrée du capteur devront
être acheminés à l'écart des câbles d'alimentation haute
tension. Si cela est impossible, utilisez des câbles
blindés en prenant soin de relier le câblage à la terre
aux deux extrémités. Il est préférable de réduire au
minimum la longueur des câbles.
Lorsque le signal est une tension dangereuse * (ou
pourrait le devenir sous des conditions anormales de
fonctionnement), une double isolation est nécessaire.
* Une définition plus complète de ‘tensions
dangereuse’ est donnée dans le paragraphe ‘Tension
dangereuse’ dans la BS EN61010. En résumé, dans
des conditions normales de fonctionnement des
niveaux de tension dangereuse sont définis comme
étant >30V RMS (42,2 V crête) ou >60Vdc.
50 N0 Réf HA026270FRA Indice 5.0 08/07
7 RoHS
Product group 2100
Table listing restricted substances
Chinese
产
2100 铅镉铬溴联苯溴苯醚
线组X O X O O O
属O O O O O O
显X O O O O O
块X O X O O O
O
X
English
Product
2100 Pb Hg Cd Cr(VI) PBB PBDE
PCBA X O X O O O
Enclosure O O O O O O
Display X O O O O O
Modules X O X O O O
O
X
Approval
Name: Position: Signature: Date:
Martin Greenhalgh Quality Manager
IA029470U450 (CN23172) Issue 1 Feb 07
Indicates that this toxic or hazardous substance contained in at least one of the homogeneous
materials used for this part is above the limit requirement in SJ/T11363-2006.
该质该质SJ/T11363-2006
标规
Toxic and hazardous substances and elements
Indicates that this toxic or hazardous substance contained in all of the homogeneous materials for
this part is below the limit requirement in SJ/T11363-2006.
Restricted Materials Table
Restriction of Hazardous Substances (RoHS)
览
质
该质该质SJ/T11363-2006
标规
2116/2132
PID Temperature oder
Ein/Aus Regler
GER Bedienungsanleitung
HA026270GER Ausgabe 5.0 08/07 1
PID Temperatur- oder EIN/AUS- Regler Typ 2132 und 2116
Die Reglermodelle 2132 und 2116 sind kompakte PID-Temperatur oder EIN/AUS-Regler im Format 48x24
(2132) bzw. 48x48 (2116) mit Selbstoptimierung. Den Eingang können Sie für Widerstandsthermometer,
Thermoelement oder als Lineareingang konfigurieren. Die Regler bieten Ihnen Relais- und einen Logikausgang
zur Ansteuerung eines Solid-State-Relais. Beide Ausgänge können Sie für Heizen. Kühlen oder Alarm
konfigurieren. Das Gerät wird im Werk nach Ihrer Bestellung konfiguriert. Bitte überprüfen Sie mit Hilfe des
Geräteaufklebers auf der Regler-seite, ob die Konfiguration Ihren Anwendungen entspricht.
Die Regler entsprechen den Anforderungen an Sicherheit und elektromagnetische Verträglichkeit.
1. Abmessungen und Installation
Abmessungen 2132
Abmessungen 2116
48mm
45mm
-0.0, + 0.6
48mm
Schalttafel-
24mm ausschnitt
103mm 45mm -0.0, +0.6
Außenklammern Haltelammen
22mm
-0.0, +0.3
Schalttafelausschnitt
103mm
48mm
45mm -0.0, +0.6
2 HA026270GER Ausgabe 5.0 08/07
1.1 Installation
Lesen Sie bitte zuerst die Sicherheitsinformationen auf den Seiten 15.
Bauen Sie das Gerät nach den folgenden Angaben ein:
1. Bereiten Sie den Ausschnitt nach den angegebenen Maßen vor.
2. Stecken Sie das Gerät in den Ausschnitt (ohne Halteklammern).
3. Bringen Sie die Halteklammern an ihren Platz. Zum Sichern des Reglers halten Sie das Gerät in Position und
schieben Sie beide Klammern gegen den Schalttafelausschnitt .
4. Entfernen Sie die Schutzfolie vom Display.
Anmerkung : Die Halteklammern können Sie einfach mit den Fingern oder einem Schraubendreher entfernen.
1.2 Gerätewechsel
Durch Auseinanderziehen der Außenklammern und nach vorne ziehen des Reglers können Sie das Gerät aus dem
Gehäuse entnehmen. Wenn Sie das Gerät zurück in das Gehäuse stecken, versichern Sie sich, daß die
Außenklammern einrasten. Ansonsten kann die Schutzart IP65 nicht garantiert werden.
HA026270GER Ausgabe 5.0 08/07 3
2. Elektrische Installation
3.22.1 Kabelgrößen
Verwenden Sie Kabel mit Querschnitten zwischen 0,5
und 1,5 mm2. Die Klemmen sind durch eine
Kunststoffabdeckung gesichert. Halten Sie bei den
rückseitigen Klemmen einen Drehmoment von 0,4Nm
ein.
Ausgänge
Logik: 9Vdc, 12mA (nicht isoliert).
Anwendung Heizen, Kühlen oder Alarm.
Relais: 2A, 264V ac ohm’sch.
Anwendung Heizen, Kühlen oder Alarm.
Schließkontakteingang (an Stelle des
Logikausgangs).
Anwendung: Alarmquitterung oder Timersart/-stop.
Anschlüsse 2116
+
-
Phase
Null
Alarm 2
Relaisausgang
T/C Pt100 mA
Eingang
L
N
A
AB
V+
V-
1A
1B
2.49Ω
85-264Vac
50/60Hz
1B 1A
Pt100
T/C Relais
Null
Phase
Logikein/-ausgang
Anschlüsse 2132
Alarm 1
externes Relais
oder
Alarmquittierung/Rücksetzen
2.49Ω
Eingang
V- V+ AB A N L
- +
mA
85-264Vac 50/60Hz
24 24 20-29 Vac/dc
20-29 Vac/dc
24
24
- +
Logikein/-ausgang
oder
Alarm 1
externes Relais
Alarmquittierung/
Rücksetzen
+
-
4 HA026270GER Ausgabe 5.0 08/07
2.2 Beispiel Anschlussdiagramm
Sicherheitsanforderungen für permanent angeschlossene Anlagenbauteile:
• Die Schaltschrankinstallation muss einen Schalter oder
Unterbrechungskontakt beinhalten.
• Dieses Bauteil sollte in der Nähe der Anlage und in direkter Reichweite des Bedieners sein.
• Kennzeichnen Sie dieses Bauteil als trennende Einheit.
Anmerkung: Sie können einen Schalter oder Trennkontakt für mehrere Geräte verwenden.
* Schalten Sie induktive
Lasten (Schütze), verbinden
Sie die Klemmen AA und AB
mit einem 22nF/100Ω RCGlied.
Dieser erhöht die
Lebensdauer des Kontaktes
und unterdrückt Störspitzen bei
schalten den Induktivitäten.
! WARNUNG
Bei geöffnetem Relaiskontakt
fließen über den RC-Kreis
0,6mA bei 110Vac und 1,2mA
bei 240Vac. Achten Sie
darauf, daß durch diesen Strom
keine niedrigen Lasten
angezogen werden.
Relaisausgang
Sicherung
2A typ T
N
Regler Sicherung
2A typ T
Heiz-element Sicherung
Heizelement
T/C
Solid State
Relais
(e.g. TE10)
RC-Glied *
L
+
-
Model 2132
V+ A
1B
V-
1A
A L N
Küh-Relais
HA026270GER Ausgabe 5.0 08/07 5
3. Anzeige und Tastenfunktionen
Nachdem Sie den Regler eingeschaltet haben,
durchläuft dieser für ca. 3. Sekunden einen Selbsttest,
bei dem die Softwareversion angezeigt wird. Danach
zeigt das Gerät die Hauptanzeige.
Haben Sie einen der Ausgänge als Alarm konfiguriert,
wechselt die Alarmmeldung mit dem Prozeßwert,
wenn ein neuer, noch nicht bestätigter Alarm ansteht.
Steht die Alarmbedingung nach der Bestätigung noch
an, erlischt die Alarmmeldung. Der Alarmkontakt
bleibt geschaltet.
3.1 Erklärung der Anzeige und der
Tastenfunktionen
Taste/
Anzeige
Name Erklärung
Bild Taste Auswahl eines anderen
Parametermenüs
Parameter
Taste
Auswahl eines Parameters
innerhalb eines Menüs
Mehr Taste Ein Parameterwert kann
vergroßert werden.
Weniger
Taste
Ein Parameterwert kann
verkleinert werden.
OP1 Ausgang 1 Zeigt an, wenn der
Logikausgang aktiv ist.
OP2 Ausgang 2 Zeigt an, wenn der
Relaisausgang aktiv ist
MAN Handbetrieb Zeigt an, wenn sich der
Regler im Handbetrieb
befindet.
20 Ausgang 1
Ausgang 2
Prozeßwert
‘PV’)
OP1
OP2
6 HA026270GER Ausgabe 5.0 08/07
Beispiel der Tastenfunktionen: EIN/AUS Regler für Heizen/Kühlen
Anmerkung: In diesem Beispiel sind nur die Parameter gezeigt, die nach der entsprechenden Konfiguration
tatsächlich im Regler vorhanden sind. Die Erklärung der einzelnen Parameter sowie ein vollständiges
Parameterdiagramm finden Sie in Kapitel 6.
FiLt
CJC
mV
OFS
CAL.P
CAL
Pnt.L
OFS.L
Pnt.H
OFS.H
20.0 AL SP iP oP On.Of ACCS
X2
& & & & & &
oC
OP
w.SP3
m-A
disp
1---(1)
2---(1)
3---(1)
HY
Lbt
spL
SPH
SPrr
(2)
CYC.H
CYC.C
Ont.H
Ont.C
(2)
HYS.H
HYS.C
HC.db
codE
Goto
Conf
(2) Abhängig von der eingestellten
Regelart wird entweder das PID- oder
das EIN/AUS- Menü angezeit
(1) Die letzten 3 Ziffern
bezeichnen den Alarmtyp
HA026270GER Ausgabe 5.0 08/07 7
4. Zugriffsebenen
Der Regler bietet Ihnen zwei Bedien-, eine Editier- und eine Konfigurationsebene. Nach dem Selbsttest arbeitet
der Regler automatisch in der Bedienebene. Der nachstehenden Tabelle können Sie die Möglichkeiten, die Sie in
den einzelnen Ebenen haben, entnehmen.
Zugriffsebenen Anzeige Möglichkeiten Paßwortschutz
Bedienebene Oper In dieser Ebene können Sie die freigegebenen Parameter
auslesen bzw. ändern. Die Freigabe erfolgt in der Edit-
Ebene. (Kapitel 5)
Nein
Full-Ebene Ful Alle im Regler vorhandenen Parameter können von
Ihnen ausgelesen und geändert werden. (Kapitel 6)
Ja
Edit-Ebene Edit In dieser Ebene können Sie den Bedienerzugriff auf
Parameter und Menüs festelgen. (Kapitel 7)
Wählen Sie zwischen:
- Änderbar (ALtr)
- Nur lesbar (read)
- Versteckt (Hide) oder
- Promote (Pro) (Laden des Parameters in die
Bedienebene, siehe Abschnitt 7.3)
Ja
Konfigurationsebene
Conf Diese spezielle Ebene erlaubt es Ihnen, die grundlegende
Charakteristik des Reglers zu ändern. (Kapitel 8)
Ja
Bedienbene
Oper
Ful
Edit
Conf
Bedien-und
Editereben,
erreichbar über
Accs Code,
paßwortgeschützt.
Konfigurationsebene
erreichbar über
Accs Code,
paßwortgeschützt.
8 HA026270GER Ausgabe 5.0 08/07
4.1 Auswahl einer Zugriffsebene
Zugriffs-Menü
Drücken Sie die -Taste, bis Sie in das Zugriffs-Menü (accs) gelangen.
Mit der -Taste kommen Sie in die code Anzeige.
Paßwort
Drücken Sie einmal oder , um zur Paßworteingabe zu gelangen.
Pass zeigt an, daß kein Paßwort für den weiteren Zugriff benötigt wird.
‘0’ zeigt an, daß Sie sich in der Bedienebene befinden und ein Paßwort erwartet wird.
Mit Hilfe der und der Taste können Sie das Paßwort eingeben. 2s nach Eingabeende
zeigt die Anzeige PASS und springt in die Code Anzeige zurück. Mit oder , können
Sie testen, ob Sie das richtige Paßwort eingegeben haben. Wird nicht Pass angezeigt, müssen Sie
das Paßwort erneut eingeben.
Anmerkung: Das Paßwort für die Parameterebenen wird vom Werk auf ‘1’ eingestellt.
Die Freigabe der Ebenen bleibt solange bestehen, bis Sie entweder den Regler neu starten oder
erneut im Zugriffs-Menü ein anderes falsches) Paßwort eingeben.
Wie Sie das Paßwort ändern können, erfahren Sie in Kapitel 8, ‘Konfiguration’.
Wählen Sie ‘0’ als Paßwort, sind die unteren Ebenen nicht gesperrt.
Mit Hilfe der -Taste kommen Sie in die GOTO Anzeige (Siehe nächste Seite).
Accs
code
1
pass
oder
HA026270GER Ausgabe 5.0 08/07 9
Zurück zur Bedienebene
Nachdem Sie die Arbeit in einer der unteren Ebenen beendet haben, sollten Sie zurück in die Bedienebene
(oper) gehen. Aus der ful- oder der Edit-Ebene kommen Sie in die Bedienebene zurück, indem Sie im
Zugriffs-Menü wie vorne beschrieben ein “falsches” Paßwort eingeben. Wählen Sie nur oper, ohne das Paßwort
zu ändern, bleibt der Zugriff auf die weiteren Ebenen frei. Aus der Edit-Ebene geht der Regler nach 45s ohne
Tastendruck in die Bedienebene zurück
Ebenenauswahl
Wähleischen Sie den mit folgenden Ebenen:
Oper; Bedienebene edit: Edit-Ebene
Ful: Full-Ebene conf: Konfigurationsebene
2s nach Eingabeende springt die Anzeige in die goto Anzeige zurück
Zugriffs-Menü
Haben Sie oper, ful oder edit gewählt, befinden Sie sich nun in der gewählten Ebene.
Mit den Tasten und können Sie die gewünschten Parameter erreichen.
Paßwort
Haben Sie conf gewählt, müssen Sie an dieser Stelle erneut ein Paßwort eingeben. Führen
Sie dafür die oben beschriebenen Schritte durch.
Anmerkung: Das Paßwort für die Konfigurationsebene ist werksseitig auf ‘2’ gesetzt. Wie
Sie das Paßwort ändern können, erfahren Sie in Kapitel 8, ‘Konfiguration’.
Konfigurationsebene
Die erste Anzeige der Konfigurationsebene erscheint. Informationen über die einzelnen
Parameter bekommen Sie in Kapitel 8 ‘Konfiguration’. Dort wird auch beschrieben, wie Sie
die Konfigurationsebene wieder verlassen können.
goto
Oper
Ful
edit
conf
pass
goto Conf
accs
2
inst
bzw.
10 HA026270GER Ausgabe 5.0 08/07
5. Bedienung
5.1 Oper-Ebene
Die Oper-Ebene enthält nur die für die Bedienung
wichtigen Parameter. Möchtien Sie Parameter
freigeben oder sperren oder nur den Schreibzugriff
verweigern, müssen Sie diese Einstellungen in der
Edit-Ebene vornehmen (Kapital 7).
5.2 Einstellen des Sollwertes
Damit der Sollwert angzeigt wird, drücken Sie kurz
auf die Taste oder . Der Sollwert wird für 2
Sekunden angezeigt. Den Sollwert ändern können Sie
auch durch Drücken von oder .
5.3 Anzeigeeinheiten
Möchten Sie die anzeigeeinheiten sehen, drücken Sie
kurz die Taste oder . Die Einheit wird für 0,5
Sekunden angezeigt.
Anmerkung: Durch gleichzeitiges Drücken der Tasten
und kommen Sie jederzeit in die
Hauptanzeige zurück. Außerdem erscheint die
Hauptanzeige, wenn für 45s keine Taste betätigt wird.
OC
200.0
Dr ücken einer der
beiden Tasten
Anzeigeeinheiten
*C Grad Cenlsius
*F Grad Fahrenheit
*K Grad Kelvin
Keine Anzeige -
Linear
0,5s
Sollwert
220.0
200.0
Istwert
Drücken, um den Sollwert zu ändern
2s
HA026270GER Ausgabe 5.0 08/07 11
5.4 Ausgangsleistung
Um die Ausgangsleistung ansehen zu können, müssen
Sie zweimal hintereinander die Taste drücken. Es
erscheint der Parameter OP. Drücken Sie oder
, wird der Wert der Ausgangsleistung angezeigt.
Diesen Wert können Sie nicht ändern.
Achtung:
Im manuellen Standby-Modus (siehe auch
“Verwendung des Timers”) können Sie die
Ausgangsleistung auf einen Wert einstellen, das heißt,
der Heiz-oder Kühlausgang ist permanent aktiviert.
Damit der Wert für die Ausgangsleistung nicht
ungewollt verstellt wird, können Sie den Parameter OP
in der Edit-Ebene auf “read only” setzen (siehe auch
“Parameterzugriff ändern”).
20.0
Kurz drücken
OP 100.0
*C
Der Regler hat
einen100%
Heizausgang
Drücken Sie oder um den
Wert zu sehen.
12 HA026270GER Ausgabe 5.0 08/07
5.5 Auswahl eines Parameters
Die Einstellung der Parameter bestimmt die
Arbeitsweise Ihres Reglers. Damit Sie einfach auf
Parameter zugreifen können, sind diese in
verschiedene Menüs eingeteilt. Mit der Taste
können Sie nacheinander alle Menüüberschriften
aufrufen.
Auf Kapitel 6 finden Sie alle vorhandenen Listen
aufgeführt.
Einen Parameter innerhalb der Liste können Sie mit
aufrufen. In der Anzeige erscheint der
Parametername. Den Wert des Parameters rufen Sie
mit oder auf. Mit diesen Tasten können Sie
den Parameterwert (wenn in der Edit-Ebene
freigegben, sonst in die Full-Ebene wechseln) auch
ändern. Ca. 2s nach der Änderung blinkt der
Parameter kurz auf und der Regler übernimmt den
neuen Wert. Den nächsten Parameter in der Liste
erreichen Sie wieder durch Drücken von .
Die Parameter der Liste werden der Reihenfoge nach
aufgerufen. Nach dem letzten Parameter der Liste
erscheint wieder die Menüüberschrift.
Mit den Parametern in den einzelnen Listen können
Sie:
• die Alarmsollwerte einstellen
• den Regler optimieren
• die PID Werte manuell einstellen
• die sollwertgrenzen ändern und auf den Timer
zugreifen
• die Eingangs- und Ausgangsgrenzen ändern
Drücken Sie die Taste
weiter, werden nacheinander alle
Menüüberschriften angezeigt.
Nach der letzten Überschrift
kommen Sie zurück zur
Hauptanzeige.
20.0 aL Atun
X2
HA026270GER Ausgabe 5.0 08/07 13
5.6 Ändern der Alarmsollwerte
Im erstem Menü (AL) können Sie die Alarmsollwerte
einstellen. Die Alarme finden Sie in Kapital 9
beschrieben.
Ein nicht konfigurierter Alarm erscheint nicht in dem
Menü.
Anmerkung: Sie können auf alle Parameter in den
einzelnen Menüs mit dem hier beschriebenen
Vorgehen zugreifen 4.
0.5 s
*C
200.0
Nächst liste
Drücken Sie oder
wird List angezeight LiSt
AL
0
1---
-FSL = Minimalalarm
-FSH = Maximalalarm
-dEV = Abweichungsbandalarm
-dHi = Abweichungsalarm
Übersollwert
-dLo = Abweichungsalarm
Untersollwert
- = Alarmnummer
0
2---
0
3---
Weiteres Drücken der Taste zeigt alle Menüs. Am
Ende springt der Anzeiger in die Hauptanzeiger zurück.
Alarm 1 *
Alarm 2 *
Alarm 3 *
* Mit oder
sollwert ändern.
14 HA026270GER Ausgabe 5.0 08/07
6. Parameterübersicht
In der Full-Ebene sehen Sie alle in Ihrem Regler vorhandenen Bedienparameter. Diese können Sie wie unter 4.1
beschrieben, aufrufen und/oder ändern. Die Einstellungen der Edit-Ebene haben hier keine Bedeutung. Deshalb
ist die Full -Ebene durch ein Paßwort (1) geschützt.
In der folgenden Übersicht sind alle möglichen Parameter dargestellt. Die Anzahl und die Reihenfolge der
Parameter, die in Ihrem Gerät erscheinen, ist abhängig von der Konfiguration. Den Zugriff auf Parameter
sperren oder freigeben können Sie in der Edit-Ebene, Kapital 7. Die grau hinterlegten Felder bezeichnen die
Parameter und Menüs, die in der Oper-Ebene standardmäßig nicht sichtbar sind.
3. W.sP erscheint nur, wenn die
Sollwertrampe aktiv ist.
Hauptanzeige
Alarm
Menü
Selbstoptimierungs
Menü
PID(2)
Menü
Sollwert
Menü
Eingangs
Menü
Ausgangs
Menü
EIN/AUS(2)
Menü
Zugriffs
Menü
20.0 AL Atun Pid SP iP oP On.Of ACCS
X2
oC
OP
w.SP3
m-A
disp
1---(1)
2---(1)
3---(1)
HY
Lbt
Tune
adc
Pb
Ti
Td
Res
Lcb
Hcb
reL.C
spL
SPH
SPrr
Tm.Op
Tmr
Dwel
stat
fiLt
CJCo
MV
OFS
CAL.P
CAL
Pnt.L
OFS.L
Pnt.H
OFS.H
OP.Lo
OP.Hi
CYC.H
CYC.C
ont.H
ont.C
HYS.H
HYS.C
HC.db
code
Goto
Conf
(2) Abhängig von der eingestellten
Regelart wird entweder das PID- oder das
EIN/AUS- Menü angezeit
(1) Die letzten 3 Ziffern
bezeichnen den Alarmtyp.
HA026270GER Ausgabe 5.0 08/07 15
6.1 Parameterlisten
Hauptmenü Einstellbarer Bereich Vorgabe Einstellung
Op Ausgangsleistung -100% bis 0.0% = Kühlen; 0.0% bis 100.0% =
Heizen.
w.SP Arbeitssollwert Erscheint, wenn Sollwertrampe aktiviert ist. Nur-Lessen Nur-Lessen
m-A Automatik-Hand Auto Automatikbetrieb gewählt
Umschaltung mAn Handbetrieb gewählt
Auto
Std
Standard – zeight den Istwert und
nach Drücken der Mehr-
/Weniger-Taste den sollwert
OP
Zeigt die Ausgangleistung an – für
die Benutzung als Handstation
NonE Keine Anzeige, nur Alarme
erscheinen blinkend
PV Zeigt nur den Istwert
AL.SP Zeigt nur den Alarm 2 Sollwert
disp Hauptanzeige-
Optionen
pv.aL
Zeigt Istwert und Alarm 2
Sollwert nach Drücken der Mehr-
/Weniger-Taste
Std
Plus zusätzliche Promote-Parameter (Abschnitt 7.3)
16 HA026270GER Ausgabe 5.0 08/07
AL Alarm-Menü Einstellbarer Bereich Vorgabe Einstellung
1--- Sollwert für
Alarm 1
0
2--- Sollwert für
Alarm 2
0
3--- Sollwert für
Alarm 3
0
Es erscheinen nur die
konfigurieten Alarme.
Die letzten 3 Ziffern zeigen den Alarmtyp.
Die Werte sind innerhalb der Sollwertgrenzen
einstellbar.
-FSL Vollbereichsminimalalarm
-FSH Vollbereichsmaximalalarm
-dEv Regelabweichungsbandalarm
-dLo Regelabweichungsalarm Untersollwert
-dHi Regelabweichungsalarm Übersollwert
HY Alarmhysterese 1 bis 9999 Anzeigeeinheiten. Dieser Wert bezieht
sich auf alle Alarme. Die Hysterese verhindert ein
‘Springen’ des Alarms, wenn der Wert um den
Alarmwert schwankt.
1
Lb t Regelkreis-überwachungszeit
OFF bis 9999 Minuten OFF
HA026270GER Ausgabe 5.0 08/07 17
Atun Selbstoptimierungs-Menü Einstellbarer
Bereich
Vorgabe Einstellung
tunE Selbstoptimierung OFF oder on Off
Adc Automatische Arbeitspunktorrektur (bei PD
Regelung)
mAn oder caLc mAn
PiD PID-Menü Einstellbarer Bereich Vorgabe Einstellung
Pb Proportionalband 1 bis 999.9 Anzeigeeinheiten 20
ti Nachstellzeit OFF bis 9999 Sekunden 360
td Vorhaltzeit OFF bis 9999 Sekunden 60
rES Maueller Reset Nur, wenn ti = OFF;
-100 bis 100.0%
0.0
Lcb Cutback Low Auto bis 999.9 Anzeigeeinheiten Auto
Hcb Cutback High Auto bis 999.9 Anzeigeeinheiten Auto
rEL.C Relative Kühlverstärkung 0.01 bis 10.00 1.00
18 HA026270GER Ausgabe 5.0 08/07
SP Sollwert-Menü
Einstellbarer Bereich Vorgabe Einstellung
SP L Sollwert, untere Grenze -1999 bis 999.9, je nach Meßbereich It. Bestellg.
SP H Sollwert, obere Grenze -1999 bis 999.9, je nach Meßbereich It. Bestellg.
sprr Sollwertrampe 0FF bis 999.9 Anzeigeeinheiten pro
Minute
Off
tm.OP Timer Betriebsart Opt.1 bis Opt.5
OPt.1
tmr Verbleibende Timerzeit 0 bis 9999
minuten
0
dwEl Haltzeit 0FF bis 9999
minuten
OFF
StAt Timer Status OFF oder on
Ab
Softwareversion
1.43
OFF
HA026270GER Ausgabe 5.0 08/07 19
iP Eingangs-Menü
Einstellbarer Bereich Vorgabe Einstellung
FiLt Zeitkonstante des Eingangsfilters 0FF bis 999.9 Sekunden 1.6
CJC* Vergleichsstellentemperatur an den Klemmen Nur Lesen
mV Millivolt-Eingang, gemessen an den Klemmen Nur Lesen
OFS Istwert Offset -1999 bis 9999
Anzeigeeinheiten
0
CAL.P Anpassung Paßwort 0 bis 9999 3
Die folgenden Parameter erscheinen nur, wenn Sie das richtige Paßwort für die Anpassung eingegeben haben.
FACt Stellt die
Werkseinstellung
wieder her
CAL Anpassungsart FACt
USEr Benutzerdefinierte
Anpassung
Pnt.L Unterer Anpassungspunkt 0
OFS.L Offset am unteren Punkt 0
Pnt.H Oberer Anpassungspunkt 100
OFS.H Offset am oberen Punkt
-1999 bis 9999
Anzeigeeinheiten
0
20 HA026270GER Ausgabe 5.0 08/07
oP Ausgangsleistungs-Menü Einstellbarer Bereich Vorgabe Einstellung
OP.Lo Ausgangsleistungs untere Grenze -100 bis 100.0% 0
OP.Hi Ausgangsleistungs obere Grenze -100 bis 100.0% 100.0
CYC.H Zykluszeit Heizen 0.2 bis 999.9 Sekunden 1.0 Lgk 20 Rls
CYC.C Zykluszeit Kühlen 0.2 bis 999.9 Sekunden 5.0 Lgk 20 Rls
ont.H min. EIN-Zeit für Heizausgang Auto bis 999.9 Sekunden
(Auto = 50ms)
Auto
ont.C min. EIN-Zeit für Kühlausgang Auto bis 999.9 Sekunden
(Auto = 50ms)
auto
onOF EIN/AUS-Menü Einstellbarer Bereich Vorgabe Einstellung
hYS.H Heizhysterese 1 bis 9999 Anzeigeeinheiten 1
hYS.C Kühlhysterese 1 bis 9999 Anzeigeeinheiten 1
HC.db Todband Heizen/Kühlen 0 bis 9999 Anzeigeeinheiten 0
ACCS Zugriffs-Menü Einstellbarer Bereich Vorgabe Einstellung
codE Zugriffs-Paßwort 0 bis 9999 1
Goto Auswahl der Parameterebene Oper, Ful, Edit, conf OPEr
Conf Konfigurations-Paßwort 0 bis 9999 2
HA026270GER Ausgabe 5.0 08/07 21
7. Edit-Ebene
In der Edit-Ebene können Sie die Menüs der Bedienebene (Oper) gestalten. Sie haben die Möglichkeit,
Parameter für den normalen Bediener in der Oper-Ebene auszublenden oder mit einem Schreibschutz zu versehen.
Mit der Promote-Funktion können Sie Parameter in das Hauptmenü kopieren und so eine benutzerspezifische
Parameterliste erstellen. Dies gilt nur für Parameter, die standardmäßig nicht in der Hauptanzeige vorhanden sind.
In der Edit-Ebene sehen Sie nicht die Parameterwerte, sondern die Zugriffsmöglichkeit auf den Parameter.
7.1 Ändern des Parameterzugriffs
Sie haben vier Möglichkeiten für den Zugriff auf einen Parameter oder ein Menü:
• ALtr Parameterwert läßt sich in der Bedienebene ändern.
• read Parameter oder Menü kann in der Bedienebene nur gelesen werden.
• Hide Parameter oder Menü erscheinen nicht in der Bedienebene.
• Pro Kopiert einen Parameter in die Hauptanzeige (s. Abschnitt 7.3).
Gehen Sie bei der Zugriffsauswahl wie folgt vor:
- Wahlen Sie wie zuvor beschrieben die Edit-Ebene.
- Suchen Sie mit Hilfe der Tasten und den gewünschten Parameter oder das gewünschte Menü.
- Mit den Tasten und können Sie den Parameterzugriff ändern.
Beispeil: Haben Sie z. B. Alarm 2 (2FSH) gewählt, erscheint nach Drücken der Taste oder der
Zugriffsmodus des Parameters. Mit den gleichen Tasten können Sie einen neuen Zugriffsmodus auswählen.
22 HA026270GER Ausgabe 5.0 08/07
7.2 Ausblenden eines Menüs
Bei der Zugriffsänderung auf ein ganzes Menü haben Sie nur die Auswahl zwischen read und Hide.
Blenden Sie ein ganzes Menü aus, werden alle zugehörigen Parameter ausgeblendet.
Das Zugriffs- Menü (ACCS) läßt sich nicht ausblenden.
7.3 Promote
Sie haben die Möglichkeit, dem Hauptmenü bis zu 12 Parameter hinzuzufügen:
- Gehen Sie in die Edit-Ebene
- Wählen Sie den gewünschten Parameter
- Versehen Sie ihn mit dem Kürsel Pro.
Der Parameter wird an das Ende des Hauptmenüs kopiert. Sie haben somit im Hauptmenü und im Originalmenü
Zugriff auf diesen Parameter.
Diese Parameter können Sie nicht mit einem Schreibschutz versehen.
Beispeil: Haben Sie z. B. den Parameter tmr (verbleibende Timerzeit) gewählt, können Sie mit oder
Pro wählen.
Der Parameter tmr erscheint nun im Hauptmenü. Wiederholen Sie diesen Vorgang mit den gewünschten
Parametern. Möchten Sie einen Parameter aus dem Hauptmenü entfernen, gehen Sie in die Edit-Ebene und
wählen Sie ALtr, read oder Hide.
HA026270GER Ausgabe 5.0 08/07 23
8. Konfiguration
In der Konfigurationsebene können Sie die
Anzeigeeinheiten, den Sensortyp, die Skalierung, die
Alarmkonfiguration und die Paßworter ändern.
8.1 Auswahl der Konfigurationsebene
In der Konfigurationsebene können Sie mit Hilfe der
Taste die einzelnen Konfigurations-Menüs aufrufen.
Innerhalb der Menüs werden die Parameter
mit der Taste aufgerufen. Sie können
die Einstellungen der Parameter mit den
Tasten und ändern.
inSt iP AL AA
Exit pASS 1A
Geräte-Konfiguration
Goto conF
Wählen Sie mit Hilfe der Tasten
oder die Konfigurationsebene
conf
ACCS Drücken Sie die Taste bis Sie das ACCSMenü
erreichen.
codE PASS
Geben Sie mit Hilfe der Tasten
oder das Paßwort ein.
Werksseitig eingesteltes Paßwort ist 1.
PASS erscheint, wenn Sie das richtige
Paßwort eingegeben haben.
ConF PASS
Geben Sie mit Hilfe der Tasten
oder das Paßwort ein.
Paßwort Vorgabe ist 2.
PASS erscheint, wenn Sie das richtige
Paßwort eingegeben haben.
24 HA026270GER Ausgabe 5.0 08/07
Geräte-Konfiguration
inst
Geräte-
Konfiguration
Wert Bedeutung
*C Celsius
*F Fahrenheit
*K Kelvin
unit Anzeigeeinheiten
nonE Keine Einheit
(Linear)
nnnn Keine
nnn.n Eine
dEC.P Dezimalstelle
nn.nn Zwei
Pid PID
On.OF EIN/AUS
CtrL Regelverhalten
AL Gerät als
Alarmeinheit
Act Ausgangskennlinie rEv Revers
dir Direkt
HoLd
Keine
Stoßfreie
Umschaltung
Pd.tr Stoßfreie
Automatik/
Hand Umschaltung
bei PD-Regelung trAc
Stoßfreie
Umschaltung
HA026270GER Ausgabe 5.0 08/07 25
Eingangs-Konfiguration
iP Eingangs-
Konfiguration
Wert Bedeutung
j.tc Thermoelement J
k.tc Thermoelement K
L.tc Thermoelement L
r.tc Thermoelement R
b.tc Thermoelement B
n.tc Thermoelement N
t.tc Thermoelement T
S.tc Thermoelement S
PL 2 Platinell II
rtd PT 100
mV Linear mV
inPt Eingangstyp
C.tc Thermoelement C
* Linerisierung
Off Nur bei
Lineareingang
Auto Automatisch
0*C 0°C ext. Referenz
45*C 45°C ext. Referenz
CJC
(nur
T/C)
Vergleichsstellentempuratur
50*C 50°C ext. Referenz
Folgende Parameter erscheinen nur bei Linereingang (-12
bis +80mV)
InP.L mV–Eingang
min
InP.H mV–Eingang
max
VaL.L Angezeigter
Wert min
VAL.H Angezeigter
Wert max
OFF Aus (nur
Lineareing)
Auto 1,5KΩ
Hi 5KΩ
ImP
HiHi 15KΩ,
* Thermoelement C kann durch eine alternative
kundenspezifische Linearisierung ersetzt werden.
Inp.L Inp.H
VAL.H
VAL.L
mV
Anzeigewert
26 HA026270GER Ausgabe 5.0 08/07
Alarm-Konfiguration
In der Alarm-Konfiguration können Sie bis zu drei
Soft-alarme konfigurieren. Soft-alarme werden nur
angezeigt.
Möchten Sie, daß ein Alarm auf einen Ausgang gelegt
wird, müssen Sie diesen Alarm in der Relais-
/Logikein-/ausgangs-Konfiguration einem Ausgang
zuweisen.
AL Alarmsollwert
-Konfig.
Wert Bedeutung
OFF Kein alarm
fsL Vollbereichsminimalalarm
fsH Vollbereichsmaximalalarm
dEv Abweichungsbandalalarm
dHi Abweichungsalarm
Übersollwert
AL 1 Alarm 1
dLo Abweichungsalarm
Untersollwert
AL Alarmsollwert
-Konfig.
Wert Bedeutung
no Nicht speichern
YES Gespeichert (Auto) *
Ltch Alarm
speichern
mAn Gespeichert (Hand)
**
bLoc Alarm no Keine Unterdrückung
Unterdrücken YES Alarmunterdrückung
Für die Alarme 2 und 3 (AL 2 und AL 3) erscheinen die
gleichen Parameter.
Sp.Li Alarmsollwert diS Anzeigebereich
-grenzen Con Eingestellte Grenzen
*D. h., wurde der Alarm bestätigt, wird der Alarm
automatisch zurückgesetzt, sobald die
Alarmbedingung erlischt.
** D. h., der Alarm kann erst zurückgesetzt werden,
wenn die Alarmbedingung nicht mehr ansteht.
HA026270GER Ausgabe 5.0 08/07 27
Relaisausgangs-Konfiguration
Aa Relaisausgangs Wert Bedeutung
id Art des Ausgangs rELy Relais
diG Digitalausgang
(Alarm)
HEAt Heizausgang
Func Funktion
COOL Kühlausgang
noch Kein Wechsel
CLr Löschen aller
Alarme
1FSL Alarm 1 *
2FSH Alarm 2 *
3FSL Alarm 3 *
NW Neuer alarm
SBR Fühlerbruch
LBR Regelkeisüberwachung
LDF Lastfehler
MAn Handbetrieb
EnD Ende des Timers
TMG1 Timer läuft
TMG2 Timer zählt
abwärts
diG.F Funktion des
Digitalausgangs
(erscheint nicht
bei HEAt und
COOL)
Siehe unten,
“Ansteuern eines
Relais-oder
Logikausgangs
über eine
Digitalfunktion”
Die Parameter
tmg1 bis tmg4
erscheinen nur
bei einem Regler
mit Timer.
TMG3 Timer läuft **
Aa Relaisausgangs Wert Bedeutung
TMG4 Timer zählt
abwärts **
nor Normal (im
Alarmfall
stromführend)
SenS Kennlinie des
Ausgangs
Inv Invertiert (im
Alarmfall
stromlos)
* Die letzen drei Ziffern entsprechen den
konfigurierten Alarmen. Haben Sie keinen Alarm
konfiguriert, erscheint AL1, AL2, und AL3.
** tmg3 und tmg4 sind Spezialfunktionen. Haben
Sie diese gewählt, leuchten die Anzeigen OP1 und
OP2, ohne daß ein Ausgang aktiv ist. Mit dieser
Funktion kann angezeit werden, ob der Timer noch
läuft, während die Ausgänge über andere
Digitalfunktionen, z. B. Ende des Timers,
angesteuert werden.
28 HA026270GER Ausgabe 5.0 08/07
Logikeingangs-Konfiguration
Wählen Sie bei Logik zwischen einem Ausgang oder
einen Eingang zur Alarmquittierung, Tastensperre oder
Timerstart/-stop.
1a Relaisausgangs Wert Bedeutung
id Art des Ausgangs Log Logik
diG Digitalausgang
HEAt Heizausgang
COOL Kühlausgang
Funktion
(Ausgang)
Ssr.1 PDSIO Mode 1
Ac.aL Alarmquittierung
Loc.d Tastensperre
Digitaleingang
Func
Funktion
(Eingang)
rres Timerstart/-stop
noch Kein Wechsel
CLr Löschen aller
Alarme
1FSL Alarm 1 *
2FSH Alarm 2 *
3FSL Alarm 3 *
NW Neuer alarm
SBR Fühlerbruch
diG.F Funktion des
Digitalausgangs
(erscheint nicht
bei HEAt und
COOL)
Siehe unten,
“Ansteuern eines
Relais-oder
Logikausgangs
LBR Regelkeisüberwachung
1a Relaisausgangs Wert Bedeutung
LDF Lastfehler
MAN Handbetrieb
END Ende des Timers
TMG1 Timer läuft
TMG2 Timer zählt
abwärts
TMG3 Timer läuft **
über eine
Digitalfunktion”
Die Parameter
tmg1 bis tmg4
erscheinen nur
bei einem Regler
mit Timer. TMG4 Timer zählt
abwärts **
nor Normal (im
Alarmfall
stromführend)
SenS Kennlinie des
Ausgangs
Inv Invertiert (im
Alarmfall
stromlos)
* Die letzen drei Ziffern entsprechen den konfigurierten
Alarmen. Haben Sie keinen Alarm konfiguriert, erscheint
AL1, AL2, und AL3.
** tmg3 und tmg4 sind Spezialfunktionen. Haben Sie diese
gewählt, leuchten die Anzeigen OP1 und OP2, ohne daß
ein Ausgang aktiv ist. Mit dieser Funktion kann angezeigt
werden, ob der Timer noch läuft, während die Ausgänge
über andere Digitalfunktionen, z. B. Ende des Timers,
angesteuert werden.
HA026270GER Ausgabe 5.0 08/07 29
Ansteuern eine Relais- oder Logikausgangs
über eine Digitalfunktion
1. Drücken Sie die Taste , bis Func erscheint.
2. Wählen Sie mit Hilfe von oder dig.
3. Drücken Sie die Taste , bis dig.f erscheint.
4. Mit Hilfe der Tasten oder können Sie
eine Digitalfunktion wählen
5. Nach 2s springt die Anzeige zurück auf dig.F.
Die gewählte Digitalfunktion ist nun mit dem
Ausgang verbunden.
6. Drücken Sie erneut die Tasten oder . Die
ausgewählte Funktion erscheint mit zwei
Dezimalpukten (z. B. L. b. r.)
7. Möchten Sie keine Veränderung mehr
vornehmen, gehen Sie mit oder auf
noch.
Mehrere Digitalfunktionen auf einem Ausgang
Sie haben die Möglichkeit, mehrere oder auch alle
Digitalfunktionen auf einem Ausgang zu kombinieren,
indem Sie die Schritte 4-6 für jede Funktion
wiederholen.
Löschen von zugeordneten Digitalfunktionen
1. Drücken Sie die Taste , bis dig.f erscheint.
2. Mit Hilfe der Tasten oder können Sie
CLr wählen
3. Nach 2s springt die Anzeige zurück auf dig.F.
Alle Verknüpfungen sind gelöscht.
Paßwort-Konfiguration
PASS Paßwort-Konfiguration Wert Vorgabe
ACC.P Paßwort für Ful und Edit 0-9999 1
Cnf.P Paßwort für Konfiguration 0-9999 2
CAL.P Paßwort für Anpassung 0-9999 3
8.2 Verlassen der Konfigurationsebene
Drücken Sie die Taste , bis Sie
Exit erreichen. Wahlen Sie mit
oder YES. Nach 2s blinkt
die Anzeige und kehrt in die
Bedienebene zurück.
Exit YES
30 HA026270GER Ausgabe 5.0 08/07
9. Alarme
Die Regler der Serie 2100 können Ihnen zwei
verschiedenen Arten von Alarmmeldungen anzeigen:
1. Regelkreisalarme (z. B. Vollbereichsalarme,
Abweichungsalarme)
2. Diagnosealarme (z. B. Fühlerbruch)
Regelkreisalarme können Sie selbst konfigurieren,
einem Ausgang zuweisen und speichern. Diese
gespeicherten Alarm müssen Sie dann bestätigen.
9.1 Alarmmeldungen
Steht ein Alarm an, wird in der Anzeige eine
Alarmmeldung dargestellt. Die Alarmmeldung
wechselt mit dem aktuellen Prozeßwert.
Folgende Alarmmeldungen können in der Anzeige
erscheinen:
Kürzel Erklärung
Regelkreisalarme
-fsh Vollbereichsmaximalalarm
-fsL Vollbereichsminimalalarm
-deV Abweichungsbandalarm
-dHi Abweichungsalarm
Übersollwert
-dLo Abweichungsalarm
Untersollwert
Diese Alarme
können
gespeichert
und bestätigt
werden.
Diagnosealarme
Sbr Fühlerbruch
Lbr Regelkreisfehler
Ldf Lastfehler
End Ende des Timers
An Stelle des Striches erscheint bei einem
Regelkreisalarm die Alarmnummer (1, 2 oder 3), z. B.
1FSH (Alarm 1, Vollbereichsmaximalalarm).
Alarm1 Vollbereichsminimalalarm
1FSL
200.0
Atueller Prozeßwert
HA026270GER Ausgabe 5.0 08/07 31
9.2 Alarmbestätigung
Zur Alarmbestätigung müssen Sie die Tasten und
gemeinsam drücken. Es werden neben den
aktuellen dann auch noch gespeicherte, nicht mehr
anstehende Alarm bestätigt. Nicht gespeichterte
Alarme müssen Sie nicht bestätigen.
9.3 Diagnosealarme
Zusätzlich zu den Prozeßalarmen bietet Ihnen der
Regler die folgenden Diagnosealarme
Kürzel Erklärung
EE.Er Electrically Erasable Memory Error:
Der wert eines Bedien-oder
Konfigurationsparameters wurde zerstört.
Wenden Sie sich an Eurotherm.
HW.Er Hardware-Fehler: Geben Sie den Regler in
Reparatur.
LLLL Unterhalb des Anzeigebereichs: Überprüfen
Sie den Eingang.
HHHH Oberhalb des Anzeigebereichs: Überprüfen
Sie den Eingang.
Err1 Error 1: ROM Selbsttest Fehlerhaft: Geben Sie
den Regler in Reparatur.
Kürzel Erklärung
Err2 Error 2: RAM Selbsttest Fehlerhaft: Geben Sie
den Regler in Reparatur.
Err3 Error 3: Watchdog Fehler: Geben Sie den
Regler in Reparatur.
Err4 Error 4: Tastatur-Fehler: Fehlende Taste oder
Taste während des Starts gedrückt.
Err5 Error 5:. Fehler in der Eingangsschaltung:
Geben Sie den Regler in Reparatur.
Pwr.F Versorgungsfehler. Die Versorgungsspannung
ist zu niedrig. Überprüfen Sie, daß die
Spannung innerhalb der Grenzen ist.
TU.Er Selbstoptimierungsfehler: Erscheint wenn der
Optimierungsprozeß über 2 Stunden dauert.
Kontrollieren Sie Ihren Regelkreis.
Bestätigung wie vorher beschrieben.
Sbr Fühlerbruch: Überprüfen Sie den Fühler.
Lbr Regelkreisfehler: Die Rückführung ist ohne
Signal. Überprüfen Sie die gesamte
Regelstreke.
Ldf Lastfehler: Fehler in Heizkreis oder Solid State
Relais (SSR). Überprüfen Sie den Heizkreis
und das SSR.
End Ende des Timers: Siehe Kapitel 10.
32 HA026270GER Ausgabe 5.0 08/07
10. Timer
Der Timer gibt Ihnen die Möglichkeit, die Regelung
zeitlich zu steuern. Die für den Timer wichtigen
Parameter finden Sie im Sollwert-Menü:
Tm.OP Auswahl der Betriebsart des Timers
Tmr Verbleibende Timerzeit in Minuten
Dwel Eingestelle Timerzeit in Minuten
Stat Status des Timers
10.1 Auswahl der Betreibsart
• Drücken Sie die Taste , bis Sie Sollwert-
Menü erreichen.
• Rufen Sie mit Hilfe der Taste den Parameter
tm.OP auf
• Mit den Tasten oder können Sie die
Betriebsart des Timers wählen (Opt.1 bis
Opt.5)
10.1.1 Opt.1 - Betriebsart 1, Haltezeit und
Ausschalten
Reset
Ist der Timer zurückgesetzt, arbeitet der Regler in der
von Ihnen konfigurierten Regelart. Mit dem Parameter
m-A können Sie zwischen Automatikbetrieb (Auto)
und Handbetrieb (MAN) umschalten. Den Parameter
finden Sie im Hauptmenü.
Im Automatikbetrieb wird der Istwert auf den Sollwert
ausgeregelt.
Im Stanby-Mode befindet sich der Regler im
Handbetrieb. Die Ausgangsleistung ist an allen
Ausgängen Null. (Siehe Warnung auf Seite 11). Bei
der Auslieferung ist der Parameter m-A in der
Bedienebene gesperrt. Sie müssen den Parameter erst
in der Edit-Ebene freigeben.
Standby
Temperatur
Sollwert
Reset Timing
Timer Laufzeit
Ende
End blinkt auf der
Aufwärmzeit Anzeige
HA026270GER Ausgabe 5.0 08/07 33
Während der Timerlaufzeit
Startet der Timer, springt der Regler in den
Automatikbetrieb. Der Istwert wird an den Sollwert
herangefürt (Aufwärmzeit). Befindet sich der Istwert
ca. 1oC entfernt vom Sollwert, beginnt der Timer zu
zählen (Timing in Minuten).
Ende
Am Ende der Zeit (Timing) schaltet der Regler in den
Standby-Mode um. Die Ausgänge werden auf Null
gesetzt. MAN leuchtet und in der Regleranzeige
erscheint blinkend End. Das bedeutet, daß Ihr Prozeß
abkühlt. Der Timer bleibt in diesem Zustand, bis er
erneut mit und zurückgesetzt wird.
Neuer Reset
Haben Sie den Timer zurückgesetzt ( und
gleichzeitig drücken), erlischt End auf der Anzeige.
Der Regler befindet sich weiterhin in Standby-Mode.
Möchten Sie zum normalen Reglerbetreib wechseln,
setzen Sie den Parameter m-A in Haupt-Menü auf
Auto.
10.1.2 Opt.2 - Betriebsart 2, Haltezeit und
nicht Ausschalten
Diese Betriebsart entspricht der Betriebsart 1, nur daß
nach Ablauf der Zeit (Timing) der Regler im
Automatikbetrieb bleibt.
Unendliche Haltezeit
auf Sollwerttemperatur
Temperatur
Sollwert
Reset Timing
Timer Laufzeit
Ende
End blinkt auf der
Anzeige
Aufwärmzeit
Auto
m-A
Drücken Sie solange , bis der
Parameter m-A erscheint. Wählen Sie
mit oder
Auto Automatikbetreib
mAn Standby (Hand - MAN leuchet)
Drücken Sie gleichzeitig und , um in die
Hauptanzeige zurückzukehren.
34 HA026270GER Ausgabe 5.0 08/07
10.1.3 Opt.3 (Betriebsart 3), Aufheizen,
Haltezeit und Ausschalten
Auch die Betriebsart 3 entspricht der Betriebsart 1.
Der einzige Unterschied ist, daß die Zeit sofort bei
Start des Timers losläuft, d. h. die Aufwärmzeit
entfällt. Somit ist die Zeit bis zum Erreichen des
Sollwerts Teil des Timings.
10.1.4 Opt.4 (Betriebsart 4), Aufheizen,
Haltezeit und nicht Ausschalten
Die Betriebsart 4 arbeitet entsprechend der Betriebsart
2, nur daß auch hier die Zeit bis zum Erreichen des
Sollwerts Teil des Timings ist.
Standby
Temperatur
Sollwert
Reset Timing Ende
End blinkt auf der
Anzeige
Reset
Unendliche Haltezeit auf
Sollwerttempuratur
Sollwert
Timing Ende
End blinkt auf der
Anzeige
Temperatur
HA026270GER Ausgabe 5.0 08/07 35
10.1.5 Opt.5 (Betriebsart 5) -
Einschaltverzögerung
Haben Sie die Betriebsart 5 gewählt, wird das
Einschalten des Reglers um die Timerzeit verzögert.
Sobald Sie den Timer starten, schaltet das Gerät in den
Stanby-Modus und startet das Timing. Am Ende der
Zeit schaltet der Regler in den Automatikbetrieb.
10.1.6 Rampe/Haltezeit Profil
Sie haben die Möglichkeit, mit Hilfe der
Sollwertrampe (Sprr) und des Timers ein einfaches
Rampe/Haltezeit Profil zu programmieren. Um die
Programmierung zu vereinfachen, kopieren Sie zuerst
die Parameter Sprr und w.SP in die Bedienebene
(Abschnitt 7.3, Promote).
Geben Sie für den Parameter eine gewünschte
Rampensteigung ein. Sie können den Wert in
Schritten von 1/10 des eingestellten Anzeigebereichs
wählen. Das heißt, haben Sie einen Anzeigebereich,
von 1 bis 1000oC können Sie für die Rampensteigung
einen Wert zwischen 0,01 und 999,9 oC pro Minute
wählen.
Haben Sie die Rampensteigung eingestellt und den
Timer gestartet, springt der Arbeitssollwert w.sp, zur
aktuellen Temperatur und läuft dann mit der
eingestellten Rampensteigung bis zum Zielsollwert.
Haben Sie für den Timer Betriebsart 1 oder 2 gewählt,
startet die Zeit (Timing), wenn Istwert und Sollwert
eine Differenz von 1oC haben. In den Betriebarten 3
und 4 startet der Timer, wenn der Arbeitsollwert w.sp
noch 1oC vom Zielsollwert entfernt ist.
Unendliche Haltezeit
auf Sollwerttemperatur
Temperatur
Sollwert
Reset Timing Reset
Standby
36 HA026270GER Ausgabe 5.0 08/07
10.2 Starten und Rücksetzen des Timers
Es stehen Inhen zwei Metoden zur Verfügung:
Methode 1.
Dies ist die einfachste Methode, um den Timer zu
überwachen.
• Drücken Sie , bis Sie das Sollwert-Menü
erreichen.
• Drücken Sie , bis Sie den Parameter tMr
aufrufen.
Anmerkung: Um diesen Vorgang zu vereinfachen,
können Sie den Parameter tmr in die Hauptanzeige
kopieren (s. Abschnitt 7.3, Promote).
Sobald Sie den Wert für die verbleibende Zeit (tmr)
geändert haben, startet der Timer mit der angegebenen
Zeit. Tmr zählt abwärts bis Null. Sie können auch
während der Laufzeit des Timers die verbleibende Zeit
verändern, um den Timer den Erfordernissen Ihres
Prozesses anzupassen. Setzen Sie tmr auf Null, wird
der Timer gestoppt.
Anmerkung: Bei dieser Methode werden die
Parameter dwel und stat nicht geändert, d. h.
Status und Gesamtlaufzeit des Timers werden nicht
übernommen.
Ist der Timer abgelaufen, erscheint die blinkende
Meldung End auf der Anzeige. Diese bleibt solange
bestehen, bis Sie einen neuen Wert für tmr eingeben
und so den Timer neu starten.
Den Timer können Sie zurücksetzen, indem Sie die
Tasten und gleichzeitig drücken. ‘end’
erlischt.
Stellen Sie in dem Parameter tmr einen neuen Wert
ein, startet der Timer erneut.
1234
Tmr
Betätigen Sie die Tasten
oder , um die verbleibende
Zeit (0 bis 9999 Minuten)
einzustellen.
HA026270GER Ausgabe 5.0 08/07 37
Methode 2.
Mit dieser Methode können Sie einen festen Wert für
den Timer vorgeben und ihn über den Parameter
stat starten und stoppen.
Wenn Sie den Logikein-/-ausgang als EIN/AUSSchließkontakteingang
kongfigurieren, können Sie den
Parameter stat über diesen Eingang umschalten.
Öffnen Sie den Kontakt (flankengetriggert), wird der
Parameter auf run gesetzt, schließen Sie den Kontakt,
steht der Parameter auf Off.
Der Parameter wird immer auf OFF gesetzt (tmr =
0), wenn der Kontakt geschlossen ist.
1234
dwel
run
stat
sp Drücken Sie die Taste , bis Sie das
sollwert-Menü erreichen. Wählen Sie
dann mit Hilfe der Taste den
Parameter dwel
Haltezeit
Wählen Sie mit den Tasten oder
die Timerzeit (0 bis 9999
Minuten).
Timer Status
Möchten Sie den Timer starten, wählen
Sie mit den Tasten oder run.
Die eingegebene Haltzeit wird in den
Parameter tmr kopiert und der Timer
läuft. Möchten Sie den Timer
rücksetzen, wählen Sie Off.
tmr wird sofort auf Null gesetzt.
38 HA026270GER Ausgabe 5.0 08/07
11. Anpassung
Die Werkskalibrierung ist hochgenau. Zur
Kompensation von Sensor-oder Systemfehlern können
Sie der Kalibrierung einen Offset hinzufügen.
Möchten Sie über den gesamten Anzeigerbereich einen
festen Offset einstellen, wählen Sie im Eingangs-Menü
(iP) den Parameter OFS und geben Sie den Wert ein.
Sie können auch die Kurve an zwei Punkten
ausrichten. Gehen Sie bei der Zwei-Punkt-Anpassung
wie folgt vor:
• Drücken Sie die Taste , bis Sie das Eingangs-
Menü erreichen.
• Wählen Sie mit Hilfe der Taste den
Parameter CAL.P
• Geben Sie mit den Tasten oder das
Paßwort ein. Vorgabe ist 3. Pass wird
angezeigt, wenn Sie das richtige Paßwort
eingegeben haben.
• Wählen Sie mit der Taste den Parameter
CAL.
• Wählen Sie mit oder User (Fact ist
die Werkseinstellung)
• Mit der Taste können Sie nacheinander die
vier Anpassungsparameter aufrufen (s. unten).
Stellen Sie mit Hilfe der Tasten oder
den gewünschten Punkt der Anpassung und den
entsprechenden Offset ein. Die Parameter
pnt.H und OFS.H erscheinen nur, wenn Sie
ersten zwei Parameter eingestellt haben.
Eingang
Anzeigewert
Werkskalibrierung
Pnt.H
OFS.H
OFS.L
Pnt.L
Angepaßter Wert
Oberer Anpassungspunkt
Unterer Anpassungspunkt
Angepaßter Wert
Anpassung
HA026270GER Ausgabe 5.0 08/07 39
12. Selbstoptimierung
Bei einer PID Regelung wird der Ausgang durch die
Proportional-Integral- und Differentialanteile
bestimmt. Sind diese Komponenten richtig
dimensioniert, kann der Regler den Ausgang so regeln,
daß der Istwert dem Sollwert entspricht und keine
Schwingungen auftreten.
Die Einstellung der Werte ist abhängig von Ihrem
Prozeß.
Die Reglermodelle 2132 und 2116 arbeiten mit einem
‘One-shot’-Tuner. Der Regelausgang wird an- und
ausgeschaltet und simuliert somit ein Oszillation der
Stellgröße. Der Regler errechnet die Parameterwerte
aus Amplitude und Schwingungsdauer der Oszillation.
Parameter Kürzel Funktion
Proportionalband
Pb Die Bandbreite in
Anzeigeeinheiten, über welche
die Ausgangsleistung zwischen
min und max proportional
verstellt wird.
Nachstellzeit ti Die Zeitspanne, welche bei der
Sprungantwort benötigt wird,
um aufgrund einer I-Wirkung
eine gleich große
Parameter Kürzel Funktion
Stellgrößenänderung zu
erzielen, wie sie infolge des PAnteils
entsteht.
Vorhaltzeit td Die Zeitspanne, um welche die
Anstiegsantwort eines PDReglers
einen bestimmten Wert
der Stellgröße früher erreicht
als er ihn infolge seines PAnteils
allein erreichen würde.
High Cutback Hcb Die Anzahl der
Anzeigeeinheiten oberhalb des
Sollwertes, bei denen der
Regler die Ausgangsleistung
erhöht, um Unterschwinger zu
vermeiden.
Low cutback Lcb Die Anzahl der
Anzeigeeinheiten unterhalb des
Sollwertes, bei denen der
Regler die Ausgangsleistung
vermindert, um Überschwinger
zu vermeiden.
Relative
Kühlverstärkung
rEL.C Ermittelt das Proportionalband
für die Kühlung, indem es Pb
durch rEL dividiert
40 HA026270GER Ausgabe 5.0 08/07
Besteht bei voller Heiz- oder Kühlleistung Gefahr für
Ihren Prozeß, können Sie die Grenzen dieser
Leistungen verändern. Passen Sie die Parameter für
die Grenzen der Ausgangsleistung Ihrem Prozeß an
(siehe op-Menü)
Aktivieren Sie die Selbstoptimierung einmal bei
Inbetriebnahme eines Prozesses.
Sollte die Regelung instabil werden, können Sie
jederzeit eine neue Selbstoptimierung starten.
Starten Sie die Selbstoptimierung bei
Umgebungstemperatur des Prozesses, damit der Tuner
die Cutbackwerte bestimmen kann.
Einstellen der Zykluszeiten
Stellen Sie vor der Selbstoptimierung die Parameter
CYC.H (Zykluszeit Heizen) und CYC.C (Zykluszeit
Kühlen) im Ausgangsleistungs-Menü ein.
Setzen Sie die Werte für einen Logikheizausgang auf
CYC.H = 1s, für einen Relaisausgang auf CYC.H = 20s
und für einen Logikkühlausgang auf CYC.C = 5,0s.
12.1 Aktivierung der Selbstoptimierung
Die Selbstoptimierung ist nur bei ausgeschalteter
Sollwertrampe möglich (sprr = OFF)
1. Geben Sie den Arbeitssollwert ein.
2. Setzen Sie den Parameter ‘tunE’ im Atun-
Menü auf ‘on’
3. Drücken Sie gleichzeitig die Tasten und ,
damit Sie in die Hauptanzeige zurückkehren. Die
Anzeige tune gibt an, daß die Selbstoptimierung
gestartet ist (tune wechselt mit Istwert).
4. Der Regler induziert eine Oszillation in der
Temperatur, indem er die Heizung erst ein- dann
wieder ausschaltet.
5. Nach Beenden der Selbstoptimierung (2 Zyklen)
berechnet der Regler die Parameter und geht zum
normalen Regelbetrieb über.
Arbeiten Sie mit P, PD oder PI – Regelung, setzen Sie
die nicht benötigten Parameter td bzw. ti auf OFF
bevor Sie die Selbstoptimierung starten. Der Tuner
berechnet dann keine Werte für diese Parameter.
HA026270GER Ausgabe 5.0 08/07 41
12.1.1 Berechnung der Cutbackwerte
Mit Hilfe der Parameter Low und High Cutback
werden Über- bzw. Unterschwinger bei großen
Temperaturänderungen vermieden.
Haben Sie die Parameter auf Auto gesetzt, werden sie
auf das Dreifache des Proportionalbandes eingestellt.
Diese Werte werden dann während der
Selbstopmierung nicht mehr geändert.
12.2 Manuelle Optimierung
Sie können den Regler manuell optimieren. In diesem
Abschnitt wird die Optimierung nach dem Ziegler-
Nichols- Verfahren beschrieben.
Der prozeß befindet sich auf Arbeitstemperatur.
1. Setzen Sie die Parameter ti und td auf OFF.
2. Stellen Sie die Parameter Hcb und Lcb, auf Auto.
3. Der Istwert weicht vom Sollwert ab (PAbweichung).
4. Sobald sich die Temperatur stabilisiert hat,
reduzieren Sie den Wert des Proportionalbandes
Pb, bis die Temperatur anfängt zu schwingen.
Erhöhen Sie den Wert des Proportionalbandes
wieder soweit, daß die Temperatur gerade aufhört
zu schwingen. Nehmen Sie sich für diese
Einstellung viel Zeit. Notieren Sie sich den Wert
des Proportionalbandes B und die Periodendauer
T.
5. Berechnen Sie die Werte für ti, td und Pb nach der
folgenden Tabelle. Stellen Sie die berechneten
Werte im Regler ein.
Regelart Pb ti td
Proportional 2xB OFF OFF
P + I 2,2xB 0,8xT OFF
P + I + D 1,7xB 0,5xT 0,12xT
Prozeßgröße
Optimierungssollwert
Fiktiver
sollwert
Geräte mit
Heizund
Kühlausgang
Zeit
Optimierung
beendet (Heizund
Kühlausgang)
Optimierung
beendet nur
(Heizausgang)
Ausgang 0%
-100%
100%
42 HA026270GER Ausgabe 5.0 08/07
12.2.1 Einstellen der Cutbackwerte
Haben Sie die Parameter wie vorher beschrieben
eingestellt, ist der Regler für eine Geradeausregelung
optimiert.
Treten während der Startphase oder bei größeren
Temperatursprüngen unakzeptable Über- oder
Unterschwinger auf, sollten Sie die Parameter Lcb
und Hcb einstellen.
1. Setzen Sie Lcb = Hcb = 3 x PB.
2. Notieren Sie sich die werte der Über- bzw.
Unterschwinger für einen großen
Temperatursprung (siehe unten).
3. Beispiel a) Erhöhen Sie den Parameter Lcb um
den Wert des Überschwingers.
Beispiel b) Verringern Sie den Parameter Lcb um den
wert des Unterschwingers.
Beispiel (a)
Beispiel (b)
Nähert sich der Iswert dem Sollwert von oben, können
Sie Hcb nach dem gleichen Verfahren berechnen.
12.2.2 Manual Reset
Arbeiten Sie mit einem PD-Regler, ist der Parameter
ti auf OFF gesetzt und es bleibt eine Abweichung
zwischen Soll- und Iswert. In diesem Fall erscheint im
PID-Menü der parameter für den Manual reset (res).
Mit diesem Parameter wird der Ausgangsleistung ein
Offset aufgeschatet, um die Abweichung auszuregeln.
Geben Sie diesen Parameterwert manuell ein, um eine
bleibende Abweichung zu vermeiden.
Prozeßgröße
Unterschwingen
Zeit
Sollwert
Prozeßgröße
Zeit
Sollwert Uberschwingen
HA026270GER Ausgabe 5.0 08/07 43
13. Bestellcodierung
Codieren Sie den gewünschten Regler nach dem vorliegenden Schema.
Modell Funktion Versorgung Anleitung Logikein/ausgang Relais
Funktion
CC PID Regler
NF EIN/AUS
Regler
TC PID + Timer
TN EIN/AUS +
Timer
Versorgung
VH 85-264V AC
VL 20 -29V AC/DC
Anleitung
XXX Keine
Anleitung
ENG Englisch
FRA Französisch
GER Deutsch
NED Holländisch
SPA Spanisch
SWE Schwedisch
ITA Italienisch
Relais
XX Keine Ausgang
RH Heizen
RC Kühlen
FH Max Alarm 2
FL Min Alarm 2
AL Max Alarm 2 & Min
Alarm 3
DB Abweichungsband
DL Abw. Untersollwert
DH Abw. Übersollwert
NW Neuer Alarm
Logikein/ausgang
XX Keine Logikausgang
Logikausgang
LH Heizen
LC Kühlen
M1 PDSIO mode 1
FH Max alarm 1
FL Min alarm 1
DB Abweichungsband
DL Abw. Untersollwert
DH Abw. Übersollwert
NW Neuer alarm
Logikeingang
AC Alarmquittierung
KL Tastensperre
TM Timer Start/Stop
Modell
2132 1/16 DIN
2116 1/8 DIN
44 HA026270GER Ausgabe 5.0 08/07
Sensor Bereich min Bereich max Einheit Externes relais Eingangsadapter
Externes relais
XX Kein Relais
R7 Relais (über Logikausgang)
Einheit
C °C
F ° F
K Kelvin
X Linear
Adapter (0-10V)
XX Kein Adapter
V1 0-10Vdc
A1 0-20mA Widerstand (2,49Ω. 0,1%)
Sensor Bereich min & max
Thermoelement
°C
J Typ J -210 bis 1200
K Typ K -200 bis 1372
T Typ T -200 bis 400
L Typ L -200 bis 900
N Typ N -200 bis 1300
R Typ R -50 bis 1768
S Typ S -50 bis 1768
B Typ B 0 bis 1820
P Platinell II 0 bis 1369
Widerstandsthermometer
Z Pt100 -200 bis 850
Kundenspezifische Eingänge (kein Standard) OC
C Typ C -W5%Re/W26%Re (Vorgabe) 0 bis 2319
D Typ D - W3%Re/W25%Re 0 bis 2399
E Typ E -200 bis 999
1 Ni/Ni18%Mo 0 bis 1399
2 Pt20%Rh/Pt40%Rh 0 bis 1870
3 W/W26%Re (Engelhard) 0 bis 2000
4 W/W26%Re (Hoskins) 0 bis 2010
5 W5%Re/W26%Re (Engelhard) 10 bis 2300
6 W5%Re/W26%Re(Bucose) 0 bis 2000
7 Pt10%Rh/Pt40%/Rh 200 bis 1800
8 Exegen K80 I.R. Pyrometer -45 bis 650
Linear
M -9.99 bis +80mV
Y 0 bis 20mA
A 4 bis 20mA
V 0 bis 10Vdc
-1999 bis 9999
HA026270GER Ausgabe 5.0 08/07 45
14. Technische Daten
Schutzart IP65 (EN 60529), oder 4X (NEMA 250)
Umgebungstemperatur Betrieb: 0 bis 55oC. Sorgen Sie für genügend Luftzirkulation; Lagerung: -30oC bis +75oC.
Relative Feuchte 5 bis 95%, nicht kondensierend
Umgebung Die Geräte sind nicht geeignet für den Gebrauch in explosiver oder korrosiver Umgebung; alle
Angaben beziehen sich auf Einsatzbereich unter 2000m NN
Elektrische Voraussetzungen
Netzspannung 100 bis 240Vac -15%, +10%, 48-62Hz, 5Watts max
Kleinspannung 24VDC/AC + 20%. DC bis 62Hz, 5Watts
Relaisausgang (isoliert) Max: 264VAC, 2A ohm’sch;. Min: 12VDC, 100mA
Lebensdauer: Mech: 107 Schaltungen: Elektr: 5 x106 Schaltungen
Verdrahtung Der Kabelquerschnitt darf 0,5mm2 (16AWG) nicht unterschreiten.
Überstromschutz Verwenden Sie unabhängige 2A Sicherungen für Versorgung und Relais, z. B. EN60127 (typ T)
Logikein-und-ausgang 9V bei 12mA, nicht isoliert; der Digitaleingang ist nicht vom Sensoreingang getrennt
Elektrische Sicherheit (nach EN 61010)
Überspannungstransienten Überspannungstransienten der Netzspannung an allen Spannungsversorgungen zum Gerät
maximal 2,5kV
Verschmutzungsgrad 2 Leitend Verschmutzungen dürfen nicht in das Gerät gelangen
Isolation Alle isolierten Ein- und Ausgänge sind durch eine verstärkte Isolierung galvanisch getrennt
Vergleichsstelle >30 bis 1, interne Vergleichsstelle.
Überspannungskategorie Kategorie II oder CAT II
46 HA026270GER Ausgabe 5.0 08/07
15. Informationen zu Sicherheit und
EMV
Dieser Regler wurde in Großbritannien von Eurotherm
Ltd hergestellt.
Bitte lesen Sie dieses Kapitel, bevor Sie den Regler
installieren.
Der Regler ist für industrielle Anwendungen im
Bereich der Temperaturregelung vorgesehen und
entspricht den Europäischen Richtlinien für Sicherheit
und EMV. Andere Anwendungen oder
Nichtbeachtung der Anweisungen in dieser
Bedienungsanleitung kann die Sicherheit des Reglers
beeinträchtigen. Es liegt in der Verantwortlichkeit des
Inbetriebnehmers, diese Richtlinien bei der Installation
des Geräts einzuhalten.
15.1 Allgemein
Die Informationen in dieser Anleitung können ohne
besondere Hinweise geändert werden. Trotz aller
Bemühungen für die Richtigkeit der Angaben kann der
Lieferant nicht für in der Anleitung enthaltene Fehler
verantwortlich gemacht werden.
15.1.1 Sicherheit
Dieses Gerät entspricht der Europäischen
Niederspannungsrichtlinie 73/23/EWG, ergänzt durch
93/68/EWG, unter Anwendung des
Sicherheitsstandards EN 61010.
15.1.2 Elektromagnetische Verträglichkeit
Dieser Regler ist konform zu der EMV Richtlinie
89/336/EWG und den erforderlichen
Schutzanforderungen. Die Konformität ist durch eine
Drittstelle geprüft und die technischen Unterlagen sind
dort abgelegt. Das Gerät ist für Anwendungen im
Industriebereich nach EN 61326 vorgesehen.
HA026270GER Ausgabe 5.0 08/07 47
15.1.3 Auspacken und Lagerung
Die Verpackung sollte ein Gerät in einem Gehäuse,
zwei Halteklammern und eine Bedienungsanleitung
enthalten. Geräte für bestimmte Bereiche benötigen
zusätzlich einen Eingangsadapter.
Ist die Verpackung beschädigt, sollten Sie das Gerät
nicht einbauen und Kontakt mit der nächsten
Eurotherm Niederlassung aufnehmen. Möchten Sie
das Gerät vor der Benutzung lagern, schützen Sie es
vor Feuchtigkeit und Verschmutzungen und halten Sie
die Lagertemperaturen von –10 oC bis +70 oC ein.
15.2 Service und Reparatur
Dieses Gerät ist wartungsfrei.
Sollte das Gerät einen Fehler aufweisen, kontaktieren
Sie bitte die nächste Eurotherm Niederlassung.
15.2.1 Achtung: Geladene Kondensatoren
Bevor Sie den Regler aus dem Gehäuse entfernen,
nehmen Sie das Gerät vom Netz und warten Sie etwa 2
Minuten, damit sich Kondensatoren entladen können.
Es ist sinnvoll, den Regler zum Teil aus dem Gehäuse
zu ziehen und dann zu warten, bis Sie ihn ganz aus
dem Gehäuse entfernen. Halten Sie diese Zeit nicht
ein, können Kondensatoren mit gefährlicher Spannung
geladen sein. Vermeiden Sie auf jeden Fall jede
Berührung der Elektronik, wenn Sie das Gerät aus dem
Gehäuse entfernen.
15.2.2 Elektrostatische Entladung
Haben Sie den Regler aus dem Gehäuse entfernt,
können einige der freiliegenden Bauteile durch
elektrostatische Entladungen beschädigt werden.
Beachten Sie deshalb alle Vorsichtsmaßnahmen
bezüglich statischer Entladungen.
15.2.3 Reinigung
Verwenden Sie für die Reinigung der Geräteaufkleber
kein Wasser oder auf Wasser basierende
Reinigungsmittel sondern Isopropyl Alkohol. Die
Oberfläche der Geräte können Sie mit einer milden
Seifenlösung reinigen.
48 HA026270GER Ausgabe 5.0 08/07
15.3 Installation Sicherheitshinweise
15.3.1 Sicherheits Symbole
Folgende Symbole können am Gerät angebracht sein:
! Achtung (siehe Dokumentation)
15.3.2 Personal
Lassen Sie die Installation dieses Geräts nur von
qualifiziertem Personal durchführen.
15.3.3 Berührung
Bauen Sie das System zum Schutz vor Berührung in
ein Gehäuse ein.
15.3.4 Achtung: Fühler unter Spannung
Der Regler ist so konstruiert, dass der
Temperaturfühler direkt mit einem elektrischen
Heizelement verbunden werden kann. Es liegt in Ihrer
Verantwortung dafür zu sorgen, dass Servicepersonal
nicht an unter Spannung stehende Elemente gelangen
kann. Ist der Fühler mit dem Heizelement verbunden,
müssen alle Leitungen, Anschlüsse und Schalter, die
mit dem Fühler verbunden sind, für 240 V AC CATII
ausgestattet sein.
Der Logik EA ist nicht von den PV Eingängen isoliert.
15.3.5 Verdrahtung
Die Verdrahtung muss korrekt, entsprechend den
Angaben in dieser Bedienungsanleitung und den
jeweils gültigen Vorschriften, erfolgen. Achten Sie
besonders darauf, dass die AC Spannungsversorgung
nicht mit dem Sensoreingang oder anderen
Niederspannungsein- oder -ausgängen verbunden wird.
Verwenden Sie Kupferleitung (außer für
Thermoelementanschluss) und achten Sie darauf, dass
alle Zuleitungen und Anschlussklemmen für die
entsprechende Stromstärke dimensioniert sind.
Weiterhin sind alle Anschlüsse nach den gültigen
VDE-Vorschriften bzw. den jeweiligen
Landesvorschriften vorzunehmen.
15.3.6 Isolation
Die Installation muss einen Trennschalter oder einen
Leistungsschalter beinhalten. Bauen Sie diesen
Schalter in der Nähe des Systems und gut erreichbar
für den Bediener ein. Kennzeichnen Sie den Schalter
als trennende Einheit.
HA026270GER Ausgabe 5.0 08/07 49
15.3.7 Überstromschutz
Sichern Sie die DC Spannungsversorgung des Reglers
mit einer Sicherung. Das schützt die Regler-Platinen
vor Überstrom.
15.3.8 Maximalspannungen
Die maximal anliegende Spannung der folgenden
Klemmen muss weniger als 264 V AC betragen:
• Relaisausgang zu Logik-, DC oder
Fühlerverbindungen;
• jede Verbindung gegen Erde.
Schließen Sie den Regler nicht an Drehstromnetze
ohne geerdeten Mittelpunkt an. Im Falle eines Fehlers
kann es bei dieser Versorgung zu Spannungen über
264 V AC kommen. Das Gerät kann dadurch zerstört
werden.
15.3.9 Umgebung
Leitende Verschmutzungen dürfen nicht in den
Schaltschrank gelangen. Um eine geeignete
Umgebungsluft zu erreichen, bauen Sie einen Luftfilter
in den Lufteintritt des Schaltschranks ein. Sollte der
Regler in kondensierender Umgebung stehen (niedrige
Temperaturen), bauen Sie eine thermostatgeregelte
Heizung in den Schaltschrank ein.
Dieses Produkt entspricht der Norm BS EN61010
Überspannungskategorie II, Verschmutzungsgrad 2.
Diese sind wie folgt definiert:
15.3.10 Überspannungskategorie II
Nennspannung: 230 V. Vorzugswerte von Steh-
Stoßspannungen für Überspannungskategorie 2: 2500
V
15.3.10.1 Verschmutzungsgrad 2
Übliche, nicht leitfähige Verschmutzung; gelegentlich
muss mit vorübergehender Leitfähigkeit durch
Betauung gerechnet werden.
15.3.11 Erdung des Fühlerschirms
In manchen Anwendungen wird der Sensor bei
laufendem System gewechselt. In diesem Fall sollten
Sie als zusätzlichen Schutz vor Stromschlag den
Schirm des Temperatursensors erden. Verbinden Sie
den Schirm nicht mit dem Maschinengehäuse.
50 HA026270GER Ausgabe 5.0 08/07
15.3.12 Anlagen- und Personensicherheit
Beim Entwurf eines Regelsystems sollten Sie sich
auch über die Folgen bei Fehlfunktionen Gedanken
machen. Bei einem Temperatur-Regelsystem besteht
die Gefahr einer ständig laufenden Heizung. Das kann
zu Personen- und Anlagenschäden führen.
Gründe für eine fehlerhafte Heizung können sein:
• Beschädigung des Sensors durch den Prozess
• Die Verdrahtung des Thermoelementes wird
kurzgeschlossen
• Reglerausfall in der Heizperiode
• Eine externe Klappe oder Schütz ist in
Heizposition blockiert
• Der Reglersollwert ist zu hoch.
Schützen Sie sich und die Anlage durch eine
zusätzliche Temperatur-Schutzeinheit. Diese sollte
einen unabhängigen Temperaturfühler und ein Schütz
besitzen, der den Heizkreis abschalten kann.
Anmerkung: Das Alarmrelais im Regler dient nicht
zum Schutz der Anlage, sondern nur zum Erkennen
und Anzeigen der Alarme.
15.4 EMV Installationshinweise
Um sicherzustellen, dass die EMV-Anforderungen
eingehalten werden, treffen Sie folgende Maßnahmen:
• Stellen Sie sicher, dass die Installation gemäß den
"Eurotherm EMV-Installationshinweisen",
Bestellnummer
HA025464, durchgeführt wird.
• Bei Relaisausgängen müssen Sie eventuell einen
geeigneten Filter einsetzen, um die
Störaussendung zu unterdrücken. Bei typischen
Anwendungen empfehlen wir Schaffner FN321
oder FN612. Bitte beachten Sie, dass die
Anforderungen an die Filter jedoch von der
verwendeten Lastart abhängen.
• Verwenden Sie den Regler in einem
Tischgehäuse, sind unter Umständen die
Anforderungen der Fachgrundnorm EN 50081-1
(Wohn-, Geschäft- und Gewerbebereich) gültig.
Bauen Sie in diesem Fall einen passenden Filter
in das Gehäuse ein. Wir empfehlen Schaffner
FN321 und FN612.
HA026270GER Ausgabe 5.0 08/07 51
15.4.1 Leitungsführung
Um die Aufnahme von elektrischem Rauschen zu
minimieren, verlegen Sie die Leitungen von Logikund
Stetigausgang und Sensoreingang weitab von
Netzspannungsleitungen. Ist dies nicht möglich,
verwenden Sie bitte abgeschirmte Kabel. Die
Abschirmung muss an einem Ende geerdet sein.
Achten Sie darauf, die Leitungslänge so kurz wie
möglich zu halten.
Führt die Signalverdrahtung gefährliche
Spannungswerte (oder kann unter Fehlerbedingungen
gefährliche Spannungswerte führen), ist eine doppelte
Isolierung notwendig.
* Eine vollständige Erklärung der 'gefährlichen
Spannung' finden Sie unter 'Hazardous Live' in der
Norm BS EN61010. Zusammengefasst besagt diese,
dass im Normabetrieb Spannungswerte über 30 Veff
(42,2 V Spitze) oder über 60 V DC als gefährlich
eingestuft werden.
52 HA026270GER Ausgabe 5.0 08/07
16. RoHS
Product group 2100
Table listing restricted substances
Chinese
产
2100 铅镉铬溴联苯溴苯醚
线组X O X O O O
属O O O O O O
显X O O O O O
块X O X O O O
O
X
English
Product
2100 Pb Hg Cd Cr(VI) PBB PBDE
PCBA X O X O O O
Enclosure O O O O O O
Display X O O O O O
Modules X O X O O O
O
X
Approval
Name: Position: Signature: Date:
Martin Greenhalgh Quality Manager
IA029470U450 (CN23172) Issue 1 Feb 07
Indicates that this toxic or hazardous substance contained in at least one of the homogeneous
materials used for this part is above the limit requirement in SJ/T11363-2006.
该质该质SJ/T11363-2006
标规
Toxic and hazardous substances and elements
Indicates that this toxic or hazardous substance contained in all of the homogeneous materials for
this part is below the limit requirement in SJ/T11363-2006.
Restricted Materials Table
Restriction of Hazardous Substances (RoHS)
览
质
该质该质SJ/T11363-2006
标规
AUSTRALIA Sydney
Eurotherm Pty. Ltd.
Telephone (+61 2) 9838 0099
Fax (+61 2) 9838 9288
E-mail info.au@eurotherm.com
AUSTRIA Vienna
Eurotherm GmbH
Telephone (+43 1) 7987601
Fax (+43 1) 7987605
E-mail info.at@eurotherm.com
BELGIUM & LUXEMBURG Moha
Eurotherm S.A/N.V.
Telephone (+32) 85 274080
Fax (+32 ) 85 274081
E-mail info.be@eurotherm.com
BRAZIL Campinas-SP
Eurotherm Ltda.
Telephone (+5519) 3707 5333
Fax (+5519) 3707 5345
E-mail info.br@eurotherm.com
DENMARK Copenhagen
Eurotherm Danmark AS
Telephone (+45 70) 234670
Fax (+45 70) 234660
E-mail info.dk@eurotherm.com
FINLAND Abo
Eurotherm Finland
Telephone (+358) 22506030
Fax (+358) 22503201
E-mail info.fi@eurotherm.com
FRANCE Lyon
Eurotherm Automation SA
Telephone (+33 478) 664500
Fax (+33 478) 352490
E-mail info.fr@eurotherm.com
GERMANY Limburg
Eurotherm Deutschland GmbH
Telephone (+49 6431) 2980
Fax (+49 6431) 298119
E-mail info.de@eurotherm.com
HONG KONG & CHINA
Eurotherm Limited North Point
Telephone (+85 2) 28733826
Fax (+85 2) 28700148
E-mail info.hk@eurotherm.com
Guangzhou Office
Telephone (+86 20) 8755 5099
Fax (+86 20) 8755 5831
E-mail info.cn@eurotherm.com
Beijing Office
Telephone (+86 10) 6567 8506
Fax (+86 10) 6567 8509
E-mail info.cn@eurotherm.com
Shanghai Office
Telephone (+86 21) 6145 1188
Fax (+86 21) 6145 1187
E-mail info.cn@eurotherm.com
International Sales and Service
http://www.eurotherm.co.uk
HA026270EFG/5 CN23704
INDIA Chennai
Eurotherm India Limited
Telephone (+9144) 24961129
Fax (+9144) 24961831
E-mail info.in@eurotherm.com
IRELAND Dublin
Eurotherm Ireland Limited
Telephone (+353 1) 469 1800
Fax (+353 1) 469 1300
E-mail info.ie@eurotherm.com
ITALY Como
Eurotherm S.r.l
Telephone (+39 31) 975111
Fax (+39 31) 977512
E-mail info.it@eurotherm.com
KOREA Seoul
Eurotherm Korea Limited
Telephone (+82 31) 273 8507
Fax (+82 31) 273 8508
E-mail info.kr@eurotherm.com
NETHERLANDS Alphen a/d Rijn
Eurotherm B.V.
Telephone (+31 172) 411752
Fax (+31 172) 417260
E-mail info.nl@eurotherm.com
NORWAY Oslo
Eurotherm A/S
Telephone (+47 67) 592170
Fax (+47 67) 118301
E-mail info.no@eurotherm.com
POLAND Katowice
Eurotherm A/S
Telephone (+48 32) 2185100
Fax (+48 32) 2177171
E-mail info.pl@eurotherm.com
SPAIN Madrid
Eurotherm España SA
Telephone (+34 91) 6616001
Fax (+34 91) 6619093
E-mail info.es@eurotherm.com
SWEDEN Malmo
Eurotherm AB
Telephone (+46 40) 384500
Fax (+46 40) 384545
E-mail info.se@eurotherm.com
SWITZERLAND Wollerau
Eurotherm Produkte (Schweiz) AG
Telephone (+41 44) 787 1040
Fax (+41 44) 787 1044
E-mail info.ch@eurotherm.com
UNITED KINGDOM Worthing
Eurotherm Limited
Telephone (+44 1903) 268500
Fax (+44 1903) 265982
E-mail info.uk@eurotherm.com
U.S.A Leesburg VA
Eurotherm Inc.
Telephone (+1 703) 443 0000
Fax (+1 703) 669 1300
E-mail info.us@eurotherm.com
ED52
© Copyright Eurotherm Limited 2007
All rights are strictly reserved. No part of this document may be reproduced, modified, or transmitted in
any form by any means, nor may it be stored in a retrieval system other than for the purpose to act as
an aid in operating the equipment to which the document relates, without the prior written permission
of Eurotherm limited.
Eurotherm Limited pursues a policy of continuous development and product improvement. The specifications
in this document may therefore be changed without notice. The information in this document is given
in good faith, but is intended for guidance only. Eurotherm Limited will accept no responsibility for any
losses arising from errors in this document.
BK889B PONT DE MESURE RLC DE TABLE AVEC INTERFACE USB
MANUEL D’UTILISATION
RÉSUMÉ DES RÈGLES DE SÉCURITÉ
GÉNÉRALITÉS – Les informations générales de sécurité données ici sont valables à la
fois pour le personnel qui utilise l’appareil et pour le personnel de
maintenance.
TERMES – Dans ce manuel, l’indication ATTENTION identifie les conditions ou
pratiques qui peuvent occasionner des dommages à l’équipement ou
autres biens, et l’indication DANGER identifie les conditions ou
pratiques qui peuvent occasionner des blessures ou présenter un risque
vital pour le personnel. Ne pas passer outre les indications ATTENTION
et DANGER avant d’avoir bien compris et rempli les conditions
indiquées.
FONCTIONNEMENT – Avant la mise sous tension, respecter les instructions d’installation et
d’utilisation.
MISE À LA TERRE – Cet appareil est mis à la terre par le conducteur de terre du câble
d’alimentation. Ne pas détériorer cette connexion. En cas d’absence de
protection par mise à la terre, toutes les parties conductrices accessibles (y
compris les boutons et commandes) peuvent provoquer un choc
électrique.
ADDITIONNELLEMENT – Toute opération de réglage, maintenance ou réparation ne doit être
effectuée que par un personnel qualifié.
– Pour éviter les risques de dommages corporels, ne pas utiliser cet
appareil avec le couvercle ou les panneaux démontés.
– Utiliser uniquement des fusibles du type spécifié dans la liste des
composants. Ne jamais utiliser des fusibles réparés ni court-circuiter les
porte fusibles.
– N’effectuer aucune modification non-autorisée de l’instrument.
– Ne pas utiliser l’instrument en présence de gaz inflammables ou en
atmosphère explosive.
– Déconnecter le câble d’alimentation avant de démonter les panneaux de
protection, de souder ou de remplacer des composants.
– Ne pas entreprendre de manipulations ou réglages internes hors de la
présence d’une personne capable de porter les premiers secours et de
pratiquer une réanimation.
Sommaire
SOMMAIRE......................................................................................................................................................................................... 3
1. INTRODUCTION ...................................................................................................................................................................... 3
1.1 GENERAL................................................................................................................................................................................................................................3
1.2 PARAMÈTRES D’IMPÉDANCE .................................................................................................................................................................................................4
1.3 SPÉCIFICATIONS .....................................................................................................................................................................................................................5
1.4 ACCESSOIRES .......................................................................................................................................................................................................................12
2. UTILISATION.......................................................................................................................................................................... 13
2.1 DESCRIPTION........................................................................................................................................................................................................................13
2.2 MESURES..............................................................................................................................................................................................................................14
2.2.1 Calibration ouverte/fermée ..........................................................................................................................................................................................................................................14
2.2.2 Mode Relatif..................................................................................................................................................................................................................................................................14
2.2.3 Range Hold (maintien de la gamme) ...........................................................................................................................................................................................................................14
2.2.4 Mesure de la résistance continue.................................................................................................................................................................................................................................14
2.2.5 Mesure de l’impédance AC...........................................................................................................................................................................................................................................15
2.2.6 Mesure de la capacité ...................................................................................................................................................................................................................................................15
2.2.7 Mesure de l’inductance.................................................................................................................................................................................................................................................15
3. MODES................................................................................................................................................................................... 15
3.1 SYNTAXE DE LA COMMANDE DU MODE REMOTE MODE....................................................................................................................................................19
3.2 COMMANDES DU MODE REMOTE........................................................................................................................................................................................19
4. APPLICATION ........................................................................................................................................................................ 25
4.1 CONNEXION DES FILS DE MESURE .......................................................................................................................................................................................25
4.2 COMPENSATION OUVERTE/FERMÉE.....................................................................................................................................................................................27
4.3 CHOIX DU MODE SÉRIE OU PARALLÈLE ...............................................................................................................................................................................28
3
1. Introduction
1.1Général
Le pont de mesure RLC de table avec interface USB BK889B est un instrument très précis utilisé pour mesurer les
inductances, capacités et résistances avec une précision de base de 0.1%. Grâce à ses fonctions intégrées de mesures
de tension/courant AC/DC et de vérifications de la continuité et de test diode, le BK889B ne permet pas seulement de
comprendre les caractéristiques des composants électroniques, c’est aussi un outil essentiel pour tout usage en
laboratoire.
Le BK889B est par défaut en mode gammes automatiques. Cependant, il peut aussi être utilisé en gammes
automatiques et manuelles en appuyant sur la touche Range Hold. Lorsque le mode mesure LCR est sélectionné, l’une
des fréquences de test (100Hz, 120Hz, 1KHz, 10KHz, 100KHz ou 200KHz) peut être sélectionnée sur toutes les
gammes applicables. L’une des tensions de test (50mVeff, 0.25Veff, 1Veff ou 1VDC) (DCR uniquement) peut aussi être
sélectionnée sur toutes les gammes applicables. Le double affichage permet d’effectuer des mesures en simultané.
Lorsque le mode mesure tension/courant DC/AC ou le mode Vérification de la continuité de la diode/audible est
sélectionné, seul l’affichage secondaire sera utilisé pour afficher la mesure.
Le BK889B peut effectuer virtuellement toutes les fonctions des ponts RLC de table. Grâce à sa précision de base de
0.1%, l’instrument économique peut remplacer un pont plus cher dans divers cas. De plus, avec une précision de base
de 0.4% dans les mesures de tension et de courant, le BK889B possède les mêmes fonctions qu’un multimètre
numérique, vous disposez ainsi de plusieurs instruments en un.
Le BK889B peut servir à vérifier les valeurs ESR des condensateurs, régler et/ou sélectionner des composants, mesurer
des composants banalisés et inconnus, puis mesurer la capacité, l’inductance ou la résistance des câbles, des
commutateurs, des circuits imprimés, etc.
Les caractéristiques principales sont les suivantes :
1. Mesures de la tension :
· AC : True RMS, jusqu’à 600Veff @ 40~1 kHz
· DC : jusqu’à 600V
· Impédance d’entrée : 1M-Ohm
2. Mesures du courant :
· AC : True RMS, jusqu’à 2Aeff @ 40~1 kHz
· DC : jusqu’à 2A
· Shunt du courant : 0.1 Ohm@>20mA ; 10Ohm @<20mA
3. Vérifications continuité Diode/Audible :
· Tension en circuit ouvert : 5Vdc
· Courant de court-circuit : 2.5mA
· Buzzer activé : < 25
· Buzzer désactivé : > 50
4. Mesures LCR :
· Conditions de test
· Fréquence : 100Hz/120Hz/ 1KHz/ 100KHz / 200KHz
· Niveau : 1Veff/0.25Veff/50mVeff/1VDC (DCR uniquement)
· Paramètres de mesure : Z, Ls, Lp, Cs, Cp, DCR, ESR, D, Q et θ
· Précision de base : 0.1%
· Double affichage LCD
· Gamme automatique ou gamme Hold
· Interface USB
· Calibration ouverte/fermée
· Affichage principal des paramètres :
· Z : Impédance alternative
· DCR : Résistance continue
· Ls : Inductance série
· Lp : Inductance parallèle
· Cs : Capacité série
· Cp : Capacité parallèle
· Affichage secondaire
· θ: Angle de phase
· ESR : Résistance série équivalente
· D : Facteur de dissipation
· Q : Facteur de qualité
· Combinaisons d’affichage :
· Mode Série : Z-θ, Cs – Q, Cs – ESR, Ls – D, Ls – Q, Ls – ESR
Mode Parallèle : Cp – D, Cp – Q, Lp – D, Lp – Q
4
1.2 Paramètres d’impédance
A cause des différents signaux de test sur l’instrument de mesure d’impédance, il y a l’impédance DC et l’impédance AC. Le
multimètre numérique classique peut uniquement mesurer l'impédance DC mais le BK889B peut mesurer les deux. Il est très
important de comprendre les paramètres d’impédance des composants électroniques.
Lorsque nous analysons l’impédance avec le plan de mesure d’impédance (figure 1.1), elle peut être visualisée par un
élément réel sur l’axe X et un élément imaginaire sur l’axe Y. Le plan de mesure d’impédance peut aussi être perçu comme
des coordonnées polaires. Le Z représente la magnitude et le θ est la phase de l’impédance.
( )
( )
( )
( )
(Ohm )
Reactance
Resistance
Impedance
W =
=
=
=
= = -
= = +
= + = Ð W
S
S
X
R
Z
Rs
X s
X s Z Sin Tan
Rs Z Cos Z Rs X s
Z Rs jX s Z
1
2 2
q q
q
q
Il existe deux types de réactance : Inductive (XL) et Capacitive (XC) pouvant être définies de la manière
suivante :
Il y a aussi le facteur de Qualité (Q) et le facteur de Dissipation (D) qui doivent être traités. Le facteur Qualité
sert de mesure de la pureté de la réactance pour le composant. En réalité, il y a toujours une résistance
associée qui dissipe la puissance en augmentant la quantité d’énergie qui peut être récupérée. Le facteur
Qualité peut être défini comme le rapport énergie stockée (réactance)/énergie dissipée (résistance). Q sert
généralement pour les inductances et D pour les condensateurs.
X s
R s
Z (R s , X s )
Z
q
Axe imaginaire
Axe réel
Figure 1.1
C fC
XC
X L L fL
w p
w p
2
1 1
2
= =
= =
C p R p
L p
R p
X p
R p
G
B
Rs C s Rs
Ls
Rs
X s
D
Q
w
w
w
w
d
= = =
=
= = =
= =
1
tan
1 1
L = Inductance (H)
C = Capacité (F)
f = Fréquence (Hz)
5
Il existe deux types de circuits : le mode série et le mode parallèle. Regarder la figure 1.2 pour découvrir la
relation des modes série et parallèle.
1.3 Spécifications
Gamme de mesure:
Paramètre Gamme
Z 0.000 W à 500.0 MW
L 0.030 μH à 9999 H
C 0.003 pF à 80.00 mF
DCR 0.000 W à 500.0 MW
ESR 0.000 W à 9999 W
D 0.000 à 9999
Q 0.000 à 9999
θ -180.0 ° à 180.0 °
Mesure de tension/courant
V 0.0 mV à +/- 600 V
A 0.000 mA à +/- 2 A
Précision (Ae):
1. Mesure de la tension continue :
Gamme : 2V, 20V, 200V et 600V
Résolution : 1mV, 10mV, 100mV et 1V
Précision :+/- (0.4% + 3 digits)
Impédance d’entrée : 1M-Ohm
2. Mesure de la tension alternative (True RMS)
Gamme : 2V, 20V, 200V et 600V
Résolution : 1mV, 10mV, 100mV et 1V
Précision :+/- (0.8% + 5 digits)
Impédance d’entrée : 1M-Ohm
3. Mesure du courant continu :
Gamme : 2mA, 20mA, 200mA et 2000mA
Résolution : 1μA, 10μA, 100μA et 1μA
Précision :+/- (0.4% + 3 digits)
Shunt du courant : 0.1 Ohm @ >20mA, 10 Ohm @ £20mA
4. Mesure du courant alternatif (True RMS)
Gamme : 2mA, 20mA, 200mA et 2000mA
Résolution : 1μA, 10μA, 100μA et 1μA
Précision :+/- (0.8% + 5 digits)
Shunt du courant : 0.1 Ohm @ >20mA, 10 Ohm @ £20mA
Figure 1.2
Les composants réels et imaginaires sont
en série
Z = Rs + jXs
Rs jXs
Les composants réels et imaginaires sont en
parallèle
G=1/Rp
jB=1/jXp
Y =G+ jB
jXp
Rp
jXP
1
RP
1
Y = +
6
Note : La précision des mesures de tension/courant DC/AC s’applique uniquement sur 5%-10% de la gamme
5. Mesure LCR:
Précision Z (Ae) :
|Zx|
Freq.
20M ~
10M
(W)
10M ~
1M
(W)
1M ~
100K
(W)
100K ~
10K
(W)
10K ~
1K
(W)
1K ~
100
(W)
100 ~ 1
(W)
1 ~ 0.1
(W)
DCR 0.1% ±1 0.2% ±1
100Hz
120Hz
1KHz
2% ±1
1% ±1
10KHz 5% ±1
2% ±1
0.5% ±1 0.2% ±1 0.5% ±1 1% ±1
100KHz
200KHz
NA 5% ±1 2% ±1 1% ±1 0.4% ±1 1% ±1 2% ±1 5% ±1
Note:
1. La précision s’applique lorsque le niveau de test est à 1Veff
2. Ae multiplie 1,25 lorsque le niveau de test est à 250mVeff
3. Ae multiplie 1,50 lorsque le niveau de test est à 50mVeff
4. Lorsque l’on mesure L et C, multiplier Ae par 1+Dx2 si Dx>0.1
: Ae s’applique uniquement lorsque le niveau de test est à 1Vrms.
Précision C :
79.57pF
|
159.1pF
159.1pF
|
1.591nF
1.591nF
|
15.91nF
15.91nF
|
159.1uF
159.1nF
|
1.591uF
1.591uF
|
15.91uF
15.91uF
|
1591uF
1591uF
|
100Hz 15.91mF
2% ± 1
1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1
66.31pF
|
132.6pF
132.6pF
|
1.326nF
1.326nF
|
13.26nF
13.26nF
|
132.6nF
132.6nF
|
1.326uF
1.326uF
|
13.26uF
13.26uF
|
1326uF
1326uF
|
120Hz 13.26mF
2% ± 1
1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1
7.957pF
|
15.91pF
15.91pF
|
159.1pF
159.1pF
|
1.591nF
1.591nF
|
15.91nF
15.91nF
|
159.1nF
159.1nF
|
1.591uF
1.591uF
|
159.1uF
159.1uF
|
1KHz 1.591mF
2% ± 1
1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1
10KHz
0.795pF
|
1.591pF
1.591pF
|
15.91pF
15.91pF
|
159.1pF
159.1pF
|
1.591nF
1.591nF
|
15.91nF
15.91nF
|
159.1nF
159.1nF
|
15.91uF
15.91uF
|
159.1uF
7
5% ± 1
2% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1
NA 0.159pF
|
1.591pF
1.591pF
|
15.91pF
15.91pF
|
159.1pF
159.1pF
|
1.591nF
1.591nF
|
15.91nF
15.91nF
|
1.591uF
1.591uF
|
15.91uF
100KHz
NA 5% ± 1 2%± 1 1%± 1 0.4%± 1 1%± 1 2%± 1 5% ± 1
NA 0.079pF
|
0.795pF
0.795pF
|
7.957pF
7.957pF
|
79.57pF
79.57pF
|
795.7pF
795.7pF
|
7.957nF
7.957nF
|
795.7nF
795.7nF
|
7.957uF
200KHz
NA 5% ± 1 2%± 1 1%± 1 0.4%± 1 1%± 1 2%± 1 5% ± 1
Précision L:
31.83KH
|
15.91KH
15.91KH
|
1591H
1591H
|
159.1H
159.1H
|
15.91H
15.91H
|
1.591H
1.591H
|
159.1mH
159.1mH
|
1.591mH
1.591mH
|
100Hz 159.1uH
2% ± 1
1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1
26.52KH
|
13.26KH
13.26KH
|
1326H
1326H
|
132.6H
132.6H
|
13.26H
13.26H
|
1.326H
1.326H
|
132.6mH
132.6mH
|
1.326mH
1.326mH
|
120Hz 132.6uH
2% ± 1
1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1
3.183KH
|
1.591KH
1.591KH
|
159.1H
159.1H
|
15.91H
15.91H
|
1.591H
1.591H
|
159.1mH
159.1mH
|
15.91mH
15.91mH
|
159.1uH
159.1uH
|
1KHz 15.91uH
2% ± 1
1% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5%
± 1
1% ± 1
318.3H
|
159.1H
159.1H
|
15.91H
15.91H
|
1.591H
1.591H
|
159.1mH
159.1mH
|
15.91mH
15.91mH
|
1.591mH
1.591mH
|
15.91uH
15.91uH
|
10KHz 1.591uH
5% ± 1
2% ± 1 0.5% ± 1 0.2% ± 1 0.1% ± 1 0.2% ± 1 0.5% ± 1 1% ± 1
31.83H
|
15.91H
15.91H
|
1.591H
1.591H
|
159.1mH
159.1mH
|
15.91mH
15.91mH
|
1.591mH
1.591mH
|
159.1uH
159.1uH
|
1.591uH
1.591uH
|
0.159uH
100KHz
NA 5% ± 1 2%± 1 1% ± 1 0.4% ± 1 1% ± 1 2%± 1 5% ± 1
15.91H
|
7.957H
7.957H
|
795.7mH
795.7mH
|
79.57mH
79.57mH
|
7.957mH
7.957mH
|
795.7uH
795.7uH
|
79.57uH
79.57uH
|
0.795uH
0.795uH
|
0.079uH
200KHz
NA 5% ± 1 2%± 1 1% ± 1 0.4% ± 1 1% ± 1 2%± 1 5% ± 1
Précision D:
8
|Zx|
Freq.
20M ~
10M
(W)
10M ~
1M
(W)
1M ~
100K
(W)
100K ~
10K
(W)
10K ~
1K
(W)
1K ~
100
(W)
100 ~
1
(W)
1 ~ 0.1
(W)
100Hz ±0.002 ±0.002
120Hz
1KHz
±0.020
±0.010
10KHz ±0.050
±0.020
±0.005 ±0.002 ±0.005 ±0.010
100KHz
200KHz
NA ±0.050 ±0.020 ±0.010 ±0.004 ±0.010 ±0.020 ±0.050
Précision q:
|Zx|
Freq.
20M ~
10M
(W)
10M ~
1M
(W)
1M ~
100K
(W)
100K ~
10K
(W)
10K ~
1K
(W)
1K ~
100
(W)
100 ~
1
(W)
1 ~ 0.1
(W)
100Hz ±0.105 ±0.105
120Hz
1KHz
±1.046
±0.523
10KHz ±2.615
±1.046
±0.261 ±0.105 ±0.261 ±0.523
100KHz
200KHz
NA ±2.615 ±1.046 ±0.409 ±0.209 ±0.409 ±1.046 ±2.615
Précision Z:
Voir tableau 1.
Précision C:
f Cx
Zx
× × ×
=
2 p
1
CAe = Ae of C
f : Fréquence de test (Hz)
Cx : Valeur de capacité mesurée (F)
|Zx| : Valeur d’impédance mesurée ()
La précision s’applique lorsque Dx (valeur D mesurée) < 0.1
Lorsque Dx>0.1, multiplier CAe par 1 + Dx2
Exemple :
Condition de test :
Fréquence : 1KHz
Niveau : 1Veff
DUT : 100nF
Donc
9
- = W × × × ×
=
× × ×
=
1590
2 103 100 10 9
1
2
1
p
p f Cx
Zx
Lire le tableau de précision, obtenir CAe=±0.1%
Précision L:
Zx = 2 ×p × f × Lx
LAe = Ae of L
f : Fréquence de test (Hz)
Lx : Valeur d’inductance mesurée (F)
|Zx| : Valeur d’impédance mesurée ()
La précision s’applique lorsque Dx (valeur D mesurée) < 0.1
Lorsque Dx>0.1, multiplier LAe par 1 + Dx2
Exemple :
Condition de test :
Fréquence : 1KHz
Niveau : 1Veff
DUT : 1mH
Donc
= × × × - = W
= × × ×
2 10 3 10 3 6.283
2
p
Zx p f Lx
Lire le tableau de précision, obtenir LAe = ±0.5%
Précision ESR:
100
Ae
ESRAe = ±Xx ×
f Cx
Xx f Lx
× × ×
= × × × =
p
p
2
1
2
ESRAe = Ae de ESR
f :Fréquence de test (Hz)
Xx :Valeur de réactance mesurée ()
Lx :Valeur d’inductance mesurée (H)
Cx : Valeur de capacité mesurée (F)
La précision s’applique lorsque Dx (valeur D mesurée) £ 0.1
Exemple:
Condition de test :
Fréquence : 1KHz
Niveau : 1Veff
DUT : 100nF
Donc
- = W × × × ×
=
× × ×
=
1590
2 10 3 100 10 9
1
2
1
p
p f Cx
Zx
Lire le tableau de précision, obtenir
CAe=±0.1%,
10
= ± × = ±1.59W
100
Ae
ESR Ae Xx
Précision D:
100
Ae
D Ae = ±
DAe = Ae de D
La précision s’applique lorsque Dx (valeur D mesurée) £ 0.1
Lorsque Dx > 0.1, multiplier Dx par (1+Dx)
Exemple :
Condition de test :
Fréquence : 1KHz
Niveau : 1Veff
DUT : 100nF
Donc
- = W × × × ×
=
× × ×
=
1590
2 10 3 100 10 9
1
2
1
p
p f Cx
Zx
Lire le tableau de précision, obtenir
CAe=±0.1%,
0.002
100
= ± × = ± Ae
D Ae
Précision Q:
Qx De
Qx De
Ae
Q
×
= ± ×
1 m
2
QAe = Ae de Q
Qx : Valeur du facteur Qualité mesuré
De : Valeur de précision relative
La précision s’applique lorsque Qx × De < 1
Exemple :
Condition de test :
Fréquence : 1KHz
Niveau : 1Veff
DUT : 1mH
Donc
= × × × - = W
= × × ×
2 10 3 10 3 6.283
2
p
Zx p f Lx
Lire le tableau de précision, obtenir
LAe=±0.5%,
0.005
100
= ± × = ± Ae
De
Si Qx = 20
Donc
11
1 0.1
2
1
2
m
m
= ±
×
= ± ×
Qx De
Qx De
Q Ae
Précision θ:
100
Ae
π
180 = × Ae q
Exemple :
Condition de test :
Fréquence : 1KHz
Niveau : 1Veff
DUT : 100nF
Donc
- = W × × × ×
=
× × ×
=
1590
2 10 3 100 10 9
1
2
1
p
p f Cx
Zx
Lire le tableau de précision, obtenir
ZAe=±0.1%,
0 .057 deg
100
180 0 .1
100
180
= ± × = ±
= ± ×
p
p
q Ae
Ae
Signal de test :
Précision du niveau : + 10%
Précision de la fréquence : 0.1%
Impédance de sortie : 100W ± 5%
Température : 0°C à 40°C (Utilisation)
-20°C à 70°C (Stockage)
Humidité relative : Jusqu’à 85%
Puissance AC : 110/220V, 60/50Hz
Dimensions : 300mm x 220mm x 150mm
Masse : 4500g
Attention
Lorsque le mode de mesure RLC est sélectionné, les facteurs suivants doivent être pris en compte.
Fréquence de test : elle peut être choisie et modifiée par l’utilisateur. En général, un signal de test de 1KHz ou
plus élevé sert à mesurer les condensateurs qui sont de 0.01μF ou moins, et un signal de test de 120Hz sert
pour les condensateurs de 10 μF ou plus. Un signal de test de 1KHz ou plus sert à mesurer les inductances
utilisés dans les circuits audio et RF (fréquence radio). C’est parce que ces types d’inductances fonctionnent à
de hautes fréquences et exigent d’être mesurés à haute fréquence. En général, les inductances inférieures à
2mH devraient être mesurées à la fréquence de test de 1KHz ou plus, et les inductances supérieures à 200H
devraient être mesurées à 120Hz ou moins.
Il est recommandé de vérifier la feuille des données du composant pour déterminer la meilleure fréquence de
test.
Condensateurs chargés : Toujours décharger un condensateur avant d’effectuer des mesures car cela pourrait
endommager l’instrument.
12
Effet de D sur la précision A: diminuer la mesure D (Facteur de dissipation) est désirable. Les condensateurs
électrolytiques possèdent un facteur de dissipation élevé dû à leur perte normalement élevée. Si D (facteur de
dissipation) est trop élevé, la précision de la mesure de capacité peut se dégrader.
Il est recommandé de vérifier la feuille des données du composant pour déterminer la valeur D souhaitable du
composant.
Capacité de mesure des câbles, commutateurs ou autres éléments : mesurer la capacité des câbles
coaxiaux est très utile pour déterminer la longueur du câble. La majorité des spécifications donnant la
capacité/unité de longueur de câble, c’est pour cela que la longueur du câble peut être déterminée en mesurant
la capacité de ce câble.
Par exemple : les spécifications exigent un certain câble pour avoir une capacité de 10pF par pied. Après avoir
mesuré le câble, la valeur de capacité qui s’affiche est 1.000nF. Diviser 1000pF (1.000nF) par 10pF par pied
donne une longueur du câble d’environ 100 pieds.
Même si les spécifications sont inconnues, la capacité d’une longueur mesuré du câble (comme 10 pieds) peut
être utilisée pour déterminer la capacité/pied. Ne pas utiliser une longueur trop courte car toute erreur sur les
calculs de la longueur totale est proportionnelle.
Mesures série ou Parallèle (pour inductances) : le mode série affiche la mesure la plus précise dans tous les
cas. Le mode série équivalent est essentiel pour obtenir une mesure Q précise de faibles inductances. Là où le
risque de pertes sont plus importantes, le mode série équivalent est préférable. Cependant, il existe des cas où
le mode parallèle équivalent est le plus approprié. Pour le fonctionnement des inductances en fer (hautes
fréquences) où l’hystérésis et les courants de Foucault deviennent important, la mesure en mode parallèle
équivalent est préférable.
1.4Accessoires
· Un manuel d’utilisation
· Un cordon d’alimentation AC
· Une pince Kelvin
· Un câble de mesure pour multimètre numérique
13
2. Utilisation
2.1 Description
1. Affichage du paramètre primaire 2. Affichage du paramètre secondaire
3. Touche Fonction L/C/Z/DCR 4. Touche Fonction DCA/ACA
5. Touche Fréquence de mesure 6. Borne LCUR
7. Touche Niveau de mesure
8. Touche Range Hold (maintenir la
gamme)
9. Référence du modèle
10. Borne LPOT
11. Touche Fonction D/Q/θ/ESR 12. Borne HPOT
13. Touche Calibration ouverte 14. Touche Fonction DCV/ACV
15. Touche Relatif 16. Borne HCUR
17. Touche Calibration 18. Touche Fonction Diode/Continuité
19. Touche Fonction à distance
21. Marche/Arrêt
23. Puissance AC
25. Borne A
20. Borne COM
22. Borne V/Diode/Continuité
24. Port USB
26. Fusible 2A
14
2.2 Mesures
2.2.1 Calibration circuit ouvert/court-circuit
Le BK889B effectue des calibrations circuit ouvert/court-circuit qui permettent à l’utilisateur d’obtenir plus de
précision pour mesurer une impédance haute ou basse. Nous vous recommandons d’effectuer ce type de
calibration si le niveau ou la fréquence de test a été modifiée.
Calibration en circuit ouvert
Les bornes de mesure étant à l’état circuit ouvert, appuyer sur la touche Open puis l’écran suivant apparaît:
Cette calibration dure environ 15 secondes. Une fois la calibration terminée, le BK889B émettra un bip pour
indiquer la fin de la calibration.
Calibration en court-circuit
Pour effectuer une calibration en court-circuit, insérer un court-circuit sur les bornes de mesure. Appuyer sur
Short puis l’écran suivant s’affiche:
Cette calibration dure environ 15 secondes. Une fois la calibration terminée, le BK889B émettra un bip pour
indiquer la fin de la calibration.
2.2.2 Mode Relatif
Le mode relatif permet de trier rapidement les composants. Insérer le composant de la valeur de référence pour
lire la valeur standard. (Environ 5 secondes pour une lecture stable.) Puis appuyer sur Relative , l’affichage
principal se remettra à zéro. Retirer le composant de la valeur de référence et insérer un composant inconnu,
l’écran indiquera la valeur qui représente la différence entre la valeur de référence et la valeur inconnue.
2.2.3 Range Hold (maintien de la gamme)
Pour mettre l’appareil sur Range Hold, insérer un composant de référence sur cette gamme de mesure. (Environ
5 secondes pour une lecture stable.) Puis appuyer sur Range Hold , cela maintiendra la gamme de 0.5 à 2 fois
la gamme de mesure du courant. Lorsque l’on appuie sur Range Hold , l’écran suivant s’affiche:
2.2.4 Mesure de la résistance continue
La mesure de la résistance continue permet de mesurer la résistance d’un composant inconnu sous 1VDC.
Appuyer sur L/C/Z/DCR pour sélectionner la mesure DCR. L’écran affiche:
15
2.2.5 Mesure de l’impédance AC (Z)
La mesure de l‘impédance AC permet de mesurer le Z d’un appareil inconnu. Appuyer sur L/C/Z/DCR pour
sélectionner la mesure Z. L’écran affiche:
Le niveau et la fréquence de test peuvent être sélectionnés en appuyant sur Level et Freq.
2.2.6 Mesure de la capacité
Pour mesurer la capacité d’un composant, appuyer sur L/C/Z/DCR pour sélectionner le mode de mesure Cs
(Mode Série) ou Cp (Mode Parallèle). Si le mode série (Cs) est sélectionné, le D, Q et ESR s’affichent sur
l’afficheur secondaire. Si le mode Parallèle (Cp) est sélectionné, seuls le D et Q s’affichent sur l’afficheur
secondaire. Voici des exemples de mesures de capacité :
Le niveau et la fréquence de test peuvent être sélectionnés en appuyant sur Level et Freq.
2.2.7 Mesure de l’inductance
Appuyer sur L/C/Z/DCR pour sélectionner le mode Ls ou Lp pour mesurer l’inductance en mode série ou en
mode parallèle. Si le mode série (Ls) est sélectionné, le D, Q et ESR s’affichent sur l’afficheur secondaire. Si le
mode Parallèle (Lp) est sélectionné, seuls le D et Q s’affichent sur l’afficheur secondaire. Voici des exemples de
mesures d’inductance :
Le niveau et la fréquence de test peuvent être sélectionnés en appuyant sur Level et Freq.
3. Modes
Le BK889B possède quatre modes de fonctionnement : Normal, Binning , Remote et Remote Binning. En
appuyant sur Remote , l’utilisateur peut sélectionner l’un des 4 modes ci-dessus.
Mode Normal:
16
Le mode Normal est le mode par défaut. C’est un mode local qui fait que le BK889B est piloté par le clavier et
les résultats seront envoyés à l’afficheur et au PC équipé d’un port USB.
Mode Binning:
Le mode Binning est réservé au prochain usage (comme GPIB). Il est réglé pour fonctionner de la même
façon que le mode Normal qui reçoit des commandes depuis le clavier et qui envoie les résultats à l’afficheur
et au PC équipé d’un port USB.
Mode Remote Binning:
En mode Remote Binning, le “RMT Bin” sur l’écran s’allumera, le fonctionnement du BK889B est piloté par
un PC équipé d’un port USB ou par une borne, les résultats seront envoyés à l’afficheur local et au poste de
travail via le port USB.
Dans ce mode, toutes les touches sauf Remote sont verrouillées.
Le mode Remote Binning permet une meilleure et plus rapide utilisation les programmes d’application.
L’utilisateur peut créer un serveur ou un pilote (n’importe quel composant de logiciel peut effectuer la tâche
d’un serveur) avec l’interface Graphic, le modèle de réseau OSI, et le puissant interprète intégré à l’afficheur
Graphique du support, la connectivité du réseau, les interprétations de la commande de structure (SCPI,
IEEE488 etc.) et fera un pont entre le programme d’application de haut niveau comme VB, VISUAL C++,
EXCEL, ACCESS etc. et le BK889B. Voir la figure suivante :
Le protocole de communication entre le BK889B et un PC équipé d’un port USB se décrit de la manière
suivante :
1. Les commandes qui seront envoyées d’un PC à distance à un BK889B sont utilisées pour paramétrer la
machine sur un mode de mesure sélectionné.
La syntaxe de la commande est:
MOD current-state-code
Elle commence toujours par MOD suivi par un espace puis par le code d’état actuel. Le code d’état
actuel qui est défini dans le tableau ci-dessous fait 3 octets (24 bits), bit-23, 22, 21… bit-0, où bit-23 est le
MSB et bit-0 est le LSB.
Position du bit LCR DC/AC V/A
Bit 2 – Bit 0 (freq test) Réservé
000 100 Hz
001 120 Hz
010 1K Hz
011 10K Hz
100 100K Hz
Modèle
BK889B
Serveur:
COM, DCOM, ATL,
CONTROL,
AUTOMATION EXE
Intégrés:
Graphic interface,
Réseau OSI, et/ou
puissant Interprète ou
Analyseur
VB, VISUAL
C++, EXCEL,
ACCESS etc.
17
101 200K Hz
110 Réservé
111 Réservé
Bit 4 – Bit 3 (niveau test) Réservé
00 50 mVeff
01 250 mVeff
10 1 Veff
11 Réservé
Bit 5 Réservé
0 Défaut Défaut
1 Réservé Réservé
Bit 6
0 Relatif Relatif
1 Normal Normal
Bit 7
0 Calibration Calibration
1 Normal Normal
Bit 10 – Bit 8 Réservé
000 Lp
001 Ls
010 Cp
011 Cs
100 Z
101 DCR
110 Réservé
111 Réservé
Bit 12 – Bit 11 Réservé
00 D
01 Q
10 DEG
11 ESR
Bit 16 – Bit 13
0000 RH nH Réservé
0001 RH uH RH mV, mA
0010 RH mH RH V, A
0011 RH H Réservé
0100 RH pF
0101 RH nF
0110 RH uF
0111 RH mF
1000 RH F
1001 RH Ohm
1010 RH K-Ohm
1011 RH M-Ohm
1100 Réservé
1101
1110
1111 Gamme automatique Gamme automatique
Bit 17
0 Calibration court-circuit Calibration court-circuit
1 Calibration circuit ouvert Réservé
18
Bit 21 – Bit 18 Modes de mesure
0000 Réservé
0001 LCR
0010 DCV
0011 ACV
0100 Diode
0101 Continuité
0110 DCA
0111 ACA
Autres Réservé
Bit 23 – Bit 22 Réservé
00
01
10
11
Par exemple : si la fonction LCR, Cp en mode mesure D est sélectionné en gamme automatique en
calibration relative ouverte/fermée sont désactivés et le signal du test est à 1 Veff dans 1KHz, la
commande est la suivante :
MOD 000001111110001011010010
2. Les résultats qui seront envoyés du BK889B au PC à distance seront empaquetés dans un format de 7
octets ou de 11 octets.
Lorsque les données doubles (comme Cp avec D) seront envoyées, les données seront empaquetées
dans un format de 11 octets comme indiqué ci-dessous:
Lead_code1 : 02
Lead_code2 : 09
Data_code : mesure 8 octets; deux formats de nombre de points instables de 32 bits ; les 4 premiers
octets sont la mesure principale (Cp) et la deuxième série de 4 octets représentent la mesure secondaire
(D)
Checksum : -((02+09+data_code) && 0x00FF)
02 09 M-B0 M-B1 M-B2 M-B3 S-B0 S-B1 S-B2 S-B3 CS
Où M-Bx et S-Bx sont la mesure principale et secondaire.
Lorsque seule la mesure principale (comme DCR) est envoyée, les données sont empaquetées dans un
format de 7 octets décrits ci-dessous:
Lead_code1 : 02
Lead_code2 : 03
Data_code : mesure 4 octets
Checksum : -((02+03+data_code) && 0x00FF)
02 03 M-B0 M-B1 M-B2 M-B3 CS
Lorsque seule la mesure secondaire (comme DCV) est envoyée, les données sont empaquetées dans un
format de 11 octets décrits ci-dessous:
Lead_code1 : 02
Lead_code2 : 09
Data_code : mesure 8 octets
Checksum : -((02+09+data_code) && 0x00FF)
02 09 S-B0 S-B1 S-B2 S-B3 S-B0 S-B1 S-B2 S-B3 CS
19
Mode Remote:
En mode Remote, le “RMT” sur l’écran s’allumera et le BK889B pourra communiquer avec le PC équipé
d’une interface USB ou une borne via le port USB. Voici le paramétrage de la connexion :
Mode Transmission : Semi-duplex
Vitesse de transmission : 9600
Parité : Aucune
Bits de données : 8
Stop : 1
Liaison : Aucune
Dans ce mode, l’écran et toutes les touches sauf Remote seront verrouillés. Le programme externe pilote le
BK889B via le port USB.
3.1 Syntaxe de la commande du Mode Remote
La syntaxe de la commande est la suivante:
COMMAND(?) (PARAMETER)
Le format de COMMAND et PARAMETER est le suivant:
1. Il y a au moins un espace entre COMMAND et PARAMETER.
2. Le PARAMETER doit uniquement utiliser la chaîne ASCII pas le code numérique.
3. Le paramètre de la valeur peut être un entier, instable ou exposant avec l’unité. Par exemple :
50mV
0.05V
5.0e1mV
4. Le point d’interrogation (?) à la fin de COMMAND représente une demande ou une commande de mesure.
Par exemple :
“CpD” fixe le mode de mesure sur Cp et D.
“CpD?” fixe le mode de mesure sur Cp et D, mesure les valeurs et les renvoie.
5. COMMAND et PARAMETER peuvent être soit en majuscule soit en minuscule. Mais pour décrire la valeur
dans le PARAMETER, il devrait y avoir une différence entre milli (m) et méga (M). Par exemple:
1mV équivaut à 0.001V.
1MV équivaut à 1000000V.
6. Le caractère à la “fin de la commande” doit être placé à la fin:
ASCII CR (0DH) ou
ASCII LF (0AH)
3.2 Commandes du Mode Remote
Commande de paramétrage (ou de demande) de la mesure
Le paramétrage suivant et les commandes de demande sont pris en charge par le BK889B. Lorsque la commande de
paramétrage du mode de mesure est entrée, le BK889B renvoie “OK” lorsque le paramétrage est terminé. Lorsque la
commande de demande est entrée, le BK889B revoie les valeurs de mesure.
DCR(?) Paramétrage ou commande de demande du mode de mesure de la résistance continue.
CpRp(?) Paramétrage ou commande de demande du mode de mesure de la capacité parallèle et de la
résistance parallèle.
CpQ(?) Paramétrage ou commande de demande du mode de mesure de la capacité parallèle et du
facteur de qualité.
CpD(?) Paramétrage ou commande de demande du mode de mesure de la capacité parallèle et du
facteur de dissipation.
CsRs(?) Paramétrage ou commande de demande du mode de mesure de la capacité série et de la
20
résistance série.
CsQ(?) Paramétrage ou commande de demande du mode de mesure de la capacité série et du facteur
de qualité.
CsD(?) Paramétrage ou commande de demande du mode de mesure de la capacité série et du facteur
de dissipation.
LpRp(?) Paramétrage ou commande de demande du mode de mesure de la résistance parallèle et de
l’inductance parallèle.
LpQ(?) Paramétrage ou commande de demande du mode de mesure de l’inductance parallèle et du
facteur de qualité.
LpD(?) Paramétrage ou commande de demande du mode de mesure de l’inductance parallèle et du
facteur de dissipation.
LsRs(?) Paramétrage ou commande de demande du mode de mesure de l’inductance série et la
résistance série.
LsQ(?) Paramétrage ou commande de demande du mode de mesure de l’inductance série et le facteur
de qualité.
LsD(?) Paramétrage ou commande de demande du mode de mesure de l’inductance série et du facteur
de dissipation.
RsXs(?) Paramétrage ou commande de demande du mode de mesure de l’inductance série et la
réactance série.
RpXp(?) Paramétrage ou commande de demande du mode de mesure de la résistance parallèle et de la
réactance parallèle.
ZTD(?) Paramétrage ou commande de demande du mode de mesure de l’impédance et de l’angle
(Deg).
ZTR(?) Paramétrage ou commande de demande du mode de mesure de l’impédance et de l’angle
(Rad).
DCV(?) Paramétrage ou commande de demande du mode de mesure de la tension continue.
ACV(?) Paramétrage ou commande de demande du mode de mesure de la tension alternative.
DCA(?) Paramétrage ou commande de demande du mode de mesure du courant continu.
ACA(?) Paramétrage ou commande de demande du mode de mesure du courant alternatif.
Exemple:
CPD (sur Cp- mode D)
OK
CPD?
0.22724 0.12840 (retour des valeurs)
DCR?
5.1029 (retour de la valeur)
*IDN?
Demande l’identité du BK889B. Cette commande sert à identifier les informations de base du BK889B. La valeur
retournée a quatre champs séparés par une virgule (,). La longueur totale n’est pas supérieure à 100 caractères.
Les quatre champs sont:
1. Nom du fabricant
2. Numéro du modèle
3. Numéro de série
4. Numéro de la version du logiciel
Exemple:
*IDN?
B&K PRECISION CORP. MODEL889B,123456789,4.096
21
*RST
Remet le BK889B dans son état par défaut. L’état par défaut est :
1KHz 1Vrms CpD uF
Une fois le BK889B remis à zéro, il retournera la chaîne d’identité.
ASC
Définit le format de la valeur de retour. Cette commande fixe le retour de la chaîne ASCII ou du code numérique.
PARAMETER:
ON chaîne ASCII
OFF code numérique
Exemple:
ASC ON
OK (retour)
FREQ?
1KHz (retour)
ASC OFF
OK (retour)
FREQ?
2 (retour)
CORR OPEN
Effectue la calibration circuit ouvert.
CORR SHORT
Effectue la calibration court-circuit.
FREQ(?) PARAMETER
Définit (demande) la fréquence de mesure.
FREQ PARAMETER
Définit la fréquence de mesure en fonction du paramètre. Lorsque la commande de paramétrage est entrée,
le BK889B retourne “OK” à la fin du paramétrage.
PARAMETER:
Chaîne ASCII Code numérique
100Hz 0
120Hz 1
1KHz 2
10KHz 3
100KHz 4
200KHz 5
Exemple:
FREQ 100KHz
OK (retour)
FREQ?
Retourne le paramètre de fréquence de la mesure.
Exemple:
ASC ON
OK
FREQ?
1KHz (valeur de retour)
ASC OFF
OK
22
FREQ?
2 (valeur de retour)
LEV(?) PARAMETER
Définit (demande) le niveau de mesure.
LEV PARAMETER
Définit le niveau de mesure en fonction du paramètre. Lorsque le paramétrage est terminé, le BK889B
retourne “OK”.
PARAMETER:
Chaîne ASCII Code numérique
1VDC 0
1Vrms 1
250mVrms 2
50mVrms 3
Exemple:
LEV 1V
OK
LEV?
Retourne le paramètre du niveau de mesure.
Exemple:
ASC ON
OK
LEV?
1Vrms (valeur de retour)
ASC OFF
OK
LEV?
1 (valeur de retour)
MODE?
Demande du mode de mesure. Si en mode LCR, six champs doivent être retournés.
1. Fréquence
2. Niveau
3. Mode de mesure
4. Unité de l’affichage principal
5. Unité de l’affichage secondaire
L’existence du champ 5 dépend du mode de mesure. Par exemple, il n’y a pas de champ 5 si le mode de
mesure est le mode DCR. Les champs sont séparés par un espace (ASCII 20H).
Exemple:
ASC ON
OK
CPD
OK
MODE?
1KHz 1Vrms CpD uF (valeur de retour)
ASC ON
OK
CPRP
OK
MODE?
1KHz 1Vrms CpRp uF Ohm (valeur de retour)
23
Si en mode de mesure de la tension, les trois champs sont retournés.
1. Mode de mesure
2. Unité de l’affichage principal
Exemple:
ASC ON
OK
DCV
OK
MODE?
DCV V (valeur de retour)
RANG mV
OK
MODE?
DCV mV (valeur de retour)
RANG(?) PARAMETER
Définit (demande) l’unité de mesure.
RANG PARAMETER
Définit l’unité de mesure en fonction du paramètre. L’instrument retourne “OK” à la fin du paramétrage.
PARAMETER:
ASCII Code numérique
pF 0
nF 1
uF 2
mF 3
F 4
nH 8
uH 9
mH 10
H 11
KH 12
mOhm 17
Ohm 18
KOhm 19
MOhm 20
mV 21
V 22
mA 23
A 24
Exemple:
RANG pF
OK
RANG?
Retourne le paramètre de l’unité de mesure du courant.
Exemple:
ASC ON
OK
RANG?
pF (valeur de retour)
24
ASC OFF
OK
RANG?
0 (valeur de retour)
READ?
Retourne la valeur de mesure. Cette commande mesurera en fonction du mode de mesure en cours et
retournera la valeur mesurée.
Exemple:
CPD
OK
READ?
0.22724 0.12840 (valeur de retour)
DCR
OK
READ?
5.1029 (valeur de retour)
Les mesures “DCR”, “DCV”, and “ACV” n’enverront qu’une seule valeur mesurée. Les autres modes de mesure
enverront deux valeurs mesurées séparées par un espace (ASCII 20H).
25
4.Application
4.1 Connexion des fils de mesure
Un pont d’équilibre automatique possède 4 bornes (HCUR, HPOT, LCUR and LPOT) à connecter sur l’appareil à
tester (DUT). Il faut comprendre quelle méthode de connexion affectera la précision de la mesure.
Borne 2 (2T) – Mesure 2 fils
La Borne 2 est la manière la plus simple de connecter le DUT, mais elle contient de nombreuses erreurs qui
sont l’inductance et la résistance ainsi que la capacité parasite des câbles de mesure (Figure 4.1).A cause de
ces erreurs, la gamme de mesure d’impédance efficace sera limitée de 100W à 10KW.
R
HCUR
HPOT
DUT
(b) BLOCK DIAGRAM
V DUT
A
Co
o Lo
Ro Lo
(a) CONNECTION
(c) TYPICAL IMPEDANCE MEASUREMENT RANGE(£[)
2T
1m 10m 100m 1 10 100 1K 10K 100K 1M 10M
LPOT
LCUR
Figure 4.1
Borne 3 (3T) – Mesure 3 fils
La borne 3 utilise la câble coaxial pour réduire l’effet du condensateur parasite (Figure 4.2). Le blindage du
câble coaxial doit être relié au boîtier de l’instrument pour augmenter la gamme de mesure jusqu’à 10MW.
DUT
V
A
(d) 2T CONNECTION WITH SHILDING
HCUR
HPOT
DUT
(b) BLOCK DIAGRAM
V DUT
A
Co
Ro Lo
Ro Lo
Co doesn't
effect
measurement
result
(a) CONNECTION
(c) TYPICAL IMPEDANCE MEASUREMENT RANGE(£[)
3T
1m 10m 100m 1 10 100 1K 10K 100K 1M 10M
LPOT
LCUR
Figure 4.2
Borne 4 (4T) – Mesure 4 fils
La connexion de la borne 4 réduit l’effet de la résistance du fil de mesure (Figure 4.3). Cette connexion peut
améliorer la gamme de mesure jusqu’à 10mW min. Cependant, l’effet de l’inductance du fil de mesure ne peut
être éliminée.
26
HCUR
HPOT
DUT
(b) BLOCK DIAGRAM
V DUT
A
(a) CONNECTION
(c) TYPICAL IMPEDANCE MEASUREMENT RANGE (£[)
4T
1m 10m 100m 1 10 100 1K 10K 100K 1M 10M
LPOT
LCUR
Figure 4.3
Borne 5 (5T)
La connexion de la borne 5 est une combinaison de 3T et 4T (Figure 4.4). Elle possède 4 câbles coaxiaux.
Grâce à son avantage de 3T et 4T, cette connexion permet une gamme de mesure de10mW à 10MW.
(d) WRONG 4T CONNECTION
HPOT
DUT
(a) CONNECTION (b) BLOCK DIAGRAM
(c) TYPICAL IMPEDANCE MEASUREMENT RANGE (£[)
5T
1m 10m 100m 1 10 100 1K 10K 100K 1M 10M
HCUR
V DUT
A
V DUT
A
LPOT
LCUR
Figure 4.4
Chemin borne 4 (4TP)
Cette connexion résout le problème causé par l’inductance du câble de mesure. Le 4TP utilise quatre câbles
coaxiaux pour isoler le chemin actuel et le câble de prise de tension (Figure 4.5). Le courant de retour
circulera dans le câble coaxial ainsi que dans le blindage. Le flux magnétique généré par le conducteur
interne neutralisera donc le flux magnétique généré par le conducteur externe (blindage). La connexion du
4TP augmente la gamme de mesure de 1mW à 10MW.
27
(a) CONNECTION (b) BLOCK DIAGRAM
DUT
V
A
(c) TYPICAL IMPEDANCE
MEASUREMENT RANGE(£[)
4T
1m 10m100m 1 10 100 1K 10K 100K 1M 10M
HPOT
DUT
HCUR
LCUR
LPOT
HPOT
DUT
HCUR
LCUR
LPOT
(d) 4T CONNECTION WITH SHILDING
Figure 4.5
Elimination de l’effet du condensateur parasite
Lorsqu’un composant d’impédance élevée est mesuré (i.e. condensateur de faible valeur), le condensateur
parasite devient un problème important (Figure 4.6). Sur la figure 4.6(a), le condensateur parasite Cd est mis
en parallèle avec le DUT ainsi que le Ci et le Ch. Pour corriger ce problème, ajouter une protection (Figure
4.6(b)) entre les bornes H et L pour freiner le Cd. Si la protection est connecté à la garde de l’instrument,
l’effet de Ci et Ch sera supprimé.
(a) Parastic Effect
HCUR HPOT LPOT LCUR
Cd
Connection
Point
DUT
Ch Cl
Ground
(b) Guard Plant reduces
Parastic Effect
HCUR HPOT LPOT LCUR
Guard
Plant
Figure 4.6
4.2 Compensation circuit ouvert/court circuit
Pour ces instruments de mesure d’impédance de précision, la compensation circuit ouvert/court-circuit doit être
utilisée afin de réduire l ‘effet parasite de l’installation de mesure. L’effet parasite de l’installation de mesure peut
être traité comme les composants passifs simples sur la figure 4.7(a). Lorsque le DUT est ouvert, l’instrument a
une conductance Yp = Gp + jwCp (Figure 4.7(b)). Lorsque le DUT est fermé, l’instrument a une impédance Zs =
Rs + jwLs (Figure 4.7(c)). Après la compensation ouverte et fermée, Yp et Zs peuvent donc être utilisés pour le
vrai calcul Zdut (Figure 4.7(d)).
28
HCUR
HPOT
LCUR
LPOT
Co Zdut
Rs Ls
Zm Go
Redundant
Impedance
(Zs) Parastic
Conductance
(Yo)
Parastic of the Test Fixture
(a) Parastic Effect of the Test Fixture
HCUR
HPOT
LCUR
LPOT
Co
Rs Ls
Go
(b) OPEN Measurement
Yo OPEN
Yo = Go + j£sCo
1
(Rs + j£s<< )
Go+j£sCo
HCUR
HPOT
LCUR
LPOT
Co
Rs Ls
Go
(c) SHORT Measurement
Zs SHORT
Zs = Rs + j£sLs
Zm Yo Zdut
Zm - Zs
Zdut =
1-(Zm-Zs)Yo
(d) Compensation Equation
Zs
Figure 4.7
4.3 Choix du mode série ou parallèle
En fonction du besoin de mesure différent, il existe des modes série et parallèle pour décrire les résultats de
mesure. Le choix du mode dépend de la valeur élevée ou basse de l’impédance.
Condensateur
L’impédance et la capacité dans le condensateur sont inversement proportionnelles. La capacité la plus
élevée signifie donc l’impédance la plus basse, la capacité la plus petite signifie l’impédance la plus élevée.
La figure 4.8 indique le circuit équivalent du condensateur. Si la capacité est petite, le Rp est plus important
que le Rs. Si la capacité est grande, le Rs ne doit pas être évitée. Il est donc préférable d‘utiliser le mode
parallèle pour une mesure de capacité basse et le mode série pour une mesure de capacité élevée.
CIRCUIT OUVERT
COURT-CIRCUIT
29
Inductance
L’impédance et l’inductance sont directement proportionnelles lorsque la fréquence test est fixée. C’est pour
cela que l’inductance plus élevée équivaut à l’impédance la plus élevée et vice versa. La figure 4.9 indique le
circuit équivalent de l’inductance. Lorsque l’inductance est faible, le Rs devient plus important que le Rp.
Lorsque l’inductance est importante, le Rp doit être prix en considération. Il est donc convenable d’utiliser le
mode série pour mesurer une inductance basse et le mode parallèle pour mesurer une inductance élevée.
Small capacitor
(High impedance)
C RP
RS
Effect
No Effect
Large capacitor
(Low impedance)
C RP
RS
Effect
No Effect
Figure 4.9
Small inductor
(Low impedance)
L RP
RS
Large inductor
(High impedance)
Effect
No Effect
L RP
RS
No Effect
Effect
30
DECLARATION OF CE CONFORMITY
according to EEC directives and NF EN 45014 norm
DECLARATION DE CONFORMITE CE
suivant directives CEE et norme NF EN 45014
SEFRAM INSTRUMENTS & SYSTEMES
32, rue Edouard MARTEL
42100 SAINT-ETIENNE ( FRANCE)
Declares, that the below mentionned product complies with :
Déclare que le produit désigné ci-après est conforme à :
The European low voltage directive 2006/95/EEC :
La directive Européenne basse tension 2006/95/CE
NF EN 61010-031 Safety requirements for electrical equipement for measurement, control and
laboratory use. Règles de sécurité pour les appareils électriques de mesurage, de régulation et de
laboratoire.
The European EMC directive 2004/108/EEC :
Emission standard EN 50081-1.
Immunity standard EN 50082-1.
La directive Européenne CEM 2004/108/CE :
En émission selon NF EN 50081-1.
En immunité selon NF EN 50082-1.
Pollution degree Degré de pollution : 2
Product name Désignation : LCR/ESR meter RLC mètre
Model Type : BK889B
Compliance was demonstrated in listed laboratory and record in test report number
La conformité à été démontrée dans un laboratoire reconnu et enregistrée dans le rapport numéro RC
BK889B
SAINT-ETIENNE the : Name/Position :
Tuesday, April 28, 2009 T. TAGLIARINO / Quality Manager
31
SEFRAM
32, rue E. Martel – BP55
F42009 – Saint-Etienne Cedex 2
France
Tel : 0825.56.50.50 (0,15€TTC/mn)
Fax : 04.77.57.23.23
Web : www.sefram.fr
E-mails :
Service commercial : sales@sefram.fr
Support technique : support@sefram.fr
Manuel d’utilisation_BK1550_Alimentation
Alimentation à découpage BK1550
Manuel d’utilisation
Manuel d’utilisation_BK1550_Alimentation
Manuel d’utilisation_BK1550_Alimentation
SOMMAIRE
TERMES ET SYMBOLES DE SÉCURITÉ.............................................................................................. 1
CONDITIONS D’UTILISATION............................................................................................................... 2
INTRODUCTION........................................................................................................................................ 2
UTILISER L’ALIMENTATION À DÉCOUPAGE 1550 ......................................................................................... 2
UTILISER LE PORT USB............................................................................................................................... 3
COMMANDES ET INDICATEURS.......................................................................................................... 4
MISE EN OEUVRE....................................................................................................................................... 5
CONNEXION À LA TERRE ............................................................................................................................. 5
MODE DE FONCTIONNEMENT....................................................................................................................... 5
TENSION CONSTANTE (CV), TRANSITION AUTOMATIQUE ET COURANT CONSTANT (CC) ............................ 6
PRÉRÉGLAGE DE LA VALEUR LIMITE DU COURANT (CC) ............................................................................. 6
PROCÉDURE DE CONNEXION ET DE MISE EN ROUTE ..................................................................................... 6
PROTECTION DE LA SORTIE CONTRE LA SURTENSION (OVP) ...................................................................... 7
PROTECTION CONTRE LA SURCHAUFFE........................................................................................................ 7
SPÉCIFICATIONS ...................................................................................................................................... 7
Manuel d’utilisation_BK1550_Alimentation
Manuel d’utilisation_BK1550_Alimentation
1
Termes et symboles de sécurité
Les termes suivants peuvent être utilisés dans ce manuel ou sur l’instrument :
Attention. Se référer au manuel
DANGER ! Haute tension – Risque de chocs électriques
Terre de protection
(Terre) Conducteur de terre
Terre (châssis)
Prescriptions de sécurité :
• L’utilisateur doit être informé des risques liés aux chocs électriques et prendre les précautions
nécessaires.
• Le raccordement au secteur doit impérativement se faire avec une prise de terre
• Toute intervention interne sur le produit (réglages ou réparation) doit se faire par du personnel
qualifié
Manuel d’utilisation_BK1550_Alimentation
2
Conditions d’utilisation
• Humidité relative 10 à 80%
• Humidité relative maximum de 80% pour une température maximum de 31°C (dégression
linéaire pour 50% d’humidité relative à 40°C).
• Altitude maximum de fonctionnement: 2000m
• Catégorie d’installation : CAT 2
• Degré de pollution: 2
• Fluctuation de la tension du secteur jusqu’à ±10% de la tension normale.
Introduction
Utiliser l’alimentation à découpage 1550
Cette alimentation est pilotée par microcontrôleur qui assiste la gestion de la tension et du courant de
sortie avec une capacité d’alimentation totale de 100W. Le contrôle de l’alimentation est réalisé par un
système de commande originale associé à un affichage digital, ainsi vous pouvez facilement
configurer la tension et le courant de sortie. C’est une alimentation faible bruit et ondulation et
silencieuse, idéale pour le travail en laboratoire, en atelier ou dans l’éducation ou l’espace de travail
est limité.
Le 1550 a une borne USB, un fonctionnement en courant constant, une protection contre les
surtensions, les sorties sont isolées, touche activation/désactivation de la sortie, facteur de formes
faibles.
Manuel d’utilisation_BK1550_Alimentation
3
Utiliser le port USB
La sortie USB est destinée à une alimentation USB standard (5VDC et 0.4A).
Vous pouvez mettre en marche ou charger vos portables (I-Pod, lecteur MP3 ou téléphone cellulaire*)
possédant des connecteurs d’alimentation USB pour obtenir un courant continu de l’ordinateur.
* Remarques
Tous les téléphones cellulaires ne peuvent pas être rechargés par USB. Certains nouveaux modèles
requièrent une tension plus élevée que 5V. Veuillez vous référez à la documentation de l’appareil pour
les problèmes de compatibilité.
Manuel d’utilisation_BK1550_Alimentation
4
Commandes et indicateurs
1. Interrupteur marche/arrêt :
Allumer ou éteindre l’alimentation, lorsqu’elle est mise en marche l’écran s’allume.
2. Prise secteur avec fusible
3. Boîtier fusible masqué ( ôter le cache pour avoir accès au fusible)
4. V: Touche de réglage de la tension de sortie
5. A: Touche de réglage du courant de sortie
6. “+” appuyer sur cette touche pour augmenter les valeurs numériques
Manuel d’utilisation_BK1550_Alimentation
5
7. “-” appuyer sur cette touche pour diminuer les valeurs numériques
8. Bouton Output On/Off (activer/désactiver la sortie)
9. Prise USB
Norme USB courant continu 5V, 400mA
Pour charger ou mettre en marche des ordinateurs portables et téléphones cellulaires
10. Borne de sortie polarité positive (rouge)
11. Borne de terre (:) verte
Borne de mise à la masse, normalement elle doit être court-circuitée avec les bornes (+) ou (-)
12. Borne de sortie polarité négative (noir)
13. Ecran LCD affichant:
La tension et le courant sur 3 digits, l’indication (CV) mode tension constante, l’indication (CC)
mode courant constant, l’état de la borne de sortie (activée/désactivée)
Mise en oeuvre
Connexion à la terre
Suivant l’application, les bornes de sortie de l’alimentation peuvent être mises à la terre dans
n’importe laquelle des conditions suivantes :
La borne – ou la borne + peuvent être réunies à la borne terre GND (verte).
Mode de fonctionnement
Cette alimentation a été conçue pour fonctionner comme source de tension constante ou comme
source de courant constant. Passage automatique à l’un de ces deux modes, lorsque la condition de
charge varie d’une des manières suivantes:
Configuration de la valeur de tension: tout d’abord, appuyer sur le clavier (4), puis ajuster la valeur
de tension comme désiré en utilisant le clavier (6) et (7).
Manuel d’utilisation_BK1550_Alimentation
6
Configuration de la valeur du courant: Appuyer sur le clavier (5), puis ajuster la valeur du courant
comme désiré en utilisant le clavier (6) et (7).
Tension constante (CV), Transition automatique et courant constant (CC)
L’alimentation fonctionne comme source de tension constante (CV) aussi longtemps que la charge du
courant est inférieure à la valeur prédéfinie de limitation du courant. Lorsque la charge du courant est
égale ou supérieure à cette valeur de limitation du courant, l’alimentation passe automatiquement en
mode courant constant, la tension baisse, (CC) apparaît à l’écran et l’unité fonctionne en source de
courant constant.
Lorsque le charge de courant repasse en dessous de la valeur prédéfinie de limitation de courant,
l’alimentation repasse en mode de tension constante (CV).
Préréglage de la valeur limite du courant (CC)
Allumer l’alimentation, régler la tension de sortie sur 3V, désactiver la borne de sortie en appuyant sur
la touche (8), l’icône devient .
Court-circuiter les bornes de sortie rouge et noire et activer la borne de sortie en appuyant sur la
touche (8), l’icône devient , régler la valeur de limitation du courant à la limite désirée en
utilisant les touches incrémenter et décrémenter. Désactiver la borne de sortie et enlever le courtcircuit
des bornes.
La limite de courant de l’alimentation a été réglée à x Amp pour toute la gamme de tension de sortie.
Procédure de connexion et de mise en route
1. Après avoir contrôlé les références brancher l’alimentation au secteur
2. Mettre en marche l’alimentation, l’écran LCD doit s’allumer en même temps.
3. L’icône (CV) doit apparaître à l’écran.
Manuel d’utilisation_BK1550_Alimentation
7
4. Régler la valeur de courant au maximum en appuyant sur la touche (6) si vous n’avez besoin
d’aucune valeur de limitation de courant plus basse, sinon effectuer la procédure de limitation
(CC).
5. Régler la tension de sortie à la valeur désirée puis désactiver la borne de sortie en appuyant sur la
touche (8).
6. Connecter le point chaud de votre charge avec la borne positive et le point froid de votre charge
avec la borne négative.
7. Activer de nouveau la borne de sortie et vérifier que l’écran affiche (CV).
8. Si l’écran affiche (CC), soit votre valeur prédéfinie de limitation de courant est trop basse soit
votre charge requière plus de tension et de courant. Vous devez ré-ajuster la tension et le courant
de la charge ou augmenter la tension ou le courant jusqu’à ce que (CV) apparaisse.
Protection de la sortie contre la surtension (OVP)
Ceci sert à protéger la charge connectée dans l’éventualité d’un dysfonctionnement du circuit de
contrôle de la tension de sortie, la tension de sortie maximum n’excèdera pas 40% de la valeur de
tension ajustée au moment de l’opération.
Protection contre la surchauffe
Lorsque la température à l’intérieur de l’alimentation devient plus élevée que la valeur prédéterminée,
la tension et le courant de sortie de l’alimentation diminuera automatiquement à zéro pour prévenir
tout risques de dommages de l’appareil. Lorsque la température à l’intérieur de l’alimentation retombe
à 65°C, l’appareil se remet automatiquement en fonction.
Spécifications
Tension d’entrée 200 – 240Vac (50~60Hz)
Pleine charge du courant d’entrée 120Vac 0.95A (+10%)
Manuel d’utilisation_BK1550_Alimentation
8
Principale sortie:
Gamme d’ajustement de tension de sortie 1.0 – 36VDC
Gamme d’ajustement du courant de sortie 0 – 3A
Régulation de tension pour une variation
de charge de 10% à 100% < 50mV
de secteur < 20mV
d’ondulation (mV eff.) < 5mV
de bruit (Crête-à-crête) < 50mV
Régulation de courant pour une variation
de charge de 10% à 100% < 20mA
de secteur < 20mA
Fréquence de découpage 80KHz à 120KHz
Rendement 83% (+10%)
Affichage voltmètre et ampèremètre 3 Digit
Précision du voltmètre +1% + 5rdg.
Précision de l’ampèremètre +1% + 5rdg.
SORTIE USB:
Tension de sortie 5V (+10%)
Courant de sortie 400mA (+10%)
Régulation tension de charge < 80mV (+10%)
Ondulation et Bruit (sans charge) < 8mV (+10%)
Manuel d’utilisation_BK1550_Alimentation
9
Voyants à l’écran CC, CV, Amp, Volt, Output ON-OFF
Protection Court-circuit, Surcharge, Echauffement
Système de refroidissement Convection naturelle
Dimensions (lxLxP) 2.8 x 6.0 x 9.8 (70 x 150 x 250mm)
Masse 4.4lbs. (2Kgs)
Manuel d’utilisation_BK1550_Alimentation
Manuel d’utilisation_BK1550_Alimentation
SEFRAM Instruments et Systèmes
32, Rue Edouard MARTEL
F42100 – SAINT-ETIENNE
Tel : 0825 56 50 50 (0,15€TTC/mn)
Fax: +33 (0)4 77 57 23 23
Site WEB : www.sefram.fr
e-mail : sales@sefram.fr
CC2531 USB Hardware
User’s Guide
swru221a
swru221a
2/14
Table of Contents
1 Introduction ..................................................................................................................................3
2 About this Manual ........................................................................................................................3
3 Acronyms .....................................................................................................................................4
4 Definitions.....................................................................................................................................5
5 Getting Started .............................................................................................................................7
6 Using SmartRF05EB as an In-Circuit Emulator (ICE)..................................................................9
6.1 The Debug Interface................................................................................................................9
7 USB Dongle Hardware Description............................................................................................10
7.1 User Interface........................................................................................................................10
7.2 Debug Connector ..................................................................................................................10
7.3 RF Performance of Antenna ..................................................................................................11
8 USB Dongle Reference Design and Schematics.......................................................................12
9 References..................................................................................................................................13
10 General Information ...................................................................................................................14
10.1 Document History ..............................................................................................................14
swru221a
3/14
1 Introduction
Thank you for purchasing a CC2530 Development Kit.
The CC2530 is Texas Instrument’s second generation ZigBee/IEEE 802.15.4 compliant System-on-
Chip with an optimized 8051 MCU core and radio for the 2.4 GHz unlicensed ISM/SRD band. This
device enables industrial grade applications by offering state-of-the-art noise immunity, excellent link
budget, operation up to 125 degrees and low voltage operation.
In addition, the CC2530 provides extensive hardware support for packet handling, data buffering, burst
transmissions, data encryption, data authentication, clear channel assessment, link quality indication
and packet timing information. The CC2530 product folder on the web [10] has more information, with
datasheets, user guides and application notes.
The CC2531 is identical to CC2530, with the addition of a built in full speed USB 2.0 compliant
interface.
The CC2530 Development Kit includes all the necessary hardware to properly evaluate, demonstrate,
prototype and develop software targeting not only IEEE802.15.4 or ZigBee compliant applications, but
also proprietary applications for which a DSSS radio is required or wanted.
2 About this Manual
This manual covers the CC2531 USB dongle found in the CC2530 Development Kit and the CC2530
ZigBee Development Kit.
The manual covers the CC2531 USB Dongle hardware component of a USB development framework.
Please refer to [3] for a description of the accompanying USB Firmware Library and application
examples.
swru221a
4/14
3 Acronyms
CDC Communications Device Class
DK Development Kit
EB Evaluation Board
EM Evaluation Module
EMK Evaluation Module Kit
HID Human Interface Device
IC Integrated Circuit
ICE In Circuit Emulator
KB Kilo Byte (1024 byte)
LED Light Emitting Diode
LPRF Low Power RF
MCU Micro Controller
NC Not connected
RF Radio Frequency
RX Receive
SoC System on Chip
TI Texas Instruments
TX Transmit
UART Universal Asynchronous Receive Transmit
USB Universal Serial Bus
swru221a
5/14
4 Definitions
SmartRF05EB
The SmartRF05EB (evaluation board) is the main
board in the kit with a wide range of user
interfaces:
3x16 character serial LCD
Full speed USB 2.0 interface
UART
LEDs
Serial Flash
Potentiometer
Joystick
Buttons
The EB is the platform for the evaluation modules
(EM) and can be connected to the PC via USB to
control the EM.
CC2530EM
The CC2530EM (evaluation module) contains the
RF IC and necessary external components and
matching filters for getting the most out of the
radio. The module can be plugged into the
SmartRF05EB. Use the EM as reference
design for RF layout. The schematics are
included at the end of this document and the
layout files can be found on the web CC2530
Product Page [10].
CC2531 USB Dongle
The CC2531 USB Dongle is a fully operational
USB device that can be plugged into a PC. The
dongle has 2 LEDs, two small push-buttons and
connector holes that allow connection of external
sensors or devices. The dongle also has a
connector for programming and debugging of the
CC2531 USB controller.
The dongle comes preprogrammed with firmware
such that it can be used as a packet sniffer
device.
Antenna
2.4 GHz antenna Titanis from Antenova.
swru221a
6/14
SoC System on Chip. A collective term used to refer
to Texas Instruments ICs with on-chip MCU and
RF transceiver. Used in this document to
reference the CC2530 and 2531.
ICE In Circuit Emulator. ICE functionality is built into
the SmartRF05EB and the CC Debugger
USB software application examples Application examples using the CC2531 USB
Dongle together with a CC2530EM.
USB Firmware Library A library of low level USB firmware which is used
by all the USB software examples.
swru221a
7/14
5 Getting Started
Make sure to install SmartRF Studio before connecting the SmartRF05EB to a PC. By installing it, the
required Windows drivers will be provided when connecting the SmartRF05EB.
SmartRF Studio [4] is a PC application for Windows that helps you find and adjust the radio register
settings. Please see [4] for instructions on downloading and installation.
The dongle comes preprogrammed with firmware such that it can be used as a packet sniffer device.
For programming the device with other firmware an external ICE is needed. The SmartRF05EB1 can be
used to program the USB dongle. The CC2531 has a 2 wire debug interface that is used for chip
programming and debugging. When connecting this interface to the SmartRF05EB, the CC2531 can be
programmed from the SmartRF Flash Programmer software [2] and debugged from IAR Embedded
Workbench. To connect the CC2531 USB Dongle to the SmartRF05EB, follow these steps:
1. Turn off the SmartRF05EB power by moving the power switch shown in Figure 2 to the left
position.
2. Remove any evaluation modules (EMs) attached to the SmartRF05EB.
3. Connect the SmartRF05EB to a PC with the supplied USB cable.
4. Connect the USB Dongle to the ExtSoC Debug header (P3) on SmartRF05EB with the supplied
10 pin cable and adapter board (see Figure 1). Make sure pin 1 on the dongle is connected to
pin 1 on P3. This cable connects the debug interface and GND between the two devices;
however the USB Dongle is not powered through this cable.
5. Power the CC2531 USB Dongle. To power the dongle there are two options:
Powered with a USB Cable
Use the supplied USB extension cable to connect the USB Dongle to the PC (see
Figure 1).
Powered from the SmartRF05EB
Mount resistor R2 on the CC2531 USB Dongle and resistor R30 on the SmartRF05EB.
The CC2531 USB Dongle should only be powered by one of the two sources at a time. Do not
connect the USB cable to the USB Dongle while it is powered from the SmartRF05EB.
6. Turn on the power on the SmartRF05EB (see Figure 2).
1 It is also possible to use the SmartRF04EB or the CC Debugger to program the device.
swru221a
8/14
Figure 1 - CC2531 USB Dongle connected to SmartRF05EB
Figure 2 - SmartRF05EB power switch, power on.
The CC2531 can now be programmed with the SmartRF Flash Programmer software. The firmware on
the CC2531 can also be debugged using the IAR Embedded Workbench debugger. Please see the
“SmartRF Flash Programmer User’s Manual” for more details [2].
Please see the “CC2530 Development Kit User Manual” [1] for more information on the SmartRF05EB
and how to use the CC2530EM.
swru221a
9/14
6 Using SmartRF05EB as an In-Circuit Emulator (ICE)
The debug interface on the SmartRF05EB is controlled by the USB MCU. This allows both
programming and an emulator interface over USB, which makes the SmartRF05EB usable as an ICE
for the CC2531 dongle.
To use the SmartRF05EB as ICE, the IAR Embedded Workbench software for 8051 architecture
(EW8051) must be installed. The Embedded Workbench is an integrated development environment with
a complete tool-chain such as C Compiler, Simulator, and ICE debugger. Please see [1] for instructions
on how to set up the ICE debugger for use as an ICE.
When the SmartRF05EB with a SoC is connected to a PC with the USB port, the debugger in IAR
EW8051 will connect to it when started. If several SmartRF05EBs are connected to USB ports
simultaneously, a selection window will display the connected evaluation boards, and the user can
select which device to load.
6.1 The Debug Interface
For custom PCB’s with the CC2531 SoC, it is recommended to include a pin header or test points to
allow in-circuit emulation or programming using a SmartRF05EB or other 3rd party programming tools.
The USB Dongle can be used as a reference.
VDD note: The SmartRF05EB includes a voltage converter to support programming and debugging of
external systems with different voltage than the SmartRF05EB.
When using SmartRF05EB as emulator for external target debugging any evaluation module (EM) must
be removed.
Figure 3 shows the required signal for a minimum connector layout on external target.
Figure 3 - Minimum Debug Connector Pinout (top view)
swru221a
10/14
7 USB Dongle Hardware Description
Figure 4 - CC2531 USB Dongle
7.1 User Interface
The CC2531 USB Dongle has two buttons and two LEDs that can be used to interact with the user.
Table 1 shows which CC2531 signals are connected to what IO on the dongle.
IO
Connector CC2531 Dongle
User IO CC2531
1 P0.2 Green LED P0.0
2 P0.3 Red LED P1.1
3 P0.4 Button S1 P1.2
4 P0.5 Button S2 P1.3
5 P1.7
6 P1.6
7 P1.5
8 P1.4
Table 1 - CC2531 USB Dongle Pinout
7.2 Debug Connector
The CC2531 USB dongle can be connected to a SmartRF Evaluation Board for debugging and
programming.
IO Connector
Meandred F-antenna
CC2531F256
Button S1
Button S2
LEDs
Debug connector
Voltage regulator
swru221a
11/14
Figure 5 - CC2531 USB Dongle connected to SmartRF05EB
The debug connector on the CC2531 USB Dongle matches the debug connector on the SmartRF05EB
(and the CC Debugger). Note that, by default, the CC2531 dongle is not powered through the debug
connector, so an external power source must be used while programming. The easiest solution is to
connect it to a USB port on the PC. Alternatively, resistor R2 can be mounted. The table below shows
the pin out of the debug connector.
Pin # Connection
1 GND
2 VCC
3 CC2531 P2.2 (DC)
4 CC2531 P2.1 (DD)
5 NC
6 NC
7 CC2531 RESET
8 NC
9 Optional external VCC (R2 must be mounted)
10 NC
Table 2 - CC2531 USB Dongle Debug Connector
7.3 RF Performance of Antenna
While the CC2531 USB Dongle has a PCB antenna designed as a meandered inverted F antenna.
The performance of the PCB antenna on the USB Dongle will be affected by its nearby surroundings.
Therefore, when plugged into different computers or a USB extension cable differences in the RF
performance must be expected. Also, if the USB Dongle is put inside a casing, the material and design
of the enclosure will influence the antenna’s performance. For the CC2531 USB Dongle the maximum
antenna gain measured is 5.3 dBi. This means that duty cycling or reduction of output power might be
needed to ensure compliance with regulatory limits. Please see [8] for more information about SRD
regulations in the 2.4 GHz ISM band. The performance of the antenna of the CC2531 USB Dongle is
further described in [9].
swru221a
12/14
8 USB Dongle Reference Design and Schematics
Refer to [1] for the schematics of the CC2531 USB Dongle.
swru221a
13/14
9 References
[1] CC2530 DK Development Kit User Manual (swru208)
[2] SmartRF Flash Programmer (swrc044)
[3] SmartRF Packet Sniffer (swrc045)
[4] SmartRF Studio (swrc046)
[5] CC USB Firmware Library and Examples (swrc088)
[6] CC USB Software Examples User’s Guide (swru222)
[7] SmartRF05EB User’s Guide (swru210)
[8] AN032 – SRD Regulation for License-Free Transceiver Operation in the 2.4 GHz Band (swra060)
[9] AN043 – Small Size 2.4 GHz PCB Antenna (swra117)
[10] CC2530 Product Web Site (http://focus.ti.com/docs/prod/folders/print/cc2530.html)
swru221a
14/14
10 General Information
10.1 Document History
Revision Date Description/Changes
SWRU221A 2009.07.31 Updated info about how to connect dongle to SmartRF05EB. Corrected typos.
SWRU221 2009.05.08 Initial release
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated
MSP430 Hardware Tools
User's Guide
Literature Number: SLAU278Q
May 2009–Revised February 2014
Contents
Preface ....................................................................................................................................... 7
1 Get Started Now! ............................................................................................................... 10
1.1 Flash Emulation Tool (FET) Overview .................................................................................. 11
1.2 Kit Contents, MSP-FET430PIF .......................................................................................... 12
1.3 Kit Contents, eZ430-F2013 .............................................................................................. 12
1.4 Kit Contents, eZ430-T2012 .............................................................................................. 12
1.5 Kit Contents, eZ430-RF2500 ............................................................................................ 12
1.6 Kit Contents, eZ430-RF2500T ........................................................................................... 12
1.7 Kit Contents, eZ430-RF2500-SEH ...................................................................................... 12
1.8 Kit Contents, eZ430-Chronos-xxx ....................................................................................... 13
1.9 Kit Contents, MSP-FET430UIF .......................................................................................... 13
1.10 Kit Contents, MSP-FET430xx ............................................................................................ 13
1.11 Kit Contents, FET430F6137RF900 ..................................................................................... 14
1.12 Kit Contents, MSP-TS430xx ............................................................................................. 14
1.13 Kit Contents, EM430Fx1x7RF900 ....................................................................................... 16
1.14 Hardware Installation, MSP-FET430PIF ............................................................................... 16
1.15 Hardware Installation, MSP-FET430UIF ............................................................................... 17
1.16 Hardware Installation, eZ430-XXXX, MSP-EXP430G2, MSP-EXP430FR5739, MSP-EXP430F5529 ......... 17
1.17 Hardware Installation, MSP-FET430Uxx, MSP-TS430xxx, FET430F6137RF900, EM430Fx137RF900 ...... 17
1.18 Important MSP430 Documents on the Web ........................................................................... 18
2 Design Considerations for In-Circuit Programming ............................................................... 19
2.1 Signal Connections for In-System Programming and Debugging ................................................... 20
2.2 External Power ............................................................................................................. 24
2.3 Bootstrap Loader (BSL) .................................................................................................. 24
A Frequently Asked Questions and Known Issues ................................................................... 25
A.1 Hardware FAQs ............................................................................................................ 26
A.2 Known Issues .............................................................................................................. 28
B Hardware .......................................................................................................................... 29
B.1 MSP-TS430D8 ............................................................................................................. 31
B.2 MSP-TS430PW14 ......................................................................................................... 34
B.3 MSP-TS430L092 .......................................................................................................... 37
B.4 MSP-TS430L092 Active Cable .......................................................................................... 40
B.5 MSP-TS430PW24 ......................................................................................................... 43
B.6 MSP-TS430DW28 ......................................................................................................... 46
B.7 MSP-TS430PW28 ......................................................................................................... 49
B.8 MSP-TS430PW28A ....................................................................................................... 52
B.9 MSP-TS430DA38 .......................................................................................................... 55
B.10 MSP-TS430QFN23x0 ..................................................................................................... 58
B.11 MSP-TS430RSB40 ........................................................................................................ 61
B.12 MSP-TS430RHA40A ...................................................................................................... 64
B.13 MSP-TS430DL48 .......................................................................................................... 67
B.14 MSP-TS430RGZ48B ...................................................................................................... 70
B.15 MSP-TS430RGZ48C ...................................................................................................... 73
B.16 MSP-TS430PM64 ......................................................................................................... 76
2 Contents SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com
B.17 MSP-TS430PM64A ....................................................................................................... 79
B.18 MSP-TS430RGC64B ..................................................................................................... 82
B.19 MSP-TS430RGC64C ..................................................................................................... 85
B.20 MSP-TS430RGC64USB .................................................................................................. 89
B.21 MSP-TS430PN80 .......................................................................................................... 93
B.22 MSP-TS430PN80A ........................................................................................................ 96
B.23 MSP-TS430PN80USB .................................................................................................... 99
B.24 MSP-TS430PZ100 ....................................................................................................... 103
B.25 MSP-TS430PZ100A ..................................................................................................... 106
B.26 MSP-TS430PZ100B ..................................................................................................... 109
B.27 MSP-TS430PZ100C ..................................................................................................... 112
B.28 MSP-TS430PZ5x100 .................................................................................................... 115
B.29 MSP-TS430PZ100USB ................................................................................................. 118
B.30 MSP-TS430PEU128 ..................................................................................................... 122
B.31 EM430F5137RF900 ..................................................................................................... 125
B.32 EM430F6137RF900 ..................................................................................................... 129
B.33 EM430F6147RF900 ..................................................................................................... 133
B.34 MSP-FET430PIF ......................................................................................................... 137
B.35 MSP-FET430UIF ......................................................................................................... 139
B.35.1 MSP-FET430UIF Revision History .......................................................................... 144
C Hardware Installation Guide .............................................................................................. 145
C.1 Hardware Installation .................................................................................................... 146
Document Revision History ........................................................................................................ 151
SLAU278Q–May 2009–Revised February 2014 Contents 3
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com
List of Figures
2-1. Signal Connections for 4-Wire JTAG Communication................................................................ 21
2-2. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire) Used by MSP430F2xx,
MSP430G2xx, and MSP430F4xx Devices............................................................................. 22
2-3. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire) Used by MSP430F5xx and
MSP430F6xx Devices .................................................................................................... 23
B-1. MSP-TS430D8 Target Socket Module, Schematic ................................................................... 31
B-2. MSP-TS430D8 Target Socket Module, PCB .......................................................................... 32
B-3. MSP-TS430PW14 Target Socket Module, Schematic ............................................................... 34
B-4. MSP-TS430PW14 Target Socket Module, PCB ...................................................................... 35
B-5. MSP-TS430L092 Target Socket Module, Schematic................................................................. 37
B-6. MSP-TS430L092 Target Socket Module, PCB........................................................................ 38
B-7. MSP-TS430L092 Active Cable Target Socket Module, Schematic................................................. 40
B-8. MSP-TS430L092 Active Cable Target Socket Module, PCB........................................................ 41
B-9. MSP-TS430PW24 Target Socket Module, Schematic ............................................................... 43
B-10. MSP-TS430PW24 Target Socket Module, PCB ...................................................................... 44
B-11. MSP-TS430DW28 Target Socket Module, Schematic ............................................................... 46
B-12. MSP-TS430DW28 Target Socket Module, PCB ...................................................................... 47
B-13. MSP-TS430PW28 Target Socket Module, Schematic ............................................................... 49
B-14. MSP-TS430PW28 Target Socket Module, PCB ...................................................................... 50
B-15. MSP-TS430PW28A Target Socket Module, Schematic.............................................................. 52
B-16. MSP-TS430PW28A Target Socket Module, PCB (Red) ............................................................. 53
B-17. MSP-TS430DA38 Target Socket Module, Schematic ................................................................ 55
B-18. MSP-TS430DA38 Target Socket Module, PCB ....................................................................... 56
B-19. MSP-TS430QFN23x0 Target Socket Module, Schematic ........................................................... 58
B-20. MSP-TS430QFN23x0 Target Socket Module, PCB .................................................................. 59
B-21. MSP-TS430RSB40 Target Socket Module, Schematic .............................................................. 61
B-22. MSP-TS430RSB40 Target Socket Module, PCB ..................................................................... 62
B-23. MSP-TS430RHA40A Target Socket Module, Schematic ............................................................ 64
B-24. MSP-TS430RHA40A Target Socket Module, PCB ................................................................... 65
B-25. MSP-TS430DL48 Target Socket Module, Schematic ................................................................ 67
B-26. MSP-TS430DL48 Target Socket Module, PCB ....................................................................... 68
B-27. MSP-TS430RGZ48B Target Socket Module, Schematic ............................................................ 70
B-28. MSP-TS430RGZ48B Target Socket Module, PCB ................................................................... 71
B-29. MSP-TS430RGZ48C Target Socket Module, Schematic ............................................................ 73
B-30. MSP-TS430RGZ48C Target Socket Module, PCB ................................................................... 74
B-31. MSP-TS430PM64 Target Socket Module, Schematic................................................................ 76
B-32. MSP-TS430PM64 Target Socket Module, PCB....................................................................... 77
B-33. MSP-TS430PM64A Target Socket Module, Schematic .............................................................. 79
B-34. MSP-TS430PM64A Target Socket Module, PCB ..................................................................... 80
B-35. MSP-TS430RGC64B Target Socket Module, Schematic ............................................................ 82
B-36. MSP-TS430RGC64B Target Socket Module, PCB ................................................................... 83
B-37. MSP-TS430RGC64C Target Socket Module, Schematic............................................................ 86
B-38. MSP-TS430RGC64C Target Socket Module, PCB................................................................... 87
B-39. MSP-TS430RGC64USB Target Socket Module, Schematic ........................................................ 89
B-40. MSP-TS430RGC64USB Target Socket Module, PCB ............................................................... 90
B-41. MSP-TS430PN80 Target Socket Module, Schematic ................................................................ 93
B-42. MSP-TS430PN80 Target Socket Module, PCB ....................................................................... 94
B-43. MSP-TS430PN80A Target Socket Module, Schematic .............................................................. 96
4 List of Figures SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com
B-44. MSP-TS430PN80A Target Socket Module, PCB ..................................................................... 97
B-45. MSP-TS430PN80USB Target Socket Module, Schematic .......................................................... 99
B-46. MSP-TS430PN80USB Target Socket Module, PCB ................................................................ 100
B-47. MSP-TS430PZ100 Target Socket Module, Schematic ............................................................. 103
B-48. MSP-TS430PZ100 Target Socket Module, PCB .................................................................... 104
B-49. MSP-TS430PZ100A Target Socket Module, Schematic............................................................ 106
B-50. MSP-TS430PZ100A Target Socket Module, PCB................................................................... 107
B-51. MSP-TS430PZ100B Target Socket Module, Schematic............................................................ 109
B-52. MSP-TS430PZ100B Target Socket Module, PCB................................................................... 110
B-53. MSP-TS430PZ100C Target Socket Module, Schematic ........................................................... 112
B-54. MSP-TS430PZ100C Target Socket Module, PCB .................................................................. 113
B-55. MSP-TS430PZ5x100 Target Socket Module, Schematic .......................................................... 115
B-56. MSP-TS430PZ5x100 Target Socket Module, PCB.................................................................. 116
B-57. MSP-TS430PZ100USB Target Socket Module, Schematic........................................................ 118
B-58. MSP-TS430PZ100USB Target Socket Module, PCB............................................................... 119
B-59. MSP-TS430PEU128 Target Socket Module, Schematic ........................................................... 122
B-60. MSP-TS430PEU128 Target Socket Module, PCB .................................................................. 123
B-61. EM430F5137RF900 Target board, Schematic....................................................................... 125
B-62. EM430F5137RF900 Target board, PCB.............................................................................. 126
B-63. EM430F6137RF900 Target board, Schematic....................................................................... 129
B-64. EM430F6137RF900 Target board, PCB.............................................................................. 130
B-65. EM430F6147RF900 Target Board, Schematic ...................................................................... 133
B-66. EM430F6147RF900 Target Board, PCB ............................................................................. 134
B-67. MSP-FET430PIF FET Interface Module, Schematic ................................................................ 137
B-68. MSP-FET430PIF FET Interface Module, PCB....................................................................... 138
B-69. MSP-FET430UIF USB Interface, Schematic (1 of 4) ............................................................... 139
B-70. MSP-FET430UIF USB Interface, Schematic (2 of 4) ............................................................... 140
B-71. MSP-FET430UIF USB Interface, Schematic (3 of 4) ............................................................... 141
B-72. MSP-FET430UIF USB Interface, Schematic (4 of 4) ............................................................... 142
B-73. MSP-FET430UIF USB Interface, PCB ................................................................................ 143
C-1. Windows XP Hardware Wizard ........................................................................................ 146
C-2. Windows XP Driver Location Selection Folder....................................................................... 147
C-3. Device Manager Using USB Debug Interface using VID/PID 0x2047/0x0010................................... 148
C-4. Device Manager Using USB Debug Interface with VID/PID 0x0451/0xF430 .................................... 149
C-5. Device Manager Using USB Debug Interface with VID/PID 0x0451/0xF432 .................................... 150
SLAU278Q–May 2009–Revised February 2014 List of Figures 5
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com
List of Tables
1-1. Flash Emulation Tool (FET) Features and Device Compatibility.................................................... 11
1-2. Individual Kit Contents, MSP-TS430xx ................................................................................. 14
B-1. MSP-TS430D8 Bill of Materials.......................................................................................... 33
B-2. MSP-TS430PW14 Bill of Materials...................................................................................... 36
B-3. MSP-TS430L092 Bill of Materials ....................................................................................... 39
B-4. MSP-TS430L092 JP1 Settings .......................................................................................... 41
B-5. MSP-TS430L092 Active Cable Bill of Materials ....................................................................... 42
B-6. MSP-TS430PW24 Bill of Materials...................................................................................... 45
B-7. MSP-TS430DW28 Bill of Materials...................................................................................... 48
B-8. MSP-TS430PW28 Bill of Materials ..................................................................................... 51
B-9. MSP-TS430PW28A Bill of Materials .................................................................................... 54
B-10. MSP-TS430DA38 Bill of Materials ...................................................................................... 57
B-11. MSP-TS430QFN23x0 Bill of Materials.................................................................................. 60
B-12. MSP-TS430RSB40 Bill of Materials .................................................................................... 63
B-13. MSP-TS430RHA40A Bill of Materials................................................................................... 66
B-14. MSP-TS430DL48 Bill of Materials....................................................................................... 69
B-15. MSP-TS430RGZ48B Bill of Materials................................................................................... 72
B-16. MSP-TS430RGZ48C Revision History ................................................................................. 74
B-17. MSP-TS430RGZ48C Bill of Materials .................................................................................. 75
B-18. MSP-TS430PM64 Bill of Materials ...................................................................................... 78
B-19. MSP-TS430PM64A Bill of Materials .................................................................................... 81
B-20. MSP-TS430RGC64B Bill of Materials .................................................................................. 84
B-21. MSP-TS430RGC64C Bill of Materials .................................................................................. 88
B-22. MSP-TS430RGC64USB Bill of Materials............................................................................... 91
B-23. MSP-TS430PN80 Bill of Materials ...................................................................................... 95
B-24. MSP-TS430PN80A Bill of Materials .................................................................................... 98
B-25. MSP-TS430PN80USB Bill of Materials ............................................................................... 101
B-26. MSP-TS430PZ100 Bill of Materials.................................................................................... 105
B-27. MSP-TS430PZ100A Bill of Materials.................................................................................. 108
B-28. MSP-TS430PZ100B Bill of Materials.................................................................................. 111
B-29. MSP-TS430PZ100C Bill of Materials.................................................................................. 114
B-30. MSP-TS430PZ5x100 Bill of Materials................................................................................. 117
B-31. MSP-TS430PZ100USB Bill of Materials .............................................................................. 120
B-32. MSP-TS430PEU128 Bill of Materials ................................................................................. 124
B-33. EM430F5137RF900 Bill of Materials .................................................................................. 127
B-34. EM430F6137RF900 Bill of Materials .................................................................................. 131
B-35. EM430F6147RF900 Bill of Materials .................................................................................. 135
C-1. USB VIDs and PIDs Used in MSP430 Tools......................................................................... 146
6 List of Tables SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Preface
SLAU278Q–May 2009–Revised February 2014
Read This First
About This Manual
This manual describes the hardware of the Texas Instruments MSP-FET430 Flash Emulation Tool (FET).
The FET is the program development tool for the MSP430™ ultra-low-power microcontroller. Both
available interface types, the parallel port interface and the USB interface, are described.
How to Use This Manual
Read and follow the instructions in Chapter 1. This chapter lists the contents of the FET, provides
instructions on installing the hardware and according software drivers. After you see how quick and easy it
is to use the development tools, TI recommends that you read all of this manual.
This manual describes the setup and operation of the FET but does not fully describe the MSP430™
microcontrollers or the development software systems. For details of these items, see the appropriate TI
documents listed in Section 1.18.
This manual applies to the following tools (and devices):
• MSP-FET430PIF (debug interface with parallel port connection, for all MSP430 flash-based devices)
• MSP-FET430UIF (debug interface with USB connection, for all MSP430 flash-based devices)
• eZ430-F2013 (USB stick form factor interface with attached MSP430F2013 target, for all
MSP430F20xx, MSP430G2x01, MSP430G2x11, MSP430G2x21, and MSP430G2x31 devices)
• eZ430-T2012 (three MSP430F2012 based target boards)
• eZ430-RF2500 (USB stick form factor interface with attached MSP430F2274 and CC2500 target, for
all MSP430F20xx, MSP430F21x2, MSP430F22xx, MSP430G2x01, MSP430G2x11, MSP430G2x21,
and MSP430G2x31 devices)
• eZ430-RF2500T (one MSP430F2274 and CC2500 target board including battery pack)
• eZ430-RF2500-SEH (USB stick form factor interface with attached MSP430F2274 and CC2500 target
and solar energy harvesting module)
• eZ430-Chronos-xxx (USB stick form factor interface with CC430F6137 based development system
contained in a watch. Includes <1 GHz RF USB access point)
Stand-alone target-socket modules (without debug interface) named as MSP-TS430TSxx.
Tools named as MSP-FET430Uxx contain the USB debug interface (MSP-FET430UIF) and the respective
target socket module MSP-TS430TSxx, where 'xx' is the same for both names. Following tools contain
also the USB debug interface (MSP-FET430UIF):
• FET430F5137RF900 (for CC430F513x devices in 48-pin RGZ packages) (green PCB)
• FET430F6137RF900 (for CC430F612x and CC430F613x devices in 64-pin RGC packages) (green
PCB)
These tools contain the most up-to-date materials available at the time of packaging. For the latest
materials (data sheets, user's guides, software, application information, and so on), visit the TI MSP430
web site at www.ti.com/msp430 or contact your local TI sales office.
SLAU278Q–May 2009–Revised February 2014 Read This First 7
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Information About Cautions and Warnings www.ti.com
Information About Cautions and Warnings
This document may contain cautions and warnings.
CAUTION
This is an example of a caution statement.
A caution statement describes a situation that could potentially damage your
software or equipment.
WARNING
This is an example of a warning statement.
A warning statement describes a situation that could potentially
cause harm to you.
The information in a caution or a warning is provided for your protection. Read each caution and warning
carefully.
Related Documentation From Texas Instruments
MSP430 development tools documentation:
Code Composer Studio v5.4 for MSP430 User's Guide (literature number SLAU157)
Code Composer Studio v5.x Core Edition (CCS Mediawiki)
IAR Embedded Workbench Version 3+ for MSP430(tm) User's Guide (literature number SLAU138)
IAR Embedded Workbench KickStart installer (literature number SLAC050)
eZ430-F2013 Development Tool User's Guide (literature number SLAU176)
eZ430-RF2480 Demonstration Kit User's Guide (literature number SWRU151)
eZ430-RF2500 Development Tool User's Guide (literature number SLAU227)
eZ430-RF2500-SEH Development Tool User's Guide (literature number SLAU273)
eZ430-Chronos Development Tool User's Guide (literature number SLAU292)
Spectrum Analyzer (MSP-SA430-SUB1GHZ) User's Guide (literature number SLAU371)
MSP-EXP430F5529 Experimenter Board User's Guide (literature number SLAU330)
MSP-EXP430F5438 Experimenter Board User's Guide (literature number SLAU263)
MSP-EXP430G2 LaunchPad Experimenter Board User's Guide (literature number SLAU318)
MSP Gang Programmer (MSP-GANG) User's Guide (literature number SLAU358)
MSP430 Gang Programmer (MSP-GANG430) User's Guide (literature number SLAU101)
MSP430 device user's guides:
MSP430x1xx Family User's Guide (literature number SLAU049)
MSP430x2xx Family User's Guide (literature number SLAU144)
MSP430x3xx Family User's Guide (literature number SLAU012)
MSP430x4xx Family User's Guide (literature number SLAU056)
MSP430x5xx and MSP430x6xx Family User's Guide (literature number SLAU208)
CC430 Family User's Guide (literature number SLAU259)
8 Read This First SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com If You Need Assistance
MSP430FR57xx Family User's Guide (literature number SLAU272)
MSP430FR58xx and MSP430FR59xx Family User's Guide (literature number SLAU367)
If You Need Assistance
Support for the MSP430 devices and the FET development tools is provided by the Texas Instruments
Product Information Center (PIC). Contact information for the PIC can be found on the TI web site at
www.ti.com/support. The Texas Instruments E2E Community support forums for the MSP430 provide
open interaction with peer engineers, TI engineers, and other experts. Additional device-specific
information can be found on the MSP430 web site.
SLAU278Q–May 2009–Revised February 2014 Read This First 9
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Chapter 1
SLAU278Q–May 2009–Revised February 2014
Get Started Now!
This chapter lists the contents of the FET and provides instruction on installing the hardware.
Topic ........................................................................................................................... Page
1.1 Flash Emulation Tool (FET) Overview .................................................................. 11
1.2 Kit Contents, MSP-FET430PIF ............................................................................. 12
1.3 Kit Contents, eZ430-F2013 .................................................................................. 12
1.4 Kit Contents, eZ430-T2012 .................................................................................. 12
1.5 Kit Contents, eZ430-RF2500 ................................................................................ 12
1.6 Kit Contents, eZ430-RF2500T .............................................................................. 12
1.7 Kit Contents, eZ430-RF2500-SEH ........................................................................ 12
1.8 Kit Contents, eZ430-Chronos-xxx ........................................................................ 13
1.9 Kit Contents, MSP-FET430UIF ............................................................................. 13
1.10 Kit Contents, MSP-FET430xx .............................................................................. 13
1.11 Kit Contents, FET430F6137RF900 ........................................................................ 14
1.12 Kit Contents, MSP-TS430xx ................................................................................ 14
1.13 Kit Contents, EM430Fx1x7RF900 ......................................................................... 16
1.14 Hardware Installation, MSP-FET430PIF ................................................................ 16
1.15 Hardware Installation, MSP-FET430UIF ................................................................ 17
1.16 Hardware Installation, eZ430-XXXX, MSP-EXP430G2, MSP-EXP430FR5739, MSPEXP430F5529
.................................................................................................... 17
1.17 Hardware Installation, MSP-FET430Uxx, MSP-TS430xxx, FET430F6137RF900,
EM430Fx137RF900 ............................................................................................ 17
1.18 Important MSP430 Documents on the Web ........................................................... 18
10 Get Started Now! SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com Flash Emulation Tool (FET) Overview
1.1 Flash Emulation Tool (FET) Overview
TI offers several flash emulation tools according to different requirements.
Table 1-1. Flash Emulation Tool (FET) Features and Device Compatibility(1)
eZ430-F2013
eZ430-RF2500
eZ430-RF2480
eZ430-RF2560
MSP-WDSxx Metawatch
eZ430-Chronos
MSP-FET430PIF
MSP-FET430UIF
LaunchPad (MSP-EXP430G2)
MSP-EXP430FR5739
MSP-EXP430F5529
Supports all programmable MSP430 and
CC430 devices (F1xx, F2xx, F4xx, F5xx, F6xx, G2xx, L092, FR57xx, FR59xx, x x
MSP430TCH5E)
Supports only F20xx, G2x01, G2x11, x G2x21, G2x31
Supports MSP430F20xx, F21x2, F22xx, x G2x01, G2x11, G2x21, G2x31, G2x53
Supports MSP430F20xx, F21x2, F22xx, x x G2x01, G2x11, G2x21, G2x31
Supports F5438, F5438A x
Supports BT5190, F5438A x
Supports only F552x x
Supports FR57xx, F5638, F6638 x
Supports only CC430F613x x
Allows fuse blow x
Adjustable target supply voltage x
Fixed 2.8-V target supply voltage x
Fixed 3.6-V target supply voltage x x x x x x x x x
4-wire JTAG x x
2-wire JTAG(2) x x x x x x x x x x
Application UART x x x x x x x x
Supported by CCS for Windows x x x x x x x x x x x
Supported by CCS for Linux x
Supported by IAR x x x x x x x x x x x
(1) The MSP-FET430PIF is for legacy device support only. This emulation tool will not support any new devices released after 2011.
(2) The 2-wire JTAG debug interface is also referred to as Spy-Bi-Wire (SBW) interface.
SLAU278Q–May 2009–Revised February 2014 Get Started Now! 11
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Kit Contents, MSP-FET430PIF www.ti.com
1.2 Kit Contents, MSP-FET430PIF
• One READ ME FIRST document
• One MSP-FET430PIF interface module
• One 25-conductor cable
• One 14-conductor cable
NOTE: This part is obsolete and is not recommended to use in new design.
1.3 Kit Contents, eZ430-F2013
• One QUICK START GUIDE document
• One eZ430-F2013 development tool including one MSP430F2013 target board
1.4 Kit Contents, eZ430-T2012
• Three MSP430F2012-based target boards
1.5 Kit Contents, eZ430-RF2500
• One QUICK START GUIDE document
• One eZ430-RF2500 CD-ROM
• One eZ430-RF2500 development tool including one MSP430F2274 and CC2500 target board
• One eZ430-RF2500T target board
• One AAA battery pack with expansion board (batteries included)
1.6 Kit Contents, eZ430-RF2500T
• One eZ430-RF2500T target board
• One AAA battery pack with expansion board (batteries included)
1.7 Kit Contents, eZ430-RF2500-SEH
• One MSP430 development tool CD containing documentation and development software
• One eZ430-RF USB debugging interface
• Two eZ430-RF2500T wireless target boards
• One SEH-01 solar energy harvester board
• One AAA battery pack with expansion board (batteries included)
12 Get Started Now! SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com Kit Contents, eZ430-Chronos-xxx
1.8 Kit Contents, eZ430-Chronos-xxx
'433, '868, '915
• One QUICK START GUIDE document
• One ez430-Chronos emulator
• One screwdriver
• Two spare screws
eZ430-Chronos-433:
– One 433-MHz eZ430-Chronos watch (battery included)
– One 433-MHz eZ430-Chronos access point
eZ430-Chronos-868:
– One 868-MHz eZ430-Chronos watch (battery included)
– One 868-MHz eZ430-Chronos access point
eZ430-Chronos-915:
– One 915-MHz eZ430-Chronos watch (battery included)
– One 915-MHz eZ430-Chronos access point
1.9 Kit Contents, MSP-FET430UIF
• One READ ME FIRST document
• One MSP-FET430UIF interface module
• One USB cable
• One 14-conductor cable
1.10 Kit Contents, MSP-FET430xx
• One READ ME FIRST document
• One MSP-FET430UIF USB interface module. This is the unit that has a USB B-connector on one end
of the case, and a 2×7-pin male connector on the other end of the case.
• One USB cable
• One 32.768-kHz crystal from Micro Crystal, if the board has an option to use the quartz.
• A 2×7-pin male JTAG connector is also present on the PCB (see different setup for L092)
• One 14-Pin JTAG conductor cable
• One small box containing two MSP430 device samples (See table for Sample Type)
• One target socket module. To determine the devices used for each board and a summary of the board,
see Table 1-2. The name of MSP-TS430xx board can be derived from the name of the MSP-FET430xx
kit; for example, the MSP-FET430U28A kit contains the MSP-TS430PW28A board.
Refer to the device data sheets for device specifications. Device errata can be found in the respective
device product folder on the web provided as a PDF document. Depending on the device, errata may also
be found in the device bug database at www.ti.com/sc/cgi-bin/buglist.cgi.
SLAU278Q–May 2009–Revised February 2014 Get Started Now! 13
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Kit Contents, FET430F6137RF900 www.ti.com
1.11 Kit Contents, FET430F6137RF900
• One READ ME FIRST document
• One legal notice
• One MSP-FET430UIF interface module
• Two EM430F6137RF900 target socket modules. This is the PCB on which is soldered a CC430F6137
device in a 64-pin RGC package. A 2×7-pin male connector is also present on the PCB.
• Two CC430EM battery packs
• Four AAA batteries
• Two 868-MHz or 915-MHz antennas
• Two 32.768-kHz crystals
• 18 PCB 2x4-pin headers
• One USB cable
• One 14-pin JTAG conductor cable
1.12 Kit Contents, MSP-TS430xx
• One READ ME FIRST document
• One 32.768-kHz crystal from Micro Crystal (except MSP-TS430PW24)
• One target socket module
• A 2×7-pin male JTAG connector is also present on the PCB (see different setup for L092)
• MSP430 Device samples (see Table 1-2 for sample type)
Table 1-2. Individual Kit Contents, MSP-TS430xx
Part Number Socket Type Supported Devices Included Devices Headers and Comment
MSP-TS430D8 8-pin D MSP430G2210, 1 x MSP430G2210 and Two PCB 1×4-pin headers (two male and
(green PCB) (TSSOP ZIF) MSP430G2230 1 x MSP430G2230 two female)
MSP430F20xx,
MSP-TS430PW14 14-pin PW MSP430G2x01, Four PCB 1×7-pin headers (two male and (green PCB) (TSSOP ZIF) MSP430G2x11, 2 x MSP430F2013IPW two female) MSP430G2x21,
MSP430G2x31
Four PCB 1×7-pin headers (two male and
two female). A "Micro-MaTch" 10-pin
MSP-TS430L092 14-pin PW female connector is also present on the (green PCB) (TSSOP ZIF) MSP-TS430L092 2 x MSP430L092IPW PCB which connects the kit with an 'Active Cable' PCB; this 'Active Cable'
PCB is connected by 14-pin JTAG cable
with the FET430UIF
MSP-TS430PW24 24-pin PW MSP430AFE2xx 2 x MSP430AFE253IPW Four PCB 1×12-pin headers (two male (green PCB) (TSSOP ZIF) and two female)
MSP430F11x1,
MSP430F11x2,
MSP-TS430DW28 28-pin DW MSP430F12x, Four PCB 1×12-pin headers (two male (green PCB) (SSOP ZIF) MSP430F12x2, 2 x MSP430F123IDW and two female) MSP430F21xx
Supports devices in 20- and
28-pin DA packages
MSP430F11x1,
MSP-TS430PW28 28-pin PW MSP430F11x2, Four PCB 1×12-pin headers (two male (green PCB) (TSSOP ZIF) MSP430F12x, 2 x MSP430F2132IPW and two female) MSP430F12x2,
MSP430F21xx
MSP430F20xx,
MSP-TS430PW28A 28-pin PW MSP430G2xxx in 14-, 20-, Four PCB 1×12-pin headers (two male (red PCB) (TSSOP ZIF) and 28-pin PW packages, 2 x MSP430G2452IPW20 and two female) MSP430TCH5E in PW
package
MSP-TS430DA38 38-pin DA MSP430F22xx, 2 x MSP430F2274IDA Four PCB 1×19-pin headers (two male (green PCB) (TSSOP ZIF) MSP430G2x44, 2 x MSP430G2744IDA and two female) MSP430G2x55 2 x MSP430G2955IDA
MSP-TS430QFN23x0 40-pin RHA MSP430F23x0 2 x MSP430F2370IRHA Eight PCB 1×10-pin headers (four male (green PCB) (QFN ZIF) and four female)
14 Get Started Now! SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com Kit Contents, MSP-TS430xx
Table 1-2. Individual Kit Contents, MSP-TS430xx (continued)
Part Number Socket Type Supported Devices Included Devices Headers and Comment
MSP-TS430RSB40 40-pin RSB MSP430F51x1, 2 x MSP430F5172IRSB Eight PCB 1×10-pin headers (four male (green PCB) (QFN ZIF) MSP430F51x2 and four female)
MSP-TS430RHA40A 40-pin RHA MSP430FR572x, 2 x MSP430FR5739IRHA Eight PCB 1×10-pin headers (four male (red PCB) (QFN ZIF) MSP430FR573x and four female)
MSP-TS430DL48 48-pin DL MSP430F42x0 2 x MSP430F4270IDL Four PCB 2×12-pin headers (two male (green PCB) (TSSOP ZIF) and two female)
MSP-TS430RGZ48B 48-pin RGZ MSP430F534x 2 x MSP430F5342IRGZ Eight PCB 1×12-pin headers (four male (blue PCB) (QFN ZIF) and four female)
MSP-TS430RGZ48C 48-pin RGZ MSP430FR58xx and 2 x MSP430FR5969IRGZ Eight PCB 1×12-pin headers (four male (black PCB) (QFN ZIF) MSP430FR59xx and four female)
MSP430F13x,
MSP430F14x,
MSP430F14x1,
MSP430F15x,
MSP430F16x,
MSP430F16x1,
MSP430F23x, TS Kit:
MSP-TS430PM64 64-pin PM MSP430F24x, 2 x MSP430F2618IPM; Eight PCB 1×16-pin headers (four male (green PCB) (QFP ZIF) MSP430F24xx, FET Kit: and four female) MSP430F261x, 2 x MSP430F417IPM and
MSP430F41x, 2 x MSP430F169IPM
MSP430F42x,
MSP430F42xA,
MSP430FE42x,
MSP430FE42xA,
MSP430FE42x2,
MSP430FW42x
MSP-TS430PM64A 64-pin PM MSP430F41x2 2 x MSP430F4152IPM Eight PCB 1×16-pin headers (four male (red PCB) (QFP ZIF) and four female)
MSP-TS430RGC64B 64-pin RGC MSP430F530x 2 x MSP430F5310IRGC Eight PCB 1×16-pin headers (four male (blue PCB) (QFN ZIF) and four female)
MSP430F522x,
MSP-TS430RGC64C 64-pin RGC MSP430F521x , Eight PCB 1×16-pin headers (four male (black PCB) (QFN ZIF) MSP430F523x, 2 x MSP430F5229IRGC and four female) MSP430F524x,
MSP430F525x
MSP-TS430RGC64USB 64-pin RGC MSP430F550x, 2 x MSP430F5510IRGC or Eight PCB 1×16-pin headers (four male (green PCB) (QFN ZIF) MSP430F551x, 2 x MSP430F5528IRGC and four female) MSP430F552x
MSP430F241x,
MSP430F261x,
MSP-TS430PN80 80-pin PN MSP430F43x, Eight PCB 1×20-pin headers (four male (green PCB) (QFP ZIF) MSP430F43x1, 2 x MSP430FG439IPN and four female) MSP430FG43x,
MSP430F47x,
MSP430FG47x
MSP-TS430PN80A 80-pin PN MSP430F532x 2 x MSP430F5329IPN Eight PCB 1×20-pin headers (four male (red PCB) (QFP ZIF) and four female)
MSP-TS430PN80USB 80-pin PN MSP430F552x, 2 x MSP430F5529IPN Eight PCB 1×20-pin headers (four male (green PCB) (QFP ZIF) MSP430F551x and four female)
MSP430F43x,
MSP-TS430PZ100 100-pin PZ MSP430F43x1, Eight PCB 1×25-pin headers (four male (green PCB) (QFP ZIF) MSP430F44x, 2 x MSP430FG4619IPZ and four female) MSP430FG461x, MSP430
F47xx
MSP-TS430PZ100A 100-pin PZ MSP430F471xx 2 x MSP430F47197IPZ Eight PCB 1×25-pin headers (four male (red PCB) (QFP ZIF) and four female)
MSP-TS430PZ100B 100-pin PZ MSP430F67xx 2 x MSP430F6733IPZ Eight PCB 1×25-pin headers (four male (blue PCB) (QFP ZIF) and four female)
MSP430F645x,
MSP-TS430PZ100C 100-pin PZ MSP430F643x, 2 x MSP430F6438IPZ Eight PCB 1×25-pin headers (four male (black PCB) (QFP ZIF) MSP430F535x, and four female)
MSP430F533x
MSP-TS430PZ5x100 100-pin PZ MSP430F543x, Eight PCB 1×25-pin headers (four male (green PCB) (QFP ZIF) MSP430BT5190, 2 x MSP430F5438IPZ and four female) MSP430SL5438A
SLAU278Q–May 2009–Revised February 2014 Get Started Now! 15
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Kit Contents, EM430Fx1x7RF900 www.ti.com
Table 1-2. Individual Kit Contents, MSP-TS430xx (continued)
Part Number Socket Type Supported Devices Included Devices Headers and Comment
MSP-TS430PZ100USB 100-pin PZ MSP430F665x, Eight PCB 1×25-pin headers (four male (green PCB) (QFP ZIF) MSP430F663x, 2 x MSP430F6638IPZ and four female) MSP430F563x
MSP430F677x,
MSP430F676x, Four PCB 1x26-pin headers (two male MSP-TS430PEU128 128-pin PEU MSP430F674x, 2 x MSP430F67791IPEU and two female) and four PCB 1x38-pin (green PCB) (QFP ZIF) MSP430F677x1, headers (two male and two female) MSP430F676x1,
MSP430F674x1
See the device data sheets for device specifications. Device errata can be found in the respective device
product folder on the web provided as a PDF document. Depending on the device, errata may also be
found in the device bug database at www.ti.com/sc/cgi-bin/buglist.cgi.
1.13 Kit Contents, EM430Fx1x7RF900
• One READ ME FIRST document
• One legal notice
• Two target socket module
MSP-EM430F5137RF900: Two EM430F5137RF900 target socket modules. This is the PCB on which
is soldered a CC430F5137 device in a 48-pin RGZ package. A 2×7-pin male connector is also present
on the PCB
MSP-EM430F6137RF900: Two EM430F6137RF900 target socket modules. This is the PCB on which
is soldered a CC430F6137 device in a 64-pin RGC package. A 2×7-pin male connector is also present
on the PCB
MSP-EM430F6147RF900: Two EM430F6147RF900 target socket modules. This is the PCB on which
is soldered a CC430F6147 device in a 64-pin RGC package. A 2×7-pin male connector is also present
on the PCB
• Two CC430EM battery packs
• Four AAA batteries
• Two 868- or 915-MHz antennas
• Two 32.768-kHz crystals
• 18 PCB 2×4-pin headers
1.14 Hardware Installation, MSP-FET430PIF
Follow these steps to install the hardware for the MSP-FET430PIF tools:
1. Use the 25-conductor cable to connect the FET interface module to the parallel port of the PC. The
necessary driver for accessing the PC parallel port is installed automatically during CCS or IAR
Embedded Workbench installation. Note that a restart is required after the CCS or IAR Embedded
Workbench installation for the driver to become active.
2. Use the 14-conductor cable to connect the parallel-port debug interface module to a target board, such
as an MSP-TS430xxx target socket module. Module schematics and PCBs are shown in Appendix B.
16 Get Started Now! SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com Hardware Installation, MSP-FET430UIF
1.15 Hardware Installation, MSP-FET430UIF
Follow these steps to install the hardware for the MSP-FET430UIF tool:
1. Install the IDE (CCS or IAR) you plan to use before connecting USB-FET interface to PC. The IDE
installation installs drivers automatically.
2. Use the USB cable to connect the USB-FET interface module to a USB port on the PC. The USB FET
should be recognized, as the USB device driver is installed automatically. If the driver has not been
installed yet, the install wizard starts. Follow the prompts and point the wizard to the driver files.
The default location for CCS is c:\ti\ccsv5\ccs_base\emulation\drivers\msp430\USB_CDC or
c:\ti\ccsv5\ccs_base\emulation\drivers\msp430\USB_FET_XP_XX, depending of firmware version of
the tool.
The default location for IAR Embedded Workbench is \Embedded Workbench x.x\
430\drivers\TIUSBFET\eZ430-UART or \Embedded Workbench x.x\
430\drivers\, depending of firmware version of the tool.
The USB driver is installed automatically. Detailed driver installation instructions can be found in
Appendix C.
3. After connecting to a PC, the USB FET performs a self-test during which the red LED may flash for
approximately two seconds. If the self-test passes successfully, the green LED stays on.
4. Use the 14-conductor cable to connect the USB-FET interface module to a target board, such as an
MSP-TS430xxx target socket module.
5. Ensure that the MSP430 device is securely seated in the socket, and that its pin 1 (indicated with a
circular indentation on the top surface) aligns with the "1" mark on the PCB.
6. Compared to the parallel-port debug interface, the USB FET has additional features including JTAG
security fuse blow and adjustable target VCC (1.8 V to 3.6 V). Supply the module with up to 60 mA.
1.16 Hardware Installation, eZ430-XXXX, MSP-EXP430G2, MSP-EXP430FR5739, MSPEXP430F5529
To install eZ430-XXXX, MSP-EXP430G2, MSP-EXP430FR5739, MSP-EXP430F5529 tools follow
instructions 1 and 2 of Section 1.15
1.17 Hardware Installation, MSP-FET430Uxx, MSP-TS430xxx, FET430F6137RF900,
EM430Fx137RF900
Follow these steps to install the hardware for the MSP-FET430Uxx and MSP-TS430xxx tools:
1. Follow instructions 1 and 2 of Section 1.15
2. Connect the MSP-FET430PIF or MSP-FET430UIF debug interface to the appropriate port of the PC.
Use the 14-conductor cable to connect the FET interface module to the supplied target socket module.
3. Ensure that the MSP430 device is securely seated in the socket and that its pin 1 (indicated with a
circular indentation on the top surface) aligns with the "1" mark on the PCB.
4. Ensure that the two jumpers (LED and VCC) near the 2×7-pin male connector are in place. Illustrations
of the target socket modules and their parts are found in Appendix B.
SLAU278Q–May 2009–Revised February 2014 Get Started Now! 17
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Important MSP430 Documents on the Web www.ti.com
1.18 Important MSP430 Documents on the Web
The primary sources of MSP430 information are the device-specific data sheet and user's guide. The
MSP430 web site (www.ti.com/msp430) contains the most recent version of these documents.
PDF documents describing the CCS tools (CCS IDE, the assembler, the C compiler, the linker, and the
librarian) are in the msp430\documentation folder. A Code Composer Studio specific Wiki page (FAQ) is
available, and the Texas Instruments E2E Community support forums for the MSP430 and Code
Composer Studio v5 provide additional help besides the product help and Welcome page.
PDF documents describing the IAR tools (Workbench C-SPY, the assembler, the C compiler, the linker,
and the librarian) are in the common\doc and 430\doc folders. Supplements to the documents (that is, the
latest information) are available in HTML format in the same directories. A IAR specific Wiki Page is also
available.
18 Get Started Now! SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Chapter 2
SLAU278Q–May 2009–Revised February 2014
Design Considerations for In-Circuit Programming
This chapter presents signal requirements for in-circuit programming of the MSP430.
Topic ........................................................................................................................... Page
2.1 Signal Connections for In-System Programming and Debugging ............................ 20
2.2 External Power .................................................................................................. 24
2.3 Bootstrap Loader (BSL) ..................................................................................... 24
SLAU278Q–May 2009–Revised February 2014 Design Considerations for In-Circuit Programming 19
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Signal Connections for In-System Programming and Debugging www.ti.com
2.1 Signal Connections for In-System Programming and Debugging
MSP-FET430PIF, MSP-FET430UIF, MSP-GANG, MSP-GANG430, MSP-PRGS430
With the proper connections, the debugger and an FET hardware JTAG interface (such as the MSPFET430PIF
and MSP-FET430UIF) can be used to program and debug code on the target board. In
addition, the connections also support the MSP-GANG430 or MSP-PRGS430 production programmers,
thus providing an easy way to program prototype boards, if desired.
Figure 2-1 shows the connections between the 14-pin FET interface module connector and the target
device required to support in-system programming and debugging for 4-wire JTAG communication.
Figure 2-2 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire). The 4-wire JTAG mode is
supported on most MSP430 devices, except devices with low pin counts (for example, MSP430G2230).
The 2-wire JTAG mode is available on selected devices only. See the Code Composer Studio for MSP430
User's Guide (SLAU157) or IAR Embedded Workbench Version 3+ for MSP430 User's Guide (SLAU138)
for information on which interface method can be used on which device.
The connections for the FET interface module and the MSP-GANG, MSP-GANG430, or MSP-PRGS430
are identical. Both the FET interface module and MSP-GANG430 can supply VCC to the target board
(through pin 2). In addition, the FET interface module, MSP-GANG, and MSP-GANG430 have a VCCsense
feature that, if used, requires an alternate connection (pin 4 instead of pin 2). The VCC-sense feature
senses the local VCC present on the target board (that is, a battery or other local power supply) and
adjusts the output signals accordingly. If the target board is to be powered by a local VCC, then the
connection to pin 4 on the JTAG should be made, and not the connection to pin 2. This uses the VCCsense
feature and prevents any contention that might occur if the local on-board VCC were connected to
the VCC supplied from the FET interface module, MSP-GANG or the MSP-GANG430. If the VCC-sense
feature is not necessary (that is, if the target board is to be powered from the FET interface module, MSPGANG,
or MSP-GANG430), the VCC connection is made to pin 2 on the JTAG header, and no connection
is made to pin 4. Figure 2-1 and Figure 2-2 show a jumper block that supports both scenarios of supplying
VCC to the target board. If this flexibility is not required, the desired VCC connections may be hard-wired to
eliminate the jumper block. Pins 2 and 4 must not be connected at the same time.
Note that in 4-wire JTAG communication mode (see Figure 2-1), the connection of the target RST signal
to the JTAG connector is optional when using devices that support only 4-wire JTAG communication
mode. However, when using devices that support 2-wire JTAG communication mode in 4-wire JTAG
mode, the RST connection must be made. The MSP430 development tools and device programmers
perform a target reset by issuing a JTAG command to gain control over the device. However, if this is
unsuccessful, the RST signal of the JTAG connector may be used by the development tool or device
programmer as an additional way to assert a device reset.
20 Design Considerations for In-Circuit Programming SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
1
3
5
7
9
11
13
2
4
6
8
10
12
14
TDO/TDI
TDI/VPP
TMS
TCK
GND
TEST/VPP
JTAG
VCC TOOL
VCC TARGET
J1 (see Note A)
J2 (see Note A)
VCC
R1
47 k
(see Note B)
W
C2
10 μF
C3
0.1 μF
VCC/AVCC/DVCC
RST/NMI
TDO/TDI
TDI/VPP
TMS
TCK
TEST/VPP (see Note C)
V /AV /DV SS SS SS
MSP430Fxxx
C1
10 nF/2.2 nF
(see Notes B and E)
RST (see Note D)
Important to connect
www.ti.com Signal Connections for In-System Programming and Debugging
A If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used,
make connection J2.
B The configuration of R1 and C1 for the RST/NMI pin depends on the device family. See the respective MSP430 family
user's guide for the recommended configuration.
C The TEST pin is available only on MSP430 family members with multiplexed JTAG pins. See the device-specific data
sheet to determine if this pin is available.
D The connection to the JTAG connector RST pin is optional when using a device that supports only 4-wire JTAG
communication mode, and it is not required for device programming or debugging. However, this connection is
required when using a device that supports 2-wire JTAG communication mode in 4-wire JTAG mode.
E When using a device that supports 2-wire JTAG communication in 4-wire JTAG mode, the upper limit for C1 should
not exceed 2.2 nF. This applies to both TI FET interface modules (LPT and USB FET).
Figure 2-1. Signal Connections for 4-Wire JTAG Communication
SLAU278Q–May 2009–Revised February 2014 Design Considerations for In-Circuit Programming 21
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
1
3
5
7
9
11
13
2
4
6
8
10
12
14
TEST/SBWTCK
MSP430Fxxx
RST/NMI/SBWTDIO
TDO/TDI
TCK
GND
TEST/VPP
JTAG
VCC TOOL
VCC TARGET
330!
R2
J1 (see Note A)
J2 (see Note A)
Important to connect
VCC/AVCC/DVCC
V /AV /DV SS SS SS
R1
47 k!
See Note B
C1
2.2 nF
See Note B
VCC
C2
10 μF
C3
0.1 μF
Signal Connections for In-System Programming and Debugging www.ti.com
A If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used,
make connection J2.
B The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during
JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with
the device. The upper limit for C1 is 2.2 nF when using current TI tools.
C R2 protects the JTAG debug interface TCK signal from the JTAG security fuse blow voltage that is supplied by the
TEST/VPP pin during the fuse blow process. If fuse blow functionality is not needed, R2 is not required (populate 0 Ω)
and do not connect TEST/VPP to TEST/SBWTCK.
Figure 2-2. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire) Used by MSP430F2xx,
MSP430G2xx, and MSP430F4xx Devices
22 Design Considerations for In-Circuit Programming SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
1
3
5
7
9
11
13
2
4
6
8
10
12
14
TEST/SBWTCK
MSP430Fxxx
RST/NMI/SBWTDIO
TDO/TDI
TCK
GND
JTAG
R1
47 k!
See Note B
VCC TOOL
VCC TARGET
C1
2.2 nF
See Note B
J1 (see Note A)
J2 (see Note A)
Important to connect
VCC/AVCC/DVCC
V /AV /DV SS SS SS
VCC
C2
10 μF
C3
0.1 μF
www.ti.com Signal Connections for In-System Programming and Debugging
A Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the
debug or programming adapter.
B The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during
JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with
the device. The upper limit for C1 is 2.2 nF when using current TI tools.
Figure 2-3. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire) Used by MSP430F5xx and
MSP430F6xx Devices
SLAU278Q–May 2009–Revised February 2014 Design Considerations for In-Circuit Programming 23
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
External Power www.ti.com
2.2 External Power
The MSP-FET430UIF can supply targets with up to 60 mA through pin 2 of the 14-pin connector. Note
that the target should not consume more than 60 mA, even as a peak current, as it may violate the USB
specification. For example, if the target board has a capacitor on VCC more than 10 μF, it may cause
inrush current during capacitor charging that may exceed 60 mA. In this case, the current should be
limited by the design of the target board, or an external power supply should be used.
The VCC for the target can be selected between 1.8 V and 3.6 V in steps of 0.1 V. Alternatively, the target
can be supplied externally. In this case, the external voltage should be connected to pin 4 of the 14-pin
connector. The MSP-FET430UIF then adjusts the level of the JTAG signals to external VCC automatically.
Only pin 2 (MSP-FET430UIF supplies target) or pin 4 (target is externally supplied) must be connected;
not both at the same time.
When a target socket module is powered from an external supply, the external supply powers the device
on the target socket module and any user circuitry connected to the target socket module, and the FET
interface module continues to be powered from the PC through the parallel port. If the externally supplied
voltage differs from that of the FET interface module, the target socket module must be modified so that
the externally supplied voltage is routed to the FET interface module (so that it may adjust its output
voltage levels accordingly). See the target socket module schematics in Appendix B.
The PC parallel port can source a limited amount of current. Because of the ultra-low-power requirement
of the MSP430, a standalone FET does not exceed the available current. However, if additional circuitry is
added to the tool, this current limit could be exceeded. In this case, external power can be supplied to the
tool through connections provided on the target socket modules. See the schematics and pictorials of the
target socket modules in Appendix B to locate the external power connectors. Note that the MSPFET430PIF
is not recommended for new design.
2.3 Bootstrap Loader (BSL)
The JTAG pins provide access to the memory of the MSP430 and CC430 devices. On some devices,
these pins are shared with the device port pins, and this sharing of pins can complicate a design (or
sharing may not be possible). As an alternative to using the JTAG pins, most MSP430Fxxx devices
contain a program (a "bootstrap loader") that permits the flash memory to be erased and programmed
using a reduced set of signals. The MSP430 Programming Via the Bootstrap Loader User's Guide
(SLAU319) describes this interface. See the MSP430 web site for the application reports and a list of
MSP430 BSL tool developers.
TI suggests that MSP430Fxxx customers design their circuits with the BSL in mind (that is, TI suggests
providing access to these signals by, for example, a header).
See FAQ Hardware #10 for a second alternative to sharing the JTAG and port pins.
24 Design Considerations for In-Circuit Programming SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Appendix A
SLAU278Q–May 2009–Revised February 2014
Frequently Asked Questions and Known Issues
This appendix presents solutions to frequently asked questions regarding the MSP-FET430 hardware.
Topic ........................................................................................................................... Page
A.1 Hardware FAQs ................................................................................................. 26
A.2 Known Issues ................................................................................................... 28
SLAU278Q–May 2009–Revised February 2014 Frequently Asked Questions and Known Issues 25
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Hardware FAQs www.ti.com
A.1 Hardware FAQs
1. MSP430F22xx Target Socket Module (MSP-TS430DA38) – Important Information
Due to the large capacitive coupling introduced by the device socket between the adjacent signals
XIN/P2.6 (socket pin 6) and RST/SBWTDIO (socket pin 7), in-system debugging can disturb the
LFXT1 low-frequency crystal oscillator operation (ACLK). This behavior applies only to the Spy-Bi-Wire
(2-wire) JTAG configuration and only to the period while a debug session is active.
Workarounds:
• Use the 4-wire JTAG mode debug configuration instead of the Spy-Bi-Wire (2-wire) JTAG
configuration. This can be achieved by placing jumpers JP4 through JP9 accordingly.
• Use the debugger option "Run Free" that can be selected from the Advanced Run drop-down
menu (at top of Debug View). This prevents the debugger from accessing the MSP430 device
while the application is running. Note that, in this mode, a manual halt is required to see if a
breakpoint was hit. See the IDE documentation for more information on this feature.
• Use an external clock source to drive XIN directly.
2. With current interface hardware and software, there is a weakness when adapting target boards
that are powered externally. This leads to an accidental fuse check in the MSP430 device. This is
valid for PIF and UIF but is seen most often on the UIF. A solution is being developed.
Workarounds:
• Connect the RST/NMI pin to the JTAG header (pin 11). LPT and USB tools are able to pull the
RST line, which also resets the device internal fuse logic.
• Use the debugger option "Release JTAG On Go" that can be selected from the IDE drop-down
menu. This prevents the debugger from accessing the MCU while the application is running. Note
that in this mode, a manual halt is required to see if a breakpoint was hit. See the IDE
documentation for more information on this feature.
• Use an external clock source to drive XIN directly.
3. The 14-conductor cable that connects the FET interface module and the target socket module must
not exceed 8 inches (20 centimeters) in length.
4. The signal assignment on the 14-conductor cable is identical for the parallel port interface and the
USB FET.
5. To use the on-chip ADC voltage references, the capacitor must be installed on the target socket
module. See the schematic of the target socket module to populate the capacitor according to the data
sheet of the device.
6. To use the charge pump on the devices with LCD+ Module, the capacitor must be installed on
the target socket module. See the schematic of the target socket module to populate the capacitor
according to the data sheet of the device.
7. Crystals or resonators Q1 and Q2 (if applicable) are not provided on the target socket module.
For MSP430 devices that contain user-selectable loading capacitors, see the device and crystal data
sheets for the value of capacitance.
8. Crystals or resonators have no effect upon the operation of the tool and the CCS debugger or
C-SPY (as any required clocking and timing is derived from the internal DCO and FLL).
9. On devices with multiplexed port or JTAG pins, to use these pin in their port capability:
For CCS: "Run Free" (in Run pulldown menu at top of Debug View) must be selected.
For C-SPY: "Release JTAG On Go" must be selected.
10. As an alternative to sharing the JTAG and port pins (on low pin count devices), consider using
an MSP430 device that is a "superset" of the smaller device. A very powerful feature of the
MSP430 is that the family members are code and architecturally compatible, so code developed on
one device (for example, one without shared JTAG and port pins) ports effortlessly to another
(assuming an equivalent set of peripherals).
26 Frequently Asked Questions and Known Issues SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com Hardware FAQs
11. Information memory may not be blank (erased to 0xFF) when the device is delivered from TI.
Customers should erase the information memory before its first use. Main memory of packaged
devices is blank when the device is delivered from TI.
12. The device current is higher then expected. The device current measurement may not be accurate
with the debugger connected to the device. For accurate measurement, disconnect the debugger.
Additionally some unused pins of the device should be terminated. See the Connection of Unused Pins
table in the device's family user's guide.
13. The following ZIF sockets are used in the FET tools and target socket modules:
• 8-pin device (D package): Yamaichi IC369-0082
• 14-pin device (PW package): Enplas OTS-14-065-01
• 14-pin package for 'L092 (PW package): Yamaichi IC189-0142-146
• 24-pin package (PW package): Enplas OTS-24(28)-0.65-02
• 28-pin device (DW package): Wells-CTI 652 D028
• 28-pin device (PW package): Enplas OTS-28-0.65-01
• 38-pin device (DA package): Yamaichi IC189-0382-037
• 40-pin device (RHA package): Enplas QFN-40B-0.5-01
• 40-pin device (RSB package): Enplas QFN-40B-0.4
• 48-pin device (RGZ package): Yamaichi QFN11T048-008 A101121-001
• 48-pin device (DL package): Yamaichi IC51-0482-1163
• 64-pin device (PM package): Yamaichi IC51-0644-807
• 64-pin device (RGC package): Yamaichi QFN11T064-006
• 80-pin device (PN package): Yamaichi IC201-0804-014
• 100-pin device (PZ package): Yamaichi IC201-1004-008
• 128-pin device (PEU package): Yamaichi IC500-1284-009P
Enplas: www.enplas.com
Wells-CTI: www.wellscti.com
Yamaichi: www.yamaichi.us
SLAU278Q–May 2009–Revised February 2014 Frequently Asked Questions and Known Issues 27
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Known Issues www.ti.com
A.2 Known Issues
MSP-FET430UIF Current detection algorithm of the UIF firmware
Problem Description If high current is detected, the ICC monitor algorithm stays in a loop of frequently
switching on and off the target power supply. This power switching puts some MSP430
devices such as the MSP430F5438 in a state that requires a power cycle to return the
device to JTAG control.
A side issue is that if the UIF firmware has entered this switch on and switch off loop, it
is not possible to turn off the power supply to the target by calling MSP430_VCC(0). A
power cycle is required to remove the device from this state.
Solution IAR KickStart and Code Composer Essentials that have the MSP430.dll version
2.04.00.003 and higher do not show this problem. Update the software development tool
to this version or higher to update the MSP-FET430UIF firmware.
MSP-FET430PIF Some PCs do not supply 5 V through the parallel port
Problem Description Device identification problems with modern PCs, because the parallel port often does not
deliver 5 V as was common with earlier hardware.
1. When connected to a laptop, the test signal is clamped to 2.5 V.
2. When the external VCC becomes less than 3 V, up to 10 mA is flowing in the adapter
through pin 4 (sense).
Solution Measure the voltage level of the parallel port. If it is too low, provide external 5 V to the
VCC pads of the interface. The jumper on a the target socket must be switched to
external power.
28 Frequently Asked Questions and Known Issues SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Appendix B
SLAU278Q–May 2009–Revised February 2014
Hardware
This appendix contains information relating to the FET hardware, including schematics, PCB pictorials,
and bills of materials (BOMs). All other tools, such as the eZ430 series, are described in separate productspecific
user's guides.
SLAU278Q–May 2009–Revised February 2014 Hardware 29
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Appendix B www.ti.com
Topic ........................................................................................................................... Page
B.1 MSP-TS430D8 ................................................................................................... 31
B.2 MSP-TS430PW14 ............................................................................................... 34
B.3 MSP-TS430L092 ................................................................................................ 37
B.4 MSP-TS430L092 Active Cable ............................................................................. 40
B.5 MSP-TS430PW24 ............................................................................................... 43
B.6 MSP-TS430DW28 ............................................................................................... 46
B.7 MSP-TS430PW28 ............................................................................................... 49
B.8 MSP-TS430PW28A ............................................................................................. 52
B.9 MSP-TS430DA38 ............................................................................................... 55
B.10 MSP-TS430QFN23x0 .......................................................................................... 58
B.11 MSP-TS430RSB40 ............................................................................................. 61
B.12 MSP-TS430RHA40A ........................................................................................... 64
B.13 MSP-TS430DL48 ................................................................................................ 67
B.14 MSP-TS430RGZ48B ........................................................................................... 70
B.15 MSP-TS430RGZ48C ........................................................................................... 73
B.16 MSP-TS430PM64 ............................................................................................... 76
B.17 MSP-TS430PM64A ............................................................................................. 79
B.18 MSP-TS430RGC64B ........................................................................................... 82
B.19 MSP-TS430RGC64C ........................................................................................... 85
B.20 MSP-TS430RGC64USB ....................................................................................... 89
B.21 MSP-TS430PN80 ............................................................................................... 93
B.22 MSP-TS430PN80A ............................................................................................. 96
B.23 MSP-TS430PN80USB ......................................................................................... 99
B.24 MSP-TS430PZ100 ............................................................................................ 103
B.25 MSP-TS430PZ100A .......................................................................................... 106
B.26 MSP-TS430PZ100B .......................................................................................... 109
B.27 MSP-TS430PZ100C .......................................................................................... 112
B.28 MSP-TS430PZ5x100 ......................................................................................... 115
B.29 MSP-TS430PZ100USB ...................................................................................... 118
B.30 MSP-TS430PEU128 .......................................................................................... 122
B.31 EM430F5137RF900 ........................................................................................... 125
B.32 EM430F6137RF900 ........................................................................................... 129
B.33 EM430F6147RF900 ........................................................................................... 133
B.34 MSP-FET430PIF ............................................................................................... 137
B.35 MSP-FET430UIF ............................................................................................... 139
30 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
GND
100nF
330R
10uF/10V
47K
2.2nF
GND
330R
GND
GND
green
FE4L FE4H
GND
Ext_PWR
Socket: YAMAICHI
Type: IC369-0082
Vcc
ext
int
to measure supply current DNP
1
3
5
7
9
11
13
2
4
6
12
14
8
10
SBW
C5
R3
C7
R5
C8
1
2
3
J3
1
2
J4
1
2
J6
1
2
3
J5 R2
D1
1
2
3
4
J1
5
6
7
8
J2
DVCC
1
DVSS
8
P1.2/TA1/A2
2
P1.5/TA0/A5/SCLK
3
P1.6/TA1/A6/SDO/SCL
4
TST/SBWTCK
7
RST/SBWTDIO
6
P1.7/A7/SDI/SDA
5
U1
MSP-TS430D8
GND
VCC
RST/SBWTDIO
RST/SBWTDIO
RST/SBWTDIO
SBWTCK
VCC430
TST/SBWTCK
TST/SBWTCK
TST/SBWTCK
P1.5
P1.6 P1.7
P1.2
Date: 28.07.201111:03:35 Sheet: /11
REV:
TITLE:
Document Number:
MSP-TS430D8
+
1.0
MSP-TS430D8 Target Socket Board
www.ti.com MSP-TS430D8
B.1 MSP-TS430D8
Figure B-1. MSP-TS430D8 Target Socket Module, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 31
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Connector J5
External power connector
Jumper JP3 to "ext"
Jumper JP2
Open to disconnect LED
D1 LED connected to P1.2
Orient Pin 1 of MSP430 device
14 pin connector for debugging only
in Spy-Bi-Wire mode (4 Wire JTAG
not available)
MSP-TS430D8 www.ti.com
Figure B-2. MSP-TS430D8 Target Socket Module, PCB
32 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430D8
Table B-1. MSP-TS430D8 Bill of Materials
Position Ref Des No. per Description DigiKey Part No. Comment Board
1 J4, J6 2 2-pin header, male, TH SAM1035-02-ND place jumper on header
2 J5 1 3-pin header, male, TH SAM1035-03-ND place jumper on pins 1-2
3 SBW 1 10-pin connector, male, TH HRP10H-ND
4 J3 1 3-pin header, male, TH SAM1035-03-ND
5 C8 1 2.2nF, CSMD0805 Buerklin 53 D 292
6 C7 1 10uF, 10V, 1210ELKO 478-3875-1-ND
7 R5 1 47K, 0805 541-47000ATR-ND
8 C5 1 100nF, CSMD0805 311-1245-2-ND
9 R2, R3 2 330R, 0805 541-330ATR-ND
10 J1, J2 2 4-pin header, TH SAM1029-04-ND DNP: headers enclosed with kit. Keep vias free of solder.
10,1 J1, J2 1 4-pin socket, TH SAM1029-04-ND DNP: receptacles enclosed with kit.
11 U1 1 SO8 Socket: Type IC369-0082 Manuf.: Yamaichi
12 D1 1 red, LED 0603
13 MSP430 2 MSP430x "DNP: enclosed with kit. Is supplied by TI"
14 PCB 1 50,0mmx44,5mm MSP-TS430D8 Rev. 1.0
SLAU278Q–May 2009–Revised February 2014 Hardware 33
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
12pF
12pF
GND
100nF
330R
10uF/10V
47K
2.2nF
GND
330R
100nF
GND
GND
GND
green
Ext_PWR
Socket: ENPLAS
Type: OTS-14-065
Vcc
ext
int
to measure supply current
DNP
DNP
DNP
DNP
DNP
JTAG ->
SBW ->
JTAG-Mode selection:
4-wire JTAG: Set jumpers J7 to J12 to position 2-3
2-wire "SpyBiWire": Set jumpers J7 to J12 to position 2-1
1
3
5
7
9
11
13
2
4
6
12
14
8
10
JTAG
C2
C1
C5
R3
C7
R5
C8
1
2
3
J3
Q1
8
9
10
11
12
13
14
J2
1
2
3
4
5
6
7
J1
1
2
J4
1
2
J6
J5
1
2
3
R2
C3
J7
1
2
3
J8
1
2
3
J9
1
2
3
J10
1
2
3
J11
1
2
3
J12
1
2
3
1
2
3
4
5
6
7 8
9
10
14
13
12
11
D1
P1.0
P1.3
P1.2
P1.1 XOUT XOUT
GND
XIN
XIN
VCC
RST/SBWTDIO
RST/SBWTDIO
SBWTCK
TEST/SBWTCK
TEST/SBWTCK
TEST/SBWTCK
VCC430
P1.4/TCK
P1.4/TCK
P1.5/TMS
P1.5/TMS
P1.6/TDI
P1.6/TDI
P1.7/TDO
P1.7/TDO
TDO/SBWTDIO
RST/NMI
TMS
TDI
Date: 7/16/2007 8:22:36 AM Sheet: 1/1
REV:
TITLE:
Document Number:
MSP-TS430PW14
+
2.0
MSP-TS430PW14 Target Socket Board
MSP-TS430PW14 www.ti.com
B.2 MSP-TS430PW14
Figure B-3. MSP-TS430PW14 Target Socket Module, Schematic
34 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Jumper J4
Open to disconnect LED
Orient Pin 1 of
MSP430 device
Jumper J6
Open to measure current
Connector J3
External power connector
Jumper J5 to 'ext'
LED connected to P1.0
Jumpers J7 to J12
Close 1-2 to debug in
Spy-Bi-Wire Mode.
Close 2-3 to debug in
4-wire JTAG mode.
www.ti.com MSP-TS430PW14
Figure B-4. MSP-TS430PW14 Target Socket Module, PCB
SLAU278Q–May 2009–Revised February 2014 Hardware 35
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430PW14 www.ti.com
Table B-2. MSP-TS430PW14 Bill of Materials
Position Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP
2 C7 1 10uF, 10V, Tantal Size 511-1463-2-ND B
3 C3, C5 1 100nF, SMD0805 478-3351-2-ND DNP: C3
4 C8 0 2.2nF, SMD0805 DNP
5 D1 1 green LED, SMD0603 475-1056-2-ND
DNP: Headers and receptacles
enclosed with kit. Keep vias free of
6 J1, J2 0 7-pin header, TH solder
SAM1029-07-ND : Header
SAM1213-07-ND : Receptacle
J3, J5, J7, Place jumpers on headers J5, J7, J8, 7 J8, J9, J10, 8 3-pin header, male, TH SAM1035-03-ND J9, J10, J11, J12; Pos 1-2 J11, J12
8 J4, J6 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header
9 9 Jumper 15-38-1024-ND Place on: J5, J7-J12; Pos 1-2
10 JTAG 1 14-pin connector, male, HRP14H-ND TH
Micro Crystal MS1V-T1K
12 Q1 0 Crystal 32.768kHz, C(Load) = DNP: keep vias free of solder
12.5pF
13 R2, R3 2 330 Ω, SMD0805 541-330ATR-ND
15 R5 1 47k Ω, SMD0805 541-47000ATR-ND
16 U1 1 Socket: OTS-14-0.65-01 Manuf.: Enplas
17 PCB 1 56 x 53 mm 2 layers
Adhesive Approximately 6mm For example, 3M 18 plastic feet 4 width, 2mm height Bumpons Part No. SJ- Apply to corners at bottom side 5302
19 MSP430 2 MSP430F2013IPW DNP: enclosed with kit, supplied by TI
36 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430L092
B.3 MSP-TS430L092
Figure B-5. MSP-TS430L092 Target Socket Module, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 37
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430L092 www.ti.com
Settings of the MSP-TS430L092 Target Socket
Figure B-6 shows the PCB layout of the MSP-TS430L092 target socket. The following pinning is
recommended:
• JP1 is write enable for the EPROM. If this is not set, the EPROM can only be read.
• JP2 and JP3 connect device supply with boost converter. They can be opened to measure device
current consumption. For default operation, they should be closed.
Figure B-6. MSP-TS430L092 Target Socket Module, PCB
38 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430L092
Table B-3. MSP-TS430L092 Bill of Materials
Pos. Ref Des No. No. Per Description DigiKey Part No. Comment Board
1 C1, C2 2 330nF, SMD0603
2 C5 1 100n, SMD0603
3 C6 1 10u, SMD0805
4 C10 1 100n, SMD0603
5 EEPROM1 1 M95512 SO08 (SO8) ST Micro M95160R Digikey: 497-8688-1-ND
DNP: headers and
receptacles enclosed with kit.
7 J1, J2 2 7-pin header, TH Keep vias free of solder.
SAM1213-07-ND : Header
SAM1035-07-ND : Receptacle
8 J3 1 3-pin header, male, TH SAM1035-03-ND
9 J4, J5 2 FE4L, FE4H 4 pol. Stiftreihe DNP; Keep vias free of solder.
11 J13 1 MICRO_STECKV_10 Reichelt: MicroMaTch- Connector: MM FL 10G
12 JP1, JP2,JP3 3 2-pin header, male, TH SAM1035-02-ND place jumper on header
15 L1 1 33uH, SMD0806 LQH2MCN330K02L Farnell: 151-5557
16 LED1, LED4 2 LEDCHIPLED_0603 Farnell: 1686065
17 Q2 1 BC817-16LT1SMD BC817-16LT1SMD SOT23-BEC
18 R0, R6, R7 3 2K7, SMD0603
19 R1 1 1k, SMD0603
20 R2 1 47k, SMD0603
21 R4,R5, R8, 6 10k, SMD0603 R10, RC, RD
22 RA 1 3.9k, SMD0603
23 RB 1 6.8k, SMD0603
24 U1 1 14 Pin Socket - IC189-0142- Manuf. Yamaichi 146
22 MSP430 2 MSP430L092PWR DNP: Enclosed with kit. Is supplied by TI.
SLAU278Q–May 2009–Revised February 2014 Hardware 39
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430L092 Active Cable www.ti.com
B.4 MSP-TS430L092 Active Cable
Figure B-7. MSP-TS430L092 Active Cable Target Socket Module, Schematic
40 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430L092 Active Cable
Figure B-8 shows the PCB layout for the Active Cable. The following pinning is possible:
• JP1 has two jumpers (Jumper 1 and Jumper 2) that can be set as shown in Table B-4.
Table B-4. MSP-TS430L092 JP1 Settings
Jumper 1 Jumper 2 Description
Off Off The active cable has no power and does not function.
Off On The active cable receives power from target socket. For this option, the target socket must have its own power supply.
On Off The active cable receives power from the JTAG connector.
The JTAG connector powers the active cable and the target socket. For
On On this option, the target socket must not have its own power source, as this
would cause a not defined state.
• JP2 is for reset. For the standard MSP-TS430L092, this jumper must be set. It sets the reset pin to
high and can also control it. Without this jumper on the MSP-TS430L092, reset is set to zero.
Figure B-8. MSP-TS430L092 Active Cable Target Socket Module, PCB
SLAU278Q–May 2009–Revised February 2014 Hardware 41
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430L092 Active Cable www.ti.com
Table B-5. MSP-TS430L092 Active Cable Bill of Materials
Pos. Ref Des No. Per Description DigiKey Part No. Comment Board
1 C1, C3, C5, 4 100nF, SMD0603 C6
2 C2, C4 2 1uF, SMD0805
3 R1, R10 2 10K, SMD0603
4 R2 1 4K7, SMD0603
5 R5, R6, R7, 4 100, SMD0603 R9
6 R8 1 680k, SMD0603
7 R11, R15 2 1K, SMD0603
8 R12 0 SMD0603 DNP
9 R13 0 SMD0603 DNP
10 R14 1 0, SMD0603
11 IC1 1 SN74AUC1G04DBVR Manu: TI
12 IC2, IC3, IC4 3 SN74AUC2G125DCTR Manu: TI
13 J2 1 MICRO_STECKV_10 Reichelt: MicroMaTch- Connector: MM FL 10G
14 JP1 1 2x2 Header JP2Q Put jumper on Position 1 and 2. Do not mix direction.
15 JP2 1 2-pin header, male, TH SAM1035-02-ND place jumper on header
16 JTAG 1 14-pin connector, male, TH HRP14H-ND
17 Q1 1 BC817-25LT1SMD, SOT23- Digi-Key: BC817- BEC 25LT1GOSCT-ND
18 U1, U2 2 TLVH431IDBVR SOT23-5 Manu: TI
42 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430PW24
B.5 MSP-TS430PW24
Figure B-9. MSP-TS430PW24 Target Socket Module, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 43
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Jumper JP2
Open to measure current
Orient Pin 1 of MSP430 device
D1 LED connected to P1.0
Jumper JP3
Open to disconnect LED
Connector J5
External power connector
Jumper JP1 to "ext"
Jumpers JP4 to JP9
Close 1-2 to debug in Spy-Bi-Wire mode
Close 2-3 to debug in 4-wire JTAG mode
MSP-TS430PW24 www.ti.com
Figure B-10. MSP-TS430PW24 Target Socket Module, PCB
44 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430PW24
Table B-6. MSP-TS430PW24 Bill of Materials
Position Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP
2 C5 1 2.2nF, SMD0805
3 C3, C7 2 10uF, 10V, SMD0805
4 C4, C6, C8 3 100nF, SMD0805 478-3351-2-ND
5 D1 1 green LED, SMD0805 P516TR-ND
"SAM1029-07- DNP: Headers and receptacles 6 J1, J2 0 12-pin header, TH NDSAM1213-07-ND" enclosed with kit. Keep vias free of solder. (Header & Receptacle)
J5, JP1,
7 JP4, JP5, 8 3-pin header, male, TH SAM1035-03-ND Place jumper on 1-2 of JP4-JP9 JP6, JP7, Place on 1-2 on JP1
JP8, JP9
8 JP2, JP3 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header
9 9 Jumper 15-38-1024-ND see Pos 7 an 8
10 JTAG 1 14-pin connector, male, HRP14H-ND TH
11 Q1 0 Crystal DNP: keep vias free of solder
12 R1, R7 2 330 Ω, SMD0805 541-330ATR-ND
13 R5, R6, 2 0 Ohm, SMD0805 541-000ATR-ND DNP R5, R6 R8, R9,
14 R4 1 47k Ohm, SMD0805 541-47000ATR-ND
15 U1 1 Socket: OTS 24(28)- Manuf.: Enplas 065-02-00
16 PCB 1 68.5 x 61 mm 2 layers
Adhesive Approximately 6mm for example, 3M 17 plastic feet 4 width, 2mm height Bumpons Part No. SJ- Apply to corners at bottom side 5302
18 MSP430 2 MSP430AFE2xx DNP: enclosed with kit, supplied by TI
SLAU278Q–May 2009–Revised February 2014 Hardware 45
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
ML14
LED3
12pF
12pF
GND
GND
100nF
560R
ML10
JP1Q
JP1Q
10uF/10V
50K
10nF
0R
0R
0R -
-
0R
-
U1
SOCK28DW
F123
FE14H FE14L
0R
GND
remove R8 and add R9 (0 Ohm)
If external supply voltage:
remove R11 and add R10 (0 Ohm) SMD-Footprint
Socket: Yamaichi
2.0
MSP-TS430DW28 Target Socket DW28
Type: IC189-0282-042
If external supply voltage:
R1, C1, C2
not assembled
not assembled
1
3
5
7
9
11
13
2
4
6
12
14
8
10
JTAG
D1
C2
C1
C5
R3
BOOTST
1 2
3 4
5 6
7 8
9 10
1 2
J5
J4
1 2
C7
R5
C8
R6
R7
R8 R9
R10
R11
R1
1
2
3
4
5
6
7
8
9
10
11
12
13
14 15
16
17
18
19
20
21
22
23
24
25
26
27
28
TST 1
VCC 2
P2.5 3
VSS 4
XOUT 5
XIN 6
RST 7
P2.0 8
P2.1 9
P2.2 10 P2.3 19
P2.4 20
P1.0 21
P1.1 22
P1.2 23
P1.3 24
P1.4 25
P1.5 26
P1.6 27
P1.7 28
P3.0 11
P3.1 12
P3.2 13
P3.3 14 P3.4 15
P3.5 16
P3.6 17
P3.7 18
U2
15
16
17
18
19
20
21
22
23
24
25
26
27
28
J2 J1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
R2
1
2
3
J3
Q1
QUARZ3
P1.0
P1.0
P1.3
P1.3
P1.2
P1.2
P1.1
P1.1 RST/NMI
RST/NMI
RST/NMI
RST/NMI RST/NMI
TCK
TCK
TCK
TMS
TMS
TMS
TDI
TDI
TDI
TDO
TDO
TDO
XOUT
XOUT
VCC
GND
GND
GND
P2.3
P2.3
P2.4
P2.4
XIN
XIN
P2.5
P2.5
P2.2
P2.2
P2.1
P2.1
P2.0
P2.0
TST/VPP
TST/VPP
TST/VPP
P3.0
P3.0
P3.1
P3.1
P3.2
P3.2
P3.3
P3.3
P3.7
P3.7
P3.6
P3.6
P3.5
P3.5
P3.4
P3.4
VCC430
Ext_PWR
Date: 11/14/2006 1:26:04 PM Sheet: 1/1
REV:
TITLE:
Document Number:
MSP-TS430DW28
+
VCC430
MSP-TS430DW28 www.ti.com
B.6 MSP-TS430DW28
Figure B-11. MSP-TS430DW28 Target Socket Module, Schematic
46 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Jumper J4
Open to disconnect LED
Orient Pin 1 of
MSP430 device
Jumper J5
Open to measure current
Connector J3
External power connector
Remove R8 and jumper R9
LED connected to P1.0
www.ti.com MSP-TS430DW28
Figure B-12. MSP-TS430DW28 Target Socket Module, PCB
SLAU278Q–May 2009–Revised February 2014 Hardware 47
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430DW28 www.ti.com
Table B-7. MSP-TS430DW28 Bill of Materials
Position Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP: C1, C2, Cover holes while soldering
2 C5 1 100nF, SMD0805
3 C7 1 10uF, 10V Tantal Elko B
4 C8 1 10nF SMD0805
5 D1 1 LED3 T1 3mm yellow RS: 228-4991
Micro Crystal MS1V-T1K
6 Q1 0 QUARZ, Crystal 32.768kHz, C(Load) = DNP: Cover holes while soldering
12.5pF
DNP: Headers and receptacles
enclosed with kit. Keep vias free of
7 J1, J2 2 14-pin header, TH male solder.
: Header
: Receptacle
DNP: Headers and receptacles
enclosed with kit. Keep vias free of
7.1 2 14-pin header, TH solder. female : Header
: Receptacle
8 J3 1 3-Pin Connector, male
9 J4, J5 2 2-Pin Connector, male With jumper
10 BOOTST 0 ML10, 10-Pin Conn., m RS: 482-115 DNP, Cover holes while soldering
11 JTAG 1 ML14, 14-Pin Conn., m RS: 482-121
R1, R2,
12 R6, R7, 4 0R, SMD0805 DNP: R1, R2, R9, R10 R8,R9,
R10, R11
13 R3 1 560R, SMD0805
14 R5 1 47K, SMD0805
15 U1 1 SOP28DW socket Yamaichi: IC189-0282- 042
16 U2 0 TSSOP DNP
48 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
12pF
12pF
GND
GND
100nF
330R
10uF/10V
-
0R
GND
GND
green
2.2nF
47k
GND
0R 0R
330R
MSP430F12xx
If external supply voltage:
remove R11 and add R10 (0 Ohm)
3.1
MSP-TS430PW28:
OTS-28-0.65-01
Socket: Enplas
Vcc
int
ext
Target Socket Board for MSP430's in PW28 package
DNP
DNP
DNP
DNP
DNP
DNP
DNP
JTAG ->
SBW ->
JTAG-Mode selection:
4-wire JTAG: Set jumpers JP4 to JP9 to position 2-3
2-wire "SpyBiWire": Set jumpers JP4 to JP9 to position 1-2
DNP
1
3
5
7
9
11
13
2
4
6
12
14
8
10
JTAG
C2
C1
C4
R1
1 2
3 4
5 6
7 8
9 10
BOOTST
C3
R2
R3
1
2
3
J5
JP1
1
2
3
JP2
1
2
1
2
JP3
D1
C5 R4
JP4
1
2
3
JP5
1
2
3
JP6
1
2
3
JP7
1
2
3
JP8
1
2
3
JP9
1
2
3
R5 R6
1 2
Q1
R7
J1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
J2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
U1
TST 1
VCC 2
P2.5 3
VSS 4
XOUT 5
XIN 6
RST 7
P2.0 8
P2.1 9
P2.2 10 P2.3 19
P2.4 20
P1.0 21
P1.1 22
P1.2 23
P1.3 24
P1.4 25
P1.5 26
P1.6 27
P1.7 28
P3.0 11
P3.1 12
P3.2 13
P3.3 14 P3.4 15
P3.5 16
P3.6 17
P3.7 18
P1.0
P1.0
RST/NMI
TMS
TDI
VCC
GND
GND
VCC430 VCC430
P2.0
P1.1
P1.1
P3.3
P3.2
P3.1
P3.0
P2.2
P2.2
XIN/P2.6
XIN/P2.6
XOUT/P2.7
XOUT/P2.7
P2.1
RST/SBWTDIO
RST/SBWTDIO
RST/SBWTDIO
P3.4
P3.5
P3.6
P3.7
P2.3
P2.4
P1.2
P1.3
P1.4/TCK
P1.4/TCK
P1.5/TMS
P1.5/TMS
P1.6/TDI
P1.6/TDI
P1.7/TDO
P1.7/TDO
TEST/SBWTCK
TEST/SBWTCK
TEST/SBWTCK
TEST/SBWTCK
P2.5
TCK/SBWTCK
TDO/SBWTDIO
XTLGND
Ext_PWR
+
www.ti.com MSP-TS430PW28
B.7 MSP-TS430PW28
Figure B-13. MSP-TS430PW28 Target Socket Module, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 49
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Jumper JP2
Open to measure current
Jumper JP3
Open to disconnect LED
LED D1 connected to P5.1
Jumper JP1
1-2 (int): Power supply via JTAG interface
2-3 (ext): External Power Supply
Jumper JP4 to JP9:
Close 1-2 to debug in Spy-Bi-Wire mode
Close 2-3 to debug in 4-wire JTAG mode
Orient Pin 1 of Device
MSP-TS430PW28 www.ti.com
Figure B-14. MSP-TS430PW28 Target Socket Module, PCB
50 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430PW28
Table B-8. MSP-TS430PW28 Bill of Materials(1)
Pos. Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP: C1, C2 , Cover holes while soldering
2 C3 1 10uF, 10V Tantal Elko B
3 C4 1 100nF, SMD0805
4 C5 0 2.2nF, SMD0805 DNP
5 D1 1 LED green SMD0603
Micro Crystal MS1V-T1K DNP: Cover holes and
6 Q1 0 QUARZ, Crystal 32.768kHz, C(Load) = neighboring holes while
12.5pF soldering
DNP: Headers and
receptacles enclosed with
7 J1, J2 2 14-pin header, TH male kit.Keep vias free of solder.
: Header
: Receptacle
DNP: headers and
receptacles enclosed with
7.1 2 14-pin header, TH female kit.Keep vias free of solder.
: Header
: Receptacle
8 J5, IP1 1 3-Pin Connector , male
JP1, JP4,
8a JP5, JP6, 7 3-Pin Connector , male Jumper on Pos 1-2 JP7, JP8,
JP9
9 JP2, JP3 2 2-Pin Connector , male with Jumper
10 BOOTST 0 ML10, 10-Pin Conn. , m RS: 482-115 DNP: Cover holes while soldering
11 JTAG 1 ML14, 14-Pin Conn. , m RS: 482-121
12 R1, R7 2 330R, SMD0805
12 R2, R3, R5, 0 0R, SMD0805 DNP R6
14 R4 1 47K, SMD0805
15 U1 1 SOP28PW socket Enplas: OTS-28-0.65-01
(1) PCB 66 x 79 mm, two layers; Rubber stand off, four pieces
SLAU278Q–May 2009–Revised February 2014 Hardware 51
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
JTAG Mode selection:
4-wire JTAG: Set jumpers J4 to J9 to position 2-3
2-wire "SpyBiWire": Set jumpers J4 to J9 to position 2-1
MSP-TS430PW28A www.ti.com
B.8 MSP-TS430PW28A
Figure B-15. MSP-TS430PW28A Target Socket Module, Schematic
52 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Jumper JP2
Open to measure current
Orient Pin 1 of MSP430 device
Jumper JP3
Open to disconnect LED
D1 LED connected to P1.0
Connector J5
External power connector
Jumper JP1 to "ext"
Jumpers JP4 to JP9
Close 1-2 to debug in Spy-Bi-Wire mode
Close 2-3 to debug in 4-wire JTAG mode
www.ti.com MSP-TS430PW28A
Figure B-16. MSP-TS430PW28A Target Socket Module, PCB (Red)
SLAU278Q–May 2009–Revised February 2014 Hardware 53
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430PW28A www.ti.com
Table B-9. MSP-TS430PW28A Bill of Materials
Position Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP
2 C5 1 2.2nF, SMD0805
3 C3 1 10uF, 10V, SMD0805
4 C4, C6, 2 100nF, SMD0805 478-3351-2-ND
5 D1 1 green LED, SMD0805 P516TR-ND
DNP: Headers and receptacles
6 J1, J2 0 14-pin header, TH enclosed with kit. Keep vias free of
solder: (Header & Receptacle)
J5, JP1,
7 JP4, JP5, 8 3-pin header, male, TH SAM1035-03-ND Place jumper on 1-2 of JP4-JP9 JP6, JP7, Place on 1-2 on JP1
JP8, JP9
8 JP2, JP3 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header
9 9 Jumper 15-38-1024-ND see Pos 7 an 8
10 JTAG 1 14-pin connector, male, HRP14H-ND TH
11 BOOTST 0 DNP Keep vias free of solder
Micro Crystal MS3V
12 Q1 0 Crystal 32.768kHz, C(Load) = DNP: keep vias free of solder
12.5pF
13 R1, R7 2 330 Ω, SMD0805 541-330ATR-ND
14 R2, R3,R5, 0 0 Ohm, SMD0805 541-000ATR-ND DNP R2, R3,R5, R6 R6,
15 R4 1 47k Ω, SMD0805 541-47000ATR-ND
16 U1 1 Socket: OTS-28-0.65-01 Manuf.: Enplas
17 PCB 1 63.5 x 64.8 mm 2 layers
Adhesive Approximately 6mm for example, 3M 18 plastic feet 4 width, 2mm height Bumpons Part No. SJ- Apply to corners at bottom side 5302
19 MSP430 2 MSP430G2553IPW28 DNP: enclosed with kit, supplied by TI
54 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
12pF
12pF
GND
GND
100nF
560R
10uF/10V
47k
10nF
-
0R
GND
MSP430F2274IDA
GND
330R
GND
yellow
If external supply voltage:
remove R11 and add R10 (0 Ohm)
IC189-0382-037
Socket:
4-wire JTAG:
2-wire "SpyBiWire":
JTAG-Mode selection:
Set jumpers JP4 to JP9 to position 2-3
Set jumpers JP4 to JP9 to position 2-1
JTAG ->
SBW ->
Yamaichi
DNP
DNP
DNP
DNP
DNP
DNP
DNP
1
3
5
7
9
11
13
2
4
6
12
14
8
10
JTAG
C2
C1
C5
R3
1 2
3 4
5 6
7 8
9 10
BOOTST
C7
R5
C8
R10
R11
1
2
3
J3
Q1
TEST/SBWTCK 1
P3.5 26
P3.6 27
P1.4/TCK 35
RST/SBWDAT 7
DVCC 2
DVSS 4
P4.7 24
P3.7 28
AVSS 15
AVCC 16
P3.0 11
P3.1 12
P3.2 13
P3.3 14
P4.0 17
P4.1 18
P4.2 19
P3.4 25
P2.5 3
P2.4 30
P2.3 29 P2.2 10
P2.1 9
P2.0 8
P1.5/TMS 36
P1.6/TDI 37
P1.7/TDO 38
P2.7 5
P2.6 6
P4.6 23
P4.5 22
P4.4 21
P4.3 20
P1.0 31
P1.1 32
P1.2 33
P1.3 34
U1
JP1
1
2
3
JP2
1
2
1
2
JP3
1
2
3
JP4 JP5
1
2
3
JP6
1
2
3
JP7
1
2
3
JP8
1
2
3
R1
JP9
1
2
3
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
1
J1
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
20
J2
D1
P1.0
P1.0
RST/NMI
TMS
TDI
VCC
GND
GND
GND
VCC430
VCC430
VCC430
TCK/SBWTCK
TDO/SBWTDIO
TEST/SBWTCK
TEST/SBWTCK
TEST/SBWTCK
TEST/SBWTCK
P2.5
P2.0
P2.1
P3.0
P3.1
P3.2
P3.3
P4.0
P4.1
P4.2
P1.7/TDO
P1.7/TDO
P1.6/TDI
P1.6/TDI
P1.5/TMS
P1.5/TMS
P1.4/TCK
P1.4/TCK
P1.3
P1.2
P1.1
P1.1
P2.4
P2.3
P3.7
P3.6
P3.5
P3.4
P4.7
P4.6
P4.5
P4.4
P4.3
P2.7/XOUT
P2.7/XOUT
P2.6/XIN
P2.6/XIN
RST/SBWTDIO
RST/SBWTDIO
RST/SBWTDIO
P2.2
P2.2
Ext_PWR
Date: 6/18/2008 11:04:56 AM Sheet: 1/1
REV:
TITLE:
Document Number:
MSP-TS430DA38
+
1.3
MSP-TS430DA38:
Vcc
int
ext
Target Socket Board for MSP430F2247IDA
www.ti.com MSP-TS430DA38
B.9 MSP-TS430DA38
Figure B-17. MSP-TS430DA38 Target Socket Module, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 55
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Orient pin 1 of
MSP430 device
LED connected to P1.0
Connector J3
External power connector
Jumper JP1 to 'ext'
Jumper JP3
Open to disconnect LED
Jumper JP2
Open to measure current
Jumpers JP4 to JP9
Close 1-2 to debug in
Spy-Bi-Wire Mode,
Close 2-3 to debug in
4-wire JTAG Mode
MSP-TS430DA38 www.ti.com
Figure B-18. MSP-TS430DA38 Target Socket Module, PCB
56 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430DA38
Table B-10. MSP-TS430DA38 Bill of Materials
Pos. Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP
2 C7 1 10uF, 10V, Tantal Size B 511-1463-2-ND
3 C5 1 100nF, SMD0805 478-3351-2-ND
4 C8 0 2.2nF, SMD0805 DNP
5 D1 1 green LED, SMD0603 475-1056-2-ND
DNP: headers and
receptacles enclosed with
6 J1, J2 0 19-pin header, TH kit.Keep vias free of solder.
SAM1029-19-ND : Header
SAM1213-19-ND : Receptacle
"J3, JP1, Place jumpers on headers 7 JP4, JP5, 8 3-pin header, male, TH SAM1035-03-ND JP1, JP4,JP5, JP6, JP7, JP6, JP7, JP8, JP9; Pos 1-2 JP8, JP9"
8 JP2, JP3 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header
9 9 Jumper 15-38-1024-ND Place on: JP1 - JP9; Pos 1- 2
10 JTAG 1 14-pin connector, male, TH HRP14H-ND
11 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder
Micro Crystal MS1V-T1K DNP: Keep vias free of 12 Q1 0 Crystal 32.768kHz, C(Load) = solder 12.5pF
13 R1, R3 2 330 Ω, SMD0805 541-330ATR-ND
14 R10, R11 0 0 Ω, SMD0805 541-000ATR-ND DNP
15 R5 1 47k Ω, SMD0805 541-47000ATR-ND
16 U1 1 Socket: IC189-0382--037 Manuf.: Yamaichi
17 PCB 1 67 x 66 mm 2 layers
18 Adhesive 4 ~6mm width, 2mm height for example, 3M Bumpons Apply to corners at bottom Plastic feet Part No. SJ-5302 side
19 MSP430 2 MSP430F2274IDA DNP: enclosed with kit supplied by TI
SLAU278Q–May 2009–Revised February 2014 Hardware 57
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430QFN23x0 www.ti.com
B.10 MSP-TS430QFN23x0
Figure B-19. MSP-TS430QFN23x0 Target Socket Module, Schematic
58 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
LED connected
to P1.0
Connector J5
External power connector
Jumper JP1 to 'ext'
Jumper JP3
Open to disconnect LED
Jumper JP2
Open to measure current
www.ti.com MSP-TS430QFN23x0
Figure B-20. MSP-TS430QFN23x0 Target Socket Module, PCB
SLAU278Q–May 2009–Revised February 2014 Hardware 59
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430QFN23x0 www.ti.com
Table B-11. MSP-TS430QFN23x0 Bill of Materials
Pos. Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP
2 C3 1 10uF, 10V, Tantal Size B 511-1463-2-ND
3 C4 1 100nF, SMD0805 478-3351-2-ND
4 C5 1 10nF, SMD0805 478-1383-2-ND
5 D1 1 green LED, SMD0603 475-1056-2-ND
DNP: headers and
receptacles enclosed with
6 J1, J2, J3, 0 10-pin header, TH kit.Keep vias free of solder. J4 SAM1034-10-ND : Header
SAM1212-10-ND : Receptacle
7 J5, JP1 2 3-pin header, male, TH SAM1035-03-ND Place jumper on header JP1; Pos 1-2.
8 JP2, JP3 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header
9 3 Jumper 15-38-1024-ND Place on: JP1, JP2, JP3
10 JTAG 1 14-pin connector, male, TH HRP14H-ND
11 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder
Micro Crystal MS1V-T1K DNP: Keep vias free of 12 Q1 0 Crystal 32.768kHz, C(Load) = solder 12.5pF
13 R1 1 330 Ω, SMD0805 541-330ATR-ND
14 R2, R3 0 0 Ω, SMD0805 541-000ATR-ND DNP
15 R4 1 47k Ω, SMD0805 541-47000ATR-ND
16 U1 1 Socket: QFN-40B-0.5-01 Manuf.: Enplas
17 PCB 1 79 x 66 mm 2 layers
18 Adhesive 4 ~6mm width, 2mm height for example, 3M Bumpons Apply to corners at bottom Plastic feet Part No. SJ-5302 side
19 MSP430 2 MSP430F2370IRHA DNP: enclosed with kit supplied by TI
60 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430RSB40
B.11 MSP-TS430RSB40
Figure B-21. MSP-TS430RSB40 Target Socket Module, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 61
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Jumper JP2
Open to measure current
Orient Pin 1 of MSP430 device
Jumper JP3
Open to disconnect LED
D1 LED connected to P1.0
Jumpers JP4 to JP9
Close 1-2 to debug in Spy-Bi-Wire mode
Close 2-3 to debug in 4-wire JTAG mode
Connector J5
External power connector
Jumper JP1 to "ext"
MSP-TS430RSB40 www.ti.com
Figure B-22. MSP-TS430RSB40 Target Socket Module, PCB
62 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430RSB40
Table B-12. MSP-TS430RSB40 Bill of Materials
Pos. Ref Des No. Per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP: C1, C2
2 C3, C7, C10, 3 10uF, 10V, SMD 0805 445-1371-1-ND DNP C12 C12
3 C4, C6, C8, 3 100nF, SMD0805 311-1245-2-ND DNP C11 C11
4 C5 1 2.2nF, SMD0805
5 C9 1 470nF, SMD0805
6 D1 1 green LED, SMD0805 P516TR-ND
DNP: headers and
receptacles enclosed with kit.
7 J1, J2, J3, J4 4 10-pin header, TH Keep vias free of solder.
: Header
: Receptacle
DNP: headers and
receptacles enclosed with kit.
7.1 4 10-pin header, TH Keep vias free of solder.
: Header
: Receptacle
JP1,
JP4,JP5, Jumper: 1-2 on JP1, JP10; 2- 8 JP6, JP7, 9 3-pin header, male, TH SAM1035-03-ND 3 on JP4-JP9 JP8, JP9, J5,
JP10
9 JP2, JP3 2 2-pin header, male, TH SAM1035-02-ND place jumper on header
10 JTAG 1 14-pin connector, male, TH HRP14H-ND
11 BOOTST 0 10-pin connector, male, TH DNP. Keep vias free of solder
12 U1 1 QFN-40B-0.4_ Enplas ENPLAS_SOCKET
Micro Crystal MS3V-T1R DNP: Q1. Keep vias free of 13 Q1 0 Crystal 32.768kHz, C(Load) = solder 12.5pF
Place on: JP1, JP2, JP3,
15 10 Jumper 15-38-1024-ND JP4, JP5, JP6, JP7, JP8,
JP9, JP10
16 R1,R7 2 330R SMD0805
R2, R3, R5,
17 R6, R8, R9, 3 0R SMD0805 DNP R2, R3, R5, R6
R10
18 R4 1 47k SMD0805
19 MSP430 2 MSP430F5132 DNP: enclosed with kit. Is supplied by TI
20 Rubber stand 4 select appropriate; for apply to corners at bottom off example, Buerklin: 20H1724 side
SLAU278Q–May 2009–Revised February 2014 Hardware 63
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430RHA40A www.ti.com
B.12 MSP-TS430RHA40A
Figure B-23. MSP-TS430RHA40A Target Socket Module, Schematic
64 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Jumper JP2
Open to measure current
Connector J5
External power connector
Jumper JP1 to "ext"
Jumpers JP4 to JP9
Close 1-2 to debug in Spy-Bi-Wire mode
Close 2-3 to debug in 4-wire JTAG mode
D1 LED connected to P1.0
Jumper JP3
Open to disconnect LED
Orient Pin 1 of MSP430 device
www.ti.com MSP-TS430RHA40A
Figure B-24. MSP-TS430RHA40A Target Socket Module, PCB
SLAU278Q–May 2009–Revised February 2014 Hardware 65
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430RHA40A www.ti.com
Table B-13. MSP-TS430RHA40A Bill of Materials
Position Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP: C1, C2
2 C5 0 2.2nF, SMD0805 DNP C12
3 C3, C7 2 10uF, 10V, SMD0805 5 DNP C11
4 C4, C6 2 100nF, SMD0805 478-3351-2-ND
5 C9 1 470nF, SMD0805
6 D1 1 green LED, SMD0805 P516TR-ND
DNP: headers and receptacles
enclosed with kit. Keep vias free of
7 J1, J2, J3, 4 10-pin header, TH solder. J4 : Header
: Receptacle
DNP: headers and receptacles
enclosed with kit. Keep vias free of
7.1 4 10-pin header, TH solder.
: Header
: Receptacle
J5, JP1,
8 JP4, JP5, 8 3-pin header, male, TH SAM1035-03-ND Place jumper on 1-2 of JP4-JP9; JP6, JP7, Place on 1-2 on JP1
JP8, JP9
9 JP2, JP3 2 2-pin header, male, TH SAM1035-02-ND place jumper on header
10 9 Jumper 15-38-1024-ND see Pos 8 an 9
11 JTAG 1 14-pin connector, male, HRP14H-ND TH
12 BOOTST 0 10-pin connector, male, DNP. Keep vias free of solder TH
13 U1 1 Socket: QFN-40B-0.5-01 Manuf.: Enplas
Micro Crystal MS3V-T1R
14 Q1 0 Crystal 32.768kHz, C(Load) = DNP: Q1. Keep vias free of solder
12.5pF
15 R1,R7 2 330R SMD0805 541-330ATR-ND
R2, R3,
16 R5, R6, 2 0 Ohm, SMD0805 541-000ATR-ND DNP:R2, R3, R5, R6
R8, R9,
17 R4 1 47k SMD0805
18 PCB 1 79 x 66 mm 2 layers
Rubber select appropriate; for 19 stand off 4 example, Buerklin: apply to corners at bottom side 20H1724
20 MSP430 2 MSP430N5736IRHA DNP: enclosed with kit. Is supplied by TI
66 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
ML14
LED3
12pF
12pF
GND
GND
100nF
560R
ML10
JP1Q
JP1Q
10uF/10V
47K
10nF
0R
0R
GND
0R
0R
10uF/10V
GND
IC51-1387.KS-15186
100nF
1.3
MSP-TS430DL48 Target Socket DL48
Q1, C1, C2
not assembled
1
3
5
7
9
11
13
2
4
6
12
14
8
10
JTAG
D1
C2
C1
C5
R3
BOOTST
1 2
3 4
5 6
7 8
9 10
1 2
J5
J4
1 2
C7
R5
C8
R6
R7
1
2
3
J3
Q1
QUARZ3
J2
1
3
5
2
4
6
7
9
8
10
11
13
15
12
14
16
17
19
18
20
21
23
22
24
1
3
5
2
4
6
7
9
8
10
11
13
15
12
14
16
17
19
18
20
21
23
22
24
J1
R12
R4
JP1
1
2
3
1
2
3
JP2
C4
U1
TDO/TDI 1
TDI/TCLK 2
TMS 3
TCK 4
RST/NMI 5
DVCC 6
DVSS 7
XIN 8
XOUT 9
AVSS 10
AVCC 11
VREF+ 12
P6.0 13
P6.1 14
P6.2 15
P6.3 16
P6.4 17
P6.5 18
P6.6 19
P6.7 20
P2.5 39
P2.4 40
P2.3 41
P2.2 42
P2.1 43
P2.0 44
COM0 45
P5.2 46
P5.3 47
P5.4 48
LCDREF 29
LCDCAP 30
P5.1 31
P5.0 32
P5.5 33
P5.6 34
P5.7 35
S5 36
P2.7 37
P2.6 38
P1.7 21
P1.6 22
P1.5 23
P1.4 24
P1.0 28
P1.1 27
P1.2 26
P1.3 25
C3
P1.0
P1.0
RST/NMI
RST/NMI
RST/NMI
TCK
TCK
TCK
TMS
TMS
TDI
TDI
TDO
TDO
XOUT
XOUT
GND
GND GND
XIN
XIN
BSL_TX
VCC
BSL_RX
Ext_PWR
Date: 11/14/2006 1:24:44 PM Sheet: 1/1
REV:
TITLE:
Document Number:
MSP-TS430DL48
+
+
Vcc
ext
int
int ext
Vcc
www.ti.com MSP-TS430DL48
B.13 MSP-TS430DL48
Figure B-25. MSP-TS430DL48 Target Socket Module, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 67
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Jumper J4
Open to
disconnect LED
LED connected
to P1.0
Orient pin 1 of
MSP430 device
Jumper J5
Open to measure current
Connector J3
External power connector
Jumper JP1 to ‘ext’
MSP-TS430DL48 www.ti.com
Figure B-26. MSP-TS430DL48 Target Socket Module, PCB
68 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430DL48
Table B-14. MSP-TS430DL48 Bill of Materials
Pos. Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP
2 C4, C7 2 10uF, 10V, Tantal Size B 511-1463-2-ND
3 C3, C5 2 100nF, SMD0805 478-3351-2-ND
4 C8 1 10nF, SMD0805 478-1383-2-ND
5 D1 1 yellow LED, TH, 3mm, T1 511-1251-ND
DNP: Headers and
receptacles enclosed with
6 J1, J2 0 24-pin header, TH kit.Keep vias free of solder.
SAM1034-12-ND : Header
SAM1212-12-ND : Receptacle
7 J3, JP1, JP2 2 3-pin header, male, TH SAM1035-03-ND Place jumper on header JP1; Pos 1-2. DNP: JP2
8 J4, J5 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header
9 3 Jumper 15-38-1024-ND Place on: JP1, J4, J5
10 JTAG 1 14-pin connector, male, TH HRP14H-ND
11 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder
Micro Crystal MS1V-T1K DNP: Keep vias free of 12 Q1 0 Crystal 32.768kHz, C(Load) = solder 12.5pF
13 R3 1 560 Ω, SMD0805 541-560ATR-ND
14 R4, R6, R7, 2 0 Ω, SMD0805 541-000ATR-ND DNP: R6, R7 R12
15 R5 1 47k Ω, SMD0805 541-47000ATR-ND
16 U1 1 Socket: IC51-1387 KS- Manuf.: Yamaichi 15186
17 PCB 1 58 x 66 mm 2 layers
18 Adhesive 4 ~6mm width, 2mm height for example, 3M Bumpons Apply to corners at bottom Plastic feet Part No. SJ-5302 side
19 MSP430 2 MSP430F4270IDL DNP: Enclosed with kit supplied by TI
SLAU278Q–May 2009–Revised February 2014 Hardware 69
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430RGZ48B www.ti.com
B.14 MSP-TS430RGZ48B
Figure B-27. MSP-TS430RGZ48B Target Socket Module, Schematic
70 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Jumper JP2
Open to disconnect LED
Connector J5
External power connector
Jumper JP1 to "ext"
Jumpers JP5 to JP10
Close 1-2 to debug in Spy-Bi-Wire mode
Close 2-3 to debug in 4-wire JTAG mode
D1 LED connected to P1.0
Jumper JP1
Open to measure current
Orient Pin 1 of MSP430 device
www.ti.com MSP-TS430RGZ48B
Figure B-28. MSP-TS430RGZ48B Target Socket Module, PCB
SLAU278Q–May 2009–Revised February 2014 Hardware 71
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430RGZ48B www.ti.com
Table B-15. MSP-TS430RGZ48B Bill of Materials
Position Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP
2 C3, C4 0 47pF, SMD0805 DNP
3 C6, C7, 3 10uF, 6.3V, SMD0805 C12
4 C5, C11, 4 100nF, SMD0805 311-1245-2-ND C13, C14
5 C8 1 2.2nF, SMD0805
6 C9 1 470nF, SMD0805 478-1403-2-ND
7 D1 1 green LED, SMD0805 P516TR-ND
J1, J2, J3, SAM1029-12-ND DNP: Headers and receptacles 8 J4 0 12-pin header, TH (Header) SAM1213-12- enclosed with kit. Keep vias free of ND (Receptacle) solder:
9 J5 1 3-pin header, male, TH
JP3, JP5, place jumpers on pins 2-3 on JP5, 10 JP6, JP7, 7 3-pin header, male, TH SAM1035-03-ND JP6, JP7, JP8, JP9, JP10 place JP8, JP9, jumpers on pins 1-2 on JP3, JP10
11 JP1, JP2 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header
12 9 Jumper 15-38-1024-ND See Pos. 10and Pos. 11
13 JTAG 1 14-pin connector, male, HRP14H-ND TH
14 BOOTST 0 10-pin connector, male, "DNP Keep vias free of solder" TH
Micro Crystal MS3V-T1R
15 Q1 0 Crystal 32.768kHz, C(Load) = DNP: Q1 Keep vias free of solder
12.5pF
16 Q2 0 Crystal Q2: 4MHz Buerklin: DNP: Q2 Keep vias free of solder 78D134
Insulating http://www.ettinger.de/Ar 17 disk to Q2 0 Insulating disk to Q2 t_Detail.cfm?ART_ART NUM=70.08.121
18 R3, R7 2 330 Ω, SMD0805 541-330ATR-ND
R1, R2,
R4, R6,
19 R8, 3 0 Ohm, SMD0805 541-000ATR-ND DNP: R6, R8, R9, R10, R11,R12
R9,R10,
R11, R12
20 R5 1 47k Ω, SMD0805 541-47000ATR-ND
21 U1 1 Socket: QFN11T048- Manuf.: Yamaichi 008_A101121_RGZ48
22 PCB 1 81 x 76 mm 2 layers
Adhesive Approximately 6mm for example, 3M 23 plastic feet 4 width, 2mm height Bumpons Part No. SJ- Apply to corners at bottom side 5302
24 MSP430 2 MSP430F5342IRGZ DNP: enclosed with kit, supplied by TI
72 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
DNP
DNP
DNP
GND
GND
100nF
330R
0R -
GND
GND
47k 1.1nF
GND
0R 0R
0R
1uF/10V QUARZ5
1uF/10V 100nF
green
DNP
yellow (DNP)
DNP
red (DNP)
0R
GND
DNP
DNP
0R 0R
QUARZ5
EVQ11
0R
DNP
DNP
If external supply voltage:
remove R3 and add R2 (0 Ohm)
1.3
Ext_PWR
MSP-TS430RGZ48C
Vcc
int
ext
Target Socket Board for MSP430FR58xx, FR59xx IRGZ
DNP
DNP
DNP
DNP
DNP
JTAG ->
SBW ->
JTAG-Mode selection:
4-wire JTAG: Set jumpers JP3 to JP8 to position 2-3
2-wire "SpyBiWire": Set jumpers JP3 to JP8 to position 1-2
connection by via
DNP
DNP
1
3
5
7
9
11
13
2
4
6
12
14
8
10
JTAG
C2
C1
C4
R1
1 2
3 4
5 6
7 8
9 10
BOOTST
R3 R2
1
2
3
J2
J1
1
2
3
JP1
1
2
1
2
JP9
R4 C5
1
2
3
JP3
1
2
3
JP4
1
2
3
JP5
1
2
3
JP6
1
2
3
JP7
1
2
3
JP8
R5 R6
R7
C3 Q1
C7 C6
D1
R10
1
2
JP10
D2
R11
1
2
JP11
D3
R12
JP2
1
2
C8
C9
R9 R8
Q2
SV4
1
2
3
4
5
6
7
8
9
10
11
12
SV1
1
2
3
4
5
6
7
8
9
10
11
12
SV2
1
2
3
4
5
6
7
8
9
10
11
12
SV3
1
2
3
4
5
6
7
8
9
10
11
12
1 1_P1.0
2 2_P1.1
3 3_P1.2
4 4_P3.0
5 5_P3.1
6 6_P3.2
7 7_P3.3
8 8_P4.7
9 9_P1.3
10 10_P1.4
11 11_P1.5
12 12_PJ.0_TDO
13 13_PJ.1_TDI
14 14_PJ.2_TMS
15 15_PJ.3/TCK
16 16_P4.0
17 17_P4.1
18 18_P4.2
19 19_P4.3
20 20_P2.5
21 21_P2.6
22 22_TEST/SBWTCK
23 23_RST/SBWTDIO
24 24_P2.0
25_P2.1 25
26_P2.2 26
27_P3.4 27
28_P3.5 28
29_P3.6 29
30_P3.7 30
31_P1.6 31
32_P1.7 32
33_P4.4 33
34_P4.5 34
35_P4.6 35
36_DVSS 36
37_DVCC 37
38_P2.7 38
39_P2.3 39
40_P2.4 40
41_AVSS 41
42_HFXIN 42
43_HFXOUT 43
44_AVSS 44
45_LFXIN 45
46_LFXOUT 46
47_AVSS 47
48_AVCC 48
U1
SW1
R13
TP1TP2
SW2
R14
P1.0
P1.0
RST/NMI
TMS
TDI
VCC
GND
P1.1
P1.1
RST/SBWTDIO
RST/SBWTDIO
RST/SBWTDIO
TCK/SBWTCK
TDO/SBWTDIO
PJ.0/TDO
PJ.0/TDO
PJ.2/TMS
PJ.2/TMS
PJ.3/TCK
PJ.3/TCK
PJ.1/TDI
PJ.1/TDI
P1.2
P1.2
P2.0
P2.0
P2.1
P2.1
P1.3
P1.3
P1.4
P1.5
AVCC
AVCC
AVSS
AVSS
AVSS
AVSS
LFXOUT
LFXIN
LFGND HFGND
HFXOUT
HFXIN
P2.4
P2.3
P2.7
DVCC DVCC
DVCC
DVCC
DVSS
DVSS
P4.6
P4.5
P4.4
P1.7
P1.6
P3.7
P3.6
P3.5
P3.4
P2.2
P2.6
P2.5
P4.3
P4.2
P4.1
P4.0
P4.7
P3.3
P3.2
P3.1
P3.0
TEST/SBWTCK1
TEST/SBWTCK
TEST/SBWTCK
TEST/SBWTCK
www.ti.com MSP-TS430RGZ48C
B.15 MSP-TS430RGZ48C
Figure B-29. MSP-TS430RGZ48C Target Socket Module, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 73
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430RGZ48C www.ti.com
Figure B-30. MSP-TS430RGZ48C Target Socket Module, PCB
Table B-16. MSP-TS430RGZ48C Revision History
Revision Comments
1.2 Initial release
LFOSC pins swapped at SV1 (9-10).
1.3 HFOSC pins swapped at SV1 (6-7).
BOOTST pin 4 now directly connected to the device RST/SBWTDIO pin.
74 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430RGZ48C
Table B-17. MSP-TS430RGZ48C Bill of Materials
Number
Pos Ref Des Per Description DigiKey Part Number Comment
Board
1 SV1, SV2, SV3, 4 12-pin header, TH DNP: headers and receptacles enclosed with kit.
SV4 Keep vias free of solder.
SAM1029-12-ND : Header
: Receptacle
1.1 SV1, SV2, SV3, 4 12-pin receptable, TH DNP: headers and receptacles enclosed with kit.
SV4 Keep vias free of solder.
: Header
SAM1213-12-ND : Receptacle
2 JP1, JP2, JP9 3 2-pin header, male, TH SAM1035-02-ND Place jumper on header
3 JP10, JP11 2 2-pin header, male, TH SAM1035-02-ND DNP
4 J1, JP3, JP4, JP5, 7 3-pin header, male, TH SAM1035-03-ND Place jumpers on pins 2-3
JP6, JP7, JP8
5 J2 1 3-pin header, male, TH SAM1035-03-ND
6 JP1, JP2, JP9, J1, 10 Jumper 15-38-1024-ND Place on: JP1, JP2, JP9, J1, JP3, JP4, JP5, JP6,
JP3, JP4, JP5, JP7, JP8
JP6, JP7, JP8
7 R2, R3, R5, R6, 9 DNP, 0805 DNP
R8, R9, R10, R11,
R14
8 R12, R13, R7 3 0R, 0805 541-000ATR-ND
9 C5 1 1.1nF, CSMD0805 490-1623-2-ND
10 C3, C7 2 1uF, 10V, CSMD0805 490-1702-2-ND
11 R4 1 47k, 0805 541-47000ATR-ND
12 C4, C6 2 100nF, CSMD0805 311-1245-2-ND
13 R1 1 330R, 0805 541-330ATR-ND
14 C1, C2, C8, C9 4 DNP, CSMD0805 DNP
15 SW1, SW2 2 EVQ-11L05R P8079STB-ND DNP, Lacon: 1251459
16 BOOTST 1 10-pin connector, male, TH HRP10H-ND DNP, keep vias free of solder
17 JTAG 1 14-pin connector, male, TH HRP14H-ND
18 Q1 1 DNP: MS3V-TR1 (32768kHz, depends on application Micro Crystal, DNP, enclosed in kit, keep vias
20ppm, 12.5pF) free of solder
19 Q2 1 DNP, Christal depends on application DNP, keep vias free of solder
20 U1 1 Socket: QFN11T048-008 Manuf.: Yamaichi
A101121-001
20.1 U1 1 MSP430 DNP: enclosed with kit. Is supplied by TI.
21 D1 1 green LED, DIODE0805 P516TR-ND
22 D3 1 red (DNP), DIODE0805 DNP
23 D2 1 yellow (DNP), DIODE0805 DNP
24 TP1, TP2 2 Testpoint DNP, keep pads free of solder
25 Rubber stand off 4 Buerklin: 20H1724 apply to corners at bottom side
26 PCB 1 79.6 x 91.0 mm MSP-TS430RGZ48C 2 layers, black solder mask
Rev. 1.2
SLAU278Q–May 2009–Revised February 2014 Hardware 75
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
ML14
LED3
0R
12pF
12pF
12pF
12pF
GND
GND
0R
100nF
560R
ML10
JP1Q
JP1Q
10uF/6,3V
10uF/10V
47K
10nF
0R
0R
0R
-
-
0R
-
0R
0R
FE16-1-1
FE16-1-2
FE16-1-3
FE16-1-4
PWR3
GNDGND
-
MSP64PM
not assembled
not assembled
not assembled
not assembled
enhancement
reserved for
future
JTAG
1
3
5
7
9
11
13
2
4
6
12
14
8
10
D1
R2
C2
C1
C3
C4
R1
C5
R3
BOOTST
1 2
3 4
5 6
7 8
9 10
J7
1 2
J6
1 2
C6
C7
R5
C8
R6
R7
R8
R9
R10
R11
R12
R13
R14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
J1
J2
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
J3
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
J4
J5
1
2
3
R4
Q1
LFXTCLK
XTCLK
U2
DVCC
2
3
4
5
6
7
XIN
XOUT
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
TDO
TDI
TMS
TCK
RST
59
60
61
AVSS
DVSS
AVCC
RST/NMI
TCK
TMS
TDI
TDO
VCC
Date: 3/14/2006 10:46:30 AM Sheet: 1/1
REV:
TITLE:
Document Number:
MSP-TS430PM64
+
+
1
MSP-TS430PM64 Target Socket PM64
Yamaichi
IC51-0644-807
Socket:
1.2
for F14x and F41x
Open J6 if LCD
is connected
If external supply voltage:
remove R8 and add R9 (0 Ohm)
If external supply voltage:
remove R11 and add R10 (0 Ohm)
For BSL usage add:
R6 R7 R13 R14
MSP430F14x : 0 0 open open
MSP430F41x : open open 0 0
MSP-TS430PM64 www.ti.com
B.16 MSP-TS430PM64
NOTE: Connections between the JTAG header and pins XOUT and XIN are no longer required and should not be
made.
Figure B-31. MSP-TS430PM64 Target Socket Module, Schematic
76 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Connector J5
External power connection
Remove R8 and jumper R9
LED connected
to pin 12
Jumper J6
Open to disconnect LED
Jumper J7
Open to measure current
Orient Pin 1 of
MSP430 device
www.ti.com MSP-TS430PM64
Figure B-32. MSP-TS430PM64 Target Socket Module, PCB
SLAU278Q–May 2009–Revised February 2014 Hardware 77
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430PM64 www.ti.com
Table B-18. MSP-TS430PM64 Bill of Materials
Pos. Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP
1.1 C3, C4 0 47pF, SMD0805 DNP: Only recommendation. Check your crystal spec.
2 C6, C7 1 10uF, 10V, Tantal Size B 511-1463-2-ND DNP: C6
3 C5 1 100nF, SMD0805 478-3351-2-ND
4 C8 1 10nF, SMD0805 478-1383-2-ND
5 C9 1 470nF, SMD0805 478-1403-2-ND
6 D1 1 green LED, SMD0805 P516TR-ND
DNP: Headers and
receptacles enclosed with
7 J1, J2, J3, J4 0 16-pin header, TH kit.Keep vias free of solder.
SAM1029-16-ND : Header
SAM1213-16-ND : Receptacle
8 J5 1 3-pin header, male, TH SAM1035-03-ND
9 J6, J7 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header
11 2 Jumper 15-38-1024-ND Place on: J6, J7
12 JTAG 1 14-pin connector, male, TH HRP14H-ND
13 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder
Q1: Micro Crystal MS1V-T1K DNP: Keep vias free of 14 Q1, Q2 0 Crystal 32.768kHz, C(Load) = solder 12.5pF
15 R3 1 330 Ω, SMD0805 541-330ATR-ND
R1, R2, R4,
R6, R7, R8, DNP: R4, R6, R7, R9, R10, 16 R9, R10, 3 0 Ω, SMD0805 541-000ATR-ND R11, R12, R13, R14 R11, R12,
R13, R14
17 R5 1 47k Ω, SMD0805 541-47000ATR-ND
18 U1 1 Socket: IC51-0644-807 Manuf.: Yamaichi
19 PCB 1 78 x 75 mm 2 layers
20 Rubber 4 select appropriate Apply to corners at bottom standoff side
21 MSP430 22 MSP430F2619IPM DNP: Enclosed with kit MSP430F417IPM supplied by TI
78 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
0R
12pF
12pF
GND
GND
0R
100nF
330R
10uF/6.3V
0R 0R
0R 0R
PWR3
GND
47k
2.2nF
330R
GND
GND
100nF
GND
0R
0R
MSP-TS430PM64A Target Socket
DNP
Yamaichi
IC51-0644-807
Socket:
DNP
1.1
for F4152
Open JP1 if LCD
is connected
JTAG ->
SBW ->
DNP
DNP
DNP
DNP DNP
DNP DNP
Vcc
ext
int
TEST/SBWTCK RST/SBWTDIO P7.0/TDO P7.1/TDI P7.2/TMS P7.3/TCK
ADD LCD-CAP!
DNP
DNP
JTAG
1
3
5
7
9
11
13
2
4
6
12
14
8
10
R2
C2
C1
R1
C5
R3
BOOTST
1 2
3 4
5 6
7 8
9 10
C6
R10 R11
R13 R14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
J1
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
J2
J3
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
J4
J5
1
2
3
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
1
2
3
4
5
6
7
8
9
11
12
13
14
15
10
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
1 2
Q1
R4
C3
1
2
3
JP4 JP5
1
2
3
JP6
1
2
3
JP7
1
2
3
JP8
1
2
3
R6
JP9
1
2
3
1
2
JP1
JP2
1
2
JP3
1
2
3
D1
C4
R5
R7
RST/NMI
TMS
TDI
VCC
GND
XTLGND
TCK/SBWTCK
TDO/SBWTDIO
VCC430
VCC430
VCC430
P5.1
P5.1
AVCC
AVCC
AVSS
AVSS
P1.0
P1.1
XIN
XOUT
A
A
A
B
B
B
C
C
D
D
E
E
F
F
Date: 3/29/2011 3:07:02 PM Sheet: 1/1
REV:
TITLE:
Document Number:
MSP-TS430PM64A
+
TEST/SBWTCK
RST/SBWTDIO
If supplied locally: populate R10 (0R), remove R11
If supplied by interface: populate R11 (0R), remove R10
www.ti.com MSP-TS430PM64A
B.17 MSP-TS430PM64A
Figure B-33. MSP-TS430PM64A Target Socket Module, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 79
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Jumper JP2
Open to measure current
Jumper JP1
Open to disconnect LED
LED D1 connected to P5.1
Jumper JP3
1-2 (int): Power supply via JTAG interface
2-3 (ext): External Power Supply
Jumper JP4 to JP9:
Close 1-2 to debug in Spy-Bi-Wire mode
Close 2-3 to debug in 4-wire JTAG mode
Orient Pin 1 of Device
MSP-TS430PM64A www.ti.com
Figure B-34. MSP-TS430PM64A Target Socket Module, PCB
80 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430PM64A
Table B-19. MSP-TS430PM64A Bill of Materials
Pos. Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2, 0 12pF, SMD0805 DNP
2 C3 0 2.2nF, SMD0805 DNP
3 C6, 1 10uF, 10V, Tantal Size B 511-1463-2-ND
4 C4, C5 2 100nF, SMD0805 478-3351-2-ND
5 D1 1 green LED, SMD0805 P516TR-ND
DNP: Headers and
receptacles enclosed with kit.
6 J1, J2, J3, J4 0 16-pin header, TH Keep vias free of solder.
SAM1029-16-ND : Header
SAM1213-16-ND : Receptacle
J5, JP3, JP4,
7 JP5, JP6, 8 3-pin header, male, TH SAM1035-03-ND JP7, JP8,
JP9
8 JP1, JP2 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header
9 2 Jumper 15-38-1024-ND Place on: J6, J7
10 JTAG 1 14-pin connector, male, TH HRP14H-ND
11 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder
Micro Crystal MS1V-T1K DNP: Keep vias free of 12 Q1 0 Crystal 32.768kHz, C(Load) = solder 12.5pF
13 R3, R6 2 330 Ω, SMD0805 541-330ATR-ND
R1, R2, R5,
14 R7, R9, R10, 2 0 Ω, SMD0805 541-000ATR-ND DNP: R5, R7, R9, R10, R11, R11, R13, R13, R14
R14
15 R4 1 47k Ω, SMD0805 541-47000ATR-ND
16 U1 1 Socket: IC51-0644-807 Manuf.: Yamaichi
17 PCB 1 78 x 75 mm 4 layers
18 Rubber stand 4 select appropriate Apply to corners at bottom off side
19 MSP430 2 MSP430F4152IPM DNP: Enclosed with kit supplied by TI
SLAU278Q–May 2009–Revised February 2014 Hardware 81
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430RGC64B www.ti.com
B.18 MSP-TS430RGC64B
Figure B-35. MSP-TS430RGC64B Target Socket Module, Schematic
82 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Jumper JP2
Open to disconnect LED
Connector J5
External power connector
Jumper JP3 to "ext"
Jumpers JP5 to JP10
Close 1-2 to debug in Spy-Bi-Wire mode
Close 2-3 to debug in 4-wire JTAG mode
D1 LED connected to P1.0
If the system should
be supplied via LDOI (J6),
close JP4 and
set JP3 to external
Orient Pin 1 of MSP430 device
www.ti.com MSP-TS430RGC64B
Figure B-36. MSP-TS430RGC64B Target Socket Module, PCB
SLAU278Q–May 2009–Revised February 2014 Hardware 83
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430RGC64B www.ti.com
Table B-20. MSP-TS430RGC64B Bill of Materials
Pos. Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP
2 C3, C4 0 47pF, SMD0805 DNP
3 C6, C7, C10 3 10uF, 6.3V, SMD0805
C5, C11,
4 C13, C14, 5 100nF, SMD0805 311-1245-2-ND
C15
5 C8 1 2.2nF, SMD0805
6 C9 1 470nF, SMD0805 478-1403-2-ND
7 C16 1 4.7uF, SMD0805
8 C17 1 220nF, SMD0805
9 D1 1 green LED, SMD0805 P516TR-ND
J1, J2, J3, SAM1029-16-ND DNP: Headers and receptacles 10 J4 0 16-pin header, TH (Header) SAM1213-16- enclosed with kit. Keep vias free of ND (Receptacle) solder:
11 J5 , J6 2 3-pin header, male, TH
JP3, JP5, place jumpers on pins 2-3 on JP5, JP6, 12 JP6, JP7, 7 3-pin header, male, TH SAM1035-03-ND JP7, JP8, JP9, JP10 place jumpers on JP8, JP9, pins 1-2 on JP3, JP10
13 JP1, JP2, 3 2-pin header, male, TH SAM1035-02-ND Place jumper on header JP4
14 10 Jumper 15-38-1024-ND See Pos. 12 and Pos. 13
15 JTAG 1 14-pin connector, male, HRP14H-ND TH
16 BOOTST 0 10-pin connector, male, "DNP Keep vias free of solder" TH
Micro Crystal MS3V-T1R
17 Q1 0 Crystal 32.768kHz, C(Load) = DNP: Q1 Keep vias free of solder
12.5pF
18 Q2 0 Crystal Q2: 4MHz Buerklin: DNP: Q2 Keep vias free of solder 78D134
Insulating http://www.ettinger.de/Art 19 disk to Q2 0 Insulating disk to Q2 _Detail.cfm?ART_ARTNU M=70.08.121
20 R3, R7 2 330 Ω, SMD0805 541-330ATR-ND
R1, R2, R4,
21 R6, R8, 3 0 Ohm, SMD0805 541-000ATR-ND DNP: R6, R8, R9, R10, R11,R12 R9,R10,
R11, R12
22 R5 1 47k Ω, SMD0805 541-47000ATR-ND
23 U1 1 Socket: QFN11T064-006- Manuf.: Yamaichi N-HSP
24 PCB 1 85 x 76 mm 2 layers
Adhesive Approximately 6mm for example, 3M 25 plastic feet 4 width, 2mm height Bumpons Part No. SJ- Apply to corners at bottom side 5302
26 D3,D4
27 MSP430 2 MSP430F5310 RGC DNP: enclosed with kit, supplied by TI
84 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430RGC64C
B.19 MSP-TS430RGC64C
The MSP-TS430RGC64C target board has been designed with the option to operate with the target
device DVIO input voltage supplied via header J6 (see Figure B-37). This development platform does not
supply the 1.8-V DVIO rail on board and it MUST be provided by external power supply for proper device
operation. For correct JTAG connection, programming, and debug operation, it is important to follow this
procedure:
1. Make sure that the VCC and DVIO voltage supplies are OFF and that the power rails are fully
discharged to 0 V.
2. Enable the 1.8-V external DVIO power supply.
3. Enable the 1.8-V to 3.6-V VCC power supply (alternatively, this supply can be provided from the MSPFET430UIF
JTAG debugger interface).
4. Connect the MSP-FET430UIF JTAG connector to the target board.
5. Start the debug session using IAR or CCS IDE.
For more information on debugging the MSP4and MSP430F525x, see the device-specific data sheets
(MSP430F522x: SLAS718; MSP430F525x: SLAS903) and Designing with MSP430F522x and
MSP430F521x Devices (SLAA558).
For debugging of devices (MSP430F524x and MSP430F523x) without use of the DVIO power domain,
short JP4 with the jumper.
SLAU278Q–May 2009–Revised February 2014 Hardware 85
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
1.1
MSP-TS430RGC64C
TI Friesing
Tools
MSP430
1 1
12/14/10 S.G.
1 2 3 4 5 6
A
B
C
D
A
B
C
D
Design:
Appr.:
Rev.:
Comment:
Drawing#: Revision:
File: Page: Size:
Title of Schematic
of Mentor Pads Logic V9
Date: Name:
1 2 3 4 5 6
MSP-TS430RGC64C.sch
<-- SBW
<-- JTAG
ext
int
VCC
DVIO Power Circle
BSL
1 P6.0/CB0/A0
2 P6.1/CB1/A1
3 P6.2/CB2/A2
4 P6.3/CB3/A3
5 P6.4/CB4/A4
6 P6.5/CB5/A5
7 P6.6/CB6/A6
8 P6.7/CB7/A7
9 P5.0/A8/VEREF+
10 P5.1/A9/VEREF-
11 AVCC
12 P5.4/XIN
13 P5.5/XOUT
14 AVSS
15 DVCC
16 DVSS
17 VCORE
18 P1.0/TA0CLK/ACLK
19 P1.1/TA0.0
20 P1.2/TA0.1
21 P1.3/TA0.2
22 P1.4/TA0.3
23 P1.5/TA0.4
24 P1.6/TA1CLK/CBOUT
25 P1.7/TA1.0
26 P2.0/TA1.1
27 P2.1/TA1.2
28 P2.2/TA2CLK/SMCLK
29 P2.3/TA2.0
30 P2.4/TA2.1
31 P2.5/TA2.2
32 P2.6/RTCCLK/DMAE0
P2.7/UCB0STE/UCA0CLK 33
P3.0/UCB0SIMO/UCB0SDA 34
P3.1/UCB0SOMI/UCB0SCL 35
P3.2/UCB0CLK/UCA0STE 36
P3.3/UCA0TXD/UCA0SIMO 37
P3.4/UCA0RXD/UCA0SOMI 38
DVSS 39
DVIO 40
P4.0/PM_UCB1STE 41
P4.1/PM_UCB1SIMO 42
P4.2/PM_UCB1SOMI 43
P4.3/PM_UCB1CLK 44
P4.4/PM_UCA1TXD 45
P4.5/PM_UCA1RXD 46
P4.6/PM_NONE 47
P4.7/PM_NONE 48
49 P7.0/TB0.0
50 P7.1/TB0.1
51 P7.2/TB0.2
52 P7.3/TB0.3
53 P7.4/TB0.4
54 P7.5/TB0.5
55 BSLEN
56 RST/NMI
57 P5.2/XT2IN
58 P5.3/XT2OUT
59 TEST/SBWTCK
60 PJ.0/TDO
61 PJ.1/TDI/TCLK
62 PJ.2/TMS
63 PJ.3/TCK
64 RSTDVCC/SBWTDIO
65 THERMAL_1
66 THERMAL_2
67 THERMAL_3
68 THERMAL_4
69 THERMAL_5
70 THERMAL_6
71 THERMAL_7
72 THERMAL_8
U1
MSP430F5229
2 1
4 3
6 5
8 7
10 9
12 11
14 13
JTAG
1 2
3 4
5 6
7 8
9 0 1
BOOTST
CN-ML10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
J1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
J2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
J3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
J4
1
2
3
JP5
PINHEAD_1X3
1
2
3
JP6
PINHEAD_1X3
1
2
3
JP7
PINHEAD_1X3
1
2
3
JP8
PINHEAD_1X3
1
2
3
JP9
PINHEAD_1X3
1
2
3
JP10
PINHEAD_1X3
1
2
3
J5
PINHEAD_1X3
R7
330R
1
2
3
JP3
C10
10uF
C14
100nF
C5
10uF
C6
100nF
R1
0R
R2
0R
R6
0R R8
0R
C1 12pF
C2
12pF
C7
10uF
C13
100nF
1
2
JP2
R3
330R
1 2
D1
??? R4
0R
C9
470nF
R5
47K
C8
2.2nF
R11
0R
R12
0R
C16
4.7uF
tbd C3
tbd C4
R9
0R
R10
0R
C15
100nF
1
2
3
J6
PINHEAD_1X3
1
2
JP4
PINHEAD_1X2
D3
Q2
QUARZ_4PIN
26MHz/ASX53
Q1
1
2
JP1
PINHEAD_1X2
SHC1
SHORTCUT2
GND
GND
GND
GND
XTLGND
VCORE
GND
GND
DVCC
DVCC
GND
XTLGND2
GND
GND
DVCC
GND
RST/NMI
TCK
TMS
TDI
TDO
RSTDVCC_SBWTDIO
TDO
RST/NMI
TCK
C
TCK
M
TMS
I
TDI
O
TDO
DVCC
P1.2/TA0.1
P1.1/TA0.0
TEST/SBWTCK
C
M
I
O
DVCC
P1.1/TA0.0
P1.2/TA0.1
RSTDVCC_SBWTDIO
TEST/SBWTCK
AVSS
MSP-TS430RGC64C www.ti.com
Figure B-37. MSP-TS430RGC64C Target Socket Module, Schematic
86 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Connector J5
External power connector for DVCC.
Set jumper JP3 to "ext".
IMPORTANT NOTE:
Rev1.0 of the board does not have
connection from pin 4 of BOOTST to
pin 64 of MCU. To use BSL, these pins
should be connected by a wire.
Jumper JP2
Open to disconnect LED.
D1
LED connected to P1.0
Orient Pin 1 of
MSP430 device
Jumpers JP5 to JP10
-2 to debug in
Spy-Bi-Wire mode.
Close 2-3 to debug in
4-wire JTAG mode.
Close 1
Jumper JP4
For F524x devices, close.
For F522x, F523x and F525x devices,
close only if one power supply is
used for VCC and DVIO, and if VCC is
not higher then 1.98 V. Otherwise.
supply DVIO over J6.
Do not close if VCC > 1.98 V, as it
may damage the chip.
Connector J6
External power connector
to supply DVIO
www.ti.com MSP-TS430RGC64C
Figure B-38. MSP-TS430RGC64C Target Socket Module, PCB
SLAU278Q–May 2009–Revised February 2014 Hardware 87
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430RGC64C www.ti.com
Table B-21. MSP-TS430RGC64C Bill of Materials
Item Qty Reference Value Description Comment Supplier No.
1 0 C1, C2 12pF CAP, SMD, Ceramic, 0805 DNP C1 C2
2 0 C3, C4 tbd CAP, SMD, Ceramic, 0805 DNP C3 C4
4 3 C5, C7, C10 10uF CAP, SMD, Ceramic, 0805
5 5 C8 C6 C13-15 100nF CAP, SMD, Ceramic, 0805 DigiKey: 311-1245-2-ND
5 5 C8 2.2nF CAP, SMD, Ceramic, 0805
6 1 C9 470nF CAP, SMD, Ceramic, 0805 DigiKey: 478-1403-2-ND
7 1 C16 4.7uF CAP, SMD, Ceramic, 0805
8 1 D1 Green LED LED, SMD, 0805
DNP: headers and
receptacles enclosed with
9 4 J1-J4 16-pin header Pin header 1x16: Grid: 100mil kit. Keep vias free of (2.54 mm) solder.
: Header SAM1029-16-ND
: Receptacle SAM1213-16-ND
10 2 J5, J6 3-pin header, male, TH Pin header 1x3: Grid: 100mil SAM1035-03-ND (2.54 mm)
11 JP5, JP6, JP7, 3-pin header, male, TH Pinheader 1x3: Grid: 100mil place jumpers on pins 2-3 SAM1035-03-ND JP8, JP9, JP10 (2.54 mm)
12 JP3 3-pin header, male, TH Pin header 1x3: Grid: 100mil place jumper on pins 1-2 SAM1035-03-ND (2.54 mm)
13 JP1, JP2, JP4 2-pin header, male, TH Pin header 1x2; Grid: 100mil place jumper on header SAM1035-02-ND (2.54 mm)
Place on: JP1, JP2, JP3,
14 10 Jumper JP4, JP5, JP6, JP7, JP8, 15-38-1024-ND
JP9, JP10
15 1 JTAG 2x7Pin,Wanne Header, THD, Male 2x7 Pin, HRP14H-ND Wanne, 100mil spacing
16 0 BOOTST 2x5Pin,Wanne Header, THD, Male 2x5 Pin, DNP Wanne, 100mil spacing
17 1 Q1 26MHz/ASX53 CRYSTAL, SMD, 5x3MM, Only Kit. 26MHz
18 0 Q2 26MHz/ASX53 CRYSTAL, SMD, 5x3MM, 300-8219-1-ND 26MHz
19 1 D3 LL103A DIODE, SMD, SOD123, Buerklin: 24S3406 Schottky
20 2 R3, R7 330 Ohm, SMD0805 541-330ATR-ND
21 1 R5 47k Ohm, SMD0805 RES, SMD, 0805, 1/8W, x% 541-47000ATR-ND
R1, R2, R4, DNP: R6, R8, R9, R10, 22 R6, R8, R9, 0 Ohm, SMD0805 RES, SMD, 0805, 1/8W, x% R11,R12 541-000ATR-ND R10, R11, R12
23 1 U1 Socket: QFN11T064-006-N- Manuf.: Yamaichi HSP
24 2 MSP430 MSP430F5229IRGCR IC, MCU, SMD, 9.15x9.15mm Thermal Pad with Socket
25 4 Rubber stand Rubber stand off apply to corners at bottom Buerklin: 20H1724 off side
26 1 PCB 84 x 76 mm 84 x 76 mm
88 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430RGC64USB
B.20 MSP-TS430RGC64USB
Due to the use of diodes in the power chain, the voltage on the MSP430F5xx device is approximately
0.3 V lower than is set by the debugging tool. Set the voltage in the IDE to 0.3 V higher than desired; for
example, to run the MCU at 3.0 V, set it to 3.3 V.
Figure B-39. MSP-TS430RGC64USB Target Socket Module, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 89
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430RGC64USB www.ti.com
Figure B-40. MSP-TS430RGC64USB Target Socket Module, PCB
90 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430RGC64USB
Table B-22. MSP-TS430RGC64USB Bill of Materials
Pos. Ref Des No. Per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP: C1, C2
1.1 C3, C4 2 47pF, SMD0805
2 C6, C7 2 10uF, 6.3V, Tantal Size B 511-1463-2-ND
3 C5, C11, 4 100nF, SMD0805 311-1245-2-ND C13, C14
3.1 C10, C12 0 10uF, SMD0805 DNP: C10, C12
4 C8 1 2.2nF, SMD0805
5 C9 1 470nF, SMD0805 478-1403-2-ND
6 D1 1 green LED, SMD0805 P516TR-ND
DNP: headers and
receptacles enclosed with kit.
7 J1, J2, J3, J4 4 16-pin header, TH Keep vias free of solder.
SAM1029-16-ND : Header
SAM1213-16-ND : Receptacle
8 J5 1 3-pin header, male, TH SAM1035-03-ND
JP5, JP6,
9 JP7, JP8, 6 3-pin header, male, TH SAM1035-03-ND place jumpers on pins 2-3
JP9, JP10
10 JP1, JP2, 3 2-pin header, male, TH SAM1035-02-ND place jumper on header JP4
11 JP3 1 3-pin header, male, TH SAM1035-03-ND place jumper on pins 1-2
Place on: JP1, JP2, JP3,
12 10 Jumper 15-38-1024-ND JP4, JP5, JP6, JP7, JP8,
JP9, JP10
13 JTAG 1 14-pin connector, male, TH HRP14H-ND
Q1: Micro Crystal MS1V-T1K DNP: Q1 14 Q1 0 Crystal 32.768kHz, C(Load) = Keep vias free of solder" 12.5pF
15 Q2 1 Crystal Q2: 4MHz Buerklin: 78D134
16 R3, R7 2 330 Ω, SMD0805 541-330ATR-ND
R1, R2, R4,
17 R6, R8, R9, 2 0 Ω, SMD0805 541-000ATR-ND DNP: R4, R6, R8, R9, R12
R12
18 R10 1 100 Ω, SMD0805 Buerklin: 07E500
18 R11 1 1M Ω, SMD0805
18 R5 1 47k Ω, SMD0805 541-47000ATR-ND
19 U1 1 Socket: QFN11T064-006 Manuf.: Yamaichi
20 PCB 1 79 x 77 mm 2 layers
21 Rubber stand 4 Buerklin: 20H1724 apply to corners at bottom off side
22 MSP430 2 MSP430F5509 RGC DNP: enclosed with kit. Is supplied by TI
Insulating http://www.ettinger.de/Art_De 23 disk to Q2 1 Insulating disk to Q2 tail.cfm?ART_ARTNUM=70.0 8.121
27 C33 1 220n SMD0603 Buerklin: 53D2074
28 C35 1 10p SMD0603 Buerklin: 56D102
29 C36 1 10p SMD0603 Buerklin: 56D102
30 C38 1 220n SMD0603 Buerklin: 53D2074
31 C39 1 4u7 SMD0603 Buerklin: 53D2086
32 C40 1 0.1u SMD0603 Buerklin: 53D2068
33 D2, D3, D4 3 LL103A Buerklin: 24S3406
SLAU278Q–May 2009–Revised February 2014 Hardware 91
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430RGC64USB www.ti.com
Table B-22. MSP-TS430RGC64USB Bill of Materials (continued)
Pos. Ref Des No. Per Description DigiKey Part No. Comment Board
34 IC7 1 TPD4E004 Manu: TI
36 LED 0 JP3QE SAM1032-03-ND DNP
37 LED1 0 LEDCHIPLED_0603 FARNELL: 852-9833 DNP
38 LED2 0 LEDCHIPLED_0603 FARNELL: 852-9868 DNP
39 LED3 0 LEDCHIPLED_0603 FARNELL: 852-9841 DNP
40 R13, R15, 0 470R Buerklin: 07E564 DNP R16
41 R33 1 1k4 / 1k5 Buerklin: 07E612
42 R34 1 27R Buerklin: 07E444
43 R35 1 27R Buerklin: 07E444
44 R36 1 33k Buerklin: 07E740
45 S1 0 PB P12225STB-ND DNP
46 S2 0 PB P12225STB-ND DNP
46 S3 1 PB P12225STB-ND
47 USB1 1 USB_RECEPTACLE FARNELL: 117-7885
92 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430PN80
B.21 MSP-TS430PN80
NOTE: For MSP430F47x and MSP430FG47x devices:
Connect pins 7 and 10 (GND) externally to DVSS (see data sheet).
Connect load capacitance on Vref pin 60 when SD16 is used (see data sheet).
For use of BSL: connect pin 1 of BOOST to pin 58 of U1 and pin 3 of BOOST to pin 57 of U1.
Figure B-41. MSP-TS430PN80 Target Socket Module, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 93
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Connector J5
External power connection
Remove R8 and jumper R9
LED connected to pin 12
Jumper J6
Open to disconnect LED
Orient Pin 1 of MSP430 device
MSP-TS430PN80 www.ti.com
Figure B-42. MSP-TS430PN80 Target Socket Module, PCB
94 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430PN80
Table B-23. MSP-TS430PN80 Bill of Materials
Pos. Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP: C1, C2
1.1 C3, C4 0 47pF, SMD0805 DNP: Only recommendation. Check your crystal spec.
2 C6, C7 1 10uF, 10V, Tantal Size B 511-1463-2-ND
3 C5 1 100nF, SMD0805 478-3351-2-ND
4 C8 1 10nF, SMD0805 478-1383-2-ND
5 D1 1 green LED, SMD0603 475-1056-2-ND
DNP: Headers and
receptacles enclosed with
6 J1, J2, J3, J4 0 25-pin header, TH kit.Keep vias free of solder.
SAM1029-20-ND : Header
SAM1213-20-ND : Receptacle
7 J5, JP1 2 3-pin header, male, TH SAM1035-03-ND
8 J6, JP2 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header
9 3 Jumper 15-38-1024-ND Place on: J6, JP2, JP1/Pos1- 2
10 JTAG 1 14-pin connector, male, TH HRP14H-ND
11 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder
Q1: Micro Crystal MS1V-T1K DNP: Keep vias free of 12 Q1, Q2 0 Crystal 32.768kHz, C(Load) = solder 12.5pF
13 R3 1 560 Ω, SMD0805 541-560ATR-ND
R1, R2, R4, DNP: R4, R6, R7, R10, R11, 14 R6, R7, R10, 2 0 Ω, SMD0805 541-000ATR-ND R12 R11, R12
15 R5 1 47k Ω, SMD0805 541-47000ATR-ND
16 U1 1 Socket: IC201-0804-014 Manuf.: Yamaichi
17 PCB 1 77 x 77 mm 2 layers
18 Adhesive 4 ~6mm width, 2mm height for example, 3M Bumpons Apply to corners at bottom Plastic feet Part No. SJ-5302 side
19 MSP430 2 MSP430FG439IPN DNP: Enclosed with kit supplied by TI
SLAU278Q–May 2009–Revised February 2014 Hardware 95
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430PN80A www.ti.com
B.22 MSP-TS430PN80A
Figure B-43. MSP-TS430PN80A Target Socket Module, Schematic
96 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Connector J5
External power connector
Jumper JP3 to "ext"
Orient Pin 1 of MSP430 device
Jumpers JP5 to JP10
Close 1-2 to debug in Spy-Bi-Wire mode
Close 2-3 to debug in 4-wire JTAG mode
D1 LED connected to P1.0
Jumper JP2
Open to disconnect LED
If the system should
be supplied via LDOI (J6),
close JP4 and
set JP3 to external
www.ti.com MSP-TS430PN80A
Figure B-44. MSP-TS430PN80A Target Socket Module, PCB
SLAU278Q–May 2009–Revised February 2014 Hardware 97
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430PN80A www.ti.com
Table B-24. MSP-TS430PN80A Bill of Materials
Position Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP
2 C3, C4 0 47pF, SMD0805 DNP
3 C6, C7, 3 10uF, 6.3V, SMD0805 DNP C10 C10, C12
C5, C11,
4 C13, C14, 5 100nF, SMD0805 311-1245-2-ND
C15
5 C8 1 2.2nF, SMD0805
6 C9 1 470nF, SMD0805 478-1403-2-ND
7 C16 1 4.7uF, SMD0805
8 C17 1 220nF, SMD0805
9 D1 1 green LED, SMD0805 P516TR-ND
J1, J2, J3, SAM1029-20-ND DNP: Headers and receptacles 10 J4 0 20-pin header, TH (Header) SAM1213-20- enclosed with kit. Keep vias free of ND (Receptacle) solder:
11 J5 , J6 2 3-pin header, male, TH
JP3, JP5, place jumpers on pins 2-3 on JP5, 12 JP6, JP7, 7 3-pin header, male, TH SAM1035-03-ND JP6, JP7, JP8, JP9, JP10 place JP8, JP9, jumpers on pins 1-2 on JP3, JP10
13 JP1, JP2, 3 2-pin header, male, TH SAM1035-02-ND Place jumper on header JP4
14 10 Jumper 15-38-1024-ND See Pos. 12 and Pos. 13
15 JTAG 1 14-pin connector, male, HRP14H-ND TH
16 BOOTST 0 10-pin connector, male, "DNP Keep vias free of solder" TH
Micro Crystal MS3V-T1R
17 Q1 0 Crystal 32.768kHz, C(Load) = DNP: Q1 Keep vias free of solder
12.5pF
18 Q2 0 Crystal Q2: 4MHz Buerklin: DNP: Q2 Keep vias free of solder 78D134
Insulating http://www.ettinger.de/Ar 19 disk to Q2 0 Insulating disk to Q2 t_Detail.cfm?ART_ART NUM=70.08.121
20 D3,D4 2 LL103A Buerklin: 24S3406
21 R3, R7 2 330 Ω, SMD0805 541-330ATR-ND
R1, R2,
R4, R6,
22 R8, 3 0 Ohm, SMD0805 541-000ATR-ND DNP: R6, R8, R9, R10, R11,R12
R9,R10,
R11, R12
23 R5 1 47k Ω, SMD0805 541-47000ATR-ND
24 U1 1 Socket:IC201-0804-014 Manuf.: Yamaichi
25 PCB 1 77 x 91 mm 2 layers
Adhesive Approximately 6mm for example, 3M 26 plastic feet 4 width, 2mm height Bumpons Part No. SJ- Apply to corners at bottom side 5302
27 MSP430 2 MSP430F5329IPN DNP: enclosed with kit, supplied by TI
98 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430PN80USB
B.23 MSP-TS430PN80USB
Due to the use of diodes in the power chain, the voltage on the MSP430F5xx device is approximately
0.3 V lower than is set by the debugging tool. Set the voltage in the IDE to 0.3 V higher than desired; for
example, to run the MCU at 3.0 V, set it to 3.3 V.
NOTE: R11 should be populated.
Figure B-45. MSP-TS430PN80USB Target Socket Module, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 99
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Jumper JP3
1-2 (int): Power supply via JTAG debug interface
2-3 (ext): External power supply
Connector J5
External power connector
Jumper JP3 to ‘ext’
USB Connector
BSL invoke button S3
Jumper JP4
Close for USB bus powered
device
Jumper JP2
Open to disconnect LED
LED connected to P1.0
Jumper JP1
Open to measure current
Jumper JP5 to JP10
Close 1-2 to debug in Spy-Bi-
Wire mode.
Close 2-3 to debug in 4-wire
JTAG mode.
MSP-TS430PN80USB www.ti.com
Figure B-46. MSP-TS430PN80USB Target Socket Module, PCB
100 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430PN80USB
Table B-25. MSP-TS430PN80USB Bill of Materials
Pos. Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP: C1, C2
1.1 C3, C4 2 47pF, SMD0805
2 C6, C7 2 10uF, 6.3V, Tantal Size B 511-1463-2-ND
3 C5, C11, 4 100nF, SMD0805 311-1245-2-ND C13, C14
3.1 C10, C12 0 10uF, SMD0805 311-1245-2-ND DNP: C10, C12
4 C8 1 2.2nF, SMD0805
5 C9 1 470nF, SMD0805 478-1403-2-ND
6 D1 1 green LED, SMD0805 P516TR-ND
DNP: headers and
7 J1, J2, J3, 4 20-pin header, TH SAM1029-20-ND receptacles enclosed with J4 kit. Keep vias free of
solder.
DNP: headers and
receptacles enclosed with
kit. Keep vias free of
7.1 4 20-pin header, TH solder.
SAM1213-20-ND : Header
: Receptacle
8 J5 1 3-pin header, male, TH SAM1035-03-ND
JP5, JP6,
9 JP7, 6 3-pin header, male, TH SAM1035-03-ND Place jumpers on pins 2-3 JP8,JP9,
JP10
10 JP1, JP2 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header
JP4 1 SAM1035-02-ND Place jumper only on one pin
11 JP3 1 3-pin header, male, TH SAM1035-03-ND Place jumper on pins 1-2
Place on: JP1, JP2, JP3,
12 10 Jumper 15-38-1024-ND JP4, JP5, JP6, JP7, JP8,
JP9, JP10
13 JTAG 1 14-pin connector, male, TH HRP14H-ND
Micro Crystal MS1V-T1K DNP: Q1 Keep vias free of 14 Q1 0 Crystal 32.768kHz, C(Load) = solder 12.5pF
15 Q2 1 Crystal "Q2: 4MHzBuerklin: 78D134"
16 R3, R7 2 330 Ω, SMD0805 541-330ATR-ND
R1, R2, R4,
17 R6, R8, R9, 2 0 Ω, SMD0805 541-000ATR-ND DNP: R4, R6, R8, R9, R12
R12
18 R10 1 100 Ω, SMD0805 Buerklin: 07E500
18 R11 0 1M Ω, SMD0805 DNP
18 R5 1 47k Ω, SMD0805 541-47000ATR-ND
19 U1 1 Socket:IC201-0804-014 Manuf.: Yamaichi
20 PCB 1 79 x 77 mm 2 layers
21 Rubber 4 Buerklin: 20H1724 Apply to corners at bottom standoff side
22 MSP430 2 MSP430F5529 DNP: Enclosed with kit supplied by TI
Insulating http://www.ettinger.de/Art_ 23 disk to Q2 1 Insulating disk to Q2 Detail.cfm?ART_ARTNUM =70.08.121
27 C33 1 220n Buerklin: 53D2074
SLAU278Q–May 2009–Revised February 2014 Hardware 101
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430PN80USB www.ti.com
Table B-25. MSP-TS430PN80USB Bill of Materials (continued)
Pos. Ref Des No. per Description DigiKey Part No. Comment Board
28 C35 1 10p Buerklin: 56D102
29 C36 1 10p Buerklin: 56D102
30 C38 1 220n Buerklin: 53D2074
31 C39 1 4u7 Buerklin: 53D2086
32 C40 1 0.1u Buerklin: 53D2068
33 D2, D3, D4 3 LL103A Buerklin: 24S3406
34 IC7 1 TPD4E004 Manu: TI
36 LED 0 JP3QE SAM1032-03-ND DNP
37 LED1 0 LEDCHIPLED_0603 FARNELL: 852-9833 DNP
38 LED2 0 LEDCHIPLED_0603 FARNELL: 852-9868 DNP
39 LED3 0 LEDCHIPLED_0603 FARNELL: 852-9841 DNP
40 R13, R15, 0 470R Buerklin: 07E564 DNP R16
41 R33 1 1k4 Buerklin: 07E612
42 R34 1 27R Buerklin: 07E444
43 R35 1 27R Buerklin: 07E444
44 R36 1 33k Buerklin: 07E740
45 S1 0 PB P12225STB-ND DNP
46 S2 0 PB P12225STB-ND DNP
46 S3 1 PB P12225STB-ND
47 USB1 1 USB_RECEPTACLE FARNELL: 117-7885
102 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430PZ100
B.24 MSP-TS430PZ100
NOTE: Connections between the JTAG header and pins XOUT and XIN are no longer required and should not be
made.
Figure B-47. MSP-TS430PZ100 Target Socket Module, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 103
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Connector J5
External power connection
Remove R8 and jumper R9
LED connected to pin 12
Jumper J6
Open to disconnect LED
Orient Pin 1 of MSP430 device
Jumper J7
Open to measure current
MSP-TS430PZ100 www.ti.com
Figure B-48. MSP-TS430PZ100 Target Socket Module, PCB
104 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430PZ100
Table B-26. MSP-TS430PZ100 Bill of Materials
Pos. Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP
DNP: Only
1b C3, C4 0 47pF, SMD0805 recommendation. Check
your crystal spec.
2 C6, C7 1 10uF, 10V, Tantal Size B 511-1463-2-ND DNP: C6
3 C5 1 100nF, SMD0805 478-3351-2-ND
4 C8 1 10nF, SMD0805 478-1383-2-ND
5 C9 1 470nF, SMD0805 478-1403-2-ND
6 D1 1 yellow LED, TH, 3mm, T1 511-1251-ND
DNP: Headers and
receptacles enclosed with
7 J1, J2, J3, 0 25-pin header, TH kit.Keep vias free of solder. J4 SAM1029-25-ND : Header
SAM1213-25-ND : Receptacle
8 J5 1 3-pin header, male, TH SAM1035-03-ND
9 J6, J7 2 2-pin header, male, TH SAM1035-02-ND place jumper on header
10 2 Jumper 15-38-1024-ND Place on: J6, J7
11 JTAG 1 14-pin connector, male, TH HRP14H-ND
12 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder
Q1: Micro Crystal MS1V- DNP: Keep vias free of 13 Q1, Q2 0 Crystal T1K 32.768kHz, C(Load) = solder 12.5pF
14 R3 1 330 Ω, SMD0805 541-330ATR-ND
R1, R2, R4,
15 R8, R9, R10, 3 0 Ω, SMD0805 541-000ATR-ND DNP: R4, R9, R10, R12
R11, R12
16 R5 1 47k Ω, SMD0805 541-47000ATR-ND
17 U1 1 Socket: IC201-1004-008 or Manuf.: Yamaichi IC357-1004-53N
18 PCB 1 82 x 90 mm 2 layers
19 Adhesive 4 ~6mm width, 2mm height for example, 3M Bumpons Apply to corners at bottom Plastic feet Part No. SJ-5302 side
20 MSP430 2 MSP430FG4619IPZ DNP: enclosed with kit supplied by TI
SLAU278Q–May 2009–Revised February 2014 Hardware 105
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430PZ100A www.ti.com
B.25 MSP-TS430PZ100A
Figure B-49. MSP-TS430PZ100A Target Socket Module, Schematic
106 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Jumper JP1
Open to measure current
Jumper JP2
Open to disconnect LED
LED D1 connected to P5.1
Jumper JP3
1-2 (int): Power supply via JTAG interface
2-3 (ext): External Power Supply
Orient Pin 1 of Device
www.ti.com MSP-TS430PZ100A
Figure B-50. MSP-TS430PZ100A Target Socket Module, PCB
SLAU278Q–May 2009–Revised February 2014 Hardware 107
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430PZ100A www.ti.com
Table B-27. MSP-TS430PZ100A Bill of Materials
Pos. Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP
DNP: Only
1b C3, C4 0 47pF, SMD0805 recommendation. Check
your crystal spec.
2 C7, C9 2 10uF, 10V, Tantal Size B 511-1463-2-ND
3 C5, C11, 3 100nF, SMD0805 311-1245-2-ND C14
4 C8 1 10nF, SMD0805 478-1358-1-ND
5 C6 0 470nF, SMD0805 478-1403-2-ND DNP
6 D1 1 green LED, SMD0805 67-1553-1-ND
DNP: Headers and
receptacles enclosed with
7 J1, J2, J3, 0 25-pin header, TH kit.Keep vias free of solder. J4 SAM1029-25-ND : Header
SAM1213-25-ND : Receptacle
8 J5 1 3-pin header, male, TH SAM1035-03-ND
10 JP1, JP2 2 2-pin header, male, TH SAM1035-02-ND pPlace jumper on header
11 JP3 1 3-pin header, male, TH SAM1035-03-ND Place jumper on pins 1-2
12 3 Jumper 15-38-1024-ND Place on: JP1, JP2, JP3
13 JTAG 1 14-pin connector, male, TH HRP14H-ND
14 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder
Q1: Micro Crystal MS1V- DNP: Keep vias free of 15 Q1, Q2 0 Crystal T1K 32.768kHz, C(Load) = solder 12.5pF
16 R3 1 330 Ω, SMD0805 541-330ATR-ND
R1, R2, R4,
17 R6, R7, R8, 2 0 Ω, SMD0805 541-000ATR-ND DNP: R4, R6, R7, R8, R9, R9, R10, R10, R11, R12
R11, R12
18 R5 1 47k Ω, SMD0805 541-47000ATR-ND
19 U1 1 Socket: IC357-1004-53N Manuf.: Yamaichi
20 PCB 1 90 x 82 mm 4 layers
21 Rubber 4 Select appropriate Apply to corners at bottom standoff side
22 MSP430 2 MSP430F5438IPZ DNP: Enclosed with kit supplied by TI
108 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430PZ100B
B.26 MSP-TS430PZ100B
Figure B-51. MSP-TS430PZ100B Target Socket Module, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 109
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Connector J5
External power connector
Jumper JP1 to "ext"
Jumper JP1
Open to measure current
Orient Pin 1 of MSP430 device
Jumpers JP5 to JP10
Close 1-2 to debug in Spy-Bi-Wire mode
Close 2-3 to debug in 4-wire JTAG mode
JP11, JP12, JP13
Connect 1-2 to connect
AUXVCCx with DVCC or
drive AUXVCCx externally
D1 LED connected to P1.0
Jumper JP2
Open to disconnect LED
MSP-TS430PZ100B www.ti.com
Figure B-52. MSP-TS430PZ100B Target Socket Module, PCB
110 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430PZ100B
Table B-28. MSP-TS430PZ100B Bill of Materials
Position Ref Des No. per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP
C4, C5,
2 C6 , C7, 6 100nF, SMD0805 311-1245-2-ND
C8, C9
3 C10, C26 2 470 nF, SMD0805 478-1403-2-ND
4 C11, C12 1 10 uF / 6.3 V SMD0805 C12 DNP
C13, C14,
5 C16, C18, 6 4.7 uF SMD0805
C19, C29
6 D1 1 green LED, SMD0805 P516TR-ND
J1, J2, J3, SAM1029-25-ND DNP: Headers and receptacles 7 J4 0 25-pin header, TH (Header) SAM1213-25- enclosed with kit. Keep vias free of ND (Receptacle) solder:
8 J5 1 3-pin header, male, TH
JP3, JP5, place jumpers on pins 2-3 on JP5, 9 JP6, JP7, 7 3-pin header, male, TH SAM1035-03-ND JP6, JP7, JP8, JP9, JP10 place JP8, JP9, jumpers on pins 1-2 on JP3, JP10
10 JP1, JP2, 3 2-pin header, male, TH SAM1035-02-ND Place jumper on header JP4
11 JP11, 3 4-pin header, male, TH place jumper on header 1-2 JP12, JP13
12 13 Jumper 15-38-1024-ND See Pos. 9 and Pos. 10 and Pos. 11
15 JTAG 1 14-pin connector, male, HRP14H-ND TH
16 BOOTST 0 10-pin connector, male, "DNP Keep vias free of solder" TH
17 Q1 0 Crystal DNP: Q1 Keep vias free of solder
21 R3, R7 2 330 Ω, SMD0805 541-330ATR-ND
R1, R2,
22 R4, R6, 2 0 Ohm, SMD0805 541-000ATR-ND DNP: R4, R6, R8, R10, R11 R8, R10,
R11
23 R5 1 47k Ω, SMD0805 541-47000ATR-ND
24 U1 1 Socket: IC357-1004-53N Manuf.: Yamaichi
25 PCB 1 90 x 82 mm 2 layers
Adhesive Approximately 6mm for example, 3M 26 plastic feet 4 width, 2mm height Bumpons Part No. SJ- Apply to corners at bottom side 5302
27 MSP430 2 MSP430F6733IPZ DNP: enclosed with kit, supplied by TI
SLAU278Q–May 2009–Revised February 2014 Hardware 111
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
DNP
DNP
DNP
DNP
DNP
DNP
0R
12pF
12pF
47pF
47pF
GND
0R
100nF
330R
10uF/6.3V
10uF/6.3V
2.2nF
PWR3
GND
GND
GND
0R GND
330R
47K
100nF
100nF
P516TR-ND
470nF
100nF
100nF
0R
0R
0R
0R
GND
VCC
100nF
GND
100nF
100nF
GND
100nF
LL103A
GND
4.7n
HCTC_XTL_4
HCTC_XTL_4
HCTC_XTL_4
HCTC_XTL_4
GND
0R
0R
GND
GND
GND
4.7uF
GND
100nF
220nF
GND
VCC
LL103A
1.1
MSP430: Target-Socket MSP-TS430PZ100C
Socket:
Yamaichi
IC201-1004-008
LFXTCLK
<- SBW
<- JTAG
Vcc
int
ext
DNP
DNP
DNP
DNP
DNP
DNP
BSL-Rx
BSL-Tx
DNP
1
3
5
7
9
11
13
2
4
6
12
14
8
10
JTAG
R2
C2
C1
C3
C4
C5 R1
R3
C6
C7
C8
1
2
3
J5
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
64
63
62
61
44
43
42
41
37
38
39
40
17
18
19
20
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
U1
QFP100PZ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
J1
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
J2
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
J3
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
J4
1 JP1
2
1
JP2
2
R4
1
2
3
JP5 1
2
3
JP6 1
2
3
JP7 1
2
3
JP8 1
2
3
JP9 1
2
3
R7 JP10
R5
C11
C12
D1
C9
C13
C10
R6
R8
R9
R12
1
2
3
JP3
C17
C18
C19
C14
D3
C16
1
2
3
JP11
4
1 2
Q1G$1
3 4
Q1G$2
2 1
Q2G$1
4 3
Q2G$2
1 2
3 4
5 6
7 8
9 10
BOOTST
R10
R11
C15
C20
C21
1 JP4
2
D4
1
2
3
J6
TMS
TMS
TDI
TDI
TDO
TDO
TDO
XOUT
VCC
GND
GND
GND
XIN
P1.0
DVCC1
DVCC1
DVCC1
DVCC1
DVCC1
DVCC1
AVCC
XT2OUT
AVSS
AVSS
AVSS
M
M
I
I
O
O
XT2IN
RST/NMI
RST/NMI
TCK
TCK
TCK
C
C
TEST/SBWTCK
TEST/SBWTCK
TEST/SBWTCK
RST
RST
RST
XTLGND2
XTLGND1
PU.0
PU.1
P1.6
P1.7
P8.0
P8.1
P8.2
VBAK
VBAT
VBAT
VBAT
P1.1
P1.1
P1.2
P1.2
LDOI
LDOI
LDOO
LDOO
BSL Interface
LDOI/LDOO Interface
+
+
Note: If the system should be
supplied via LDOI (J6) close JP4
and set JP3 to external
MSP-TS430PZ100C www.ti.com
B.27 MSP-TS430PZ100C
Figure B-53. MSP-TS430PZ100C Target Socket Module, Schematic
112 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Connector J5
External power connector
Jumper JP3 to "ext"
If the system should
be supplied via LDOI (J6),
close JP4 and
set JP3 to external
Jumper JP2
Open to disconnect LED
D1 LED connected to P1.0
Orient Pin 1 of MSP430 device
Jumpers JP5 to JP10
Close 1-2 to debug in Spy-Bi-Wire
mode
Close 2-3 to debug in 4-wire JTAG
mode
LDOI/LDOO
14
1
2
GND
GND
VCC
1 5 10 1 5 2 25 0
26 30 3540 45 50
75 70 65 60 55 51
100 95 90 85 80 76
1 2 3
123
123
123
123
123
3 2 1
1 2 3 4
10
1
2
1 2 3
1
SBW JTAG
Vcc
int
ext
GND
VBAT
DVCC
JTAG
R2
C2
C1
C3
C4
R1
C5
R3
+
C6
+
C7
C8
J5
U1
J1
J2
J3
J4
JP1
JP2
R4
JP5
JP6
JP7
JP8
JP9
JP10
R7
R5
C11
C12
D1
C9
C13
C10
R6
R8
R9
R12
JP3
C17
C18
C19
C14
D3
C16
JP11
Q1
Q2
BOOTST
R10
R11 C15
C20
C21
JP4
D4
J6
www.ti.com MSP-TS430PZ100C
Figure B-54. MSP-TS430PZ100C Target Socket Module, PCB
SLAU278Q–May 2009–Revised February 2014 Hardware 113
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430PZ100C www.ti.com
Table B-29. MSP-TS430PZ100C Bill of Materials
Number
Pos. Ref Des Per Description Digi-Key Part No. Comment
Board
1 C1, C2 0 12pF, SMD0805 DNP: C1, C2
1.1 C3, C4 2 47pF, SMD0805 DNP: C3, C4
2 C6, C7 2 10uF, 6.3V, Tantal Size B 511-1463-2-ND
C5, C11,
3 C13, C14, 6 100nF, SMD0805 311-1245-2-ND
C19, C20
3.1 C10, C12, 0 100nF, SMD0805 311-1245-2-ND DNP: C10, C12,C18, C17 C18,17
4 C8 1 2.2nF, SMD0805 Buerklin 53 D 292
5 C9 1 470nF, SMD0805 478-1403-2-ND
6 D1 1 green LED, SMD0805 P516TR-ND
J1, J2, J3, DNP: headers and receptacles enclosed 7 J4 4 25-pin header, TH SAM1029-25-ND with kit. Keep vias free of solder.
DNP: headers and receptacles enclosed
7.1 4 25-pin header, TH SAM1213-25-ND with kit.
Keep vias free of solder.
8 J5, J6 2 3-pin header, male, TH SAM1035-03-ND
JP5, JP6,
9 JP7, 6 3-pin header, male, TH SAM1035-03-ND place jumpers on pins 2-3 JP8,JP9,
JP10
10 JP1, JP2 2 2-pin header, male, TH SAM1035-02-ND place jumper on header
10.1 JP4 1 2-pin header, male, TH SAM1035-02-ND place jumper on header
11 JP3 1 3-pin header, male, TH SAM1035-03-ND place jumper on pins 1-2
12 10 Jumper 15-38-1024-ND Place on: JP1, JP2, JP3, JP4, JP5, JP6, JP7, JP8, JP9, JP10
13 JTAG 1 14-pin connector, male, TH HRP14H-ND
14 BOOTST 1 10-pin connector, male, TH HRP10H-ND DNP, keep vias free of solder
15 Q1 0 Crystal DNP: Q1
Keep vias free of solder
16 Q2 1 Crystal DNP: Q2 Keep vias free of solder
17 R3, R7 2 330 Ohm, SMD0805 541-330ATR-ND
R1, R2, R4,
18 R6, R8, R9, 3 0 Ohm, SMD0805 541-000ATR-ND DNP: R6, R8, R9, R10, R11, R12 R10, R11,
R12
19 R5 1 47k Ohm, SMD0805 541-47000ATR-ND
20 U1 1 Socket: IC357-1004-53N Manuf.: Yamaichi
21 PCB 1 79.5 x 99.5 mm MSP-TS430PZ100C 2 layers Rev 1.0
22 Rubber 4 Buerklin: 20H1724 apply to corners at bottom side stand off
23 MSP430 2 MSP430F643x DNP: enclosed with kit. Is supplied by
TI.
24 C16 1 4.7 nF SMD0603 Buerklin 53 D 2042
26 D3, D4 2 LL103A Buerklin: 24S3406
27 JP11 1 4-pin header, male, TH SAM1035-04-ND Place jumper on Pin 1 and Pin 2
28 C15 1 4.7 uF, SMD0805 Buerklin 53 D 2430
29 C21 1 220nF, SMD0805 Buerklin 53 D 2381
114 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430PZ5x100
B.28 MSP-TS430PZ5x100
Figure B-55. MSP-TS430PZ5x100 Target Socket Module, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 115
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Connector J5
External power connector
Jumper J3 to ‘ext’
Jumper JP1
Open to measure current
Jumpers JP5 to JP10
Close 1-2 to debug in
Spy-Bi-Wire mode.
Close 2-3 to debug in
4-wire JTAG mode.
Jumper JP2
Open to disconnect LED
LED connected to P1.0
Jumper JP3
1-2 (int): Power supply via JTAG debug interface
2-3 (ext): External power supply
MSP-TS430PZ5x100 www.ti.com
Figure B-56. MSP-TS430PZ5x100 Target Socket Module, PCB
116 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430PZ5x100
Table B-30. MSP-TS430PZ5x100 Bill of Materials
Pos. Ref Des No. Per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP
1b C3, C4 47pF, SMD0805 DNP: Only recommendation. Check your crystal spec.
2 C6, C7 2 10uF, 10V, Tantal Size B 511-1463-2-ND
C5, C10,
3 C11, C12, 4 100nF, SMD0805 311-1245-2-ND DNP: C12, C14
C13, C14
4 C8 0 2.2nF, SMD0805 DNP
5 C9 1 470nF, SMD0805 478-1403-2-ND
6 D1 1 green LED, SMD0805 67-1553-1-ND
DNP: headers and
receptacles enclosed with kit.
7 J1, J2, J3, J4 0 25-pin header, TH Keep vias free of solder.
SAM1029-25-ND : Header
SAM1213-25-ND : Receptacle
8 J5 1 3-pin header, male, TH SAM1035-03-ND
JP5, JP6,
9 JP7, JP8, 6 3-pin header, male, TH SAM1035-03-ND Place jumpers on pins 2-3
JP9, JP10
10 JP1, JP2 2 2-pin header, male, TH SAM1035-02-ND Place jumper on header
11 JP3 1 3-pin header, male, TH SAM1035-03-ND Place jumper on pins 1-2
12 9 Jumper 15-38-1024-ND Place on JP1, JP2, JP3, JP5, JP6, JP7, JP8, JP9, JP10
13 JTAG 1 14-pin connector, male, TH HRP14H-ND
14 BOOTST 0 10-pin connector, male, TH DNP: Keep vias free of solder
Q1: Micro Crystal MS1V-T1K DNP: Keep vias free of 15 Q1, Q2 0 Crystal 32.768kHz, C(Load) = solder 12.5pF
16 R3, R7 2 330 Ω, SMD0805 541-330ATR-ND
R1, R2, R4,
17 R6, R8, R9, 3 0 Ω, SMD0805 541-000ATR-ND DNP: R6, R8, R9, R10, R11, R10, R11, R12
R12
18 R5 1 47k Ω, SMD0805 541-47000ATR-ND
19 U1 1 Socket: IC357-1004-53N Manuf.: Yamaichi
20 PCB 1 90 x 82 mm 2 layers
21 Rubber 4 Select appropriate Apply to corners at bottom standoff side
22 MSP430 2 MSP430F5438IPZ DNP: Enclosed with kit supplied by TI
SLAU278Q–May 2009–Revised February 2014 Hardware 117
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430PZ100USB www.ti.com
B.29 MSP-TS430PZ100USB
Due to the use of diodes in the power chain, the voltage on the MSP430F5xx device is approximately
0.3 V lower than is set by the debugging tool. Set the voltage in the IDE to 0.3 V higher than desired; for
example, to run the MCU at 3.0 V, set it to 3.3 V.
Figure B-57. MSP-TS430PZ100USB Target Socket Module, Schematic
118 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430PZ100USB
Figure B-58. MSP-TS430PZ100USB Target Socket Module, PCB
SLAU278Q–May 2009–Revised February 2014 Hardware 119
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430PZ100USB www.ti.com
Table B-31. MSP-TS430PZ100USB Bill of Materials
Pos. Ref Des No. Per Description DigiKey Part No. Comment Board
1 C1, C2 0 12pF, SMD0805 DNP: C1, C2
1.1 C3, C4 2 47pF, SMD0805
2 C6, C7 2 10uF, 6.3V, Tantal Size B 511-1463-2-ND
C5, C11,
3 C13, C14, 5 100nF, SMD0805 311-1245-2-ND
C19
3.1 C10, C12, 0 100nF, SMD0805 311-1245-2-ND DNP: C10, C12,C18, C17 C18, C17
4 C8 1 2.2nF, SMD0805
5 C9 1 470nF, SMD0805 478-1403-2-ND
6 D1 1 green LED, SMD0805 P516TR-ND
DNP: headers and
receptacles enclosed with kit.
7 J1, J2, J3, J4 4 25-pin header, TH SAM1029-25-ND Keep vias free of solder.
: Header
: Receptacle
DNP: headers and
receptacles enclosed with kit.
7.1 4 25-pin header, TH SAM1213-25-ND Keep vias free of solder.
: Header
: Receptacle
8 J5 1 3-pin header, male, TH SAM1035-03-ND
JP5, JP6,
9 JP7, JP8, 6 3-pin header, male, TH SAM1035-03-ND place jumpers on pins 2-3
JP9, JP10
10 JP1, JP2, 3 2-pin header, male, TH SAM1035-02-ND place jumper on header JP4
11 JP3 1 3-pin header, male, TH SAM1035-03-ND place jumper on pins 1-2
Place on: JP1, JP2, JP3,
12 10 Jumper 15-38-1024-ND JP4, JP5, JP6, JP7, JP8,
JP9, JP10
13 JTAG 1 14-pin connector, male, TH HRP14H-ND
Micro Crystal MS1V-T1K DNP: Q1. Keep vias free of 14 Q1 0 Crystal 32.768kHz, C(Load) = solder 12.5pF
15 Q2 1 Crystal Q2: 4MHz, Buerklin: 78D134
16 R3, R7 2 330 Ω, SMD0805 541-330ATR-ND
R1, R2, R4,
17 R6, R8, R9, 3 0 Ω, SMD0805 541-000ATR-ND DNP: R6, R8, R9, R12
R12
18 R10 1 100 Ω, SMD0805 Buerklin: 07E500
18 R11 1 1M Ω, SMD0603 not existing in Rev 1.0
18 R5 1 47k Ω, SMD0805 541-47000ATR-ND
19 U1 1 Socket:IC201-1004-008 Manuf.: Yamaichi
20 PCB 1 79 x 77 mm 2 layers
21 Rubber stand 4 Buerklin: 20H1724 apply to corners at bottom off side
22 MSP430 2 MSP430F5529 DNP: enclosed with kit. Is supplied by TI
Insulating http://www.ettinger.de/Art_De 23 disk to Q2 1 Insulating disk to Q2 tail.cfm?ART_ARTNUM=70.0 8.121
24 C16 1 4.7 nF SMD0603
27 C33 1 220n SMD0603 Buerklin: 53D2074
28 C35, C36 2 10p SMD0603 Buerklin: 56D102
120 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-TS430PZ100USB
Table B-31. MSP-TS430PZ100USB Bill of Materials (continued)
Pos. Ref Des No. Per Description DigiKey Part No. Comment Board
30 C38 1 220n SMD0603 Buerklin: 53D2074
31 C39 1 4u7 SMD0603 Buerklin: 53D2086
32 C40 1 0.1u SMD0603 Buerklin: 53D2068
33 D2, D3, D4 3 LL103A Buerklin: 24S3406
34 IC7 1 TPD4E004 Manu: TI
35 LED 0 JP3QE SAM1032-03-ND DNP
36 LED1, LED2, 0 LEDCHIPLED_0603 FARNELL: 852-9833 DNP LED3
37 R13, R15, 0 470R SMD0603 Buerklin: 07E564 DNP R16
38 R33 1 1k4 / 1k5 SMD0603 Buerklin: 07E612
39 R34 1 27R SMD0603 Buerklin: 07E444
40 R35 1 27R SMD0603 Buerklin: 07E444
41 R36 1 33k SMD0603 Buerklin: 07E740
42 S1, S2, S3 1 PB P12225STB-ND DNP S1 and S2. (Only S3)
43 USB1 1 USB_RECEPTACLE FARNELL: 117-7885
44 JP11 1 4-pin header, male, TH SAM1035-04-ND place jumper only on Pin 1
SLAU278Q–May 2009–Revised February 2014 Hardware 121
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
0R
12pF
12pF
GND
GND
0R
100nF
330R
2.2nF
0R
0R
PWR3
GND
330R
47K
0R
0R
100nF
4.7uF
GND
GND
100nF
470nF
0R
QUARZ5
100nF
10uF/6,3V
10uF/6,3V
100nF 4.7uF
4.7uF 100nF
4.7uF
4.7uF
4.7uF
470nF
FE04-1
VCC
GND
GND
100nF
4.7uF
GND
GND
GND
GND
GND
VCC1
VCC1
VCC1
VCC1
VCC1
GND
GND
GND
GND
GND
GND
AVSS
AVSS
DVCC AVCC
GND
VCC
VCC
GND
MSP430: Target-Socket
MSP-TS430PEU128 for F6779
Petersen
1080/1/001/01.1
DNP
LFXTCLK
DNP
<- SBW
<- JTAG
DNP
Vcc
int
ext
DNP
DNP
DNP
DNP
DNP
DNP
DNP
DVDSYS
1.1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
J1
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
J2
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
J3
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
J4
1
3
5
7
9
11
13
2
4
6
12
14
8
10
JTAG
R2
C2
C1
R1
C5
R3
1 2
3 4
5 6
7 8
9 10
BOOTST
C3
R10
R11
J5
1
2
3
1
2
JP1
JP2
1
2
1
2
3
JP5 1
2
3
JP6 1
2
3
JP7 1
2
3
JP8 1
2
3
JP9 1
2
3
JP10
R7
R5
D1
R6
R8
C6
C29
C7
C10
R4
Q1
JP12 1
2
3
4
1
2
3
4
JP11
JP131
2
3
4
C4
C11
C12
C8 C13
C14 C9
C16
C19
C18
C26
1
2
JP4
JP3
1
2
3
4
C15
C17
TP1 TP2
IC1
MSP430F677XIPEU#
XIN
1
XOUT
2
AUXVCC3
3
RTCCAP1
4
RTCCAP0
5
P1.5/SMCLK/CB0/A5
6
P1.4/MCLK/SDCLK/CB1/A4
7
P1.3/ADC10CLK/TACLK/RTCCLK/A3
8
P1.2/ACLK/TA3.1/A2
9
P1.1/TA2.1/VEREF+/A1
10
P1.0/TA1.1/TA0.0/VEREF-/A0
11
P2.4/PM_TA2.0
12
P2.5/PM_UCB0SOMI/PM_UCB0SCL
13
P2.6/PM_USB0SIMO/PM_UCB0SDA
14
P2.7/PM_UCB0CLK
15
P3.0/PM_UCA0RXD/PM_UCA0SOMI
16
P3.1/PM_UCA0TXD/PM_UCA0SIMO
17
P3.2/PM_UCA0CLK
18
P3.3/PM_UCA1CLK
19
P3.4/PM_UCA1RXD/PM_UCA1SOMI
20
P3.5/PM_UCA1TXD/PM_UCA1SIMO
21
COM0
22
COM1
23
P1.6/COM2
24
P1.7/COM3
25
P5.0/COM4
26
P5.1/COM5
27
P5.2/COM6
28
P5.3/COM7
29
LCDCAP/R33
30
P5.4/SDCLK/R23
31
P5.5/SD0DIO/LCDREF/R13
32
P5.6/SD1DIO/R03
33
P5.7/SD2DIO/CB2
34
P6.0/SD3DIO
35
P3.6/PM_UCA2RXD/PM_UCA2SOMI
36
P3.7/PM_UCA2TXD/PM_UCA2SIMO
37
P4.0/PM_UCA2CLK
38
P4.1/PM_UCA3RXD/PM_UCA3SOMI
39
P4.2/PM_UCA3TXD/PM_UCA3SIMO
40
P4.3/PM_UCA3CLK
41
P4.4/PM_UCB1SOMI/PM_UCB1SCL
42
P4.5/PM_UCB1SIMO/PM_UCB1SDA
43
P4.6/PM_UCB1CLK
44
P4.7/PM_TA3.0
45
P6.1/SD4DIO/S39
46
P6.2/SD5DIO/S38
47
P6.3/SD6DIO/S37
48
P6.4/S36
49
P6.5/S35
50
P6.6/S34
51
P6.7/S33
52
P7.0/S32
53
P7.1/S31
54
P7.2/S30
55
P7.3/S29
56
P7.4/S28
57
P7.5/S27
58
P7.6/S26
59
P7.7/S25
60
P8.0/S24
61
P8.1/S23
62
P8.2/S22
63
P8.3/S21
64
P8.4/S20
65
P8.5/S19
66
P8.6/S18
67
P8.7/S17
68
DVSYS
69
DVSS2
70
P9.0/S16
71
P9.1/S15
72
P9.2/S14
73
P9.3/S13
74
P9.4/S12
75
P9.5/S11
76
P9.6/S10
77
P9.7/S9
78
P10.0/S8
79
P10.1/S7
80
P10.2/S6
81
P10.3/S5
82
P10.4/S4
83
P10.5/S3
84
P10.6/S2
85
P10.7/S1
86
P11.0/S0
87
P11.1/TA3.1/CB3
88
P11.2/TA1.1
89
P11.3/TA2.1
90
P11.4/CBOUT
91
P11.5/TACLK/RTCCLK
92
P2.0/PM_TA0.0
93
P2.1/PM_TA0.1
94
P2.2/PM_TA0.2
95
P2.3/PM_TA1.0
96
TEST/SBWTCK
97
PJ.0/TDO
98
PJ.1/TDI/TCLK
99
PJ.2/TMS
100
PJ.3/TCK
101
~RST/NMI/SBWTDIO
102
SD0P0
103
SD0N0
104
SD1P0
105
SD1N0
106
SD2P0
107
SD2N0
108
SD3P0
109
SD3N0
110
VASYS2
111
AVSS2
112
VREF
113
SD4P0
114
SD4N0
115
SD5P0
116
SD5N0
117
SD6P0
118
SD6N0
119
AVSS1
120
AVCC
121
VASYS1
122
AUXVCC2
123
AUXVCC1
124
VDSYS
125
DVCC
126
DVSS1
127
VCORE
128
P1.0 P1.0
P2.0 P2.0
P2.1 P2.1
SD0P0
SD0N0
SD1P0
SD1N0
SD2P0
SD2N0
SD3P0
SD3N0
SD4P0
SD4N0
SD5P0
SD5N0
SD6P0
SD6N0
VASYS1/2
VASYS1/2
VASYS1/2
VASYS1/2
TMS
TMS
TDI
TDI
TDO
TDO
TDO
XOUT
GND
GND
XIN
DVCC
AVCC
DVDSYS
DVDSYS
DVDSYS
DVDSYS
AVSS
AVSS
PJ.2
PJ.2
PJ.1
PJ.1
PJ.0
PJ.0
RST/NMI
RST/NMI
TCK
TCK
TCK
PJ.3
PJ.3
TEST/SBWTCK
TEST/SBWTCK
TEST/SBWTCK
TEST/SBWTCK
RST
RST
RST
RST
LCDCAP
LCDCAP
VREF
VREF
VEREF+ VEREF+
VCORE
AUXVCC2
AUXVCC2
AUXVCC1
AUXVCC1
AUXVCC3
AUXVCC3
1
2
3
4
5
6
1
2
3
4
5
6
Titel:
Datum:
Bearb.:
Seite 1/1
MSP-TS430PEU128
22.05.2012 09:37:33
A3
A B C D E F G H I
A B C D E F G H I
File:
Dok:
Rev.:
MSP-TS430PEU128 www.ti.com
B.30 MSP-TS430PEU128
Figure B-59. MSP-TS430PEU128 Target Socket Module, Schematic
122 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
1
P1.0
SBW
JTAG
DVDSYS
ext
int
MSP-TS430PEU128
Rev. 1.1 RoHS
DVCC
AUXVCC
GND
AUXVCC1
AUXVCC2
AUXVCC3
GND
GND
RST/NMI
TCK
TDI
TDO
TEST/SBWTCK
TMS
1 25 5 10 15 20 30 35
40 45 50 55 60 64
65 90 70 75 80 85 95 100
128 125 120 115 110 105
14
1
2
10
1
2
GND
GND
VCC
3 2 1
3 2 1
3 2 1
3 2 1
3 2 1
3 2 1
1 2 3 4
1234
1234
1
J1
J2
J3
J4
JTAG
R2
C2
C1
R1
C5
R3
BOOTST
C3
R10 R11
J5
JP1
JP2
JP5
JP6
JP7
JP8
JP9
JP10 R7
R5
D1
R6
R8
C6
C29
C7
C10
R4
JP12
JP11
JP13
C4
C11
C12
C8
C13
C14
C9
C16
C19
C18
C26
JP4
JP3
C15
C17
TP1
TP2
IC1
Connector J5
External power connector
Jumper JP1 to "ext"
Jumper JP1
Open to measure current
Orient Pin 1 of
MSP430 device
Jumpers JP5 to JP10
Close 1-2 to debug in Spy-Bi-Wire mode
Close 2-3 to debug in 4-wire JTAG mode
JP11, JP12, JP13
Connect 1-2 to connect
AUXVCCx with DVCC or
drive AUXVCCx externally
D1 LED connected to P1.0
Jumper JP2
Open to disconnect LED
www.ti.com MSP-TS430PEU128
Figure B-60. MSP-TS430PEU128 Target Socket Module, PCB
NOTE: The MSP-TS430PEU128 Rev 1.1 ships with the following modifications:
• R7 value is changed to 0 Ω instead of 330 Ω.
• JTAG pin 8 is connected only to JP5 pin 3, and not to pin 2.
• JP5 pin 2 is connected to IC1 pin 97.
• BOOTST pin 7 is connected to IC1 pin 97.
SLAU278Q–May 2009–Revised February 2014 Hardware 123
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-TS430PEU128 www.ti.com
Table B-32. MSP-TS430PEU128 Bill of Materials
Pos. Ref Des No. Per Description DigiKey Part No. Comment Board
1 PCB 1 94x119.4mm, 4 layers MSP-TS430PEU128 4 layers, green solder mask Rev. 1.1
2 D1 1 green LED, DIODE0805 516-1434-1-ND
3 JP1, JP2, JP4 3 2-pin header, male, TH SAM1035-02-ND Place jumper on header
4 JP5, JP6, JP7, JP8, 6 3-pin header, male, TH SAM1035-03-ND Place jumpers on pins 1-2 (SBW) JP9, JP10
5 JP11, JP12, JP13 3 4-pin header, male, TH SAM1035-04-ND Place jumpers on pins 1-2 (AVCC=VCC)
6 JP3 1 4-pin header, male, TH SAM1035-04-ND Place jumpers on pins 1-2
JP1, JP2, JP3, JP4, Jumper WM4592-ND
7 JP5, JP6, JP7, JP8, 13 JP9, JP10, JP11,
JP12, JP13
8 R1, R2, R4, R6, R8 5 0R, 0805 541-0.0ATR-ND
9 R10, R11 2 0R, 0805 541-0.0ATR-ND DNP
10 C3 1 2.2nF, CSMD0805 490-1628-2-ND DNP
11 C13, C14, C16, 7 4.7uF, 6.3V, CSMD0805 587-1302-2-ND C17, C18, C19, C29
12 C11 1 10uF, 6.3V, CSMD0805 445-1372-2-ND
13 C12 1 10uF, 6.3V, CSMD0805 445-1372-2-ND DNP
14 C1, C2 2 12pF, CSMD0805 490-5531-2-ND DNP
15 R5 1 47K, 0805 311-47KARTR-ND
16 C4, C5, C6, C7, C8, 6 100nF, CSMD0805 311-1245-2-ND C15
17 C9 1 100nF, CSMD0805 311-1245-2-ND DNP
18 R3, R7 2 330R, 0805 541-330ATR-ND
19 C10, C26 2 470nF, CSMD0805 587-1282-2-ND
20 BOOTST 1 10-pin connector, male, TH HRP10H-ND DNP, keep vias free of solder
21 JTAG 1 14-pin connector, male, TH HRP14H-ND
22 IC1 Socket 1 Socket: IC500-1284-009P Manuf. Yamaichi
23 IC1 2 MSP430F67791IPEU DNP: enclosed with kit. Is supplied by TI
24 J5 1 3-pin header, male, TH SAM1035-03-ND
25 Q1 1 Crystal: MS3V-T1R 32.768kHz DNP: Crystal enclosed with kit. Keep vias 12.5pF ±20ppm free of solder
26 TP1, TP2 2 Test point DNP, keep vias free of solder
27 J2,J4 2 26-pin header, TH SAM1029-26-ND DNP: Headers enclosed with kit. Keep vias free of solder.
28 J2,J4 2 26-pin receptable, TH SAM1213-26-ND DNP: Receptacles enclosed with kit. Keep vias free of solder.
29 J1, J3 2 38-pin header, TH SAM1029-38-ND DNP: Headers enclosed with kit. Keep vias free of solder.
30 J1, J3 2 38-pin receptable, TH SAM1213-38-ND DNP: Receptacles enclosed with kit. Keep vias free of solder.
31 Rubber feet 4 Rubber feet Buerklin: 20H1724 apply to bottom side corners
124 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Power Management
VCC01 = external VCC
Vdd = DVCC
Vdda1 = AVDD_RF / AVCC_RF
Vdda2 = AVCC
Port connectors
CON1 ..
CON3 = Port1 .. Port3 of cc430
CON4 = spare
CON5 = 1: XIN 2: XOUT
CON6 = Vdd, GND, Vcore,
COM0, LCDCAP
CON7 = Vdda1, Vdda2, GND,
AGND
CON8 = JTAG_BASE
(JTAG Port)
CON9 = Vdd, GND, AGND
(May be addedclose
to therespective pins
to reduce emissions
at 5GHz toel vel
required byETSI)
www.ti.com EM430F5137RF900
B.31 EM430F5137RF900
Figure B-61. EM430F5137RF900 Target board, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 125
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
JTAG connector
External power connector
CON12
GND
GND
VCC
Open to disconnect LEDs
jumper JP5/JP10
LED D2 (red) connected to
P3.6 via JP10
LED D1 (green) connected
to P1.0 via JP5
RF - Crystal Q1 26 MHz
RF - Signal SMA
Reset button S1
Push-button S2
connected to P1.7
Jumper JP1
Close JTAG
position to
debug in
JTAG mode
Jumper JP2
Close EXT for external supply
Close INT for JTAG supply
Close SBW position
to debug in
Spy-Bi-Wire mode
Jumper JP1
Spy-Bi-Wire mode
Footprint for 32kHz crystal
Use 0 resistor for R431/R441
to make XIN/XOUT available
on connector port5
!
Open to measure current
jumper JP3
EM430F5137RF900 www.ti.com
Figure B-62. EM430F5137RF900 Target board, PCB
The battery pack that is included with the EM430F5137RF900 kit may be connected to CON12. Ensure
correct battery insertion regarding the polarity as indicated in battery holder.
126 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com EM430F5137RF900
Table B-33. EM430F5137RF900 Bill of Materials
Item Reference No. per Description Value Manufacturer's Part Manufacturer Comment Board Number
1 Q1 1 ( CUSTOMER SUPPLY ) CRYSTAL, 26M ASX-531(CS) AKER SMT, 4P, 26MHz ELECTRONIC
C1-C5, C082,
C222, C271, CAPACITOR, SMT, 0402, CER, 16V, 2 C281, C311, 14 10%, 0.1uF 0.1uF 0402YC104KAT2A AVX C321, C341,
C412, C452
3 C071 1 CAPACITOR, SMT, 0603, CERAMIC, 0.47uF 0603YD474KAT2A AVX 0.47uF, 16V, 10%, X5R
4 R401 1 RES0402, 47.0K 47kΩ CRCW04024702F10 DALE 0
5 CON11 1 HEADER, THU, MALE, 14P, 2X7, 09 18 514 6323 HARTING 25.4x9.2x9.45mm
6 CON10 0 HEADER, THU, MALE, 10P, 2X5, 09 18 510 6323 HARTING DNP 20.32x9.2x9.45mm
7 D1 1 LED, SMT, 0603, GREEN, 2.1V active APT1608MGC KINGBRIGHT
8 D2 1 LED, SMT, 0603, RED, 2.0V active APT1608EC KINGBRIGHT
9 Q3 0 UNINSTALLED CRYSTAL, SMT, 3P, 32.768k MS1V-T1K (UN) MICRO DNP MS1V (Customer Supply) CRYSTAL
10 CON12 1 HEADER, THU, MALE, 3P, 1x3, 22-03-5035 MOLEX 9.9x4.9x5.9mm
11 C251, C261 2 50V, 5%, 27pF 27pF GRM36COG270J50 MURATA
12 L341 1 FERRITE, SMT, 0402, 1.0kΩ, 250mA 1kΩ BLM15HG102SN1D MURATA
13 C293 1 CAPACITOR, SMT, 0402, CERAMIC, 100pF GRM1555C1H101JZ MURATA 100pF, 50V, 0.25pF, C0G(NP0) 01
14 L304 1 INDUCTOR, SMT, 0402, 2.2nH, 0.1nH, 0.0022uH LQP15MN2N2B02 MURATA 220mA, 500MHz
15 L303, L305 2 INDUCTOR, SMT, 0402, 15nH, 2%, 0.015uH LQW15AN15NG00 MURATA 450mA, 250MHz
16 L292, L302 2 INDUCTOR, SMT, 0402, 18nH, 2%, 0.018uH LQW15AN18NG00 MURATA 370mA, 250MHz
17 C291 1 CAPACITOR, SMT, 0402, CERAMIC, 1pF GRM1555C1H1R0W MURATA 1pF, 50V, 0.05pF, C0G(NP0) Z01
18 C303 1 CAPACITOR, SMT, 0402, CERAMIC, 8.2pF GRM1555C1H8R2W MURATA 8.2pF, 50V, 0.05pF, C0G(NP0) Z01
19 C292, C301- 4 CAPACITOR, SMT, 0402, CERAMIC, 1.5pF GRM1555C1H1R5W MURATA C302, C304 1.5pF, 50V, 0.05pF, C0G(NP0) Z01
20 L291, L301 2 INDUCTOR, SMT, 0402, 12nH, 2%, 0.012uH LQW15AN12NG00 MURATA 500mA, 250MHz
C282, C312, CAPACITOR, SMT, 0402, CERAMIC, GRM1555C1H2R0B 21 C351, C361, 5 2pF, 50V, 0.1pF, C0G 2.0pF Z01 Murata C371
22 L1 1 INDUCTOR, SMT, 0402, 6.2nH, 0.1nH, 6.2nH LQP15MN6N2B02 Murata 130mA, 500MHz
23 S1-S2 2 ULTRA-SMALL TACTILE SWITCH, SMT, B3U-1000P OMRON 2P, SPST-NO, 1.2x3x2.5mm, 0.05A, 12V
R4-R5, R051, UNINSTALLED RESISTOR/JUMPER, 24 R061, R431, 0 SMT, 0402, 0 Ω, 5%, 1/16W 0Ω ERJ-2GE0R00X PANASONIC DNP R441
24a R7 1 RESISTOR/JUMPER, SMT, 0402, 0 Ω, 0Ω ERJ-2GE0R00X PANASONIC 5%, 1/16W
25 R2-R3, R6 3 RESISTOR, SMT, 0402, THICK FILM, 330Ω ERJ-2GEJ331 PANASONIC 5%, 1/16W, 330
26 C431, C441 0 CAPACITOR, SMT, 0402, CER, 12pF, 12pF ECJ-0EC1H120J PANASONIC 50V, 5%, NPO
27 C401 1 CAPACITOR, SMT, 0402, CER, 2200pF, 0.0022uF ECJ-0EB1H222K PANASONIC 50V, 10%, X7R
28 R331 1 RESISTOR, SMT, THICK FILM, 56K, 56kΩ ERJ-2GEJ563 PANASONIC 1/16W, 5%
29 C081, C221, 4 CAPACITOR, SMT, 0603, CERAMIC, 10uF ECJ-1VB0J106M PANASONIC C411, C451 10uF, 6.3V, 20%, X5R
SLAU278Q–May 2009–Revised February 2014 Hardware 127
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
EM430F5137RF900 www.ti.com
Table B-33. EM430F5137RF900 Bill of Materials (continued)
Item Reference No. per Description Value Manufacturer's Part Manufacturer Comment Board Number
30 R1 1 RESISTOR/JUMPER, SMT, 0402, 0 Ω, 0Ω ERJ-2GE0R00X PANASONIC 5%, 1/16W
31 C041 0 UNINSTALLED CAP CERAMIC 4.7UF 4.7uF ECJ-1VB0J475K Panasonic DNP 6.3V X5R 0603
32 X1 1 SMA STRIGHT JACK, SMT 32K10A-40ML5 ROSENBERGER
33 Q2 0 Crystal, SMT, 32.768 kHz 32.768k MS3V-T1R Micro Crystal DNP
34 U1 1 DUT, SMT, PQFP, RGZ-48, 0.5mmLS, CC430F52x1 TI 7.15x7.15x1mm, THRM.PAD
35 JP1 1 Pin Connector 2x4pin 61300821121 WUERTH
36 CON1-CON9 0 Pin Connector 2x4pin 61300821121 WUERTH DNP
37 JP2 1 Pin Connector 1x3pin 61300311121 WUERTH
38 JP3, JP5, 3 Pin Connector 1x2pin 61300211121 WUERTH JP10
38a JP7, CON13 0 Pin Connector 1x2pin 61300211121 WUERTH DNP
39 JP4 1 Pin Connector 2x2pin 61300421121 WUERTH DNP
40 JP1a 1 Pin Connector 2x3pin 61300621121 WUERTH
128 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Power Management
VCC01 = external VCC
Vdd = DVCC
Vdda1 = AVDD_RF / AVCC_RF
Vdda2 = AVCC
Port connectors
CON1 ..
CON5 = Port1 .. Port5 of cc430
CON6 = Vdd, GND, Vcore,
COM0, LCDCAP
CON7 = Vdda1, Vdda2, GND,
AGND
CON8 = JTAG_BASE
(JTAG Port)
CON9 = Vdd, GND, AGND
(May beaddedcol se
to therespective pins
to reduce emissions
at 5GHz to el vel
required by ETSI)
www.ti.com EM430F6137RF900
B.32 EM430F6137RF900
Figure B-63. EM430F6137RF900 Target board, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 129
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
JTAG connector
External power connector
CON12
GND
GND
VCC
Open to disconnect LEDs
jumper JP5/JP10
LED D2 (red) connected to
P3.6 via JP10
LED D1 (green) connected
to P1.0 via JP5
RF - Crystal Q1 26 MHz
RF - Signal SMA
Reset button S1
Push-button S2
connected to P1.7
Jumper JP1
Close JTAG
position to
debug in
JTAG mode
Jumper JP2
Close EXT for external supply
Close INT for JTAG supply
Close SBW position
to debug in
Spy-Bi-Wire mode
Jumper JP1
Spy-Bi-Wire mode
Footprint for 32kHz crystal
Use 0 resistor for R541/R551
to makeP5.0/P5.1 available
on connector port5
!
Open to measure current
jumper JP3
C392
C422
L451
EM430F6137RF900 www.ti.com
Figure B-64. EM430F6137RF900 Target board, PCB
The battery pack that is included with the EM430F6137RF900 kit may be connected to CON12. Ensure
correct battery insertion regarding the polarity as indicated in battery holder.
130 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com EM430F6137RF900
Table B-34. EM430F6137RF900 Bill of Materials
No.
Pos. Ref Des per Description Part No. Manufacturer
Board
1 Q1 1 ( CUSTOMER SUPPLY ) CRYSTAL, SMT, ASX-531(CS) AKER 4P, 26MHz ELECTRONIC
C1-C5, C112,
C252, C381, CAPACITOR, SMT, 0402, CER, 16V, 10%, 2 C391, C421, 14 0.1uF 0402YC104KAT2A AVX C431, C451,
C522, C562
3 C101 1 CAPACITOR, SMT, 0603, CERAMIC, 0.47uF, 0603YD474KAT2A AVX 16V, 10%, X5R
4 R511 1 RES0402, 47.0K CRCW04024702F100 DALE
5 CON11 1 HEADER, THU, MALE, 14P, 2X7, 09 18 514 6323 HARTING 25.4x9.2x9.45mm, 90deg
7 D1 1 LED, SMT, 0603, GREEN, 2.1V APT1608MGC KINGBRIGHT
8 D2 1 LED, SMT, 0603, RED, 2.0V APT1608EC KINGBRIGHT
10 CON12 1 HEADER, THU, MALE, 3P, 1x3, 22-03-5035 MOLEX 9.9x4.9x5.9mm
11 C361, C371 2 50V, ±5%, 27pF GRM36COG270J50 MURATA
12 L451 1 FERRITE, SMT, 0402, 1.0kΩ, 250mA BLM15HG102SN1D MURATA
13 C403 1 CAPACITOR, SMT, 0402, CERAMIC, 100pF, GRM1555C1H101JZ01 MURATA 50V, ±0.25pF, C0G(NP0)
14 L414 1 INDUCTOR, SMT, 0402, 2.2nH, ±0.2nH, LQW15AN2N2C10 MURATA 1000mA, 250MHz
15 L413, L415 2 INDUCTOR, SMT, 0402, 15nH, ±5%, 460mA, LQW15AN15NJ00 MURATA 250MHz
16 L402, L412 2 INDUCTOR, SMT, 0402, 18nH, ±5%, 370mA, LQW15AN18NJ00 MURATA 250MHz
17 C401 1 CAPACITOR, SMT, 0402, CER, 1pF, 50V, GJM1555C1H1R0CB01D MURATA ±0.25pF, NP0
18 C413 1 CAPACITOR, SMT, 0402, CERAMIC, 8.2pF, GRM1555C1H8R2CZ01 MURATA 50V, ±0.25pF, C0G(NP0)
19 C402, C411- 4 CAPACITOR, SMT, 0402, CERAMIC, 1.5pF, GRM1555C1H1R5CZ01 MURATA C412, C414 50V, ±0.25pF, C0G(NP0)
20 L401, L411 2 INDUCTOR, SMT, 0402, 12nH, ±5%, 500mA, LQW15AN12NJ00 MURATA 250MHz
21 C46-C48, 5 CAPACITOR, SMT, 0402, CERAMIC, 2.0pF, GRM1555C1H2R0CZ01 Murata C392, C422 50V, ±0.25pF, C0G(NP0)
22 L1 1 INDUCTOR, SMT, 0402, 6.2nH, ±0.1nH, LQW15AN6N2D00 Murata 700mA, 250MHz
23 S1-S2 2 ULTRA-SMALL TACTILE SWITCH, SMT, 2P, B3U-1000P OMRON SPST-NO, 1.2x3x2.5mm, 0.05A, 12V
24 R7 1 RESISTOR/JUMPER, SMT, 0402, 0 Ω, 5%, ERJ-2GE0R00X (UN) PANASONIC 1/16W
25 R2-R3, R6 3 RESISTOR, SMT, 0402, THICK FILM, 5%, ERJ-2GEJ331 PANASONIC 1/16W, 330
27 C511 1 CAPACITOR, SMT, 0402, CER, 2200pF, ECJ-0EB1H222K PANASONIC 50V, 10%, X7R
28 C111, C251, 4 CAPACITOR, SMT, 0603, CERAMIC, 10uF, ECJ-1VB0J106M PANASONIC C521, C561 6.3V, 20%, X5R
28a C041 1 CAP CERAMIC 4.7UF 6.3V X5R 0603 ECJ-1VB0J475M PANASONIC
29 R441 1 RESISTOR, SMT, THICK FILM, 56K, 1/16W, ERJ-2RKF5602 PANASONIC 1%
30 R1 1 RESISTOR/JUMPER, SMT, 0402, 0 Ω, 5%, ERJ-2GE0R00X PANASONIC 1/16W
31 X1 1 SMA STRIGHT JACK, SMT 32K10A-40ML5 ROSENBERGER
SLAU278Q–May 2009–Revised February 2014 Hardware 131
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
EM430F6137RF900 www.ti.com
Table B-34. EM430F6137RF900 Bill of Materials (continued)
No.
Pos. Ref Des per Description Part No. Manufacturer
Board
33 U1 1 DUT, SMT, PQFP, RGC-64, 0.5mmLS, CC430F6137 TI 9.15x9.15x1mm, THRM.PAD
34 JP1 1 Pin Connector 2x4pin 61300821121 WUERTH
35 JP2 1 Pin Connector 1x3pin 61300311121 WUERTH
36a JP3, JP5, JP10 3 Pin Connector 1x2pin 61300211121 WUERTH
38 JP1a 1 Pin Connector 2x3pin 61300621121 WUERTH
132 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com EM430F6147RF900
B.33 EM430F6147RF900
Figure B-65. EM430F6147RF900 Target Board, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 133
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
EM430F6147RF900 www.ti.com
Figure B-66. EM430F6147RF900 Target Board, PCB
The battery pack which comes with the EM430F6147RF900 kit may be connected to CON12. Ensure
correct battery insertion regarding the polarity as indicated in battery holder.
134 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com EM430F6147RF900
Table B-35. EM430F6147RF900 Bill of Materials
No.
Pos. Ref Des per Description Part No. Manufacturer
Board
1 Q1 1 ( CUSTOMER SUPPLY ) CRYSTAL, SMT, ASX-531(CS) AKER 4P, 26MHz ELECTRONIC
C1-5 C112
C252 C381 CAPACITOR, SMT, 0402, CER, 16V, 10%, 2 C391 C421 14 0.1uF 0402YC104KAT2A AVX C431 C451
C522 C562
3 C101 1 CAPACITOR, SMT, 0603, CERAMIC, 0.47uF, 0603YD474KAT2A AVX 16V, 10%, X5R
4 R511 1 RES0402, 47.0K CRCW04024702F100 DALE
5 CON11 1 HEADER, THU, MALE, 14P, 2X7, 09 18 514 6323 HARTING 25.4x9.2x9.45mm, 90deg
7 D1 1 LED, SMT, 0603, GREEN, 2.1V APT1608MGC KINGBRIGHT
8 D2 1 LED, SMT, 0603, RED, 2.0V APT1608EC KINGBRIGHT
10 CON12 1 HEADER, THU, MALE, 3P, 1x3, 22-03-5035 MOLEX 9.9x4.9x5.9mm
11 C361, C371 2 50V, ±5%, 27pF GRM36COG270J50 MURATA
12 L451 1 Inductor, SMD, 0402, 12nH, 5%, 370mA LQW15AN12NJ00 MURATA
13 C403 1 CAPACITOR, SMT, 0402, CERAMIC, 100pF, GRM1555C1H101JZ01 MURATA 50V, ±0.25pF, C0G(NP0)
14 L414 1 INDUCTOR, SMT, 0402, 2.2nH, ±0.2nH, LQW15AN2N2C10 MURATA 1000mA, 250MHz
15 L413 1 Inductor, SMD, 0402, 15nH, 5%, 370mA, LQW15AN15NJ00 MURATA 250MHz
15 L415 1 INDUCTOR,SMT,0402,15nH,±5%,460mA,250 LQW15AN15NJ00 MURATA MHz
16 L402, L412 2 Inductor, SMD, 0402, 18nH, 5%, 460mA, LQW15AN18NJ00 MURATA 250MHz
17 C401 1 CAPACITOR, SMT, 0402, CER, 1pF, 50V, GJM1555C1H1R0CB01D MURATA ±0.25pF, NP0
18 C413 1 CAPACITOR, SMT, 0402, CERAMIC, 8.2pF, GRM1555C1H8R2CZ01 MURATA 50V, ±0.25pF, C0G(NP0)
19 C402, C411- 4 CAPACITOR, SMT, 0402, CERAMIC, 1.5pF, GRM1555C1H1R5CZ01 MURATA C412, C414 50V, ±0.25pF, C0G(NP0)
20 L1, L401, L411 3 INDUCTOR, SMT, 0402, 12nH, ±5%, 500mA, LQW15AN12NJ00 MURATA 250MHz
21 C46-C48, 4 CAPACITOR, SMT, 0402, CERAMIC, 2.0pF, GRM1555C1H2R0CZ01 MURATA C392 50V, ±0.25pF, C0G(NP0)
22 L2 1 Inductor, SMD, 0805, 2.2uH, 20%, 600mA, LQM21PN2R2MC0 MURATA 50MHz
23 S1-S2 2 ULTRA-SMALL TACTILE SWITCH, SMT, 2P, B3U-1000P OMRON SPST-NO, 1.2x3x2.5mm, 0.05A, 12V
24 R1, R7, R551, 4 RESISTOR/JUMPER, SMT, 0402, 0 Ω, 5%, ERJ-2GE0R00X (UN) PANASONIC R554 1/16W
25 R2-R3, R6 3 RESISTOR, SMT, 0402, THICK FILM, 5%, ERJ-2GEJ331 PANASONIC 1/16W, 330
27 C511 1 CAPACITOR, SMT, 0402, CER, 2200pF, ECJ-0EB1H222K PANASONIC 50V, 10%, X7R
28 C111, C251, 4 CAPACITOR, SMT, 0603, CERAMIC, 1uF, ECJ-1VB0J105K PANASONIC C521, C561 6.3V, 20%, X5R
28a C041 1 CAP CERAMIC 4.7UF 6.3V X5R 0603 ECJ-1VB0J475M PANASONIC
29 R441 1 RESISTOR, SMT, THICK FILM, 56K, 1/16W, ERJ-2RKF5602 PANASONIC 1%
30 X1 1 SMA STRIGHT JACK, SMT 32K10A-40ML5 ROSENBERGER
SLAU278Q–May 2009–Revised February 2014 Hardware 135
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
EM430F6147RF900 www.ti.com
Table B-35. EM430F6147RF900 Bill of Materials (continued)
No.
Pos. Ref Des per Description Part No. Manufacturer
Board
31 U1 1 DUT, SMT, PQFP, RGC-64, 0.5mmLS, CC430F6147 TI 9.15x9.15x1mm, THRM.PAD
33 U2 1 IC, Step Down Converter with Bypass Mode TPS62370 TI for Low Power Wireless
34 JP1 1 Pin Connector 2x4pin 61300821121 WUERTH
35 JP2, JP6, JP8 3 Pin Connector 1x3pin 61300311121 WUERTH
36a JP3, JP5, JP9, 4 Pin Connector 1x2pin 61300211121 WUERTH JP10
38 JP1a 1 Pin Connector 2x3pin 61300621121 WUERTH
38 C7 1 Capacitor, Ceramic, 1206, 16V, X5R, 20% GRM31CR61C226ME15L MURATA
38 C8-9 2 CAP, SMD, Ceramic, 0402, 2.2uF, X5R GRM155R60J225ME15D MURATA
38 C041 1 CAP, SMD, Ceramic, 0603, 4.7uF, 16V, 10%, MURATA X5R
136 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-FET430PIF
B.34 MSP-FET430PIF
Figure B-67. MSP-FET430PIF FET Interface Module, Schematic
SLAU278Q–May 2009–Revised February 2014 Hardware 137
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-FET430PIF www.ti.com
Figure B-68. MSP-FET430PIF FET Interface Module, PCB
138 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-FET430UIF
B.35 MSP-FET430UIF
Figure B-69. MSP-FET430UIF USB Interface, Schematic (1 of 4)
SLAU278Q–May 2009–Revised February 2014 Hardware 139
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-FET430UIF www.ti.com
Figure B-70. MSP-FET430UIF USB Interface, Schematic (2 of 4)
140 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-FET430UIF
Figure B-71. MSP-FET430UIF USB Interface, Schematic (3 of 4)
SLAU278Q–May 2009–Revised February 2014 Hardware 141
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-FET430UIF www.ti.com
Figure B-72. MSP-FET430UIF USB Interface, Schematic (4 of 4)
142 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com MSP-FET430UIF
Figure B-73. MSP-FET430UIF USB Interface, PCB
SLAU278Q–May 2009–Revised February 2014 Hardware 143
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
MSP-FET430UIF www.ti.com
B.35.1 MSP-FET430UIF Revision History
Revision 1.3
• Initial released hardware version
Assembly change on 1.3 (May 2005)
• R29, R51, R42, R21, R22, R74: value changed from 330R to 100R
Changes 1.3 to 1.4 (Aug 2005)
• J5: VBUS and RESET additionally connected
• R29, R51, R42, R21, R22, R74: value changed from 330R to 100R
• U1, U7: F1612 can reset TUSB3410; R44 = 0R added
• TARGET-CON.: pins 6, 10, 12, 13, 14 disconnected from GND
• Firmware-upgrade option through BSL: R49, R52, R53, R54 added; R49, R52 are currently DNP
• Pullups on TCK and TMS: R78, R79 added
• U2: Changed from SN74LVC1G125DBV to SN74LVC1G07DBV
NOTE: Using a locally powered target board with hardware revision 1.4
Using an MSP-FET430UIF interface hardware revision 1.4 with populated R62 in conjunction
with a locally powered target board is not possible. In this case, the target device RESET
signal is pulled down by the FET tool. It is recommended to remove R62 to eliminate this
restriction. This component is located close to the 14-pin connector on the MSP-FET430UIF
PCB. See the schematic and PCB drawings in this document for the exact location of this
component.
Assembly change on 1.4a (January 2006)
• R62: not populated
144 Hardware SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Appendix C
SLAU278Q–May 2009–Revised February 2014
Hardware Installation Guide
This section describes the hardware installation process of the following USB debug interfaces on a PC
running Windows XP:
• MSP-FET430UIF
• eZ430-F2013
• eZ430-RF2500
• eZ430-Chronos
• eZ430-RF2780
• eZ430-RF2560
• MSP-WDSxx "Metawatch"
• LaunchPad (MSP-EXP430G2)
• MSP-EXP430FR5739
• MSP-EXP430F5529
The installation procedure for other supported versions of Windows is very similar and, therefore, not
shown here.
Topic ........................................................................................................................... Page
C.1 Hardware Installation ....................................................................................... 146
SLAU278Q–May 2009–Revised February 2014 Hardware Installation Guide 145
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Hardware Installation www.ti.com
C.1 Hardware Installation
Table C-1 shows the USB VIDs and PIDs used in MSP430 tools.
Table C-1. USB VIDs and PIDs Used in MSP430 Tools
Tool USB VID USB PID INF File Name
eZ430-F2013 0x0451 0xF430 usbuart3410.inf
eZ430-RF2500 0x0451 0xF432 430CDC.inf
eZ430-RF2780 0x0451 0xF432 430CDC.inf
eZ430-RF2560 0x0451 0xF432 430CDC.inf
MSP-WDSxx "Metawatch" 0x0451 0xF432 430CDC.inf
eZ430-Chronos 0x0451 0xF432 430CDC.inf
MSP-FET430UIF(1) 0x2047 0x0010 msp430tools.inf
LaunchPad (MSP-EXP430G2) 0x0451 0xF432 430CDC.inf
MSP-EXP430FR5739 0x0451 0xF432 430CDC.inf
MSP-EXP430F5529 0x0451 0xF432 430CDC.inf
(1) The older MSP-FET430UIF used with IAR versions before v5.20.x and CCS versions before v5.1 has VID 0x0451 and PID
0xF430. With the firmware update, it is updated to the 0x2047 and 0x0010, respectively.
1. Before connecting of the USB Debug Interface with a USB cable to a USB port of the PC the one of
IDEs (CCS or IAR) should be installed. The IDE installation isntalls also drivers for USB Debug
Interfaces without user interaction. After IDE installation the USB Debug Interface can be connected
and will be ready to work within few seconds.
2. The driver can be also installed manually. After plug in the USB Debug Interface to USB port of the PC
the Hardware Wizard starts automatically and opens the "Found New Hardware Wizard" window.
3. Select "Install from a list or specific location (Advanced)" (see Figure C-1).
Figure C-1. Windows XP Hardware Wizard
146 Hardware Installation Guide SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com Hardware Installation
4. Browse to the folder where the driver information files are located (see Figure C-2).
For CCS, the default folder is: c:\ti\ccsv5\ccs_base\emulation\drivers\msp430\USB_CDC, or
c:\ti\ccsv5\ccs_base\emulation\drivers\msp430\USB_FET_XP_XX, or
c:\ti\ccsv5\ccs_base\emulation\drivers\msp430\USB_eZ-RF depending of firmware version of the tool.
For IAR Embedded Workbench, the default folder is: \Embedded Workbench x.x\
430\drivers\TIUSBFET\eZ430-UART, or
\Embedded Workbench x.x\ 430\drivers\.
Figure C-2. Windows XP Driver Location Selection Folder
5. The Wizard generates a message that an appropriate driver has been found.
SLAU278Q–May 2009–Revised February 2014 Hardware Installation Guide 147
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Hardware Installation www.ti.com
6. The wizard installs the driver files.
7. The wizard shows a message that it has finished the installation of the software USB Debug Interface.
8. The USB debug interface is installed and ready to use. The Device Manager lists a new entry as
shown in Figure C-3, Figure C-4, or Figure C-5.
Figure C-3. Device Manager Using USB Debug Interface using VID/PID 0x2047/0x0010
148 Hardware Installation Guide SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com Hardware Installation
Figure C-4. Device Manager Using USB Debug Interface with VID/PID 0x0451/0xF430
SLAU278Q–May 2009–Revised February 2014 Hardware Installation Guide 149
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
Hardware Installation www.ti.com
Figure C-5. Device Manager Using USB Debug Interface with VID/PID 0x0451/0xF432
150 Hardware Installation Guide SLAU278Q–May 2009–Revised February 2014
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
www.ti.com Document Revision History
Document Revision History
Version Changes
SLAU278 Initial release
SLAU278A Updated USB driver installation according to CCE v3.1 SR1 and CCS v4.
SLAU278B Added information about MSP-FET430U80USB, MSP-TS430PN80USB, and eZ430-Chronos.
SLAU278C Added bills of materials and updated some PCBs in Appendix B.
Added information about MSP-TS430DA38, MSP-TS430DL48, MSP-TS430PW14, MSP-TS430PW28.
SLAU278D Added information about MSP-TS430L092, MSP-TS430RSB40, MSP-TS430RGC64USB, MSP-TS430PZ100USB, MSPFET430F5137RF900
SLAU278E Added jumper information for MSP-TS430L092 PCBs to Appendix B.
Added new supported devices in Chapter 1.
Added information about MSP-TS430PW24, MSP-TS430PW28A, MSP-TS430RHA40A, MSP-TS430RGZ48B, MSPSLAU278F
TS430RGC64B, MSP-TS430PN80A, and MSP-TS430PZ100B.
Updated MSP-TS430RSB40 schematics
SLAU278G Added information for MSP-TS430PZ100C
SLAU278H Added information for MSP-TS430D8 and MSP-TS430RGC64C
Updated Table 1-1.
Replaced Figure 2-2.
SLAU278I Added Figure 2-3.
Replaced Figure B-37 and Figure B-67.
Added Table C-1.
Editorial changes throughout.
SLAU278J Added EM430F6147RF900 Section B.33.
Added battery pack connection information to all EM430Fx1x7RF900 kits.
SLAU278K Added information for MSP-TS430RGZ48C and MSP-TS430PEU128.
Updated Figure B-38.
SLAU278L Changed descriptions in Section B.19 and Section B.30.
Changed Figure B-60.
SLAU278M Added information for MSP430G2x44 and MSP430G2x55 in Table 1-2.
SLAU278N Updated Table 1-1.
Updated Section 2.3.
Changed Table 1-1 and Table 1-2 for MSP430TCH5E.
Changed Figure 2-1 through Figure 2-3.
SLAU278O
Changed FAQ 12 in Section A.1.
Changed Figure B-47, Figure B-49, and Figure B-69 through Figure B-73.
Added information about F523x, F524x, and F525x to Table 1-2 and Section B.19.
SLAU278P Changed Figure B-38.
Added BSL information to note on Figure B-41.
Figure B-15, Corrected JTAG mode selection jumpers (J4 to J7).
SLAU278Q Section B.19, In last sentence, corrected jumper (JP4).
Removed "RF Emission Testing" section.
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
SLAU278Q–May 2009–Revised February 2014 Revision History 151
Submit Documentation Feedback
Copyright © 2009–2014, Texas Instruments Incorporated
EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS
Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:
The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims
arising from the handling or use of the goods.
Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from
the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO
BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH
ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES.
Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This
notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety
programs, please visit www.ti.com/esh or contact TI.
No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or
combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and
therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
REGULATORY COMPLIANCE INFORMATION
As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal
Communications Commission (FCC) and Industry Canada (IC) rules.
For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT,
DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer
use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency
interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will
be required to take whatever measures may be required to correct this interference.
General Statement for EVMs including a radio
User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and
power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local
laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this
radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and
unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory
authorities, which is responsibility of user including its acceptable authorization.
For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant
Caution
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause
harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the
equipment.
FCC Interference Statement for Class A EVM devices
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial
environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the
instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to
cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment
generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause
harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If
this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and
on, the user is encouraged to try to correct the interference by one or more of the following measures:
• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.
For EVMs annotated as IC – INDUSTRY CANADA Compliant
This Class A or B digital apparatus complies with Canadian ICES-003.
Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the
equipment.
Concerning EVMs including radio transmitters
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this
device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired
operation of the device.
Concerning EVMs including detachable antennas
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain
approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should
be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.
This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum
permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain
greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.
Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.
Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de
l'utilisateur pour actionner l'équipement.
Concernant les EVMs avec appareils radio
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est
autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout
brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.
Concernant les EVMs avec antennes détachables
Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain
maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à
l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente
(p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.
Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel
d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans
cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
【Important Notice for Users of EVMs for RF Products in Japan】
This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan
If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:
1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and
Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of
Japan,
2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this
product, or
3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with
respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note
that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.
Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan
http://www.tij.co.jp
【無線電波を送信する製品の開発キットをお使いになる際の注意事項】
本開発キットは技術基準適合証明を受けておりません。
本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。
1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。
なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。
上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。
日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル
http://www.tij.co.jp
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
EVALUATION BOARD/KIT/MODULE (EVM)
WARNINGS, RESTRICTIONS AND DISCLAIMERS
For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished
electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in
laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks
associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end
product.
Your Sole Responsibility and Risk. You acknowledge, represent and agree that:
1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug
Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees,
affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.
2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable
regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates,
contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical)
between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to
minimize the risk of electrical shock hazard.
3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL,
CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine
and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable
safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to
perform as described or expected.
4. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials.
Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the
user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and
environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact
a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the
specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or
interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the
load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures
greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include
but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the
EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please
be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable
in electronic measurement and diagnostics normally found in development environments should use these EVMs.
Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives
harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in
connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims
arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.
Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such
as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices
which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate
Assurance and Indemnity Agreement.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated
User’s Guide
SWRU321A – May 2013
SmartRF™ is a trademark of Texas Instruments
SmartRF06 Evaluation Board
User’s Guide
User’s Guide
SWRU321A – May 2013
Page 3/32
Table of Contents
4.1 INSTALLING SMARTRF STUDIO AND USB DRIVERS ................................................................ 7
4.1.1 SmartRF Studio ................................................................................................................. 7
4.1.2 FTDI USB driver ................................................................................................................ 7
5.1 ABSOLUTE MAXIMUM RATINGS ........................................................................................... 11
6.1 XDS100V3 EMULATOR ...................................................................................................... 13
6.1.1 UART back channel ........................................................................................................ 14
6.2 POWER SOURCES ............................................................................................................. 14
6.2.1 USB Power ...................................................................................................................... 15
6.2.2 Battery Power .................................................................................................................. 15
6.2.3 External Power Supply .................................................................................................... 16
6.3 POWER DOMAINS .............................................................................................................. 17
6.3.1 XDS Domain ................................................................................................................... 17
6.3.2 EM Domain...................................................................................................................... 17
6.3.3 3.3 V Domain .................................................................................................................. 18
6.4 LCD ................................................................................................................................. 18
6.5 MICRO SD CARD SLOT ...................................................................................................... 19
6.6 ACCELEROMETER .............................................................................................................. 19
6.7 AMBIENT LIGHT SENSOR .................................................................................................... 20
6.8 BUTTONS .......................................................................................................................... 20
6.9 LEDS ............................................................................................................................... 21
6.9.1 General Purpose LEDs ................................................................................................... 21
6.9.2 XDS100v3 Emulator LEDs .............................................................................................. 21
6.10 EM CONNECTORS ............................................................................................................. 21
6.11 BREAKOUT HEADERS AND JUMPERS ................................................................................... 23
6.11.1 I/O Breakout Headers ..................................................................................................... 23
6.11.2 XDS100v3 Emulator Bypass Headers ............................................................................ 24
6.11.3 20-pin ARM JTAG Header .............................................................................................. 25
6.11.4 10-pin ARM Cortex Debug Header ................................................................................. 26
6.12 CURRENT MEASUREMENT .................................................................................................. 27
6.12.1 High-side current sensing ............................................................................................... 27
6.12.2 Current Measurement Jumper ........................................................................................ 27
7.1 20-PIN ARM JTAG HEADER .............................................................................................. 29
7.2 10-PIN ARM CORTEX DEBUG HEADER ............................................................................... 29
7.3 CUSTOM STRAPPING ......................................................................................................... 30
List of Figures
Figure 1 – Driver install: a) Update driver, b) Specify path to FTDI drivers..................................... 8
Figure 2 – Driver install: a) VCP loaded and b) drivers successfully installed ................................ 8
Figure 3 – SmartRF06EB (rev. 1.2.1) with EM connected ............................................................ 10
Figure 4 – SmartRF06EB architecture .......................................................................................... 12
Figure 5 – SmartRF06EB revision 1.2.1 front side ........................................................................ 13
Figure 6 – SmartRF06EB revision 1.2.1 reverse side ................................................................... 13
Figure 7 – Jumper mounted on J5 to enable the UART back channel ......................................... 14
Figure 8 – Main power switch (P501) and source selection switch (P502) ................................... 15
Figure 9 – SmartRF06EB power selection switch (P502) in “USB” position ................................. 15
Figure 10 – SmartRF06EB power source selection switch (P502) in “BAT” position ................... 16
Figure 11 – SmartRF06EB external power supply header (J501) ................................................ 16
Figure 12 – Power domain overview of SmartRF06EB ................................................................. 17
Figure 13 – Mount a jumper on J502 to bypass EM domain voltage regulator ............................. 18
Figure 14 – Simplified schematic of Ambient Light Sensor setup ................................................. 20
Figure 15 – SmartRF06EB EM connectors RF1 and RF2 ............................................................ 21
User’s Guide
SWRU321A – May 2013
Page 4/32
Figure 16 – SmartRF06EB I/O breakout overview ........................................................................ 23
Figure 17 – XDS100v3 Emulator Bypass Header (P408) ............................................................. 24
Figure 18 – 20-pin ARM JTAG header (P409) .............................................................................. 25
Figure 19 – 10-pin ARM Cortex Debug header (P410) ................................................................. 26
Figure 20 – Simplified schematic of high-side current sensing setup ........................................... 27
Figure 21 – Measuring current consumption using jumper J503 .................................................. 27
Figure 22 – Simplified connection diagram for different debugging scenarios ............................. 28
Figure 23 – Debugging external target using SmartRF06EB ........................................................ 29
Figure 24 – ARM JTAG header (P409) with strapping to debug external target .......................... 30
List of Tables
Table 1 – SmartRF06EB features ................................................................................................... 5
Table 2 – Supply voltage: Recommended operating conditions and absolute max. ratings ........ 11
Table 3 – Temperature: Recommended operating conditions and storage temperatures ........... 11
Table 4 – UART Back channel signal connections ....................................................................... 14
Table 5 – Power domain overview of SmartRF06EB .................................................................... 17
Table 6 – LCD signal connections ................................................................................................. 19
Table 7 – Micro SD Card signal connections ................................................................................ 19
Table 8 – Accelerometer signal connections ................................................................................. 20
Table 9 – Ambient Light Sensor signal connections ..................................................................... 20
Table 10 – Button signal connections ........................................................................................... 20
Table 11 – General purpose LED signal connections ................................................................... 21
Table 12 – EM connector RF1 pin-out........................................................................................... 22
Table 13 – EM connector RF2 pin-out........................................................................................... 22
Table 14 – SmartRF06EB I/O breakout overview ......................................................................... 24
Table 15 – 20-pin ARM JTAG header pin-out (P409) ................................................................... 25
Table 16 – 10-pin ARM Cortex Debug header pin-out (P410) ...................................................... 26
Table 17 – Debugging external target: Minimum strapping (cJTAG support) ............................... 30
Table 18 – Debugging external target: Optional strapping ............................................................ 30
User’s Guide
SWRU321A – May 2013
Page 5/32
1 Introduction
The SmartRF06 Evaluation Board (SmartRF06EB or simply EB) is the motherboard in
development kits for Low Power RF ARM Cortex®-M based System on Chips from Texas
Instruments. The board has a wide range of features, listed in Table 1 below.
Component Description
TI XDS100v3 Emulator cJTAG and JTAG emulator for easy programming and
debugging of SoCs on Evaluation Modules or external targets.
High-speed USB 2.0
interface
Easy plug and play access to full SoC control using SmartRF™
Studio PC software. Integrated serial port over USB enables
communication between the SoC via the UART back channel.
64x128 pixels serial LCD Big LCD display for demo use and user interface development.
LEDs Four general purpose LEDs for demo use or debugging.
Micro SD card slot External flash for extra storage, over-the-air upgrades and more.
Buttons Five push-buttons for demo use and user interfacing.
Accelerometer Three-axis highly configurable digital accelerometer for
application development and demo use.
Light Sensor Ambient Light Sensor for application development and demo
use.
Current measurement Current sense amplifier for high side current measurements.
Breakout pins Easy access to SoC GPIO pins for quick and easy debugging.
Table 1 – SmartRF06EB features
2 About this manual
This manual contains reference information about the SmartRF06EB.
Chapter 4 will give a quick introduction on how to get started with the SmartRF06EB. It describes
how to install SmartRF™ Studio to get the required USB drivers for the evaluation board. Chapter
5 briefly explains how the EB can be used throughout a project’s development cycle. Chapter 6
gives an overview of the various features and functionality provided by the board.
A troubleshooting guide is found in chapter 8 and Appendix A contains the schematics for
SmartRF06EB revision 1.2.1.
The PC tools SmartRF™ Studio and SmartRF™ Flash Programmer have their own user manual.
See chapter 9 for references to relevant documents and web pages.
User’s Guide
SWRU321A – May 2013
Page 6/32
3 Acronyms and Abbreviations
ALS Ambient Light Sensor
cJTAG Compact JTAG (IEEE 1149.7)
CW Continuous Wave
DK Development Kit
EB Evaluation Board
EM Evaluation Module
FPGA Field-Programmable Gate Array
I/O Input/Output
JTAG Joint Test Action Group (IEEE 1149.1)
LCD Liquid Crystal Display
LED Light Emitting Diode
LPRF Low Power RF
MCU Micro Controller
MISO Master In, Slave Out (SPI signal)
MOSI Master Out, Slave In (SPI signal)
NA Not Applicable / Not Available
NC Not Connected
RF Radio Frequency
RTS Request to Send
RX Receive
SoC System on Chip
SPI Serial Peripheral Interface
TI Texas Instruments
TP Test Point
TX Transmit
UART Universal Asynchronous Receive Transmit
USB Universal Serial Bus
VCP Virtual COM Port
User’s Guide
SWRU321A – May 2013
Page 7/32
4 Getting Started
Before connecting the SmartRF06EB to the PC via the USB cable, it is highly recommended to
perform the steps described below.
4.1 Installing SmartRF Studio and USB drivers
Before your PC can communicate with the SmartRF06EB over USB, you will need to install the
USB drivers for the EB. The latest SmartRF Studio installer [1] includes USB drivers both for
Windows x86 and Windows x64 platforms.
After you have downloaded SmartRF Studio from the web, extract the zip-file, run the installer
and follow the instructions. Select the complete installation to include the SmartRF Studio
program, the SmartRF Studio documentation and the necessary drivers needed to communicate
with the SmartRF06EB.
4.1.1 SmartRF Studio
SmartRF Studio is a PC application developed for configuration and evaluation of many RF-IC
products from Texas Instruments. The application is designed for use with SmartRF Evaluation
Boards, such as SmartRF06EB, and runs on Microsoft Windows operating systems.
SmartRF Studio lets you explore and experiment with the RF-ICs as it gives full overview and
access to the devices’ registers to configure the radio and has a control interface for simple radio
operation from the PC.
This means that SmartRF Studio will help radio system designers to easily evaluate the RF-IC at
an early stage in the design process. It also offers a flexible code export function of radio register
settings for software developers.
The latest version of SmartRF Studio can be downloaded from the Texas Instruments website [1],
where you will also find a complete user manual.
4.1.2 FTDI USB driver
SmartRF PC software such as SmartRF Studio uses a proprietary USB driver from FTDI [2] to
communicate with SmartRF06 evaluation boards. Connect your SmartRF06EB to the computer
with a USB cable and turn it on. If you did a complete install of SmartRF Studio, Windows will
recognize the device automatically and the SmartRF06EB is ready for use!
4.1.2.1 Install FTDI USB driver manually in Windows
If the SmartRF06EB was not properly recognized after plugging it into your PC, try the following
steps to install the necessary USB drivers. The steps described are for Microsoft Windows 7, but
are very similar to those in Windows XP and Windows Vista. It is assumed that you have already
downloaded and installed the latest version of SmartRF Studio 7 [1].
Open the Windows Device Manager and right click on the first “Texas Instruments XDS100v3”
found under “Other devices” as shown in Figure 1a.
Select “Update Driver Software…” and, in the appearing dialog, browse to
\Drivers\ftdi as shown in Figure 1b.
User’s Guide
SWRU321A – May 2013
Page 8/32
a)
b)
Figure 1 – Driver install: a) Update driver, b) Specify path to FTDI drivers
Press Next and wait for the driver to be installed. The selected device should now appear in the
Device Manager as “TI XDS100v3 Channel x” (x = A or B) as seen in Figure 2b. Repeat the
above steps for the second “Texas Instruments XDS100v3” listed under “Other devices”.
4.1.2.1.1 Enable XDS100v3 UART back channel on Windows
If you have both “TI XDS100v3 Channel A” and “TI XDS100v3 Channel B” listed under Universal
Serial Bus Controllers, you can proceed. Right click on “TI XDS100v3 Channel B” and select
Properties. Under the Advanced tab, make sure “Load VCP” is checked as shown in Figure 2a.
A “USB Serial Port” may be listed under “Other devices”, as seen in Figure 1a. Follow the same
steps as for the “Texas Instruments XDS100v3” devices to install the VCP driver. When the
drivers from \Drivers\ftdi is properly installed, you should see the USB Serial
Port device be listed under “Ports (COM & LPT)” as shown in Figure 2b.
The SmartRF06EB drivers are now installed correctly.
Figure 2 – Driver install: a) VCP loaded and b) drivers successfully installed
User’s Guide
SWRU321A – May 2013
Page 9/32
4.1.2.2 Install XSD100v3 UART back channel on Linux
The ports on SmartRF06EB will typically be mounted as ttyUSB0 or ttyUSB1. The UART back
channel is normally mounted as ttyUSB1.
1. Download the Linux drivers from [2].
2. Untar the ftdi_sio.tar.gz file on your Linux system.
3. Connect the SmartRF06EB to your system.
4. Install driver
a. Verify the USB Product ID (PID) and Vendor ID (VID).
The TI XDS100v3 USB VID is 0x0403 and the PID is 0xA6D1, but if you wish to
find the PID using a terminal window/shell, use
> lsusb | grep -i future
b. Install driver using modprobe
In a terminal window/shell, navigate to the ftdi_sio folder and run
> sudo modprobe ftdi_sio vendor=0x403 product=0xA6D1
SmartRF06EB should now be correctly mounted. The above steps have been tested on Fedora
and Ubuntu distributions.
If the above steps failed, try uninstalling ‘brltty’ prior to step 5 (technical note TN_101, [2]).
> sudo apt-get remove brltty
User’s Guide
SWRU321A – May 2013
Page 10/32
5 Using the SmartRF06 Evaluation Board
The SmartRF06EB is a flexible test and development platform that works together with RF
Evaluation Modules from Texas Instruments.
An Evaluation Module (EM) is a small RF module with RF chip, balun, matching filter, SMA
antenna connector and I/O connectors. The modules can be plugged into the SmartRF06EB
which lets the PC take direct control of the RF device on the EM over the USB interface.
SmartRF06EB currently supports:
- CC2538EM
SmartRF06EB is included in e.g. the CC2538 development kit.
Figure 3 – SmartRF06EB (rev. 1.2.1) with EM connected
The PC software that controls the SmartRF06EB + EM is SmartRF Studio. Studio can be used to
perform several RF tests and measurements, e.g. to set up a CW signal and send/receive
packets.
User’s Guide
SWRU321A – May 2013
Page 11/32
The EB+EM can be of great help during the whole development cycle for a new RF product.
- Perform comparative studies. Compare results obtained with EB+EM with results from
your own system.
- Perform basic functional tests of your own hardware by connecting the radio on your
board to SmartRF06EB. SmartRF Studio can be used to exercise the radio.
- Verify your own software with known good RF hardware, by simply connecting your own
microcontroller to an EM via the EB. Test the send function by transmitting packets from
your SW and receive with another board using SmartRF Studio. Then transmit using
SmartRF Studio and receive with your own software.
- Develop code for your SoC and use the SmartRF06EB as a standalone board without PC
tools.
The SmartRF06EB can also be used as a debugger interface to the SoCs from IAR Embedded
workbench for ARM or Code Composer Studio from Texas Instruments. For details on how to use
the SmartRF06EB to debug external targets, see chapter 7.
5.1 Absolute Maximum Ratings
The minimum and maximum operating supply voltages and absolute maximum ratings for the
active components onboard the SmartRF06EB are summarized in Table 2. Table 3 lists the
recommended operating temperature and storage temperature ratings. Please refer to the
respective component’s datasheet for further details.
Component
Operating voltage Absolute max. rating
Min. [V] Max. [V] Min. [V] Max. [V]
XDS100v3 Emulator1 [4] +1.8 +3.6 -0.3 +3.75
LCD [5] +3.0 +3.3 -0.3 +3.6
Accelerometer [6] +1.62 +3.6 -0.3 +4.25
Ambient light sensor [7] +2.32 +5.5 NA +6
Table 2 – Supply voltage: Recommended operating conditions and absolute max. ratings
Component
Operating temperature Storage temperature
Min. [˚C] Max. [˚C] Min. [˚C] Max. [˚C]
XDS100v3 Emulator [4] -20 +70 -50 +110
LCD [5] -20 +70 -30 +80
Accelerometer [6] -40 +85 -50 +150
Ambient light sensor [7] -40 +85 -40 +85
Table 3 – Temperature: Recommended operating conditions and storage temperatures
1 The XDS100v3 Emulator is USB powered. Values refer to the supply and I/O pin voltages of the connected target.
2 Recommended minimum operating voltage.
User’s Guide
SWRU321A – May 2013
Page 12/32
6 SmartRF06 Evaluation Board Overview
SmartRF06EB acts as the motherboard in development kits for ARM® Cortex™ based Low
Power RF SoCs from Texas Instruments. The board has several user interfaces and connections
to external interfaces, allowing fast prototyping and testing of both software and hardware. An
overview of the SmartRF06EB architecture is found in Figure 4. The board layout is found in
Figure 5 and Figure 6, while the schematics are located in Appendix A.
This chapter will give an overview of the general architecture of the board and describe the
available I/O. The following sub-sections will explain the I/O in more detail. Pin connections
between the EM and the evaluation board I/O can be found in section 6.10.
EM Domain (1.8 – 3.6 V)
XDS Domain
3.3 V Domain
EM Connectors
Light Sensor Buttons LEDs Accelerometer
XDS100v3
Emulator
XDS
LEDs
Level shifter
SD Card Reader
Load switch
20-pin
ARM JTAG
Header
Bypass Header
UART back
channel
Level shifter
10-pin
ARM Cortex
Debug Header
(c)JTAG
USB
I/O breakout headers
3.3 V Domain
Enable
LCD
I/O Breakout Headers
Figure 4 – SmartRF06EB architecture
User’s Guide
SWRU321A – May 2013
Page 13/32
EM current
measurement
testpoint and
jumper
XDS bypass
header
20-pin ARM
JTAG Header
General purpose
buttons
UART back
channel
breakout
XDS LEDs
10-pin ARM
Cortex Header
EM I/O breakout
Main power
switch
Power source
selection switch
External power
supply connector
EM reset button
Regulator
bypass jumper
Micro SD
card slot
LCD
Accelerometer
LEDs
Ambient Light
Sensor
EM connectors
UART back
channel enable
Jumper
Figure 5 – SmartRF06EB revision 1.2.1 front side
1.5 V AAA
Alkaline Battery
holder
XDS100v3
Emulator
1.5 V AAA
Alkaline Battery
holder
CR2032 coin
cell battery
holder
Figure 6 – SmartRF06EB revision 1.2.1 reverse side
6.1 XDS100v3 Emulator
The XDS100v3 Emulator from Texas Instruments has cJTAG and regular JTAG support. cJTAG
is a 2-pin extension to regular 4-pin JTAG. The XDS100v3 consists of a USB to JTAG chip from
FTDI [2] and an FPGA to convert JTAG instructions to cJTAG format.
User’s Guide
SWRU321A – May 2013
Page 14/32
In addition to regular debugging capabilities using cJTAG or JTAG, the XDS100v3 Emulator
supports a UART backchannel over a USB Virtual COM Port (VCP) to the PC. The UART back
channel supports flow control, 8-N-1 format and data rates up to 12Mbaud.
Please see the XDS100v3 emulator product page [4] for detailed information about the emulator.
The XDS100v3 Emulator is powered over USB and is switched on as long as the USB cable is
connected to the SmartRF06EB and the main power switch (S501) is in the ON position. The
XDS100v3 Emulator supports targets with operating voltages between 1.8 V and 3.6. The min
(max) operating temperature is -20 (+70) ˚C.
6.1.1 UART back channel
The mounted EM can be connected to the PC via the XDS100v3 Emulator’s UART back channel.
When connected to a PC, the XDS100v3 is enumerated as a Virtual COM Port (VCP) over USB.
The driver used is a royalty free VCP driver from FTDI, available for e.g. Microsoft Windows,
Linux and Max OS X. The UART back channel gives the mounted EM access to a four pin UART
interface, supporting 8-N-1 format at data rates up to 12 Mbaud.
To enable the SmartRF06EB UART back channel the “Enable UART over XDS100v3” jumper
(J5), located on the lower right side of the EB, must be mounted (Figure 7). Table 4 shows an
overview of the I/O signals related to UART Back Channel.
Figure 7 – Jumper mounted on J5 to enable the UART back channel
Signal name Description Probe header EM pin
RF1.7_UART_RX UART Receive (EM data in) EM_UART_RX (P412.2) RF1.7
RF1.9_UART_TX UART Transmit (EM data out) EM_UART_TX (P412.3) RF1.9
RF1.3_UART_CTS UART Clear To Send signal EM_UART_CTS (P412.4) RF1.3
RF2.18_UART_RTS UART Request To Send signal EM_UART_RTS (P412.5) RF2.18
Table 4 – UART Back channel signal connections
6.2 Power Sources
There are three ways to power the SmartRF06EB; batteries, USB bus and external power supply.
The power source can be selected using the power source selection switch (S502) seen in Figure
8. The XDS100v3 Emulator can only be powered over USB. The main power supply switch
(S501) cuts power to the SmartRF06EB.
Never connect batteries and an external power source to the SmartRF06EB at the
same time! Doing so may lead to excessive currents that may damage the batteries
or cause onboard components to break. The CR2032 coin cell battery is in particular
very sensitive to reverse currents (charging) and must never be combined with other
power sources (AAA batteries or an external power source).
User’s Guide
SWRU321A – May 2013
Page 15/32
Figure 8 – Main power switch (P501) and source selection switch (P502)
6.2.1 USB Power
When the SmartRF06EB is connected to a PC via a USB cable, it can draw power from the USB
bus. The onboard voltage regulator supplies approximately 3.3 V to the mounted EM and the EB
peripherals. To power the mounted EM and the EB peripherals from the USB bus, the power
source selection switch (S502) should be in “USB” position (Figure 9).
The maximum current consumption is limited by the regulator to 1500 mA3.
Figure 9 – SmartRF06EB power selection switch (P502) in “USB” position
6.2.2 Battery Power
The SmartRF06EB can be powered using two 1.5 V AAA alkaline batteries or a 3 V CR2032 coin
cell battery. The battery holders for the AAA batteries and the CR2032 coin cell battery are
located on the reverse side of the PCB. To power the mounted EM and the EB peripherals using
batteries, the power source selection switch (S502) should be in “BAT” position (Figure 10).
When battery powered, the EM power domain is by default regulated to 2.1 V. The voltage
regulator may be bypassed by mounting a jumper on J502. See section 6.3.2 for more details.
Do not power the SmartRF06EB using two 1.5 V AAA batteries and a 3 V CR2032
coin cell battery at the same time. Doing so may lead to excessive currents that may
damage the batteries or cause onboard components to break.
3 Note that most USB power sources are limited to 500 mA.
User’s Guide
SWRU321A – May 2013
Page 16/32
Figure 10 – SmartRF06EB power source selection switch (P502) in “BAT” position
6.2.3 External Power Supply
The SmartRF06EB can be powered using an external power supply. To power the mounted EM
and the EB peripherals using an external power supply, the power source selection switch (S502)
should be in “BAT” position (Figure 10 in section 6.2.2).
The external supply’s ground should be connected to the SmartRF06EB ground, e.g. to the
ground pad in the top left corner of the EB. Connect the positive supply connector to the external
power header J501 (Figure 11). The applied voltage must be in the range from 2.1 V to 3.6 V and
limited to max 1.5 A.
When powered by an external power supply, the EM power domain is by default regulated to
2.1 V. The voltage regulator may be bypassed by mounting a jumper on J502. See section 6.3.2
for more details.
There is a risk of damaging the onboard components if the applied voltage on the
external power connector/header is lower than -0.3 V or higher than 3.6 V
(combined absolute maximum ratings for onboard components). See section 5.1 for
further information.
Figure 11 – SmartRF06EB external power supply header (J501)
User’s Guide
SWRU321A – May 2013
Page 17/32
6.3 Power Domains
The SmartRF06EB is divided into three power domains, described in detail in the following
sections. The SmartRF06EB components, and what power domain they belong to, is shown in
Figure 12 and Table 5 below.
XDS domain
(3.3 V)
XDS100v3, XDS LEDs
EM domain
(1.8 - 3.6 V)
ACC, ALS, keys, LEDs
3.3 V domain
(3.3 V)
LCD, SD card
Power sources
USB, batteries, external supply
Level
shifters
Level
shifters
Mounted EM
Figure 12 – Power domain overview of SmartRF06EB
Component Power domain Power source
Evaluation Module EM domain (LO_VDD) USB, battery, external
General Purpose LEDs EM domain (LO_VDD) USB, battery, external
Accelerometer EM domain (LO_VDD) USB, battery, external
Ambient Light Sensor EM domain (LO_VDD) USB, battery, external
Current measurement MSP
MCU
EM domain (LO_VDD) USB, battery, external
LEDs EM domain (LO_VDD) USB, battery, external
XDS100v3 Emulator XDS domain USB
XDS100v3 LEDs XDS domain USB
SD Card Slot 3.3 V domain (HI_VDD) Same as EM domain
LCD 3.3 V domain (HI_VDD) Same as EM domain
Table 5 – Power domain overview of SmartRF06EB
6.3.1 XDS Domain
The XDS100v3 Emulator (see section 6.1) onboard the SmartRF06EB is in the XDS domain. The
XDS domain is powered over USB. The USB voltage supply (+5 V) is down-converted to +3.3 V
and +1.5 V for the different components of the XDS100v3 Emulator.
The SmartRF06EB must be connected to e.g. a PC over USB for the XDS domain to be powered
up. The domain is turned on/off by the SmartRF06EB main power switch.
6.3.2 EM Domain
The mounted EM board and most of the SmartRF06EB peripherals are powered in the EM
domain and signals in this domain (accessible by the EM), are prefixed “LV_” in the schematics.
Table 5 lists the EB peripherals that are powered in the EM domain. The domain is turned on/off
by the SmartRF06EB power switch.
User’s Guide
SWRU321A – May 2013
Page 18/32
The EM domain may be powered using various power sources; USB powered (regulated to 3.3
V), battery powered (regulated to 2.1 V or unregulated) and using an external power supply
(regulated to 2.1 V or unregulated).
When battery powered or powered by an external source, the EM power domain is by default
regulated to 2.1 V using a step down converter. The step down converter may be bypassed by
mounting a jumper on J502 (Figure 13), powering the EM domain directly from the source. When
J502 is not mounted, the EM power domain is regulated to 2.1 V. The maximum current
consumption of the EM power domain is then limited by the regulator to 410 mA.
Figure 13 – Mount a jumper on J502 to bypass EM domain voltage regulator
6.3.3 3.3 V Domain
The 3.3 V domain is a sub domain of the EM domain. The 3.3 V domain is regulated to 3.3 V
using a buck-boost converter, irrespective of the source powering the EM domain. Signals in the
3.3V domain (controlled by the EM) are prefixed “HV_” for High Voltage in the schematics.
Two EB peripherals are in the 3.3 V domain, the LCD and the SD card slot, as listed in Table 5.
These peripherals are connected to the EM domain via level shifters U401 and U402.
The 3.3 V domain may be switched on (off) completely by the mounted EM board by pulling
signal LV_3.3V_EN to a logical 1 (0). See Table 14 in section 6.11.1 for details about the
mapping between the EM and signals onboard the SmartRF06EB.
6.4 LCD
The SmartRF06EB comes with a 128x64 pixels display from Electronic Assembly (DOGM128E-6)
[4]. The LCD display is available to mounted EM via a SPI interface, enabling software
development of user interfaces and demo use. Table 6 shows an overview of the I/O signals
related to the LCD.
The recommended operating condition for the LCD display is a supply voltage between 3.0 V and
3.3 V. The LCD display is powered from the 3.3 V power domain (HI_VDD). The min (max)
operating temperature is -20 (+70) ˚C.
The LCD connector on SmartRF06EB is very tight to ensure proper contact between
the EM and the LCD. Be extremely cautious when removing the LCD to avoid the
display from breaking.
NOTE: Mounting a jumper on J502 will not have any effect if the SmartRF06EB is powered
over USB (when the power source selection switch, S502, is in “USB” position).
User’s Guide
SWRU321A – May 2013
Page 19/32
Signal name Description Probe header EM pin
LV_3.3V_EN 3.3 V domain enable signal4 RF1.15 (P407.1) RF1.15
LV_LCD_MODE LCD mode signal RF1.11 (P406.7) RF1.11
¯L¯V¯_¯L¯C¯D¯_¯R¯¯E¯S¯E¯T¯ LCD reset signal (active low) RF1.13 (P406.9) RF1.13
¯L¯V¯_¯L¯C¯D¯_¯C¯¯S LCD Chip Select (active low) RF1.17 (P407.3) RF1.17
LV_SPI_SCK SPI Clock RF1.16_SCK (P407.2) RF1.16
LV_SPI_MOSI SPI MOSI (LCD input) RF1.18_MOSI (P407.4) RF1.18
Table 6 – LCD signal connections
6.5 Micro SD Card Slot
The SmartRF06EB has a micro SD card slot for connecting external SD/MMC flash devices (flash
device not included). A connected flash device is available to the mounted EM via a SPI interface,
giving it access to extra flash, enabling over-the-air upgrades and more. Table 8 shows an
overview of I/O signals related to the micro SD card slot.
The micro SD card is powered from the 3.3 V power domain (HI_VDD).
Signal name Description Probe header EM pin
LV_3.3V_EN 3.3 V domain enable signal4 RF1.15 (P407.1) RF1.15
¯L¯V¯_¯S¯D¯C¯¯A¯R¯D¯_¯C¯¯S SD card Chip Select (active low) RF2.12 (P411.1) RF2.12
LV_SPI_SCK SPI Clock RF1.16_SCK (P407.2) RF1.16
LV_SPI_MOSI SPI MOSI (SD card input) RF1.18_MOSI (P407.4) RF1.18
LV_SPI_MISO SPI MISO (SD card output) RF1.20_MISO (P407.5) RF1.20
Table 7 – Micro SD Card signal connections
6.6 Accelerometer
The SmartRF06EB is equipped with a BMA250 digital accelerometer from Bosch Sensortech [6].
The accelerometer is available to the mounted EM via an SPI interface and has two dedicated
interrupt lines. The accelerometer is suitable for application development, prototyping and demo
use. Table 8 shows an overview of I/O signals related to the accelerometer.
The recommended operating condition for the accelerometer is a supply voltage between 1.62 V
and 3.6 V. The min (max) operating temperature is -40 (+85) ˚C.
Signal name Description Probe header EM pin
LV_ACC_PWR Acc. power enable signal RF2.8 (P407.8) RF2.8
LV_ACC_INT1 Acc. interrupt signal RF2.16 (P411.5) RF2.16
LV_ACC_INT2 Acc. interrupt signal RF2.14 (P411.3) RF2.14
¯L¯V¯_¯A¯C¯C¯¯¯C¯S¯ Acc. Chip Select (active low) RF2.10 (P407.9) RF2.10
LV_SPI_SCK SPI Clock RF1.16_SCK (P407.2) RF1.16
LV_SPI_MOSI SPI MOSI (acc. input) RF1.18_MOSI (P407.4) RF1.18
4 The LCD and SD card are both powered in the 3.3 V domain and cannot be powered on/off individually.
User’s Guide
SWRU321A – May 2013
Page 20/32
LV_SPI_MISO SPI MISO (acc. output) RF1.20_MISO (P407.5) RF1.20
Table 8 – Accelerometer signal connections
6.7 Ambient Light Sensor
The SmartRF06EB has an analog SFH 5711 ambient light sensor (ALS) from Osram [7] that is
available for the mounted EM via the EM connectors, enabling quick application development for
demo use and prototyping. Figure 14 and Table 9 shows an overview of I/O signals related to the
ambient light sensor.
The recommended operating condition for the ambient light sensor is a supply voltage between
2.3 V and 5.5 V. The min (max) operating temperature is -40 (+85) ˚C.
Ambient Light Sensor LV_ALS_OUT
LV_ALS_PWR
22 kOhm
Figure 14 – Simplified schematic of Ambient Light Sensor setup
Signal name Description Probe header EM pin
LV_ALS_PWR ALS power enable signal RF2.6 (P407.7) RF2.6
LV_ALS_OUT ALS output signal (analog) RF2.5 (P411.6) RF2.5
Table 9 – Ambient Light Sensor signal connections
6.8 Buttons
There are 6 buttons on the SmartRF06EB. Status of the LEFT, RIGHT, UP, DOWN and SELECT
buttons are available to the mounted EM. These buttons are intended for user interfacing and
development of demo applications.
The EM RESET button resets the mounted EM by pulling its reset line low (¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯).
Table 10 shows an overview of I/O signals related to the buttons.
Signal name Description Probe header EM pin
LV_BTN_LEFT Left button (active low) RF1.6 (P406.4) RF1.6
LV_BTN_RIGHT Right button (active low) RF1.8 (P406.5) RF1.8
LV_BTN_UP Up button (active low) RF1.10 (P406.6) RF1.10
LV_BTN_DOWN Down button (active low) RF1.12 (P406.8) RF1.12
LV_BTN_SELECT Select button (active low) RF1.14 (P406.10) RF1.14
¯L¯V¯_¯B¯T¯N¯_¯R¯¯E¯S¯E¯T¯ EM reset button (active low) ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ (P411.4) RF2.15
Table 10 – Button signal connections
User’s Guide
SWRU321A – May 2013
Page 21/32
6.9 LEDs
6.9.1 General Purpose LEDs
The four LEDs D601, D602, D603, D604 can be controlled from the mounted EM and are suitable
for demo use and debugging. The LEDs are active high. Table 11 shows an overview of I/O
signals related to the LEDs.
Signal name Description Probe header EM pin
LV_LED_1 LED 1 (red) RF2.11 (P407.10) RF2.11
LV_LED_2 LED 2 (yellow) RF2.13 (P411.2) RF2.13
LV_LED_3 LED 3 (green) RF1.2 (P406.1) RF1.2
LV_LED_4 LED 4 (red-orange) RF1.4 (P406.2) RF1.4
Table 11 – General purpose LED signal connections
6.9.2 XDS100v3 Emulator LEDs
The XDS100v3 emulator has two LEDs to indicate its status, D2 and D4. The LEDs are located
on the top side of the SmartRF06EB. LED D2 is lit whenever the XDS100v3 Emulator is powered,
while LED D4 (ADVANCED MODE) is lit when the XDS100v3 is in an active cJTAG debug state.
6.10 EM Connectors
The EM connectors, shown in Figure 15, are used for connecting an EM board to the
SmartRF06EB. The connectors RF1 and RF2 are the main interface and are designed to inhibit
incorrect mounting of the EM board. The pin-out of the EM connectors is given in Table 12 and
Table 13.
Figure 15 – SmartRF06EB EM connectors RF1 and RF2
User’s Guide
SWRU321A – May 2013
Page 22/32
EM pin Signal name Description
Probe
header
Breakout
header
RF1.1 GND Ground
RF1.2 RF1.2 GPIO signal to EM board P406.1 P403.1-2
RF1.3 RF1.3_UART_CTS UART back channel / GPIO P412.4 P408.15-16
RF1.4 RF1.4 GPIO signal to EM board P406.2 P403.3-4
RF1.5 RF1.5 GPIO signal to EM board P406.3 P403.5-6
RF1.6 RF1.6 GPIO signal to EM board P406.4 P403.7-8
RF1.7 RF1.7_UART_RX UART back channel (EM RX) P412.2 P408.11-12
RF1.8 RF1.8 GPIO signal to EM board P406.5 P403.9-10
RF1.9 RF1.9_UART_TX UART back channel (EM TX) P412.3 P408.13-14
RF1.10 RF1.10 GPIO signal to EM board P406.6 P403.11-12
RF1.11 RF1.11 GPIO signal to EM board P406.7 P403.13-14
RF1.12 RF1.12 GPIO signal to EM board P406.8 P403.15-16
RF1.13 RF1.13 GPIO signal to EM board P406.9 P403.17-18
RF1.14 RF1.14 GPIO signal to EM board P406.10 P403.19-20
RF1.15 RF1.15 GPIO signal to EM board P407.1 P404.1-2
RF1.16 RF1.16_SPI_SCK EM SPI Clock P407.2 P404.3-4
RF1.17 RF1.17 GPIO signal to EM board P407.3 P404.5-6
RF1.18 RF1.18_SPI_MOSI EM SPI MOSI P407.4 P404.7-8
RF1.19 GND Ground
RF1.20 RF1.20_SPI_MISO EM SPI MISO P407.5 P404.9-10
Table 12 – EM connector RF1 pin-out
EM pin Signal name Description
Probe
header
Breakout
header
RF2.1 RF2.1_JTAG_TCK JTAG Test Clock P409.9 P408.1-2
RF2.2 GND Ground
RF2.3 RF_VDD2 EM power TP10 J503.1-2
RF2.4 RF2.4_JTAG_TMS JTAG Test Mode Select P409.7 P408.3-4
RF2.5 RF2.5 GPIO signal to EM board P407.6 P404.11-12
RF2.6 RF2.6 GPIO signal to EM board P407.7 P404.13-14
RF2.7 RF_VDD1 EM power TP10 J503.1-2
RF2.8 RF2.8 GPIO signal to EM board P407.8 P404.15-16
RF2.9 RF_VDD1 EM power TP10 J503.1-2
RF2.10 RF2.10 GPIO signal to EM board P407.9 P404.17-18
RF2.11 RF2.11 GPIO signal to EM board P407.10 P404.19-20
RF2.12 RF2.12 GPIO signal to EM board P411.1 P405.1-2
RF2.13 RF2.13 GPIO signal to EM board P411.2 P405.3-4
RF2.14 RF2.14 GPIO signal to EM board P411.3 P405.5-6
RF2.15 ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ EM reset signal (active low) P411.4 P405.7-8
RF2.16 RF2.16 GPIO signal to EM board P411.5 P405.9-10
RF2.17 RF2.17_JTAG_TDI GPIO / JTAG Test Data In P409.5 P408.5-6
RF2.18 RF2.18_UART_RTS GPIO / UART Back Channel P412.5 P408.17-18
RF2.19 RF2.19_JTAG_TDO GPIO / JTAG Test Data Out P409.13 P408.7-8
RF2.20 GND Ground
Table 13 – EM connector RF2 pin-out
User’s Guide
SWRU321A – May 2013
Page 23/32
6.11 Breakout Headers and Jumpers
The SmartRF06EB has several breakout headers, giving access to all EM connector pins. An
overview of the SmartRF06EB I/O breakout headers is given in Figure 16. Probe headers P406,
P407, P411 and P412 give access to the I/O signals of the mounted EM. Breakout headers P403,
P404 and P405 allow the user to map any EM I/O signal to any peripheral on the SmartRF06EB.
The XDS bypass header (P408) makes it possible to disconnect the XDS100v3 Emulator
onboard the EB from the EM. Using the 20-pin ARM JTAG header (P409) or the 10-pin ARM
Cortex Debug Header (P410), it is possible to debug external targets using the onboard emulator.
Evaluation
Module
Peripheral
probe headers
P406, P407,
P411
I/O breakout headers
P403, P404, P405
SmartRF06EB
peripherals
ACC, ALS, keys, LCD,
LED, SD card
XDS bypass header
P408
XDS100v3
Emulator
20-pin
ARM-JTAG
Debug Header
P409
10-pin Cortex
Debug Header
P410
UART back
channel probe
header
P412
Figure 16 – SmartRF06EB I/O breakout overview
6.11.1 I/O Breakout Headers
The I/O breakout headers on SmartRF06EB consist of pin connectors P406, P407, P411 and
P412. P406, P407 and P411 are located at the top left side of SmartRF06EB. All EM signals
available on these probe headers can be connected to or disconnected from SmartRF06EB
peripherals using jumpers on headers P403, P404, P405.
Probe header P412 is located near the bottom right corner of the SmartRF06EB. The signals
available on P412 are connected to the XDS100v3 Emulator’s UART back channel using jumpers
on header P408.
The I/O breakout mapping between the SmartRF06EB and the mounted EM is given in Table 14.
The leftmost column in the below table refers to the silk print seen on the SmartRF06EB. The
rightmost column shows the corresponding CC2538 I/O pad on CC2538EM.
NOTE: By default, all jumpers are mounted on P403, P404, P405 and P408. The default
configuration is assumed in this user’s guide unless otherwise stated.
User’s Guide
SWRU321A – May 2013
Page 24/32
Probe
header
Silk print EB signal name
EM
connector
CC2538EM
I/O
P406 RF1.2 LV_LED_3 RF1.2 PC2
RF1.4 LV_LED_4 RF1.4 PC3
RF1.5 NC RF1.5 PB1
RF1.6 LV_BTN_LEFT RF1.6 PC4
RF1.8 LV_BTN_RIGHT RF1.8 PC5
RF1.10 LV_BTN_UP RF1.10 PC6
RF1.11 LV_LCD_MODE RF1.11 PB2
RF1.12 LV_BTN_DOWN RF1.12 PC7
RF1.13 ¯L¯V¯_¯L¯C¯D¯_¯R¯¯E¯S¯E¯T¯ RF1.13 PB3
RF1.14 LV_BTN_SELECT RF1.14 PA3
P407 RF1.15 LV_3.3V_EN RF1.15 PB4
RF1.16_SCK LV_SPI_SCK RF1.16 PA2
RF1.17 ¯L¯V¯_¯L¯C¯D¯_¯C¯¯S RF1.17 PB5
RF1.18_MOSI LV_SPI_MOSI RF1.18 PA4
RF1.20_MISO LV_SPI_MISO RF1.20 PA5
RF2.5 LV_ALS_OUT RF2.5 PA6
RF2.6 LV_ALS_PWR RF2.6 PA7
RF2.8 LV_ACC_PWR RF2.8 PD4
RF2.10 ¯L¯V¯_¯A¯C¯C¯¯¯C¯S¯ RF2.10 PD5
RF2.11 LV_LED_1 RF2.11 PC0
P411 RF2.12 ¯L¯V¯_¯S¯D¯C¯¯A¯R¯D¯_¯C¯¯S RF2.12 PD0
RF2.13 LV_LED_2 RF2.13 PC1
RF2.14 LV_ACC_INT2 RF2.14 PD1
RF2.15_RESET ¯L¯V¯_¯B¯T¯N¯_¯R¯¯E¯S¯E¯T¯ RF2.15 nRESET
RF2.16 LV_ACC_INT1 RF2.16 PD2
P412 EM_UART_RX RF1.7_UART_RX RF1.7 PA0
EM_UART_TX RF1.9_UART_TX RF1.9 PA1
EM_UART_CTS RF1.3_UART_CTS RF1.3 PB0
EM_UART_RTS RF2.18_UART_RTS RF2.18 PD3
Table 14 – SmartRF06EB I/O breakout overview
6.11.2 XDS100v3 Emulator Bypass Headers
The XDS100v3 Emulator bypass header, P408, is by default mounted with jumpers (Figure 17),
connecting the XDS100v3 Emulator to a mounted EM or external target. By removing the jumpers
on P408, the XDS100v3 Emulator may be disconnected from the target.
Figure 17 – XDS100v3 Emulator Bypass Header (P408)
User’s Guide
SWRU321A – May 2013
Page 25/32
6.11.3 20-pin ARM JTAG Header
The SmartRF06EB comes with a standard 20-pin ARM JTAG header [8] (Figure 18), enabling the
user to debug an external target using the XDS100v3 Emulator. The pin-out of the ARM JTAG
header is given in Table 15. Chapter 7 has more information on how to debug an external target
using the XDS100v3 Emulator onboard the SmartRF06EB.
Figure 18 – 20-pin ARM JTAG header (P409)
Pin Signal Description EB signal name
XDS
bypass
header
P409.1 VTRef Voltage reference VDD_SENSE P408.19-20
P409.2 VSupply Voltage supply NC
P409.3 nTRST Test Reset NC
P409.4 GND Ground GND
P409.5 TDI Test Data In RF2.17_JTAG_TDI P408.5-6
P409.6 GND Ground GND
P409.7 TMS Test Mode Select RF2.4_JTAG_TMS P408.3-4
P409.8 GND Ground GND
P409.9 TCK Test Clock RF2.1_JTAG_TCK P408.1-2
P409.10 GND Ground GND
P409.11 RTCK Return Clock NC
P409.12 GND Ground GND
P409.13 TDO Test Data Out RF2.19_JTAG_TDO P408.7-8
P409.14 GND Ground GND
P409.15 nSRST System Reset ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ P408.9-10
P409.16 GND Ground GND
P409.17 DBGRQ Debug Request NC
P409.18 GND Ground GND
P409.19 DBGACK Debug Acknowledge NC
P409.20 GND Ground GND
Table 15 – 20-pin ARM JTAG header pin-out (P409)
User’s Guide
SWRU321A – May 2013
Page 26/32
6.11.4 10-pin ARM Cortex Debug Header
The SmartRF06EB comes with a standard 10-pin ARM Cortex debug header [8] (Figure 19),
enabling the user to debug an external target using the XDS100v3 Emulator. The ARM Cortex
debug header is located near the right hand edge of the EB. The header pin-out is given in Table
16. Chapter 7 has more information on how to debug an external target using the XDS100v3
Emulator onboard the SmartRF06EB.
Figure 19 – 10-pin ARM Cortex Debug header (P410)
Pin Signal Description EB signal name
XDS bypass
header
P410.1 VCC Voltage reference VDD_SENSE P408.19-20
P410.2 TMS Test Mode Select RF2.4_JTAG_TMS P408.3-4
P410.3 GND Ground GND
P410.4 TCK Test Clock RF2.1_JTAG_TCK P408.1-2
P410.5 GND Ground GND
P410.6 TDO Test Data Out RF2.19_JTAG_TDO P408.7-8
P410.7 KEY Key NC
P410.8 TDI Test Data In RF2.17_JTAG_TDI P408.5-6
P410.9 GNDDetect Ground detect GND
P410.10 nRESET System Reset ¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ P408.9-10
Table 16 – 10-pin ARM Cortex Debug header pin-out (P410)
User’s Guide
SWRU321A – May 2013
Page 27/32
6.12 Current Measurement
The SmartRF06EB provides two options for easy measurements of the current consumption of a
mounted EM. The following sections describe these two options in detail.
6.12.1 High-side current sensing
The SmartRF06EB comes with a current sensing unit for measuring the current consumption of
the mounted EM (Figure 20). The current sensing setup is “high-side”, that is, it measures the
current going to the mounted EM. The current is converted to a voltage, available at the
CURMEAS_OUTPUT test point (TP11), located near the right edge of the SmartRF06EB. Using
the SmartRF06EB together with for example an oscilloscope makes it easy to measure the EM
current consumption as a function of time.
The relationship between the voltage measured at CURMEAS_OUTPUT, VCURMEAS, and the EM
current consumption, IEM, is given by Equation 1 below.
15
V
I CURMEAS
EM (1)
G = 100
0.15 Ohm
To EM
IEM
VCURMEAS
Figure 20 – Simplified schematic of high-side current sensing setup
6.12.2 Current Measurement Jumper
SmartRF06EB has a current measurement header, J503, for easy measurement of EM current
consumption. Header J503 is located on the upper right hand side of the EB. By replacing the
jumper with an ammeter, as shown in Figure 21, the current consumption of the mounted EM can
be measured.
Figure 21 – Measuring current consumption using jumper J503
User’s Guide
SWRU321A – May 2013
Page 28/32
7 Debugging an external target using SmartRF06EB
You can easily use XDS100v3 Emulator onboard the SmartRF06EB to debug an external target.
It is in this chapter assumed that the target is self-powered.
When debugging an external, self-powered target using SmartRF06EB, make sure to remove the
jumper from the current measurement header (J503) as shown in the second scenario of Figure
22. In this scenario, the onboard XDS100v3 senses the target voltage of the external target. In
the left side scenario of the same figure, the XDS100v3 senses the target voltage of the EB’s EM
domain.
Having a jumper mounted on header J503 when debugging an external target will
cause a conflict between the EB’s EM domain supply voltage and the target’s supply
voltage. This may result in excess currents, damaging the onboard components of
the SmartRF06EB or the target board.
In Figure 22, the right hand side scenario shows how it is possible to debug an EM mounted on
the SmartRF06EB using an external debugger. In this scenario, all the jumpers must be removed
from the SmartRF06EB header P408 to avoid signaling conflicts between the onboard XDS100v3
Emulator and the external debugger.
XDS100v3
06EB XDS + EM
EM
(EM domain)
XDS100v3
06EB XDS + external target
Ext. target
(Target VDD)
EM
(EM domain)
XDS100v3
External debugger + EM
External
debugger
EM
(EM domain)
P408
(jumpers on)
P408
(jumpers off)
J503
(mounted)
J503
(mounted)
J503
(not mounted)
Current measurement jumper
XDS bypass header P408
(jumpers on)
Debug
header
P409/P410 P409/P410
Figure 22 – Simplified connection diagram for different debugging scenarios
User’s Guide
SWRU321A – May 2013
Page 29/32
7.1 20-pin ARM JTAG Header
The SmartRF06EB has a standard 20-pin ARM JTAG header mounted on the right hand side
(P409). Make sure all the jumpers on the XDS bypass header (P408) are mounted and that the
jumper is removed from header J503.
Connect the external board to the 20-pin ARM JTAG header (P409) using a 20-pin flat cable as
seen in Figure 23. Make sure pin 1 on P409 matches pin 1 on the external target. See sections
6.11.3 and 6.11.2 for more info about the 20-pin ARM JTAG header and the XDS bypass header,
respectively.
Figure 23 – Debugging external target using SmartRF06EB
7.2 10-pin ARM Cortex Debug Header
The SmartRF06EB has a standard 10-pin ARM Cortex Debug header mounted on the right hand
side (P410). Make sure all the jumpers on the XDS bypass header (P408) are mounted and that
the jumper is removed from header J503.
Connect the external board to the 10-pin ARM JTAG header using a 10-pin flat cable. Make sure
pin 1 on P410 matches pin 1 on the external target See sections 6.11.4 and 6.11.2 for more info
about the 10-pin ARM Cortex Debug header and the XDS bypass header, respectively.
User’s Guide
SWRU321A – May 2013
Page 30/32
7.3 Custom Strapping
If the external board does not have a 20-pin ARM JTAG connector nor a 10-pin ARM Cortex
connector, the needed signals may be strapped from the onboard XDS100v3 Emulator to the
external target board.
Make sure all the jumpers on the XDS bypass header (P408) are mounted and that the jumper is
removed from header J503. Table 17 shows the signals that must be strapped between the
SmartRF06EB and the target board. Table 18 shows additional signals that are optional or
needed for debugging using 4-pin JTAG. Figure 24 shows where the signals listed in Table 17
and Table 18 can be found on the 20-pin ARM JTAG header.
EB Signal Name
EB
Breakout
Description
VDD_SENSE P409.1 Target voltage supply
GND P409.4 Common ground for EB and external board
RF2.1_JTAG_TCK P409.9 Test Clock
RF2.4_JTAG_TMS P409.7 Test Mode Select
Table 17 – Debugging external target: Minimum strapping (cJTAG support)
EB Signal Name
EB
Breakout
Description
RF2.17_JTAG_TDI P409.5 Test Data In (optional for cJTAG)
RF2.19_JTAG_TDO P409.13 Test Data Out (optional for cJTAG)
¯R¯F¯2¯.1¯5¯¯R¯¯E¯S¯E¯T¯ P409.15 Target reset signal (optional)
Table 18 – Debugging external target: Optional strapping
VDD_SENSE
RF2.17_JTAG_TDI
RF2.4_JTAG_TMS
RF2.1_JTAG_TCK
RF2.19_JTAG_TDO
GND
2-pin cJTAG
4-pin JTAG
Optional
+
RF2.15_RESET
Figure 24 – ARM JTAG header (P409) with strapping to debug external target
User’s Guide
SWRU321A – May 2013
Page 31/32
8 Frequently Asked Questions
Q1 Nothing happens when I power up the evaluation board. Why?
A1 Make sure you have a power source connected to the EB. Verify that the power source
selection switch (S502) is set correctly according to your power source. When powering
the EB from either batteries or an external power source, S502 should be in “BAT”
position. When powering the EB over USB, the switch should be in “USB” position. Also,
make sure the EM current measurement jumper (J503) is short circuited.
Q2 Why are there two JTAG connectors on the SmartRF06EB, which one should I use?
A2 The SmartRF06EB comes with two different standard debug connectors, the 20-pin ARM
JTAG connector (P409) and the compact 10-pin ARM Cortex debug connector (P410).
These debug connectors are there to more easily debug external targets without the
need of customized strapping. For more details on how to debug external targets using
the SmartRF06EB, see chapter 7.
Q3 Can I use the SmartRF06EB to debug an 8051 SoC such as CC2530?
A3 No, you cannot debug an 8051 SoC using the SmartRF06EB.
Q4 When connecting my SmartRF06EB to my PC, no serial port appears. Why?
A4 It may be that the virtual COM port on the SmartRF06EB’s XDS100 channel B hasn’t
been enabled. Section 4.1.2.1.1 describes how to enable the Vritual COM Port in the
USB driver.
User’s Guide
SWRU321A – May 2013
Page 32/32
9 References
[1] SmartRF Studio Product Page
http://www.ti.com/tool/smartrftm-studio
[2] FTDI USB Driver Page
http://www.ftdichip.com
[3] SmartRF Flash Programmer Product Page
http://www.ti.com/tool/flash-programmer
[4] XDS100 Emulator Product Page
http://processors.wiki.ti.com/index.php/XDS100
[5] Electronic Assembly DOGM128-6 Datasheet
http://www.lcd-module.com/eng/pdf/grafik/dogm128e.pdf
[6] Bosch Sensortec BMA250 Datasheet
http://ae-bst.resource.bosch.com/media/products/dokumente/bma250/bst-bma250-
ds002-05.pdf
[7] Osram SFH 5711
http://www.osram-os.com
[8] Cortex-M Debug Connectors
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/attached/13634/cortex_debu
g_connectors.pdf
10 Document History
Revision Date Description/Changes
SWRU321A 2013-05-21 Minor fixes to Figure 4. Fixed incorrect EM mapping in Table 11.
Added steps for installing SmartRF06EB on Linux.
SWRU321 2012-09-07 Initial version.
User’s Guide
SWRU321A – May 2013
Appendix A
Schematics
SmartRF06EB 1.2.1
LOW VOLTAGE
PERIPHERALS
XDS100v3 - FPGA
XDS100v3 - FTDI
EM INTERFACE/
LEVEL SHIFTERS POWER SUPPLY
HIGH VOLTAGE
PERIPHERALS
1
FM2
FIDUCIAL_MARK_1mm
1
FM4
FIDUCIAL_MARK_1mm
H2
HOLE_3
H3
HOLE_3
1
FM5
FIDUCIAL_MARK_1mm
H1
HOLE_3
1
FM6
FIDUCIAL_MARK_1mm
1
FM1
FIDUCIAL_MARK_1mm
H4
HOLE_3
1
FM3
FIDUCIAL_MARK_1mm
TP13
TESTPOINT_PAD
TP12
TESTPOINT_PAD
ISSUED 1(7)
SmartRF06EB - Top Level
SCALE SHEET
DWG NO. REV.
DWG
COMPANY NAME
SIZE FSCM NO.
CONTRACT NO.
Texas Instruments
A3
DRAWN
13/07/12
13/07/12
12/07/12
MAW
1.2.1
APPROVALS DATE
CHECKED
PRG_TDO
EXT_SELECT
ADV_MODE
V_USB V_USB
RESET_N
VCCPLF
T_TVD
VTARGET
UART_EN_N
P3.3VXDS
P1.8V
P3.3VXDS
P3.3VXDS +1.5V
P3.3VXDS P3.3VXDS
P3.3VXDS P3.3VXDS
P3.3VXDS P3.3VXDS
P3.3VXDS
P3.3VXDS
1
2 3
4
STANDBY VDD
OUTPUT
ASDM
GND
O1
ASDM 100.000MHZ
1
2
3
Q1
BC846
1
2
3
4
5 6
7
8
9
10
INA+
INAOUTA
OUTB
V+
INB+
OPA2363 INBVENA
ENB
U6
OPA2363
25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
GND
GND
GND
GND
GND
UART_EN_N
GND
VCCPLF
CLK_100M
P1.5V
P3.3VXDS
RESET_N
DTSA_BYP
CBL_DIS
EMU1
POD_RLS
P3.3VXDS
TVD
CLK_FAIL
SRST_OUT
RTCK
EMU0
EMU_EN
TRST
TMS
TDO
TDI
TCK
P1.5V
P3.3VXDS
SUSPEND
ALT_FUNC
PRG_TCK
PRG_TMS
PRG_TDI
PRG_TDO
PRG_TCK
PRG_TDI
PRG_TMS
P3.3VXDS
P3.3VXDS
PRG_TDO
PRG_TRST
P3.3VXDS
VTARGET
P1.5V
VTARGET
PWRGOOD
VTARGET
P1.5V
ADV_MODE
EXT_SELECT
T_DIS
VTARGET
IO32RSB0
GBC0/IO35RSB0
IO13RSB0
GAA0/IO00RSB0
GBC1/IO36RSB0
IO15RSB0
GAA1/IO01RSB0
GAC1/IO05RSB0
GBB0/IO37RSB0
IO19RSB0
GNDQ
GBA2/IO41RSB0
GBA0/IO39RSB0
GBB1/IO38RSB0
GBA1/IO40RSB0
GCC2/IO59RSB0
GBB2/IO43RSB0
GDC1/IO61RSB0
IO09RSB0
GCC1/IO51RSB0
GDC0/IO62RSB0
GCC0/IO52RSB0
VMV0
GDA1/IO65RSB0
VCCIB0
GAB1/IO03RSB0
GCA1/IO55RSB0
TDO
VCC
GBC2/IO45RSB0
VCC
VJTAG
VCC
VCCIB1
VCC
IO11RSB0
VMV1
NC
GCA0/IO56RSB0
TMS
GAC0/IO04RSB0
TRST
GDA2/IO70RSB1
IO84RSB1
TDI
VPUMP
IO87RSB1
GDB2/IO71RSB1
IO42RSB0
IO93RSB1
IO75RSB1
TCK
IO96RSB1
IO94RSB1
GDC2/IO72RSB1
IO97RSB1
IO81RSB1
GND
IO95RSB1
IO99RSB1
GCB2/IO58RSB0
GND
IO100RSB1
IO47RSB0
IO102RSB1
GEC2/IO104RSB1
GEB2/IO105RSB1
GEA2/IO106RSB1
GNDQ
VMV1
GEA0/IO107RSB1
GND
GEA1/IO108RSB1
GEB0/IO109RSB1
GEB1/IO110RSB1
GEC0/IO111RSB1
GFA2/IO120RSB1
GFA1/IO121RSB1
VCCPLF
GFA0/IO122RSB1
VCOMPLF
GFB0/IO123RSB1
GFB1/IO124RSB1
IO129RSB1
IO130RSB1
GAC2/IO131RSB1
IO132RSB1
GAA2/IO67RSB1
GND
GAB2/IO69RSB1
GND
VCCIB1
VCCIB0
GND
IO68RSB1
IO28RSB0
IO25RSB0
IO22RSB0
IO07RSB0
GAB0/IO02RSB0
A3PN125-ZVQG100
U11
A3PN125-VQFP
1
2
C23
C_4U7_0603_X5R_K_6
1
2
C27
C_4U7_0603_X5R_K_6
1
2
C26
C_4U7_0603_X5R_K_6
1
2
C24
C_100N_0402_X5R_K_10
1
2
C22
C_100N_0402_X5R_K_10
1
2
C21
C_100N_0402_X5R_K_10
1
2
C25
C_100N_0402_X5R_K_10
2
1
D1
CDBP0130L-G
2 1
R1
L_BEAD_102_0402
1
2 D4
LED_EL19-21SRC
1
2
J5
PINROW_SMD_1X2_2.54MM
1 2 T_TMS
R47 R_10K_0402_F
1 2
R50
R_1K0_0402_F
1 2
R49
R_1K0_0402_F
1 2
R27
R_1K0_0402_F
1 2
R24
R_5K1_0402_J
1 2
R54
R_5K1_0402_J
1 2
R41
R_10K_0402_F
1 2
R48
R_10K_0402_F
1 2
R46
R_10K_0402_F
2 1
PWRGOOD
R31
R_10K_0402_F
2 1
PRG_TMS
R43
R_10K_0402_F
2 1
R44
R_10K_0402_F
1 2 T_EMU4
R52 R_51_0402_G
1 2 T_EMU2
R51 R_51_0402_G
1 2 T_EMU3
R53 R_51_0402_G
1 2 T_TDI
R18 R_51_0402_G
1 2 T_RTCK
R23 R_51_0402_G
1 2 T_TRST
R19 R_51_0402_G
1 2 T_EMU5
R55 R_51_0402_G
1 2 T_TMS
R15 R_51_0402_G
1 2 T_TDO
R16 R_51_0402_G
1 2 T_TCK
R17 R_51_0402_G
1 2 CLK_100M
R33
R_51_0402_G
1 2
R30
R_120K_0402_F
2 1
R29
R_120K_0402_F
1 2
R25
R_120K_0402_F
1 2
R42
R_220_0402_J
1 2 T_EMU1
R20 R_470_0402_F
1 2 T_EMU0
R22 R_470_0402_F
1 2 T_SRST
R21 R_470_0402_F
1
2
C34
C_15N_0402_X7R_K_25
1 2
T_DIS
R12
R_0_0402
1
2
3 4
T_TVD 5
T_TDI T_TDO
T_RTCK
IO2 IO3
IO1
GND TPD4E002
IO4
TUP8D4E002
1
2
3 4
T_DIS 5
T_TRST T_EMU2
T_TMS
IO2 IO3
IO1
GND TPD4E002
IO4
TUP7D4E002
1
2
3 4
T_TCK 5
T_EMU0 T_SRST
T_EMU1
IO2 IO3
IO1
GND TPD4E002
IO4
TUP9D4E002
1
2
3 4
T_EMU5 5
T_EMU3 GND
T_EMU4
IO2 IO3
IO1
GND TPD4E002
IO4
TUP12D4E002
TP7 PRG_TRST
Testpoint_Circle_40mils
TP6 PRG_TCK
Testpoint_Circle_40mils
TP5 PRG_TDI
Testpoint_Circle_40mils
TP9
Testpoint_Circle_40mils
TP8
Testpoint_Circle_40mils
TP4 PRG_TMS
Testpoint_Circle_40mils
PRG_TDO
TP3
Testpoint_Circle_40mils
ISSUED
SmartRF06EB - XDS100v3 - FPGA
SCALE SHEET 2(7)
DWG NO. REV.
DWG
COMPANY NAME
SIZE FSCM NO.
CONTRACT NO.
Texas Instruments
A3
DRAWN
13/07/12
13/07/12
The XDS100 is connected to the EM through
connector P408. See the EM interface page
for details.
12/07/12
MAW
1.2.1
APPROVALS DATE
CHECKED
PWREN
V_USB
USBDP
EEPROM_DATA
EEPROM_CS
EEPROM_CLK
P3.3VXDS
P3.3VXDPS3.3VXDS
P3.3VXDSP3.3VXDS
P3.3VXDS
P3.3VXDS
P3.3VXDS
+1.5V
P3.3VXDS
P3.3VXDS
P3.3VXDS
+1.5V +1.5V +1.5V P1.8V P1.8V P1.8V P1.8V P3.3VXDS P3.3VXDS
VBUS
P1.8V
P1.8V
P3.3VXDS P3.3VXDS
1 2
R5
R_1K0_0402_F
1
2
3
4
5
6
7
DVBUS
D+
ID
GND
Shield
Shield
P1
USB-B_MICRO
1
2
3 4
5
6
GND
DO
CLK
93AA46B CS
VCC
DIN
U1
93AA46B
1
2
C9
C_4U7_0603_X5R_K_6
1
C15 2
C_4U7_0603_X5R_K_6
1
C19 2
C_4U7_0603_X5R_K_6
1
2
C3
C_4U7_0603_X5R_K_6
1
2
C28
C_4U7_0603_X5R_K_6
1
2
C18
C_27P_0402_NP0_J_50
1
2
C13
C_27P_0402_NP0_J_50
1
2
C29
C_100N_0402_X5R_K_10
1
2
C6
C_100N_0402_X5R_K_10
1
2
C12
C_100N_0402_X5R_K_10
1
2
C8
C_100N_0402_X5R_K_10
1
2
C17
C_100N_0402_X5R_K_10
1
2
C11
C_100N_0402_X5R_K_10
1
2
C20
C_100N_0402_X5R_K_10
1
2
C30
C_100N_0402_X5R_K_10
1
2
C5
C_100N_0402_X5R_K_10
1
2
C4
C_100N_0402_X5R_K_10
1
2
C16
C_100N_0402_X5R_K_10
1
2
C14
C_100N_0402_X5R_K_10
1
2
C31
C_100N_0402_X5R_K_10
1
2
3
4
5
6
7
8
9
10 11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
USBDM
TCK
TDI
TDO
TMS
TRST
EMU_EN
EMU0
RTCK
SRST_OUT
CLK_FAIL
TVD
POD_RLS
EMU1
CBL_DIS
DTSA_BYP
ALT_FUNC
SUSPEND
PRG_TCK
PRG_TDI
PRG_TDO
PRG_TMS
PRG_TRST
PWREN
EEPROM_DATA
EEPROM_CLK
EEPROM_CS
EECLK
EECS
RESET
REF
DP
FT2232H
DM
TEST
VREGOUT
OSCO
BCBUS7
BCBUS6
BCBUS4
BCBUS3
BCBUS2
BCBUS1
VCORE
BDBUS7
BDBUS6
VREGIN
BDBUS5
BDBUS4
BDBUS3
BDBUS2
BDBUS1
VCCIO
ACBUS7
ACBUS6
ACBUS5
ACBUS3
ADBUS7
VCORE
OSCI
ADBUS6
BCBUS5
ADBUS3
VPHY
SUSPEND
GND
GND
GND
GND
GND
GND
GND
GND
ACBUS4
AGND
EEDATA
BCBUS0
VCORE
ACBUS0
BDBUS0
ACBUS2
ADBUS2
VCCIO
VCCIO
PWREN
ADBUS4
VCCIO
ADBUS1
ADBUS5
VPLL
ACBUS1
ADBUS0
U4
FT2232HL
2 1
R8
L_BEAD_102_0402
2 1
R7
L_BEAD_102_0402
1
2 D2
LED_EL19-21SYGC
2 1
R2
R_0_0402
1 2
R3
R_1K0_0402_F
2 1
R9
R_1K0_0402_F
1 2
R4
R_1K0_0402_F
2 1
R6
R_2K7_0402_F
1 2
R10
R_12K_0402_F
1 2
R28
R_270_0402_F
1
2
3 4
5
GND
IO2
IO1
NC
VCC
TPD2E001
U3
TPD2E001
1
2
3
4
Y1
X_12.000/30/30/10/20
ISSUED 3(7)
SmartRF06EB - XDS100v3 - FTDI
SCALE SHEET
DWG NO. REV.
DWG
COMPANY NAME
SIZE FSCM NO.
CONTRACT NO.
Texas Instruments
A3
DRAWN
13/07/12
13/07/12
12/07/12
MAW
1.2.1
APPROVALS DATE
CHECKED
VDD_MEASURED
LV_SDCARD_CS
LV_LED_2
LV_BTN_RESET
LV_ACC_INT1
LV_ACC_INT2
RF2.12
RF2.13
RF2.14
RF2.15_RESET
RF_VDD1
RF_VDD2
RF1.4
RF1.5
RF1.6
RF1.8
RF1.10
RF1.11
RF1.12
RF1.13
RF1.14
RF1.16_SPI_SCK
RF1.17
RF1.18_SPI_MOSI
RF1.20_SPI_MISO
RF2.5
RF2.6
RF2.8
RF2.10
RF2.11
LV_LED_4
LV_BTN_LEFT
LV_BTN_RIGHT
LV_BTN_UP
LV_LCD_MODE
LV_BTN_DOWN
LV_LCD_RESET
LV_BTN_SELECT
LV_3.3V_EN
LV_SPI_SCK
LV_LCD_CS
LV_SPI_MOSI
LV_SPI_MISO
LV_ALS_OUT
LV_ALS_PWR
LV_ACC_PWR
LV_ACC_CS
LV_LED_1
RF1.2
RF1.4
RF1.5
RF1.6
RF1.8
RF1.10
RF1.11
RF1.12
RF1.13
RF1.14
RF1.7_UART_RX
RF1.9_UART_TX
RF1.3_UART_CTS
RF2.18_UART_RTS
VDD_MEASURED
LV_BTN_RESET
VDD_SENSE
LO_VDD
LO_VDD
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
RF2.1_JTAG_TCK GND
RF_VDD2 RF2.4_JTAG_TMS
RF2.5 RF2.6
RF_VDD1 RF2.8
RF_VDD1 RF2.10
RF2.11 RF2.12
RF2.13 RF2.14
RF2.15_RESET RF2.16
RF2.17_JTAG_TDI RF2.18_UART_RTS
RF2.19_JTAG_TDO GND
RF2
SMD_HEADER_2X10
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
LV_LED_3 RF1.2
P403
PINROW_SMD_2X10_2.54MM
1
2
3
4
5
6
7
8
9
10
P406 PINROW_1X10
1
2
3
4
5
6
P412
PINROW_1X6
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
VDD_SENSE
GND
RF2.17_JTAG_TDI GND
RF2.4_JTAG_TMS GND
RF2.1_JTAG_TCK GND
GND
RF2.19_JTAG_TDO GND
RF2.15_RESET GND
GND
GND
P409
PINROW_SMD_2X10_2.54MM
1
2
3
4
5
6
7
8
9
10
RF1.15
RF1.16_SPI_SCK
RF1.17
RF1.18_SPI_MOSI
RF1.20_SPI_MISO
RF2.5
RF2.6
RF2.8
RF2.10
RF2.11
P407
PINROW_1X10
1
2
C403
C_100N_0402_X5R_K_10
1
2
C507
C_100N_0402_X5R_K_10
1
2
C404
C_100N_0402_X5R_K_10
1
2
C508
C_100N_0402_X5R_K_10
1 2
R402
R_0_0603
1 2 3 4
S606
PUSH_BUTTON_SKRAAK
1
2
J503
PINROW_SMD_1X2_2.54MM
1 2
3 4
5 6
7 8
9 10 RF2.16
P405
PINROW_SMD_2X5_2.54MM
1 2
3 4
5 6
7 8
9 10
VDD_SENSE RF2.4_JTAG_TMS
RF2.1_JTAG_TCK
RF2.19_JTAG_TDO
RF2.17_JTAG_TDI
RF2.15_RESET
P410
PINROW_SMD_2X5_1.27MM
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
T_TCK RF2.1_JTAG_TCK
T_TMS RF2.4_JTAG_TMS
T_TDI RF2.17_JTAG_TDI
T_TDO RF2.19_JTAG_TDO
T_SRST RF2.15_RESET
T_EMU3 RF1.7_UART_RX
T_EMU2 RF1.9_UART_TX
T_EMU5 RF1.3_UART_CTS
T_EMU4 RF2.18_UART_RTS
T_TVD VDD_SENSE
P408
PINROW_SMD_2X10_2.54MM
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
GND RF1.2
RF1.3_UART_CTS RF1.4
RF1.5 RF1.6
RF1.7_UART_RX RF1.8
RF1.9_UART_TX RF1.10
RF1.11 RF1.12
RF1.13 RF1.14
RF1.15 RF1.16_SPI_SCK
RF1.17 RF1.18_SPI_MOSI
GND RF1.20_SPI_MISO
RF1
SMD_HEADER_2X10
1 2
3 4
CURMEAS_OUTPUT
R2
R1
IN-
1.6M
GND
OUT
1.6M
INA216
IN+
U504
INA216A3
1
2
C402
C_0603
1 2
R502
R_0R15_0603_F
1
2
C401
C_0805
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
RF1.15
P404
PINROW_SMD_2X10_2.54MM
1
2
3
4
5
RF2.12
RF2.13
RF2.14
RF2.15_RESET
RF2.16
P411
PINROW_1X5
TP10
Testpoint_Circle_40mils
TP11
TESTPIN_SMALL
TP20
TESTPIN_SMALL
EM Interface /
SmartRF06EB - Level Shifters
ISSUED 4(7)
EM DEBUG CONNECTION
SCALE SHEET
DWG NO. REV.
DWG
COMPANY NAME
SIZE FSCM NO.
CONTRACT NO.
Texas Instruments
A3
DRAWN
13/07/12
13/07/12
EM CONNECTORS
10-pin ARM Cortex
JTAG Connector
RESET
Optional
RC filter
EM CURRENT MEASUREMENT
12/07/12
MAW
1.2.1
APPROVALS DATE
20-pin ARM JTAG Connector
EM <--> EB BREAKOUT and PROBE HEADERS
Rshunt = 0.15 Ohm
Gain = 100
Vin = Ishunt x Rshunt
Vout = Vin x Gain
Saturation point for INA216
-----------------------------
Vout_max = LO_VDD (2.1V to 3.6V)
Vin_max = LO_VDD / 100 = 21mV to 36mV
Ishunt_max = 140mA to 240mA
Bypass jumper block for connection
between EM and XDS100v3
CHECKED
V_USB
P3.3V
V_USB
P2.1V
V_UNREG
V_UNREG
VBAT
VBUS
P3.3VXDS
VBAT
HI_VDD
P3.3VXDS
+1.5V
P3.3VXDS P3.3VXDS
LO_VDD
3
2 1
+
B503
CR2032_SOCKET
1
2
4 3
5
6
8 7
VOUT
EN
NC
VIN
GND
NR
TPS73533
GND
U2
TPS73533
1
2
C33
C_100N_0402_X5R_K_10
1 2 3
6 5 4
V_UNREG
V_USB
S501 SMD_SWITCH_DPDT
2 1
D3
BAT54J
1 2
3
V_UNREG
R11
R_0_0402_3PORT_2-3
1
2
C32
C_100N_0402_X5R_K_10
3 2 1
4 5 6
P2.1V P3.3V
S502
SMD_SWITCH_DPDT
1
2
C503
C_2U2_0402_X5R_M_6P3VDC
1
2
C502
C_2U2_0402_X5R_M_6P3VDC
1
2
C1
C_100N_0402_X5R_K_10
1
2
C501
C_2U2_0402_X5R_M_6P3VDC
1
2
+
B501
1XAAA_KEYSTONE
1
2
+
B502
1XAAA_KEYSTONE
1
2
C2
C_18N_0603_X7R_J_50
1
2
C10
C_100N_0402_X5R_K_10
2 1
L502
L_2U2_0805_N_LQM21
1
2
C7
C_4U7_0603_X5R_K_6
2 1 L501
L_2U2_0805_N_LQM21
1
2
J502
PINROW_SMD_1X2_2.54MM
1
2
J501
PINROW_SMD_1X2_2.54MM
2 1
R403
R_10K_0402_F
1
2
C504
C_2U2_0402_X5R_M_6P3VDC
1 2
V_UNREG
R501
R_47K_0402_F
2
4
1
3
LV_3.3V_EN
ON GND
VIN VOUT
U601
TPS22902
1
2
3 4
5
SUSPEND
TLV70015
NC4
VOUT
EN
GND
VIN
U5
TLV70015
1 2
R32
R_10K_0402_F
1
2
4 3
5
6
STAT
SW
GND VIN
ON/BYP
VOUT
U501
TPS62730
1
2
3
4
6 5
7
8
9
10
11
V_UNREG
LV_3.3V_EN
FB
Thermal
VINA
PS L1
GND
PGND
L2
EN VIN
VOUT
U502
TPS63031
TP2
Testpoint_Circle_40mils
TP18
Testpoint_Circle_40mils
TP1
Testpoint_Circle_40mils
TP17
Testpoint_Circle_40mils
TP19
Testpoint_Circle_40mils
OFF
MAIN ON/OFF SWITCH
2.1V
REG
ISSUED
POWER SELECT SWITCH
SmartRF06EB -
USB (5V)
ON
5(7)
Power Supply
USB TO 1.5V (FPGA)
3.3V FOR HV PERIPHERALS
3.3V
REG
USB TO 3.3V
BATTERIES
SCALE SHEET
BATTERY or
EXTERNAL
DWG NO. REV.
DWG
COMPANY NAME
BATTERY or
EXTERNAL
SIZE FSCM NO.
CONTRACT NO.
XDS 3.3V
Texas Instruments
A3
BATTERY REGULATORS
REGULATOR
BYPASS
JUMPER
DRAWN
POWERED from USB
(XDS100v3)
XDS100v3 VOLTAGE REGULATORS
BUCK (2.1V) BUCK/BOOST (3.3V)
13/07/12
13/07/12
CONNECTOR FOR
EXTERNAL POWER
POWERED from BATTERY or
External Power Supply
2.1V FOR EM and LV PERIPHERALS
USB
12/07/12
MAW
1.2.1
DATE
Software controlled switch
for enabling the "High Voltage"
domain for board peripherals.
APPROVALS
CHECKED
HV_SPI_MOSI
HV_SPI_SCK
HV_SPI_MISO
LO_VDD
HI_VDD
HI_VDD
HI_VDD
HI_VDD
HI_VDD
LO_VDD
HI_VDD
LO_VDD
LO_VDD
LO_VDD
HI_VDD
HI_VDD
HI_VDD
HI_VDD
HI_VDD
LO_VDD
LO_VDD
LO_VDD
1
2
C601
C_1U_0402_X5R_K_6P3
NC(C2-)
NC(A3+)
NC(A2+)
NC(A1+)
V2
CAP2P
VDD
VSS
RST
CAP3P
SI
SCL
INSERT:
1 pc SIP_SOCKET_SMD_1X20_2.54MM
2 pc SIP_SOCKET_SMD_1X3_2.54MM
NC(C1-)
NC(C3-)
CAP1P
A0
CAP2N
VOUT
CAP1N
VSS
V0
VDD2
CS1B
V3
V4
V1
LCD
LCD1
DOGM128W-6_NO_CON
1
2
3
4
5
6
7
8 9
10
11
12
13
14
15
16
LV_SPI_SCK
LV_SPI_MOSI
LV_SPI_MISO HV_SPI_MISO
HV_SPI_MOSI
HV_SPI_SCK
LV_SDCARD_CS
LV_3.3V_EN
GND
VCCA
1A1
1A2
2DIR
2A1
2A2
2OE
1B1
2B1
VCCB
2B2
1DIR 1OE
GND
1B2
U401
SN74AVC4T245
1
2
3
4
5
6
7
8
HV_SDCARD_CS
HV_SPI_MOSI
HV_SPI_SCK
HV_SPI_MISO
VDD
N/A
GND
N/A
CS
DI/MOSI
DO/MISO
SCLK
MicroSD
SPI-Mode
J601
MICROSD-SPI
1
2
C605
C_1U_0805_X7R_K_16
1
2
C604
C_1U_0805_X7R_K_16
1
2
C607
C_1U_0805_X7R_K_16
1
2
C609
C_1U_0805_X7R_K_16
1
2
C608
C_1U_0805_X7R_K_16
1
2
C602 C_1U_0805_X7R_K_16
1
2
C603 C_1U_0805_X7R_K_16
1
2
C610
C_1U_0805_X7R_K_16
2 1
R602
R_10K_0402_F
2 1
R614
R_0_0603
1
2
C613
C_100N_0402_X5R_K_10
1 2
R601
R_10K_0402_F
1
2
C408
C_100N_0402_X5R_K_10
1 2
R612
R_10K_0402_F
1
2
C407
C_100N_0402_X5R_K_10
1 2
R13
R_10K_0402_F
1
2
3
LV_3.3V_EN
LV_3.3V_EN
Q2
2N7002F
1
2
C405
C_100N_0402_X5R_K_10
2 1
R606
R_0_0603
1
2
3
P3
SIP_SOCKET_SMD_1X3_2.54MM
2 1
R615
R_0_0603
1
2
C606
C_1U_0805_X7R_K_16
1
2
C406
C_100N_0402_X5R_K_10
2 1
R603
R_39_0603
2 1
R604
R_39_0603
2 1
R605
R_39_0603
1
2
3
P4
SIP_SOCKET_SMD_1X3_2.54MM
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
HV_SPI_MOSI
HV_SPI_SCK
HV_LCD_MODE
HV_LCD_RESET
HV_LCD_CS
P2
SIP_SOCKET_SMD_1X20_2.54MM
1
2
3
4
5
6
7
8 9
10
11
12
13
14
15
16
LV_LCD_RESET
LV_LCD_CS
LV_LCD_MODE
LV_SDCARD_CS HV_SDCARD_CS
HV_LCD_MODE
HV_LCD_CS
HV_LCD_RESET
LV_3.3V_EN
LV_3.3V_EN
GND
VCCA
1A1
1A2
2DIR
2A1
2A2
2OE
1B1
2B1
VCCB
2B2
1DIR 1OE
GND
1B2
U402
SN74AVC4T245
TP16
Testpoint_Circle_40mils
TP14
Testpoint_Circle_40mils
TP15
Testpoint_Circle_40mils
High Voltage
Peripherals
ISSUED SCALE SHEET 6(7)
DWG NO. REV.
DWG
COMPANY NAME
SIZE FSCM NO.
CONTRACT NO.
Texas Instruments
A3
SmartRF06EB -
LCD
DRAWN
LEVEL SHIFTERS TRANSLATION :
MICROSD
13/07/12
13/07/12
U401:
LO HI
1A1 --> 1B1
1A2 --> 1B2
2A1 <-- 2B1
2A2 <-- 2B2
U402:
LO HI
1A1 --> 1B1
1A2 --> 1B2
2A1 --> 2B1
2A2 --> 2B2
12/07/12
MAW
1.2.1
APPROVALS DATE
LEVEL SHIFTERS
CHECKED
LV_ALS_OUT
LO_VDD
LO_VDD
1
2
3
4
5
6
7
8 9
10
11
12
LV_SPI_MISO
LV_SPI_MOSI
LV_ACC_INT1
LV_ACC_INT2
LV_ACC_PWR
LV_ACC_CS
LV_SPI_SCK
INT1
VDDIO
BMA250 NC
VDD
GNDIO
INT2
SDx
PS
CSB
SCx
3-AXIS
Accelerometer
GND
SDO
U602
BMA250
1
2
C614
C_100N_0402_X5R_K_10
1
2
LV_ACC_PWR
C612
C_100N_0402_X5R_K_10
1
2
C615
C_100N_0402_X5R_K_10
1
2
LV_LED_1
D601
LED_EL19-21SRC
1
2
LV_LED_4
D604
LED_EL19-21SURC
1
2
LV_LED_3
D603
LED_EL19-21SYGC
1
2 3
4
LV_ALS_PWR
Iout
GND
GND
VDD
LS601
LIGHT_SENSOR_SFH5711
1 2 3 4
S601 LV_BTN_LEFT
PUSH_BUTTON_SKRAAK
1 2 3 4
LV_BTN_RIGHT
S602
PUSH_BUTTON_SKRAAK
1 2 3 4
LV_BTN_SELECT
S603
PUSH_BUTTON_SKRAAK
1 2 3 4
LV_BTN_UP
S604
PUSH_BUTTON_SKRAAK
1 2 3 4
S605 LV_BTN_DOWN
PUSH_BUTTON_SKRAAK
1 2
R613
R_22K_0603_G
1
2
LV_LED_2
D602
LED_EL19-21UYC_A2
2 1
R608
R_680_0402_G
2 1
R609
R_680_0402_G
2 1
R610
R_680_0402_G
2 1
R607
R_820_0402_G
BUTTONS
Low Voltage
Peripherals
ISSUED
AMBIENT LIGHT SENSOR
SmartRF06EB -
YELLOW
GREEN
RED
ACCELEROMETER
SCALE SHEET
DWG NO. REV.
DWG
COMPANY NAME
SIZE FSCM NO.
CONTRACT NO.
Texas Instruments
A3
LEDS
RED-ORANGE
7(7)
Accelerometer
DRAWN
RECOMMENDED 2.3V-5.5V
Needs from 1.62V-3.6V
13/07/12
13/07/12
12/07/12
MAW
1.2.1
APPROVALS DATE
CHECKED
EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS
Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:
The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims
arising from the handling or use of the goods.
Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from
the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO
BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH
ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES.
Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This
notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety
programs, please visit www.ti.com/esh or contact TI.
No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or
combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and
therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
REGULATORY COMPLIANCE INFORMATION
As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal
Communications Commission (FCC) and Industry Canada (IC) rules.
For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT,
DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer
use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency
interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will
be required to take whatever measures may be required to correct this interference.
General Statement for EVMs including a radio
User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and
power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local
laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this
radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and
unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory
authorities, which is responsibility of user including its acceptable authorization.
For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant
Caution
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause
harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the
equipment.
FCC Interference Statement for Class A EVM devices
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial
environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the
instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to
cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment
generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause
harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If
this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and
on, the user is encouraged to try to correct the interference by one or more of the following measures:
• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.
For EVMs annotated as IC – INDUSTRY CANADA Compliant
This Class A or B digital apparatus complies with Canadian ICES-003.
Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the
equipment.
Concerning EVMs including radio transmitters
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this
device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired
operation of the device.
Concerning EVMs including detachable antennas
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain
approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should
be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.
This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum
permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain
greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.
Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.
Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de
l'utilisateur pour actionner l'équipement.
Concernant les EVMs avec appareils radio
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est
autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout
brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.
Concernant les EVMs avec antennes détachables
Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain
maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à
l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente
(p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.
Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel
d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans
cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
【Important Notice for Users of this Product in Japan】
This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan
If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:
1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and
Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of
Japan,
2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this
product, or
3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with
respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note
that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.
Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan
http://www.tij.co.jp
【ご使用にあたっての注】
本開発キットは技術基準適合証明を受けておりません。
本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。
1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。
なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。
上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。
日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル
http://www.tij.co.jp
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
EVALUATION BOARD/KIT/MODULE (EVM)
WARNINGS, RESTRICTIONS AND DISCLAIMERS
For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished
electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in
laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks
associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end
product.
Your Sole Responsibility and Risk. You acknowledge, represent and agree that:
1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug
Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees,
affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.
2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable
regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates,
contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical)
between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to
minimize the risk of electrical shock hazard.
3. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even
if the EVM should fail to perform as described or expected.
4. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials.
Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the
user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and
environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact
a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the
specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or
interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the
load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures
greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include
but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the
EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please
be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable
in electronic measurement and diagnostics normally found in development environments should use these EVMs.
Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives
harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in
connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims
arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.
Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such
as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices
which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate
Assurance and Indemnity Agreement.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated
CC Debugger
User’s Guide
SWRU197G
SWRU197G
January 2014
2/23
Table of Contents
1 Introduction ................................................................................................................................. 3
2 Abbreviations and Acronyms .................................................................................................... 3
3 Box Contents .............................................................................................................................. 4
4 Operating Conditions of the CC Debugger .............................................................................. 4
5 Initial Steps .................................................................................................................................. 5
5.1 Installing the USB driver ........................................................................................................... 5
5.2 Supported PC Tools .................................................................................................................. 5
6 Connecting the CC Debugger to the Device ............................................................................ 6
6.1 Target Connector Details .......................................................................................................... 6
6.2 Connecting the CC Debugger to a System on Chip ................................................................. 8
6.2.1 Minimum connection for debugging ....................................................................................................................... 8
6.2.2 Minimum connection for SmartRF Studio .............................................................................................................. 8
6.2.3 Minimum connection for SmartRF Packet Sniffer .................................................................................................. 9
6.3 Connecting the CC Debugger to a Transceiver ...................................................................... 10
6.4 Connecting the CC Debugger to a CC85xx ............................................................................ 12
7 Using the CC Debugger ........................................................................................................... 13
7.1 Understanding the LED ........................................................................................................... 13
8 Updating the Firmware ............................................................................................................. 14
8.1 Updating the firmware automatically in SmartRF Studio ........................................................ 14
8.2 Updating the firmware manually in SmartRF Flash Programmer ........................................... 16
8.3 Forced boot recovery mode .................................................................................................... 17
8.4 Resurrecting the CC Debugger ............................................................................................... 17
9 Troubleshooting ....................................................................................................................... 20
10 Schematics ................................................................................................................................ 21
11 References ................................................................................................................................ 21
12 Document History ..................................................................................................................... 22
SWRU197G
January 2014
3/23
1 Introduction
The CC Debugger is primarily used for flash programming and debugging software running on CCxxxx
8051-based System-on-Chip (SoC) devices from Texas Instruments. The PC tools available for these
purposes are the SmartRF™ Flash Programmer [9] from Texas Instruments and IAR Embedded
Workbench® for 8051 from IAR Systems [15].
When connected to the debugger, the SoC devices can be controlled directly from SmartRF™ Studio
[8]. SmartRF Studio will also be able to control supported CCxxxx RF transceivers (CC2520, CC2500,
CC110x, CC11xL, CC112x, CC120x) when they are connected to the debugger as explained in
chapter 6.3.
In addition, CC Debugger is used for configuring the CC85xx devices with PurePath Wireless
Configurator [12] and controlling them with PurePath Wireless Commander [13].
2 Abbreviations and Acronyms
CSn Chip Select (active low)
DC Debug Clock
DD Debug Data
DUT Device Under Test
GND Ground
LED Light Emitting Diode
MISO Master In Slave Out
MOSI Master Out Slave In
RF Radio Frequency
SCLK Serial Clock
SoC System on Chip
SPI Serial Peripheral Interface
USB Universal Serial Bus
Vdd Positive voltage on target
SWRU197G
January 2014
4/23
3 Box Contents
1 x CC Debugger
1 x USB-A to Mini-B USB cable
1 x 10-pin flat cable with 2x5 2.54 mm connector
1 x 10-pin flat cable with 2x5 1.27 mm connector
1 x Converter board 2.54 mm – 1.27 mm connector
Documentation
4 Operating Conditions of the CC Debugger
Minimum target voltage: 1.2 Volt
Maximum target voltage: 3.6 Volt
Operating temperature: 0C to 85C
Regulated voltage on CC Debugger: 3.3 Volt
Maximum target current (*): 200 mA (*)
Supported Operating Systems: Microsoft® Windows® 2000
Windows XP SP2/SP3 (32 bit versions)
Windows Vista® (32 & 64 bit)
Windows 7 (32 & 64 bit)
(*) Only applicable if the target is powered from the CC Debugger
Figure 1 - CC Debugger connected to a SoC Battery Board with a CC2530EM
SWRU197G
January 2014
5/23
5 Initial Steps
5.1 Installing the USB driver
To get the required USB driver for the CC Debugger, it is necessary to install one of the tools listed
below:
SmartRF Studio www.ti.com/tool/smartrftm-studio
SmartRF Flash Programmer www.ti.com/tool/flash-programmer
SmartRF Packet Sniffer www.ti.com/tool/packet-sniffer
PurePath Wireless Configurator www.ti.com/tool/purepath-wl-cfg
PurePath Wireless Commander www.ti.com/tool/purepath-wl-cmd
Alternatively, you can download “Cebal – CCxxxx Development Tools USB Driver for Windows x86
and x64” [4] which is a standalone installer including only the device driver.
After having installed the driver, connect the CC Debugger to the PC. The USB driver will be installed
automatically. You can quickly check that the debugger has been associated correctly with the USB
device driver by opening the Windows Device Manager. The debugger should appear as a “Cebal
controlled device”.
Figure 2 - Verify correct driver installation
For further details or troubleshooting the driver installation process, please refer to “DN304 – CCxxxx
Development Tools USB Driver Installation Guide” [5].
5.2 Supported PC Tools
Currently, the CC Debugger can be used together with the following PC Tools
IAR Embedded Workbench for 8051 In circuit debugging of system-on-chips
SmartRF Flash Programmer Flash programming of system-on-chips
SmartRF Studio RF testing of radio devices (transceivers and SoCs)
SmartRF Packet Sniffer Packet sniffing with selected radio devices
PurePath Wireless Configurator Programming of CC85xx devices
PurePath Wireless Commander Advanced control of CC85xx devices
The debugger will operate as the interface between the RF device and the tools listed above. Please
ensure correct connection between the device and CC Debugger before starting to use the tools.
The connection of the device to the CC Debugger will be covered in the next chapter.
SWRU197G
January 2014
6/23
6 Connecting the CC Debugger to the Device
6.1 Target Connector Details
The target connector, located on the lateral side of the debugger, is a 10-pin 2x5 2.54 mm pitch
connector with a direction coded plastic guide. Suggested matching (male) surface mounted headers
would be 95278-101A10LF from FCI or BB02-HP from GradConn.
Figure 3 - Placement of Target Connector Pins
The adapter board, which has a 10-pin 2x5 1.27 mm pitch connector, has the same pin placement.
Suggested matching (male) surface mounted headers would be 20021121-000-10C4LF from FCI or
FTS-105-01-F-DV from Samtec.
Figure 4 - Placement of Target Connector Pins on Adapter Board
The pin-out of the target connector is shown in Figure 5. Note that not all of these pins need to be
connected to the target device for programming and debugging. Only Vdd, GND, DD, DC and RESET
are required for System on Chips. The other pins are optional and/or for special features.
Pin 1
Pin 2
Pin 1
Pin 2
SWRU197G
January 2014
7/23
1 2
3 4
5 6
7 8
9 10
GND
DC (Debug Clock)
CSn (SPI Chip Select)
RESETn
3.3V (from debugger)
Target Voltage Sense
DD (Debug Data)
SCLK (SPI Clock)
MOSI (SPI Data Out)
MISO (SPI Data In)
Figure 5 - Target Connector Pin-out
Please note the concept with the target voltage sense signal. This signal is used by the level
converters on the CC Debugger to handle different voltage levels on the target board and the
debugger. Pin 2 on the target connector must be connected to Vdd on the target board.
USB
Controller
Level
Converter
Vdd from
target
CC Debugger Vdd (local)
TARGET
Target
Connector
Figure 6 - Voltage from target to CC Debugger
Alternatively, it is possible to power the target by connecting pin 9 to Vdd on the target. In that case,
the CC Debugger will supply 3.3V to the target.
SWRU197G
January 2014
8/23
6.2 Connecting the CC Debugger to a System on Chip
6.2.1 Minimum connection for debugging
For successful debugging of a TI 8051-based RF System on Chip, connect the two debug signals
Debug Data (DD) and Debug Clock (DC) and the reset signal RESETn to the device. Note that DD is a
bidirectional signal. In addition, the CC Debugger must be connected to GND and Vdd on the board.
Vdd is used as an input to the level shifters on the CC Debugger, thus allowing a different operating
voltage on the target than internally on the debugger.
For CC111x, CC251x, CC243x, CC253x and CC254x, except CC2544 and CC2545, connect the DD
signal to pin P2.1 and DC to pin P2.2.
For CC2544, connect the DD signal to P1.3 and DC to P1.2.
For CC2545, connect the DD signal to P1.3 and DC to P1.4.
Note that it is possible to power the target board from the debugger by connecting the 3.3V signal on
pin 9 on the connector to the target board.
1 2
3 4
5 6
7 8
9 10
GND
DC (Debug Clock)
RESETn
3.3V from debugger. Can
optionally be used to
power the target board
DD (Debug Data)
P2.2 SoC
P2.1
RESETn
Vdd
GND
Vdd
CC Debugger
Connector
CCxxxx
System-on-Chip
NOTE 2
Vdd
NOTE 1
10 kΩ
2.7 kΩ
1 nF
Figure 7 - Minimum connection for debugging of 8051 SoC
Note 1: Some early revisions of certain SoCs (CC2430, CC2510 and CC1110) needed an external
pull-up to avoid unwanted transitions on the debug clock line during chip reset – thus inadvertently
setting the device in debug mode. All new revisions of all SoCs now have an internal pull-up on P2.2,
so this external component is not required.
Note 2: The RESETn pin is sensitive to noise and can cause unintended reset of the chip. For reset
lines susceptible to noise, it is recommended to add an external RC filter. Please refer to the
respective SoC datasheet and reference designs for recommended RESET circuitry. The CC
Debugger supports slow transitions on the reset line, using a 2 ms delay between any transition on the
RESET line and other transitions on the DC and/or DD lines.
6.2.2 Minimum connection for SmartRF Studio
Use the same connection as for debugging the SoC.
SWRU197G
January 2014
9/23
6.2.3 Minimum connection for SmartRF Packet Sniffer
In order to use the packet sniffer capabilities of the CC Debugger, it is also necessary to connect the
SPI bus to the SoC. The SPI interface is used by the CC Debugger for reading the captured RF
packets from the SoC.
1 2
3 4
5 6
7 8
9 10
GND
DC (Debug Clock)
RESETn
3.3V from debugger. Can
optionally be used to
power the target board
DD (Debug Data)
P2.2 SoC
P2.1
RESETn
Vdd
GND
Vdd
CC Debugger
Connector
CCxxxx
System-on-Chip
2.7 kΩ
1 nF
CSn
SCLK
MOSI
MISO
P1.7
P1.6
P1.5
P1.4
Figure 8 - Connection to SoC to enable Packet Sniffing
Note that the packet sniffer will overwrite the flash on the SoC with special packet capture firmware.
Note concerning the SPI interface to the SoC used for packet sniffing
All of the current TI RF SoCs can be configured to operate as SPI slaves, with the SPI signals (CS,
SCLK, MISO and MOSI) going to one of the USART peripherals. The packet sniffer application will
program the SoC with firmware that configures one of the USART peripherals in order to communicate
with the CC Debugger. The firmware can use any of the four possible pin configurations (USART 0 or
1, pin out alternative 1 or 2). However, only a subset is currently supported:
USART0, alt 1 USART0, alt 2 USART1, alt 1 USART1, alt 2
CC243x - - - OK
CC253x/CC254x - - - OK
CC111x OK - - OK
CC251x OK - - OK
Table 1 - Supported SPI connections (marked OK)
USART0, alt 1 USART1, alt 2
SCLK P0.5 P1.5
CS P0.4 P1.4
MOSI P0.3 P1.6
MISO P0.2 P1.7
Table 2 - USART pin out details
In case of multiple supported interfaces, the Packet Sniffer application will let you choose which
interface to use.
SWRU197G
January 2014
10/23
6.3 Connecting the CC Debugger to a Transceiver
The SPI interface on the CC Debugger can be used to interface many of the CCxxxx transceivers and
control them from SmartRF Studio. The transceivers/transmitters/receivers currently supported are:
CC1100
CC1101
CC1120
CC1121
CC1125
CC1175
CC110L
CC113L
CC115L
CC1200
CC1201
CC2500
CC2520
Note that the CC Debugger operates as the SPI Master. In a multi master system, it is necessary to
make sure the debugger output signals (DC, DD, CSn, SCLK, MOSI and RESETn) do not interfere
with the other SPI master on the board. The other SPI master would typically be the microcontroller on
the board.
The connection diagrams below show the interconnection between the debugger and the various
supported transceivers.
1 2
3 4
5 6
7 8
9 10
GND
DC
RESETn
3.3V from debugger. Can
optionally be used to
power the target board
DD
GPIO3
VREG_EN
RESETn
Vdd
GND
Vdd
CC Debugger
Connector
CC2520
CSn
SCLK
MOSI
MISO
SO
SI
SCLK
CSn
Figure 9 - CC Debugger connected to CC2520
SWRU197G
January 2014
11/23
1 2
3 4
5 6
7 8
9 10
GND
DC
RESETn
3.3V from debugger. Can
optionally be used to
power the target board
DD
GPIO2
GPIO0
RESETn
Vdd
GND
Vdd
CC Debugger
Connector
CC112x
CC1175
CC120x
CSn
SCLK
MOSI
MISO
SO
SI
SCLK
CSn
Figure 10 - CC Debugger connected to CC112x/CC1175/CC120x
1 2
3 4
5 6
7 8
9 10
GND
DC
3.3V from debugger. Can
optionally be used to
power the target board
DD
GDO2
GDO0
Vdd
GND
Vdd
CC Debugger
Connector
CC110x
CC11xL
CC2500
CSn
SCLK
MOSI
MISO
SO
SI
SCLK
CSn
Figure 11 - CC Debugger connected to CC110x/CC11xL/CC2500
SWRU197G
January 2014
12/23
6.4 Connecting the CC Debugger to a CC85xx
In order to configure the CC85xx devices (i.e. program the flash on the device) with PurePath Wireless
Configurator, the device’s SPI interface must be connected to the CC Debugger as shown in the figure
below.
1 2
3 4
5 6
7 8
9 10
GND
RESETn
3.3V from debugger. Can
optionally be used to
power the target board
RESETn
Vdd
GND
Vdd
CC Debugger
Connector
CC85XX
CSn
SCLK
MOSI
MISO
MISO
MOSI
SCLK
CSn
Figure 12 - CC Debugger connected to CC85XX
SWRU197G
January 2014
13/23
7 Using the CC Debugger
After having connected the debugger to the target device, the debugger can be powered up by
plugging in the USB cable.
The debugger will immediately start a device detection process, looking for all known devices. If no
devices are detected, the LED will be RED. If a device is detected, the LED will be GREEN.
If the LED is GREEN, it is possible to start using the debugger together with one of the supported PC
tools.
7.1 Understanding the LED
OFF
The debugger has no power or there is no valid firmware on the debugger.
Make sure the debugger is properly powered via the USB cable or try to
resurrect the debugger using the method described in chapter 8.4.
AMBER (BOTH LEDS ON)
The debugger is powered, but there is no valid firmware. Try to resurrect
the debugger using the method described in chapter 8.4.
RED LED BLINKING
The Debugger is in Boot Recovery Mode.
The debugger will briefly enter this state while the firmware is being
upgraded (see chapter 8). The board might also enter this state if the
firmware is corrupt or if the user has manually forced to board to start up in
the special “boot recovery mode” (section 8.3).
To go out of the state, reset the debugger by pressing the “Reset” button
or by power-cycling the device. If the LED is still blinking, reprogram the
unit by using the Flash Programmer Application.
RED LED ON
No device detected. This might be due to old firmware on the CC
Debugger. New devices might not be supported with the current firmware
on the debugger. Please refer to chapter 8 for the firmware upgrade
procedure.
There might also be a problem with the hardware connection. Check the
connection to device and make sure the target board is properly powered
and that Vdd on the target board is connected to pin 2 on the debug
connector. Press and release the reset button to retry the target device
detection
GREEN LED ON
The target device has been properly detected. It is possible to start using
the supported tools (see chapter 5.2).
SWRU197G
January 2014
14/23
8 Updating the Firmware
In order to make sure the CC Debugger works seamlessly with your device, it is important that it has
the latest and greatest firmware. This chapter will describe how you can upgrade the firmware
automatically from SmartRF Studio or manually from SmartRF Flash Programmer. The chapter will
also describe how to resurrect a seemingly broken debugger.
8.1 Updating the firmware automatically in SmartRF Studio
Updating the firmware on the CC Debugger can be done automatically by SmartRF Studio. Please
follow the few steps described below.
1. Start SmartRF Studio.
2. Disconnect the debugger from any target board, and connect it to the PC via the USB cable.
The debugger will appear in the list of connected devices in the lower part of the SmartRF
Studio startup panel.
Figure 13 - Auto FW upgrade
3. Double click on the item in the list, and a new window will appear.
SWRU197G
January 2014
15/23
Figure 14 - Auto FW upgrade
4. Click "Yes" and let SmartRF Studio do the rest.
Figure 15 - Auto FW upgrade
5. Click "Done" and you're good to go. The device should appear in the list of connected devices,
now showing the new firmware revision.
SWRU197G
January 2014
16/23
8.2 Updating the firmware manually in SmartRF Flash Programmer
You can also update the firmware manually using SmartRF Flash Programmer. You can use this
method if you like to have full control of the firmware image to be programmed on the controller of the
debugger (i.e. programming custom firmware or old firmware revisions).
1. Start SmartRF Flash Programmer and select the tab called “EB application (USB)”. This tab
will let you program compatible firmware on the CC Debugger (or evaluation boards) via the
USB interface (i.e. no external programming device required).
2. Disconnect the debugger from any target board, and connect it to the PC via the USB cable.
The debugger will appear in the list of connected devices. Chip type will be listed as N/A.
3. Select the flash image you want to program on the debugger. Normally, you would select:
C:\Program Files (x86)\Texas Instruments\SmartRF Tools\Firmware\CC
Debugger\cebal_fw_srf05dbg.hex1
4. Select the action “Erase, program and verify”
5. Click the “Perform actions” buttons. The programming procedure will start. Note that this will
take several seconds.
6. The CC Debugger will reappear in the list of connected devices, now showing the new
firmware revision in the device list.
7. Done!
1 Assuming default installation path of SmartRF Flash Programmer.
1
2
4
5
3
SWRU197G
January 2014
17/23
8.3 Forced boot recovery mode
If, for some reason, the firmware update fails and the CC Debugger appears to be non responsive,
there is a way to force the board to only run the bootloader and stop all further execution. In this mode,
no attempts will be made to start the firmware, and the board will only allow the user to perform a new
firmware upgrade over USB.
Disconnect the debugger from any power source and open the plastic enclosure.
Figure 16 - Internal view of CC Debugger
Short circuit the pins as depicted in Figure 17: P1.6 on the CC2511 must be connected to GND during
the power-on reset to enter boot recovery mode.
Figure 17 - Short-circuit pins for boot recovery mode
When reconnecting the USB cable, the LED will start to blink with a RED light. This indicates that the
bootloader is running and that the debugger is in boot recovery mode.
At this point, follow the same firmware programming steps as describe at the beginning of this chapter.
Please also note that the boot recovery mode can be used as a check to verify that the bootloader on
the debugger is working.
8.4 Resurrecting the CC Debugger
If the CC Debugger appears to be completely dead when applying power, there is a way to “unbrick”
the board. The method consists of reprogramming the bootloader on the debugger using the debug
connector inside the box. This will require an extra programming device.
When opening the box, locate the debug connector header next to the target connector. Connect this
header to another CC Debugger (see Figure 18) or to a SmartRF05EB (see Figure 19). When using
SWRU197G
January 2014
18/23
SmartRF05EB, connect a 10-pin flat cable from the “Ext SoC Debug” plug (P3) on the EB to the “USB
Debug” plug (P2) on the CC Debugger. The dead debugger needs power, so connect the USB cable.
Turn on the SmartRF05EB or debugger - it should detect the USB Controller (CC2511) on the
debugger.
Figure 18 - Programming the bootloader on the CC Debugger using another CC Debugger
Figure 19 - Programming the bootloader on the CC Debugger using SmartRF05EB
Next, use the SmartRF Flash Programmer to program the bootloader on the debugger. Follow these
five steps (illustrated in Figure 20 below):
SWRU197G
January 2014
19/23
1. After starting the application, first select “Program Evaluation Board” in the “What do you want
to program?” drop down box, then select the “EB Bootloader” tab.
2. In the upper left corner, select device: Use SmartRF05EB regardless of the device being used
to program the debugger. I.e. select SmartRF05EB both when you are using a CC Debugger
and when you are using a SmartRF05EB for the resurrection.
3. Next, select which flash image to program. The bootloader image is included when installing
the flash programmer and it is usually located at “C:\Program Files (x86)\Texas
Instruments\SmartRF Tools\Firmware\CC Debugger”.
4. It is also necessary to give the debugger a unique ID number – any 4 digit number will work.
This number is used by the driver on the PC to uniquely identify devices if more than one
debugger is connected at the same time.
5. Select “Erase, program and verify”
6. Press the “Perform Actions” buttons. The firmware upgrade takes a few seconds.
Figure 20 - SmartRF Flash Programmer - Updating the bootloader
Once the bootloader is programmed, you might be asked to install a USB driver on the PC. Just follow
the same procedure as when the debugger was connected to the PC the first time (see chapter 5).
The RED LED on the debugger should now be blinking, indicating that the bootloader is running but
that no application has been loaded. If the RED LED is off, there is probably something wrong with the
hardware. The debugger firmware can now be programmed directly over USB by following the
procedure in either chapter 8.1 or 8.2.
1
2
4
5
6
3
SWRU197G
January 2014
20/23
9 Troubleshooting
Q1 Help! The debugger does not detect the SoC. What should I do?
A1 There are several things to check.
Upgrade the firmware. Many CC Debuggers have old firmware that will not automatically
detect newer devices, like CC2543/44/45. Refer to chapter 8 for further instructions.
Check that the cable is oriented correctly and that the pins are connected to the right signals
on the debugger.
Check that the debugger gets power from the target (i.e proper connection of the Target
Voltage Sense signal). This is required in order for the level converters on the debugger to
work.
Check that ground on the target is connected to ground on the debugger. This is normally
achieved through the target connector. Note that since the ground planes are the same, please
be aware of any adverse effects caused by different ground planes on the target and on the
PC (grounded via USB cable).
Check that the cable is not broken. Especially the small flat cable is prone to stop working if
handled a lot or being bent and stretched beyond normal operating conditions.
Q2 Does IAR EW8051 support the CC Debugger as debugging device?
A2 Yes – but make sure you have an up to date version of IAR with the new debug driver plug-in
from Texas Instruments. You will need version 7.51A or higher.
Q3 Can the debugger be used as an interface to the RF device for packet sniffing?
A3 Yes, this is supported for selected devices. Use the same interconnection as in the diagrams in
chapter 6.
Q4 Is there a way to remove the plastic casing without damaging it?
A4 Yes, there is. Hold the bottom piece of the plastic in one hand. With your other hand, take a
firm grip on the long lateral sides of the upper part of the plastic and squeeze while moving the
upper part away from the bottom. The two parts should separate from each other.
To reassemble the plastic, just click the two pieces together.
Q5 Is this a Mini or a Micro USB plug?
A5 Mini USB type A.
Q6 I have two CC Debuggers with the same EB ID, and I’m unable to use them together. What do
I do?
A6 Two EBs with the same EB ID cause a driver conflict. The solution is to resurrect one of the
CC Debuggers and give it a new EB ID.
1. Connect one CC Debugger to your computer
2. Connect the CC Debugger you want to resurrect to a separate power source (e.g. another
computer or a USB charger).
3. Follow the steps for resurrecting the CC Debugger, described in section 8.4.
SWRU197G
January 2014
21/23
10 Schematics
See last page or refer to the complete bundle including gerber files, schematics and layout here [3].
11 References
[1] CC-Debugger product web site
www.ti.com/tool/cc-debugger
[2] CC-Debugger Quick Start Guide
www.ti.com/lit/swru196
[3] CC-Debugger Layout and Schematics
www.ti.com/lit/zip/swrr105
[4] Cebal – CCxxxx Development Tools USB Driver for Windows x86 and x64
www.ti.com/lit/zip/swrc212
[5] DN304 – CCxxxx Development Tools USB Driver Installation Guide
www.ti.com/lit/swra366
[6] Texas Instruments Support
support.ti.com
[7] Texas Instruments Low Power RF Online Community
www.ti.com/lprf-forum
[8] SmartRF Studio
www.ti.com/tool/smartrftm-studio
[9] SmartRF Flash Programmer
www.ti.com/tool/flash-programmer
[10] SmartRF Packet Sniffer
www.ti.com/tool/packet-sniffer
[11] SmartRF Flash Programmer User Manual
www.ti.com/lit/swru069
[12] PurePath Wireless Configurator
www.ti.com/tool/purepath-wl-cfg
[13] PurePath Wireless Commander
www.ti.com/tool/purepath-wl-cmd
[14] SoC Battery Board product web site
www.ti.com/tool/soc-bb
[15] IAR Embedded Workbench for 8051
www.iar.com/ew8051
SWRU197G
January 2014
22/23
12 Document History
Revision Date Description/Changes
G 2013-01-15 Chapter 9: Added how to solve problem with CC Debuggers having the same EB ID.
F 2013-06-20
CC1100, CC1101, CC2500, and CC1200 are now also supported by the debugger.
Corrected typo in chapter 6.2.1: DD to pin P2.1 (not P2.2) and DC to pin P2.2 (not
P2.1) for all SoCs except CC2544 and CC2545. Added debug pin-out for CC2545.
Corrected pin-out in figure 10 and 11 (DC to GPIO2/GDO2, DD to GPIO0/GDO0).
Added link to layout and gerber files.
E 2012-03-01 Corrected typo in chapter 6.2.1. Special debug pin-out for CC2544, not CC2543.
D 2012-02-22
Added information about connections for programming of CC85xx devices. Updated
info about connections for supported transceivers. Updated driver installation
information and added more details about firmware upgrade. Describe what it means
when the LED is amber. Updated reference links.
C 2010-09-19 Added more information about how to upgrade the firmware.
B 2010-02-25
Fixed erroneous description of interconnection between CC Debugger and CC2520.
The VREG_EN signal shall be connected to pin 4 on the target connector, not pin 3.
A 2010-02-11
Added more details about the powering options.
Added more information about connection options.
- 2009-05-05 First revision.
EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS
Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:
The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims
arising from the handling or use of the goods.
Should this evaluation board/kit not meet the specifications indicated in the User’s Guide, the board/kit may be returned within 30 days from
the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO
BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH
ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES.
Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This
notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety
programs, please visit www.ti.com/esh or contact TI.
No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or
combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and
therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
REGULATORY COMPLIANCE INFORMATION
As noted in the EVM User’s Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal
Communications Commission (FCC) and Industry Canada (IC) rules.
For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT,
DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer
use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency
interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will
be required to take whatever measures may be required to correct this interference.
General Statement for EVMs including a radio
User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and
power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local
laws governing radio spectrum allocation and power limits for this evaluation module. It is the user’s sole responsibility to only operate this
radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and
unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory
authorities, which is responsibility of user including its acceptable authorization.
For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant
Caution
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause
harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the
equipment.
FCC Interference Statement for Class A EVM devices
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial
environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the
instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to
cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules.
These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment
generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause
harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If
this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and
on, the user is encouraged to try to correct the interference by one or more of the following measures:
• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.
For EVMs annotated as IC – INDUSTRY CANADA Compliant
This Class A or B digital apparatus complies with Canadian ICES-003.
Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the
equipment.
Concerning EVMs including radio transmitters
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this
device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired
operation of the device.
Concerning EVMs including detachable antennas
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain
approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should
be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.
This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum
permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain
greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.
Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.
Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de
l'utilisateur pour actionner l'équipement.
Concernant les EVMs avec appareils radio
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est
autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout
brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.
Concernant les EVMs avec antennes détachables
Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain
maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à
l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente
(p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.
Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel
d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans
cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
【Important Notice for Users of EVMs for RF Products in Japan】
This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan
If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:
1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and
Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of
Japan,
2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this
product, or
3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with
respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note
that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.
Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan
http://www.tij.co.jp
【無線電波を送信する製品の開発キットをお使いになる際の注意事項】
本開発キットは技術基準適合証明を受けておりません。
本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。
1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。
なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。
上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。
日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル
http://www.tij.co.jp
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
EVALUATION BOARD/KIT/MODULE (EVM)
WARNINGS, RESTRICTIONS AND DISCLAIMERS
For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished
electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in
laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks
associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end
product.
Your Sole Responsibility and Risk. You acknowledge, represent and agree that:
1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug
Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees,
affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.
2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable
regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates,
contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical)
between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to
minimize the risk of electrical shock hazard.
3. Since the EVM is not a completed product, it may not meet all applicable regulatory and safety compliance standards (such as UL,
CSA, VDE, CE, RoHS and WEEE) which may normally be associated with similar items. You assume full responsibility to determine
and/or assure compliance with any such standards and related certifications as may be applicable. You will employ reasonable
safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to
perform as described or expected.
4. You will take care of proper disposal and recycling of the EVM’s electronic components and packing materials.
Certain Instructions. It is important to operate this EVM within TI’s recommended specifications and environmental considerations per the
user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and
environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact
a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the
specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or
interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the
load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures
greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include
but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the
EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please
be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable
in electronic measurement and diagnostics normally found in development environments should use these EVMs.
Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives
harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in
connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims
arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.
Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such
as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices
which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate
Assurance and Indemnity Agreement.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated
Material Safety Data Sheet
A-4 Hardener
1
1. Chemical Product and Company Identification
Product Name: A-4 Hardener
Product Description: Liquid Epoxy Hardener
Company: Cast-Coat, Inc. 354 West Street W. Bridgewater, MA 02379
Telephone: 1-800-527-4502 or 1-508-587-4502
Emergency Contact: Chemtrec: (domestic) 1-800-424-9300 (international) 1-703-527-3887
2. Composition / Information on Ingredients
Components CAS # %
3,3’-oxybis(ethyleneoxy)bis(propylamine) 4246-51-9 98
2-(2-(3-aminopropoxy)ethoxy)ethanol 112-33-4 1
3. Hazards Identification
Eye Contact: Corrosive to the eyes and may cause severe damage, including blindness. Vapors may be
irritating.
Skin Contact: Corrosive to the skin. May cause skin sensitization. May be toxic if absorbed through the skin.
Inhalation: Vapors / mists may be corrosive to the upper respiratory tract. Repeated or prolonged exposure
can result in lung damage.
Ingestion: Not expected to be a relevant route of exposure, however, corrosive and may cause severe and
permanent damage to the mouth, throat and stomach.
Aggravated Medical Conditions: Pre-existing eye, skin and respiratory disorders may be aggravated by
exposure to this product. Pre-existing respiratory and skin allergies may
be increased from exposure to this product.
4. First Aid Measures
General Advise: Good practice requires that gross amounts of any chemical be removed from the skin as
soon as practical, especially before eating or smoking.
Eye Contact: Immediately flush eyes with water for at least 30 minutes. Seek medical attention.
Skin Contact: Remove contaminated clothing and wipe excess from skin. Promptly wash with soap and
water for 15 minutes. Seek medical attention if irritation persists.
Inhalation: Move to fresh air and provide oxygen if necessary.
Ingestion: Rinse mouth with water. If conscious, give small quantities of water to drink. Do not
induce vomiting. If vomiting occurs, keep victim’s head below hips to prevent vomit from
entering lungs. Seek medical attention.
Material Safety Data Sheet
A-4 Hardener
2
5. Fire-Fighting Measures
Flashpoint: 139’ C
Autoignition Temperature: 260’ C
Flammability limits in air - lower: 1.1 % (V)
Flammability limits in air – upper: 4.5 % (V)
Extinguishing Media: Carbon dioxide (CO2), dry chemical, water fog or “alcohol foam“
Protective Equipment: Do not enter confined space without full bunker gear (helmet with
face shield, bunker coats, gloves and rubber boots). Use self
contained, positive pressure breathing apparatus.
Specific Hazards: Decomposition and combustion products may be toxic. Containers
exposed to intense heat should be cooled with water to avoid vapor
pressure buildup.
6. Accidental Release Measures
Personal Protection: Eyes - Wear splash proof chemical goggles.
Skin - Wear impervious gloves and protective clothing to prevent skin
contact.
Inhalation: Use NIOSH approved respirator suitable for organic vapors.
Environmental Concerns: Construct a dike to prevent from entering sewers, rivers and waterways.
Clean Up: Soak up residue with absorbent material and shovel into non leaking containers.
7. Handling and Storage
Handling: Good practice requires that gross amounts of any chemical be removed from the skin as soon as
practical, especially before eating or smoking. Wear splash proof chemical goggles, impervious
gloves and protective clothing to prevent skin contact. Emergency eye wash stations should be
readily accessible.
Ventilation: Provide effective mechanical exhaust. Wear NIOSH approved respirator suitable for organic
vapors in the absence of ventilation.
Storage: Store in a cool, dry location in tightly sealed containers. Keep away from open flame and high
temperatures. Do not pressurize containers to empty them.
Material Safety Data Sheet
A-4 Hardener
3
8. Exposure Controls/Personal Protection
Engineering Controls: Provide effective mechanical exhaust to ensure concentration levels are
below exposure limits.
Respiratory Protection: Wear NIOSH approved air purifying respirator in the absence of ventilation.
Eye Protection: Wear safety goggles or safety glasses with side shields. Emergency eye
wash stations should be readily accessible.
Skin Protection: Wear chemical resistant impervious gloves and protective clothing such as
an apron to prevent skin contact.
9. Physical and Chemical Properties
Appearance: Liquid
Color: Clear to Amber
Odor: Amine
Specific Gravity: 0.98
Vapor Pressure: < 1.00 mmHg at 20’ C
Solubility in Water: Miscible
Flashpoint: 139’ C
VOC Content: < 0.1% by weight
10. Stability and Reactivity
Stability: Stable under normal conditions.
Materials to Avoid: Avoid heat, flame and strong oxidizing agents.
Hazardous Decomposition Products: Carbon monoxide, Carbon dioxide, Nitrous oxide.
Comments: Hazardous polymerization will not occur.
11. Toxicological Information
3,3’-oxybis(ethyleneoxy)bis(propylamine), 2-(2-(3-aminopropoxy)ethoxy)ethanol:
Oral: LD50 3,160 mg / kg species: rat
Dermal: LD50 > 2,150 mg / kg species: rat
Material Safety Data Sheet
A-4 Hardener
4
12. Ecological Information
Inherent Biodegradability: Zahn-Wellens - < 20 % (Difficult to eliminate)
Golden Orfe, Static 96 hour LC50 - 220-460 mg / L (Practically nontoxic)
Daphnid, Static 48 hour EC50 - 220 mg / L (Practically nontoxic)
Acute algal toxicity, 72 hour EC50 - 69 mg / L (Test rating not found)
Toxicity to bacteria - EC50, (17H) 220 mg / L (Test rating not found)
13. Disposal Considerations
Comments: Dispose of in accordance with federal, state and local regulations. Incinerate or bury in a RCRA
licensed facility. Do not discharge into drains, waterways, sewers, or groundwater.
RCRA: D002
14. Transportation Information
DOT: UN 2735
Amines, Liquid, Corrosive, N.O.S.
(Trioxatridecanediamine)
8, II
ERG - 153
IMDG: UN 2735
Amines, liquid, Corrosive, N.O.S.
(Trioxatridecanediamine)
8, II
IATA: UN 2735
Amines, Liquid, Corrosive, N.O.S.
(Trioxatridecanediamine)
8, II
15. Regulatory Information
TSCA : All ingredients are listed or exempt
HSC Classification: Irritating material, Sensitizing material, Corrosive material
Sara Section 312 Hazard Classification: Chronic health hazard, Acute health hazard
Sara Section 313: None
California prop. 65: None
Hazard Ratings: Health Fire Reactivity
3 1 0
WHMIS Classification: D-2A, D-2B, Class E – Corrosive material
Material Safety Data Sheet
A-4 Hardener
5
16. Other Information
All information appearing herein is based upon data obtained from the manufacturer and / or recognized
technical sources. While the information is believed to be accurate, Cast-Coat makes no representations as to
its accuracy or sufficiency. Conditions of use are beyond the control of Cast-Coat and therefore users are
responsible to verify this data under their own operating conditions to determine whether the product is suitable
for their purposes. Cast-Coat, Inc. assumes no responsibility for injury from the use of the product described
herein.
Prepared by: Robert S. Lothrop
Title: Technical Director
Revision: 04/18/2012
1 / 5
Revision Date November 2011
Revision 3
SDS No. 16447
SAFETY DATA SHEET
ARALDITE FUSION HARDENER
SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING
1.1. Product identifier
Product name ARALDITE FUSION HARDENER
Product No. 808300, 808409, 808416, 808423
1.2. Relevant identified uses of the substance or mixture and uses advised against
1.3. Details of the supplier of the safety data sheet
Supplier BOSTIK LIMITED
COMMON ROAD
STAFFORD
STAFFORDSHIRE
ST16 3EH
+44 1785 272625
sds.uk@bostik.com
1.4. Emergency telephone number
SECTION 2: HAZARDS IDENTIFICATION
2.1. Classification of the substance or mixture
Classification (1999/45/EEC) Xi;R36/38.
2.2. Label elements
Labelling
Irritant
Risk Phrases
R36/38 Irritating to eyes and skin.
Safety Phrases
S2 Keep out of the reach of children.
S24/25 Avoid contact with skin and eyes.
S26 In case of contact with eyes, rinse immediately with plenty of water and seek
medical advice.
S36/37/39 Wear suitable protective clothing, gloves and eye/face protection.
S46 If swallowed, seek medical advice immediately and show this container or
label.
S56 Dispose of this material and its container to hazardous or special waste
collection point.
2.3. Other hazards
SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS
3.2. Mixtures
2 / 5
SDS No. 16447
ARALDITE FUSION HARDENER
1,8-DIAZABICYCLO[5.4.0]UNDEC-7-ENE 1-5%
CAS-No.: 6674-22-2 EC No.: 229-713-7
Classification (67/548/EEC)
Xn;R22.
C;R34.
R52/53.
Classification (EC 1272/2008)
Not classified.
BIS(2-DIMETHYLAMINOETHYL)ETHER 1-5%
CAS-No.: 3033-62-3 EC No.: 221-220-5
Classification (67/548/EEC)
T;R23/24.
Xn;R22.
C;R35.
Classification (EC 1272/2008)
Not classified.
TRIETHYLENETETRAMINE, PROPOXYLATED 5-10%
CAS-No.: 26950-63-0 EC No.: 500-055-5
Classification (67/548/EEC)
Xi;R38,R41.
Classification (EC 1272/2008)
Not classified.
The Full Text for all R-Phrases and Hazard Statements are Displayed in Section 16.
SECTION 4: FIRST AID MEASURES
4.1. Description of first aid measures
Inhalation
Remove victim immediately from source of exposure. Move the exposed person to fresh air at once. Get medical attention.
Ingestion
DO NOT induce vomiting. Get medical attention immediately.
Skin contact
Promptly wash contaminated skin with soap or mild detergent and water. Promptly remove clothing if soaked through and wash as above.
Get medical attention if irritation persists after washing.
Eye contact
Rinse the eye with water immediately. Continue to rinse for at least 15 minutes and get medical attention.
4.2. Most important symptoms and effects, both acute and delayed
4.3. Indication of any immediate medical attention and special treatment needed
SECTION 5: FIREFIGHTING MEASURES
5.1. Extinguishing media
Extinguishing media
This product is not flammable. Use fire-extinguishing media appropriate for surrounding materials. Use: Foam, carbon dioxide or dry
powder.
5.2. Special hazards arising from the substance or mixture
5.3. Advice for firefighters
SECTION 6: ACCIDENTAL RELEASE MEASURES
6.1. Personal precautions, protective equipment and emergency procedures
6.2. Environmental precautions
6.3. Methods and material for containment and cleaning up
3 / 5
SDS No. 16447
ARALDITE FUSION HARDENER
Absorb in vermiculite, dry sand or earth and place into containers.
6.4. Reference to other sections
SECTION 7: HANDLING AND STORAGE
7.1. Precautions for safe handling
Avoid spilling, skin and eye contact.
7.2. Conditions for safe storage, including any incompatibilities
Store at moderate temperatures in dry, well ventilated area.
7.3. Specific end use(s)
SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION
8.1. Control parameters
Ingredient Comments
WEL = Workplace Exposure Limits
8.2. Exposure controls
Protective equipment
Engineering measures
Provide adequate ventilation.
Respiratory equipment
If ventilation is insufficient, suitable respiratory protection must be provided.
Hand protection
Protective gloves must be used if there is a risk of direct contact or splash.
Eye protection
Wear splash-proof eye goggles to prevent any possibility of eye contact.
Hygiene measures
Wash promptly if skin becomes contaminated. Wash at the end of each work shift and before eating, smoking and using the toilet.
SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES
9.1. Information on basic physical and chemical properties
Appearance Liquid
Colour Light (or pale). Yellow.
Odour Slight odour.
Solubility Insoluble in water
Relative density 1.14
Flash point (°C) 145 PM Closed cup.
9.2. Other information
SECTION 10: STABILITY AND REACTIVITY
10.1. Reactivity
10.2. Chemical stability
Stable under normal temperature conditions.
10.3. Possibility of hazardous reactions
10.4. Conditions to avoid
10.5. Incompatible materials
10.6. Hazardous decomposition products
4 / 5
SDS No. 16447
ARALDITE FUSION HARDENER
SECTION 11: TOXICOLOGICAL INFORMATION
11.1. Information on toxicological effects
Skin contact
Irritating to skin.
Eye contact
Irritating to eyes.
SECTION 12: ECOLOGICAL INFORMATION
Ecotoxicity
Not regarded as dangerous for the environment.
12.1. Toxicity
12.2. Persistence and degradability
12.3. Bioaccumulative potential
12.4. Mobility in soil
12.5. Results of PBT and vPvB assessment
12.6. Other adverse effects
SECTION 13: DISPOSAL CONSIDERATIONS
13.1. Waste treatment methods
Dispose of waste and residues in accordance with local authority requirements.
SECTION 14: TRANSPORT INFORMATION
General The product is not covered by international regulation on the transport of dangerous goods (IMDG, IATA,
ADR/RID).
14.1. UN number
Not applicable.
14.2. UN proper shipping name
Not applicable.
14.3. Transport hazard class(es)
Transport Labels
No transport warning sign required.
14.4. Packing group
Not applicable.
14.5. Environmental hazards
Environmentally Hazardous Substance/Marine Pollutant
No.
14.6. Special precautions for user
Not applicable.
14.7. Transport in bulk according to Annex II of MARPOL73/78 and the IBC Code
Not applicable.
SECTION 15: REGULATORY INFORMATION
15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture
Statutory Instruments
The Chemicals (Hazard Information and Packaging for Supply) Regulations 2009 (S.I 2009 No. 716). Control of Substances Hazardous to
Health.
5 / 5
SDS No. 16447
ARALDITE FUSION HARDENER
Approved Code Of Practice
Safety Data Sheets for Substances and Preparations. Classification and Labelling of Substances and Preparations Dangerous for Supply.
Guidance Notes
Workplace Exposure Limits EH40. Introduction to Local Exhaust Ventilation HS(G)37. CHIP for everyone HSG(108).
15.2. Chemical Safety Assessment
SECTION 16: OTHER INFORMATION
General information
This product should be used as directed by Bostik Ltd. For further information consult the product data sheet or contact Technical Services.
Information Sources
This safety data sheet was compiled using current safety information supplied by distributor of raw materials.
Revision Comments
NOTE: Lines within the margin indicate significant changes from the previous revision. This safety data sheet supersedes all previous
issues and users are cautioned to ensure that it is current. Destroy all previous data sheets and if in doubt contact Bostik Limited.
Issued By Approved LJ
Revision Date November 2011
Revision 3
Date September 2007
Risk Phrases In Full
R34 Causes burns.
R35 Causes severe burns.
R22 Harmful if swallowed.
R52/53 Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.
R38 Irritating to skin.
R41 Risk of serious damage to eyes.
R23/24 Toxic by inhalation and in contact with skin.
ICOMP
VCOMP
VADJ
Q1
Q2 L
10μH
C1
10μF
C10
10μF
R1
40mΩ
adaptateur secteur
R2
20mΩ
R4
2.2Ω
R5
100K
R8
130k
1%
R9
10.2k, 1%
C2
0.1μF
C4
0.1μF
C3
1μF
6.8nF
C9
1μF
C8
0.1μF
ISL6251
ISL6251A
C5
10nF
flottant
4.2V/CELL
R6
10k
C7
1μF
R10
4.7Ω
BATSCL
SDL
Une entrée / D
GND
entrée de 5.15A
limites actuelles
3 cellules
hôte
R11, R12, R13
10k
D1
en option
VDDP
D2
D3
R7: 100Ω
CSIP
RCID
BOOT
UGATE
PHASE
LGATE
PGND
CSOP
Cson
cellules
GND
C11
3300pF
D4
SYSTÈME DE CHARGE
DCIN
ACSET
VDDP
VDD
ACPRN
Chlim
FR
ICM
ACLIM
VREF
ICOMP
VCOMP
VADJ
R3: 18Ω
C6
ISL6251
ISL6251A
batterie
paquet
BAT +
SCL
SDL
Temp
BATBattery
BATVCC
sortie
Sortie D / A
Une entrée / D
DIGITAL
contribution
AVDD / VREF
CSIP
RCID
BOOT
UGATE
PHASE
LGATE
PGND
CSOP
Cson
cellules
GND
FIGURE 13. ISL6251, ISL6251A circuit d'application typique avec micro-contrôleur
ISL6251, ISL6251A
12 FN9202.2
10 mai 2006
Principe de fonctionnement
introduction
Le ISL6251, ISL6251A comprend toutes les fonctions
nécessaire de charger 2 à 4 cellules Li-Ion et Li-polymère
batteries. Une haute efficacité convertisseur abaisseur synchrone est
utilisé pour contrôler la tension et le courant jusqu'à Charing Charing
Les taux de 10A. Le ISL6251, ISL6251A a courant de limitation d'entrée
et entrées analogiques pour régler le courant de charge et de la charge
tension; Chlim entrées sont utilisées pour contrôler le courant de charge
VADJ et les intrants sont utilisés pour contrôler la tension de charge.
Le ISL6251, ISL6251A charger la batterie avec une constante
courant de charge, fixé par Chlim entrée, jusqu'à ce que la tension de la batterie
se dresse à la tension de charge programmé fixé par entrée VADJ;
puis le chargeur commence à fonctionner à une tension constante
de façon responsable.
L'entrée EN permet l'arrêt du chargeur à travers le
commande à partir du micro-contrôleur. Il utilise également un taux SÉCURITÉ
Lorsque le chargeur de batterie est en arrêt extrêmement chaud
Conditions. Le montant de la personnalisation de la visite actuelle est sur le
Sortie de l'ICM. La figure 11 montre le bloc fonctionnel IC
organigramme.
Le convertisseur abaisseur synchrone utilise à canal N externe
MOSFET à convertir la tension d'entrée à l'requis
courant Charing Charing et de la tension. La figure 12 montre l'
ISL6251, ISL6251A circuit typique d'application de Charing
Charing courant et tension fixe à des valeurs spécifiques. la
circuit typique d'application de la figure 13 montre les
ISL6251, ISL6251A circuit typique de l'application qui utilise la
Réglez le micro-contrôleur de courant Charing fixé par Chlim
entrée. La tension aux Chlim et la valeur de R1 définit le
courant Charing. Le convertisseur DC / DC génère l'
des signaux de commande pour entraîner deux MOSFET à canal N à l'extérieur
course la tension et courant défini par le ACLIM, Chlim,
Cellules et entrées VADJ.
Le ISL6251, ISL6251A dispose la boucle de régulation de tension
(VCOMP) et deux boucles de régulation de courant (ICOMP). la
Boucle de régulation de la tension de VCOMP Moniteur Cson pour assurer
que sa tension ne dépasse jamais la tension et régule l'
tension de charge de la batterie fixé par VADJ. Le ICOMP courant
boucles de régulation de course le courant batterie Charing
Livré à la batterie pour s'assurer qu'elle ne dépasse jamais la
Charing limites actuelles fixées par Chlim; et le courant ICOMP
des boucles de régulation de course également le courant d'entrée tiré à partir de
l'adaptateur secteur afin de s'assurer qu'il ne dépasse jamais l'entrée
limite actuelle fixée par ACLIM, et évaluer la panne du système de pré-vente
et AC de surcharge de l'adaptateur.
contrôle PWM
Le ISL6251, ISL6251A emploie le PWM à fréquence fixe
Architecture de courant de commande de mode avec la charge d'alimentation vers l'avant
fonction. La fonction de feed-forward maintient constant l'
gain de modulateur de 11 pour réaliser la régulation de ligne rapide cum
Buck tension d'entrée change. Lorsque la charge de la batterie
tension s'approche de la tension d'entrée, le convertisseur DC / DC
décrochage fonctionne à la mode, où il est la minuterie de prévente
la fréquence de tomber dans la fréquence audible
gamme. Il peut atteindre cyclique jusqu'à 99,6%.
Taux de pré-amplification de la tension de bus de système, la batterie
Lorsque chargé d'opérer dans la norme mode-Buck CSOPCSON
DROPS ci-dessous 4.25mV. Une fois en mode buck-standard,
hystérésis n'autorise pas le fonctionnement synchrone de la
Convertisseur DC / DC jusqu'à Rises CSOP-dessus Cson 12.5mV.
En route gâté adaptatif système est utilisé pour contrôler les morts
temps entre deux Switcher. Les morts circuit de commande de temps
Surveillez la sortie de LGATE et empêche la face supérieure
MOSFET de Turning jusqu'à LGATE est entièrement éteint, la prévention
croix-conduction et flèche à l'. Pour les morts
circuit de temps pour travailler correctement, il doit être le faible résistance,
faible chemin de l'inductance du conducteur de MOSFET LGATE
corrompu, et à partir de la source de MOSFET à PGND. la
diode Schottky externe est entre les broches et BOOT VDDP
pings à garder le condensateur d'amorçage partagée.
Réglage de la tension de la batterie règlement
Le ISL6251, ISL6251A utilise la haute précision garni
d'intervalle de bande de référence de tension à la batterie de Charing de course
tension. L'entrée VADJ Régler la tension de sortie du chargeur,
et la tension de commande de VADJ peut varier de 0 à VREF,
fournir la plage de réglage de 10% (de 4,2 V-5% de taux
4.2V +5%) sur le régulateur de tension Cson. Dans l'ensemble, la tension
précision meilleure que 0,5% est atteint.
La tension de terminaison de la batterie par des cellules est la fonction de l'
Basseterre chimie. Consultez le taux des fabricants de batteries
déterminer cette tension.
• Float VADJ pour régler la tension de la batterie = 4.2V × VCSON
nombre de cellules,
• Connectez-vous à VREF VADJ de mettre 4.41V nombre de × de cellules,
• Brancher à la masse à mettre en VADJ 3.99V nombre de × de la
cellules.
Jump, la tension maximale de la batterie de 17.6V peut être atteint.
Notez que l'autre tension de charge de la batterie peut être réglée par
Raccordement du diviseur résistif de VREF à la terre. la
diviseur à résistances doivent être dimensionnés pour attirer plus au nord que 100μA
de VREF; ou connectez la source de tension à basse impédance comme
Le convertisseur N / A dans le micro-contrôleur. le programmée
tension de la batterie par la cellule peut être déterminé par ce qui suit
équation:
Le diviseur de résistance externe de VREF définit la tension au
VADJ selon:
VCELL VVADJ = 0175 + 3.99V
VVADJ VREF
Rbot_VADJ | | 514k
Rtop_VADJ | | + 514k Rbot_VADJ | | 514k
= × ------------------------------------------------ -------------------------------------------------
ISL6251, ISL6251A
13 FN9202.2
10 mai 2006
Où Rbot_VADJ et Rtop_VADJ sont des résistances externes à
VADJ. Précision Taux de minimiser la perte due à l'interaction avec
Diviseur de résistance interne de VADJ, S'assurer que la résistance en courant alternatif
En regardant en arrière dans le diviseur de résistance externe est inférieure à 25k.
Connectez cellules cum présentés dans le tableau 1 pour charger 2, 3 ou 4 +
cellules. Lorsque Charing autres chimies cellulaires, utiliser des cellules à
sélectionner la plage de tension de sortie du chargeur. le interne
gm1 amplificateur d'erreur maintient la régulation de tension. la tension
amplificateur d'erreur est compensée à VCOMP. le composant
valeurs indiquées dans la figure 12 du fournisseur approprié pour tableaux de bord
la plupart des applications. La rémunération individuelle de la tension
réglementation et des boucles de courant régulation permet de optimale
compensation.
Réglage de la limite de courant de charge de batterie
L'entrée de Chlim règle le courant maximum de Charing. la
courant défini par la résistance de détection de courant relie entre
CSOP et Cson. La tension différentielle à grande échelle entre les
CSOP et Cson est 165mV pour Chlim = 3,3 V, le saut
Charing courant maximal est 4.125A pour un 40mΩ Sensing
résistance. Autre charge de la batterie seuil de détection de courant
valeurs peuvent être définies par le diviseur résistif de Connexion
VREF à la masse ou 3,3 V, ou en connectant la faible impédance
source de tension comme un convertisseur N / A dans le micro-contrôleur.
Contrairement VADJ et ACLIM, Chlim n'a pas le interne
réseau diviseur à résistances. Le courant seuil de limite de charge est
proposée par:
Pour régler le courant de charge d'entretien pour le chargeur muet, le
résistance en série avec les interrupteurs T3 (figure 12) commandé par
Le micro-contrôleur est connecté à la broche de terre Chlim.
Le courant de charge de maintien est déterminé par:
Lorsque la tension est inférieure à 88mV Chlim (typique), il ll
désactiver le chargeur de batterie. Au moment de choisir le courant
résistance de détection, notez que la chute de tension dans la
Causes outre la détection résistance dissipation de puissance, réduisant
efficacité. Cependant, pour réduire la Chlim de réglage de tension
tension à travers la résistance de détection de courant R1 Will dégradé
précision en raison du signal plus faible à l'entrée du courant
Amplificateur de lecture. Il est le compromis entre précision et
dissipation de puissance. Un filtre passe-bas est recommandé de
Mise à éliminer le bruit. Connecter la résistance à la CSOP
broches au lieu de les pings Cson, cum la broche CSOP a faible
courant de polarisation et moins d'influence sur le courant-sens Précision
La précision et le régulateur de tension.
Réglage de l'entrée limites actuelles
Le courant total d'entrée de l'adaptateur secteur, ou d'un autre DC
la source, est fonction du courant d'alimentation du système et de la
courant par batterie Charing. L'entrée actuelle limites régulateur
le courant d'entrée en réduisant le courant de Charing, Lorsque le
courant d'entrée dépasse l'entrée imparti point actuel.
Actuelle du système varie normalement usure sperme du système
sont alimentés vers le haut ou vers le bas. Sans réglementation actuelle d'entrée,
la source doit être capable de fournir le maximum du système
et le courant maximal d'entrée du chargeur
simultanément. En utilisant le courant d'entrée limité, le courant
Capacité de l'adaptateur secteur peut être réduit, ce qui réduit
le coût du système.
Le ISL6251, ISL6251A limite le courant de charge de la batterie
Lorsque le seuil de limitation du courant d'entrée est dépassée, assurant
le chargeur de batterie ne se charge pas en bas de l'adaptateur secteur
tension. Ce règlement courant d'entrée constante permet à l'
adapter entièrement dans le système d'alimentation et de la pré-AC
adaptateur de surcharge et de s'écraser le bus système.
L'amplificateur interne compare la tension entre gm3
CSIP et RCID au courant d'entrée tension de seuil limite
fixé par ACLIM. Connectez taux ACLIM REF, Float et GND pour
la pleine échelle tension d'entrée de seuil limite de 100 mV,
75mV et 50mV, respectivement, ou utiliser le diviseur résistif de
VREF à la masse pour définir la limite de courant d'entrée cum la suivante
équation:
Le diviseur de résistance externe de VREF définit la tension au
ACLIM de fonction:
Où Rbot_ACLIM et Rtop_ACLIM sont des résistances externes à
ACLIM. Précision Taux de minimiser la perte due à l'interaction avec
Diviseur de résistance interne de ACLIM, S'assurer que la résistance en courant alternatif
En regardant en arrière dans le diviseur de résistance externe est inférieure à 25k.
Lors du choix de la résistance de détection de courant, noter que la
chute de tension dans cette résistance provoque plus de puissance
la dissipation, ce qui réduit l'efficacité. Le courant de l'adaptateur secteur
Précision sincère est très important. Utilisez la tolérance de 1%
résistance de détection de courant. La plus grande précision de ± 3% est
obtenue avec 100 mV de mesure du courant pour la tension de seuil
ACLIM = VREF, mais il a la dissipation de puissance la plus élevée. pour
exemple, il a 400mW dissipation de puissance nominale pour 4A AC
la personnalisation et 1W Sensing maillage de résistance doivent être utilisés. ± 4%
et ± 6% La précision peut être obtenue avec 75mV et 50mV
sens de courant tension de seuil pour ACLIM = flottant et
ACLIM = GND, respectivement.
Programmation du nombre de cellules TABLEAU 1.
NOMBRE cellules CELL
DMV 4
GND 3
float 2
ICHG
165mV
R1
-------------------
VCHLIM
3.3V
= ---------------------
ICHG
165mV
R1
-------------------
VCHLIM, filet
3.3V
= ---------------------------------------
⎟ ⎠
⎞
⎜ ⎝
⎛ = V + 0,050
VREF
0,05
R
I 1 ACLIM
2
contribution
VACLIM VREF
Rbot_ACLIM | | 152k
Rtop_ACLIM | | 152k + Rbot_ACLIM | | 152k
= × ------------------------------------------------------------------------------------------------------
ISL6251, ISL6251A
14 FN9202.2
10 mai 2006
Un filtre passe-bas est d'éliminer la commutation suggéré
bruit. Connecter la résistance à RCID broches au lieu de broches CSIP
parce RCID a pings inférieurs courant Bias et moins influents
sur la précision de mesure du courant.
Personnalisation de détection AC
Connectez la tension de l'adaptateur secteur à travers la résistance diviseur de
ACSET Lorsque l'alimentation secteur est disponible pour détecter, cum montre
Figure 12. ACPRN est une sortie à drain ouvert est élevée et lorsque
ACSET est inférieure à Vth, RISE, et est actif bas Quand ACSET
ci-dessus Ve, tomber. Ve, RISE et Ve, automne sont donnés par:
Où est l'entrée de courant et de l'hystérésis Bias Ihys ACSET
VACSET = 1.24V (min), 1.26V (typ) et 1.28V (max). la
hystérésis est IhysR8, Où Ihys = 2.2μA (min), 3.4μA (typ)
et 4.4μA (max).
mesure de courant
Utilisez ICM pour contrôler le courant d'entrée détecté Être travers
CSIP et RCID. La plage de tension de sortie est de 0 à 2,5 V. la
Tension de ICM est proportionnelle à la chute de tension aux bornes de
CSIP et RCID, et est donnée par l'équation suivante:
de INPUT Où est le courant continu tirée de l'adaptateur secteur.
ICM a ± 3% Précision.
Un filtre passe-bas connecté à l'ICM est utilisé pour délivrer en sortie du filtre
Le bruit de commutation.
Régulateur LDO
5.075V VDD la tension d'alimentation du fournisseur de la LDO interne
Régulateur de DCIN et peut fournir jusqu'à 30mA de courant.
Les pilotes MOSFET sont alimentés par VDDP, qui doit être
connecté à VDDP cum le montre la figure 12. VDDP connecte
à travers la résistance externe à la DMV. Bypass VDD et VDDP
avec le 1μF condensateur.
fermeture
Le ISL6251, ISL6251A dispose la veille à faible consommation
mode. Conduite EN bas arrête le chargeur. Dans l'arrêt,
Le convertisseur DC / DC est désactivé, et VCOMP et ICOMP
sont tirés à la terre. L'ICM, sorties ACPRN continuer à
fonction.
FR peut être entraîné par la thermistance Autoriser automatique
arrêt Lorsque la batterie est chaude. Souvent, les NTC
thermistance est inclus à l'intérieur de la batterie pour mesurer son
Température. Lorsqu'il est connecté au chargeur, la thermistance
forme le diviseur de tension résistif avec le pull-up à la VREF.
La tension de seuil de 1.06V avec 60mV hystérésis est EN.
La thermistance peut être sélectionnée pour que le rapport de la résistance
Température caractéristique qui diminue brutalement au-dessus de l'
Température critique. Cette ferme automatiquement arrangement
Lorsque la batterie le chargeur est au-dessus de la critique
Température.
Une autre méthode pour inhiber taux Charing est Chlim force
ci-dessous 88mV (typ).
Short Circuit Protection et 0V Batterie Charing
Le courant de charge sur le chargeur de batterie Will course
les limites fixées par Chlim, il a automatiquement court-circuit
protection et est en mesure de charger le fournisseur actuel WAKE taux
en batterie extrêmement déchargée.
Protection contre la surchauffe
Si la température de la filière dépasse 150 ° C, il s'arrête Charing. Une fois que l'
DROPS meurent température inférieure à 125 ° C, Charing va recommencer.
Renseignements sur la demande
La conception de chargeur de batterie qui suit fait référence à la typique
Circuit d'application de la figure 12, où la batterie typique
de configuration 4S2P est utilisé. Cette section décrit comment
Sélectionnez les composants externes, y compris l'inducteur, entrée
et des condensateurs de sortie, MOSFET de commutation et de courant
Sentant résistances.
sélection d'inductance
La sélection de l'inducteur a compromis entre le coût, la taille et
efficacité. Par exemple, l'inductance de l'abaisser, l'
la plus petite taille, mais est courant supérieur d'ondulation. C'est ce qui ressort également
des pertes supérieur AC dans le noyau magnétique et les enroulements,
qui réduisent l'efficacité du système. D'autre part,
Les résultats d'inductance plus élevés dans l'ondulation inférieure actuelle et
un filtrage plus petites condensateurs de sortie, mais elle a supérieur DCR (DC
résistance de l'inducteur) perte, et a transitoire lent
réponse. Sauter, la conception pratique de l'inducteur est basée sur l'
inductance ondulation de courant Etre ± (15-20)% du maximum
en cours de fonctionnement à courant continu à la tension d'entrée maximale. la
inductance nécessaire peut être calculée à partir de:
Où VIN, MAX, VBAT, et FS sont l'entrée maximale
tension, la tension de la batterie et de la fréquence de commutation
respectivement. Le courant ΔI inductance d'ondulation se trouve de:
Lorsque le courant maximal crête-à-crête d'ondulation est de 30%
le courant de charge maximum est utilisé.
Pour VIN, MAX = 19V, VBAT = 16.8V, TABI, MAX = 2.6A, et
FS = 300kHz, l'inductance calculée est 8.3μH. Choisir
La valeur standard Placard donne L = 10μH. Noyaux de ferrite sont
souvent le meilleur choix, car ils sont à taux Optimisé 300kHz
ACSET
9
8
e, hausse de 1 V
R
• ⎟ V R
⎟ ⎠
⎞
⎜ ⎜ ⎝
⎛
+
ACSET hys 8
9
8
e, Fall 1 V I R
R
R
V - • ⎟
⎟ ⎠
⎞
⎜ ⎜ ⎝
⎛
+
ICM = 19,9 de INPUT • • R2
IN, MAX s
BAT
L
IN, MAX BAT
V f
V
je
V V
L
Δ
-
=
Δ IL = 30% ⋅ TABI, MAX
ISL6251, ISL6251A
15 FN9202.2
10 mai 2006
Opération de 600kHz avec une faible perte de base. Le noyau doit être honoré
PAS assez pour saturer au courant de bobine crête IPeak:
Sélection de condensateur de sortie
CONDENSATEUR La sortie en parallèle avec la batterie est utilisée pour
suce l'ondulation de courant à haute fréquence et de commutation
lisser la tension de sortie. La valeur efficace de la sortie
ondulation Ieff est donné par:
Lorsque le rapport cyclique D est le rapport de la tension de sortie
(tension de batterie) sur la tension d'entrée continue pour
Le fonctionnement en mode de conduction qui est typique pour la batterie
téléchargés. Au cours de la période de charge de la batterie, la tension de sortie
varie à partir de sa tension de batterie à la batterie initiale classé
tension. Sauter, le rapport cyclique peut être modifié dans la plage de
entre 0,53 et 0,88 pour la tension de batterie minimale de
10V (2.5V/Cell) et la tension maximale de la batterie de 16.8V.
Pour VIN, MAX = 19V, VBAT = 16.8V, L = 10μH, et
FS = 300kHz, le courant maximal RMS est 0.19A. Un typique
CONDENSATEUR 10F céramique est un bon choix pour ce suce
courant et a également de très petite taille. Le condensateur au tantale
Ormerod Connu mécanismes de défaillance Lorsqu'il est soumis à une grande
Courant de choc.
Considérations EMI marquent généralement souhaitable de minimiser
ondulation du courant dans les câbles de la batterie. Perles eBay maille ajoutée dans
série avec la batterie à l'augmentation de la batterie
impédance à 300kHz Fréquence de commutation. ondulation de commutation
splits de courant entre la batterie et le condensateur de sortie
en fonction de l'ESR de la production et de la batterie CONDENSATEUR
impédance. Si l'ESR du condensateur de sortie est 10M et
l'impédance de la batterie est élevée à 2Ω avec le talon, alors que
0,5% du courant d'ondulation dans la batterie 'vais couler.
sélection de MOSFET
Le chargeur de batterie pour ordinateur portable synchrone avec convertisseur abaisseur
a la tension d'entrée à partir de la sortie de l'adaptateur AC. la
tension de sortie maximum de l'adaptateur secteur ne dépasse pas 25V.
Par conséquent, la logique MOSFET 30V doit être utilisé.
Le MOSFET côté haut doit être capable de dissiper la
les pertes de conduction, plus les pertes de commutation. Pour la batterie
application chargée, la tension d'entrée de l'synchrone
convertisseur abaisseur est égale à la tension de sortie de l'adaptateur,
qui est relativement constante. L'efficacité maximale est
réalisé par Sélection du MOSFET côté haute qui a le
les pertes de conduction correspondant aux pertes de commutation. Assurez-vous que
ISL6251, ISL6251A LGATE gâté conducteur peut fournir suffisamment
taux actuel périssables prévente à partir de conduction, qui est due à
le courant injecté dans le parasite drain-source en
condensateur (Miller CONDENSATEUR CGD), et causée par la tension
phase ascendante de la rareté au noeud à l'instant de la high-side
Transformer un MOSFET; Sinon, des problèmes inter-conduction
maille se produisent. Ralentissement raisonnable tourner sur la vitesse de la
MOSFET côté en connectant la résistance entre le
Goupille de BOOT et la source d'alimentation du variateur gâté, et le haut de cinq
Capacité actuelle du pilote de MOSFET côté bas gâtée aide
réduire la possibilité de cross-conduction.
Pour le MOSFET côté, le pire des cas conduction
les pertes se produisent à la tension d'entrée minimum:
L'efficacité optimale lorsqu'on les pertes de commutation
égaler les pertes de conduction. Cependant, il est difficile d'
calculer les pertes de commutation dans le MOSFET côté
car il doit permettre facteur difficile à quantifier que
influent sur la tour-et temps turn-off. Ce facteur
Impliquer la résistance interne MOSFET gâté, gâté charge,
tension de seuil, l'inductance parasite, pull-up et pull-down
résistance du conducteur gâté. La perte de commutation suivante
estimations de calcul approximatif du fournisseur.
Où Qgd: drainer à périssable charge, Qrr: recouvrement inverse totale
Charge de la diode de corps MOSFET côté bas, ILV: inductance
actuelle vallée, ILP: courant de crête d'inductance, IG, et cinq
IG, la source de pointe sont la source gâtée lecteur / cinq cours du 1er trimestre,
respectivement.
Pour atteindre les pertes de commutation faible, il nécessite peu d'drain-périssables
charge Qgd. Généralement, plus la charge entre drain et périssable,
Le supérieur de la sur-résistance. Par conséquent, il est le compromis
entre la résistance et sur la charge de vidange à périssable. bon
Sélection de MOSFET est basée sur le facteur de mérite (FORM),
qui est le produit de la charge totale et la détérioration
sur-résistance. Habituellement, plus la valeur de la forme, le
plus le rendement pour la même application.
Pour le MOSFET côté bas, la dissipation de puissance pire des cas
se produit à la tension de batterie minimale et maximale d'entrée
tension:
Choisissez le MOSFET côté bas qui a le plus bas possible
sur la résistance avec le paquet de taille moyenne comme le SO-8
et est d'un prix raisonnable. Les pertes de commutation sont notés sur
émettre pour le MOSFET côté bas, car il fonctionne à
zéro de commutation de tension.
Choisir la diode Schottky en parallèle avec le transistor MOSFET du côté bas
Q2 avec la chute de tension assez basse pour la prévente
bas-côté MOSFET corps diode de Q2 lors d'un virage sur la
temps mort. Cela réduit également la perte de puissance dans le haut-côté
MOSFET associés à la récupération inverse de la
bas-côté corps MOSFET diode Q2.
BAT Peak, MAX IL
2
I = 1 + Δ
D (1 D)
12 L f
V
je
s
IN, MAX
RMS = -
DSON
2
BAT
EN
août
Q1, je conduction R
V
V
P =
EN rr s
g, k péché
gd
EN LP s
g, la source
gd
Q1, commutation de LV Q V de f
je
Q
I f V
2
1
je
Q
I f V
2
P = 1 + +
DSON
2
BAT
EN
août
Q2 I R
V
V
1 P ⎟
⎟ ⎠
⎞
⎜ ⎜ ⎝
⎛
= -
ISL6251, ISL6251A
16 FN9202.2
10 mai 2006
En règle générale, sélectionnez la diode avec DC Note courant égal
à un tiers du courant de charge. Une option est de choisir le
combiné avec la diode Schottky dans le MOSFET GaGa
emballage. Les ensembles intégrés maille travail mieux
pratiquer parce qu'il ya moins inductance parasite en raison de la
courte connexion. Cette diode Schottky est facultative et mesh eBay
Suppression hyphes perte d'efficacité peut être tolérée. En outre,
Veiller à ce que le courant d'entraînement requis totale gâté pour la
MOSFET sélectionné doit être inférieur à 24mA. Jump, le total
charge périssables pour les high-side et low-side MOSFET est
limité par l'équation suivante:
Où IGATE est le courant d'attaque totale et gâté Si eBay
moins de 24mA. En substituant IGATE = 24mA et FS = 300kHz
dans les rendements de l'équation ci-dessus que le périssables de la charge totale
doit être inférieure à 80nC. Par conséquent, la ISL6251,
ISL6251A entraîne facilement le courant de charge de la batterie jusqu'à 10 bis.
Sélection de condensateur d'entrée
Le condensateur d'entrée absorbe le courant d'ondulation de la
Convertisseur de puissance synchrone, qui est donnée par:
Cette RMS ondulation de courant doit être inférieure aux évaluée de RMS
courant dans le condensateur de fiche technique. Chimies Nom-tantale
(céramique, aluminium, ou OSCON) sont préférés en raison de leur
résistance à la mise sous tension des courants de surtension Lorsque l'adaptateur secteur
est branché sur le chargeur de batterie. Pour la batterie d'ordinateur portable
applications chargées, il est recommandé que céramique
condensateurs ou des condensateurs en polymère de Sanyo eBay utilisés pour un duo
leur petite taille et de coût raisonnable.
Le tableau 2 montre les listes de composants pour l'application typique
circuit de la figure 12.
Compensation de boucle de conception
ISL6251, ISL6251A utilise le mode courant de fréquence constante
contrôler l'architecture de la boucle pour atteindre une réponse transitoire rapide.
Dans résistance PRÉCIS en série avec la sortie de courant de détection
inducteur est utilisé pour la course du courant de charge, et l'
signal de courant détecté est injectée dans le taux de la boucle de tension
ATTEINDRE mode actuelle pour simplifier la boucle de régulation
conception de la rémunération. L'inducteur est pas considéré comme un
variables d'état pour le contrôle en mode courant et le système
GaGa devient payable système. Il est beaucoup plus facile de concevoir la
Compensateur pour stabiliser la tension de la boucle de tension de mode
contrôle. La figure 14 montre le petit modèle de signal de l'
synchrone régulateur abaisseur.
PWM comparateur Gain Fm:
Le gain PWM comparateur Fm pour le pic de contrôle en mode courant
est donné par:
Fonctions Power Stage de transfert
La fonction de transfert F1 (S) de contrôle de tension de sortie est:
Lorsque,
La fonction de transfert F2 (S) de commande de courant de l'inductance est la suivante:
, Où.
LISTE COMPOSANTS TABLEAU 2.
CHIFFRES ET PIECES fabricant
C1, C10 10μF/25V condensateur céramique, Taiyo Yuden
TMK325 MJ106MY X5R (3.2x2.5x1.9mm)
C2, C4, C8 0.1μF/50V condensateur céramique
C3, C7, C9 1μF/10V condensateur céramique, Taiyo Yuden
LMK212BJ105MG
C5 CONDENSATEUR 10nF céramique
C6 6.8nF condensateur céramique
3300pF condensateur céramique C11
Diode Schottky D1 30V/3A, EC31QS03L (facultatif)
D2, D3 diode Schottky 100mA/30V, Central Semiconductor
D4 8A/30V Schottky redresseur, STPS8L30B (facultatif)
L 10μH/3.8A/26mΩ, Sumida, CDRH104R-100
Q1, Q2 30V/35mΩ, FDS6912A, Fairchild.
s
porte
GATE f
je
Q ≤
()
EN
En août
BAT V RMS
V V V
I I.
-
=
Signal Q3 à canal N MOSFET, 2N7002
R1 40mΩ, ± 1%, LRC-LR2512-01-R040-F, IRC
R2 20mΩ, ± 1%, LRC-LR2010-01-R020-F, IRC
R3 18Ω, ± 5%, (0805)
R4 2.2Ω, ± 5%, (0805)
R5 100kΩ, ± 5%, (0805)
R6 10k, ± 5%, (0805)
R7 100Ω ± 5%, (0805)
R8, R11 130 K, ± 1%, (0805)
R9 10.2kΩ, ± 1%, (0805)
R10 4.7Ω, ± 5%, (0805)
R12 20kΩ, ± 1%, (0805)
R13 1.87kΩ, ± 1%, (0805)
LISTE COMPOSANTS TABLEAU 2. (Suite)
CHIFFRES ET PIECES fabricant
M 11
VIN
= ---------.
()
1
Q
S S
1 S
V
de
v
F S
2 o p
o
2
ESR
dans
o
1
+ +
+
==
ω ω
ω
,
R C
1
c o
ωesr =
L
C
Q R o
p ≈ o
o
o
LC
ω = 1
()
1
Q
S S
1 S
R R
V
de
je
F S
2 o p
o
2
z
o L
L en
2
+ +
+
+
==
ω ω
ω
o o
z R C
ω ≈ 1
ISL6251, ISL6251A
17 FN9202.2
10 mai 2006
Gain de boucle de courant Ti (S) est le sperme impressionné suivante
équation:
où RT est la trans-résistance dans la boucle de courant. RT est
généralement égal au produit du courant de détection Charing
la résistance et le gain de l'amplificateur de détection de courant, CA2.
Pour ISL6251, ISL6251A, RT = 20R1.
Le gain en tension de la boucle de courant est ouvert:
Lorsque, VFB est la tension de contre-réaction de la tension
l'amplificateur d'erreur. Le gain de la boucle de tension de la boucle de courant
fermée est donnée par:
Cum DM Petit (S) >> 1, alors il peut être simplifié suit:
De l'équation ci-dessus, il est démontré que le système est le
système de commande de GaGa, qui a le pôle de noisette situé à
Avant la moitié de la fréquence de commutation. Par conséquent, franc de type II
Compensateur peut être facilement utilisé pour stabiliser le système.
La figure 15 montre le compensateur de boucle de tension, et son
fonction de transfert est cum impressionné suit:
où
Objectif de conception du compensateur:
• haut gain DC
• boucle de bande passante FC:
• La marge de gain:> 10dB
• La marge de phase: 40 °
La procédure de conception du compensateur est cum suit:
. 1 Putt Compensateur zéro à:
2. Compensateur Mettez un pôle à la fréquence zéro pour atteindre
DC gain élevé, et Putt autre pôle du compensateur à répétitions
ESR fréquence nulle ou demi-fréquence de commutation
valeur la plus faible.
Le gain Tv (S) de la boucle à fréquence de croisement FC de l'unité a
gagner. Par conséquent, la résistance R1 est Compensateur
déterminé par:
Lorsque MM est la trans-conductance de l'erreur de la boucle de tension
amplificateur. Compensateur condensateur C1 est alors donnée par:
Exemple: Vin = 19V, Vo = 16.8V, 2.6A = nght, FS = 300kHz,
Co = 10μF/10mΩ, L = 10μH, GM = 250μs, RT = 0.8Ω,
VFB = 2,1 V, FC = 20 kHz, alors Compensateur résistance
R1 = 10kO. Choisissez R1 = 10kO. Mettez le compensateur zéro à
1,5 kHz. Le compensateur est condensateur C1 = 6.5nF.
Par conséquent, Choisissez tension boucle compensateur: R1 = 10k,
C1 = 6.5nF.
Petit (S) = 0,25 RTF2 (S) M
Tv (S) = KM F1 (S) AV (S)
o
FB
V
V
K =
()
1 T (S)
T S
L (S)
je
v
v +
=
LV (S)
4VFB
VO
--------------
(RO + RL)
RT
-----------------------------
1 S
ωesr
+ ------------
1 Sω
P
+ -------
------------------------ AV (S) ωP
1
ROCO
=, ≈ -----------------
ωp
FIGURE 14. MODEL PETIT SIGNAL DE synchrone
BUCK REGULATEUR
de
devenir
de
ville
iin L
+
1: D
+
IL
Cie.
rc
ro
-Av (S)
de
Vcomp
RT
11/Vin
+
Petit (S)
Q
valeur
Tv (S)
-
VCA2
0.25VCA2
VindILdin ()
Caroline du Sud
1 S
sol
v
v
S
1
CZ
je
FB
échantillon
v
ω
+
==
R C
1
1 1
ωcz =
-
+
R1
C1
VREF
VFB
VO
GM
VCOMP
FIGURE 15. LOOP tension Compensateur
FS
20
1
5
1 ⎟ ⎠
⎞
⎜ ⎝
⎛ -
()
o o
CZ R C
ω = 1 à 3 jan
R1
8πfCVOCORT
gmVFB
= ---------------------------------------
1 CZ
R 1
C 1
ω
=
ISL6251, ISL6251A
18 FN9202.2
10 mai 2006
Aspects de l'agencement PCB
Secteur et signal couches placement sur le PCB
En règle générale, les couches d'alimentation doivent être rapprochés,
répète sur le haut ou le bas de la carte, avec des couches de signaux sur
le côté opposé de la carte. Comme exemple, la couche
Agencement sur un panneau 4-couche est indiqué ci-dessous:
. 1 Top Layer: les lignes de signaux, ou demi-pension pour les lignes de signaux et
L'autre demi-pension pour les lignes électriques
2. Signal Ground
. 3 couches de puissance: Puissance sol
. 4 Couche inférieure: MOSFET de puissance, inductances et autres
traces de puissance
Séparer la tension d'alimentation et le chemin de circulation de courant à partir de
le chemin de signal de contrôle et de niveau logique. Le contrôleur IC
rester sur la couche de signal, qui est isolée par le signal
terre pour les traces de signal de puissance.
Placement de composants
Le MOSFET de puissance devrait être proche de l'IC que le saut
signaux gâté d'entraînement, le LGATE, UGATE, PHASE, et BOOT,
traces peuvent être à court.
Une telle place les composants de la façon que l'aire sous la
IC a moins de bruit retrace avec de hauts DVD / dt et de dire / dt, tel cum
signaux gâtés et les signaux de noeuds de phase.
Signal Ground et Ground Power Connection.
Au moins, la vaste zone raisonnable de cuivre, qui
Protégez autre couplage de bruit à travers le CI, devrait être utilisé
masse du signal cum sous le IC. Le meilleur lien entre les points
la masse du signal et la masse de l'alimentation est au négatif
CONDENSATEUR de chaque côté de la face de sortie, où il existe peu de
bruit; La trace bruyant sous la CI n'est pas recommandé.
GND et VDD PIN
Au moins une haute qualité en céramique bouchon de découplage Si eBay
utilisé pour franchir ces deux Pins. Le bouchon de découplage peut être mis
près de l'IC.
LGATE PIN
C'est le butin du signal de commande pour le MOSFET bas
Buck Converter. Le signal passant par cette trace est à la fois
élevés DVD / dt et ladite haute / dt, et le pic et Charing
courant de décharge est très élevé. Ces deux traces Si eBay
court, large, et loin d'autres traces. S'il n'y a pas
D'autres traces en parallèle avec ces traces sur une couche.
PGND PIN
Si les repères eBay PGND prévue sur le côté négatif de la
bouchon de sortie pertinente avec des traces distinctes. Le côté négatif
de la capacité de production doit être proche du noeud source de
le transistor MOSFET de fond. Cette trace est le chemin de LGATE de retour.
PIN PHASE
Cette trace doit être court, et positionné à l'écart des autres
faibles traces de signal. Ce nœud a la très grande dvds / dt avec le
excursion de tension de la tension d'entrée à la masse. n ° trace
devrait être en parallèle avec elle. Cette trace est également le trajet de retour
pour UGATE. Connectez cette broche à la MOSFET côté
la source.
UGATE PIN
Cette broche a la forme carrée de forme d'onde avec de hauts DVD / dt. il
Fournisseur gâché le courant d'attaque pour charger et décharger le
haut MOSFET à haute voix / dt. Cette trace devrait être large,
Bref, et loin des autres traces semblables à la LGATE.
PIN BOOT
Disons / dt de cette broche est la cum cum UGATE élevé; Par conséquent, cette trace
doit être court cum cum réalisable.
CSOP, Cson Pins
La résistance de détection de courant connecte à l'Cson et l'
CSOP Pins à travers le filtre passe-bas. La broche est également Cson
AS utilisé les évaluations de tension de la batterie. Les traces Si eBay
loin de la haute DVD / dt et dire / dit Pins comme PHASE, BOOT
Pins. En général, la résistance de détection de courant doit être proche
à l'IC. D'autres dispositions de mise en page doit être ajustée
en conséquence.
EN PIN
Cet axe reste à haute et basse au ralenti permettent la mode et de la mode
est relativement robuste. Activer signaux doivent se référer au signal
sol.
DCIN PIN
Cet axe se connecte à AC tension de sortie de l'adaptateur, et devrait
eBay moins sensible au bruit.
Taille du cuivre pour le noeud de phase
La capacité de phase devrait être aussi des taux très bas
minimiser sonner. Il serait préférable de limiter la taille de la
Noeud CUIVRE PHASE en stricte conformité avec le courant
et la gestion thermique de l'application.
Identifier le terrain secteur et signal
Les condensateurs des convertisseurs d'entrée et de sortie, la source
terminale de la commutation MOSFET bas Si PGND
connecter à la terre électrique. Les autres composants doivent
connecter à la masse du signal. Signal et masse de l'alimentation sont tiède
ensemble à un moment donné.
Serrage condensateur pour MOSFET de commutation
Il est recommandé que les bouchons en céramique utilisés eBay étroitement
reliée au drain du MOSFET côté, et la
la source du MOSFET côté bas. Cela réduit la capacité
le bruit et la perte du MOSFET de puissance.
ISL6251, ISL6251A
19 FN9202.2
10 mai 2006
ISL6251, ISL6251A
Quad Flat No-Lead paquet en plastique (QFN)
Micro Cadre de plomb paquet en plastique (MLFP)
INDEX
D1 / 2
D1
D / 2
ré
E1 / 2 E / 2
E
A
2x
0,15
B
C
0,10 M C A B
A
N
plan SIÈGES
N
6
3 2
23
et
1
1
0,08
TERMINAL POUR ODD / SIDE POUR TERMINAL Même / SIDE
C C
SECTION "C-C"
NX b
A1
C
2x
0,15 C
0,15
2x
B
0
REF.
(ND-1) Xe
(NRE-E1F) X. et
5
A1
4x P
A
C
C
4x P
B
2x
0,15 C A
A2
A3
D2
D2
E2
E2 / 2
TYPE TERMINAL
VUE DE CÔTÉ
VUE DE DESSUS
7
VUE DU BAS
7
5
CL CL
et e
E1
2
NX k
NX b
8
NX L
8
8
9
ZONE
9
4x
/ / C 0,10
9
(La référence B)
(Donnée A)
INDEX
6
ZONE
N
9
CORNER
Options 4x
L1
L
10 l1
L
10
L28.5x5
28 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE
(COMPLIANT TO JEDEC MO-220VHHD-1 ISSUE I)
SYMBOL
MILLIMETERS
MIN NOMINAL MAX NOTES
A 0.80 0.90 1.00 -
A1 - 0.02 0.05 -
A2 - 0.65 1.00 9
A3 0.20 REF 9
b 0.18 0.25 0.30 5,8
D 5.00 BSC -
D1 4.75 BSC 9
D2 2.95 3.10 3.25 7,8
E 5.00 BSC -
E1 4.75 BSC 9
E2 2.95 3.10 3.25 7,8
e 0.50 BSC -
k 0.20 - - -
L 0.50 0.60 0.75 8
N 28 2
Nd 7 3
Ne 7 3
P - - 0.60 9
θ - - 12 9
Rev1 11/04
NOTES:
1. Dimensioning and tolerancing conform to ASME Y14.5-1994.
2. N is the number of terminals.
3. Nd and Ne refer to the number of terminals on each D and E.
4. All dimensions are in millimeters. Angles are in degrees.
5. Dimension b applies to the metallized terminal and is measured
between 0.15mm and 0.30mm from the terminal tip.
6. The configuration of the pin #1 identifier is optional, but must be
located within the zone indicated. The pin #1 identifier may be
either a mold or mark feature.
7. Dimensions D2 and E2 are for the exposed pads which provide
improved electrical and thermal performance.
8. Nominal dimensions are provided to assist with PCB Land Pattern
Design efforts, see Intersil Technical Brief TB389.
9. Features and dimensions A2, A3, D1, E1, P & θ are present when
Anvil singulation method is used and not present for saw
singulation.
20
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
FN9202.2
May 10, 2006
ISL6251, ISL6251A
Shrink Small Outline Plastic Packages (SSOP)
Quarter Size Outline Plastic Packages (QSOP)
NOTES:
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2
of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusion and gate burrs shall not exceed
0.15mm (0.006 inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead
flash and protrusions shall not exceed 0.25mm (0.010 inch)
per side.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension “B” does not include dambar protrusion. Allowable dambar
protrusion shall be 0.10mm (0.004 inch) total in excess of “B”
dimension at maximum material condition.
10. Controlling dimension: INCHES. Converted millimeter dimensions
are not necessarily exact.
α
INDEX
AREA
E
D
N
1 2 3
-B-
0.17(0.007) M C A B S
e
-AB
M
-CA1
A
SEATING PLANE
0.10(0.004)
h x 45°
C
H 0.25(0.010) M B M
L
0.25
0.010
GAUGE
PLANE
A2
M24.15
24 LEAD SHRINK SMALL OUTLINE PLASTIC PACKAGE
(0.150” WIDE BODY)
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A 0.053 0.069 1.35 1.75 -
A1 0.004 0.010 0.10 0.25 -
A2 - 0.061 - 1.54 -
B 0.008 0.012 0.20 0.30 9
C 0.007 0.010 0.18 0.25 -
D 0.337 0.344 8.55 8.74 3
E 0.150 0.157 3.81 3.98 4
e 0.025 BSC 0.635 BSC -
H 0.228 0.244 5.80 6.19 -
h 0.0099 0.0196 0.26 0.49 5
L 0.016 0.050 0.41 1.27 6
N 24 24 7
α 0° 8° 0° 8° -
Rev2 6/04
1
®
FN3282.13
DG411, DG412, DG413
Monolithic Quad SPST, CMOS Analog
Switches
The DG411 series monolithic CMOS analog switches are
drop-in replacements for the popular DG211 and DG212
series devices. They include four independent single pole
throw (SPST) analog switches, and TTL and CMOS
compatible digital inputs.
These switches feature lower analog ON-resistance (<35Ω)
and faster switch time (tON<175ns) compared to the DG211
or DG212. Charge injection has been reduced, simplifying
sample and hold applications.
The improvements in the DG411 series are made possible
by using a high voltage silicon-gate process. An epitaxial
layer prevents the latch-up associated with older CMOS
technologies. The 44V maximum voltage range permits
controlling 40VP-P signals. Power supplies may be
single-ended from +5V to 44V, or split from ±5V to ±20V.
The four switches are bilateral, equally matched for AC or
bidirectional signals. The ON-resistance variation with analog
signals is quite low over a ±15V analog input range. la
switches in the DG411 and DG412 are identical, differing only
in the polarity of the selection logic. Two of the switches in the
DG413 (#2 and #3) use the logic of the DG211 and DG411
(i.e., a logic “0” turns the switch ON) and the other two
switches use DG212 and DG412 positive logic. This permits
independent control of turn-on and turn-off times for SPDT
configurations, permitting “break-before-make” or “makebefore-
break” operation with a minimum of external logic.
Features
• ON-Resistance (Max). . . . . . . . . . . . . . . . . . . . . . . . .35Ω
• Low Power Consumption (PD) . . . . . . . . . . . . . . . . . .<35μW
• Fast Switching Action
- tON (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175ns
- tOFF (Max) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145ns
• Low Charge Injection
• Upgrade from DG211, DG212
• TTL, CMOS Compatible
• Single or Split Supply Operation
• Pb-Free Plus Anneal Available (RoHS Compliant)
Applications
• Audio Switching
• Battery Operated Systems
• Data Acquisition
• Hi-Rel Systems
• Sample and Hold Circuits
• Communication Systems
• Automatic Test Equipment
Data Sheet June 20, 2007
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright Intersil Americas Inc. 1993, 1994, 1997, 1999, 2002, 2004-2007. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
2 FN3282.13
June 20, 2007
Pinout
DG411, DG412, DG413
(16 LD PDIP, SOIC, TSSOP)
TOP VIEW
Ordering Information
PART NUMBER PART MARKING TEMP. RANGE (°C) PACKAGE PKG. DWG. #
DG411DJ DG411DJ -40 to +85 16 Ld PDIP E16.3
DG411DJZ (Note) DG411DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3
DG411DY* DG411DY -40 to +85 16 Ld SOIC (150 mil) M16.15
DG411DYZ* (Note) DG411DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15
DG411DVZ* (Note) DG411 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173
DG412DJ DG412DJ -40 to +85 16 Ld PDIP E16.3
DG412DJZ (Note) DG412DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3
DG412DY* DG412DY -40 to +85 16 Ld SOIC (150 mil) M16.15
DG412DYZ* (Note) DG412DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15
DG412DVZ* (Note) DG412 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173
DG413DJ DG413DJ -40 to +85 16 Ld PDIP E16.3
DG413DJZ (Note) DG413DJZ -40 to +85 16 Ld PDIP** (Pb-free) E16.3
DG413DY* DG413DY -40 to +85 16 Ld SOIC (150 mil) M16.15
DG413DYZ* (Note) DG413DYZ -40 to +85 16 Ld SOIC (150 mil) (Pb-free) M16.15
DG413DVZ* (Note) DG413 DVZ -40 to +85 16 Ld TSSOP (4.4mm) (Pb-free) M16.173
*Add “-T” suffix for tape and reel.
**Pb-free PDIPs can be used for through hole wave solder processing only. They are not intended for use in Reflow solder processing
applications.
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin
plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products
are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
TRUTH TABLE
LOGIC
DG411 DG412 DG413
SWITCH SWITCH
SWITCH
1, 4
SWITCH
2, 3
0 On Off Off On
1 Off On On Off
NOTE: Logic “0” ≤0.8V. Logic “1” ≥2.4V.
14
15
16
9
13
12
11
10
1
2
3
4
5
7
6
8
IN1
D1
S1
VGND
S4
IN4
D4
IN2
S2
V+
VL
S3
D3
IN3
D2
Pin Descriptions
PIN SYMBOL DESCRIPTION
1 IN1 Logic Control for Switch 1.
2 D1 Drain (Output) Terminal for Switch 1.
3 S1 Source (Input) Terminal for Switch 1.
4 V- Negative Power Supply Terminal.
5 GND Ground Terminal (Logic Common).
6 S4 Source (Input) Terminal for Switch 4.
7 D4 Drain (Output) Terminal for Switch 4.
8 IN4 Logic Control for Switch 4.
9 IN3 Logic Control for Switch 3.
10 D3 Drain (Output) Terminal for Switch 3.
11 S3 Source (Input) Terminal for Switch 3.
12 VL Logic Reference Voltage.
13 V+ Positive Power Supply Terminal (Substrate).
14 S2 Source (Input) Terminal for Switch 2.
15 D2 Drain (Output) Terminal for Switch 2.
16 IN2 Logic Control for Switch 2.
DG411, DG412, DG413
3 FN3282.13
June 20, 2007
Functional Diagrams Four SPST Switches per Package Switches Shown for Logic “1” Input
Schematic Diagram (1 Channel)
S1
D1
S2
D2
S3
D3
S4
D4
DG411
S1
D1
S2
D2
S3
D3
S4
D4
IN1
DG412
IN2
IN3
IN4
S1
D1
S2
D2
S3
D3
S4
D4
IN1
DG413
IN2
IN3
IN4
IN2
IN3
IN4
IN1
S
V+
INX
GND
VVVL
ré
V+
DG411, DG412, DG413
4 FN3282.13
June 20, 2007
Absolute Maximum Ratings Thermal Information
V+ to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44V
GND to V-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25V
VL. . . . . . . . . . . . . . . . . .............(GND -0.3V) to (V+) +0.3V
Digital Inputs, VS, VD (Note 1). . . . . (V-) -2V to (V+) + 2V or 30mA,
Whichever Occurs First
Continuous Current (Any Terminal) . . . . . . . . . . . . . . . . . . . . . 30mA
Peak Current, S or D (Pulsed 1ms, 10% Duty Cycle Max) . . 100mA
Operating Conditions
Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20V (Max)
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C
Input Low Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8V (Max)
Input High Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4V (Min)
Input Rise and Fall Time ..................... .... ...≤20ns
Thermal Resistance (Typical, Note 2) θJA (°C/W)
PDIP Package* ............................ 90
SOIC Package ................. . . . . . . . . . . . . 110
TSSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . .150
Maximum Junction Temperature (Plastic Packages). . . . . . .+150°C
Maximum Storage Temperature Range. . . . . . . . ..-65°C to +150°C
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . ..see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
(SOIC and TSSOP - Lead Tips Only)
*Pb-free PDIPs can be used for through hole wave solder
processing only. They are not intended for use in Reflow solder
processing applications.
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and
result in failures not covered by warranty.
NOTES:
1. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
2. θJA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
Electrical Specifications Test Conditions: V+ = +15V, V- = -15V, VL = 5V, VIN = 2.4V, 0.8V (Note 3),
Unless Otherwise Specified.
PARAMETER TEST CONDITIONS
TEMP
(°C)
MIN
(Note 4)
TYP
(Note 5)
MAX
(Note 4) UNITS
DYNAMIC CHARACTERISTICS
Turn-ON Time, tON RL = 300Ω, CL = 35pF, VS = ±10V (Figure 1) 25 - 110 175 ns
85 - - 220 ns
Turn-OFF Time, tOFF 25 - 100 145 ns
85 - - 160 ns
Break-Before-Make Time Delay DG413 Only, RL = 300Ω, CL = 35pF (Figure 2) 25 - 25 - ns
Charge Injection, Q (Figure 3) CL = 10nF, VG = 0V, RG = 0Ω 25 - 5 - pC
OFF Isolation (Figure 5) RL = 50Ω, CL = 5pF, f = 1MHz 25 - 68 - dB
Crosstalk (Channel-to-Channel),
(Figure 4)
25 - -85 - dB
Source OFF Capacitance, CS(OFF) f = 1MHz (Figure 6) 25 - 9 - pF
Drain OFF Capacitance, CD(OFF) 25 - 9 - pF
Channel ON Capacitance,
CD(ON) + CS(ON)
25 - 35 - pF
DIGITAL INPUT CHARACTERISTICS
Input Current VIN Low, IIL VIN Under Test = 0.8V, All Others = 2.4V Full -0.5 0.005 0.5 μA
Input Current VIN High, IIH VIN Under Test = 2.4V, All Others = 0.8V Full -0.5 0.005 0.5 μA
ANALOG SWITCH CHARACTERISTICS
Analog Signal Range, VANALOG IS = 10mA Full -15 - 15 V
Drain-Source ON Resistance,
rDS(ON)
IS = 10mA, VD = ±8.5V, V+ = 13.5V, V- = -13.5V 25 - 25 35 Ω
Full - - 45 Ω
±
±
DG411, DG412, DG413
5 FN3282.13
June 20, 2007
Source OFF Leakage Current,
IS(OFF)
V+ = 16.5V, V- = -16.5V, VD = ±15.5V, VS = 15.5V 25 -0.25 ±0.1 0.25 nA
Full -5 - +5 nA
Drain OFF Leakage Current,
ID(OFF)
25 -0.25 ±0.1 0.25 nA
Full -5 - +5 nA
Channel ON Leakage Current,
ID(ON) + IS(ON)
V+ = 16.5V, V- = -16.5V, VS = VD = ±15.5V 25 -0.4 ±0.1 0.4 nA
Full -10 - +10 nA
POWER SUPPLY CHARACTERISTICS
Positive Supply Current, I+ V+ = 16.5V, V- = -16.5V, VIN = 0V or 5V 25 - 0.0001 1 μA
85 - - 5 μA
Negative Supply Current, I- 25 -1 -0.0001 - μA
85 -5 - - μA
Logic Supply Current, IL 25 - 0.0001 1 μA
85 - - 5 μA
Ground Current, IGND 25 -1 -0.0001 - μA
85 -5 - - μA
Electrical Specifications (Single Supply) Test Conditions: V+ = +12V, V- = 0V, VL = 5V, VIN = 2.4V, 0.8V (Note 3),
Unless Otherwise Specified.
PARAMETER TEST CONDITIONS
TEMP
(°C)
MIN
(Note 4)
TYP
(Note 5)
MAX
(Note 4) UNITS
DYNAMIC CHARACTERISTICS
Turn-ON Time, tON RL = 300Ω, CL = 35pF,
VS = 8V, (Figure 1)
25 - 175 250 ns
85 - - 315 ns
Turn-OFF Time, tOFF 25 - 95 125 ns
85 - - 140 ns
Break-Before-Make Time Delay DG413 Only, RL = 300Ω,
CL = 35pF, VS = 8V
25 - 25 - ns
Charge Injection, Q CL = 10nF, VG = 6.0V, RG = 0Ω 25 - 25 - pC
ANALOG SWITCH CHARACTERISTICS
Analog Signal Range, VANALOG Full 0 - 12 V
Drain-Source ON-Resistance,
rDS(ON)
IS = -10mA, VD = 3V, 8V
V+ = 10.8V
25 - 40 80 Ω
Full - - 100 Ω
Electrical Specifications Test Conditions: V+ = +15V, V- = -15V, VL = 5V, VIN = 2.4V, 0.8V (Note 3),
Unless Otherwise Specified. (Continued)
PARAMETER TEST CONDITIONS
TEMP
(°C)
MIN
(Note 4)
TYP
(Note 5)
MAX
(Note 4) UNITS
±
DG411, DG412, DG413
6 FN3282.13
June 20, 2007
POWER SUPPLY CHARACTERISTICS
Positive Supply Current, I+ V+ = 13.2V, V- = 0V
VIN = 0V or 5V
25 - 0.0001 1 μA
85 - - 5 μA
Negative Supply Current, I- 25 -1 -0.0001 - μA
85 -5 - - μA
Logic Supply Current, IL 25 - 0.0001 1 μA
85 - - 5 μA
Ground Current, IGND 25 -1 -0.0001 - μA
85 -5 - - μA
NOTES:
3. VIN = input voltage to perform proper function.
4. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
5. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
Test Circuits and Waveforms
VO is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing
edge of the output waveform.
NOTE: Logic input waveform is inverted for switches that have the
opposite logic sense.
FIGURE 1A. MEASUREMENTS POINTS
Repeat test for all IN and S.
For load conditions, see Specifications. CL includes fixture and stray
capacitance.
FIGURE 1B. TEST CIRCUIT
FIGURE 1. SWITCHING TIMES
FIGURE 2A. MEASUREMENT POINTS FIGURE 2B. TEST CIRCUITS
FIGURE 2. BREAK-BEFORE-MAKE TIME
Electrical Specifications (Single Supply) Test Conditions: V+ = +12V, V- = 0V, VL = 5V, VIN = 2.4V, 0.8V (Note 3),
Unless Otherwise Specified. (Continued)
PARAMETER TEST CONDITIONS
TEMP
(°C)
MIN
(Note 4)
TYP
(Note 5)
MAX
(Note 4) UNITS
50%
tr < 20ns
tf < 20ns
tOFF
90%
3V
0V
VS
0V
tON
VO
LOGIC
INPUT
SWITCH
INPUT
SWITCH
OUTPUT
90%
VO VS
RL
RL + rDS(ON)
= ------------------------------------
SWITCH
INPUT
LOGIC
INPUT
S1
IN1
V+
D1
RL CL
VO
GND
VVL
+5V +15V
SWITCH
OUTPUT
-15V
tD
3V
0V
VS1
0V
tD
LOGIC
INPUT
SWITCH
OUTPUT
SWITCH
OUTPUT
90%
0V
VS2
(V01)
VO2
90%
S1
IN1, IN2
V+
D1
RL1 CL1
VO1
GND VVL
VS1 = 10V
300Ω
+5V +15V
S2 D2 35pF
RL2 CL2
VO2
VS2 = 10V
300Ω 35pF
-15V
LOGIC
INPUT
CL includes fixture and
stray capacitance.
DG411, DG412, DG413
7 FN3282.13
June 20, 2007
FIGURE 3A. TEST CIRCUIT
NOTE: INX dependent on switch configuration, input polarity
determined by sense of switch.
FIGURE 3B. MEASUREMENT POINTS
FIGURE 3. CHARGE INJECTION
FIGURE 4. CROSSTALK TEST CIRCUIT FIGURE 5. OFF ISOLATION TEST CIRCUIT
FIGURE 6. SOURCE/DRAIN CAPACITANCES TEST CIRCUIT
Test Circuits and Waveforms (Continued)
V+
D1
CL
VO
GND
VVIN
= 3V
RG
VG
SWITCH ΔVO
INX
OFF ON
INX
OFF OFF
OFF
ON
Q = ΔVO x CL
OUTPUT
0V, 2.4V
ANALYZER
+15V
C V+
0dBm VS
SIGNAL
GENERATOR
RL
GND
IN1
VD
IN2
50Ω
0V, 2.4V
NC
V-
-15V
C
VD ANALYZER
RL
+15V
0dBm
SIGNAL
GENERATOR
C V+
V-
-15V
C
0V, 2.4V
VS
VD
INX
GND
+15V
C V+
GND
VS
VD
INX
V-
-15V
C
IMPEDANCE
ANALYZER
f = 1MHz
0V, 2.4V
DG411, DG412, DG413
8 FN3282.13
June 20, 2007
Application Information
Single Supply Operation
The DG411, DG412, DG413 can be operated with unipolar
supplies from 5V to 44V. These devices are characterized
and tested for single supply operation at 12V to facilitate the
majority of applications. To function properly, 12V is tied to
Pins 13 and 0V is tied to Pin 4.
Pin 12 still requires 5V for TTL compatible switching.
Summing Amplifier
When driving a high impedance, high capacitance load such
as shown in Figure 7, where the inputs to the summing
amplifier have some noise filtering, it is necessary to have
shunt switches for rapid discharge of the filter capacitor, thus
preventing offsets from occurring at the output.
VIN1
R1 R2
VOUT
+
-
C1
VIN2
R3 R4
C2
DG413
R5
R6
FIGURE 7. SUMMING AMPLIFIER
DG411, DG412, DG413
9 FN3282.13
June 20, 2007
Typical Performance Curves
FIGURE 8. ON RESISTANCE vs VD AND POWER SUPPLY
VOLTAGE
FIGURE 9. SWITCHING TIME vs TEMPERATURE
FIGURE 10. LEAKAGE CURRENTS vs ANALOG VOLTAGE FIGURE 11. SUPPLY CURRENT vs INPUT SWITCHING
FREQUENCY
FIGURE 12. CHARGE INJECTION vs SOURCE VOLTAGE FIGURE 13. CHARGE INJECTION vs DRAIN VOLTAGE
TA = +25°C
50
A: ±5V
B: ±8V
C: ±10V
D: ±12V
E: ±15V
F: ±20V
45
40
35
30
25
20
15
10
5
0
-20 -15 -10 -5 0 5 10 15 20
A
B
C
ré
E
fa
DRAIN VOLTAGE (V)
rDS(ON) (Ω)
V+ = 15V, V- = -15V
VL = 5V, VS = 10V
tON
tOFF
-55 -15 5 25 45 65 85 105 125
TEMPERATURE (°C)
-35
0
240
210
180
150
120
90
60
30
tON, tOFF (ns)
V+ = 15V, V- = -15V
VL = 5V, TA = +25°C
-15 -5 0 5 10 15
VS, VD (V)
-10
-60
20
10
0
-10
-20
-30
-40
-50
IS, ID (pA)
IS(OFF)
ID(OFF)
30
40
ID(ON) + IS(ON)
ISUPPLY
100mA
1mA
100μA
10μA
1μA
100nA
10nA
10mA
10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
IL
I+, I-
1SW 1SW
4SW
4SW
V+ = 15V, V- = -15V
VL = 5V
CL = 10nF
CL = 1nF
-15 -5 0 5 10 15
VS (V)
-10
-60
60
40
20
0
-20
-40
Q (pC)
80
100
V+ = 15V, V- = -15V
VL = 5V CL = 10nF
CL = 1nF
-15 -5 0 5 10 15
VD (V)
-10
-60
60
40
20
0
-20
-40
Q (pC)
100
140
120
80
V+ = 15V, V- = -15V
VL = 5V
DG411, DG412, DG413
10 FN3282.13
June 20, 2007
Die Characteristics
DIE DIMENSIONS:
2760mm x 1780mm x 485mm
METALLIZATION:
Type: SiAl
Thickness: 12kÅ ±1kÅ
PASSIVATION:
Type: Nitride
Thickness: 8kÅ ±1kÅ
WORST CASE CURRENT DENSITY:
1.5 x 105 A/cm2
Metallization Mask Layout
DG411, DG412, DG413
S1 (3)
V- (4)
GND (5)
S4 (6)
D1 IN1 IN2
(11) S3
(12) VL
(13) V+ SUBSTRATE
(14) S2
(15) D2
(2) (1) (16)
D4 IN4 IN3 D3
(7) (8) (9) (10)
DG411, DG412, DG413
11 FN3282.13
June 20, 2007
DG411, DG412, DG413
Thin Shrink Small Outline Plastic Packages (TSSOP)
NOTES:
1. These package dimensions are within allowable dimensions of
JEDEC MO-153-AB, Issue E.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusion and gate burrs shall not exceed
0.15mm (0.006 inch) per side.
4. Dimension “E1” does not include interlead flash or protrusions.
Interlead flash and protrusions shall not exceed 0.15mm (0.006
inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual
index feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension “b” does not include dambar protrusion. Allowable
dambar protrusion shall be 0.08mm (0.003 inch) total in excess
of “b” dimension at maximum material condition. Minimum space
between protrusion and adjacent lead is 0.07mm (0.0027 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions
are not necessarily exact. (Angles in degrees)
α
INDEX
AREA
E1
ré
N
1 2 3
-B-
0.10(0.004) M C A B S
et
-Ab
M
-CA1
A
SEATING PLANE
0.10(0.004)
c
E 0.25(0.010) M B M
L
0.25
0.010
GAUGE
PLANE
A2
0.05(0.002)
M16.173
16 LEAD THIN SHRINK SMALL OUTLINE PLASTIC PACKAGE
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A - 0.043 - 1.10 -
A1 0.002 0.006 0.05 0.15 -
A2 0.033 0.037 0.85 0.95 -
b 0.0075 0.012 0.19 0.30 9
c 0.0035 0.008 0.09 0.20 -
D 0.193 0.201 4.90 5.10 3
E1 0.169 0.177 4.30 4.50 4
e 0.026 BSC 0.65 BSC -
E 0.246 0.256 6.25 6.50 -
L 0.020 0.028 0.50 0.70 6
N 16 16 7
a 0o 8o 0o 8o -
Rev1 2/02
12 FN3282.13
June 20, 2007
DG411, DG412, DG413
Dual-In-Line Plastic Packages (PDIP)
NOTES:
1. Controlling Dimensions: INCH. In case of conflict between English and
Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of
Publication No. 95.
4. Dimensions A, A1 and L are measured with the package seated in JEDEC
seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions.
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
6. E and are measured with the leads constrained to be perpendicular
to datum .
7. eB and eC are measured at the lead tips with the leads unconstrained.
eC must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar
protrusions shall not exceed 0.010 inch (0.25mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).
eA
-CCL
E
eA
C
eB
eC
-BE1
INDEX 1 2 3 N/2
N
AREA
SEATING
BASE
PLANE
PLANE
-CD1
B1
B
et
ré
D1
A2 A
L
A1
-A-
0.010 (0.25) M C A B S
E16.3 (JEDEC MS-001-BB ISSUE D)
16 LEAD DUAL-IN-LINE PLASTIC PACKAGE
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A - 0.210 - 5.33 4
A1 0.015 - 0.39 - 4
A2 0.115 0.195 2.93 4.95 -
B 0.014 0.022 0.356 0.558 -
B1 0.045 0.070 1.15 1.77 8, 10
C 0.008 0.014 0.204 0.355 -
D 0.735 0.775 18.66 19.68 5
D1 0.005 - 0.13 - 5
E 0.300 0.325 7.62 8.25 6
E1 0.240 0.280 6.10 7.11 5
e 0.100 BSC 2.54 BSC -
eA 0.300 BSC 7.62 BSC 6
eB - 0.430 - 10.92 7
L 0.115 0.150 2.93 3.81 4
N 16 16 9
Rev0 12/93
13
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
FN3282.13
June 20, 2007
DG411, DG412, DG413
Small Outline Plastic Packages (SOIC)
NOTES:
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of
Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006
inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater above
the seating plane, shall not exceed a maximum value of 0.61mm
(0.024 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions are
not necessarily exact.
INDEX
AREA
E
ré
N
1 2 3
-B-
0.25(0.010) M C A B S
et
-AL
B
M
-CA1
A
SEATING PLANE
0.10(0.004)
h x 45°
C
H 0.25(0.010) M B M
α
M16.15 (JEDEC MS-012-AC ISSUE C)
16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A 0.0532 0.0688 1.35 1.75 -
A1 0.0040 0.0098 0.10 0.25 -
B 0.013 0.020 0.33 0.51 9
C 0.0075 0.0098 0.19 0.25 -
D 0.3859 0.3937 9.80 10.00 3
E 0.1497 0.1574 3.80 4.00 4
e 0.050 BSC 1.27 BSC -
H 0.2284 0.2440 5.80 6.20 -
h 0.0099 0.0196 0.25 0.50 5
L 0.016 0.050 0.40 1.27 6
N 16 16 7
α 0° 8° 0° 8° -
Rev1 6/05
1
®
July 2004
HIP4081A
80V/2.5A Peak, High Frequency Full
Bridge FET Driver
The HIP4081A is a high frequency, medium voltage Full
Bridge N-Channel FET driver IC, available in 20 lead plastic
SOIC and DIP packages. The HIP4081A can drive every
possible switch combination except those which would
cause a shoot-through condition. The HIP4081A can switch
at frequencies up to 1MHz and is well suited to driving Voice
Coil Motors, high-frequency switching power amplifiers, and
power supplies.
For example, the HIP4081A can drive medium voltage brush
motors, and two HIP4081As can be used to drive high
performance stepper motors, since the short minimum
“on-time” can provide fine micro-stepping capability.
Short propagation delays of approximately 55ns maximizes
control loop crossover frequencies and dead-times which
can be adjusted to near zero to minimize distortion, resulting
in rapid, precise control of the driven load.
A similar part, the HIP4080A, includes an on-chip input
comparator to create a PWM signal from an external triangle
wave and to facilitate “hysteresis mode” switching.
The Application Note for the HIP4081A is the AN9405.
Features
• Independently Drives 4 N-Channel FET in Half Bridge or
Full Bridge Configurations
• Bootstrap Supply Max Voltage to 95VDC
• Drives 1000pF Load at 1MHz in Free Air at 50°C with Rise
and Fall Times of Typically 10ns
• User-Programmable Dead Time
• On-Chip Charge-Pump and Bootstrap Upper Bias
Supplies
• DIS (Disable) Overrides Input Control
• Input Logic Thresholds Compatible with 5V to 15V Logic
Levels
• Very Low Power Consumption
• Undervoltage Protection
• Pb-free Available
Applications
• Medium/Large Voice Coil Motors
• Full Bridge Power Supplies
• Switching Power Amplifiers
• High Performance Motor Controls
• Noise Cancellation Systems
• Battery Powered Vehicles
• Peripherals
• U.P.S.
Pinout
HIP4081A
(PDIP, SOIC)
TOP VIEW
Ordering Information
PART
NUMBER
TEMP RANGE
(°C) PACKAGE
PKG.
DWG. #
HIP4081AIP -40 to 85 20 Ld PDIP E20.3
HIP4081AIPZ
(Note)
-40 to 85 20 Ld PDIP
(Pb-free)
E20.3
HIP4081AIB -40 to 85 20 Ld SOIC (W) M20.3
HIP4081AIBZ
(Note)
-40 to 85 20 Ld SOIC (W)
(Pb-free)
M20.3
NOTE: Intersil Pb-free products employ special Pb-free material
sets; molding compounds/die attach materials and 100% matte tin
plate termination finish, which is compatible with both SnPb and
Pb-free soldering operations. Intersil Pb-free products are MSL
classified at Pb-free peak reflow temperatures that meet or exceed
the Pb-free requirements of IPC/JEDEC J Std-020B.
11
12
13
14
15
16
17
18
20
19
10
9
8
7
6
5
4
3
2
BHB 1
BHI
DIS
VSS
BLI
ALI
HDEL
AHI
LDEL
AHB
BHO
BLO
BLS
VDD
BHS
VCC
ALS
ALO
AHS
AHO
Data Sheet FN3659.7
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright Harris Corporation. Copyright Intersil Americas Inc. 2003, 2004. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
2
HIP4081A
Application Block Diagram
Functional Block Diagram (1/2 HIP4081A)
80V
GND
LOAD
HIP4081A
GND
12V
AHI
ALI
BLI
BHI BLO
BHS
BHO
ALO
AHS
AHO
CHARGE
PUMP
VDD
AHI
DIS
ALI
HDEL
LDEL
VSS
TURN-ON
DELAY
TURN-ON
DELAY
DRIVER
DRIVER
AHB
AHO
AHS
VCC
ALO
ALS
CBF
TO VDD (PIN 16)
CBS
DBS
HIGH VOLTAGE BUS ≤ 80VDC
+12VDC
LEVEL SHIFT
AND LATCH
14
10
11
12
15
13
16
7
3
6
8
9
4
BIAS
SUPPLY
UNDERVOLTAGE
3
Typical Application (PWM Mode Switching)
11
12
13
14
15
16
17
18
20
19
10
9
8
7
6
5
4
3
2
1 BHB
BHI
DIS
VSS
BLI
ALI
HDEL
AHI
LDEL
AHB
BHO
BLO
BLS
VDD
BHS
VCC
ALS
ALO
AHS
AHO
80V
12V
+
-
12V
DIS
GND
6V
GND
TO OPTIONAL
CURRENT CONTROLLER
PWM
LOAD
INPUT
HIP4081/HIP4081A
HIP4081A
4
HIP4081A
Absolute Maximum Ratings Thermal Information
Supply Voltage, VDD and VCC . . . . . . . . . . . . . . . . . . . .-0.3V to 16V
Logic I/O Voltages . . . . . . . . . . . . . . . . . . . . . . .-0.3V to VDD +0.3V
Voltage on AHS, BHS . . .-6.0V (Transient) to 80V (25°C to 125°C)
Voltage on AHS, BHS . . .-6.0V (Transient) to 70V (-55°C to 125°C)
Voltage on ALS, BLS . . . . . . .-2.0V (Transient) to +2.0V (Transient)
Voltage on AHB, BHB . . . . . . . .VAHS, BHS -0.3V to VAHS, BHS +VDD
Voltage on ALO, BLO . . . . . . . . . . . ..VALS, BLS -0.3V to VCC +0.3V
Voltage on AHO, BHO . . . . . . .VAHS, BHS -0.3V to VAHB, BHB +0.3V
Input Current, HDEL and LDEL . . . . . . . . . . . . . . . . . .-5mA to 0mA
Phase Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20V/ns
NOTE: All Voltages relative to VSS, unless otherwise specified.
Thermal Resistance (Typical, Note 1) θJA (°C/W)
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
DIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Storage Temperature Range. . . . . . . . . . . . . . . . . . .-65°C to 150°C
Operating Max.Junction Temperature . . . . . . . . . . . . . . . . . .125°C
Lead Temperature (Soldering 10s)). . . . . . . . . . . . . . . . . ....300°C
(For SOIC - Lead Tips Only
Operating Conditions
Supply Voltage, VDD and VCC . . . . . . . . . . . . . . . . . . +9.5V to +15V
Voltage on ALS, BLS ................... .... ..-1.0V to +1.0V
Voltage on AHB, BHB . . . . . . . . .VAHS, BHS +5V to VAHS, BHS +15V
Input Current, HDEL and LDEL . . . . . . . . . . . . . . ..-500μA to -50μA
Operating Ambient Temperature Range . . . . . . . . . ..-40°C to 85°C
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and
TA = 25°C, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS
TJ = 25°C
TJS = -40°C TO
125°C
MIN TYP MAX MIN MAX UNITS
SUPPLY CURRENTS AND CHARGE PUMPS
VDD Quiescent Current IDD All inputs = 0V 8.5 10.5 14.5 7.5 14.5 mA
VDD Operating Current IDDO Outputs switching f = 500kHz 9.5 12.5 15.5 8.5 15.5 mA
VCC Quiescent Current ICC All Inputs = 0V, IALO = IBLO = 0 - 0.1 10 - 20 μA
VCC Operating Current ICCO f = 500kHz, No Load 1 1.25 2.0 0.8 3 mA
AHB, BHB Quiescent Current -
Qpump Output Current
IAHB, IBHB All Inputs = 0V, IAHO = IBHO = 0
VDD = VCC = VAHB = VBHB = 10V
-50 -30 -11 -60 -10 μA
AHB, BHB Operating Current IAHBO, IBHBO f = 500kHz, No Load 0.6 1.2 1.5 0.5 1.9 mA
AHS, BHS, AHB, BHB Leakage
Current
IHLK VBHS = VAHS = 80V,
VAHB = VBHB = 93V
- 0.02 1.0 - 10 μA
AHB-AHS, BHB-BHS Qpump
Output Voltage
VAHB-VAHS
VBHB-VBHS
IAHB = IAHB = 0, No Load 11.5 12.6 14.0 10.5 14.5 V
INPUT PINS: ALI, BLI, AHI, BHI, AND DIS
Low Level Input Voltage VIL Full Operating Conditions - - 1.0 - 0.8 V
High Level Input Voltage VIH Full Operating Conditions 2.5 - - 2.7 - V
Input Voltage Hysteresis - 35 - - - mV
Low Level Input Current IIL VIN = 0V, Full Operating Conditions -130 -100 -75 -135 -65 μA
High Level Input Current IIH VIN = 5V, Full Operating Conditions -1 - +1 -10 +10 μA
TURN-ON DELAY PINS: LDEL AND HDEL
LDEL, HDEL Voltage VHDEL, VLDEL IHDEL = ILDEL = -100μA 4.9 5.1 5.3 4.8 5.4 V
GATE DRIVER OUTPUT PINS: ALO, BLO, AHO, AND BHO
Low Level Output Voltage VOL IOUT = 100mA 0.7 0.85 1.0 0.5 1.1 V
High Level Output Voltage VCC-VOH IOUT = -100mA 0.8 0.95 1.1 0.5 1.2 V
Peak Pullup Current IO+ VOUT = 0V 1.7 2.6 3.8 1.4 4.1 A
5
HIP4081A
Peak Pulldown Current IO- VO UT = 12V 1.7 2.4 3.3 1.3 3.6 A
Undervoltage, Rising Threshold UV+ 8.1 8.8 9.4 8.0 9.5 V
Undervoltage, Falling Threshold UV- 7.6 8.3 8.9 7.5 9.0 V
Undervoltage, Hysteresis HYS 0.25 0.4 0.65 0.2 0.7 V
Switching Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K,
CL = 1000pF.
PARAMETER SYMBOL TEST CONDITIONS
TJ = 25°C
TJS = -40°C
TO 125°C
MIN TYP MAX MIN MAX UNITS
Lower Turn-off Propagation Delay
(ALI-ALO, BLI-BLO)
TLPHL - 30 60 - 80 ns
Upper Turn-off Propagation Delay
(AHI-AHO, BHI-BHO)
THPHL - 35 70 - 90 ns
Lower Turn-on Propagation Delay
(ALI-ALO, BLI-BLO)
TLPLH RHDEL = RLDEL = 10K - 45 70 - 90 ns
Upper Turn-on Propagation Delay
(AHI-AHO, BHI-BHO)
THPLH RHDEL = RLDEL = 10K - 60 90 - 110 ns
Rise Time TR - 10 25 - 35 ns
Fall Time TF - 10 25 - 35 ns
Turn-on Input Pulse Width TPWIN-ON RHDEL = RLDEL = 10K 50 - - 50 - ns
Turn-off Input Pulse Width TPWIN-OFF RHDEL = RLDEL = 10K 40 - - 40 - ns
Turn-on Output Pulse Width TPWOUT-ON RHDEL = RLDEL = 10K 40 - - 40 - ns
Turn-off Output Pulse Width TPWOUT-OFF RHDEL = RLDEL = 10K 30 - - 30 - ns
Disable Turn-off Propagation Delay
(DIS - Lower Outputs)
TDISLOW - 45 75 - 95 ns
Disable Turn-off Propagation Delay
(DIS - Upper Outputs)
TDISHIGH - 55 85 - 105 ns
Disable to Lower Turn-on Propagation Delay
(DIS - ALO and BLO)
TDLPLH - 40 70 - 90 ns
Refresh Pulse Width (ALO and BLO) TREF-PW 240 410 550 200 600 ns
Disable to Upper Enable (DIS - AHO and BHO) TUEN - 450 620 - 690 ns
TRUTH TABLE
INPUT OUTPUT
ALI, BLI AHI, BHI U/V DIS ALO, BLO AHO, BHO
X X X 1 0 0
1 X 0 0 1 0
0 1 0 0 0 1
0 0 0 0 0 0
X X 1 X 0 0
NOTE: X signifies that input can be either a “1” or “0”.
Electrical Specifications VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K and
TA = 25°C, Unless Otherwise Specified (Continued)
PARAMETER SYMBOL TEST CONDITIONS
TJ = 25°C
TJS = -40°C TO
125°C
MIN TYP MAX MIN MAX UNITS
6
HIP4081A
Pin Descriptions
PIN
NUMBER SYMBOL DESCRIPTION
1 BHB B High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap
diode and positive side of bootstrap capacitor to this pin. Internal charge pump supplies 30μA out of this pin to
maintain bootstrap supply. Internal circuitry clamps the bootstrap supply to approximately 12.8V.
2 BHI B High-side Input. Logic level input that controls BHO driver (Pin 20). BLI (Pin 5) high level input overrides BHI high
level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 3) high level input overrides BHI high level
input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD).
3 DIS DISable input. Logic level input that when taken high sets all four outputs low. DIS high overrides all other inputs.
When DIS is taken low the outputs are controlled by the other inputs. The pin can be driven by signal levels of 0V to
15V (no greater than VDD).
4 VSS Chip negative supply, generally will be ground.
5 BLI B Low-side Input. Logic level input that controls BLO driver (Pin 18). If BHI (Pin 2) is driven high or not connected
externally then BLI controls both BLO and BHO drivers, with dead time set by delay currents at HDEL and LDEL (Pin
8 and 9). DIS (Pin 3) high level input overrides BLI high level input. The pin can be driven by signal levels of 0V to 15V
(no greater than VDD).
6 ALI A Low-side Input. Logic level input that controls ALO driver (Pin 13). If AHI (Pin 7) is driven high or not connected
externally then ALI controls both ALO and AHO drivers, with dead time set by delay currents at HDEL and LDEL (Pin
8 and 9). DIS (Pin 3) high level input overrides ALI high level input. The pin can be driven by signal levels of 0V to 15V
(no greater than VDD).
7 AHI A High-side Input. Logic level input that controls AHO driver (Pin 11). ALI (Pin 6) high level input overrides AHI high
level input to prevent half-bridge shoot-through, see Truth Table. DIS (Pin 3) high level input overrides AHI high level
input. The pin can be driven by signal levels of 0V to 15V (no greater than VDD).
8 HDEL High-side turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the turn-on delay of
both high-side drivers. The low-side drivers turn-off with no adjustable delay, so the HDEL resistor guarantees no
shoot-through by delaying the turn-on of the high-side drivers. HDEL reference voltage is approximately 5.1V.
9 LDEL Low-side turn-on DELay. Connect resistor from this pin to VSS to set timing current that defines the turn-on delay of
both low-side drivers. The high-side drivers turn-off with no adjustable delay, so the LDEL resistor guarantees no
shoot-through by delaying the turn-on of the low-side drivers. LDEL reference voltage is approximately 5.1V.
10 AHB A High-side Bootstrap supply. External bootstrap diode and capacitor are required. Connect cathode of bootstrap
diode and positive side of bootstrap capacitor to this pin. Internal charge pump supplies 30μA out of this pin to
maintain bootstrap supply. Internal circuitry clamps the bootstrap supply to approximately 12.8V.
11 AHO A High-side Output. Connect to gate of A High-side power MOSFET.
12 AHS A High-side Source connection. Connect to source of A High-side power MOSFET. Connect negative side of
bootstrap capacitor to this pin.
13 ALO A Low-side Output. Connect to gate of A Low-side power MOSFET.
14 ALS A Low-side Source connection. Connect to source of A Low-side power MOSFET.
15 VCC Positive supply to gate drivers. Must be same potential as VDD (Pin 16). Connect to anodes of two bootstrap diodes.
16 VDD Positive supply to lower gate drivers. Must be same potential as VCC (Pin 15). De-couple this pin to VSS (Pin 4).
17 BLS B Low-side Source connection. Connect to source of B Low-side power MOSFET.
18 BLO B Low-side Output. Connect to gate of B Low-side power MOSFET.
19 BHS B High-side Source connection. Connect to source of B High-side power MOSFET. Connect negative side of
bootstrap capacitor to this pin.
20 BHO B High-side Output. Connect to gate of B High-side power MOSFET.
7
HIP4081A
Timing Diagrams
FIGURE 1. INDEPENDENT MODE
FIGURE 2. BISTATE MODE
FIGURE 3. DISABLE FUNCTION
U/V = DIS = 0
XLI
XHI
XLO
XHO
TLPHL THPHL
THPLH TLPLH TR
(10% - 90%)
TF
(10% - 90%)
X = A OR B, A AND B HALVES OF BRIDGE CONTROLLER ARE INDEPENDENT
U/V = DIS = 0
XLI
XHI = HI OR NOT CONNECTED
XLO
XHO
(10% - 90%) (10% - 90%)
U/V OR DIS
XLI
XHI
XLO
XHO
TDLPLH TDIS
TUEN
TREF-PW
8
HIP4081A
Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 100K
and TA = 25°C, Unless Otherwise Specified
FIGURE 4. QUIESCENT IDD SUPPLY CURRENT vs VDD
SUPPLY VOLTAGE
FIGURE 5. IDDO, NO-LOAD IDD SUPPLY CURRENT vs
FREQUENCY (kHz)
FIGURE 6. SIDE A, B FLOATING SUPPLY BIAS CURRENT vs
FREQUENCY (LOAD = 1000pF)
FIGURE 7. ICCO, NO-LOAD ICC SUPPLY CURRENT vs
FREQUENCY (kHz) TEMPERATURE
FIGURE 8. IAHB, IBHB, NO-LOAD FLOATING SUPPLY BIAS
CURRENT vs FREQUENCY
FIGURE 9. ALI, BLI, AHI, BHI LOW LEVEL INPUT CURRENT IIL
vs TEMPERATURE
6 8 10 12 14
2.0
4.0
6.0
8.0
10.0
12.0
14.0
IDD SUPPLY CURRENT (mA)
VDD SUPPLY VOLTAGE (V)
0 100 200 300 400 500 600 700 800 900 1000
8.0
8.5
9.0
9.5
10.0
10.5
11.0
IDD SUPPLY CURRENT (mA)
SWITCHING FREQUENCY (kHz)
0 100 200 300 400 500 600 700 800 900 1000
0.0
5.0
10.0
15.0
20.0
25.0
30.0
FLOATING SUPPLY BIAS CURRENT (mA)
SWITCHING FREQUENCY (kHz) 0 100 200 300 400 500 600 700 800 900 1000
0.0
1.0
2.0
3.0
4.0
5.0
ICC SUPPLY CURRENT (mA)
SWITCHING FREQUENCY (kHz)
75°C
25°C
125°C
-40°C
0°C
0.5
1
1.5
2
2.5
0 200 400 600 800 1000
FLOATING SUPPLY BIAS CURRENT (mA)
SWITCHING FREQUENCY (kHz)
-50 -25 0 25 50 75 100 125
-120
-110
-100
-90
LOW LEVEL INPUT CURRENT (μA)
JUNCTION TEMPERATURE (°C)
9
HIP4081A
Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K
and TA = 25°C, Unless Otherwise Specified
FIGURE 10. AHB - AHS, BHB - BHS NO-LOAD CHARGE PUMP
VOLTAGE vs TEMPERATURE
FIGURE 11. UPPER DISABLE TURN-OFF PROPAGATION
DELAY TDISHIGH vs TEMPERATURE
FIGURE 12. DISABLE TO UPPER ENABLE, TUEN,
PROPAGATION DELAY vs TEMPERATURE
FIGURE 13. LOWER DISABLE TURN-OFF PROPAGATION
DELAY TDISLOW vs TEMPERATURE
FIGURE 14. TREF-PW REFRESH PULSE WIDTH vs
TEMPERATURE
FIGURE 15. DISABLE TO LOWER ENABLE TDLPLH
PROPAGATION DELAY vs TEMPERATURE
-40 -20 0 20 40 60 80 100 120
10.0
11.0
12.0
13.0
14.0
15.0
NO-LOAD FLOATING CHARGE PUMP VOLTAGE (V)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
425
450
475
500
525
-50 -25 0 25 50 75 100 125 150
JUNCTION TEMPERATURE (°C)
PROPAGATION DELAY (ns)
-40 -20 0 20 40 60 80 100 120
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
350
375
400
425
450
-50 -25 0 25 50 75 100 125 150
REFRESH PULSE WIDTH (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
20
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
10
HIP4081A
FIGURE 16. UPPER TURN-OFF PROPAGATION DELAY THPHL
vs TEMPERATURE
FIGURE 17. UPPER TURN-ON PROPAGATION DELAY THPLH vs
TEMPERATURE
FIGURE 18. LOWER TURN-OFF PROPAGATION DELAY TLPHL
vs TEMPERATURE
FIGURE 19. LOWER TURN-ON PROPAGATION DELAY TLPLH vs
TEMPERATURE
FIGURE 20. GATE DRIVE FALL TIME TF vs TEMPERATURE FIGURE 21. GATE DRIVE RISE TIME TR vs TEMPERATURE
Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL = 10K
and TA = 25°C, Unless Otherwise Specified (Continued)
-40 -20 0 20 40 60 80 100 120
20
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
20
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
20
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
20
30
40
50
60
70
80
PROPAGATION DELAY (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
8.5
9.5
10.5
11.5
12.5
13.5
GATE DRIVE FALL TIME (ns)
JUNCTION TEMPERATURE (°C)
-40 -20 0 20 40 60 80 100 120
8.5
9.5
10.5
11.5
12.5
13.5
TURN-ON RISE TIME (ns)
JUNCTION TEMPERATURE (°C)
11
HIP4081A
Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL =
100K and TA = 25°C, Unless Otherwise Specified
FIGURE 22. VLDEL, VHDEL VOLTAGE vs TEMPERATURE FIGURE 23. HIGH LEVEL OUTPUT VOLTAGE VCC - VOH vs BIAS
SUPPLY AND TEMPERATURE AT 100mA
FIGURE 24. LOW LEVEL OUTPUT VOLTAGE VOL vs BIAS
SUPPLY AND TEMPERATURE AT 100mA
FIGURE 25. PEAK PULLDOWN CURRENT IO vs BIAS SUPPLY
VOLTAGE
FIGURE 26. PEAK PULLUP CURRENT IO+ vs BIAS SUPPLY
VOLTAGE
FIGURE 27. LOW VOLTAGE BIAS CURRENT IDD (LESS
QUIESCENT COMPONENT) vs FREQUENCY AND
GATE LOAD CAPACITANCE
-40 -20 0 20 40 60 80 100 120
4.0
4.5
5.0
5.5
6.0
HDEL, LDEL INPUT VOLTAGE (V)
JUNCTION TEMPERATURE (°C)
10 12 14
0
250
500
750
1000
1250
1500
VCC - VOH (mV)
BIAS SUPPLY VOLTAGE (V)
75°C
25°C
125°C
-40°C
0°C
12 14
0
250
500
750
1000
1250
1500
VOL (mV)
BIAS SUPPLY VOLTAGE (V)
10
75°C
25°C
125°C
-40°C
0°C
6 7 8 9 10 11 12 13 14 15 16
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
GATE DRIVE SINK CURRENT (A)
VDD, VCC, VAHB, VBHB (V)
6 7 8 9 10 11 12 13 14 15 16
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
GATE DRIVE SINK CURRENT (A)
VDD, VCC, VAHB, VBHB (V)
1 2 5 10 20 50 100 200 500 1000
0.1
1
10
100
500
50
5
0.5
200
20
2
0.2
LOW VOLTAGE BIAS CURRENT (mA)
SWITCHING FREQUENCY (kHz)
100pF
1,000pF
10,000pF
3,000pF
12
HIP4081A
FIGURE 28. HIGH VOLTAGE LEVEL-SHIFT CURRENT vs FREQUENCY AND BUS VOLTAGE
FIGURE 29. UNDERVOLTAGE LOCKOUT vs TEMPERATURE FIGURE 30. MINIMUM DEAD-TIME vs DEL RESISTANCE
Typical Performance Curves VDD = VCC = VAHB = VBHB = 12V, VSS = VALS = VBLS = VAHS = VBHS = 0V, RHDEL = RLDEL =
100K and TA = 25°C, Unless Otherwise Specified (Continued)
10 20 50 100 200 500 1000
10
100
1000
20
50
200
500
LEVEL-SHIFT CURRENT (μA)
SWITCHING FREQUENCY (kHz)
8.2
8.4
8.6
8.8
9.0
50 25 0 25 50 75 100 125 150
UV+
UVTEMPERATURE
(°C)
BIAS SUPPLY VOLTAGE, VDD (V)
10 50 100 150 200 250
0
30
60
90
120
150
HDEL/LDEL RESISTANCE (kΩ)
DEAD-TIME (ns)
13
HIP4081A
1
2
3
1
2
3
1
2
3
5 6
1
2
3
1 2
13 12
1
2
3
11 10
1
2
3
1
2
3
4
5
6
7
8
9
10 11
12
13
14
15
16
17
18
19
20
L1
R21
Q1
Q3
Q4
R22
L2
R23 C1
C3
JMPR1
R24
R30 R31
C2
R34
C4
CR2
CR1
Q2
JMPR5
JMPR3
JMPR2
JMPR4
R33
C5
C6
CX CY
C8
U1
CW CW
+
B+
IN2 IN1
BO
OUT/BLI
IN-/AHI
COM
IN+/ALI +12V
+12V
BLS
AO
HEN/BHI
ALS
CD4069UB
CD4069UB
CD4069UB
CD4069UB
HIP4080A/81A
SECTION
CONTROL LOGIC
POWER SECTION
DRIVER SECTION
AHB AHO
LDEL AHS
HDEL ALO
IN-/AHI ALS
IN+/ALI VCC
OUT/BLI VDD
VSS BLS
DIS BLO
HEN/BHI BHS
BHB BHO
R29
U2
U2
U2
U2
3 4
9 8
R32
je
O
O
CD4069UB
CD4069UB
ENABLE IN
U2
U2
NOTES:
1. DEVICE CD4069UB PIN 7 = COM, PIN 14 = +12V.
2. COMPONENTS L1, L2, C1, C2, CX, CY, R30, R31, NOT SUPPLIED.
REFER TO APPLICATION NOTE FOR DESCRIPTION OF INPUT
LOGIC OPERATION TO DETERMINE JUMPER LOCATIONS FOR
JMPR1 - JMPR4.
FIGURE 31. HIP4081A EVALUATION PC BOARD SCHEMATIC
14
HIP4081A
R22 1
Q3
L1
JMPR2
JMPR5
R31
R33
CR2
R23
R24
R27
R28
R26
1
Q4
1
JMPR3 Q2
U1
R21
GND
L2
C3
C4
JMPR4
JMPR1
R30
CR1
U2
R34
R32
je
O
C8
R29
C7
C6
C5
CY
CX
1
Q1
COM
+12V
B+
IN1
IN2
AHO
BHO
ALO
BLO
BLS
BLS
LDEL
HDEL
DIS
ALS
ALS
O
+ +
HIP4080/81
FIGURE 32. HIP4081A EVALUATION BOARD SILKSCREEN
15
HIP4081A
Dual-In-Line Plastic Packages (PDIP)
NOTES:
1. Controlling Dimensions: INCH. In case of conflict between English
and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2
of Publication No. 95.
4. Dimensions A, A1 and L are measured with the package seated in
JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions.
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
6. E and are measured with the leads constrained to be perpendicular
to datum .
7. eB and eC are measured at the lead tips with the leads unconstrained.
eC must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar
protrusions shall not exceed 0.010 inch (0.25mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).
eA
-CCL
E
eA
C
eB
eC
-BE1
INDEX 1 2 3 N/2
N
AREA
SEATING
BASE
PLANE
PLANE
-CD1
B1
B
et
ré
D1
A2 A
L
A1
-A-
0.010 (0.25) M C A B S
E20.3 (JEDEC MS-001-AD ISSUE D)
20 LEAD DUAL-IN-LINE PLASTIC PACKAGE
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A - 0.210 - 5.33 4
A1 0.015 - 0.39 - 4
A2 0.115 0.195 2.93 4.95 -
B 0.014 0.022 0.356 0.558 -
B1 0.045 0.070 1.55 1.77 8
C 0.008 0.014 0.204 0.355 -
D 0.980 1.060 24.89 26.9 5
D1 0.005 - 0.13 - 5
E 0.300 0.325 7.62 8.25 6
E1 0.240 0.280 6.10 7.11 5
e 0.100 BSC 2.54 BSC -
eA 0.300 BSC 7.62 BSC 6
eB - 0.430 - 10.92 7
L 0.115 0.150 2.93 3.81 4
N 20 20 9
Rev0 12/93
16
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
HIP4081A
Small Outline Plastic Packages (SOIC)
NOTES:
1. Symbols are defined in the “MO Series Symbol List” in Section
2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusion and gate burrs shall not exceed
0.15mm (0.006 inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead
flash and protrusions shall not exceed 0.25mm (0.010
inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual
index feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater
above the seating plane, shall not exceed a maximum value of
0.61mm (0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions
are not necessarily exact.
INDEX
AREA
E
ré
N
1 2 3
-B-
0.25(0.010) M C A B S
et
-AL
B
M
-CA1
A
SEATING PLANE
0.10(0.004)
h x 45o
C
H
μ
0.25(0.010) M B M
α
M20.3 (JEDEC MS-013-AC ISSUE C)
20 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE
SYMBOL
INCHES MILLIMETERS
MIN MAX MIN MAX NOTES
A 0.0926 0.1043 2.35 2.65 -
A1 0.0040 0.0118 0.10 0.30 -
B 0.014 0.019 0.35 0.49 9
C 0.0091 0.0125 0.23 0.32 -
D 0.4961 0.5118 12.60 13.00 3
E 0.2914 0.2992 7.40 7.60 4
e 0.050 BSC 1.27 BSC -
H 0.394 0.419 10.00 10.65 -
h 0.010 0.029 0.25 0.75 5
L 0.016 0.050 0.40 1.27 6
N 20 20 7
α 0o 8o 0o 8o -
Rev1 1/02
http://www.farnell.com/datasheets/32553.pdf
1
®
FN3663.5
HFA3101
Gilbert Cell UHF Transistor Array
The HFA3101 is an all NPN transistor array configured as a Multiplier Cell. Based on Intersil’s bonded wafer UHF-1 SOI process, this array achieves very high fT (10GHz) while maintaining excellent hFE and VBE matching characteristics that have been maximized through careful attention to circuit design and layout, making this product ideal for communication circuits. For use in mixer applications, the cell provides high gain and good cancellation of 2nd order distortion terms.
Pinout
HFA3101(SOIC)
TOP VIEW
Features
•Pb-free Available as an Option
•High Gain Bandwidth Product (fT) . . . . . . . . . . . . .10GHz
•High Power Gain Bandwidth Product. . . . . . . . . . . .5GHz
•Current Gain (hFE). . . . . . . . . . . . . . . . . . . . . . . . . . . ..70
•Low Noise Figure (Transistor) . . . . . . . . . . . . . . . . .3.5dB
•Excellent hFE and VBE Matching
•Low Collector Leakage Current . . . . . . . . . . . . . .<0.01nA
•Pin to Pin Compatible to UPA101
Applications
•Balanced Mixers
•Multipliers
•Demodulators/Modulators
•Automatic Gain Control Circuits
•Phase Detectors
•Fiber Optic Signal Processing
•Wireless Communication Systems
•Wide Band Amplification Stages
•Radio and Satellite Communications
•High Performance Instrumentation
Ordering Information
PART NUMBER (BRAND)
TEMP. RANGE (°C)
PACKAGE
PKG. DWG. #
HFA3101B
(H3101B)
-40 to 85
8 Ld SOIC
M8.15
HFA3101BZ
(H3101B) (Note)
-40 to 85
8 Ld SOIC
(Pb-free)
M8.15
HFA3101B96
(H3101B)
-40 to 85
8 Ld SOIC Tape and Reel
M8.15
HFA3101BZ96
(H3101B) (Note)
-40 to 85
8 Ld SOIC Tape and Reel (Pb-free)
M8.15
NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which is compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020C.
12348765Q5Q6Q1Q2Q3Q4NOTE: Q5 and Q6 -
2
Paralleled 3μm x
50μm Transistors Q1, Q2, Q3, Q4 -
Single 3μm x
50μm Transistors
Data Sheet
September 2004
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 1998, 2004. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
2
Absolute Maximum Ratings
Thermal Information
VCEO, Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . .8.0V
VCBO, Collector to Base Voltage. . . . . . . . . . . . . . . . . . . . . . .12.0V
VEBO, Emitter to Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . .5.5V
IC, Collector Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30mA
Operating Conditions
Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . .-40oC to 85oC
Thermal Resistance (Typical, Note 1)θJA (oC/W) SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185
Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . ..175oC
Maximum Junction Temperature (Plastic Package). . . . . . . ..150oC
Maximum Storage Temperature Range. . . . . . . . . .-65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . ..300oC (SOIC - Lead Tips Only)
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical SpecificationsTA = 25oC
PARAMETER
TEST CONDITIONS
(NOTE 2)
TEST LEVEL
MIN
TYP
MAX
UNITS
Collector to Base Breakdown Voltage, V(BR)CBO, Q1 thru Q6
IC = 100μA, IE = 0
A
12
18
-
V
Collector to Emitter Breakdown Voltage, V(BR)CEO,
Q5 and Q6
IC = 100μA, IB = 0
A
8
12
-
V
Emitter to Base Breakdown Voltage, V(BR)EBO, Q1 thru Q6
IE = 10μA, IC = 0
A
5.5
6
-
V
Collector Cutoff Current, ICBO, Q1 thru Q4
VCB = 8V, IE = 0
A
-
0.1
10
nA
Emitter Cutoff Current, IEBO, Q5 and Q6
VEB = 1V, IC = 0
A
-
-
200
nA
DC Current Gain, hFE, Q1 thru Q6
IC = 10mA, VCE = 3V
A
40
70
-
Collector to Base Capacitance, CCB
Q1 thru Q4
VCB = 5V, f = 1MHz
C
-
0.300
-
pF
Q5 and Q6
-
0.600
-
pF
Emitter to Base Capacitance, CEB
Q1 thru Q4
VEB = 0, f = 1MHz
B
-
0.200
-
pF
Q5 and Q6
-
0.400
-
pF
Current Gain-Bandwidth Product, fT
Q1 thru Q4
IC = 10mA, VCE = 5V
C
-
10
-
GHz
Q5 and Q6
IC = 20mA, VCE = 5V
C
-
10
-
GHz
Power Gain-Bandwidth Product, fMAX
Q1 thru Q4
IC = 10mA, VCE = 5V
C
-
5
-
GHz
Q5 and Q6
IC = 20mA, VCE = 5V
C
-
5
-
GHz
Available Gain at Minimum Noise Figure, GNFMIN,
Q5 and Q6
IC = 5mA, VCE = 3V
f = 0.5GHz
C
-
17.5
-
dB
f = 1.0GHz
C
-
11.9
-
dB
Minimum Noise Figure, NFMIN, Q5 and Q6
IC = 5mA, VCE = 3V
f = 0.5GHz
C
-
1.7
-
dB
f = 1.0GHz
C
-
2.0
-
dB
50Ω Noise Figure, NF50Ω, Q5 and Q6
IC = 5mA, VCE = 3V
f = 0.5GHz
C
-
2.25
-
dB
f = 1.0GHz
C
-
2.5
-
dB
DC Current Gain Matching, hFE1/hFE2, Q1 and Q2,
Q3 and Q4, and Q5 and Q6
IC = 10mA, VCE = 3V
A
0.9
1.0
1.1
Input Offset Voltage, VOS, (Q1 and Q2), (Q3 and Q4),
(Q5 and Q6)
IC = 10mA, VCE = 3V
A
-
1.5
5
mV
Input Offset Current, IC, (Q1 and Q2), (Q3 and Q4),
(Q5 and Q6)
IC = 10mA, VCE = 3V
A
-
5
25
μA
Input Offset Voltage TC, dVOS/dT, (Q1 and Q2, Q3 and Q4, Q5 and Q6)
IC = 10mA, VCE = 3V
C
-
0.5
-
μV/oC
Collector to Collector Leakage, ITRENCH-LEAKAGE
ΔVTEST = 5V
B
-
0.01
-
nA
NOTE:
2. Test Level: A. Production Tested, B. Typical or Guaranteed Limit Based on Characterization, C. Design Typical for Information Only.
HFA3101
3-3
PSPICE Model for a 3 μm x 50μm Transistor
.Model NUHFARRY NPN
+ (IS = 1.840E-16
XTI = 3.000E+00
EG = 1.110E+00
VAF = 7.200E+01
+ VAR = 4.500E+00
BF = 1.036E+02
ISE = 1.686E-19
NE = 1.400E+00
+ IKF = 5.400E-02
XTB = 0.000E+00
BR = 1.000E+01
ISC = 1.605E-14
+ NC = 1.800E+00
IKR = 5.400E-02
RC = 1.140E+01
CJC = 3.980E-13
+ MJC = 2.400E-01
VJC = 9.700E-01
FC = 5.000E-01
CJE = 2.400E-13
+ MJE = 5.100E-01
VJE = 8.690E-01
TR = 4.000E-09
TF = 10.51E-12
+ ITF = 3.500E-02
XTF = 2.300E+00
VTF = 3.500E+00
PTF = 0.000E+00
+ XCJC = 9.000E-01
CJS = 1.689E-13
VJS = 9.982E-01
MJS = 0.000E+00
+ RE = 1.848E+00
RB = 5.007E+01
RBM = 1.974E+00
KF = 0.000E+00
+ AF = 1.000E+00)
Common Emitter S-Parameters of 3 μm x 50μm Transistor
FREQ. (Hz)
|S11|
PHASE(S11)
|S12|
PHASE(S12)
|S21|
PHASE(S21)
|S22|
PHASE(S22)
VCE = 5V and IC = 5mA
1.0E+08
0.83
-11.78
1.41E-02
78.88
11.07
168.57
0.97
-11.05
2.0E+08
0.79
-22.82
2.69E-02
68.63
10.51
157.89
0.93
-21.35
3.0E+08
0.73
-32.64
3.75E-02
59.58
9.75
148.44
0.86
-30.44
4.0E+08
0.67
-41.08
4.57E-02
51.90
8.91
140.36
0.79
-38.16
5.0E+08
0.61
-48.23
5.19E-02
45.50
8.10
133.56
0.73
-44.59
6.0E+08
0.55
-54.27
5.65E-02
40.21
7.35
127.88
0.67
-49.93
7.0E+08
0.50
-59.41
6.00E-02
35.82
6.69
123.10
0.62
-54.37
8.0E+08
0.46
-63.81
6.27E-02
32.15
6.11
119.04
0.57
-58.10
9.0E+08
0.42
-67.63
6.47E-02
29.07
5.61
115.57
0.53
-61.25
1.0E+09
0.39
-70.98
6.63E-02
26.45
5.17
112.55
0.50
-63.96
1.1E+09
0.36
-73.95
6.75E-02
24.19
4.79
109.91
0.47
-66.31
1.2E+09
0.34
-76.62
6.85E-02
22.24
4.45
107.57
0.45
-68.37
1.3E+09
0.32
-79.04
6.93E-02
20.53
4.15
105.47
0.43
-70.19
1.4E+09
0.30
-81.25
7.00E-02
19.02
3.89
103.57
0.41
-71.83
1.5E+09
0.28
-83.28
7.05E-02
17.69
3.66
101.84
0.40
-73.31
1.6E+09
0.27
-85.17
7.10E-02
16.49
3.45
100.26
0.39
-74.66
1.7E+09
0.25
-86.92
7.13E-02
15.41
3.27
98.79
0.38
-75.90
1.8E+09
0.24
-88.57
7.17E-02
14.43
3.10
97.43
0.37
-77.05
1.9E+09
0.23
-90.12
7.19E-02
13.54
2.94
96.15
0.36
-78.12
2.0E+09
0.22
-91.59
7.21E-02
12.73
2.80
94.95
0.35
-79.13
2.1E+09
0.21
-92.98
7.23E-02
11.98
2.68
93.81
0.35
-80.09
2.2E+09
0.20
-94.30
7.25E-02
11.29
2.56
92.73
0.34
-80.99
2.3E+09
0.20
-95.57
7.27E-02
10.64
2.45
91.70
0.34
-81.85
2.4E+09
0.19
-96.78
7.28E-02
10.05
2.35
90.72
0.33
-82.68
2.5E+09
0.18
-97.93
7.29E-02
9.49
2.26
89.78
0.33
-83.47
2.6E+09
0.18
-99.05
7.30E-02
8.96
2.18
88.87
0.33
-84.23
2.7E+09
0.17
-100.12
7.31E-02
8.47
2.10
88.00
0.33
-84.97
HFA3101
4
2.8E+09
0.17
-101.15
7.31E-02
8.01
2.02
87.15
0.33
-85.68
2.9E+09
0.16
-102.15
7.32E-02
7.57
1.96
86.33
0.33
-86.37
3.0E+09
0.16
-103.11
7.32E-02
7.16
1.89
85.54
0.33
-87.05
VCE = 5V and IC = 10mA
1.0E+08
0.72
-16.43
1.27E-02
75.41
15.12
165.22
0.95
-14.26
2.0E+08
0.67
-31.26
2.34E-02
62.89
13.90
152.04
0.88
-26.95
3.0E+08
0.60
-43.76
3.13E-02
52.58
12.39
141.18
0.79
-37.31
4.0E+08
0.53
-54.00
3.68E-02
44.50
10.92
132.57
0.70
-45.45
5.0E+08
0.47
-62.38
4.05E-02
38.23
9.62
125.78
0.63
-51.77
6.0E+08
0.42
-69.35
4.31E-02
33.34
8.53
120.37
0.57
-56.72
7.0E+08
0.37
-75.26
4.49E-02
29.47
7.62
116.00
0.51
-60.65
8.0E+08
0.34
-80.36
4.63E-02
26.37
6.86
112.39
0.47
-63.85
9.0E+08
0.31
-84.84
4.72E-02
23.84
6.22
109.36
0.44
-66.49
1.0E+09
0.29
-88.83
4.80E-02
21.75
5.69
106.77
0.41
-68.71
1.1E+09
0.27
-92.44
4.86E-02
20.00
5.23
104.51
0.39
-70.62
1.2E+09
0.25
-95.73
4.90E-02
18.52
4.83
102.53
0.37
-72.28
1.3E+09
0.24
-98.75
4.94E-02
17.25
4.49
100.75
0.35
-73.76
1.4E+09
0.22
-101.55
4.97E-02
16.15
4.19
99.16
0.34
-75.08
1.5E+09
0.21
-104.15
4.99E-02
15.19
3.93
97.70
0.33
-76.28
1.6E+09
0.20
-106.57
5.01E-02
14.34
3.70
96.36
0.32
-77.38
1.7E+09
0.20
-108.85
5.03E-02
13.60
3.49
95.12
0.31
-78.41
1.8E+09
0.19
-110.98
5.05E-02
12.94
3.30
93.96
0.31
-79.37
1.9E+09
0.18
-113.00
5.06E-02
12.34
3.13
92.87
0.30
-80.27
2.0E+09
0.18
-114.90
5.07E-02
11.81
2.98
91.85
0.30
-81.13
2.1E+09
0.17
-116.69
5.08E-02
11.33
2.84
90.87
0.30
-81.95
2.2E+09
0.17
-118.39
5.09E-02
10.89
2.72
89.94
0.29
-82.74
2.3E+09
0.16
-120.01
5.10E-02
10.50
2.60
89.06
0.29
-83.50
2.4E+09
0.16
-121.54
5.11E-02
10.13
2.49
88.21
0.29
-84.24
2.5E+09
0.16
-122.99
5.12E-02
9.80
2.39
87.39
0.29
-84.95
2.6E+09
0.15
-124.37
5.12E-02
9.49
2.30
86.60
0.29
-85.64
2.7E+09
0.15
-125.69
5.13E-02
9.21
2.22
85.83
0.29
-86.32
2.8E+09
0.15
-126.94
5.13E-02
8.95
2.14
85.09
0.29
-86.98
2.9E+09
0.15
-128.14
5.14E-02
8.71
2.06
84.36
0.29
-87.62
3.0E+09
0.14
-129.27
5.15E-02
8.49
1.99
83.66
0.29
-88.25
Common Emitter S-Parameters of 3 μm x 50 μm Transistor (Continued)
FREQ. (Hz) |S11| PHASE(S11) |S12| PHASE(S12) |S21| PHASE(S21) |S22| PHASE(S22)
HFA3101
3-5
Application Information
The HFA3101 array is a very versatile RF Building block. It has been carefully laid out to improve its matching properties, bringing the distortion due to area mismatches, thermal distribution, betas and ohmic resistances to a minimum.
The cell is equivalent to two differential stages built as two “variable transconductance multipliers” in parallel, with their outputs cross coupled. This configuration is well known in the industry as a Gilbert Cell which enables a four quadrant multiplication operation.
Due to the input dynamic range restrictions for the input levels at the upper quad transistors and lower tail transistors, the HFA3101 cell has restricted use as a linear four quadrant multiplier. However, its configuration is well suited for uses where its linear response is limited to one of the inputs only, as in modulators or mixer circuit applications. Examples of these circuits are up converters, down converters, frequency doublers and frequency/phase detectors.
Although linearization is still an issue for the lower pair input, emitter degeneration can be used to improve the dynamic range and consequent linearity. The HFA3101 has the lower pair emitters brought to external pins for this purpose.
In modulators applications, the upper quad transistors are used in a switching mode where the pairs Q1/Q2 and Q3/Q4 act as non saturating high speed switches. These switches are controlled by the signal often referred as the carrier input. The signal driving the lower pair Q5/Q6 is commonly used as the modulating input. This signal can be linearly transferred to the output by either the use of low signal levels (Well below the thermal voltage of 26mV) or by the use of emitter degeneration. The chopped waveform appearing at the output of the upper pair (Q1 to Q4) resembles a signal that is multiplied by +1 or -1 at every half cycle of the switching waveform.
Figure 1 shows the typical input waveforms where the frequency of the carrier is higher than the modulating signal. The output waveform shows a typical suppressed carrier output of an up converter or an AM signal generator.
Carrier suppression capability is a property of the well known Balanced modulator in which the output must be zero when one or the other input (carrier or modulating signal) is equal to zero. however, at very high frequencies, high frequency mismatches and AC offsets are always present and the suppression capability is often degraded causing carrier and modulating feedthrough to be present.
Being a frequency translation circuit, the balanced modulator has the properties of translating the modulating frequency (ωM) to the carrier frequency (ωC), generating the two side bands ωU = ωC + ωM and ωL = ωC - ωM. Figure 2 shows some translating schemes being used by balanced mixers.
CARRIER SIGNALMODULATING SIGNALDIFFERENTIAL OUTPUT+1-1FIGURE 1. TYPICAL MODULATOR SIGNALS
FIGURE 2A. UP CONVERSION OR SUPPRESSED CARRIER AM
FIGURE 2B. DOWN CONVERSION
FIGURE 2C. ZERO IF OR DIRECT DOWN CONVERSION
FIGURE 2. MODULATOR FREQUENCY SPECTRUM
ωC + ωMωC - ωMωC
IF (ωC - ωM)FOLDED BACKωMωC
BASEBANDωCωM
HFA3101
6
The use of the HFA3101 as modulators has several advantages when compared to its counterpart, the diode doublebalanced mixer, in which it is required to receive enough energy to drive the diodes into a switching mode and has also some requirements depending on the frequency range desired, of different transformers to suit specific frequency responses. The HFA3101 requires very low driving capabilities for its carrier input and its frequency response is limited by the fT of the devices, the design and the layout techniques being utilized.
Up conversion uses, for UHF transmitters for example, can be performed by injecting a modulating input in the range of 45MHz to 130MHz that carries the information often called IF (Intermediate frequency) for up conversion (The IF signal has been previously modulated by some modulation scheme from a baseband signal of audio or digital information) and by injecting the signal of a local oscillator of a much higher frequency range from 600MHz to 1.2GHz into the carrier input. Using the example of a 850MHz carrier input and a 70MHz IF, the output spectrum will contain a upper side band of 920MHz, a lower side band of 780MHz and some of the carrier (850MHz) and IF (70MHz) feedthrough. A Band pass filter at the output can attenuate the undesirable signals and the 920MHz signal can be routed to a transmitter RF power amplifier.
Down conversion, as the name implies, is the process used to translate a higher frequency signal to a lower frequency range conserving the modulation information contained in the higher frequency signal. One very common typical down conversion use for example, is for superheterodyne radio receivers where a translated lower frequency often referred as intermediate frequency (IF) is used for detection or demodulation of the baseband signal. Other application uses include down conversion for special filtering using frequency translation methods.
An oscillator referred as the local oscillator (LO) drives the upper quad transistors of the cell with a frequency called ωC. The lower pair is driven by the RF signal of frequency ωM to be translated to a lower frequency IF. The spectrum of the IF output will contain the sum and difference of the frequencies ωC and ωM. Notice that the difference can become negative when the frequency of the local oscillator is lower than the incoming frequency and the signal is folded back as in Figure 2.
NOTE: The acronyms RF, IF and LO are often interchanged in the industry depending on the application of the cell as mixers or modulators. The output of the cell also contains multiples of the frequency of the signal being fed to the upper quad pair of transistors because of the switching action equivalent to a square wave multiplication. In practice, however, not only the odd multiples in the case of a symmetrical square wave but some of the even multiples will also appear at the output spectrum due to the nature of the actual switching waveform and high frequency performance. By-products of the form M*ωC + N*ωM with M and N being positive or negative integers are also expected to be present at the output and their levels are carefully examined and minimized by the design. This distortion is considered one of the figures of merit for a mixer application.
The process of frequency doubling is also understood by having the same signal being fed to both modulating and carrier ports. The output frequency will be the sum of ωC and ωM which is equivalent to the product of the input frequency by 2 and a zero Hz or DC frequency equivalent to the difference of ωC and ωM. Figure 2 also shows one technique in use today where a process of down conversion named zero IF is made by using a local oscillator with a very pure signal frequency equal to the incoming RF frequency signal that contains a baseband (audio or digital signal) modulation. Although complex, the extraction or detection of the signal is straightforward.
Another useful application of the HFA3101 is its use as a high frequency phase detector where the two signals are fed to the carrier and modulation ports and the DC information is extracted from its output. In this case, both ports are utilized in a switching mode or overdrive, such that the process of multiplication takes place in a quasi digital form (2 square waves). One application of a phase detector is frequency or phase demodulation where the FM signal is split before the modulating and carrier ports. The lower input port is always 90 degrees apart from the carrier input signal through a high Q tuned phase shift network. The network, being tuned for a precise 90 degrees shift at a nominal frequency, will set the two signals 90 degrees apart and a quiescent output DC level will be present at the output. When the input signal is frequency modulated, the phase shift of the signal coming from the network will deviate from 90 degrees proportional to the frequency deviation of the FM signal and a DC variation at the output will take place, resembling the demodulated FM signal.
The HFA3101 could also be used for quadrature detection, (I/Q demodulation), AGC control with limited range, low level multiplication to name a few other applications.
Biasing
Various biasing schemes can be employed for use with the HFA3101. Figure 3 shows the most common schemes. The biasing method is a choice of the designer when cost, thermal dependence, voltage overheads and DC balancing properties are taken into consideration.
Figure 3A shows the simplest form of biasing the HFA3101. The current source required for the lower pair is set by the voltage across the resistor RBIAS less a VBE drop of the lower transistor. To increase the overhead, collector resistors are substituted by an RF choke as the upper pair functions as a current source for AC signals. The bases of the upper and lower transistors are biased by RB1 and RB2 respectively. The voltage drop across the resistor R2 must be higher than a VBE with an increase sufficient to assure that the collector to base junctions of the lower pair are always reverse biased. Notice that this same voltage also sets the VCE of operation of the lower pair which is important for the optimization of gain. Resistors REE are nominally zero for applications where the input signals are well below 25mV peak. Resistors REE are used to increase the linearity
HFA3101
3-7
of the circuit upon higher level signals. The drop across REE must be taken into consideration when setting the current source value.
Figure 3B depicts the use of a common resistor sharing the current through the cell which is used for temperature compensation as the lower pair VBE drop at the rate of -2mV/oC.
Figure 3C uses a split supply.
Design Example: Down Converter Mixer
Figure 4 shows an example of a low cost mixer for cellular applications.
The design flexibility of the HFA3101 is demonstrated by a low cost, and low voltage mixer application at the 900MHz range. The choice of good quality chip components with their self resonance outside the boundaries of the application are important. The design has been optimized to accommodate the evaluation of the same layout for various quiescent current values and lower supply voltages. The choice of RE became important for the available overhead and also for maintaining an AC true impedance for high frequency signals. The value of 27Ω has been found to be the optimum minimum for the application. The input impedances of the HFA3101 base input ports are high enough to permit their termination with 50Ω resistors. Notice the AC termination by decoupling the bias circuit through good quality capacitors.
The choice of the bias has been related to the available power supply voltage with the values of R1, R2 and RBIAS splitting the voltages for optimum VCE values. For evaluation of the cell quiescent currents, the voltage at the emitter resistor RE has been recorded.
The gain of the circuit, being a function of the load and the combined emitter resistances at high frequencies have been kept to a maximum by the use of an output match network. The high output impedance of the HFA3101 permits
FIGURE 3A.
FIGURE 3B.
FIGURE 3C.
FIGURE 3.
VCCRB1R1R2RBIASREREEREELCH12348765Q5Q6Q1Q2Q3Q4RB2
VCCRB1R1R2RBIASREREEREE12348765Q5Q6Q1Q2Q3Q4RB2RCLCH
VEERB1R1RBIASREREEREE12348765Q5Q6Q1Q2Q3Q4RB2VCCLCHR2
27LCH12348765Q5Q6Q1Q2Q3Q4VCC390nH0.010.011102200.1VCC3V75MHz2K5p TO 12pLO IN51825MHz51900MHzIF OUTRF IN0.010.010.01330FIGURE 4. 3V DOWN CONVERTER APPLICATION
HFA3101
8
broadband match if so desired at 50Ω (RL = 50Ω to 2kΩ) as well as with tuned medium Q matching networks (L, T etc.).
Stability
The cell, by its nature, has very high gain and precautions must be taken to account for the combination of signal reflections, gain, layout and package parasitics. The rule of thumb of avoiding reflected waves must be observed. It is important to assure good matching between the mixer stage and its front end. Laboratory measurements have shown some susceptibility for oscillation at the upper quad transistors input. Any LO prefiltering has to be designed such the return loss is maintained within acceptable limits specially at high frequencies. Typical off the shelf filters exhibits very poor return loss for signals outside the passband. It is suggested that a “pad” or a broadband resistive network be used to interface the LO port with a filter. The inclusion of a parallel 2K resistor in the load decreases the gain slightly which improves the stability factor and also improves the distortion products (output intermodulation or 3rd order intercept). The employment of good RF techniques shall suffice the stability requirements.
Evaluation
The evaluation of the HFA3101 in a mixer configuration is presented in Figures 6 to 11, Table 1 and Table 2. The layout is depicted in Figure 5.
The output matching network has been designed from data taken at the output port at various test frequencies with the setup as in Table 1. S22 characterization is enough to assure the calculation of L, T or transmission line matching networks.
FIGURE 5. UP/DOWN CONVERTER LAYOUT, 400%; MATERIAL G10, 0.031
TABLE 1. S22 PARAMETERS FOR DOWN CONVERSION, LCH = 10μH
FREQUENCY
RESISTANCE
REACTANCE
10MHz
265Ω
615Ω
45MHz
420Ω
- 735Ω
75MHz
122Ω
- 432Ω
100MHz
67Ω
- 320Ω
TABLE 2. TYPICAL PARAMETERS FOR DOWN CONVERSION, LCH = 10μH
PARAMETER
LO LEVEL
VCC = 3V, IBIAS = 8mA
Power Gain
-6dBm
8.5dB
TOI Output
-6dBm
11.5dBm
NF SSB
-6dBm
14.5dB
Power Gain
0dBm
8.6dB
TOI Output
0dBm
11dBm
NF SSB
0dBm
15dB
PARAMETER
LO LEVEL
VCC = 4V, IBIAS = 19mA
Power Gain
-6dBm
10dB
TOI Output
-6dBm
13dBm
NF SSB
-6dBm
20dB
Power Gain
0dBm
11dB
TOI Output
0dBm
12.5dBm
NF SSB
0dBm
24dB
TABLE 3. TYPICAL VALUES OF S22 FOR THE OUTPUT PORT. LCH = 390nH IBIAS = 8mA (SET UP OF FIGURE 11)
FREQUENCY
RESISTANCE
REACTANCE
300MHz
22Ω
-115Ω
600MHz
7.5Ω
-43Ω
900MHz
5.2Ω
-14Ω
1.1GHz
3.9Ω
0Ω
TABLE 4. TYPICAL VALUES OF S22. LCH = 390nH, IBIAS = 18mA
FREQUENCY
RESISTANCE
REACTANCE
300MHz
23.5Ω
-110Ω
600MHz
10.3Ω
-39Ω
900MHz
8.7Ω
-14Ω
1.1GHz
8Ω
0Ω
HFA3101
3-9
Up Converter Example
An application for a up converter as well as a frequency multiplier can be demonstrated using the same layout, with an addition of matching components. The output port S22 must be characterized for proper matching procedures and depending on the frequency desired for the output, transmission line transformations can be designed. The return loss of the input ports maintain acceptable values in excess of 1.2GHz which can permit the evaluation of a frequency doubler to 2.4GHz if so desired.
The addition of the resistors REE can increase considerably the dynamic range of the up converter as demonstrated at Figure 13. The evaluation results depicted in Table 5 have been obtained by a triple stub tuner as a matching network for the output due to the layout constraints. Based on the evaluation results it is clear that the cell requires a higher Bias current for overall performance.
FIGURE 6. OUTPUT PORT S22 TEST SET UP
FIGURE 7. LO PORT RETURN LOSS
FIGURE 8. RF PORT RETURN LOSS
FIGURE 9. IF PORT RETURN LOSS, WITH MATCHING NETWORK
FIGURE 10. TYPICAL IN BAND OUTPUT SPECTRUM, VCC = 3V
FIGURE 11. TYPICAL OUT OF BAND OUTPUT SPECTRUM
VCC 3V0.1LCH12348765Q5Q6Q1Q2Q3Q42K
S110dB5dB/DIV100MHz1.1GHzLOG MAG3V4V
0dB10dB/DIV100MHz1.1GHzS11LOG MAG
0dB5dB/DIV10MHzS22LOG MAG110MHz
76MHz64M11*LO - 10RF88M12RF - 13LOIFSPAN40MHzLO = 825MHz -6dBmRF = 901MHz - 25dBm-17dBm10dB/DIV
67575082590097510dB/DIVLO + 2RFSPAN500MHzLO - 2RF-26dBm-36dBm-58dBm-53dBmLO = 825MHz -6dBmRF = 900MHz -25dBm
HFA3101
10
Design Example: Up Converter Mixer
Figure 12 shows an example of an up converter for cellular applications.
Conclusion
The HFA3101 offers the designer a number of choices and different applications as a powerful RF building block. Although isolation is degraded from the theoretical results for the cell due to the unbalanced, nondifferential input schemes being used, a number of advantages can be taken into consideration like cost, flexibility, low power and small outline when deciding for a design.
TABLE 5. TYPICAL PARAMETERS FOR THE UP CONVERTER EXAMPLE
PARAMETER
VCC = 3V, IBIAS = 8mA
VCC = 4V, IBIAS = 18mA
Power Gain, LO = -6dBm
3dB
5.5dBm
Power Gain, LO = 0dBm
4dB
7.2dB
RF Isolation, LO = 0dBm
15dBc
22dBc
LO Isolation, LO = 0dBm
28dBc
28dBc
FIGURE 12. UP CONVERTER
FIGURE 13. TYPICAL SPECTRUM PERFORMANCE OF UP CONVERTER
RF IN0.01390nH900MHz5.2nHVCC 3V0.112348765Q5Q6Q1Q2Q3Q411p0.0175MHz27220REEREE51LO INVCC0.010.011103303V825MHz0.010.015147-100pF
9019128902LO - 10RF12RFOUTPUT WITHOUT EMITTER DEGENERATIONRF = 76MHzLO = 825MHzSPAN50MHzOUTPUT WITH EMITTER DEGENERATION REE = 4.7Ω825900976EXPANDED SPECTRUM REE = 4.7Ω
HFA3101
3-11
Typical Performance Curves for Transistors
FIGURE 14. IC vs VCE
FIGURE 15. HFE vs IC
FIGURE 16. GUMMEL PLOT
FIGURE 17. fT vs IC
FIGURE 18. GAIN AND NOISE FIGURE vs FREQUENCY
NOTE: Figures 14 through 18 are only for Q5 and Q6.
VCE (V)IC (mA)02.06.04.0070605040302010IB = 800μAIB = 1mAIB = 200μAIB = 400μAIB = 600μA
hFEIC (
A)10-1010-810-610-410-2100140120100806040200VCE = 5V
VBE (V)IC AND IB (A)10-1010-810-610-410-210010-120.200.400.600.801.0VCE = 3V
IC (A)fT (GHz)12108642010-410-310-210-1
20181614121046NOISE FIGURE (
dB)FREQUENCY (GHz)|S21| (dB)0.51.51.02.002.53.04.84.64.44.24.03.83.63.43.28
HFA3101
12
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable.
However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Die Characteristics
PROCESS UHF-1
DIE DIMENSIONS: 53 mils x 52 mils x 14 mils
1340μm x 1320μm x 355.6μm
METALLIZATION: Type: Metal 1: AlCu(2%)/TiW
Thickness: Metal 1: 8kÅ ±0.5kÅ Type: Metal 2: AlCu(2%)
Thickness: Metal 2: 16kÅ ±0.8kÅ
PASSIVATION: Type: Nitride
Thickness: 4kÅ ±0.5kÅ
SUBSTRATE POTENTIAL (Powered Up): Floating
Metallization Mask Layout
HFA31011122334455667788
HFA3101
16-Bit Low Power Sigma-Delta ADC
Data Sheet AD7171
RevA Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use.Specifications subject to change without notice. Non.
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2009–2013 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Output data rate: 125 Hz
Pin-programmable power-down and reset
Status function
Internal clock oscillator
Current: 135 μA
Power supply: 2.7 V to 5.25 V
–40°C to +105°C temperature range
Package: 10-lead 3 mm x 3 mm LFCSP
INTERFACE
2-wire serial (read-only device)
SPI compatible
Schmitt trigger on SCLK
APPLICATIONS
Weigh scales
Pressure measurement
Industrial process control
Portable instrumentation
FUNCTIONAL BLOCK DIAGRAM
16-BIT Σ-ΔADCAD7171GNDINTERNALCLOCKVDDREFIN(+)AIN(+)AIN(–)REFIN(–)DOUT/RDYSCLKPDRST08417-001
Figure 1.
Table 1.
VREF = VDD
RMS Noise
P-P Noise
P-P Resolution
ENOB
5 V
11.5 μV
76 μV
16 bits
16 bits
3 V
6.9 μV
45 μV
16 bits
16 bits
GENERAL DESCRIPTION
The AD7171 is a very low power 16-bit analog-to-digital converter (ADC). It contains a precision 16-bit sigma-delta (Σ-Δ) ADC and an on-chip oscillator. Consuming only 135 μA, the AD7171 is particularly suitable for portable or battery operated products where very low power is a requirement. The AD7171 also has a power-down mode in which the device consumes 5 μA, thus increasing the battery life of the product.
For ease-of-use, all the features of the AD7171 are controlled by dedicated pins. Each time a data read occurs, eight status bits are appended to the 16-bit conversion. These status bits contain a pattern sequence that can be used to confirm the validity of the serial transfer.
The output data rate of the AD7171 is 125 Hz, whereas the settling time is 24 ms. The AD7171 has one differential input and a gain of 1. This is useful in applications where the user needs to use an external amplifier to implement system-specific filtering or gain requirements.
The AD7171 operates with a power supply from 2.7 V to 5.25 V. It is available in a 10-lead LFCSP package.
The AD7170 is a 12-bit version of the AD7171. It has the same feature set as the AD7171 and is pin-for-pin compatible.
1
Low-Noise 24-bit Delta Sigma ADC
ISL26132, ISL26134
The ISL26132 and ISL26134 are complete analog front ends
for high resolution measurement applications. These 24-bit
Delta-Sigma Analog-to-Digital Converters include a very
low-noise amplifier and are available as either two or four
differential multiplexer inputs. The devices offer the same
pinout as the ADS1232 and ADS1234 devices and are
functionally compatible with these devices. The ISL26132 and
ISL26134 offer improved noise performance at 10Sps and
80Sps conversion rates.
The on-chip low-noise programmable-gain amplifier provides
gains of 1x/2x/64x/128x. The 128x gain setting provides an
input range of ±9.766mVFS when using a 2.5V reference. la
high input impedance allows direct connection of sensors such
as load cell bridges to ensure the specified measurement
accuracy without additional circuitry. The inputs accept signals
100mV outside the supply rails when the device is set for unity
gain.
The Delta-Sigma ADC features a third order modulator
providing up to 21.6-bit noise-free performance.
The device can be operated from an external clock source,
crystal (4.9152MHz typical), or the on-chip oscillator.
The two channel ISL26132 is available in a 24 Ld TSSOP
package and the four channel ISL26134 is available in a 28 Ld
TSSOP package. Both are specified for operation over the
automotive temperature range (-40°C to +105°C).
Features
• Up to 21.6 Noise-free bits.
• Low Noise Amplifier with Gains of 1x/2x/64x/128x
• RMS noise: 10.2nV @ 10Sps (PGA = 128x)
• Linearity Error: 0.0002% FS
• Simultaneous rejection of 50Hz and 60Hz (@ 10Sps)
• Two (ISL26132) or four (ISL26134) channel differential
input multiplexer
• On-chip temperature sensor (ISL26132)
• Automatic clock source detection
• Simple interface to read conversions
• +5V Analog, +5 to +2.7V Digital Supplies
• Pb-Free (RoHS Compliant)
• TSSOP packages: ISL26132, 24 pin; ISL26134, 28 pin
Applications
• Weigh Scales
• Temperature Monitors and Controls
• Industrial Process Control
• Pressure Sensors
ADC
PGA
1x/2x/64x/
128x
INTERNAL
CLOCK
SDO/RDY
SCLK
AVDD DVDD
AGND DGND
XTALIN/CLOCK
VREF+
EXTERNAL
OSCILLATOR
XTALOUT
A0 A1/TEMP VREFAIN1+
AIN1-
AIN2+
AIN2-
AIN3+
AIN3-
AIN4+
AIN4-
INPUT
MULTIPLEXER
ISL26134
Only
CAP
CAP
GAIN0 GAIN1
PWDN
SPEED
DGND DGND
NOTE for A1/TEMP pin: Functions as A1 on ISL26134; Functions as TEMP on ISL26132
FIGURE 1. BLOCK DIAGRAM
September 9, 2011
FN6954.1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2011. All Rights Reserved
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.
All other trademarks mentioned are the property of their respective owners.
ISL26132, ISL26134
2 FN6954.1
September 9, 2011
Ordering Information
PART NUMBER
(Notes 2, 3) PART MARKING
TEMPERATURE RANGE
(°C)
PACKAGE
(Pb-free)
PKG. DWG
NUMBER
ISL26132AVZ 26132 AVZ -40 to +105 24 Ld TSSOP M24.173
ISL26132AVZ-T (Note 1) 26132 AVZ -40 to +105 24 Ld TSSOP (Tape & Reel) M24.173
ISL26132AVZ-T7A (Note 1) 26132 AVZ -40 to +105 24 Ld TSSOP (Tape & Reel) M24.173
ISL26134AVZ 26134 AVZ -40 to +105 28 Ld TSSOP M28.173
ISL26134AVZ-T (Note 1) 26134 AVZ -40 to +105 28 Ld TSSOP (Tape & Reel) M28.173
ISL26134AVZ-T7A (Note 1) 26134 AVZ -40 to +105 28 Ld TSSOP (Tape & Reel) M28.173
ISL26134AV28EV1Z Evaluation Board
NOTES:
1. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL26132, ISL26134. For more information on MSL please see techbrief
TB363.
TABLE 1. KEY DIFFERENCES OF PARTS
PART NUMBER NUMBER OF CHANNELS ON-CHIP TEMPERATURE SENSOR NUMBER OF PINS
ISL26132 2 YES 24
ISL26134 4 NO 28
Pin Configurations
ISL26132
(24 LD TSSOP)
TOP VIEW
ISL26134
(28 LD TSSOP)
TOP VIEW
1
2
3
4
5
6
7
8
9
10
11
12
16
17
18
19
20
21
22
23
24
15
14
13
DVDD
DGND
XTALIN/CLOCK
XTALOUT
DGND
DGND
TEMP
A0
CAP
CAP
AIN1+
AIN1-
SDO/RDY
PDWN
SPEED
GAIN1
GAIN0
AGND
VREFAIN2+
AIN2-
SCLK
AVDD
VREF+
28
27
26
25
24
23
22
21
20
19
18
17
16
15
DVDD
DGND
XTALIN/CLOCK
XTALOUT
DGND
DGND
A1
A0
CAP
CAP
AIN1+
AIN1-
AIN3+
AIN3-
1
2
3
4
5
6
7
8
9
10
11
12
13
14
SDO/RDY
PDWN
SPEED
GAIN1
GAIN0
AGND
VREFAIN2+
AIN2-
AIN4+
AIN4-
SCLK
AVDD
VREF+
ISL26132, ISL26134
3 FN6954.1
September 9, 2011
Pin Descriptions
NAME
PIN NUMBER
ANALOG/DIGITAL
ISL26132 ISL26134 INPUT/OUTPUT DESCRIPTION
DVDD 1 1 Digital Digital Power Supply (2.7V to 5.25V)
DGND 2, 5, 6 2, 5, 6 Digital Digital Ground
XTALIN/CLOCK 3 3 Digital/Digital Input External Clock Input: typically 4.9152MHz. Tie low to activate
internal oscillator. Can also use external crystal across
XTALIN/CLOCK and XTALOUT pins.
XTALOUT 4 4 Digital External Crystal connection
TEMP 7 - Digital Input On-chip Temperature Diode Enable
A1
A0
-
8
7
8
Digital Input
CAP 9, 10 9, 10 Analog PGA Filter Capacitor
AIN1+ 11 11 Analog Input Positive Analog Input Channel 1
AIN1- 12 12 Analog Input Negative Analog Input Channel 1
AIN3+ - 13 Analog Input Positive Analog Input Channel 3
AIN3- - 14 Analog Input Negative Analog Input Channel 3
AIN4- - 15 Analog Input Negative Analog Input Channel 4
AIN4+ - 16 Analog Input Positive Analog Input Channel 4
AIN2- 13 17 Analog Input Negative Analog Input Channel 2
AIN2+ 14 18 Analog Input Positive Analog Input Channel 2
VREF- 15 19 Analog Input Negative Reference Input
VREF+ 16 20 Analog Input Positive Reference Input
AGND 17 21 Analog Analog Ground
AVDD 18 22 Analog Analog Power Supply 4.75V to 5.25V
GAIN0
GAIN1
19
20
23
24
Digital Input
TABLE 2. INPUT MULTIPLEXER SELECT
ISL26134 ISL26132
A1 A0 CHANNEL
0 0 AIN1
0 1 AIN2
1 0 AIN3
1 1 AIN4
TABLE 3. GAIN SELECT
GAIN1 GAIN0 GAIN
0 0 1
0 1 2
1 0 64
1 1 128
ISL26132, ISL26134
4 FN6954.1
September 9, 2011
Circuit Description
The ISL26132 (2-channel) and ISL26134 (4-channel) devices are
very low noise 24-bit delta-sigma ADCs that include a
programmable gain amplifier and an input multiplexer. la
ISL26132 offers an on-chip temperature measurement
capability.
The ISL26132, ISL26134 provide pin compatibility and output
data compatibility with the ADS1232/ADS1234, and offer the
same conversion rates of 10Sps and 80Sps.
All the features of the ISL26132, ISL26134 are pin-controllable,
while offset calibration, standby mode, and output conversion
data are accessible through a simple 2-wire interface.
The clock can be selected to come from an internal oscillator, an
external clock signal, or crystal (4.9152MHz typical).
SPEED 21 25 Digital Input
PDWN 22 26 Digital Input Power-Down: Holding this pin low powers down the entire
converter and resets the ADC.
SCLK 23 27 Digital Input Serial Clock: Clock out data on the rising edge. Also used to
initiate Offset Calibration and Sleep modes. See “Serial Clock
Input (SCLK)” on page 14 for more details.
SDO/RDY 24 28 Digital Output Dual-Purpose Output:
Data Ready: Indicate valid data by going low.
Data Output: Outputs data, MSB first, on the first rising edge
of SCLK.
Pin Descriptions (Continued)
NAME
PIN NUMBER
ANALOG/DIGITAL
ISL26132 ISL26134 INPUT/OUTPUT DESCRIPTION
TABLE 4. DATA RATE SELECT
SPEED DATA RATE
0 10Sps
1 80Sps
ISL26132, ISL26134
5 FN6954.1
September 9, 2011
Absolute Maximum Ratings Thermal Information
AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to +0.3V
Analog In to AGND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3 to AVDD+0.3V
Digital In to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3 to DVDD+0.3V
Input Current
Momentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100mA
Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10mA
ESD Rating
Human Body Model (Per MIL-STD-883 Method 3015.7) . . . . . . . . . . . ..7.5kV
Machine Model (Per JESD22-A115). . . . . . . . . . . . . . . . . . . . . . . . . .450V
Charged Device Model (Per JESD22-C101) . . . . . . . . . . . . . . . . . . . . . . . .2kV
Latch-up (Per JEDEC JESD-78B; Class 2, Level A)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100mA @ Room and Hot (+105°C)
Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W)
24 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . .65 18
28 Ld TSSOP (Notes 4, 5) . . . . . . . . . . . . . .63 18
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80mW
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . ..+150°C
Maximum Storage Temperature Range . . . . . . . . . . . . ..-65°C to +150°C
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
Operating Conditions
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..-40°C to +105°C
AVDD to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..4.75V to 5.25V
DVDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.7V to 5.25V
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product
reliability and result in failures not covered by warranty.
NOTES:
4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
5. For θJC, the “case temp” location is taken at the package top center.
Electrical Specifications VREF+ = 5V, VREF- = 0V, AVDD = 5V, DVDD = 5V, AGND = DGND = 0V, MCLK = 4.9152MHz, and
TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C
SYMBOL PARAMETER TEST LEVEL or NOTES
MIN
(Note 6) TYP
MAX
(Note 6) UNITS
ANALOG INPUTS
Differential Input Voltage Range ±0.5VREF/
Gain
V
Common Mode Input Voltage
gamme
Gain = 1, 2 AGND - 0.1 AVDD + 0.1 V
Gain = 64, 128 AGND+1.5 AVDD - 1.5 V
Differential Input Current
Gain = 1 ±20 nA
Gain = 2 ±40 nA
Gain = 64, 128 ±1 nA
SYSTEM PERFORMANCE
Resolution No Missing Codes 24 Bits
Data Rate
Internal Osc. SPEED = High 80 SPS
Internal Osc. SPEED = Low 10 SPS
External Osc. SPEED = High fCLK/61440 SPS
External Osc. SPEED = Low fCLK/49152
0
SPS
Digital Filter Settling Time Full Setting 4 Conversions
INL Integral Nonlinearity Differential Input Gain = 1, 2 ±0.0002 ±0.001 % of FSR (Note 7)
Differential Input Gain = 64, 128 ±0.0004 % of FSR
(Note 7)
Input Offset Error Gain = 1 ±0.4 ppm of FS
Gain = 128 ±1.5 ppm of FS
Input Offset Drift Gain = 1 0.3 μV/°C
Gain = 128 10 nV/°C
Gain Error (Note 8) Gain = 1 ±0.007 ±0.02 %
Gain = 128 ±0.02 %
Gain Drift Gain = 1 0.5 ppm/°C
Gain = 128 7 ppm/°C
ISL26132, ISL26134
6 FN6954.1
September 9, 2011
CMRR Common Mode Rejection At DC, Gain = 1, ΔV = 1V 85 100 dB
At DC, Gain = 128, ΔV = 0.1V 100 dB
50Hz/60Hz Rejection (Note 9) External 4.9152MHz Clock 130 dB
PSRR Power Supply Rejection At DC, Gain = 1, ΔV = 1V 82 100 dB
At DC, Gain = 128, ΔV = 0.1V 100 105 dB
Input Referred Noise See “Typical Characteristics” beginning
on page 8
Noise Free Bits See “Typical Characteristics” beginning
on page 8
VOLTAGE REFERENCE INPUT
VREF Voltage Reference Input VREF = VREF+ - VREF- 1.5 AVDD AVDD + 0.1 V
VREF- Negative Reference Input AGND - 0.1 VREF+ - 1.5 V
VREF+ Positive Reference Input VREF- + 1.5 AVDD + 0.1 V
IREF Voltage Reference Input Current ±350 nA
POWER SUPPLY REQUIREMENTS
AVDD Analog Supply Voltage 4.75 5.0 5.25 V
DVDD Digital Supply Voltage 2.7 3.3 5.25 V
AIDD Analog Supply Current Normal Mode, AVDD = 5, Gain = 1, 2 7 8.5 mA
Normal Mode, AVDD = 5, Gain = 64, 128 9 12 mA
Standby Mode 0.2 3 μA
Power-Down 0.2 2.5 μA
DIDD Digital Supply Current Normal Mode, AVDD = 5, Gain = 1, 2 750 950 μA
Normal Mode, AVDD = 5, Gain = 64, 128 750 950 μA
Standby Mode 1.5 26 μA
Power-Down 1 26 μA
PD Power Dissipation, Total Normal Mode, AVDD = 5, Gain = 1, 2 49.6 mW
Normal Mode, AVDD = 5, Gain = 64, 128 68 mW
Standby Mode 0.14 mW
Power-Down 0.14 mW
DIGITAL INPUTS
VIH 0.7 DVDD V
VIL 0.2 DVDD V
VOH IOH = -1mA DVDD - 0.4 V
VOL IOL = 1mA 0.2 DVDD V
Input Leakage Current ±10 μA
External Clock Input Frequency 0.3 4.9152 MHz
Serial Clock Input Frequency 1 MHz
NOTE:
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.
7. FSR = Full Scale Range = VREF/Gain
8. Gain accuracy is calibrated at the factory (AVDD = +5V).
9. Specified for word rate equal to 10Sps.
Electrical Specifications VREF+ = 5V, VREF- = 0V, AVDD = 5V, DVDD = 5V, AGND = DGND = 0V, MCLK = 4.9152MHz, and
TA = -40°C to +105°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +105°C (Continued)
SYMBOL PARAMETER TEST LEVEL or NOTES
MIN
(Note 6) TYP
MAX
(Note 6) UNITS
ISL26132, ISL26134
7 FN6954.1
September 9, 2011
Noise Performance
The ISL26132 and ISL26134 provide excellent noise
performance. The noise performance on each of the gain
settings of the PGA at the selected word rates is shown in
Tables 5 and 6.
Resolution in bits decreases by 1-bit if the ADC is operated as a
single-ended input device. Noise measurements are
input-referred, taken with bipolar inputs under the specified
operating conditions, with fCLK = 4.9152MHz.
TABLE 5. AVDD = 5V, VREF = 5V, DATA RATE = 10Sps
GAIN
RMS NOISE
(nV)
PEAK-TO-PEAK NOISE
(nV) (Note 10)
NOISE-FREE BITS
(Note 11)
1 243 1604 21.6
2 148 977 21.3
64 10.8 71 20.1
128 10.2 67 19.1
TABLE 6. AVDD = 5V, VREF = 5V, DATA RATE = 80Sps
GAIN
RMS NOISE
(nV)
PEAK-TO-PEAK NOISE
(nV) (Note 10)
NOISE-FREE BITS
(Note 11)
1 565 3730 20.4
2 285 1880 20.3
64 28.3 187 18.7
128 27 178 17.7
NOTES:
10. The peak-to-peak noise number is 6.6 times the rms value. This
encompasses 99.99% of the noise excursions that may occur. This
value best represents the worst case noise that could occur in the
output conversion words from the converter.
11. Noise-Free Bits is defined as: Noise-Free Bits = ln(FSR/peak-to-peak
noise)/ln(2) where FSR is the full scale range of the converter,
VREF/Gain.
ISL26132, ISL26134
8 FN6954.1
September 9, 2011
Typical Characteristics
FIGURE 2. NOISE AT GAIN = 1, 10Sps FIGURE 3. NOISE HISTOGRAM AT GAIN = 1, 10Sps
FIGURE 4. NOISE AT GAIN = 2, 10Sps FIGURE 5. NOISE HISTOGRAM AT GAIN = 2, 10Sps
FIGURE 6. NOISE AT GAIN = 64, 10Sps FIGURE 7. NOISE HISTOGRAM AT GAIN = 64, 10Sps
-10
-5
0
5
10
0 200 400 600 800 1000
GAIN = 1
RATE = 10Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
50
100
150
200
250
300
-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
OUTPUT CODE (LSB)
GAIN = 1, N = 1024
RATE = 10Sps
STD DEV = 1.635 LSB
VREF = 2.5V
COUNTS -
10
-5
0
5
10
0 200 400 600 800 1000
TIME (SAMPLES)
OUTPUT CODE (LSB)
GAIN = 2
RATE = 10Sps
0
50
100
150
200
250
-8 -6 -4 -2 0 2 4 6 8
GAIN = 2, N = 1024
RATE = 10Sps
STD DEV = 1.989 LSB
VREF = 2.5V
OUTPUT CODE (LSB)
COUNTS
-15
-10
-5
0
5
10
15
20
0 200 400 600 800 1000
TIME (SAMPLES)
OUTPUT CODE (LSB)
GAIN = 64
RATE = 10Sps
0
20
40
60
80
100
120
-20 -15 -10 -5 0 5 10 15 20
GAIN = 64, N = 1024
RATE = 10Sps
STD DEV = 4.627 LSB
VREF = 2.5V
OUTPUT CODE (LSB)
COUNTS
ISL26132, ISL26134
9 FN6954.1
September 9, 2011
FIGURE 8. NOISE AT GAIN = 128, 10Sps FIGURE 9. NOISE HISTOGRAM AT GAIN = 128, 10Sps
FIGURE 10. NOISE AT GAIN = 1, 80Sps FIGURE 11. NOISE HISTOGRAM AT GAIN = 1, 80Sps
FIGURE 12. NOISE AT GAIN = 2, 80Sps FIGURE 13. NOISE HISTOGRAM AT GAIN = 2, 80Sps
Typical Characteristics (Continued)
-50
-30
-10
10
30
50
0 200 400 600 800 1000
GAIN = 128
RATE = 10Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
10
20
30
40
50
60
-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30
OUTPUT CODE (LSB)
COUNTS
GAIN = 128, N = 1024
RATE = 10Sps
STD DEV = 8.757 LSB
VREF = 2.5V
-25
-20
-15
-10
-5
0
5
10
15
20
25
0 200 400 600 800 1000
GAIN = 1
RATE = 80Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
20
40
60
80
100
120
-15 -10 -5 0 5 10 15
OUTPUT CODE (LSB)
COUNTS
GAIN = 1, N = 1024
RATE = 80Sps
STD DEV = 3.791 LSB
VREF = 2.5V
-25
-15
-5
5
15
25
0 200 400 600 800 1000
GAIN = 2
RATE = 80Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
20
40
60
80
100
120
-15 -10 -5 0 5 10 15
OUTPUT CODE (LSB)
COUNTS
GAIN = 2, N = 1024
RATE = 80Sps
STD DEV = 3.831 LSB
VREF = 2.5V
ISL26132, ISL26134
10 FN6954.1
September 9, 2011
FIGURE 14. NOISE AT GAIN = 64, 80Sps FIGURE 15. NOISE HISTOGRAM AT GAIN = 64, 80Sps
FIGURE 16. NOISE AT GAIN = 128, 80Sps FIGURE 17. NOISE HISTOGRAM AT GAIN = 128, 80Sps
FIGURE 18. ANALOG CURRENT vs TEMPERATURE FIGURE 19. DIGITAL CURRENT vs TEMPERATURE
Typical Characteristics (Continued)
-100
-50
0
50
100
0 200 400 600 800 1000
GAIN = 64
RATE = 80Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
10
20
30
40
50
-40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40
OUTPUT CODE (LSB)
COUNTS
GAIN = 64, N = 1024
RATE = 80Sps
STD DEV = 12.15 LSB
VREF = 2.5V
-200
-160
-120
-80
-40
0
40
80
120
160
0 200 400 600 800 1000
GAIN = 128
RATE = 80Sps
TIME (SAMPLES)
OUTPUT CODE (LSB)
0
5
10
15
20
25
30
-80 -60 -40 -20 0 20 40 60 80
OUTPUT CODE (LSB)
COUNTS
GAIN = 128, N = 1024
RATE = 80Sps
STD DEV = 23.215 LSB
VREF = 2.5V
0
2
4
6
8
10
-40 -10 20 50 80 110
TEMPERATURE (°C)
CURRENT (mA)
NORMAL MODE, PGA = 64.128
NORMAL MODE, PGA = 1, 2
1
10
100
1000
10000
-40 -10 20 50 80 110
TEMPERATURE (°C)
CURRENT (μA)
NORMAL MODE, ALL PGA GAINS
POWERDOWN MODE
ISL26132, ISL26134
11 FN6954.1
September 9, 2011
FIGURE 20. TYPICAL WORD RATE vs TEMPERATURE USING
INTERNAL OSCILLATOR
FIGURE 21. NOISE DENSITY vs FREQUENCY AT GAIN = 1, 80Sps
FIGURE 22. NOISE DENSITY vs FREQUENCY AT GAIN = 128, 80Sps
Typical Characteristics (Continued)
9.6
9.8
10.0
10.2
10.4
10.6
10.8
11.0
-40 -10 20 50 80 110
TEMPERATURE (°C)
DATA RATE (Sps)
WORD RATE = 10Sps
10
100
1000
10000
0.01 0.1 1 10
FREQUENCY (Hz)
NOISE (nV/√Hz)
GAIN = 1, 80Sps
64k FFT
25 AVERAGES
1
10
100
0.01 0.1 1 10
FREQUENCY (Hz)
NOISE (nV/√Hz)
GAIN = 128, 80Sps
64k FFT
25 AVERAGES
ISL26132, ISL26134
12 FN6954.1
September 9, 2011
Functional Description
Analog Inputs
The analog signal inputs to the ISL26132 connect to a 2-Channel
differential multiplexer and the ISL26134 connect to a 4-Channel
differential multiplexer (Mux). The multiplexer connects a pair of
inputs to the positive and negative inputs (AINx+, AINx-), selected
by the Channel Select Pins A0 and A1 (ISL26134 only). Input
channel selection is shown in Table 7. On the ISL26132, the
TEMP pin is used to select the Temperature Sensor function.
Whenever the MUX channel is changed (i.e. if any one of the
following inputs - A0/A1, Gain1/0, SPEED is changed), the
digital logic will automatically restart the digital filter and will
cause SDO/RDY to go low only when the output is fully settled.
But if the input itself is suddenly changed, then the user needs to
ignore first four RDY pulses (going low) to get an accurate
measurement of the input signal.
The input span of the ADC is ±0.5 VREF/GAIN. For a 5V VREF and
a gain of 1x, the input span will be 5VP-P fully differential as
shown in Figure 23. Note that input voltages that exceed the
supply rails by more than 100mV will turn on the ESD protection
diodes and degrade measurement accuracy.
If the differential input exceeds well above the +VE or the -VE FS
(by ~1.5x times) the output code will clip to the corresponding FS
value. Under such conditions, the output data rate will become
1/4th of the original value as the Digital State Machine will
RESET the Delta-Sigma Modulator and the Decimation Filter.
Temperature Sensor (ISL26132 only)
When the TEMP pin of the ISL26132 is set High, the input
multiplexer is connected to a pair of diodes, which are scaled in
both size and current. The voltage difference measured between
them corresponds to the temperature of the die according to
Equation 1:
Note: Valid only for GAIN = 1x or 2x
Where T is the temperature of the die, and Gain = the PGA Gain
Setting.
At a temperature of +25°C, the measured voltage will be
approximately 111.7mV. Note that this measurement indicates
only the temperature of the die itself. Applying the result to
correct for the temperature drift of a device external to the
package requires that thermal coupling between the sensor and
the die be taken into account.
Low-Noise Programmable Gain Amplifier
(PGA)
The chopper-stabilized programmable gain amplifier features a
variety of gain settings to achieve maximum dynamic range and
measurement accuracy from popular sensor types with excellent
low noise performance, input offset error, and low drift, and with
minimal external parts count. The GAIN0 and GAIN1 pins allow the
user to select gain settings of 1x, 2x, 64x, or 128x. A block diagram
is shown in Figure 24. The differential input stage provides a gain of
64, which is bypassed when the lower gain settings are selected.
The lower gain settings (1 and 2) will accept inputs with common
mode voltages up to 100mV outside the rails, allowing the device to
accept ground-referred signals. At gain settings of 64 or 128 the
common mode voltage at the inputs is limited to 1.5V inside the
supply rails while maintaining specified measurement accuracy.
TABLE 7. INPUT CHANNEL SELECTION
CHANNEL SELECT PINS ANALOG INPUT PINS SELECTED
A1 A0 AIN+ AIN-
0 0 AIN1+ AIN1-
0 1 AIN2+ AIN2-
1 0 AIN3+ AIN3-
1 1 AIN4+ AIN4-
3.75
2.50
1.25
1.25V
INPUT VOLTAGE RANGE = ±0.5VREF/GAIN
VREF = 5V, GAIN = 1X
3.75
2.50
1.25
AIN+
AIN-
2.50V
FIGURE 23. DIFFERENTIAL INPUT FOR VREF = 5V, GAIN = 1X
V= 102.2mV + (379μV∗T(°C))∗Gain
(EQ. 1)
ISL26132, ISL26134
13 FN6954.1
September 9, 2011
Filtering PGA Output Noise
The programmable gain amplifier, as shown in Figure 24,
includes a passive RC filter on its output. The resistors are
located inside the chip on the outputs of the differential amplifier
stages. The capacitor (nominally a 100nF C0G ceramic or a PPS
film (Polyphenylene sulfide)) for the filter is connected to the two
CAP pins of the chip. The outputs of the differential amplifier
stages of the PGA are filtered before their signals are presented
to the delta-sigma modulator. This filter reduces the amount of
noise by limiting the signal bandwidth and filters the chopping
artifacts of the chopped PGA stage.
Voltage Reference Inputs (VREF+, VREF-)
The voltage reference for the ADC is derived from the difference
in the voltages presented to the VREF+ and VREF- pins;
VREF = (VREF+ - VREF-). The ADCs are specified with a voltage
reference value of 5V, but a voltage reference as low as 1.5V can
be used. For proper operation, the voltage on the VREF+ pin
should not be greater than AVDD + 0.1V and the voltage on the
VREF- pin should not be more negative than AGND - 0.1V.
Clock Sources
The ISL26132, ISL26134 can operate from an internal oscillator,
an external clock source, or from a crystal connected between
the XTALIN/CLOCK and XTALOUT pins. See the block diagram of
the clock system in Figure 25. When the ADC is powered up, the
CLOCK DETECT block determines if an external clock source is
present. If a clock greater than 300kHz is present on the
XTALIN/CLOCK pin, the circuitry will disable the internal oscillator
on the chip and use the external clock as the clock to drive the
chip circuitry. If the ADC is to be operated from the internal
oscillator, the XTALIN/CLOCK pin should be grounded.
If the ADC is to be operated from a crystal, it should be located
close to the package pins of the ADC. Note that external loading
capacitors for the crystal are not required as there are loading
capacitors built into the silicon, although the capacitor values are
optimized for operation with a 4.9152MHz crystal.
The XTALOUT pin is not intended to drive external circuits.
Digital Filter Characteristics
The digital filter inside the ADC is a fourth-order Siinc filter.
Figures 26 and 27 illustrate the filter response for the ADC when
it is operated from a 4.9152MHz crystal. The internal oscillator is
factory trimmed so the frequency response for the filter will be
much the same when using the internal oscillator. The figures
illustrate that when the converter is operated at 10Sps the digital
filter provides excellent rejection of 50Hz and 60Hz line
interference.
FIGURE 24. SIMPLIFIED PROGRAMMABLE GAIN AMPLIFIER BLOCK DIAGRAM
+
-
A1
-
+
A2
AINx-
AINx+
ADC
RINT
RINT
R1
RF1
RF2
CAP
CAP
FIGURE 25. CLOCK BLOCK DIAGRAM
XTALIN/
CRYSTAL
OSCILLATOR
XTALOUT
TO ADC
INTERNAL
OSCILLATOR
CLOCK DETECT
MUX
EN
CLOCK
ISL26132, ISL26134
14 FN6954.1
September 9, 2011
Serial Clock Input (SCLK)
The serial clock input is provided with hysteresis to minimize
false triggering. Nevertheless, care should be taken to ensure
reliable clocking.
Filter Settling Time and ADC Latency
Whenever the analog signal into the ISL26132, ISL26134
converters is changed, the effects of the digital filter must be
taken into account. The filter takes four data ready periods for
the output code to fully reflect a new value at the analog input. DM
the multiplexer control input is changed, the modulator and the
digital filter are reset, and the device uses four data ready
periods to fully settle to yield a digital code that accurately
represents the analog input. Therefore, from the time the control
inputs for the multiplexer are changed until the SDO/RDY goes
low, four data ready periods will elapse. The settling time delay
after a multiplexer channel change is listed in Table 8 for the
converter operating in continuous conversion mode.
0
-50
-100
-150
0 10 20 30 40 50 60 70 80 90 100
FREQUENCY (Hz)
GAIN (dB)
DDAATTAA RRAATTEE == 1100 SSpPsS
FIGURE 26. 10Sps: FREQUENCY RESPONSE OUT TO 100Hz
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
45 50 55 60 65
FREQUENCY (Hz)
GAIN (dB)
DATA RATE = 10Sps
FIGURE 27. 10Sps: 50/60Hz NOISE REJECTION, 45Hz TO 65Hz
TABLE 8. SETTLING TIME
PARAMETER
DESCRIPTION
(fCLK = 4.9152MHz) MIN MAX UNITS
tS A0, A1, SPEED, Gain1, Gain0 change
set-up time
40 50 μs
t1 Settling time SPEED = 1 54 55 ms
SPEED = 0 404 405 ms
FIGURE 28. SDO/RDY DELAY AFTER MULTIPLEXER CHANGE
SDO/RDY
tS
t1
A0, A1, SPEED, Gain1, Gain0
ISL26132, ISL26134
15 FN6954.1
September 9, 2011
Conversion Data Rate
The SPEED pin is used to select between the 10Sps and 80Sps
conversion rates. The 10Sps rate (SPEED = Low) is preferred in
applications requiring 50/60Hz noise rejection. Note that the
sample rate is directly related to the oscillator frequency, as
491,520 clocks are required to perform a conversion at the
10Sps rate, and 61,440 clocks at the 80Sps rate.
Output Data Format
The 24-bit converter output word is delivered in two’s
complement format. Input exceeding full scale results in a
clipped output which will not return to in-range values until after
the input signal has returned to the specified allowable voltage
range and the digital filter has settled as discussed previously.
Reading Conversion Data from the Serial
Data Output/Ready SDO/RDY Pin
When the ADC is powered, it will automatically begin doing
conversions. The SDO/RDY signal will go low to indicate the
completion of a conversion. After the SDO/RDY signal goes low,
the MSB data bit of the conversion word will be output from the
SDO/RDY pin after SCLK is transitioned from a low to a high.
Each subsequent new data bit is also output on the rising edge of
SCLK (see Figure 30). The receiving device should use the falling
edge of SCLK to latch the data bits. After the 24th SCLK, the
SDO/RDY output will remain in the state of the LSB data bit until
a new conversion is completed. At this time, the SDO/RDY will go
high if low and then go low to indicate that a new conversion
word is available. If not all data bits are read from the SDO/RDY
pin prior to the completion of a new conversion, they will be
overwritten. SCLK should be low during time t6, as shown in
Figure 30, when SDO/RDY is high.
If the user wants the SDO/RDY signal to go high after reading the
24 bits of the conversion data word, a 25th SCLK can be issued.
The 25th SCLK will force the SDO/RDY signal to go high and
remain high until it falls to signal that a new conversion word is
available. Figure 31 illustrates the behavior of the SDO/RDY
signal when a 25th SCLK is used.
FIGURE 29. SDO/RDY DELAY AFTER MULTIPLEXER CHANGE
SDO/RDY
TABLE 9. OUTPUT CODES CORRESPONDING TO INPUT
INPUT SIGNAL OUTPUT CODE (HEX)
≥ + 0.5VREF/GAIN 7FFFFF
(+0.5VREF/GAIN)/(223 - 1) 000001
0 000000
(-0.5VREF/GAIN)/(223 - 1) FFFFFF
≤ - 0.5VREF/GAIN 800000
FIGURE 30. OUTPUT DATA WAVEFORMS USING 24 SCLKS TO READ CONVERSION DATA
SDO/RDY
DATA READY
DATA
MSB LSB
NEW DATA READY
23 22 21 0
SCLK
t4
t2
1
t3
24
t5
t6
t3
t7
ISL26132, ISL26134
16 FN6954.1
September 9, 2011
Offset Calibration Control
The offset internal to the ADC can be removed by performing an
offset calibration operation. Offset calibration can be initiated
immediately after reading a conversion word with 24 SCLKs by
issuing two additional SCLKs. The offset calibration operation will
begin immediately after the 26th SCLK occurs. Figure 32
illustrates the timing details for the offset calibration operation.
During offset calibration, the analog inputs are shorted internally
and a regular conversion is performed. This conversion generates
a conversion word that represents the offset error. This value is
stored and used to digitally remove the offset error from future
conversion words. The SDO/RDY output will fall to indicate the
completion of the offset calibration operation.
TABLE 10. INTERFACE TIMING CHARACTERISTICS
PARAMETER DESCRIPTION MIN TYP MAX UNITS
t2 SDO/RDY Low to first SLK 0 ns
t3 SCLK pulsewidth, Low or High 100 ns
t4 SCLK High to Data Valid 50 ns
t5 Data Hold after SCLK High 0 ns
t6 Register Update Time 39 μs
t7 Conversion Period SPEED = 1 12.5 ms
SPEED = 0 100 ms
FIGURE 31. OUTPUT DATA WAVEFORMS FOR SDO/RDY POLLING
DATA READY NEW DATA READY
SDO/RDY
SCLK
23 22 21 0
1 24 25
DATA
25TH SCLK FORCES
SDO/RDY HIGH
FIGURE 32. OFFSET CALIBRATION WAVEFORMS
DATA READY AFTER CALIBRATION
CALIBRATION BEGINS
SDO/RDY
SCLK
23 22 21 0 23
1 24 25 26
t8
FIGURE 33. STANDBY MODE WAVEFORMS
DATA READY
START
CONVERSION
STANDBY MODE
SDO/RDY
SCLK
23 22 21 0
1 24
t10 t11
t9
23
TABLE 11. SDO/RDY DELAY AFTER CALIBRATION
PARAMETER MIN MAX UNITS
t8 SPEED = 1 108 109 ms
SPEED = 0 808 809 ms
ISL26132, ISL26134
17 FN6954.1
September 9, 2011
Standby Mode Operation
The ADC can be put into standby mode to save power. Standby
mode reduces the power to all circuits in the device except the
crystal oscillator amplifier. To enter the standby mode, take the
SCLK signal high and hold it high after SDO/RDY falls. la
converter will remain in standby mode as long as SCLK is held
high. To return to normal operation, take SCLK back low and wait
for the SDO/RDY to fall to indicate that a new conversion has
completed. Figure 33 and Table 12 illustrate the details of
standby mode.
Supply currents are equal in Standby and Power-down modes
unless a Crystal is used. If the Crystal is used, the Crystal
amplifier is turned ON, even in the standby mode.
Performing Offset Calibration After Standby
mode
To perform an offset calibration automatically upon returning
from standby, deliver 2 or more additional SCLKs following a
data read cycle, and then set and hold SCLK high. The device will
remain in Standby as long as SCLK remains high. A calibration
cycle will begin once SCLK is brought low again to resume
normal operation. Additional time will be required to perform the
calibration after returning from Standby. Figure 34 and Table 13
illustrate the details of performing offset calibration after
standby mode.
TABLE 12. STANDBY MODE TIMING
PARAMETER DESCRIPTION MIN MAX UNITS
t9 SCLK High after
SDO/RDY Low
SPEED = 1 0 12.44 ms
SPEED = 0 0 99.94
t10 Standby Mode Delay SPEED = 1 12.5
SPEED = 0 100
t11 SDO/RDY falling edge
after SCLK Low
SPEED = 1 50 60
SPEED = 0 400 410
TABLE 13. OFFSET CALIBRATION TIMING AFTER STANDY
PARAMETER DESCRIPTION MIN MAX UNITS
t12 SDO/RDY Low after
SCLK Low
SPEED = 1 108 113 ms
SPEED = 0 808 813 ms
FIGURE 34. OFFSET CALIBRATION WAVEFORMS AFTER STANDBY
SDO/RDY
SCLK
23 22 21 0
1 24 25
STANDBY MODE DATA READY AFTER CALIBRATION
BEGIN 23
CALIBRATION
t10 t12
ISL26132, ISL26134
18 FN6954.1
September 9, 2011
Operation of PDWN
PDWN must transition from low to high after both power supplies
have settled to specified levels in order to initiate a correct
power-up reset (Figure 35). This can be implemented by an
external controller or a simple RC delay circuit, as shown in
Figure 36.
In order to reduce power consumption, the user can assert the
Power-down mode by bringing PDWN Low as shown in Figure 37.
All circuitry is shut down in this mode, including the Crystal
Oscillator. After PDWN is brought High to resume operation, the
reset delay varies depending on the clock source used. While an
external clock source will resume operation immediately, a
circuit utilizing a crystal will incur about a 20 millisecond delay
due to the inherent start-up time of this type of oscillator.
FIGURE 35. POWER-DOWN TIMING RELATIVE TO SUPPLIES
≥10μs
AVDD
DVDD
PDWN
FIGURE 36. PDWNDELAY CIRCUIT
DVDD
1kΩ
2.2nF
CONNECT TO
PDWN PIN
FIGURE 37. POWER-DOWN MODE WAVEFORMS
SDO/RDY
SCLK
t11
PDWN
POWER-DOWN
MODE
START
CONVERSION
DATA
CLK READY
SOURCE
WAKEUP
t13
tt1144
TABLE 14. POWER-DOWN RECOVERY TIMING
PARAMETER DESCRIPTION TYP UNITS
t13 Clock Recovery after PDWN
High
Internal Oscillator 7.95 μs
External Clock Source 0.16 μs
4.9152MHz Crystal
Oscillator
5.6 ms
t14 PDWN Pulse Duration 26 μs (min)
ISL26132, ISL26134
19 FN6954.1
September 9, 2011
Applications Information
Power-up Sequence – Initialization and
Configuration
The sequence to properly power-up and initialize the device are
as follows. For details on individual functions, refer to their
descriptions.
1. AVDD, DVDD ramp to specified levels
2. Apply External Clock
3. Pull PDWN High to initiate Reset
4. Device begins conversion
5. SDO/RDY goes low at end of first conversion
OPTIONAL ACTIONS
• Perform Offset Calibration
• Place device in Standby
• Return device from Standby
• Read on-chip Temperature (applicable to ISL26132 only)
Application Examples
WEIGH SCALE SYSTEM
Figure 38 illustrates the ISL26132 connected to a load cell. la
A/D converter is configured for a gain of 128x and a sample rate
of 10Sps. If a load cell with 2mV/V sensitivity is used, the full
scale output from the load cell will be 10mV. On a gain of 128x
and sample rate of 10Sps, the converter noise is 67nVP-P. la
converter will achieve 10mV/67nVP-P = 149,250 noise free
counts across its 10mV input signal. This equates to 14,925
counts per mV of input signal. If five output words are averaged
together this can be improved by √5 to yield √5*14925
counts = 33,370 counts per mV of input signal with an effective
update rate of 2 readings per second.
THERMOCOUPLE MEASUREMENT
Figure 39 illustrates the ISL26132 in a thermocouple
application. As shown, the 4.096V reference combined with the
PGA gain set to 128x sets the input span of the converter to
±16mV. This supports the K type thermocouple measurement for
temperatures from -270°C at -6.485mV to +380°C at about
16mV.
If a higher temperature is preferred, the PGA can be set to 64x to
provide a converter span of ±32mV. The will allow the converter
to support temperature measurement with the K type
thermocouple up to about +765°C.
In the circuit shown, the thermocouple is referenced to a voltage
dictated by the resistor divider from the +5V supply to ground.
These set the common mode voltage at about 2.5V. The 5M
resistors provide a means for detection of an open thermocouple.
If the thermocouple fails open or is not connected, the bias
through the 5M resistors will cause the input to the PGA to go to
full scale.
AVDD
VREF+
CAP
CAP
AIN+1
AIN-1
AIN+2
AIN-2
VREFAGND
DGND
TEMP
A0
SPEED
XTALOUT
PDWN
SCLK
SDO/RDY
GAIN0
GAIN1
DVDD
ISL26132
XTALIN/CLOCK
- +
0.1μF
VDD
MICRO
CONTROLLER
GND
16
9
10
11
12
14
13
15
17 2, 5, 6
7
8
21
3
4
22
23
24
19
20
GAIN = 128
5V 3V
0.1μF 18 1
FIGURE 38. WEIGH SCALE APPLICATION
ISL26132, ISL26134
20 FN6954.1
September 9, 2011
PCB Board Layout and System
Configuration
The ISL26132,ISL26134 ADC is a very low noise converter. taux
achieve the full performance available from the device will
require attention to the printed circuit layout of the circuit board.
Care should be taken to have a full ground plane without
impairments (traces running through it) directly under the chip
on the back side of the circuit board. The analog input signals
should be laid down adjacent (AIN+ and AIN- for each channel) to
achieve good differential signal practice and routed away from
any traces carrying active digital signals. The connections from
the CAP pins to the off-chip filter capacitor should be short, and
without any digital signals nearby. The crystal, if used should be
connected with relatively short leads. No active digital signals
should be routed near or under the crystal case or near the
traces, which connect it to the ADC. The AGND and DGND pins of
the ADC should be connected to a common solid ground plane.
All digital signals to the chip should be powered from the same
supply, as that used for DVDD (do not allow digital signals to be
active high unless the DVDD supply to the chip is alive). Route all
active digital signals in a way to keep distance from any analog
pin on the device (AIN, VREF, CAP, AVDD). Power on the AVDD
supply should be active before the VREF voltage is present.
PCB layout patterns for the chips (ISL26132 and ISL26134) are
found on the respective package outline drawings on pages 22,
and 23.
AVDD
VREF+
AIN+1
AIN-1
AIN+2
AIN-2
VREFAGND
DGND
TEMP
A0
SPEED
XTALOUT
PDWN
SCLK
SDO/RDY
GAIN0
GAIN1
DVDD
XTALIN/CLOCK
MICRO
CONTROLLER
16
11
12
14
13
15
17 2, 5, 6
7
8
21
3
4
22
23
24
19
20
+5V +3V
0.1μF
18 1
FIGURE 39. THERMOCOUPLE MEASUREMENT APPLICATION
4.9152
MHz
ISL21009
4.096V
10nF
1μF
10k
10k
0.1μF
TYPE K
5M
5M
ISL26132, ISL26134
21
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted
in the quality certifications found at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
FN6954.1
September 9, 2011
For additional products, see www.intersil.com/product_tree
Products
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a
complete list of Intersil product families.
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on
intersil.com: ISL26132, ISL26134
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff
FITs are available from our website at http://rel.intersil.com/reports/search.php
Revision History
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make
sure you have the latest Rev.
DATE REVISION CHANGE
09/08/11 FN6954.1 Power Supply Requirements on page 6 - AIDD - Analog Supply Current - Normal Mode, AVDD = 5, Gain = 1,2
changed TYP and MAX from “6, 7.3” to “7, 8.5”
Power Dissipation, Total Normal Mode, AVDD = 5, Gain = 1, 2 changed from “43.3” to “49.6” mW (Max)
08/22/11 FN6954.0 Initial Release.
ISL26132, ISL26134
22 FN6954.1
September 9, 2011
Package Outline Drawing
M24.173
24 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
Rev 1, 5/10
DETAIL "X"
TYPICAL RECOMMENDED LAND PATTERN
TOP VIEW
SIDE VIEW
END VIEW
Dimension does not include mold flash, protrusions or gate burrs.
Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.
Dimension does not include interlead flash or protrusion. Interlead
flash or protrusion shall not exceed 0.25 per side.
Dimensions are measured at datum plane H.
Dimensioning and tolerancing per ASME Y14.5M-1994.
Dimension does not include dambar protrusion. Allowable protrusion
shall be 0.08mm total in excess of dimension at maximum material
condition. Minimum space between protrusion and adjacent lead
is 0.07mm.
Dimension in ( ) are for reference only.
Conforms to JEDEC MO-153.
6.
3.
5.
4.
2.
Une.
NOTES:
7.
5
SEATING PLANE
C
H
2 3
1
24
B
12
1 3
13
A
PLANE
GAUGE
0.05 MIN
0.15 MAX
0°-8°
0.60± 0.15
0.90
1.00 REF
0.25
SEE DETAIL "X"
0.15
0.25
(0.65 TYP)
(5.65)
(0.35 TYP)
(1.45)
6.40
4.40 ±0.10
0.65
1.20 MAX
PIN #1
I.D. MARK
7.80 ±0.10
+0.05
-0.06
-0.06
+0.05
-0.10
+0.15
0.20 C B A
0.10 C
- 0.05
0.10 M C B A
ISL26132, ISL26134
23 FN6954.1
September 9, 2011
Package Outline Drawing
M28.173
28 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
Rev 1, 5/10
DETAIL "X"
TYPICAL RECOMMENDED LAND PATTERN
TOP VIEW
SIDE VIEW
END VIEW
Dimension does not include mold flash, protrusions or gate burrs.
Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.
Dimension does not include interlead flash or protrusion. Interlead
flash or protrusion shall not exceed 0.25 per side.
Dimensions are measured at datum plane H.
Dimensioning and tolerancing per ASME Y14.5M-1994.
Dimension does not include dambar protrusion. Allowable protrusion
shall be 0.08mm total in excess of dimension at maximum material
condition. Minimum space between protrusion and adjacent lead
is 0.07mm.
Dimension in ( ) are for reference only.
Conforms to JEDEC MO-153.
6.
3.
5.
4.
2.
Une.
NOTES:
7.
5
SEATING PLANE
C
H
2 3
1
28
B
14
1 3
15
A
PLANE
GAUGE
0.05 MIN
0.15 MAX
0°-8°
0.60 ±0.15
0.90
1.00 REF
0.25
SEE DETAIL "X"
0.25
(0.65 TYP)
(5.65)
(0.35 TYP)
(1.45)
6.40
4.40 ± 0.10
0.65
1.20 MAX
PIN #1
I.D. MARK
9.70± 0.10
-0.06
0.15 +0.05
-0.10
+0.15
-0.06
+0.05
0.20 C B A
0.10 C
- 0.05
0.10 M C B A
Both, the Deltabell® E and Plus feature engineer friendly features such as the unique levelling mechanism and
modular components that make simple sounder installations a reality.
Both external sounders incorporate the same features that are described overleaf. However, the Deltabell® Plus
has a fully back-light option, which enables around the clock visual deterrent to maximise your security.
The Deltabell® E and Plus are available in a variety of different colours:
Low power external sounder with strobe
Low power external sounder with strobe and back-light
Available Base Colours: Red,
Green, White, Amber, Blue and Black
Available Lid Colours: Red, White,
Yellow, Black*, Blue* and Chrome*
*Not recommended for Deltabell® Plus
2012 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change. Other cover colour
options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity.
RMKT090001-7
© 2009 Pyronix Ltd. Pyronix and the Pyronix Blades device are trademarks of Pyronix Ltd.
As part of our continued development programme specifications of the V2 TEL and V2 GSM may change.
RMKT090057-1
© 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change.
RMKT080064-4
© 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change.
RMKT090057-1
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
2010 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change. Other cover colour
options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity.
RMKT090150
www.pyronix.com
marketing@pyronix.com
01709 700100Current consumption feature Deltabell® Plus only
The Deltabell® incorporates a LDR (Light Dependant Resistor)
circuit which turns the Light off during daylight hours when it is
not needed, saving on the product current consumption.
When the day turns from dusk to dark the Lightbox illuminates
so that your external visual deterrent can be seen on the
darkest of nights.
Visual alarm warning feature Deltabell® Plus only
In addition to the strobe which is present on all of the Deltabell®
models, the Deltabell® PLUS has the added feature that the
illuminated cover will strobe when the alarm is activated, giving
you the added peace of mind that your alarm will be seen in
‘alarm mode’ from a much greater distance than standard
sounders that do not have back lighting facilities.
Security and peace of mind
The Deltabell® has front and rear tamper protection and in the
event of a potential sabotage attack, the 104dBA sounder
provides a distinctive audible warning.
The electronic elements on the printed circuit board are
protected by a fully sealed unit with a rubber gasket providing
added protection in harsh environments and giving your
customer peace of mind that the Deltabell® will always sound
in the event of an alarm activation.
104 dBA sounder
Piezo sounder with high decibel output.
Engineer hold-off facility
The Deltabell® engineer hold-off facility means that when
initially powered with the tamper switch open, the sounder will
not activate.
Remote engineer hold-off facility
There is also the capability for remote engineer hold-off which
is invaluable when you are servicing the system enabling easy
maintenance. It can be turned on at any time by applying 0V
to this dedicated terminal which will then disable the tamper.
Unique levelling mechanism
A spirit level is supplied so that you can easily mount the
Deltabell®. In addition, to make the installation as simple as
possible, revolving guide holes are used to save time lining up
screw and drill holes.
SCB/SAB Mode
Self Contained Bell or Self Activating Bell mode.
Hinged cover The Deltabell® has a hinged cover that locks into place so that
both your hands are free to work on the sounder.
Fully back-lit cover
The Deltabell® low power modular unit back-lights the cover
(Deltabell® Plus only)
Electrical specification
Operating Voltage
Supply: 9-16 V DC (13.5 nominal)
Protected: Reverse polarity protected
Current Consumption
Quiescent Current: < 60 mA
Alarm Current: < 300 mA
Strobe
Strobe Duration: 100 ms
Strobe Frequency: 1Hz
Dimensions
[W] 290 mm
[H] 285 mm
[D] 50 mm
Compliance
Europe.
Suitable for use in
EN50131-1 systems
Security grade 2 or 3,
Environmental class IV
[H]
[W] [D]
Packing information
Minimum quantity: 10
Minimum order for
screen print: 40
Warranty: 2 years
Designed: UK
Dummy bases also available
2012 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change. Other cover colour
options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity.
RMKT090001-7
© 2009 Pyronix Ltd. Pyronix and the Pyronix Blades device are trademarks of Pyronix Ltd.
As part of our continued development programme specifications of the V2 TEL and V2 GSM may change.
RMKT090057-1
© 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change.
RMKT080064-4
© 2009 Pyronix Ltd. Pyronix, the Pyronix Blades device, TMD15 and TriCover are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change.
RMKT090057-1
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
www.pyronix.com
marketing@pyronix.com
01709 700100
2010 Pyronix Ltd. Pyronix, the Pyronix Blades device, Deltabell are all trademarks of Pyronix Ltd.
UK Registered Design. As part of our continued development programme specifications may change. Other cover colour
options available. White cover recommended for use with backlit Deltabell PLUS for optimum visual clarity.
RMKT090150
www.pyronix.com
marketing@pyronix.com
01709 700100
Serial File Transfer Cables
The cables feature either the traditional 25 D type RS232 connector or the now more commonly fitted 9 D type
serial connector. As the serial port on most PCs is a plug or male the most common interface cable tends to be
a socket to socket (female to female).
Caractéristiques:
• Multi-headed cable allows either 9 D or 25 D connection - providing complete serial port flexibility
• Both serial port configurations (Pt Nos 4070 & 4062) available from stock
• High quality moulded cables manufactured using foil screened cable
• Custom lengths can be made up upon request
• Now recognised as conforming to the most standard file transfer wiring configuration
4070
Stock No Description
PC AT to PC AT
4070 DB9F to DB9F Null Modem Cable 2Mtr
4070-3 DB9F to DB9F Null Modem Cable 3Mtr
4070-5 DB9F to DB9F Null Modem Cable 5Mtr
4070-10 DB9F to DB9F Null Modem Cable 10Mtr
4070-15 DB9F to DB9F Null Modem Cable 15Mtr
PC XT to PC XT
4062 DB25F to DB25F Null Modem Cable 2Mtr
4062-3 DB25F to DB25F Null Modem Cable 3Mtr
4062-5 DB25F to DB25F Null Modem Cable 5Mtr
4062-10 DB25F to DB25F Null Modem Cable 10Mtr
PC XT to PC AT
4063 DB9F to DB25F Null Modem Cable 2Mtr
4063-3 9DS TO 25DS NULL MODEM 3M
4063-5 9DS TO 25DS NULL MODEM 5M
4063-10 9DS TO 25DS NULL MODEM 10M
Multi-head Serial Cables
4090 DB9F+DB25F to DB9F+DB25F Null Modem Cable 2Mtr
4090-3 DB9F+DB25F to DB9F+DB25F Null Modem Cable 3Mtr
4090-5 DB9F+DB25F to DB9F+DB25F Null Modem Cable 5Mtr
Amplifier
Internet Radio
Terrestrial Tuner
Features
Feature Description
vols
Sources
6 – Internet Radio, MP3, CD, Terrestrial Radio,
Auxiliary Input.
Portable
Yes, two part system. The Internet Radio is
completely portable receiving all data and audio
over a wireless link from the transmitter part
connected to the PC USB port.
LCD
Display
20 character 5 x 7 dot matrix display with icons,
EL blue backlight.
Power
Source
8 x C size 1.5 volt alkaline battery or AC mains –
220 - 240 volt Europe, 110 volt US.
Operation
Time
Approx 30 hours continuous play at mid volume
on one set of alkaline batteries.
Feature Description
Output Power (RMS) 2 x 2.2 watts
Total Power 4.4 watts
Music Power 2 x 4.4 watts
PMPO 65 watts
Feature Description
Radio presets 6 with station name display
Feature Description
Digital Tuner bands FM Stereo
Tuner presets 6 for each band
Antenna FM YesLoudspeaker
Connections
Wireless Link
Dimensions
Frequency Display Yes, 4 digit
Feature Description
No. of way speaker system 1 – way full range driver
Impedance 2 x 8 ohm
Rated Power (RMS) 2 x 6 watts
Size 67 mm x 106 mm, Elliptical
Magnetic Shielding Yes
Feature Description
stéréo
headphone Yes
Auxiliary Input Yes, 2 x phono socket
Auxiliary
Output Yes, 2 x phono socket
USB connection Yes, transmitter connects to PC USB port
with 1.5 metre cable
Feature Description
Stereo Audio
Channel
Europe 863 MHz 10 mW erp, USA 925 MHz 10
mW erp, user selectable band switching to
avoid interference.
Data
Channel
Europe + USA, 433 MHz , bi-directional, user
selectable band switching to avoid interference.
Feature Description
Radio Remote
Module
Front to Back 155mm (6.1"), Side to Side
283mm (11.1"), Height 150mm (5.9")
USB Base
Module
Front to Back 120mm (4.7"), Side to Side
135mm (5.3"), Height 41mm (1.6")
1 / 5
Date de révision November 2011
Révision 3
No FDS 16447
FICHE DE DONNEES DE SECURITE
ARALDITE FUSION HARDENER
SECTION 1: IDENTIFICATION DE LA SUBSTANCE/DU MÉLANGE ET DE LA SOCIÉTÉ/L’ENTREPRISE
1.1. Identificateur de produit
Nom commercial ARALDITE FUSION HARDENER
No du produit 808300, 808409, 808416, 808423
1.2. Utilisations identifiées pertinentes de la substance ou du mélange et utilisations déconseillées
1.3. Renseignements concernant le fournisseur de la fiche de données de sécurité
Distributeur BOSTIK LIMITED
COMMON ROAD
STAFFORD
STAFFORDSHIRE
ST16 3EH
UNITED KINGDOM
+44 1785 255141
+44 1785 272650 (24Hour Emergency)
sds.uk@bostik.com
1.4. Numéro d’appel d’urgence
SECTION 2: IDENTIFICATION DES DANGERS
2.1. Classification de la substance ou du mélange
Classification (1999/45/CEE) Xi;R36/38.
2.2. Éléments d’étiquetage
Étiquetage
Irritant
Phrases De Risque
R36/38 Irritant pour les yeux et la peau.
Conseils De Prudence
S2 Conserver hors de la portée des enfants.
S24/25 Éviter le contact avec la peau et les yeux.
S26 En cas de contact avec les yeux, laver immédiatement et abondamment
avec de l'eau et consulter un spécialiste.
S36/37/39 Porter un vêtement de protection approprié, des gants et un appareil de
protection des yeux/ du visage.
S46 En cas d'ingestion, consulter immédiatement un médecin et lui montrer
l'emballage ou l'étiquette.
S56 Éliminer ce produit et son récipient dans un centre de collecte des déchets
dangereux ou spéciaux.
2.3. Autres dangers
SECTION 3: COMPOSITION/INFORMATIONS SUR LES COMPOSANTS
3.2. Mélanges
2 / 5
No FDS 16447
ARALDITE FUSION HARDENER
1,8-DIAZABICYCLO[5.4.0]UNDEC-7-ENE 1-5%
No CAS : 6674-22-2 No CE : 229-713-7
Classification (67/548/CEE)
Xn;R22.
C;R34.
R52/53.
Classification (CE 1272/2008)
Non classé.
BIS(2-DIMETHYLAMINOETHYL)ETHER 1-5%
No CAS : 3033-62-3 No CE : 221-220-5
Classification (67/548/CEE)
T;R23/24.
Xn;R22.
C;R35.
Classification (CE 1272/2008)
Non classé.
TRIETHYLENETETRAMINE, PROPOXYLATED 5-10%
No CAS : 26950-63-0 No CE : 500-055-5
Classification (67/548/CEE)
Xi;R38,R41.
Classification (CE 1272/2008)
Non classé.
L'intégralité du texte des phrases de risque et des mentions de danger figure à la Section 16.
SECTION 4: PREMIERS SECOURS
4.1. Description des premiers secours
Inhalation
Éloigner immédiatement la victime de la source d'exposition. Emmener immédiatement à l'air frais la personne exposée. Consulter un
médecin.
Ingestion
NE PAS faire vomir. Consulter immédiatement un médecin.
Contact avec la peau
Rincer rapidement la peau contaminée avec du savon ou un détergent doux et de l'eau. Enlever rapidement les vêtements imbibés et les
laver comme indiqué ci-dessus. Consulter un médecin si l'irritation persiste après le lavage.
Contact avec les yeux
Rincer immédiatement les yeux avec de l'eau. Continuer à rincer pendant au moins 15 minutes et consulter un médecin.
4.2. Principaux symptômes et effets, aigus et différés
4.3. Indication des éventuels soins médicaux immédiats et traitements particuliers nécessaires
SECTION 5: MESURES DE LUTTE CONTRE L’INCENDIE
5.1. Moyens d’extinction
Moyens d'extinction
Ce produit est ininflammable. Choisir le moyen d'extinction d'incendie en tenant compte d'autres produits chimiques éventuels. Utiliser :
Mousse, dioxyde de carbone ou poudre sèche.
5.2. Dangers particuliers résultant de la substance ou du mélange
5.3. Conseils aux pompiers
SECTION 6: MESURES À PRENDRE EN CAS DE DISPERSION ACCIDENTELLE
6.1. Précautions individuelles, équipement de protection et procédures d’urgence
6.2. Précautions pour la protection de l’environnement
3 / 5
No FDS 16447
ARALDITE FUSION HARDENER
6.3. Méthodes et matériel de confinement et de nettoyage
Absorber avec de la vermiculite, du sable sec ou de la terre, puis placer en récipient.
6.4. Référence à d’autres sections
SECTION 7: MANIPULATION ET STOCKAGE
7.1. Précautions à prendre pour une manipulation sans danger
Faire très attention de ne pas renverser la matière et éviter du contact avec la peau et les yeux.
7.2. Conditions d’un stockage sûr, y compris d’éventuelles incompatibilités
Entreposer à une température modérée dans un endroit sec et bien aéré.
7.3. Utilisation(s) finale(s) particulière(s)
SECTION 8: CONTRÔLES DE L’EXPOSITION/PROTECTION INDIVIDUELLE
8.1. Paramètres de contrôle
Description Des Ingrédients
WEL = Workplace Exposure Limits
8.2. Contrôles de l’exposition
Équipements de protection
Mesures d'ingénierie
Assurer une ventilation efficace.
Protection respiratoire
Si la ventilation est insuffisante, une protection respiratoire appropriée doit être disponible.
Protection des mains
Porter des gants de protection en cas de risque de contact direct ou d'éclaboussures.
Protection des yeux
Porter des lunettes de sécurité lunettes anti-éclaboussures pour éviter tout contact avec les yeux.
Mesures d'hygiène
Se laver rapidement en cas de contamination de la peau. Se laver après le travail et avant de manger, de fumer et avant d'aller aux
toilettes.
SECTION 9: PROPRIÉTÉS PHYSIQUES ET CHIMIQUES
9.1. Informations sur les propriétés physiques et chimiques essentielles
Aspect Liquide
Couleur Clair (ou pâle). Jaune.
Odeur Odeur faible.
Solubilité Insoluble dans l'eau
Densité relative 1.14
Point d'éclair (°C) 145 Creuset fermé Pensky-Martens.
9.2. Autres informations
SECTION 10: STABILITÉ ET RÉACTIVITÉ
10.1. Réactivité
10.2. Stabilité chimique
Stable aux températures normales.
10.3. Possibilité de réactions dangereuses
10.4. Conditions à éviter
4 / 5
No FDS 16447
ARALDITE FUSION HARDENER
10.5. Matières incompatibles
10.6. Produits de décomposition dangereux
SECTION 11: INFORMATIONS TOXICOLOGIQUES
11.1. Informations sur les effets toxicologiques
Contact avec la peau
Irritant pour la peau.
Contact avec les yeux
Irritant pour les yeux.
SECTION 12: INFORMATIONS ÉCOLOGIQUES
Écotoxicité
Non reconnu comme dangereux pour l'environnement.
12.1. Toxicité
12.2. Persistance et dégradabilité
12.3. Potentiel de bioaccumulation
12.4. Mobilité dans le sol
12.5. Résultats des évaluations PBT et vPvB
12.6. Autres effets néfastes
SECTION 13: CONSIDÉRATIONS RELATIVES À L’ÉLIMINATION
13.1. Méthodes de traitement des déchets
Éliminer les déchets et résidus conformément aux règlements municipaux.
SECTION 14: INFORMATIONS RELATIVES AU TRANSPORT
Généralités Le produit n'est pas soumis à la réglementation internationale sur le transport des marchandises
dangereuses (IMDG, ICAO/IATA, ADR/RID).
14.1. Numéro ONU
Non applicable.
14.2. Nom d’expédition des Nations unies
Non applicable.
14.3. Classe(s) de danger pour le transport
Étiquettes De Transport
Aucun panneau d'avertissement de transport requis.
14.4. Groupe d’emballage
Non applicable.
14.5. Dangers pour l’environnement
Substance Dangereuse Pour L'Environnement/Polluant Marin
Non.
14.6. Précautions particulières à prendre par l’utilisateur
Non applicable.
14.7. Transport en vrac conformément à l’annexe II de la convention Marpol 73/78 et au recueil IBC
Non applicable.
SECTION 15: INFORMATIONS RÉGLEMENTAIRES
5 / 5
No FDS 16447
ARALDITE FUSION HARDENER
15.1. Réglementations/législation particulières à la substance ou au mélange en matière de sécurité, de santé et d’
environnement
15.2. Évaluation de la sécurité chimique
SECTION 16: AUTRES INFORMATIONS
Informations générales
This product should be used as directed by Bostik Ltd.For further information consult the product data sheet or contact Technical Services.
Références Littéraires
This safety data sheet was compiled using current safety information supplied by distributor of raw materials.
Commentaires De Mise À Jour
OBS: Lignes en marges signifient des corrections importantes par rapport à la version précédente. This safety data sheet supersedes all
previous issues and users are cautioned to ensure that it is current. Destroy all previous data sheets and if in doubt contact Bostik Limited.
Émise Par Approved LJ
Date de révision November 2011
Révision 3
Date September 2007
Phrases - R (Texte Intégral)
R34 CAUSE DES BRÛLURES.
R38 Irritant pour la peau.
R22 Nocif en cas d’ingestion.
Nocif pour les organismes aquatiques, peut entraîner des effets néfastes à long terme pour
l'environnement aquatique.
R52/53
R35 Provoque de graves brûlures.
R41 Risque de lésions oculaires graves.
R23/24 Toxique par inhalation et par contact avec la peau.
October 2011 Araldite® Fusion Page 1 of 3
Huntsman Advanced Materials
DIY Adhesives
AralditeÒ Fusion
Two component very fast epoxy adhesive
Other
commercial
names
• Araldite® Super Glue +
• Araldite® Instant Clear
• Araldite® Instant
• Araldite® 90 Segundos Fusion
• Araldite® 90 seconds Fusion
• Araldite® 90 seconds
Key properties • Very fast curing at room temperature
• Transparent / pale coloured
• 1 : 1 mixing
• Solvent free
Description Araldite® Fusion is a two part transparent epoxy adhesive gelling in 90 seconds. The product may be used to bond
metals, ceramics and many common plastics.
Product data
Property Araldite® Fusion /
Resin
Araldite® Fusion /
Hardener
Araldite® Fusion /
mixed
Colour (visual) transparent pale yellow pale yellow
Specific gravity 1.15 – 1.2 1.1 – 1.2 ca. 1.2
Viscosity at 25°C (Pa.s) 50 - 75 10 - 20 30 - 50
Pot Life (100 g at 25°C) - - 90 seconds
Processing Pretreatment
The strength and durability of a bonded joint are dependant on proper treatment of the surfaces to be bonded.
At the very least, joint surfaces should be cleaned with a good degreasing agent such as acetone, iso-propanol (for
plastics) or proprietary degreasing agent in order to remove all traces of oil, grease and dirt.
Low grade alcohol, gasoline (petrol) or paint thinners should never be used.
The strongest and most durable joints are obtained by either mechanically abrading or chemically etching (“pickling”)
the degreased surfaces. Abrading should be followed by a second degreasing treatment.
Mix ratio Parts by weight Parts by volume
Araldite® Fusion / Resin 100 100
Araldite® Fusion / Hardener 100 100
October 2011 Araldite® Fusion Page 2 of 3
Huntsman Advanced Materials
Application of adhesive
The resin/hardener mix is applied directly or with a spatula to the pretreated and dry joint surfaces.
A layer of adhesive 0.05 to 0.10 mm thick will normally impart the greatest lap shear strength to the joint. Huntsman
stresses that proper adhesive joint design is also critical for a durable bond. The joint components should be
assembled and secured in a fix position as soon as the adhesive has been applied.
Equipment maintenance
All tools should be cleaned with hot water and soap before adhesives residues have had time to cure. The removal of
cured residues is a difficult and time-consuming operation.
If solvents such as acetone are used for cleaning, operatives should take the appropriate precautions and, in addition,
avoid skin and eye contact.
Times to minimum shear strength
Temperature °C 23
Cure time to reach hours
LSS > 1MPa minutes 5
Cure time to reach hours
LSS > 10MPa minutes 90
LSS = Lap shear strength.
Typical cured
properties
Average lap shear strengths of typical joints (ISO 4587)
Cured for 16 hours at 40°C and tested at 23°C.
Pre-treatment: plastics abraded and degreased, metals sandblasted and degreased.
0 2 4 6 8 10 12 14 16 18 20
Aluminium
Steel 37/11
Stainless steel V4A
Copper
SMC
ABS
PVC
Polycarbonate
Polyamides
PMMA
PC
MPa
October 2011 Araldite® Fusion Page 3 of 3
Huntsman Advanced Materials
Lap shear strength versus temperature (ISO 4587) (typical average values)
Carried out on sandblasted and degreased aluminium, cure 16 hours at 40°C
0
5
10
15
20
-40 -20 0 20 40 60 80 100
°C
MPa
Storage Araldite® Fusion may be stored for up to 2 years at room temperature provided the components are stored in sealed
containers.
Handling
precautions
Caution
Our products are generally quite harmless to handle provided that certain precautions normally taken when handling
chemicals are observed. The uncured materials must not, for instance, be allowed to come into contact with
foodstuffs or food utensils, and measures should be taken to prevent the uncured materials from coming in contact
with the skin, since people with particularly sensitive skin may be affected. The wearing of impervious rubber or
plastic gloves will normally be necessary; likewise the use of eye protection. The skin should be thoroughly cleaned
at the end of each working period by washing with soap and warm water. The use of solvents is to be avoided.
Disposable paper - not cloth towels - should be used to dry the skin. Adequate ventilation of the working area is
recommended. These precautions are described in greater detail in the Material Safety Data sheets for the individual
products and should be referred to for fuller information.
Huntsman Advanced Materials warrants only that its products meet the specifications agreed with the buyer. Typical properties,
where stated, are to be considered as representative of current production and should not be treated as specifications.
The manufacture of materials is the subject of granted patents and patent applications; freedom to operate patented processes is
not implied by this publication.
While all the information and recommendations in this publication are, to the best of our knowledge, information and belief, accurate at the
date of publication, NOTHING HEREIN IS TO BE CONSTRUED AS A WARRANTY, EXPRESS OR OTHERWISE.
IN ALL CASES, IT IS THE RESPONSIBILITY OF THE USER TO DETERMINE THE APPLICABILITY OF SUCH INFORMATION
AND RECOMMENDATIONS AND THE SUITABILITY OF ANY PRODUCT FOR ITS OWN PARTICULAR PURPOSE.
The behaviour of the products referred to in this publication in manufacturing processes and their suitability in any given end-use
environment are dependent upon various conditions such as chemical compatibility, temperature, and other variables, which are
not known to Huntsman Advanced Materials. It is the responsibility of the user to evaluate the manufacturing circumstances and
the final product under actual end-use requirements and to adequately advise and warn purchasers and users thereof.
Products may be toxic and require special precautions in handling. The user should obtain Safety Data Sheets from Huntsman
Advanced Materials containing detailed information on toxicity, together with proper shipping, handling and storage procedures,
and should comply with all applicable safety and environmental standards.
Hazards, toxicity and behaviour of the products may differ when used with other materials and are dependent on manufacturing
circumstances or other processes. Such hazards, toxicity and behaviour should be determined by the user and made known to
handlers, processors and end users.
Except where explicitly agreed otherwise, the sale of products referred to in this publication is subject to the general terms and
conditions of sale of Huntsman Advanced Materials LLC or of its affiliated companies including without limitation, Huntsman
Advanced Materials (Europe) BVBA, Huntsman Advanced Materials Americas Inc., and Huntsman Advanced Materials (Hong
Kong) Ltd.
Huntsman Advanced Materials is an international business unit of Huntsman Corporation. Huntsman Advanced Materials trades
through Huntsman affiliated companies in different countries including but not limited to Huntsman Advanced Materials LLC in the
USA and Huntsman Advanced Materials (Europe) BVBA in Europe.
Araldite® is a registered trademark of Huntsman Corporation or an affiliate thereof.
Copyright © 2011 Huntsman Corporation or an affiliate thereof. All rights reserved.
Huntsman Advanced Materials
(Switzerland) GmbH
Klybeckstrasse 200
4057 Basel
Switzerland
Tel: +41 (0)61 299 11 11
www.go-araldite.com
Emergency number : + 32 35 751 234
ARALDITE FUSION
IDENTIFICATION DE LA SUBSTANCE/PRÉPARATION ET DE LA
SOCIÉTÉ/ENTREPRISE
FICHE DE DONNÉES DE SÉCURITÉ
Nom du produit
ARALDITE FUSION
Conforme au règlement (CE) n° 1907/2006 (REACH), Annexe II - France
1.
Numéro de téléphone d'appel
d'urgence
:
Fournisseur
:
:
Identification de la substance ou de la préparation
Type de produit : Liquide.
Pour toutes questions de Sécurité, Hygiène et Environnement relatives à ce document ou son
contenu, veuillez contacter:
E-Mail:
global_product_ehs_admat@huntsman.com
Utilisation de la
substance/préparation
: Système adhésif bi-composants
EUROPE: +32 35 75 1234
France ORFILA: +33(0)145425959
ASIA: +65 6336-6011
China: +86 20 39377888
Australia: 1800 786 152
New Zealand: 0800 767 437
USA: +1/800/424.9300
Huntsman Advanced Materials (Europe)BVBA
Everslaan 45
3078 Everberg / Belgium
Tel.: +41 61 299 20 41
Fax: +41 61 299 20 40
Description du produit : Working pack (preparation)
2. IDENTIFICATION DES DANGERS
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
3. COMPOSITION/INFORMATIONS SUR LES COMPOSANTS
Substance/préparation : Working pack (preparation)
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
4. PREMIERS SECOURS
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
5. MESURES DE LUTTE CONTRE L'INCENDIE
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
6. MESURES À PRENDRE EN CAS DE REJET ACCIDENTEL
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
Date d'édition/Date de
révision
: 11/13/2009. 1/6
ARALDITE FUSION
Manipulation
MANIPULATION ET STOCKAGE
Stockage
7.
Revêtir un équipement de protection individuelle approprié (voir Section 8). Il est
interdit de manger, boire ou fumer dans les endroits où ce produit est manipulé,
entreposé ou mis en oeuvre. Il est recommandé au personnel de se laver les mains
et la figure avant de manger, boire ou fumer. Les personnes ayant des antécédents
de sensibilisation cutanée ne doivent pas intervenir dans les processus utilisant ce
produit. Ne pas mettre en contact avec les yeux, la peau ou les vêtements. Ne pas
ingérer. Éviter de respirer les vapeurs ou le brouillard. Éviter le rejet dans
l'environnement. Consulter les instructions spéciales/la fiche de données de sécurité.
Garder dans le conteneur d'origine ou dans un autre conteneur de substitution
homologué fabriqué à partir d'un matériau compatible et tenu hermétiquement clos
lorsqu'il n'est pas utilisé. Les conteneurs vides retiennent des résidus de produit et
peuvent présenter un danger. Ne pas réutiliser ce conteneur.
Matériaux d'emballage
Stocker conformément à la réglementation locale. Stocker dans le récipient d'origine
à l'abri de la lumière directe du soleil dans un endroit sec, frais et bien ventilé à l'écart
des matériaux incompatibles (cf. la section 10). Garder le récipient hermétiquement
fermé lorsque le produit n'est pas utilisé. Les récipients ayant été ouverts doivent être
refermés avec soin et maintenus en position verticale afin d'éviter les fuites. Ne pas
stocker dans des conteneurs non étiquetés. Utiliser un récipient approprié pour éviter
toute contamination du milieu ambiant.
:
:
Recommandé : Utiliser le récipient d'origine.
Température de stockage : Stocker conformément à la réglementation locale. Stocker dans le récipient d'origine
à l'abri de la lumière directe du soleil dans un endroit sec, frais et bien ventilé à l'écart
des matériaux incompatibles (cf. la section 10). Garder le récipient hermétiquement
fermé lorsque le produit n'est pas utilisé. Les récipients ayant été ouverts doivent être
refermés avec soin et maintenus en position verticale afin d'éviter les fuites. Ne pas
stocker dans des conteneurs non étiquetés. Utiliser un récipient approprié pour éviter
toute contamination du milieu ambiant. Stocker entre les températures suivantes: 2 à
40°C (35.6 à 104°F).
Classe de danger de
stockage Huntsman
Advanced Materials
: Classe de stockage 10, Liquide nocif pour l'ambience
Nom des composants Limites d'exposition professionnelle
Valeurs limites d'exposition
8. CONTRÔLE DE L'EXPOSITION/PROTECTION INDIVIDUELLE
Aucune valeur de limite d'exposition connue.
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
PROPRIÉTÉS PHYSIQUES ET CHIMIQUES
État physique Liquide.
Point d'éclair Coupe fermée: >145°C (>293°F) [DIN 51758 EN 22719 (Pensky-Martens Closed
Cup)]
9.
:
:
Informations générales
Aspect
Informations importantes relatives à la santé, à la sécurité et à l'environnement
Masse volumique : 1.15 g/cm3 [20°C (68°F)]
Solubilité dans l'eau : Insoluble
Date d'édition/Date de
révision
: 11/13/2009. 2/6
ARALDITE FUSION
STABILITÉ 10. ET RÉACTIVITÉ
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
11. INFORMATIONS TOXICOLOGIQUES
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
12. INFORMATIONS ÉCOLOGIQUES
Se référer aux fiches de données de sécurité des composants individuels de l'emballage de travail.
13. CONSIDÉRATIONS RELATIVES À L'ÉLIMINATION
070208
Catalogue Européen des
Déchets
:
Déchets Dangereux : Il se peut que la classification du produit satisfasse les critères de déchets dangereux.
Il est recommandé d'éviter ou réduire autant que possible la production de déchets.
Les conteneurs vides ou les saches internes peuvent retenir des restes de produit.
Ne se débarrasser de ce produit et de son récipient qu'en prenant toutes précautions
d'usage. Élimination des produits excédentaires et non recyclables par une
entreprise autorisée de collecte des déchets. La mise au rebut de ce produit, des
solutions et des sous-produits devra en permanence respecter les exigences légales
en matière de protection de l'environnement et de mise au rebut des déchets ainsi
que les exigences de toutes les autorités locales. Évitez la dispersion des matériaux
déversés, ainsi que leur écoulement et tout contact avec le sol, les cours d'eau, les
égouts et conduits d'évacuation.
Méthodes d'élimination des :
déchets
07 02 08* autres résidus de réaction et résidus de distillation
Il faut dans tous les cas appliquer toutes les lois locales régionales et nationales ainsi
que les directives européennes. Il appartient à l'utilisateur final de déterminer le code
des déchets spécifique à chaque secteur industriel en utilisant le code Européen
approprié du catalogue européen des déchets. Il est recommandé que tous les
détails soient indiqués par le responsable des déchets.
14.
Réglementation internationale du transport
INFORMATIONS RELATIVES AU TRANSPORT
Nom d'expédition
ADR : Matière dangereuse du point de vue de l'environnement, liquide, n.s.a. BISPHENOL A/F EPOXY
RESIN
IMDG : Environmentally hazardous substance, liquid, n.o.s. (BISPHENOL A/F EPOXY RESIN)
IATA : Environmentally hazardous substance, liquid, n.o.s. (BISPHENOL A/F EPOXY RESIN)
Informations
réglementaires
Numéro
ONU
Classes Groupe
d'emballage
Étiquette Autres informations
9
Classe ADR/RID UN3082 9 III
Classe IMDG UN3082 9 III
9
Emergency schedules (EmS)
F-A, S-F
Code de classificationM6
Numéro
d'identification du
danger
90
Date d'édition/Date de
révision
: 11/13/2009. 3/6
ARALDITE FUSION
14. INFORMATIONS RELATIVES AU TRANSPORT
Passenger and Cargo Aircraft
Quantity limitation: 450 L
Packaging instructions: 914
Cargo Aircraft OnlyQuantity limitation:
450 L
Packaging instructions: 914
9
Classe IATA UN3082 9 III
15. INFORMATIONS RÉGLEMENTAIRES
Conseils de prudence S24- Éviter le contact avec la peau.
S37/39- Porter des gants appropriés et un appareil de protection des yeux/du visage.
S61- Éviter le rejet dans l'environnement. Consulter les instructions spéciales/la fiche
de données de sécurité.
R36/38- Irritant pour les yeux et la peau.
R43- Peut entraîner une sensibilisation par contact avec la peau.
R51/53- Toxique pour les organismes aquatiques, peut entraîner des effets néfastes
à long terme pour l'environnement aquatique.
Symbole(s) de danger
Phrases de risque
Réglementations de l'Union Européenne
Réglementations nationales
Contient du (de la)
:
:
:
:
Phrases d'avertissement
supplémentaire
: Non applicable.
Irritant, Dangereux pour l'environnement
produit de réaction: bisphénol-A-épichlorhydrine; résines époxydiques (poids
moléculaire moyen < 700)
résine époxidique à base de bisphénol F
Déterminés en accord avec les directives de l'UE 67/548/EEC et 1999/45/EC (y compris les amendements), la
classification et l'étiquetage prennent en compte l'usage prévu du produit.
Surveillance médicale
renforcée
: Arrêté du 11 Juillet 1977 fixant la liste des travaux nécessitant une surveillance
médicale renforcée: non concerné
Réglementations Internationales
Listes internationales : Inventaire des substances chimiques d'Australie (AICS): Tous les composants
sont répertoriés ou exclus.
Inventaire des substances chimiques existantes en Chine (IECSC): Tous les
composants sont répertoriés ou exclus.
Inventaire du Japon (ENCS): Un composant au moins n'est pas répertorié.
Inventaire du Japon (ISHL): Indéterminé.
Inventaire de Corée (KECI): Tous les composants sont répertoriés ou exclus.
Inventaire néo-zélandais des substances chimiques (NZIoC): Indéterminé.
Inventaire des substances chimiques des Philippines (PICCS): Un composant au
moins n'est pas répertorié.
Inventaire des États-Unis (TSCA 8b): Tous les composants sont répertoriés ou
exclus.
Inventaire d'Europe: Tous les composants sont répertoriés ou exclus.
Inventaire du Canada: Tous les composants sont répertoriés ou exclus.
Xi, N
Etiquetage exceptionnel
pour préparations
spéciales
: Contient des composés époxydiques. Voir les informations transmises par le
fabricant.
Date d'édition/Date de
révision
: 11/13/2009. 4/6
ARALDITE FUSION
AUTRES DONNÉES
11/13/2009.
Historique
16.
Date d'impression
Date d'édition/ Date de
révision
Version
Avis au lecteur
Date de la précédente
édition
:
:
:
:
R23/24- Toxique par inhalation et par contact avec la peau.
R22- Nocif en cas d'ingestion.
R35- Provoque de graves brûlures.
R41- Risque de lésions oculaires graves.
R38- Irritant pour la peau.
R36/38- Irritant pour les yeux et la peau.
R43- Peut entraîner une sensibilisation par contact avec la peau.
R50/53- Très toxique pour les organismes aquatiques, peut entraîner des effets
néfastes à long terme pour l'environnement aquatique.
R51/53- Toxique pour les organismes aquatiques, peut entraîner des effets néfastes
à long terme pour l'environnement aquatique.
R53- Peut entraîner des effets néfastes à long terme pour l'environnement aquatique.
Texte complet des phrases :
R citées dans les sections 2
et 3 - France
Référence du texte complet
des classifications se
trouvant dans les Sections 2
et 3 - France
: T - Toxique
C - Corrosif
Xn - Nocif
Xi - Irritant
N - Dangereux pour l'environnement
Indique quels renseignements ont été modifiés depuis la version précédente.
11/13/2009.
Aucune validation antérieure.
1
Epoxy Resins and Curing Agents; Toxicology, Health, Safety and Environmental Aspects (Plastics Europe, May 2006)
Les informations et recommandations figurant dans cette publication sont fondées sur notre expérience générale
et sont fournies de bonne foi au mieux de nos connaissances actuelles, MAIS RIEN DANS LES PRESENTES NE
DOIT ÊTRE INTERPRETE COMME CONSTITUANT UNE GARANTIE OU UNE DECLARATION, EXPRESSE,
IMPLICITE OU AUTRE.
DANS TOUS LES CAS, IL INCOMBE A L'UTILISATEUR DE DETERMINER ET DE VERIFIER L'EXACTITUDE, AINSI
QUE LE CARACTERE SUFFISANT ET APPLICABLE DE TELLES INFORMATIONS ET RECOMMANDATIONS, DE
MEME QUE L'ADEQUATION ET L'ADAPTATION D'UN QUELCONQUE PRODUIT A UNE UTILISATION SPECIFIQUE
OU DANS UN BUT PARTICULIER.
LES PRODUITS MENTIONNES PEUVENT PRESENTER DES RISQUES INCONNUS ET DOIVENT ETRE UTILISES
AVEC PRECAUTION. MEME SI CERTAINS RISQUES SONT DECRITS DANS CETTE PUBLICATION, IL N'EXISTE
AUCUNE GARANTIE QU'IL S'AGIT DES SEULS RISQUES EXISTANTS.
Les risques, la toxicité et le comportement des produits peuvent différer lorsque ceux-ci sont utilisés avec
d'autres matériaux et dépendent des conditions de fabrication et d'autres processus. Ces risques, cette toxicité et
ces comportements doivent être déterminés par l'utilisateur et portés à la connaissance des personnes ou entités
chargés du transport ou de la manutention, du traitement ou de la transformation, ainsi que de tous utilisateurs
finaux.
Pour toute demande, contactez le bureau commercial Huntsman Sales le plus proche ou directement Huntsman
(Belgium) BVBA, Everslaan 45, B-3078 Everberg, Belgique. Tél. +32 2 758 9211 - Fax +32 758 9946.
Huntsman Belgium (BVBA)
Everslaan 45
B-3078 Everberg
Belgium
Tel.:+32-(0)2-758-9211
Références
Date d'édition/Date de
révision
: 11/13/2009. 5/6
ARALDITE FUSION
16. AUTRES DONNÉES
NO PERSON OR ORGANIZATION EXCEPT A DULY AUTHORIZED HUNTSMAN EMPLOYEE IS AUTHORIZED TO
PROVIDE OR MAKE AVAILABLE DATA SHEETS FOR HUNTSMAN PRODUCTS. DATA SHEETS FROM
UNAUTHORIZED SOURCES MAY CONTAIN INFORMATION THAT IS NO LONGER CURRENT OR ACCURATE. NO
PART OF THIS DATA SHEET MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM, OR BY ANY MEANS,
WITHOUT PERMISSION IN WRITING FROM HUNTSMAN. ALL REQUESTS FOR PERMISSION TO REPRODUCE
MATERIAL FROM THIS DATA SHEET SHOULD BE DIRECTED TO HUNTSMAN, MANAGER, PRODUCT SAFETY AT
THE ABOVE ADDRESS.
Date d'édition/Date de
révision
: 11/13/2009. 6/6
FICHE DE DONNÉES DE SÉCURITÉ
Section 1: Identification de la substance/du mélange et de la société/l’entreprise
Identificateur de produit
Nom commercial ou
désignation du mélange
Contralube 770
Numéro -
d'enregistrement
Synonymes Aucun(e)(s).
Code de produit Contralube 770
Date de la première
publication
le 06-04-06
Numéro de version 12
le 17-02-11
le 06-01-11
Date de révision
Date d'entrée en vigueur de la
nouvelle version
Utilisations identifiées pertinentes de la substance ou du mélange et utilisations déconseillées
Utilisations identifiées Non disponible.
Utilisations déconseillées Aucun connu.
Renseignements concernant le fournisseur de la fiche de données de sécurité
Newgate Simms Ltd.
Broughton Mills