Consent Manager Tag v2.0 (for TCF 2.0) -->
Farnell PDF

RS COMPONENTS Images.png

AD586BRZ - Analog Devices - Farnell Element 14

AD586BRZ - Analog Devices - Farnell Element 14 - Revenir à l'accueil

 

 

Branding Farnell element14 (France)

 

Farnell Element 14 :

Miniature

Everything You Need To Know About Arduino

Miniature

Tutorial 01 for Arduino: Getting Acquainted with Arduino

Miniature

The Cube® 3D Printer

Miniature

What's easier- DIY Dentistry or our new our website features?

 

Miniature

Ben Heck's Getting Started with the BeagleBone Black Trailer

Miniature

Ben Heck's Home-Brew Solder Reflow Oven 2.0 Trailer

Miniature

Get Started with Pi Episode 3 - Online with Raspberry Pi

Miniature

Discover Simulink Promo -- Exclusive element14 Webinar

Miniature

Ben Heck's TV Proximity Sensor Trailer

Miniature

Ben Heck's PlayStation 4 Teardown Trailer

See the trailer for the next exciting episode of The Ben Heck show. Check back on Friday to be among the first to see the exclusive full show on element…

Miniature

Get Started with Pi Episode 4 - Your First Raspberry Pi Project

Connect your Raspberry Pi to a breadboard, download some code and create a push-button audio play project.

Miniature

Ben Heck Anti-Pickpocket Wallet Trailer

Miniature

Molex Earphones - The 14 Holiday Products of Newark element14 Promotion

Miniature

Tripp Lite Surge Protector - The 14 Holiday Products of Newark element14 Promotion

Miniature

Microchip ChipKIT Pi - The 14 Holiday Products of Newark element14 Promotion

Miniature

Beagle Bone Black - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M E26, LED Lamps - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M Colored Duct Tape - The 14 Holiday Products of Newark element14 Promotion

Miniature

Tenma Soldering Station - The 14 Holiday Products of Newark element14 Promotion

Miniature

Duratool Screwdriver Kit - The 14 Holiday Products of Newark element14 Promotion

Miniature

Cubify 3D Cube - The 14 Holiday Products of Newark element14 Promotion

Miniature

Bud Boardganizer - The 14 Holiday Products of Newark element14 Promotion

Miniature

Raspberry Pi Starter Kit - The 14 Holiday Products of Newark element14 Promotion

Miniature

Fluke 323 True-rms Clamp Meter - The 14 Holiday Products of Newark element14 Promotion

Miniature

Dymo RHINO 6000 Label Printer - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M LED Advanced Lights A-19 - The 14 Holiday Products of Newark element14 Promotion

Miniature

Innovative LPS Resistor Features Very High Power Dissipation

Miniature

Charge Injection Evaluation Board for DG508B Multiplexer Demo

Miniature

Ben Heck The Great Glue Gun Trailer Part 2

Miniature

Introducing element14 TV

Miniature

Ben Heck Time to Meet Your Maker Trailer

Miniature

Détecteur de composants

Miniature

Recherche intégrée

Miniature

Ben Builds an Accessibility Guitar Trailer Part 1

Miniature

Ben Builds an Accessibility Guitar - Part 2 Trailer

Miniature

PiFace Control and Display Introduction

Miniature

Flashmob Farnell

Miniature

Express Yourself in 3D with Cube 3D Printers from Newark element14

Miniature

Farnell YouTube Channel Move

Miniature

Farnell: Design with the best

Miniature

French Farnell Quest

Miniature

Altera - 3 Ways to Quickly Adapt to Changing Ethernet Protocols

Miniature

Cy-Net3 Network Module

Miniature

MC AT - Professional and Precision Series Thin Film Chip Resistors

Miniature

Solderless LED Connector

Miniature

PSA-T Series Spectrum Analyser: PSA1301T/ PSA2701T

Miniature

3-axis Universal Motion Controller For Stepper Motor Drivers: TMC429

Miniature

Voltage Level Translation

Puce électronique / Microchip :

Miniature

Microchip - 8-bit Wireless Development Kit

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 2 of 3

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 3 of 3

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 1 of 3

Sans fil - Wireless :

Miniature

Microchip - 8-bit Wireless Development Kit

Miniature

Wireless Power Solutions - Wurth Electronics, Texas Instruments, CadSoft and element14

Miniature

Analog Devices - Remote Water Quality Monitoring via a Low Power, Wireless Network

Texas instrument :

Miniature

Texas Instruments - Automotive LED Headlights

Miniature

Texas Instruments - Digital Power Solutions

Miniature

Texas Instruments - Industrial Sensor Solutions

Miniature

Texas Instruments - Wireless Pen Input Demo (Mobile World Congress)

Miniature

Texas Instruments - Industrial Automation System Components

Miniature

Texas Instruments - TMS320C66x - Industry's first 10-GHz fixed/floating point DSP

Miniature

Texas Instruments - TMS320C66x KeyStone Multicore Architecture

Miniature

Texas Instruments - Industrial Interfaces

Miniature

Texas Instruments - Concerto™ MCUs - Connectivity without compromise

Miniature

Texas Instruments - Stellaris Robot Chronos

Miniature

Texas Instruments - DRV8412-C2-KIT, Brushed DC and Stepper Motor Control Kit

Ordinateurs :

Miniature

Ask Ben Heck - Connect Raspberry Pi to Car Computer

Miniature

Ben's Portable Raspberry Pi Computer Trailer

Miniature

Ben's Raspberry Pi Portable Computer Trailer 2

Miniature

Ben Heck's Pocket Computer Trailer

Miniature

Ask Ben Heck - Atari Computer

Miniature

Ask Ben Heck - Using Computer Monitors for External Displays

Miniature

Raspberry Pi Partnership with BBC Computer Literacy Project - Answers from co-founder Eben Upton

Miniature

Installing RaspBMC on your Raspberry Pi with the Farnell element14 Accessory kit

Miniature

Raspberry Pi Served - Joey Hudy

Miniature

Happy Birthday Raspberry Pi

Miniature

Raspberry Pi board B product overview

Logiciels :

Miniature

Ask Ben Heck - Best Opensource or Free CAD Software

Miniature

Tektronix FPGAView™ software makes debugging of FPGAs faster than ever!

Miniature

Ask Ben Heck - Best Open-Source Schematic Capture and PCB Layout Software

Miniature

Introduction to Cadsoft EAGLE PCB Design Software in Chinese

Miniature

Altera - Developing Software for Embedded Systems on FPGAs

Tutoriels :

Miniature

Ben Heck The Great Glue Gun Trailer Part 1

Miniature

the knode tutorial - element14

Miniature

Ben's Autodesk 123D Tutorial Trailer

Miniature

Ben's CadSoft EAGLE Tutorial Trailer

Miniature

Ben Heck's Soldering Tutorial Trailer

Miniature

Ben Heck's AVR Dev Board tutorial

Miniature

Ben Heck's Pinball Tutorial Trailer

Miniature

Ben Heck's Interface Tutorial Trailer

Miniature

First Stage with Python and PiFace Digital

Miniature

Cypress - Getting Started with PSoC® 3 - Part 2

Miniature

Energy Harvesting Challenge

Miniature

New Features of CadSoft EAGLE v6

Autres documentations :

[TXT]

 Farnell-NA555-NE555-..> 08-Sep-2014 07:33  1.5M  

[TXT]

 Farnell-AD9834-Rev-D..> 08-Sep-2014 07:32  1.2M  

[TXT]

 Farnell-MSP430F15x-M..> 08-Sep-2014 07:32  1.3M  

[TXT]

 Farnell-AD736-Rev-I-..> 08-Sep-2014 07:31  1.3M  

[TXT]

 Farnell-AD8307-Data-..> 08-Sep-2014 07:30  1.3M  

[TXT]

 Farnell-Single-Chip-..> 08-Sep-2014 07:30  1.5M  

[TXT]

 Farnell-Quadruple-2-..> 08-Sep-2014 07:29  1.5M  

[TXT]

 Farnell-ADE7758-Rev-..> 08-Sep-2014 07:28  1.7M  

[TXT]

 Farnell-MAX3221-Rev-..> 08-Sep-2014 07:28  1.8M  

[TXT]

 Farnell-USB-to-Seria..> 08-Sep-2014 07:27  2.0M  

[TXT]

 Farnell-AD8313-Analo..> 08-Sep-2014 07:26  2.0M  

[TXT]

 Farnell-SN54HC164-SN..> 08-Sep-2014 07:25  2.0M  

[TXT]

 Farnell-AD8310-Analo..> 08-Sep-2014 07:24  2.1M  

[TXT]

 Farnell-AD8361-Rev-D..> 08-Sep-2014 07:23  2.1M  

[TXT]

 Farnell-2N3906-Fairc..> 08-Sep-2014 07:22  2.1M  

[TXT]

 Farnell-AD584-Rev-C-..> 08-Sep-2014 07:20  2.2M  

[TXT]

 Farnell-ADE7753-Rev-..> 08-Sep-2014 07:20  2.3M  

[TXT]

 Farnell-TLV320AIC23B..> 08-Sep-2014 07:18  2.4M  

[TXT]

 Farnell-AD586BRZ-Ana..> 08-Sep-2014 07:17  1.6M  

[TXT]

 Farnell-STM32F405xxS..> 27-Aug-2014 18:27  1.8M 
 Farnell-MSP430-Hardw..> 29-Jul-2014 10:36  1.1M  

[TXT]

 Farnell-LM324-Texas-..> 29-Jul-2014 10:32  1.5M  

[TXT]

 Farnell-LM386-Low-Vo..> 29-Jul-2014 10:32  1.5M  

[TXT]

 Farnell-NE5532-Texas..> 29-Jul-2014 10:32  1.5M  

[TXT]

 Farnell-Hex-Inverter..> 29-Jul-2014 10:31  875K  

[TXT]

 Farnell-AT90USBKey-H..> 29-Jul-2014 10:31  902K  

[TXT]

 Farnell-AT89C5131-Ha..> 29-Jul-2014 10:31  1.2M  

[TXT]

 Farnell-MSP-EXP430F5..> 29-Jul-2014 10:31  1.2M  

[TXT]

 Farnell-Explorer-16-..> 29-Jul-2014 10:31  1.3M  

[TXT]

 Farnell-TMP006EVM-Us..> 29-Jul-2014 10:30  1.3M  

[TXT]

 Farnell-Gertboard-Us..> 29-Jul-2014 10:30  1.4M  

[TXT]

 Farnell-LMP91051-Use..> 29-Jul-2014 10:30  1.4M  

[TXT]

 Farnell-Thermometre-..> 29-Jul-2014 10:30  1.4M  

[TXT]

 Farnell-user-manuel-..> 29-Jul-2014 10:29  1.5M  

[TXT]

 Farnell-fx-3650P-fx-..> 29-Jul-2014 10:29  1.5M

[TXT]

 Farnell-2-GBPS-Diffe..> 28-Jul-2014 17:42  2.7M  

[TXT]

 Farnell-LMT88-2.4V-1..> 28-Jul-2014 17:42  2.8M  

[TXT]

 Farnell-Octal-Genera..> 28-Jul-2014 17:42  2.8M  

[TXT]

 Farnell-Dual-MOSFET-..> 28-Jul-2014 17:41  2.8M  

[TXT]

 Farnell-TLV320AIC325..> 28-Jul-2014 17:41  2.9M  

[TXT]

 Farnell-SN54LV4053A-..> 28-Jul-2014 17:20  5.9M  

[TXT]

 Farnell-TAS1020B-USB..> 28-Jul-2014 17:19  6.2M  

[TXT]

 Farnell-TPS40060-Wid..> 28-Jul-2014 17:19  6.3M  

[TXT]

 Farnell-TL082-Wide-B..> 28-Jul-2014 17:16  6.3M  

[TXT]

 Farnell-RF-short-tra..> 28-Jul-2014 17:16  6.3M  

[TXT]

 Farnell-maxim-integr..> 28-Jul-2014 17:14  6.4M  

[TXT]

 Farnell-TSV6390-TSV6..> 28-Jul-2014 17:14  6.4M  

[TXT]

 Farnell-Fast-Charge-..> 28-Jul-2014 17:12  6.4M  

[TXT]

 Farnell-NVE-datashee..> 28-Jul-2014 17:12  6.5M  

[TXT]

 Farnell-Excalibur-Hi..> 28-Jul-2014 17:10  2.4M  

[TXT]

 Farnell-Excalibur-Hi..> 28-Jul-2014 17:10  2.4M  

[TXT]

 Farnell-REF102-10V-P..> 28-Jul-2014 17:09  2.4M  

[TXT]

 Farnell-TMS320F28055..> 28-Jul-2014 17:09  2.7M

[TXT]

 Farnell-MULTICOMP-Ra..> 22-Jul-2014 12:35  5.9M  

[TXT]

 Farnell-RASPBERRY-PI..> 22-Jul-2014 12:35  5.9M  

[TXT]

 Farnell-Dremel-Exper..> 22-Jul-2014 12:34  1.6M  

[TXT]

 Farnell-STM32F103x8-..> 22-Jul-2014 12:33  1.6M  

[TXT]

 Farnell-BD6xxx-PDF.htm  22-Jul-2014 12:33  1.6M  

[TXT]

 Farnell-L78S-STMicro..> 22-Jul-2014 12:32  1.6M  

[TXT]

 Farnell-RaspiCam-Doc..> 22-Jul-2014 12:32  1.6M  

[TXT]

 Farnell-SB520-SB5100..> 22-Jul-2014 12:32  1.6M  

[TXT]

 Farnell-iServer-Micr..> 22-Jul-2014 12:32  1.6M  

[TXT]

 Farnell-LUMINARY-MIC..> 22-Jul-2014 12:31  3.6M  

[TXT]

 Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:31  2.4M  

[TXT]

 Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:30  4.6M  

[TXT]

 Farnell-CLASS 1-or-2..> 22-Jul-2014 12:30  4.7M  

[TXT]

 Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:29  4.8M  

[TXT]

 Farnell-Evaluating-t..> 22-Jul-2014 12:28  4.9M  

[TXT]

 Farnell-LM3S6952-Mic..> 22-Jul-2014 12:27  5.9M  

[TXT]

 Farnell-Keyboard-Mou..> 22-Jul-2014 12:27  5.9M 

 [TXT] Farnell-Full-Datashe..> 15-Jul-2014 17:08 951K  

[TXT]

 Farnell-pmbta13_pmbt..> 15-Jul-2014 17:06  959K  

[TXT]

 Farnell-EE-SPX303N-4..> 15-Jul-2014 17:06  969K  

[TXT]

 Farnell-Datasheet-NX..> 15-Jul-2014 17:06  1.0M  

[TXT]

 Farnell-Datasheet-Fa..> 15-Jul-2014 17:05  1.0M  

[TXT]

 Farnell-MIDAS-un-tra..> 15-Jul-2014 17:05  1.0M  

[TXT]

 Farnell-SERIAL-TFT-M..> 15-Jul-2014 17:05  1.0M  

[TXT]

 Farnell-MCOC1-Farnel..> 15-Jul-2014 17:05  1.0M

[TXT]

 Farnell-TMR-2-series..> 15-Jul-2014 16:48  787K  

[TXT]

 Farnell-DC-DC-Conver..> 15-Jul-2014 16:48  781K  

[TXT]

 Farnell-Full-Datashe..> 15-Jul-2014 16:47  803K  

[TXT]

 Farnell-TMLM-Series-..> 15-Jul-2014 16:47  810K  

[TXT]

 Farnell-TEL-5-Series..> 15-Jul-2014 16:47  814K  

[TXT]

 Farnell-TXL-series-t..> 15-Jul-2014 16:47  829K  

[TXT]

 Farnell-TEP-150WI-Se..> 15-Jul-2014 16:47  837K  

[TXT]

 Farnell-AC-DC-Power-..> 15-Jul-2014 16:47  845K  

[TXT]

 Farnell-TIS-Instruct..> 15-Jul-2014 16:47  845K  

[TXT]

 Farnell-TOS-tracopow..> 15-Jul-2014 16:47  852K  

[TXT]

 Farnell-TCL-DC-traco..> 15-Jul-2014 16:46  858K  

[TXT]

 Farnell-TIS-series-t..> 15-Jul-2014 16:46  875K  

[TXT]

 Farnell-TMR-2-Series..> 15-Jul-2014 16:46  897K  

[TXT]

 Farnell-TMR-3-WI-Ser..> 15-Jul-2014 16:46  939K  

[TXT]

 Farnell-TEN-8-WI-Ser..> 15-Jul-2014 16:46  939K  

[TXT]

 Farnell-Full-Datashe..> 15-Jul-2014 16:46  947K
[TXT]

 Farnell-HIP4081A-Int..> 07-Jul-2014 19:47  1.0M  

[TXT]

 Farnell-ISL6251-ISL6..> 07-Jul-2014 19:47  1.1M  

[TXT]

 Farnell-DG411-DG412-..> 07-Jul-2014 19:47  1.0M  

[TXT]

 Farnell-3367-ARALDIT..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-ICM7228-Inte..> 07-Jul-2014 19:46  1.1M  

[TXT]

 Farnell-Data-Sheet-K..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-Silica-Gel-M..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-TKC2-Dusters..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-CRC-HANDCLEA..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-760G-French-..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-Decapant-KF-..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-1734-ARALDIT..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-Araldite-Fus..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-fiche-de-don..> 07-Jul-2014 19:44  1.4M  

[TXT]

 Farnell-safety-data-..> 07-Jul-2014 19:44  1.4M  

[TXT]

 Farnell-A-4-Hardener..> 07-Jul-2014 19:44  1.4M  

[TXT]

 Farnell-CC-Debugger-..> 07-Jul-2014 19:44  1.5M  

[TXT]

 Farnell-MSP430-Hardw..> 07-Jul-2014 19:43  1.8M  

[TXT]

 Farnell-SmartRF06-Ev..> 07-Jul-2014 19:43  1.6M  

[TXT]

 Farnell-CC2531-USB-H..> 07-Jul-2014 19:43  1.8M  

[TXT]

 Farnell-Alimentation..> 07-Jul-2014 19:43  1.8M  

[TXT]

 Farnell-BK889B-PONT-..> 07-Jul-2014 19:42  1.8M  

[TXT]

 Farnell-User-Guide-M..> 07-Jul-2014 19:41  2.0M  

[TXT]

 Farnell-T672-3000-Se..> 07-Jul-2014 19:41  2.0M

 [TXT]Farnell-0050375063-D..> 18-Jul-2014 17:03 2.5M  

[TXT]

 Farnell-Mini-Fit-Jr-..> 18-Jul-2014 17:03  2.5M  

[TXT]

 Farnell-43031-0002-M..> 18-Jul-2014 17:03  2.5M  

[TXT]

 Farnell-0433751001-D..> 18-Jul-2014 17:02  2.5M  

[TXT]

 Farnell-Cube-3D-Prin..> 18-Jul-2014 17:02  2.5M  

[TXT]

 Farnell-MTX-Compact-..> 18-Jul-2014 17:01  2.5M  

[TXT]

 Farnell-MTX-3250-MTX..> 18-Jul-2014 17:01  2.5M  

[TXT]

 Farnell-ATtiny26-L-A..> 18-Jul-2014 17:00  2.6M  

[TXT]

 Farnell-MCP3421-Micr..> 18-Jul-2014 17:00  1.2M  

[TXT]

 Farnell-LM19-Texas-I..> 18-Jul-2014 17:00  1.2M  

[TXT]

 Farnell-Data-Sheet-S..> 18-Jul-2014 17:00  1.2M  

[TXT]

 Farnell-LMH6518-Texa..> 18-Jul-2014 16:59  1.3M  

[TXT]

 Farnell-AD7719-Low-V..> 18-Jul-2014 16:59  1.4M  

[TXT]

 Farnell-DAC8143-Data..> 18-Jul-2014 16:59  1.5M  

[TXT]

 Farnell-BGA7124-400-..> 18-Jul-2014 16:59  1.5M  

[TXT]

 Farnell-SICK-OPTIC-E..> 18-Jul-2014 16:58  1.5M  

[TXT]

 Farnell-LT3757-Linea..> 18-Jul-2014 16:58  1.6M  

[TXT]

 Farnell-LT1961-Linea..> 18-Jul-2014 16:58  1.6M  

[TXT]

 Farnell-PIC18F2420-2..> 18-Jul-2014 16:57  2.5M  

[TXT]

 Farnell-DS3231-DS-PD..> 18-Jul-2014 16:57  2.5M  

[TXT]

 Farnell-RDS-80-PDF.htm  18-Jul-2014 16:57  1.3M  

[TXT]

 Farnell-AD8300-Data-..> 18-Jul-2014 16:56  1.3M  

[TXT]

 Farnell-LT6233-Linea..> 18-Jul-2014 16:56  1.3M  

[TXT]

 Farnell-MAX1365-MAX1..> 18-Jul-2014 16:56  1.4M  

[TXT]

 Farnell-XPSAF5130-PD..> 18-Jul-2014 16:56  1.4M  

[TXT]

 Farnell-DP83846A-DsP..> 18-Jul-2014 16:55  1.5M  

[TXT]

 Farnell-Dremel-Exper..> 18-Jul-2014 16:55  1.6M

[TXT]

 Farnell-MCOC1-Farnel..> 16-Jul-2014 09:04  1.0M  

[TXT]

 Farnell-SL3S1203_121..> 16-Jul-2014 09:04  1.1M  

[TXT]

 Farnell-PN512-Full-N..> 16-Jul-2014 09:03  1.4M  

[TXT]

 Farnell-SL3S4011_402..> 16-Jul-2014 09:03  1.1M  

[TXT]

 Farnell-LPC408x-7x 3..> 16-Jul-2014 09:03  1.6M  

[TXT]

 Farnell-PCF8574-PCF8..> 16-Jul-2014 09:03  1.7M  

[TXT]

 Farnell-LPC81xM-32-b..> 16-Jul-2014 09:02  2.0M  

[TXT]

 Farnell-LPC1769-68-6..> 16-Jul-2014 09:02  1.9M  

[TXT]

 Farnell-Download-dat..> 16-Jul-2014 09:02  2.2M  

[TXT]

 Farnell-LPC3220-30-4..> 16-Jul-2014 09:02  2.2M  

[TXT]

 Farnell-LPC11U3x-32-..> 16-Jul-2014 09:01  2.4M  

[TXT]

 Farnell-SL3ICS1002-1..> 16-Jul-2014 09:01  2.5M

[TXT]

 Farnell-T672-3000-Se..> 08-Jul-2014 18:59  2.0M  

[TXT]

 Farnell-tesa®pack63..> 08-Jul-2014 18:56  2.0M  

[TXT]

 Farnell-Encodeur-USB..> 08-Jul-2014 18:56  2.0M  

[TXT]

 Farnell-CC2530ZDK-Us..> 08-Jul-2014 18:55  2.1M  

[TXT]

 Farnell-2020-Manuel-..> 08-Jul-2014 18:55  2.1M  

[TXT]

 Farnell-Synchronous-..> 08-Jul-2014 18:54  2.1M  

[TXT]

 Farnell-Arithmetic-L..> 08-Jul-2014 18:54  2.1M  

[TXT]

 Farnell-NA555-NE555-..> 08-Jul-2014 18:53  2.2M  

[TXT]

 Farnell-4-Bit-Magnit..> 08-Jul-2014 18:53  2.2M  

[TXT]

 Farnell-LM555-Timer-..> 08-Jul-2014 18:53  2.2M  

[TXT]

 Farnell-L293d-Texas-..> 08-Jul-2014 18:53  2.2M  

[TXT]

 Farnell-SN54HC244-SN..> 08-Jul-2014 18:52  2.3M  

[TXT]

 Farnell-MAX232-MAX23..> 08-Jul-2014 18:52  2.3M  

[TXT]

 Farnell-High-precisi..> 08-Jul-2014 18:51  2.3M  

[TXT]

 Farnell-SMU-Instrume..> 08-Jul-2014 18:51  2.3M  

[TXT]

 Farnell-900-Series-B..> 08-Jul-2014 18:50  2.3M  

[TXT]

 Farnell-BA-Series-Oh..> 08-Jul-2014 18:50  2.3M  

[TXT]

 Farnell-UTS-Series-S..> 08-Jul-2014 18:49  2.5M  

[TXT]

 Farnell-270-Series-O..> 08-Jul-2014 18:49  2.3M  

[TXT]

 Farnell-UTS-Series-S..> 08-Jul-2014 18:49  2.8M  

[TXT]

 Farnell-Tiva-C-Serie..> 08-Jul-2014 18:49  2.6M  

[TXT]

 Farnell-UTO-Souriau-..> 08-Jul-2014 18:48  2.8M  

[TXT]

 Farnell-Clipper-Seri..> 08-Jul-2014 18:48  2.8M  

[TXT]

 Farnell-SOURIAU-Cont..> 08-Jul-2014 18:47  3.0M  

[TXT]

 Farnell-851-Series-P..> 08-Jul-2014 18:47  3.0M

 [TXT] Farnell-SL59830-Inte..> 06-Jul-2014 10:07 1.0M  

[TXT]

 Farnell-ALF1210-PDF.htm 06-Jul-2014 10:06  4.0M  

[TXT]

 Farnell-AD7171-16-Bi..> 06-Jul-2014 10:06  1.0M  

[TXT]

 Farnell-Low-Noise-24..> 06-Jul-2014 10:05  1.0M  

[TXT]

 Farnell-ESCON-Featur..> 06-Jul-2014 10:05  938K  

[TXT]

 Farnell-74LCX573-Fai..> 06-Jul-2014 10:05  1.9M  

[TXT]

 Farnell-1N4148WS-Fai..> 06-Jul-2014 10:04  1.9M  

[TXT]

 Farnell-FAN6756-Fair..> 06-Jul-2014 10:04  850K  

[TXT]

 Farnell-Datasheet-Fa..> 06-Jul-2014 10:04  861K  

[TXT]

 Farnell-ES1F-ES1J-fi..> 06-Jul-2014 10:04  867K  

[TXT]

 Farnell-QRE1113-Fair..> 06-Jul-2014 10:03  879K  

[TXT]

 Farnell-2N7002DW-Fai..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-FDC2512-Fair..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-FDV301N-Digi..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-S1A-Fairchil..> 06-Jul-2014 10:03  896K  

[TXT]

 Farnell-BAV99-Fairch..> 06-Jul-2014 10:03  896K  

[TXT]

 Farnell-74AC00-74ACT..> 06-Jul-2014 10:03  911K  

[TXT]

 Farnell-NaPiOn-Panas..> 06-Jul-2014 10:02  911K  

[TXT]

 Farnell-LQ-RELAYS-AL..> 06-Jul-2014 10:02  924K  

[TXT]

 Farnell-ev-relays-ae..> 06-Jul-2014 10:02  926K  

[TXT]

 Farnell-ESCON-Featur..> 06-Jul-2014 10:02  931K  

[TXT]

 Farnell-Amplifier-In..> 06-Jul-2014 10:02  940K  

[TXT]

 Farnell-Serial-File-..> 06-Jul-2014 10:02  941K  

[TXT]

 Farnell-Both-the-Del..> 06-Jul-2014 10:01  948K  

[TXT]

 Farnell-Videk-PDF.htm   06-Jul-2014 10:01  948K  

[TXT]

 Farnell-EPCOS-173438..> 04-Jul-2014 10:43  3.3M  

[TXT]

 Farnell-Sensorless-C..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-197.31-KB-Te..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-PIC12F609-61..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-PADO-semi-au..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-03-iec-runds..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-ACC-Silicone..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-Series-TDS10..> 04-Jul-2014 10:39  4.0M 

[TXT]

 Farnell-03-iec-runds..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-0430300011-D..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-06-6544-8-PD..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-3M-Polyimide..> 21-Mar-2014 08:09  3.9M  

[TXT]

 Farnell-3M-VolitionT..> 25-Mar-2014 08:18  3.3M  

[TXT]

 Farnell-10BQ060-PDF.htm 14-Jun-2014 09:50  2.4M  

[TXT]

 Farnell-10TPB47M-End..> 14-Jun-2014 18:16  3.4M  

[TXT]

 Farnell-12mm-Size-In..> 14-Jun-2014 09:50  2.4M  

[TXT]

 Farnell-24AA024-24LC..> 23-Jun-2014 10:26  3.1M  

[TXT]

 Farnell-50A-High-Pow..> 20-Mar-2014 17:31  2.9M  

[TXT]

 Farnell-197.31-KB-Te..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-1907-2006-PD..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-5910-PDF.htm    25-Mar-2014 08:15  3.0M  

[TXT]

 Farnell-6517b-Electr..> 29-Mar-2014 11:12  3.3M  

[TXT]

 Farnell-A-True-Syste..> 29-Mar-2014 11:13  3.3M  

[TXT]

 Farnell-ACC-Silicone..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-AD524-PDF.htm   20-Mar-2014 17:33  2.8M  

[TXT]

 Farnell-ADL6507-PDF.htm 14-Jun-2014 18:19  3.4M  

[TXT]

 Farnell-ADSP-21362-A..> 20-Mar-2014 17:34  2.8M  

[TXT]

 Farnell-ALF1210-PDF.htm 04-Jul-2014 10:39  4.0M  

[TXT]

 Farnell-ALF1225-12-V..> 01-Apr-2014 07:40  3.4M  

[TXT]

 Farnell-ALF2412-24-V..> 01-Apr-2014 07:39  3.4M  

[TXT]

 Farnell-AN10361-Phil..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-ARADUR-HY-13..> 26-Mar-2014 17:55  2.8M  

[TXT]

 Farnell-ARALDITE-201..> 21-Mar-2014 08:12  3.7M  

[TXT]

 Farnell-ARALDITE-CW-..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-ATMEL-8-bit-..> 19-Mar-2014 18:04  2.1M  

[TXT]

 Farnell-ATMEL-8-bit-..> 11-Mar-2014 07:55  2.1M  

[TXT]

 Farnell-ATmega640-VA..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-ATtiny20-PDF..> 25-Mar-2014 08:19  3.6M  

[TXT]

 Farnell-ATtiny26-L-A..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-Alimentation..> 14-Jun-2014 18:24  2.5M  

[TXT]

 Farnell-Alimentation..> 01-Apr-2014 07:42  3.4M  

[TXT]

 Farnell-Amplificateu..> 29-Mar-2014 11:11  3.3M  

[TXT]

 Farnell-An-Improved-..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-Atmel-ATmega..> 19-Mar-2014 18:03  2.2M  

[TXT]

 Farnell-Avvertenze-e..> 14-Jun-2014 18:20  3.3M  

[TXT]

 Farnell-BC846DS-NXP-..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-BC847DS-NXP-..> 23-Jun-2014 10:24  3.3M  

[TXT]

 Farnell-BF545A-BF545..> 23-Jun-2014 10:28  2.1M  

[TXT]

 Farnell-BK2650A-BK26..> 29-Mar-2014 11:10  3.3M  

[TXT]

 Farnell-BT151-650R-N..> 13-Jun-2014 18:40  1.7M  

[TXT]

 Farnell-BTA204-800C-..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-BUJD203AX-NX..> 13-Jun-2014 18:41  1.7M  

[TXT]

 Farnell-BYV29F-600-N..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-BYV79E-serie..> 10-Mar-2014 16:19  1.6M  

[TXT]

 Farnell-BZX384-serie..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-Battery-GBA-..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-C.A-6150-C.A..> 14-Jun-2014 18:24  2.5M  

[TXT]

 Farnell-C.A 8332B-C...> 01-Apr-2014 07:40  3.4M  

[TXT]

 Farnell-CC2560-Bluet..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-CD4536B-Type..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-CIRRUS-LOGIC..> 10-Mar-2014 17:20  2.1M  

[TXT]

 Farnell-CS5532-34-BS..> 01-Apr-2014 07:39  3.5M  

[TXT]

 Farnell-Cannon-ZD-PD..> 11-Mar-2014 08:13  2.8M  

[TXT]

 Farnell-Ceramic-tran..> 14-Jun-2014 18:19  3.4M  

[TXT]

 Farnell-Circuit-Note..> 26-Mar-2014 18:00  2.8M  

[TXT]

 Farnell-Circuit-Note..> 26-Mar-2014 18:00  2.8M  

[TXT]

 Farnell-Cles-electro..> 21-Mar-2014 08:13  3.9M  

[TXT]

 Farnell-Conception-d..> 11-Mar-2014 07:49  2.4M  

[TXT]

 Farnell-Connectors-N..> 14-Jun-2014 18:12  2.1M  

[TXT]

 Farnell-Construction..> 14-Jun-2014 18:25  2.5M  

[TXT]

 Farnell-Controle-de-..> 11-Mar-2014 08:16  2.8M  

[TXT]

 Farnell-Cordless-dri..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:58  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:58  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:59  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:59  2.7M  

[TXT]

 Farnell-DC-Fan-type-..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-DC-Fan-type-..> 14-Jun-2014 09:51  1.8M  

[TXT]

 Farnell-Davum-TMC-PD..> 14-Jun-2014 18:27  2.4M  

[TXT]

 Farnell-De-la-puissa..> 29-Mar-2014 11:10  3.3M  

[TXT]

 Farnell-Directive-re..> 25-Mar-2014 08:16  3.0M  

[TXT]

 Farnell-Documentatio..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-Download-dat..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-ECO-Series-T..> 20-Mar-2014 08:14  2.5M  

[TXT]

 Farnell-ELMA-PDF.htm    29-Mar-2014 11:13  3.3M  

[TXT]

 Farnell-EMC1182-PDF.htm 25-Mar-2014 08:17  3.0M  

[TXT]

 Farnell-EPCOS-173438..> 04-Jul-2014 10:43  3.3M  

[TXT]

 Farnell-EPCOS-Sample..> 11-Mar-2014 07:53  2.2M  

[TXT]

 Farnell-ES2333-PDF.htm  11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-Ed.081002-DA..> 19-Mar-2014 18:02  2.5M  

[TXT]

 Farnell-F28069-Picco..> 14-Jun-2014 18:14  2.0M  

[TXT]

 Farnell-F42202-PDF.htm  19-Mar-2014 18:00  2.5M  

[TXT]

 Farnell-FDS-ITW-Spra..> 14-Jun-2014 18:22  3.3M  

[TXT]

 Farnell-FICHE-DE-DON..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-Fastrack-Sup..> 23-Jun-2014 10:25  3.3M  

[TXT]

 Farnell-Ferric-Chlor..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-Fiche-de-don..> 14-Jun-2014 09:47  2.5M  

[TXT]

 Farnell-Fiche-de-don..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-Fluke-1730-E..> 14-Jun-2014 18:23  2.5M  

[TXT]

 Farnell-GALVA-A-FROI..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-GALVA-MAT-Re..> 26-Mar-2014 17:57  2.7M  

[TXT]

 Farnell-GN-RELAYS-AG..> 20-Mar-2014 08:11  2.6M  

[TXT]

 Farnell-HC49-4H-Crys..> 14-Jun-2014 18:20  3.3M  

[TXT]

 Farnell-HFE1600-Data..> 14-Jun-2014 18:22  3.3M  

[TXT]

 Farnell-HI-70300-Sol..> 14-Jun-2014 18:27  2.4M  

[TXT]

 Farnell-HUNTSMAN-Adv..> 10-Mar-2014 16:17  1.7M  

[TXT]

 Farnell-Haute-vitess..> 11-Mar-2014 08:17  2.4M  

[TXT]

 Farnell-IP4252CZ16-8..> 13-Jun-2014 18:41  1.7M  

[TXT]

 Farnell-Instructions..> 19-Mar-2014 18:01  2.5M  

[TXT]

 Farnell-KSZ8851SNL-S..> 23-Jun-2014 10:28  2.1M  

[TXT]

 Farnell-L-efficacite..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-LCW-CQ7P.CC-..> 25-Mar-2014 08:19  3.2M  

[TXT]

 Farnell-LME49725-Pow..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-LOCTITE-542-..> 25-Mar-2014 08:15  3.0M  

[TXT]

 Farnell-LOCTITE-3463..> 25-Mar-2014 08:19  3.0M  

[TXT]

 Farnell-LUXEON-Guide..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-Leaded-Trans..> 23-Jun-2014 10:26  3.2M  

[TXT]

 Farnell-Les-derniers..> 11-Mar-2014 07:50  2.3M  

[TXT]

 Farnell-Loctite3455-..> 25-Mar-2014 08:16  3.0M  

[TXT]

 Farnell-Low-cost-Enc..> 13-Jun-2014 18:42  1.7M  

[TXT]

 Farnell-Lubrifiant-a..> 26-Mar-2014 18:00  2.7M  

[TXT]

 Farnell-MC3510-PDF.htm  25-Mar-2014 08:17  3.0M  

[TXT]

 Farnell-MC21605-PDF.htm 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-MCF532x-7x-E..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-MICREL-KSZ88..> 11-Mar-2014 07:54  2.2M  

[TXT]

 Farnell-MICROCHIP-PI..> 19-Mar-2014 18:02  2.5M  

[TXT]

 Farnell-MOLEX-39-00-..> 10-Mar-2014 17:19  1.9M  

[TXT]

 Farnell-MOLEX-43020-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MOLEX-43160-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MOLEX-87439-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MPXV7002-Rev..> 20-Mar-2014 17:33  2.8M  

[TXT]

 Farnell-MX670-MX675-..> 14-Jun-2014 09:46  2.5M  

[TXT]

 Farnell-Microchip-MC..> 13-Jun-2014 18:27  1.8M  

[TXT]

 Farnell-Microship-PI..> 11-Mar-2014 07:53  2.2M  

[TXT]

 Farnell-Midas-Active..> 14-Jun-2014 18:17  3.4M  

[TXT]

 Farnell-Midas-MCCOG4..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-Miniature-Ci..> 26-Mar-2014 17:55  2.8M  

[TXT]

 Farnell-Mistral-PDF.htm 14-Jun-2014 18:12  2.1M  

[TXT]

 Farnell-Molex-83421-..> 14-Jun-2014 18:17  3.4M  

[TXT]

 Farnell-Molex-COMMER..> 14-Jun-2014 18:16  3.4M  

[TXT]

 Farnell-Molex-Crimp-..> 10-Mar-2014 16:27  1.7M  

[TXT]

 Farnell-Multi-Functi..> 20-Mar-2014 17:38  3.0M  

[TXT]

 Farnell-NTE_SEMICOND..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-NXP-74VHC126..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-NXP-BT136-60..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-NXP-PBSS9110..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-NXP-PCA9555 ..> 11-Mar-2014 07:54  2.2M  

[TXT]

 Farnell-NXP-PMBFJ620..> 10-Mar-2014 16:16  1.7M  

[TXT]

 Farnell-NXP-PSMN1R7-..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-NXP-PSMN7R0-..> 10-Mar-2014 17:19  2.1M  

[TXT]

 Farnell-NXP-TEA1703T..> 11-Mar-2014 08:15  2.8M  

[TXT]

 Farnell-Nilfi-sk-E-..> 14-Jun-2014 09:47  2.5M  

[TXT]

 Farnell-Novembre-201..> 20-Mar-2014 17:38  3.3M  

[TXT]

 Farnell-OMRON-Master..> 10-Mar-2014 16:26  1.8M  

[TXT]

 Farnell-OSLON-SSL-Ce..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-OXPCIE958-FB..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-PADO-semi-au..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-PBSS5160T-60..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-PDTA143X-ser..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-PDTB123TT-NX..> 13-Jun-2014 18:43  1.5M  

[TXT]

 Farnell-PESD5V0F1BL-..> 13-Jun-2014 18:43  1.5M  

[TXT]

 Farnell-PESD9X5.0L-P..> 13-Jun-2014 18:43  1.6M  

[TXT]

 Farnell-PIC12F609-61..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-PIC18F2455-2..> 23-Jun-2014 10:27  3.1M  

[TXT]

 Farnell-PIC24FJ256GB..> 14-Jun-2014 09:51  2.4M  

[TXT]

 Farnell-PMBT3906-PNP..> 13-Jun-2014 18:44  1.5M  

[TXT]

 Farnell-PMBT4403-PNP..> 23-Jun-2014 10:27  3.1M  

[TXT]

 Farnell-PMEG4002EL-N..> 14-Jun-2014 18:18  3.4M  

[TXT]

 Farnell-PMEG4010CEH-..> 13-Jun-2014 18:43  1.6M  

[TXT]

 Farnell-Panasonic-15..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-Panasonic-EC..> 20-Mar-2014 17:36  2.6M  

[TXT]

 Farnell-Panasonic-EZ..> 20-Mar-2014 08:10  2.6M  

[TXT]

 Farnell-Panasonic-Id..> 20-Mar-2014 17:35  2.6M  

[TXT]

 Farnell-Panasonic-Ne..> 20-Mar-2014 17:36  2.6M  

[TXT]

 Farnell-Panasonic-Ra..> 20-Mar-2014 17:37  2.6M  

[TXT]

 Farnell-Panasonic-TS..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-Panasonic-Y3..> 20-Mar-2014 08:11  2.6M  

[TXT]

 Farnell-Pico-Spox-Wi..> 10-Mar-2014 16:16  1.7M  

[TXT]

 Farnell-Pompes-Charg..> 24-Apr-2014 20:23  3.3M  

[TXT]

 Farnell-Ponts-RLC-po..> 14-Jun-2014 18:23  3.3M  

[TXT]

 Farnell-Portable-Ana..> 29-Mar-2014 11:16  2.8M  

[TXT]

 Farnell-Premier-Farn..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-Produit-3430..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-Proskit-SS-3..> 10-Mar-2014 16:26  1.8M  

[TXT]

 Farnell-Puissance-ut..> 11-Mar-2014 07:49  2.4M  

[TXT]

 Farnell-Q48-PDF.htm     23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-Radial-Lead-..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-Realiser-un-..> 11-Mar-2014 07:51  2.3M  

[TXT]

 Farnell-Reglement-RE..> 21-Mar-2014 08:08  3.9M  

[TXT]

 Farnell-Repartiteurs..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-S-TRI-SWT860..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-SB175-Connec..> 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-SMBJ-Transil..> 29-Mar-2014 11:12  3.3M  

[TXT]

 Farnell-SOT-23-Multi..> 11-Mar-2014 07:51  2.3M  

[TXT]

 Farnell-SPLC780A1-16..> 14-Jun-2014 18:25  2.5M  

[TXT]

 Farnell-SSC7102-Micr..> 23-Jun-2014 10:25  3.2M  

[TXT]

 Farnell-SVPE-series-..> 14-Jun-2014 18:15  2.0M  

[TXT]

 Farnell-Sensorless-C..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-Septembre-20..> 20-Mar-2014 17:46  3.7M  

[TXT]

 Farnell-Serie-PicoSc..> 19-Mar-2014 18:01  2.5M  

[TXT]

 Farnell-Serie-Standa..> 14-Jun-2014 18:23  3.3M  

[TXT]

 Farnell-Series-2600B..> 20-Mar-2014 17:30  3.0M  

[TXT]

 Farnell-Series-TDS10..> 04-Jul-2014 10:39  4.0M  

[TXT]

 Farnell-Signal-PCB-R..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-Strangkuhlko..> 21-Mar-2014 08:09  3.9M  

[TXT]

 Farnell-Supercapacit..> 26-Mar-2014 17:57  2.7M  

[TXT]

 Farnell-TDK-Lambda-H..> 14-Jun-2014 18:21  3.3M  

[TXT]

 Farnell-TEKTRONIX-DP..> 10-Mar-2014 17:20  2.0M  

[TXT]

 Farnell-Tektronix-AC..> 13-Jun-2014 18:44  1.5M  

[TXT]

 Farnell-Telemetres-l..> 20-Mar-2014 17:46  3.7M  

[TXT]

 Farnell-Termometros-..> 14-Jun-2014 18:14  2.0M  

[TXT]

 Farnell-The-essentia..> 10-Mar-2014 16:27  1.7M  

[TXT]

 Farnell-U2270B-PDF.htm  14-Jun-2014 18:15  3.4M  

[TXT]

 Farnell-USB-Buccanee..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-USB1T11A-PDF..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-V4N-PDF.htm     14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-WetTantalum-..> 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-XPS-AC-Octop..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-XPS-MC16-XPS..> 11-Mar-2014 08:15  2.8M  

[TXT]

 Farnell-YAGEO-DATA-S..> 11-Mar-2014 08:13  2.8M  

[TXT]

 Farnell-ZigBee-ou-le..> 11-Mar-2014 07:50  2.4M  

[TXT]

 Farnell-celpac-SUL84..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-china_rohs_o..> 21-Mar-2014 10:04  3.9M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:34  2.8M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:35  2.7M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:31  2.9M  

[TXT]

 Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32  2.9M  

[TXT]

 Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32  2.9M  

[TXT]

 Farnell-ir1150s_fr.p..> 29-Mar-2014 11:11  3.3M  

[TXT]

 Farnell-manual-bus-p..> 10-Mar-2014 16:29  1.9M  

[TXT]

 Farnell-propose-plus..> 11-Mar-2014 08:19  2.8M  

[TXT]

 Farnell-techfirst_se..> 21-Mar-2014 08:08  3.9M  

[TXT]

 Farnell-testo-205-20..> 20-Mar-2014 17:37  3.0M  

[TXT]

 Farnell-testo-470-Fo..> 20-Mar-2014 17:38  3.0M  

[TXT]

 Farnell-uC-OS-III-Br..> 10-Mar-2014 17:20  2.0M  

[TXT]

 Sefram-7866HD.pdf-PD..> 29-Mar-2014 11:46  472K  

[TXT]

 Sefram-CAT_ENREGISTR..> 29-Mar-2014 11:46  461K  

[TXT]

 Sefram-CAT_MESUREURS..> 29-Mar-2014 11:46  435K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  481K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  442K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  422K  

[TXT]

 Sefram-SP270.pdf-PDF..> 29-Mar-2014 11:46  464K
High Precision 5 V Reference AD586 Rev. G Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 © 2005 Analog Devices, Inc. All rights reserved. FEATURES Laser trimmed to high accuracy 5.000 V ±2.0 mV (M grade) Trimmed temperature coefficient 2 ppm/°C max, 0°C to 70°C (M grade) 5 ppm/°C max, −40°C to +85°C (B and L grades) 10 ppm/°C max, −55°C to +125°C (T grade) Low noise, 100 nV/√Hz Noise reduction capability Output trim capability MIL-STD-883-compliant versions available Industrial temperature range SOICs available Output capable of sourcing or sinking 10 mA GENERAL DESCRIPTION The AD586 represents a major advance in state-of-the-art monolithic voltage references. Using a proprietary ion-implanted buried Zener diode and laser wafer trimming of high stability thin-film resistors, the AD586 provides outstanding perform-ance at low cost. The AD586 offers much higher performance than most other 5 V references. Because the AD586 uses an industry-standard pinout, many systems can be upgraded instantly with the AD586. The buried Zener approach to reference design provides lower noise and drift than band gap voltage references. The AD586 offers a noise reduction pin that can be used to further reduce the noise level generated by the buried Zener. The AD586 is recommended for use as a reference for 8-, 10-, 12-, 14-, or 16-bit DACs that require an external precision reference. The device is also ideal for successive approximation or integrating ADCs with up to 14 bits of accuracy and, in general, can offer better performance than the standard on-chip references. The AD586J, AD586K, AD586L, and AD586M are specified for operation from 0°C to 70°C; the AD586A and AD586B are specified for −40°C to +85°C operation; and the AD586S and AD586T are specified for −55°C to +125°C operation. The AD586J, AD586K, AD586L, and AD586M are available in an 8-lead PDIP; the AD586J, AD586K, AD586L, AD586A, and AD586B are available in an 8-lead SOIC package; and the AD586J, AD586K, AD586L, AD586S, and AD586T are available in an 8-lead CERDIP package. A1RSRZ1RZ2RFRTRIAD586GNDVINNOISE REDUCTIONVOUTTRIMNOTES1.PINS 1, 3, AND 7 ARE INTERNAL TEST POINTS.MAKE NO CONNECTIONS TO THESE POINTS.6548200529-001 Figure 1. PRODUCT HIGHLIGHTS 1. Laser trimming of both initial accuracy and temperature coefficients results in very low errors over temperature without the use of external components. The AD586M has a maximum deviation from 5.000 V of ±2.45 mV between 0°C and 70°C, and the AD586T guarantees ±7.5 mV maximum total error between −55°C and +125°C. 2. For applications requiring higher precision, an optional fine-trim connection is provided. 3. Any system using an industry-standard pinout reference can be upgraded instantly with the AD586. 4. Output noise of the AD586 is very low, typically 4 μV p-p. A noise reduction pin is provided for additional noise filtering using an external capacitor. 5. The AD586 is available in versions compliant with MIL-STD-883. Refer to the Analog Devices Military Products Databook or the current AD586/883B data sheet for detailed specifications. AD586 Rev. G | Page 2 of 16 TABLE OF CONTENTS Specifications.....................................................................................3 AD586J, AD586K/AD586A, AD586L/AD586B.......................3 AD586M, AD586S, AD586T.......................................................4 Absolute Maximum Ratings............................................................5 ESD Caution..................................................................................5 Pin Configurations and Function Descriptions...........................6 Theory of Operation........................................................................7 Applying the AD586.....................................................................7 Noise Performance and Reduction............................................7 Turn-on Time................................................................................8 Dynamic Performance.................................................................8 Load Regulation............................................................................9 Temperature Performance............................................................9 Negative Reference Voltage from an AD586...........................10 Using the AD586 with Converters...........................................10 5 V Reference with Multiplying CMOS DACs or ADCs......11 Stacked Precision References for Multiple Voltages..............11 Precision Current Source..........................................................11 Precision High Current Supply................................................11 Outline Dimensions.......................................................................13 Ordering Guide..........................................................................14 REVISION HISTORY 3/05—Rev. F to Rev. G Updated Format..................................................................Universal Split Specifications Table into Table 1 and Table 2.......................3 Changes to Table 1............................................................................3 Added Figure 2 and Figure 4...........................................................6 Updated Outline Dimensions.......................................................13 Changes to Ordering Guide..........................................................14 1/04—Rev. E to Rev. F Changes to ORDERING GUIDE...................................................3 7/03—Rev. D to Rev. E Removed AD586J CHIPS..................................................Universal Updated ORDERING GUIDE........................................................3 Change to Figure 3...........................................................................4 Updated Figure 12............................................................................7 Updated OUTLINE DIMENSIONS..............................................9 4/01—Rev. C to Rev. D Changed Figure 10 to Table 1 (Maximum Output Change in mV)...............................................6 11/95—Revision 0: Initial Version AD586 Rev. G | Page 3 of 16 SPECIFICATIONS AD586J, AD586K/AD586A, AD586L/AD586B @ TA = 25°C, VIN = 15 V, unless otherwise noted. Specifications in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All minimum and maximum specifications are guaranteed, although only those shown in boldface are tested on all production units, unless otherwise specified. Table 1. AD586J AD586K/AD586A AD586L/AD586B Parameter Min Typ Max Min Typ Max Min Typ Max Unit OUTPUT VOLTAGE 4.980 5.020 4.995 5.005 4.9975 5.0025 V OUTPUT VOLTAGE DRIFT1 0°C to 70°C 25 15 5 ppm/°C −55°C to +125°C ppm/°C GAIN ADJUSTMENT +6 +6 +6 % −2 −2 −2 % LINE REGULATION1 10.8 V < + VIN < 36 V TMIN to TMAX ±100 ±100 ±100 μV/V 11.4 V < +VIN < 36 V TMIN to TMAX μV/V LOAD REGULATION1 Sourcing 0 mA < IOUT < 10 mA 25°C 100 100 100 μV/mA TMIN to TMAX 100 100 100 μV/mA Sinking −10 mA < IOUT < 0 mA 25°C 400 400 400 μV/mA QUIESCENT CURRENT 2 3 2 3 2 3 mA POWER CONSUMPTION 30 30 30 mW OUTPUT NOISE 0.1 Hz to 10 Hz 4 4 4 μV p-p Spectral Density, 100 Hz 100 100 100 nV/√Hz LONG-TERM STABILITY 15 15 15 ppm/1000 hr SHORT-CIRCUIT CURRENT-TO-GROUND 45 60 45 60 45 60 mA TEMPERATURE RANGE Specified Performance2 0 70 0 −40 (K grade) (A grade) 70 +85 0 −40 (L grade) (B grade) 70 +85 °C °C Operating Performance3 −40 +85 −40 +85 −40 +85 °C 1 Maximum output voltage drift is guaranteed for all packages and grades. CERDIP packaged parts are also 100°C production tested. 2 Lower row shows specified performance for A and B grades. 3 The operating temperature range is defined as the temperature extremes at which the device will still function. Parts may deviate from their specified performance outside their specified temperature range. AD586 Rev. G | Page 4 of 16 AD586M, AD586S, AD586T @ TA = 25°C, VIN = 15 V, unless otherwise noted. Specifications in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All minimum and maximum specifications are guaranteed, although only those shown in boldface are tested on all production units, unless otherwise specified. Table 2. AD586M AD586S AD586T Parameter Min Typ Max Min Typ Max Min Typ Max Unit OUTPUT VOLTAGE 4.998 5.002 4.990 5.010 4.9975 5.0025 V OUTPUT VOLTAGE DRIFT1 0°C to 70°C 2 ppm/°C −55°C to +125°C 20 10 ppm/°C GAIN ADJUSTMENT +6 +6 +6 % −2 −2 −2 % LINE REGULATION1 10.8 V < +VIN < 36 V TMIN to TMAX ±100 μV/V 11.4 V < +VIN < 36 V TMIN to TMAX ±150 ±150 μV/V LOAD REGULATION1 Sourcing 0 mA < IOUT < 10 mA 25°C 100 150 150 μV/mA TMIN to TMAX 100 150 150 μV/mA Sinking −10 mA < IOUT < 0 mA 25°C 400 400 400 μV/mA QUIESCENT CURRENT 2 3 2 3 2 3 mA POWER CONSUMPTION 30 30 30 mW OUTPUT NOISE 0.1 Hz to 10 Hz 4 4 4 μV p-p Spectral Density, 100 Hz 100 100 100 nV/√Hz LONG-TERM STABILITY 15 15 15 ppm/1000 hr SHORT-CIRCUIT CURRENT-TO-GROUND 45 60 45 60 45 60 mA TEMPERATURE RANGE Specified Performance2 0 70 −55 +125 −55 +125 °C Operating Performance3 −40 +85 −55 +125 −55 +125 °C 1 Maximum output voltage drift is guaranteed for all packages and grades. CERDIP packaged parts are also 100°C production tested. 2 Lower row shows specified performance for A and B grades. 3 The operating temperature range is defined as the temperature extremes at which the device will still function. Parts may deviate from their specified performance outside their specified temperature range. AD586 Rev. G | Page 5 of 16 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Rating VIN to Ground 36 V Power Dissipation (25°C) 500 mW Storage Temperature −65°C to +150°C Lead Temperature (Soldering, 10 sec) 300°C Package Thermal Resistance θJC 22°C/W θJA 110°C/W Output Protection Output safe for indefinite short to ground or VIN. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. AD586 Rev. G | Page 6 of 16 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS 1TP DENOTES FACTORY TEST POINT.NO CONNECTIONS, EXCEPT DUMMY PCB PAD,SHOULD BE MADE TO THESE POINTS.TP11VIN2TP13GND4NOISEREDUCTION8TP17VOUT6TRIM5AD586TOP VIEW(Not to Scale)00529-002 Figure 2. Pin Configuration (N-8) 1TP DENOTES FACTORY TEST POINT.NO CONNECTIONS, EXCEPT DUMMY PCB PAD,SHOULD BE MADE TO THESE POINTS.00529-003TP11VIN2TP13GND4NOISEREDUCTION8TP17VOUT6TRIM5AD586TOP VIEW(Not to Scale) Figure 3. Pin Configuration (Q-8) 1TP DENOTES FACTORY TEST POINT.NO CONNECTIONS, EXCEPT DUMMY PCB PAD,SHOULD BE MADE TO THESE POINTS.00529-004TP11VIN2TP13GND4NOISEREDUCTION8TP17VOUT6TRIM5AD586TOP VIEW(Not to Scale) Figure 4. Pin Configuration (R-8) Table 4. Pin Function Descriptions Pin No. Mnemonic Description 1 TP1 Factory Trim Pad (No Connect). 2 VIN Input Voltage. 3 TP1 Factory Trim Pad (No Connect). 4 GND Ground. 5 TRIM Optional External Fine Trim. See the Applying the AD586 section. 6 VOUT Output Voltage. 7 TP1 Factory Trim Pad (No Connect). 8 NOICE REDUCTION Optional Noise Reduction Filter with External 1μF Capacitor to Ground. AD586 Rev. G | Page 7 of 16 THEORY OF OPERATION The AD586 consists of a proprietary buried Zener diode refer-ence, an amplifier to buffer the output, and several high stability thin-film resistors, as shown in the block diagram in Figure 5. This design results in a high precision monolithic 5 V output reference with initial offset of 2.0 mV or less. The temperature compensation circuitry provides the device with a temperature coefficient of under 2 ppm/°C. Using the bias compensation resistor between the Zener output and the noninverting input to the amplifier, a capacitor can be added at the noise reduction pin (Pin 8) to form a low-pass filter and reduce the noise contribution of the Zener to the circuit. A1RSRZ1RZ2RFRTRIAD586GNDVINNOISE REDUCTIONVOUTTRIMNOTES1.PINS 1, 3, AND 7 ARE INTERNAL TEST POINTS.MAKE NO CONNECTIONS TO THESE POINTS.6548200529-001 Figure 5. Functional Block Diagram APPLYING THE AD586 The AD586 is simple to use in virtually all precision reference applications. When power is applied to Pin 2 and Pin 4 is grounded, Pin 6 provides a 5 V output. No external components are required; the degree of desired absolute accuracy is achieved simply by selecting the required device grade. The AD586 requires less than 3 mA quiescent current from an operating supply of 12 V or 15 V. An external fine trim may be desired to set the output level to exactly 5.000 V (calibrated to a main system reference). System calibration may also require a reference voltage that is slightly different from 5.000 V, for example, 5.12 V for binary applica-tions. In either case, the optional trim circuit shown in Figure 6 can offset the output by as much as 300 mV with minimal effect on other device characteristics. AD586GNDVINCN1μFVOTRIMOPTIONALNOISEREDUCTIONCAPACITORVINNOISEREDUCTIONOUTPUT10kΩ6524800529-005 Figure 6. Optional Fine-Trim Configuration NOISE PERFORMANCE AND REDUCTION The noise generated by the AD586 is typically less than 4 μV p-p over the 0.1 Hz to 10 Hz band. Noise in a 1 MHz bandwidth is approximately 200 μV p-p. The dominant source of this noise is the buried Zener, which contributes approximately 100 nV/√Hz. By comparison, contribution by the op amp is negligible. Figure 7 shows the 0.1 Hz to 10 Hz noise of a typical AD586. The noise measurement is made with a band-pass filter made of a 1-pole high-pass filter with a corner frequency at 0.1 Hz, and a 2-pole low-pass filter with a corner frequency at 12.6 Hz, to create a filter with a 9.922 Hz bandwidth. If further noise reduction is desired, an external capacitor can be added between the noise reduction pin and ground, as shown in Figure 6. This capacitor, combined with the 4 kΩ RS and the Zener resistances, forms a low-pass filter on the output of the Zener cell. A 1 μF capacitor will have a 3 dB point at 12 Hz, and will reduce the high frequency (to 1 MHz) noise to about 160 μV p-p. Figure 8 shows the 1 MHz noise of a typical AD586, both with and without a 1 μF capacitor. 00529-0061μF5s1μF Figure 7. 0.1 Hz to 10 Hz Noise AD586 Rev. G | Page 8 of 16 00529-007CN = 1μFNO CN50μS200μV Figure 8. Effect of 1 μF Noise Reduction Capacitor on Broadband Noise TURN-ON TIME Upon application of power (cold start), the time required for the output voltage to reach its final value within a specified error band is defined as the turn-on settling time. Two compo-nents normally associated with this are the time for the active circuits to settle, and the time for the thermal gradients on the chip to stabilize. Figure 9, Figure 10, and Figure 11 show the turn-on characteristics of the AD586. It shows the settling to be about 60 μs to 0.01%. Note the absence of any thermal tails when the horizontal scale is expanded to l ms/cm in Figure 10. Output turn-on time is modified when an external noise reduc-tion capacitor is used. When present, this capacitor acts as an additional load to the current source of the internal Zener diode, resulting in a somewhat longer turn-on time. In the case of a 1 μF capacitor, the initial turn-on time is approximately 400 ms to 0.01% (see Figure 11). 00529-008VINVOUT10V1mV20μS Figure 9. Electrical Turn-On 00529-009VINVOUT10V5V1mS Figure 10. Extended Time Scale 00529-010VINVOUT10V1mV100mS Figure 11. Turn-On with 1μF CN Characteristics DYNAMIC PERFORMANCE The output buffer amplifier is designed to provide the AD586 with static and dynamic load regulation superior to less com-plete references. Many ADCs and DACs present transient current loads to the reference, and poor reference response can degrade the per-formance of the converter. Figure 12, Figure 13, and Figure 14 display the characteristics of the AD586 output amplifier driving a 0 mA to 10 mA load. AD586VL5V0VVOUT500Ω3.5V00529-011 Figure 12. Transient Load Test Circuit AD586 Rev. G | Page 9 of 16 00529-012VLVOUT5V50mV1μS Figure 13. Large-Scale Transient Response 00529-013VLVOUT5V1mV2μS Figure 14. Fine-Scale Setting for Transient Load In some applications, a varying load may be both resistive and capacitive in nature, or the load may be connected to the AD586 by a long capacitive cable. Figure 15 and Figure 16 display the output amplifier characteristics driving a 1000 pF, 0 mA to 10 mA load. AD586VL5V0VVOUTCL1000pF500Ω3.5V00529-014 Figure 15. Capacitive Load Transient Response Test Circuit 00529-015CL= 0CL= 1000pF5V200mV1μS Figure 16. Output Response with Capacitive Load LOAD REGULATION The AD586 has excellent load regulation characteristics. Figure 17 shows that varying the load several mA changes the output by a few μV. The AD586 has somewhat better load regulation per-formance sourcing current than sinking current. –6–4–2246810LOAD (mA)0–500–10005001000ΔVOUT (μV)00529-016 Figure 17. Typical Load Regulation Characteristics TEMPERATURE PERFORMANCE The AD586 is designed for precision reference applications where temperature performance is critical. Extensive tempera-ture testing ensures that the device maintains a high level of performance over the operating temperature range. Some confusion exists with defining and specifying reference voltage error over temperature. Historically, references have been characterized using a maximum deviation per degree Celsius, that is, ppm/°C. However, because of nonlinearities in temperature characteristics that originated in standard Zener references (such as “S” type characteristics), most manufacturers have begun to use a maximum limit error band approach to specify devices. This technique involves measuring the output at three or more different temperatures to specify an output volt-age error band. AD586 Rev. G | Page 10 of 16 Figure 18 shows the typical output voltage drift for the AD586L and illustrates the test methodology. The box in Figure 18 is bounded on the sides by the operating temperature extremes and on the top and the bottom by the maximum and minimum output voltages measured over the operating temperature range. The slope of the diagonal drawn from the lower left to the upper right corner of the box determines the performance grade of the device. –200204060805.0035.000TEMPERATURE (°C) VMINVMAXVMAX–VMIN(TMAX–TMIN)×5×10–6SLOPETMINTMAXSLOPE = T.C. ===4.3ppm/°C5.0027– 5.0012(70°C– 0)×5×10–600625-017 Figure 18. Typical AD586L Temperature Drift Each AD586J, AD586K, and AD586L grade unit is tested at 0°C, 25°C, and 70°C. Each AD586SQ and AD586TQ grade unit is tested at −55°C, +25°C, and +125°C. This approach ensures that the variations of output voltage that occur as the temperature changes within the specified range will be contained within a box whose diagonal has a slope equal to the maximum specified drift. The position of the box on the vertical scale will change from device to device as initial error and the shape of the curve vary. The maximum height of the box for the appropriate tem-perature range and device grade is shown in Table 5. Dupli-cation of these results requires a combination of high accuracy and stable temperature control in a test system. Evaluation of the AD586 will produce a curve similar to that in Figure 18, but output readings could vary depending on the test methods and equipment used. Table 5. Maximum Output Change in mV Maximum Output Change (mV) Device Grade 0°C to 70°C −40°C to +85°C −55°C to +125°C AD586J 8.75 AD586K 5.25 AD586L 1.75 AD586M 0.70 AD586A 9.37 AD586B 3.12 AD586S 18.00 AD586T 9.00 NEGATIVE REFERENCE VOLTAGE FROM AN AD586 The AD586 can be used to provide a precision −5.000 V output, as shown in Figure 19. The VIN pin is tied to at least a 6 V supply, the output pin is grounded, and the AD586 ground pin is con-nected through a resistor, RS, to a −15 V supply. The −5 V output is now taken from the ground pin (Pin 4) instead of VOUT. It is essential to arrange the output load and the supply resistor, RS, so that the net current through the AD586 is between 2.5 mA and 10.0 mA. The temperature characteristics and long-term stability of the device will be essentially the same as that of a unit used in the standard +5 V output configuration. AD586GND+6V→+30V2.5mA <–IL< 10mA10VRS–5VRSVOUTVINIL–15V24600529-018 Figure 19. AD586 as a Negative 5 V Reference USING THE AD586 WITH CONVERTERS The AD586 is an ideal reference for a wide variety of 8-, 12-, 14-, and 16-bit ADCs and DACs. Several representative examples are explained in the following sections. AD586 Rev. G | Page 11 of 16 5 V REFERENCE WITH MULTIPLYING CMOS DACs OR ADCs The AD586 is ideal for applications with 10- and 12-bit multiplying CMOS DACs. In the standard hookup, as shown in Figure 20, the AD586 is paired with the AD7545 12-bit multiplying DAC and the AD711 high speed BiFET op amp. The amplifier DAC configuration produces a unipolar 0 V to −5 V output range. Bipolar output applications and other operating details can be found in the individual product data sheets. AD586GNDVOUTVINAD711K0.1μF0.1μF–15V0VTO–5V+15VOUT 1AGNDDGNDDB11TODB0C133pFR268ΩRFB+15VVDDAD7545KVREF10kΩVOUTTRIM+15V20181965423127463200529-019 Figure 20. Low Power 12-Bit CMOS DAC Application The AD586 can also be used as a precision reference for multi-ple DACs. Figure 21 shows the AD586, the AD7628 dual DAC, and the AD712 dual op amp hooked up for single-supply opera-tion to produce 0 V to −5 V outputs. Because both DACs are on the same die and share a common reference and output op amps, the DAC outputs will exhibit similar gain TCs. AD586GNDAD712OUT ADGNDAGNDDACADB0DB7DATAINPUTSOUT BDACBRFB BRFB AVREFAVREFBAD7628VINVOUTA=0TO–5VVOUTB=0TO–5VVOUT+15V+15V64471425317119202400529-020 Figure 21. AD586 as a 5 V Reference for a CMOS STACKED PRECISION REFERENCES FOR MULTIPLE VOLTAGES Often, a design requires several reference voltages. Three AD586s can be stacked, as shown in Figure 22, to produce 5.000 V, 10.000 V, and 15.000 V outputs. This scheme can be extended to any number of AD586s, provided the maximum load current is not exceeded. This design provides the addi-tional advantage of improved line regulation on the 5.0 V output. Changes in VIN of 18 V to 50 V produce output changes that are below the noise level of the references. 22V TO 46VAD586GNDVOUTVINTRIM10kΩAD586GNDVOUTVINTRIMAD586GNDVOUTVINTRIM10kΩ10kΩ15V10V5V24562456245600529-021 Figure 22. Multiple AD586s Stacked for Precision 5 V, 10 V, and 15 V Outputs PRECISION CURRENT SOURCE The design of the AD586 allows it to be easily configured as a current source. By choosing the control resistor RC in Figure 23, the user can vary the load current from the quiescent current (typically, 2 mA) to approximately 10 mA. The compliance volt-age of this circuit varies from about 5 V to 21 V, depending on the value of VIN. AD586GNDVOUTVIN5VRCIL = + IBIAS+VINRC(500Ω MIN)24600529-022 Figure 23. Precision Current Source PRECISION HIGH CURRENT SUPPLY For higher currents, the AD586 can easily be connected to a power PNP or power Darlington PNP device. The circuit in Figure 24 and Figure 25 can deliver up to 4 amps to the load. The 0.1 μF capacitor is required only if the load has a significant capacitive component. If the load is purely resistive, improved high frequency supply rejection results can be obtained by removing the capacitor. AD586 Rev. G | Page 12 of 16 AD586GNDVOUTVIN5VRCIL = + IBIASRC0.1μF15V220Ω2N628526400529-023 Figure 24. Precision High Current Current Source VOUT5V @ 4 AMPSAD586GNDVOUTVIN0.1μF15V220Ω2N628526400529-024 Figure 25. Precision High Current Voltage Source AD586 Rev. G | Page 13 of 16 OUTLINE DIMENSIONS COMPLIANT TO JEDEC STANDARDS MS-001-BA0.022 (0.56)0.018 (0.46)0.014 (0.36)SEATINGPLANE0.015(0.38)MIN0.210(5.33)MAXPIN 10.150 (3.81)0.130 (3.30)0.115 (2.92)0.070 (1.78)0.060 (1.52)0.045 (1.14)81450.280 (7.11)0.250 (6.35)0.240 (6.10)0.100 (2.54)BSC0.400 (10.16)0.365 (9.27)0.355 (9.02)0.060 (1.52)MAX0.430 (10.92)MAX0.014 (0.36)0.010 (0.25)0.008 (0.20)0.325 (8.26)0.310 (7.87)0.300 (7.62)0.195 (4.95)0.130 (3.30)0.115 (2.92)0.015 (0.38)GAUGEPLANE0.005 (0.13)MINCONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FORREFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. Figure 26. 8-Lead Plastic Dual In-Line Package [PDIP] (N-8) Dimensions shown in inches and (millimeters) CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FORREFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.14580.310 (7.87)0.220 (5.59)0.005 (0.13)MIN0.055 (1.40)MAX0.100 (2.54) BSC15° 0°0.320 (8.13)0.290 (7.37)0.015 (0.38)0.008 (0.20)SEATINGPLANE0.200 (5.08)MAX0.405 (10.29) MAX0.150 (3.81)MIN0.200 (5.08)0.125 (3.18)0.023 (0.58)0.014 (0.36)0.070 (1.78)0.030 (0.76)0.060 (1.52)0.015 (0.38)PIN 1 Figure 27. 8-Lead Ceramic Dual In-Line Package [CERDIP] (Q-8) Dimensions shown in inches and (millimeters) 0.25 (0.0098)0.17 (0.0067)1.27 (0.0500)0.40 (0.0157)0.50 (0.0196)0.25 (0.0099)× 45°8°0°1.75 (0.0688)1.35 (0.0532)SEATINGPLANE0.25 (0.0098)0.10 (0.0040)41855.00 (0.1968)4.80 (0.1890)4.00 (0.1574)3.80 (0.1497)1.27 (0.0500)BSC6.20 (0.2440)5.80 (0.2284)0.51 (0.0201)0.31 (0.0122)COPLANARITY0.10CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FORREFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGNCOMPLIANT TO JEDEC STANDARDS MS-012AA Figure 28. 8-Lead Standard Small Outline Package [SOIC] Narrow Body (R-8) Dimensions shown in millimeters and (inches) AD586 Rev. G | Page 14 of 16 ORDERING GUIDE Model Initial Error Temperature Coefficient Temperature Range Package Description Package Option Quantity Per Reel AD586JN 20 mV 25 ppm/°C 0°C to 70°C PDIP N-8 AD586JNZ1 20 mV 25 ppm/°C 0°C to 70°C PDIP N-8 AD586JQ 20 mV 25 ppm/°C 0°C to 70°C CERDIP Q-8 AD586JR 20 mV 25 ppm/°C 0°C to 70°C SOIC R-8 AD586JR-REEL7 20 mV 25 ppm/°C 0°C to 70°C SOIC R-8 1,000 AD586JRZ1 20 mV 25 ppm/°C 0°C to 70°C SOIC R-8 AD586JRZ-REEL71 20 mV 25 ppm/°C 0°C to 70°C SOIC R-8 1,000 AD586KN 5 mV 15 ppm/°C 0°C to 70°C PDIP N-8 AD586KNZ1 5 mV 15 ppm/°C 0°C to 70°C PDIP N-8 AD586KQ 5 mV 15 ppm/°C 0°C to 70°C CERDIP Q-8 AD586KR 5 mV 15 ppm/°C 0°C to 70°C SOIC R-8 AD586KR-REEL 5 mV 15 ppm/°C 0°C to 70°C SOIC R-8 2,500 AD586KR-REEL7 5 mV 15 ppm/°C 0°C to 70°C SOIC R-8 1,000 AD586KRZ1 5 mV 15 ppm/°C 0°C to 70°C SOIC R-8 AD586KRZ-REEL1 5 mV 15 ppm/°C 0°C to 70°C SOIC R-8 2,500 AD586KRZ-REEL71 5 mV 15 ppm/°C 0°C to 70°C SOIC R-8 1,000 AD586LN 2.5 mV 5 ppm/°C 0°C to 70°C PDIP N-8 AD586LNZ1 2.5 mV 5 ppm/°C 0°C to 70°C PDIP N-8 AD586LR 2.5 mV 5 ppm/°C 0°C to 70°C SOIC R-8 AD586LR-REEL 2.5 mV 5 ppm/°C 0°C to 70°C SOIC R-8 2,500 AD586LR-REEL7 2.5 mV 5 ppm/°C 0°C to 70°C SOIC R-8 1,000 AD586LRZ1 2.5 mV 5 ppm/°C 0°C to 70°C SOIC R-8 AD586LRZ-REEL1 2.5 mV 5 ppm/°C 0°C to 70°C SOIC R-8 2,500 AD586LRZ-REEL71 2.5 mV 5 ppm/°C 0°C to 70°C SOIC R-8 1,000 AD586MN 2 mV 2 ppm/°C 0°C to 70°C PDIP N-8 AD586MNZ1 2 mV 2 ppm/°C 0°C to 70°C PDIP N-8 AD586AR 5 mV 15 ppm/°C −40°C to +85°C SOIC R-8 AD586AR-REEL 5 mV 15 ppm/°C −40°C to +85°C SOIC R-8 2,500 AD586ARZ1 5 mV 15 ppm/°C −40°C to +85°C SOIC R-8 AD586ARZ-REEL1 5 mV 15 ppm/°C −40°C to +85°C SOIC R-8 2,500 AD586ARZ-REEL71 5 mV 15 ppm/°C −40°C to +85°C SOIC R-8 1,000 AD586BR 2.5 mV 5 ppm/°C −40°C to +85°C SOIC R-8 AD586BR-REEL7 2.5 mV 5 ppm/°C −40°C to +85°C SOIC R-8 1,000 AD586BRZ1 2.5 mV 5 ppm/°C −40°C to +85°C SOIC R-8 AD586BRZ-REEL1 2.5 mV 5 ppm/°C −40°C to +85°C SOIC R-8 2,500 AD586BRZ-REEL71 2.5 mV 5 ppm/°C −40°C to +85°C SOIC R-8 1,000 AD586LQ 2.5 mV 5 ppm/°C 0°C to 70°C CERDIP Q-8 AD586SQ 10 mV 20 ppm/°C −55°C to +125°C CERDIP Q-8 AD586TQ 2.5 mV 10 ppm/°C −55°C to +125°C CERDIP Q-8 AD586TQ/883B2 2.5 mV 10 ppm/°C −55°C to +125°C CERDIP Q-8 1 Z = Pb-free part. 2 For details on grade and package offerings screened in accordance with MIL-STD-883, refer to the Analog Devices Military Products Databook or the current AD586/883B data sheet. AD586 Rev. G | Page 15 of 16 NOTES AD586 Rev. G | Page 16 of 16 NOTES February 2004 Digital Audio Products Data Manual SLWS106H iii Contents Section Title Page 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−1 1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−1 1.2 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−3 1.3 Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−4 1.4 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−5 1.5 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1−5 2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−1 2.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−1 2.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 2−1 2.3 Electrical Characteristics Over Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−2 2.3.1 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−2 2.3.2 DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−3 2.3.3 Analog Line Input to Line Output (Bypass) . . . . . . . . . . . . . 2−3 2.3.4 Stereo Headphone Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−4 2.3.5 Analog Reference Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−4 2.3.6 Digital I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−4 2.3.7 Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−4 2.4 Digital-Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−5 2.4.1 Audio Interface (Master Mode) . . . . . . . . . . . . . . . . . . . . . . . 2−5 2.4.2 Audio Interface (Slave-Mode) . . . . . . . . . . . . . . . . . . . . . . . . 2−6 2.4.3 Three-Wire Control Interface (SDIN) . . . . . . . . . . . . . . . . . . 2−7 2.4.4 Two-Wire Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−7 3 How to Use the TLV320AIC23B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1 3.1 Control Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1 3.1.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1 3.1.2 2-Wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1 3.1.3 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−2 3.2 Analog Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−5 3.2.1 Line Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−5 3.2.2 Microphone Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−6 3.2.3 Line Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−6 3.2.4 Headphone Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−6 3.2.5 Analog Bypass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−7 3.2.6 Sidetone Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−7 3.3 Digital Audio Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−7 3.3.1 Digital Audio-Interface Modes . . . . . . . . . . . . . . . . . . . . . . . . 3−7 iv 3.3.2 Audio Sampling Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−9 3.3.3 Digital Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 3−11 A Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A−1 v List of Illustrations Figure Title Page 2−1 System-Clock Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−5 2−2 Master-Mode Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−5 2−3 Slave-Mode Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2−6 2−4 Three-Wire Control Interface Timing Requirements . . . . . . . . . . . . . . . . . . 2−7 2−5 Two-Wire Control Interface Timing Requirements . . . . . . . . . . . . . . . . . . . 2−7 3−1 SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−1 3−2 2-Wire Compatible Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−2 3−3 Analog Line Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−5 3−4 Microphone Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−6 3−5 Right-Justified Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−7 3−6 Left-Justified Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−8 3−7 I2S Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−8 3−8 DSP Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−8 3−9 Digital De-Emphasis Filter Response − 44.1 kHz Sampling . . . . . . . . . . . 3−12 3−10 Digital De-Emphasis Filter Response − 48 kHz Sampling . . . . . . . . . . . . 3−12 3−11 ADC Digital Filter Response 0: USB Mode (Group Delay = 12 Output Samples) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−13 3−12 ADC Digital Filter Ripple 0: USB (Group Delay = 20 Output Samples) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−13 3−13 ADC Digital Filter Response 1: USB Mode Only . . . . . . . . . . . . . . . . . . . . 3−14 3−14 ADC Digital Filter Ripple 1: USB Mode Only . . . . . . . . . . . . . . . . . . . . . . . . 3−14 3−15 ADC Digital Filter Response 2: USB mode and Normal Modes (Group Delay = 3 Output Samples) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−15 3−16 ADC Digital Filter Ripple 2: USB Mode and Normal Modes . . . . . . . . . . . 3−15 3−17 ADC Digital Filter Response 3: USB Mode Only . . . . . . . . . . . . . . . . . . . . 3−16 3−18 ADC Digital Filter Ripple 3: USB Mode Only . . . . . . . . . . . . . . . . . . . . . . . . 3−16 3−19 DAC Digital Filter Response 0: USB Mode . . . . . . . . . . . . . . . . . . . . . . . . . 3−17 3−20 DAC Digital Filter Ripple 0: USB Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3−17 3−21 DAC Digital Filter Response 1: USB Mode Only . . . . . . . . . . . . . . . . . . . . 3−18 3−22 DAC Digital Filter Ripple 1: USB Mode Only . . . . . . . . . . . . . . . . . . . . . . . . 3−18 3−23 DAC Digital Filter Response 2: USB Mode and Normal Modes . . . . . . . . 3−19 3−24 DAC Digital Filter Ripple 2: USB Mode and Normal Modes . . . . . . . . . . . 3−19 3−25 DAC Digital Filter Response 3: USB Mode Only . . . . . . . . . . . . . . . . . . . . 3−20 3−26 DAC Digital Filter Ripple 3: USB Mode Only . . . . . . . . . . . . . . . . . . . . . . . . 3−20 vi 1−1 1 Introduction The TLV320AIC23B is a high-performance stereo audio codec with highly integrated analog functionality. The analog-to-digital converters (ADCs) and digital-to-analog converters (DACs) within the TLV320AIC23B use multibit sigma-delta technology with integrated oversampling digital interpolation filters. Data-transfer word lengths of 16, 20, 24, and 32 bits, with sample rates from 8 kHz to 96 kHz, are supported. The ADC sigma-delta modulator features third-order multibit architecture with up to 90-dBA signal-to-noise ratio (SNR) at audio sampling rates up to 96 kHz, enabling high-fidelity audio recording in a compact, power-saving design. The DAC sigma-delta modulator features a second-order multibit architecture with up to 100-dBA SNR at audio sampling rates up to 96 kHz, enabling high-quality digital audio-playback capability, while consuming less than 23 mW during playback only. The TLV320AIC23B is the ideal analog input/output (I/O) choice for portable digital audio-player and recorder applications, such as MP3 digital audio players. Integrated analog features consist of stereo-line inputs with an analog bypass path, a stereo headphone amplifier, with analog volume control and mute, and a complete electret-microphone-capsule biasing and buffering solution. The headphone amplifier is capable of delivering 30 mW per channel into 32 Ω. The analog bypass path allows use of the stereo-line inputs and the headphone amplifier with analog volume control, while completely bypassing the codec, thus enabling further design flexibility, such as integrated FM tuners. A microphone bias-voltage output provides a low-noise current source for electret-capsule biasing. The AIC23B has an integrated adjustable microphone amplifier (gain adjustable from 1 to 5) and a programmable gain microphone amplifier (0 dB or 20 dB). The microphone signal can be mixed with the output signals if a sidetone is required. While the TLV320AIC23B supports the industry-standard oversampling rates of 256 fs and 384 fs, unique oversampling rates of 250 fs and 272 fs are provided, which optimize interface considerations in designs using TI C54x digital signal processors (DSPs) and universal serial bus (USB) data interfaces. A single 12-MHz crystal can supply clocking to the DSP, USB, and codec. The TLV320AIC23B features an internal oscillator that, when connected to a 12-MHz external crystal, provides a system clock to the DSP and other peripherals at either 12 MHz or 6 MHz, using an internal clock buffer and selectable divider. Audio sample rates of 48 kHz and compact-disc (CD) standard 44.1 kHz are supported directly from a 12-MHz master clock with 250 fs and 272 fs oversampling rates. Low power consumption and flexible power management allow selective shutdown of codec functions, thus extending battery life in portable applications. This design solution, coupled with the industry’s smallest package, the TI proprietary MicroStar Junior using only 25 mm2 of board area, makes powerful portable stereo audio designs easily realizable in a cost-effective, space-saving total analog I/O solution: the TLV320AIC23B. 1.1 Features • High-Performance Stereo Codec − 90-dB SNR Multibit Sigma-Delta ADC (A-weighted at 48 kHz) − 100-dB SNR Multibit Sigma-Delta DAC (A-weighted at 48 kHz) − 1.42 V – 3.6 V Core Digital Supply: Compatible With TI C54x DSP Core Voltages − 2.7 V – 3.6 V Buffer and Analog Supply: Compatible Both TI C54x DSP Buffer Voltages − 8-kHz – 96-kHz Sampling-Frequency Support • Software Control Via TI McBSP-Compatible Multiprotocol Serial Port − 2-wire-Compatible and SPI-Compatible Serial-Port Protocols − Glueless Interface to TI McBSPs • Audio-Data Input/Output Via TI McBSP-Compatible Programmable Audio Interface − I2S-Compatible Interface Requiring Only One McBSP for both ADC and DAC − Standard I2S, MSB, or LSB Justified-Data Transfers − 16/20/24/32-Bit Word Lengths MicroStar Junior is a trademark of Texas Instruments. 1−2 − Audio Master/Slave Timing Capability Optimized for TI DSPs (250/272 fs), USB mode − Industry-Standard Master/Slave Support Provided Also (256/384 fs), Normal mode − Glueless Interface to TI McBSPs • Integrated Total Electret-Microphone Biasing and Buffering Solution − Low-Noise MICBIAS pin at 3/4 AVDD for Biasing of Electret Capsules − Integrated Buffer Amplifier With Tunable Fixed Gain of 1 to 5 − Additional Control-Register Selectable Buffer Gain of 0 dB or 20 dB • Stereo-Line Inputs − Integrated Programmable Gain Amplifier − Analog Bypass Path of Codec • ADC Multiplexed Input for Stereo-Line Inputs and Microphone • Stereo-Line Outputs − Analog Stereo Mixer for DAC and Analog Bypass Path • Volume Control With Mute on Input and Output • Highly Efficient Linear Headphone Amplifier − 30 mW into 32 Ω From a 3.3-V Analog Supply Voltage • Flexible Power Management Under Total Software Control − 23-mW Power Consumption During Playback Mode − Standby Power Consumption <150 μW − Power-Down Power Consumption <15 μW • Industry’s Smallest Package: 32-Pin TI Proprietary MicroStar Junior − 25 mm2 Total Board Area − 28-Pin TSSOP Also Is Available (62 mm2 Total Board Area) • Ideally Suitable for Portable Solid-State Audio Players and Recorders 1−3 1.2 Functional Block Diagram Control Interface Digital Filters Digital Audio Interface Σ−Δ DAC Σ 6 to −73 dB, 1 dB Steps Headphone Driver Σ−Δ DAC Σ 6 to −73 dB, 1 dB Steps Headphone Driver CLKOUT Divider (1x, 1/2x) OSC CS SDIN SCLK MODE DVDD BVDD DGND LRCIN DIN LRCOUT DOUT BCLK AVDD VMID AGND RLINEIN LLINEIN HPVDD HPGND RHPOUT ROUT LOUT LHPOUT XTI/MCLK XTO CLKOUT DSPcodec TLV320AIC23B 1.0X 1.0X VMID VADC 50 kΩ 50 kΩ Σ−Δ ADC 2:1 MUX VDAC Σ−Δ ADC 2:1 MUX Mute, 0 dB, 20 dB VMID 50 kΩ 10 kΩ VADC 12 to −34.5 dB, 1.5 dB Steps 1.0X 1.5X VDAC 12 to −34 dB, 1.5 dB Steps MICBIAS MICIN CLKIN Divider (1x, 1/2x) Line Mute Line Mute Side Tone Mute Bypass Mute Bypass Mute NOTE: MCLK, BCLK, and SCLK are all asynchronous to each other. 1−4 1.3 Terminal Assignments LRCIN NC 1 2 3 4 5 6 7 8 9 25 24 23 22 21 20 19 18 17 10 11 12 13 14 15 16 32 31 30 29 28 27 26 DOUT LRCOUT HPVDD LHPOUT RHPOUT HPGND XTI/MCLK SCLK SDIN MODE CS LLINEIN RLINEIN LOUT ROUT AVDD AGND VMID MICBIAS MICIN NC NC DIN BCLK CLKOUT BVDD DGND DVDD XTO NC GQE/ZQE PACKAGE (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 28 27 26 25 24 23 22 21 20 19 18 17 16 15 BVDD CLKOUT BCLK DIN LRCIN DOUT LRCOUT HPVDD LHPOUT RHPOUT HPGND LOUT ROUT AVDD DGND DVDD XTO XTI/MCLK SCLK SDIN MODE CS LLINEIN RLINEIN MICIN MICBIAS VMID AGND PW PACKAGE (TOP VIEW) NC − No internal connection 21 20 19 18 17 16 15 DIN LRCIN DOUT LROUT HPVDD LHPOUT RHPOUT SCLK SDIN MODE CS LLNEIN RUNEIN MICIN 1 2 3 4 5 6 7 28 27 26 25 24 23 22 BCLK CLKOUT BVDD DGND DVDD XTO XTI/MCLK HPGND LOUT ROUT AVDD AGND VMID MICBIAS 8 9 10 11 12 13 14 RHD PACKAGE (TOP VIEW) 1−5 1.4 Ordering Information PACKAGE TA 32-Pin MicroStar Junior GQE/ZQE 28-Pin TSSOP PW 28-Pin PQFP RHD −10°C to 70°C TLV320AIC23BGQE/ZQE TLV320AIC23BPW TLV320AIC23BRHD −40°C to 85°C TLV320AIC23BIGQE/ZQE TLV320AIC23BIPW TLV320AIC23BIRHD 1.5 Terminal Functions TERMINAL NO. I/O DESCRIPTION NAME GQE/ ZQE PW RHD AGND 5 15 12 Analog supply return AVDD 4 14 11 Analog supply input. Voltage level is 3.3 V nominal. BCLK 23 3 28 I/O I2S serial-bit clock. In audio master mode, the AIC23B generates this signal and sends it to the DSP. In audio slave mode, the signal is generated by the DSP. BVDD 21 1 26 Buffer supply input. Voltage range is from 2.7 V to 3.6 V. CLKOUT 22 2 27 O Clock output. This is a buffered version of the XTI input and is available in 1X or 1/2X frequencies of XTI. Bit 07 in the sample rate control register controls frequency selection. CS 12 21 18 I Control port input latch/address select. For SPI control mode this input acts as the data latch control. For 2-wire control mode this input defines the seventh bit in the device address field. See Section 3.1 for details. DIN 24 4 1 I I2S format serial data input to the sigma-delta stereo DAC DGND 20 28 25 Digital supply return DOUT 27 6 3 O I2S format serial data output from the sigma-delta stereo ADC DVDD 19 27 24 Digital supply input. Voltage range is 1.4 V to 3.6 V. HPGND 32 11 8 Analog headphone amplifier supply return HPVDD 29 8 5 Analog headphone amplifier supply input. Voltage level is 3.3 V nominal. LHPOUT 30 9 6 O Left stereo mixer-channel amplified headphone output. Nominal 0-dB output level is 1 VRMS. Gain of –73 dB to 6 dB is provided in 1-dB steps. LLINEIN 11 20 17 I Left stereo-line input channel. Nominal 0-dB input level is 1 VRMS. Gain of –34.5 dB to 12 dB is provided in 1.5-dB steps. LOUT 2 12 9 O Left stereo mixer-channel line output. Nominal output level is 1.0 VRMS. LRCIN 26 5 2 I/O I2S DAC-word clock signal. In audio master mode, the AIC23B generates this framing signal and sends it to the DSP. In audio slave mode, the signal is generated by the DSP. LRCOUT 28 7 4 I/O I2S ADC-word clock signal. In audio master mode, the AIC23B generates this framing signal and sends it to the DSP. In audio slave mode, the signal is generated by the DSP. MICBIAS 7 17 14 O Buffered low-noise-voltage output suitable for electret-microphone-capsule biasing. Voltage level is 3/4 AVDD nominal. MICIN 8 18 15 I Buffered amplifier input suitable for use with electret-microphone capsules. Without external resistors a default gain of 5 is provided. See Section 2.3.1.2 for details. MODE 13 22 19 I Serial-interface-mode input. See Section 3.1 for details. NC 1, 9 17, 25 Not Used—No internal connection RHPOUT 31 10 7 O Right stereo mixer-channel amplified headphone output. Nominal 0-dB output level is 1 VRMS. Gain of −73 dB to 6 dB is provided in 1-dB steps. RLINEIN 10 19 16 I Right stereo-line input channel. Nominal 0-dB input level is 1 VRMS. Gain of –34.5 dB to 12 dB is provided in 1.5-dB steps. ROUT 3 13 10 O Right stereo mixer-channel line output. Nominal output level is 1.0 VRMS. 1−6 1.5 Terminal Functions (continued) TERMINAL NO. I/O DESCRIPTION NAME GQE/ ZQE PW RHD SCLK 15 24 21 I Control-port serial-data clock. For SPI and 2-wire control modes this is the serial-clock input. See Section 3.1 for details. SDIN 14 23 20 I Control-port serial-data input. For SPI and 2-wire control modes this is the serial-data input and also is used to select the control protocol after reset. See Section 3.1 for details. VMID 6 16 13 I Midrail voltage decoupling input. 10-μF and 0.1-μF capacitors should be connected in parallel to this terminal for noise filtering. Voltage level is 1/2 AVDD nominal. XTI/MCLK 16 25 22 I Crystal or external-clock input. Used for derivation of all internal clocks on the AIC23B. XTO 18 26 23 O Crystal output. Connect to external crystal for applications where the AIC23B is the audio timing master. Not used in applications where external clock source is used. 2−1 2 Specifications 2.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range (unless otherwise noted)† Supply voltage range, AVDD to AGND, DVDD to DGND, BVDD to DGND, HPVDD to HPGND (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to + 3.63 V Analog supply return to digital supply return, AGND to DGND . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to + 3 .63 V Input voltage range, all input signals: Digital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to DVDD + 0.3 V Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to AVDD + 0.3 V Case temperature for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240°C Operating free-air temperature range, TA: Commercial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −10°C to 70°C Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: DVDD may not exceed BVDD + 0.3V; BVDD may not exceed AVDD + 0.3V or HPVDD + 0.3. 2.2 Recommended Operating Conditions MIN NOM MAX UNIT Analog supply voltage, AVDD, HPVDD (see Note 2) 2.7 3.3 3.6 V Digital buffer supply voltage, BVDD (see Note 2) 2.7 3.3 3.6 V Digital core supply voltage, DVDD (see Note 2) 1.42 1.5 3.6 V Analog input voltage, full scale − 0dB (AVDD = 3.3 V) 1 VRMS Stereo-line output load resistance 10 kΩ Headphone-amplifier output load resistance 0 Ω CLKOUT digital output load capacitance 20 pF All other digital output load capacitance 10 pF Stereo-line output load capacitance 50 pF XTI master clock Input 18.43 MHz ADC or DAC conversion rate 96 kHz Operating free-air temperature, TA Commercial −10 70 °C Industrial −40 85 NOTE 2: Digital voltage values are with respect to DGND; analog voltage values are with respect to AGND. 2−2 2.3 Electrical Characteristics Over Recommended Operating Conditions, AVDD, HPVDD, BVDD = 3.3 V, DVDD = 1.5 V, Slave Mode, XTI/MCLK = 256fs, fs = 48 kHz (unless otherwise stated) 2.3.1 ADC 2.3.1.1 Line Input to ADC PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Input signal level (0 dB) 1 VRMS Signal-to-noise ratio, A-weighted, 0-dB gain (see Notes 3 fs = 48 kHz (3.3 V) 85 90 dB and 4) fs = 48 kHz (2.7 V) 90 Dynamic range, A-weighted, −60-dB full-scale input (see AVDD = 3.3 V 85 90 dB Note 4) AVDD = 2.7 V 90 Total harmonic distortion, −1-dB input, 0-dB gain AVDD = 3.3 V –80 dB AVDD = 2.7 V 80 Power supply rejection ratio 1 kHz, 100 mVpp 50 dB ADC channel separation 1 kHz input tone 90 dB Programmable gain 1 kHz input tone, RSOURCE < 50 Ω –34.5 12 dB Programmable gain step size Monotonic 1.5 dB Mute attenuation 0 dB, 1 kHz input tone 80 dB Input resistance 12 dB Input gain 10 20 kΩ 0 dB input gain 30 35 Input capacitance 10 pF NOTES: 3. Ratio of output level with 1-kHz full-scale input, to the output level with the input short circuited, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer. 4. All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter results in higher THD + N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values. 2.3.1.2 Microphone Input to ADC, 0-dB Gain, fs = 8 kHz (40-KΩ Source Impedance, see Section 1.2, Functional Block Diagram) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Input signal level (0 dB) 1.0 VRMS Signal-to-noise ratio, A-weighted, 0-dB gain (see Notes 3 and 4) AVDD = 3.3 V 80 85 dB AVDD = 2.7 V 84 Dynamic range, A-weighted, −60-dB full-scale input (see Note 4) AVDD = 3.3 V 80 85 dB AVDD = 2.7 V 84 Total harmonic distortion, −1-dB input, 0-dB gain AVDD = 3.3 V –60 dB AVDD = 2.7 V −60 Power supply rejection ratio 1 kHz, 100 mVpp 50 dB Programmable gain boost 1 kHz input tone, RSOURCE < 50 Ω 20 dB Microphone-path gain MICBOOST = 0, RSOURCE < 50 Ω 14 dB Mute attenuation 0 dB, 1 kHz input tone 60 80 dB Input resistance 8 14 kΩ Input capacitance 10 pF NOTES: 3. Ratio of output level with 1-kHz full-scale input, to the output level with the input short circuited, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer. 4. All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter results in higher THD + N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values. 2−3 2.3.1.3 Microphone Bias PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Bias voltage 3/4 AVDD − 100 m 3/4 AVDD 3/4 AVDD + 100 m V Bias-current source 3 mA Output noise voltage 1 kHz to 20 kHz 25 nV/√Hz 2.3.2 DAC 2.3.2.1 Line Output, Load = 10 kΩ, 50 pF PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 0-dB full-scale output voltage (FFFFFF) 1.0 VRMS Signal-to-noise ratio, A-weighted, 0-dB gain (see Notes 3, 4, and 5) AVDD = 3.3 V fs = 48kHz 90 100 dB AVDD = 2.7 V fs = 48 kHz 100 Dynamic range, A-weighted (see Note 4) AVDD = 3.3 V 85 90 dB AVDD = 2.7 V TBD AVDD = 3.3 V 1 kHz, 0 dB –88 –80 dB Total harmonic distortion 1 kHz, −3 dB −92 −86 AVDD = 2.7 V 1 kHz, 0 dB −85 dB 1 kHz, −3 dB −88 Power supply rejection ratio 1 kHz, 100 mVpp 50 dB DAC channel separation 100 dB NOTES: 3. Ratio of output level with 1-kHz full-scale input, to the output level with the input short circuited, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer. 4. All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter results in higher THD + N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values. 5. Ratio of output level with 1-kHz full-scale input, to the output level with all zeros into the digital input, measured A-weighted over a 20-Hz to 20-kHz bandwidth. 2.3.3 Analog Line Input to Line Output (Bypass) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 0-dB full-scale output voltage 1.0 VRMS Signal-to-noise ratio, A-weighted, 0-dB gain (see Notes 3 and 4) AVDD = 3.3 V 90 95 dB AVDD = 2.7 V 95 AVDD = 3.3 V 1 kHz, 0 dB –86 –80 dB Total harmonic distortion 1 kHz, −3 dB −92 −86 AVDD = 2.7 V 1 kHz, 0 dB −86 dB 1 kHz, −3 dB −92 Power supply rejection ratio 1 kHz, 100 mVpp 50 dB DAC channel separation (left to right) 1 kHz, 0 dB 80 dB NOTES: 3. Ratio of output level with 1-kHz full-scale input, to the output level with the input short circuited, measured A-weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer. 4. All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter results in higher THD + N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values. 2−4 2.3.4 Stereo Headphone Output PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 0-dB full-scale output voltage 1.0 VRMS Maximum output power, PO RL = 32 Ω 30 mW RL = 16 Ω 40 Signal-to-noise ratio, A-weighted (see Note 4) AVDD = 3.3 V 90 97 dB Total harmonic distortion AVDD = 3.3 V, PO = 10 mW 0.1 % 1 kHz output PO = 20 mW 1.0 Power supply rejection ratio 1 kHz, 100 mVpp 50 dB Programmable gain 1 kHz output −73 6 dB Programmable-gain step size 1 dB Mute attenuation 1 kHz output 80 dB NOTE 4: All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter results in higher THD + N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values. 2.3.5 Analog Reference Levels PARAMETER MIN TYP MAX UNIT Reference voltage AVDD/2 − 50 mV AVDD/2 + 50 mV V Divider resistance 40 50 60 kΩ 2.3.6 Digital I/O PARAMETER MIN TYP MAX UNIT VIL Input low level 0.3 × BVDD V VIH Input high level 0.7 × BVDD V VOL Output low level 0.1 × BVDD V VOH Output high level 0.9 × BVDD V 2.3.7 Supply Current PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Record and playback (all active) 20 24 26 Record and playback (osc, clk, and MIC output powered down) 16 18 20 Total supply current, Line playback only 6 7.5 9 ITOT Record only 11 13.5 15 mA No input signal Analog bypass (line in to line out) 4 4.5 6 Power down, DVDD = 1.5 V, Oscillator enabled 0.8 1.5 3 AVDD = BVDD = HPVDD = 3.3 V Oscillator disabled 0.01 2−5 2.4 Digital-Interface Timing PARAMETER MIN TYP MAX UNIT tw(1) System-clock pulse duration, MCLK/XTI High 18 ns tw(2) Low 18 tc(1) System-clock period, MCLK/XTI 54 ns Duty cycle, MCLK/XTI 40/60% 60/40% tpd(1) Propagation delay, CLKOUT 0 10 ns tc(1) tw(1) tw(2) tpd(1) MCLK/XTI CLKOUT CLKOUT (Div 2) Figure 2−1. System-Clock Timing Requirements 2.4.1 Audio Interface (Master Mode) PARAMETER MIN TYP MAX UNIT tpd(2) Propagation delay, LRCIN/LRCOUT 0 10 ns tpd(3) Propagation delay, DOUT 0 10 ns tsu(1) Setup time, DIN 10 ns th(1) Hold time, DIN 10 ns BCLK LRCIN DIN tpd(2) tsu(1) th(1) tpd(3) DOUT LRCOUT Figure 2−2. Master-Mode Timing Requirements 2−6 2.4.2 Audio Interface (Slave-Mode) PARAMETER MIN TYP MAX UNIT tw(3) Pulse duration, BCLK High 20 ns tw(4) Low 20 tc(2) Clock period, BCLK 50 ns tpd(4) Propagation delay, DOUT 0 10 ns tsu(2) Setup time, DIN 10 ns th(2) Hold time, DIN 10 ns tsu(3) Setup time, LRCIN 10 ns th(3) Hold time, LRCIN 10 ns BCLK LRCIN DIN tc(2) tw(4) tw(3) tsu(3) tsu(2) th(3) th(2) DOUT tpd(2) LRCOUT Figure 2−3. Slave-Mode Timing Requirements 2−7 2.4.3 Three-Wire Control Interface (SDIN) PARAMETER MIN TYP MAX UNIT tw(5) Clock pulse duration, SCLK High 20 ns tw(6) Low 20 tc(3) Clock period, SCLK 80 ns tsu(4) Clock rising edge to CS rising edge, SCLK 60 ns tsu(5) Setup time, SDIN to SCLK 20 ns th(4) Hold time, SCLK to SDIN 20 ns tw(7) Pulse duration, CS High 20 ns tw(8) Low 20 LSB tw(8) tc(3) tw(5) tw(6) tsu(4) tsu(5) th(4) CS SCLK DIN Figure 2−4. Three-Wire Control Interface Timing Requirements 2.4.4 Two-Wire Control Interface PARAMETER MIN TYP MAX UNIT tw(9) Clock pulse duration, SCLK High 1.3 μs tw(10) Low 600 ns f(sf) Clock frequency, SCLK 0 400 kHz th(5) Hold time (start condition) 600 ns tsu(6) Setup time (start condition) 600 ns th(6) Data hold time 900 ns tsu(7) Data setup time 100 ns tr Rise time, SDIN, SCLK 300 ns tf Fall time, SDIN, SCLK 300 ns tsu(8) Setup time (stop condition) 600 ns tsp Pulse width of spikes suppressed by input filter 0 50 ns SCLK DIN tw(9) tw(10) th(5) th(6) tsu(7) tsu(8) tsp Figure 2−5. Two-Wire Control Interface Timing Requirements 2−8 3−1 3 How to Use the TLV320AIC23B 3.1 Control Interfaces The TLV320AIC23B has many programmable features. The control interface is used to program the registers of the device. The control interface complies with SPI (three-wire operation) and two-wire operation specifications. The state of the MODE terminal selects the control interface type. The MODE pin must be hardwired to the required level. MODE INTERFACE 0 2-wire 1 SPI 3.1.1 SPI In SPI mode, SDIN carries the serial data, SCLK is the serial clock and CS latches the data word into the TLV320AIC23B. The interface is compatible with microcontrollers and DSPs with an SPI interface. A control word consists of 16 bits, starting with the MSB. The data bits are latched on the rising edge of SCLK. A rising edge on CS after the 16th rising clock edge latches the data word into the AIC (see Figure 3-1). The control word is divided into two parts. The first part is the address block, the second part is the data block: B[15:9] Control Address Bits B[8:0] Control Data Bits B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ MSB LSB CS SCLK SDIN Figure 3−1. SPI Timing 3.1.2 2-Wire In 2-wire mode, the data transfer uses SDIN for the serial data and SCLK for the serial clock. The start condition is a falling edge on SDIN while SCLK is high. The seven bits following the start condition determine which device on the 2-wire bus receives the data. R/W determines the direction of the data transfer. The TLV320AIC23B is a write only device and responds only if R/W is 0. The device operates only as a slave device whose address is selected by setting the state of the CS pin as follows. CS STATE (Default = 0) ADDRESS 0 0011010 1 0011011 3−2 The device that recognizes the address responds by pulling SDIN low during the ninth clock cycle, acknowledging the data transfer. The control follows in the next two eight-bit blocks. The stop condition after the data transfer is a rising edge on SDIN when SCLK is high (see Figure 3-2). The 16-bit control word is divided into two parts. The first part is the address block, the second part is the data block: B[15:9] Control Address Bits B[8:0] Control Data Bits SCLK SDI ADDR R/W ACK B15 − B8 ACK B7 − B0 ACK Start Stop 1 7 8 9 1 8 9 1 8 9 Figure 3−2. 2-Wire Compatible Timing 3.1.3 Register Map The TLV320AIC23B has the following set of registers, which are used to program the modes of operation. ADDRESS REGISTER 0000000 Left line input channel volume control 0000001 Right line input channel volume control 0000010 Left channel headphone volume control 0000011 Right channel headphone volume control 0000100 Analog audio path control 0000101 Digital audio path control 0000110 Power down control 0000111 Digital audio interface format 0001000 Sample rate control 0001001 Digital interface activation 0001111 Reset register Left line input channel volume control (Address: 0000000) BIT D8 D7 D6 D5 D4 D3 D2 D1 D0 Function LRS LIM X X LIV4 LIV3 LIV2 LIV1 LIV0 Default 0 1 0 0 1 0 1 1 1 LRS Left/right line simultaneous volume/mute update Simultaneous update 0 = Disabled 1 = Enabled LIM Left line input mute 0 = Normal 1 = Muted LIV[4:0] Left line input volume control (10111 = 0 dB default) 11111 = +12 dB down to 00000 = –34.5 dB in 1.5-dB steps X Reserved 3−3 Right Line Input Channel Volume Control (Address: 0000001) BIT D8 D7 D6 D5 D4 D3 D2 D1 D0 Function RLS RIM X X RIV4 RIV3 RIV2 RIV1 RIV0 Default 0 1 0 0 1 0 1 1 1 RLS Right/left line simultaneous volume/mute update Simultaneous update 0 = Disabled 1 = Enabled RIM Right line input mute 0 = Normal 1 = Muted RIV[4:0] Right line input volume control (10111 = 0 dB default) 11111 = +12 dB down to 00000 = –34.5 dB in 1.5-dB steps X Reserved Left Channel Headphone Volume Control (Address: 0000010) BIT D8 D7 D6 D5 D4 D3 D2 D1 D0 Function LRS LZC LHV6 LHV5 LHV4 LHV3 LHV2 LHV1 LHV0 Default 0 1 1 1 1 1 0 0 1 LRS Left/right headphone channel simultaneous volume/mute update Simultaneous update 0 = Disabled 1 = Enabled LZC Left-channel zero-cross detect Zero-cross detect 0 = Off 1 = On LHV[6:0] Left Headphone volume control (1111001 = 0 dB default) 1111111 = +6 dB, 79 steps between +6 dB and −73 dB (mute), 0110000 = −73 dB (mute), any thing below 0110000 does nothing − you are still muted Right Channel Headphone Volume Control (Address: 0000011) BIT D8 D7 D6 D5 D4 D3 D2 D1 D0 Function RLS RZC RHV6 RHV5 RHV4 RHV3 RHV2 RHV1 RHV0 Default 0 1 1 1 1 1 0 0 1 RLS Right/left headphone channel simultaneous volume/mute Update Simultaneous update 0 = Disabled 1 = Enabled RZC Right-channel zero-cross detect Zero-cross detect 0 = Off 1 = On RHV[6:0] Right headphone volume control (1111001 = 0 dB default) 1111111 = +6 dB, 79 steps between +6 dB and −73 dB (mute), 0110000 = −73 dB (mute), any thing below 0110000 does nothing − you are still muted Analog Audio Path Control (Address: 0000100) BIT D8 D7 D6 D5 D4 D3 D2 D1 D0 Function STA2 STA1 STA0 STE DAC BYP INSEL MICM MICB Default 0 0 0 0 0 1 0 1 0 STA[2:0] and STE STE STA2 STA1 STA0 ADDED SIDETONE 1 1 X X 0 dB 1 0 0 0 −6 dB 1 0 0 1 −9 dB 1 0 1 0 −12 dB 1 0 1 1 −18 dB 0 X X X Disabled DAC DAC select 0 = DAC off 1 = DAC selected BYP Bypass 0 = Disabled 1 = Enabled 3−4 INSEL Input select for ADC 0 = Line 1 = Microphone MICM Microphone mute 0 = Normal 1 = Muted MICB Microphone boost 0=dB 1 = 20dB X Reserved Digital Audio Path Control (Address: 0000101) BIT D8 D7 D6 D5 D4 D3 D2 D1 D0 Function X X X X X DACM DEEMP1 DEEMP0 ADCHP Default 0 0 0 0 0 1 0 0 0 DACM DAC soft mute 0 = Disabled 1 = Enabled DEEMP[1:0] De-emphasis control 00 = Disabled 01 = 32 kHz 10 = 44.1 kHz 11 = 48 kHz ADCHP ADC high-pass filter 1 = Disabled 0 = Enabled X Reserved Power Down Control (Address: 0000110) BIT D8 D7 D6 D5 D4 D3 D2 D1 D0 Function X OFF CLK OSC OUT DAC ADC MIC LINE Default 0 0 0 0 0 0 1 1 1 OFF Device power 0 = On 1 = Off CLK Clock 0 = On 1 = Off OSC Oscillator 0 = On 1 = Off OUT Outputs 0 = On 1 = Off DAC DAC 0 = On 1 = Off ADC ADC 0 = On 1 = Off MIC Microphone input 0 = On 1 = Off LINE Line input 0 = On 1 = Off X Reserved Digital Audio Interface Format (Address: 0000111) BIT D8 D7 D6 D5 D4 D3 D2 D1 D0 Function X X MS LRSWAP LRP IWL1 IWL0 FOR1 FOR0 Default 0 0 0 0 0 0 0 0 1 MS Master/slave mode 0 = Slave 1 = Master LRSWAP DAC left/right swap 0 = Disabled 1 = Enabled LRP DAC left/right phase 0 = Right channel on, LRCIN high 1 = Right channel on, LRCIN low DSP mode 1 = MSB is available on 2nd BCLK rising edge after LRCIN rising edge 0 = MSB is available on 1st BCLK rising edge after LRCIN rising edge IWL[1:0] Input bit length 00 = 16 bit 01 = 20 bit 10 = 24 bit 11 = 32 bit FOR[1:0] Data format 11 = DSP format, frame sync followed by two data words 10 = I2S format, MSB first, left – 1 aligned 01 = MSB first, left aligned 00 = MSB first, right aligned X Reserved NOTES: 1. In Master mode, the TLV320AIC23B supplies the BCLK, LRCOUT, and LRCIN. In Slave mode, BCLK, LRCOUT, and LRCIN are supplied to the TLV320AIC23B. 2. In normal mode, BCLK = MCLK/4 for all sample rates except for 88.2 kHz and 96 kHz. For 88.2 kHz and 96 kHz sample rate, BCLK = MCLK. 3. In USB mode, bit BCLK = MCLK 3−5 Sample Rate Control (Address: 0001000) BIT D8 D7 D6 D5 D4 D3 D2 D1 D0 Function X CLKOUT CLKIN SR3 SR2 SR1 SR0 BOSR USB/Normal Default 0 0 0 1 0 0 0 0 0 CLKIN Clock input divider 0 = MCLK 1 = MCLK/2 CLKOUT Clock output divider 0 = MCLK 1 = MCLK/2 SR[3:0] Sampling rate control (see Sections 3.3.2.1 AND 3.3.2.2) BOSR Base oversampling rate USB mode: 0 = 250 fs 1 = 272 fs Normal mode: 0 = 256 fs 1 = 384 fs USB/Normal Clock mode select: 0 = Normal 1 = USB X Reserved Digital Interface Activation (Address: 0001001) BIT D8 D7 D6 D5 D4 D3 D2 D1 D0 Function X RES RES X X X X X ACT Default 0 0 0 0 0 0 0 0 0 ACT Activate interface 0 = Inactive 1 = Active X Reserved Reset Register (Address: 0001111) BIT D8 D7 D6 D5 D4 D3 D2 D1 D0 Function RES RES RES RES RES RES RES RES RES Default 0 0 0 0 0 0 0 0 0 RES Write 000000000 to this register triggers reset 3.2 Analog Interface 3.2.1 Line Inputs The TLV320AIC23B has line inputs for the left and the right audio channels (RLINEIN and LLINEIN). Both line inputs have independently programmable volume controls and mutes. Active and passive filters for the two channels prevent high frequencies from folding back into the audio band. The line-input gain is logarithmically adjustable from 12 dB to –34.5 dB in 1.5-dB steps. The ADC full-scale range is 1.0 VRMS at AVDD = 3.3 V. The full-scale range tracks linearly with analog supply voltage AVDD. To avoid distortions, it is important not to exceed the full-scale range. The gain is independently programmable on both left and right line-inputs. To reduce the number of software write cycles required. Both channels can be locked to the same value by setting the RLS and LRS bits (see Section 3.1.3). The line inputs are biased internally to VMID. When the line inputs are muted or the device is set to standby mode, the line inputs are kept biased to VMID using special antithump circuitry. This reduces audible clicks that otherwise might be heard when reactivating the inputs. For interfacing to a CD system, the line input should be scaled to 1 VRMS to avoid clipping, using the circuit shown in Figure 3-3. R 2 R1 C1 C2 + CDIN LINEIN AGND Where: R1 = 5 kΩ R2 = 5 kΩ C1 = 47 pF C2 = 470 nF Figure 3−3. Analog Line Input Circuit R1 and R2 divide the input signal by two, reducing the 2 VRMS from the CD player to the nominal 1 VRMS of the AIC23B inputs. C1 filters high-frequency noise, and C2 removes any dc component from the signal. 3−6 3.2.2 Microphone Input MICIN is a high-impedance, low-capacitance input that is compatible with a wide range of microphones. It has a programmable volume control and a mute function. Active and passive filters prevent high frequencies from folding back into the audio band. The MICIN signal path has two gain stages. The first stage has a nominal gain of G1 = 50 k/10 k = 5. By adding an external resistor (RMIC) in series with MICIN, the gain of the first stage can be adjusted by G1 = 50 k/(10 k + RMIC). For example, RMIC = 40 k gives a gain of 0 dB. The second stage has a software programmable gain of 0 dB or 20 dB (see Section 3.1.3). 50 kΩ 10 kΩ VMID 0 dB/20 dB To ADC MICIN Figure 3−4. Microphone Input Circuit The microphone input is biased internally to VMID. When the line inputs are muted, the MICIN input is kept biased to VMID using special antithump circuitry. This reduces audible clicks that may otherwise be heard when reactivating the input. The MICBIAS output provides a low-noise reference voltage suitable for biasing electret type microphones and the associated external resistor biasing network. The maximum source current capability is 3 mA. This limits the smallest value of external biasing resistors that safely can be used. The MICBIAS output is not active in standby mode. 3.2.3 Line Outputs The TLV320AIC23B has two low-impedance line outputs (LLINEOUT and RLINEOUT) capable of driving line loads with 10-kΩ and 50-pF impedances. The DAC full-scale output voltage is 1.0 VRMS at AVDD = 3.3 V. The full-scale range tracks linearly with the analog supply voltage AVDD. The DAC is connected to the line outputs via a low-pass filter that removes out-of-band components. No further external filtering is required in most applications. The DAC outputs, line inputs, and the microphone signal are summed into the line outputs. These sources can be switched off independently. For example, in bypass mode, the line inputs are routed to the line outputs, bypassing the ADC and the DAC. If sidetone is enabled, the microphone signal is routed to both line outputs via a four-step programmable attenuation circuit. The line outputs are muted by either muting the DAC (analog) or soft muting (digital) and disabling the bypass and sidetone paths (see Section 3.1.3). 3.2.4 Headphone Output The TLV320AIC23B has stereo headphone outputs (LHPOUT and RHPOUT), and is designed to drive 16-Ω or 32-Ω headphones. The headphone output includes a high-quality volume control and mute function. The headphone volume is logarithmically adjustable from 6 dB to –73 dB in 1-dB steps. Writing 000000 to the volume-control registers (see Section 3.1.3) mutes the headphone output. When the headphone output is muted or the device is placed in standby mode, the dc voltage is maintained at the outputs to prevent audible clicks. A zero-cross detection circuit is provided under the control of the LZC and RZC bits. If this circuit is enabled, the volume-control values are updated only when the input signal to the gain stage is close to the analog ground level. 3−7 This minimizes audible clicks as the volume is changed or the device is muted. This circuit has no time-out, so, if only dc levels are being applied to the gain stage input of more than 20 mV, the gain is not updated. The gain is independently programmable on the left and right channels. Both channels can be locked to the same value by setting the RLS and LRS bits (see Section 3.1.3). 3.2.5 Analog Bypass Mode The TLV320AIC23B includes a bypass mode in which the analog line inputs are directly routed to the analog line outputs, bypassing the ADC and DAC. This is enabled by selecting the bypass bit in the analog audio path control register[see Section 3.1.3). For a true bypass mode, the output from the DAC and the sidetone should be disabled. The line input and headphone output volume controls and mutes are still operational in bypass mode. Therefore the line inputs, DAC output, and microphone input can be summed together. The maximum signal at any point in the bypass path must be no greater than 1.0Vrms at AVDD=3.3V to avoid clipping and distortion. This amplitude tracks linearly with AVDD. 3.2.6 Sidetone Insertion The TLV320AIC23B has a sidetone insertion made where the microphone input is routed to the line and headphone outputs. This is useful for telephony and headset applications. The attenuation of the sidetone signal may be set to −6 dB, −9 dB, −12 dB, −15 dB, or 0dB, by software selection (see Section 3.1.3). If this mode is used to sum the microphone input with the DAC output and line inputs, care must be taken not to exceed signal level to avoid clipping and distortion. 3.3 Digital Audio Interface 3.3.1 Digital Audio-Interface Modes The TLV320AIC23B supports four audio-interface modes. • Right justified • Left justified • I2S mode • DSP mode The four modes are MSB first and operate with a variable word width between 16 to 32 bits (except right-justified mode, which does not support 32 bits). The digital audio interface consists of clock signal BCLK, data signals DIN and DOUT, and synchronization signals LRCIN and LRCOUT. BCLK is an output in master mode and an input in slave mode. 3.3.1.1 Right-Justified Mode In right-justified mode, the LSB is available on the rising edge of BCLK, preceding a falling edge on LRCIN or LRCOUT (see Figure 3-5). LRCIN/ BCLK DIN/ n n−1 1 0 n n−1 1/fs Left Channel Right Channel 0 1 0 MSB LSB LRCOUT DOUT Figure 3−5. Right-Justified Mode Timing 3.3.1.2 Left-Justified Mode In left-justified mode, the MSB is available on the rising edge of BCLK, following a rising edge on LRCIN or LRCOUT (see Figure 3-6) 3−8 LRCIN/ BCLK DIN/ n n−1 1 0 n n−1 1/fs Left Channel Right Channel 1 0 n MSB LSB LRCOUT DOUT Figure 3−6. Left-Justified Mode Timing 3.3.1.3 I2S Mode In I2S mode, the MSB is available on the second rising edge of BCLK, after the falling edge on LRCIN or LRCOUT (see Figure 3-7). LRCIN/ BCLK DIN/ n n−1 1 0 n n−1 1/fs Left Channel Right Channel 1 0 MSB LSB 1BCLK LRCOUT DOUT Figure 3−7. I2S Mode Timing 3.3.1.4 DSP Mode The DSP mode is compatible with the McBSP ports of TI DSPs. LRCIN and LRCOUT must be connected to the Frame Sync signal of the McBSP. A falling edge on LRCIN or LRCOUT starts the data transfer. The left-channel data consists of the first data word, which is immediately followed by the right channel data word (see Figure 3-8). Input word length is defined by the IWL register. Figure 3−8 shows LRP = 1 (default LRP = 0). LRCIN/ BCLK DIN/ n n−1 1 0 n n−1 Left Channel Right Channel 1 0 MSB LSB MSB LSB LRCOUT DOUT Figure 3−8. DSP Mode Timing 3−9 3.3.2 Audio Sampling Rates The TLV320AIC23B can operate in master or slave clock mode. In the master mode, the TLV320AIC23B clock and sampling rates are derived from a 12-MHz MCLK signal. This 12-MHz clock signal is compatible with the USB specification. The TLV320AIC23B can be used directly in a USB system. In the slave mode, an appropriate MCLK or crystal frequency and the sample rate control register settings control the TLV320AIC23B clock and sampling rates. The settings in the sample rate control register control the clock mode and sampling rates. Sample Rate Control (Address: 0001000) BIT D8 D7 D6 D5 D4 D3 D2 D1 D0 Function X CLKOUT CLKIN SR3 SR2 SR1 SR0 BOSR USB/Normal Default 0 0 0 1 0 0 0 0 0 CLKOUT Clock output divider 0 = MCLK 1 = MCLK/2 CLKIN Clock input divider 0 = MCLK 1 = MCLK/2 SR[3:0] Sampling rate control (see Sections 3.3.2.1 and 3.3.2.2) BOSR Base oversampling rate USB mode: 0 = 250 fs 1 = 272 fs Normal mode: 0 = 256 fs 1 = 384 fs USB/Normal Clock mode select: 0 = Normal 1 = USB X Reserved The clock circuit of the AIC23B has two internal dividers. The first, controlled by CLKIN, applies to the sampling-rate generator of the codec. The second, controlled by CLKOUT, applies only to the CLKOUT terminal. By setting CLKIN to 1, the entire codec is clocked with half the frequency, effectively dividing the resulting sampling rates by two. The following sampling-rate tables are based on CLKIN = MCLK. 3.3.2.1 USB-Mode Sampling Rates (MCLK = 12 MHz) In the USB mode, the following ADC and DAC sampling rates are available: SAMPLING RATE† SAMPLING-RATE CONTROL SETTINGS ADC DAC FILTER TYPE (kHz) (kHz) SR3 SR2 SR1 SR0 BOSR 96 96 3 0 1 1 1 0 88.2 88.2 2 1 1 1 1 1 48 48 0 0 0 0 0 0 44.1 44.1 1 1 0 0 0 1 32 32 0 0 1 1 0 0 8.021 8.021 1 1 0 1 1 1 8 8 0 0 0 1 1 0 48 8 0 0 0 0 1 0 44.1 8.021 1 1 0 0 1 1 8 48 0 0 0 1 0 0 8.021 44.1 1 1 0 1 0 1 † The sampling rates are derived from the 12-MHz master clock. The available oversampling rates do not produce exactly 8-kHz, 44.1-kHz, and 88.2-kHz sampling rates, but 8.021 kHz, 44.117 kHz, and 88.235 kHz, respectively. See Figures 3−17 through 3−34 for filter responses 3−10 3.3.2.2 Normal-Mode Sampling Rates In normal mode, the following ADC and DAC sampling rates, depending on the MCLK frequency, are available: MCLK = 12.288 MHz SAMPLING RATE SAMPLING-RATE CONTROL SETTINGS ADC DAC FILTER TYPE (kHz) (kHz) SR3 SR2 SR1 SR0 BOSR 96 96 2 0 1 1 1 0 48 48 1 0 0 0 0 0 32 32 1 0 1 1 0 0 8 8 1 0 0 1 1 0 48 8 1 0 0 0 1 0 8 48 1 0 0 1 0 0 MCLK = 11.2896 MHz SAMPLING RATE SAMPLING-RATE CONTROL SETTINGS ADC DAC FILTER TYPE (kHz) (kHz) SR3 SR2 SR1 SR0 BOSR 88.2 88.2 2 1 1 1 1 0 44.1 44.1 1 1 0 0 0 0 8.021 8.021 1 1 0 1 1 0 44.1 8.021 1 1 0 0 1 0 8.021 44.1 1 1 0 1 0 0 MCLK = 18.432 MHz SAMPLING RATE SAMPLING-RATE CONTROL SETTINGS ADC DAC FILTER TYPE (kHz) (kHz) SR3 SR2 SR1 SR0 BOSR 96 96 2 0 1 1 1 1 48 48 1 0 0 0 0 1 32 32 1 0 1 1 0 1 8 8 1 0 0 1 1 1 48 8 1 0 0 0 1 1 8 48 1 0 0 1 0 1 MCLK = 16.9344 MHz SAMPLING RATE SAMPLING-RATE CONTROL SETTINGS ADC DAC FILTER TYPE (kHz) (kHz) SR3 SR2 SR1 SR0 BOSR 88.2 88.2 2 1 1 1 1 1 44.1 44.1 1 1 0 0 0 1 8.021 8.021 1 1 0 1 1 1 44.1 8.021 1 1 0 0 1 1 8.021 44.1 1 1 0 1 0 1 3−11 3.3.3 Digital Filter Characteristics PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ADC Filter Characteristics ( TI DSP 250 fs Mode Operation ) Passband ±0.05 dB 0.416 fs Hz Stopband −6 dB 0.5 fs Hz Passband ripple ±0.05 dB Stopband attenuation f > 0.584 fs −60 dB ADC Filter Characteristics ( TI DSP 272 fs and Normal Mode Operation ) Passband ±0.05 dB 0.4535 fs Hz Stopband −6 dB 0.5 fs Hz Passband ripple ±0.05 dB Stopband attenuation f > 0.5465 fs −60 dB ADC High-Pass Filter Characteristics −3 dB, fs = 44.1 kHz 3.7 Hz −3 dB, fs = 48 kHz 4.0 Hz Corner frequency −0.5 dB, fs = 44.1 kHz 10.4 Hz −0.5 dB, fs = 48 kHz 11.3 Hz −0.1 dB fs = 44.1 kHz 21.6 Hz −0.1 dB, fs = 48 kHz 23.5 Hz DAC Filter Characteristics (48-kHz Sampling Rate) Passband ±0.03 dB 0.416 fs Hz Stopband −6 dB 0.5 fs Hz Passband ripple ±0.03 dB Stopband attenuation f > 0.584 fs −50 dB DAC Filter Characteristics (44.1-kHz Sampling Rate) Passband ±0.03 dB 0.4535 fs Hz Stopband −6 dB 0.5 fs Hz Passband ripple ±0.03 dB Stopband attenuation f > 0.5465 fs −50 dB 3−12 −6 −8 −10 Filter Response − dB −4 −2 Normalized Audio Sampling Frequency 0 0 0.1 0.2 0.3 FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY 0.4 0.5 Figure 3−9. Digital De-Emphasis Filter Response − 44.1 kHz Sampling −6 −8 −10 0 0.10 0.20 0.30 Filter Response − dB −4 −2 Normalized Audio Sampling Frequency 0 0.40 0.50 FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−10. Digital De-Emphasis Filter Response − 48 kHz Sampling 3−13 −70 −90 0 0.5 1 1.5 −50 −10 10 2 2.5 3 −30 Filter Response − dB Normalized Audio Sampling Frequency FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−11. ADC Digital Filter Response 0: USB Mode (Group Delay = 12 Output Samples) −0.04 −0.10 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.08 0.10 0.35 0.4 0.45 0.5 0.06 0.04 0.02 −0.02 −0.06 −0.08 Filter Response − dB Normalized Audio Sampling Frequency FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−12. ADC Digital Filter Ripple 0: USB (Group Delay = 20 Output Samples) 3−14 −50 −90 0 0.5 1 1.5 2 −30 −10 10 2.5 3 −70 Filter Response − dB Normalized Audio Sampling Frequency FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−13. ADC Digital Filter Response 1: USB Mode Only −0.04 −0.10 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.08 0.10 0.35 0.4 0.45 0.5 0.06 0.04 0.02 −0.02 −0.06 −0.08 Filter Response − dB Normalized Audio Sampling Frequency FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−14. ADC Digital Filter Ripple 1: USB Mode Only 3−15 −70 −90 0 0.5 1 1.5 −50 −10 10 2 2.5 3 −30 Filter Response − dB Normalized Audio Sampling Frequency FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−15. ADC Digital Filter Response 2: USB mode and Normal Modes (Group Delay = 3 Output Samples) −0.2 −0.4 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.3 0.4 0.35 0.4 0.45 0.5 0.2 0.1 −0.1 −0.3 Filter Response − dB Normalized Audio Sampling Frequency FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−16. ADC Digital Filter Ripple 2: USB Mode and Normal Modes 3−16 −50 −90 0 0.5 1 1.5 −30 −10 10 2 2.5 3 −70 Filter Response − dB Normalized Audio Sampling Frequency FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−17. ADC Digital Filter Response 3: USB Mode Only −0.2 −0.4 0 0.05 0.10 0.15 0.20 0.25 0.30 0 0.3 0.4 0.35 0.40 0.45 0.50 0.2 0.1 −0.1 −0.3 Filter Response − dB Normalized Audio Sampling Frequency FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−18. ADC Digital Filter Ripple 3: USB Mode Only 3−17 −90 0 0.5 1 1.5 10 2 2.5 3 −10 −30 −50 −70 Filter Response − dB Normalized Audio Sampling Frequency FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−19. DAC Digital Filter Response 0: USB Mode −0.04 −0.10 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.08 0.10 0.35 0.4 0.45 0.5 0.06 0.04 0.02 −0.02 −0.06 −0.08 Filter Response − dB Normalized Audio Sampling Frequency FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−20. DAC Digital Filter Ripple 0: USB Mode 3−18 −50 −90 0 0.5 1 1.5 −30 −10 10 2 2.5 3 −70 Filter Response − dB Normalized Audio Sampling Frequency FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−21. DAC Digital Filter Response 1: USB Mode Only −0.04 −0.10 0 0.05 0.1 0.15 0.2 0.25 0.3 0.06 0.08 0.10 0.35 0.4 0.45 0.5 0.04 0.02 0 −0.02 −0.06 −0.08 Filter Response − dB Normalized Audio Sampling Frequency FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−22. DAC Digital Filter Ripple 1: USB Mode Only 3−19 −50 −90 0 0.5 1 1.5 −30 −10 10 2 2.5 3 −70 Filter Response − dB Normalized Audio Sampling Frequency FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−23. DAC Digital Filter Response 2: USB Mode and Normal Modes −0.2 −0.4 0 0.05 0.1 0.15 0.2 0.25 0.3 0.2 0.3 0.4 0.35 0.4 0.45 0.5 0.1 0 −0.1 −0.3 Filter Response − dB Normalized Audio Sampling Frequency FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−24. DAC Digital Filter Ripple 2: USB Mode and Normal Modes 3−20 −70 −90 0 0.5 1 1.5 −30 −10 10 2 2.5 3 −50 Filter Response − dB Normalized Audio Sampling Frequency FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−25. DAC Digital Filter Response 3: USB Mode Only −0.2 −0.4 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.3 0.4 0.35 0.4 0.45 0.5 0.2 0.1 −0.1 −0.3 Filter Response − dB Normalized Audio Sampling Frequency FILTER RESPONSE vs NORMALIZED AUDIO SAMPLING FREQUENCY Figure 3−26. DAC Digital Filter Ripple 3: USB Mode Only The delay between the converter is a function of the sample rate. The group delays for the AIC23B are shown in the following table. Each delay is one LR clock (1/sample rate). Table 3−1. Group Dealys FILTER GROUP DELAY DAC type 0 11 DAC type 1 18 DAC type 2 5 DAC type 3 5 ADC type 0 12 ADC type 1 20 ADC type 2 3 ADC type 3 6 A−1 Appendix A Mechanical Data GQE/ZQE (S-PBGA-N80) PLASTIC BALL GRID ARRAY 5 6 7 8 9 J H G F E D 1 2 3 C B A 4 4,00 TYP 5,10 4,90 SQ 0,50 0,50 4200461/C 10/00 Seating Plane 0,62 0,68 0,25 0,35 1,00 MAX ∅ 0,05 M 0,08 0,11 0,21 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. MicroStar Junior BGA configuration D. Falls within JEDEC MO-225 MicroStar Junior is a trademark of Texas Instruments. A−2 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,65 0,10 M 0,10 0,25 0,50 0,75 0,15 NOM Gage Plane 28 9,80 9,60 24 7,90 7,70 16 20 6,60 6,40 4040064/F 01/97 0,30 6,60 6,20 8 0,19 4,30 4,50 7 0,15 14 A 1 1,20 MAX 14 5,10 4,90 8 3,10 2,90 A MAX A MIN DIM PINS ** 0,05 4,90 5,10 Seating Plane 0°−8° NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 A−3 RHD (S−PQFP−N28) PLASTIC QUAD FLATPACK ÉÉÉÉÉ ÉÉÉÉÉ ÉÉÉÉÉ ÉÉÉÉÉ B 0,08 C D 4204400/A 05/02 1 28 0,05 MAX SEATING PLANE 5,00 0,80 1,00 5,00 3,25 3,00 0,20 REF DIE PAD 3,00 A C SQ 1 28 0,65 280,45 0,50 0,18 0,30 0,10 M C A B EXPOSED THERMAL 0,435 0,435 0,18 0,18 PIN 1 INDEX AREA IDENTIFIER PIN 1 4 28 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. QFN (Quad Flatpack No−Lead) Package configuration. D. The Package thermal performance may be enhanced by bonding the thermal die pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected ground leads. E. Package complies to JEDEC MO-220. PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 Addendum-Page 1 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples TLV320AIC23BGQE ACTIVE BGA MICROSTAR JUNIOR GQE 80 360 TBD SNPB Level-2A-235C-4 WKS 0 to 70 AIC23BG TLV320AIC23BIGQE ACTIVE BGA MICROSTAR JUNIOR GQE 80 360 TBD SNPB Level-2A-235C-4 WKS -40 to 85 AIC23BIG TLV320AIC23BIPW ACTIVE TSSOP PW 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 AIC23BI TLV320AIC23BIPWG4 ACTIVE TSSOP PW 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 AIC23BI TLV320AIC23BIPWR ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 AIC23BI TLV320AIC23BIPWRG4 ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 AIC23BI TLV320AIC23BIRHD ACTIVE VQFN RHD 28 73 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 AIC23BI TLV320AIC23BIRHDG4 ACTIVE VQFN RHD 28 73 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 AIC23BI TLV320AIC23BIRHDR ACTIVE VQFN RHD 28 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 AIC23BI TLV320AIC23BIZQE ACTIVE BGA MICROSTAR JUNIOR ZQE 80 360 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 85 AIC23BIZ TLV320AIC23BIZQER OBSOLETE BGA MICROSTAR JUNIOR ZQE 80 TBD Call TI Call TI -40 to 85 AIC23BIZ TLV320AIC23BPW ACTIVE TSSOP PW 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 AIC23B TLV320AIC23BPWG4 ACTIVE TSSOP PW 28 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 AIC23B TLV320AIC23BPWR ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 AIC23B TLV320AIC23BPWRG4 ACTIVE TSSOP PW 28 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 AIC23B PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 Addendum-Page 2 Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples TLV320AIC23BRHD ACTIVE VQFN RHD 28 73 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 0 to 70 AIC23B TLV320AIC23BRHDG4 ACTIVE VQFN RHD 28 73 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 0 to 70 AIC23B TLV320AIC23BRHDR ACTIVE VQFN RHD 28 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 0 to 70 AIC23B TLV320AIC23BRHDRG4 ACTIVE VQFN RHD 28 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 0 to 70 AIC23B TLV320AIC23BZQE ACTIVE BGA MICROSTAR JUNIOR ZQE 80 360 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR 0 to 70 AIC23BZ TLV320AIC23BZQER ACTIVE BGA MICROSTAR JUNIOR ZQE 80 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR 0 to 70 AIC23BZ (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 Addendum-Page 3 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TLV320AIC23B : • Automotive: TLV320AIC23B-Q1 NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant TLV320AIC23BIPWR TSSOP PW 28 2000 330.0 16.4 6.9 10.2 1.8 12.0 16.0 Q1 TLV320AIC23BIRHDR VQFN RHD 28 3000 330.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 TLV320AIC23BPWR TSSOP PW 28 2000 330.0 16.4 6.9 10.2 1.8 12.0 16.0 Q1 TLV320AIC23BRHDR VQFN RHD 28 3000 330.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 TLV320AIC23BZQER BGA MI CROSTA R JUNI OR ZQE 80 2500 330.0 12.4 5.3 5.3 1.5 8.0 12.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 8-May-2013 Pack Materials-Page 1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TLV320AIC23BIPWR TSSOP PW 28 2000 367.0 367.0 38.0 TLV320AIC23BIRHDR VQFN RHD 28 3000 338.1 338.1 20.6 TLV320AIC23BPWR TSSOP PW 28 2000 367.0 367.0 38.0 TLV320AIC23BRHDR VQFN RHD 28 3000 338.1 338.1 20.6 TLV320AIC23BZQER BGA MICROSTAR JUNIOR ZQE 80 2500 338.1 338.1 20.6 PACKAGE MATERIALS INFORMATION www.ti.com 8-May-2013 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated FEATURES High accuracy; supports IEC 60687/61036/61268 and IEC 62053-21/62053-22/62053-23 On-chip digital integrator enables direct interface to current sensors with di/dt output A PGA in the current channel allows direct interface to shunts and current transformers Active, reactive, and apparent energy; sampled waveform; current and voltage rms Less than 0.1% error in active energy measurement over a dynamic range of 1000 to 1 at 25°C Positive-only energy accumulation mode available On-chip user programmable threshold for line voltage surge and SAG and PSU supervisory Digital calibration for power, phase, and input offset On-chip temperature sensor (±3°C typical) SPI® compatible serial interface Pulse output with programmable frequency Interrupt request pin (IRQ) and status register Reference 2.4 V with external overdrive capability Single 5 V supply, low power (25 mW typical) GENERAL DESCRIPTION The ADE77531 features proprietary ADCs and DSP for high accuracy over large variations in environmental conditions and time. The ADE7753 incorporates two second-order 16-bit -Δ ADCs, a digital integrator (on CH1), reference circuitry, temperature sensor, and all the signal processing required to perform active, reactive, and apparent energy measurements, line-voltage period measurement, and rms calculation on the voltage and current. The selectable on-chip digital integrator provides direct interface to di/dt current sensors such as Rogowski coils, eliminating the need for an external analog integrator and resulting in excellent long-term stability and pre- cise phase matching between the current and voltage channels. The ADE7753 provides a serial interface to read data, and a pulse output frequency (CF), which is proportional to the active power. Various system calibration features, i.e., channel offset correction, phase calibration, and power calibration, ensure high accuracy. The part also detects short duration low or high voltage variations. The positive-only accumulation mode gives the option to accumulate energy only when positive power is detected. An internal no-load threshold ensures that the part does not exhibit any creep when there is no load. The zero-crossing output (ZX) produces a pulse that is synchronized to the zero-crossing point of the line voltage. This signal is used internally in the line cycle active and apparent energy accumulation modes, which enables faster calibration. The interrupt status register indicates the nature of the interrupt, and the interrupt enable register controls which event produces an output on the IRQ pin, an open-drain, active low logic output. The ADE7753 is available in a 20-lead SSOP package. FUNCTIONAL BLOCK DIAGRAM AVDD RESET DVDDDGND TEMP SENSOR ADC ADC DFC x2 ADE7753 LPF2 MULTIPLIER INTEGRATOR CLKIN CLKOUT DINDOUTSCLK REFIN/OUT CS IRQ AGND APOS[15:0] VAGAIN[11:0] VADIV[7:0] IRMSOS[11:0] VRMSOS[11:0] WGAIN[11:0] dt 􀀀 REGISTERS AND SERIAL INTERFACE CFNUM[11:0] CFDEN[11:0] 2.4V REFERENCE 4k PHCAL[5:0] HPF1 LPF1 02875-A-001 V1P V1N V2N V2P PGA PGA ZX SAG CF WDIV[7:0] % %   2 |x| Figure 1. 1U.S. Patents 5,745,323; 5,760,617; 5,862,069; 5,872,469. ADE7753 Rev. C | Page 2 of 60 TABLE OF CONTENTS Features .............................................................................................. 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 3 Specifications ..................................................................................... 4 Timing Characteristics ..................................................................... 6 Absolute Maximum Ratings ............................................................ 7 ESD Caution .................................................................................. 7 Terminology ...................................................................................... 8 Pin Configuration and Function Descriptions ............................. 9 Typical Performance Characteristics ........................................... 11 Theory of Operation ...................................................................... 16 Analog Inputs .............................................................................. 16 di/dt Current Sensor and Digital Integrator ............................... 17 Zero-Crossing Detection ........................................................... 18 Period Measurement .................................................................. 19 Power Supply Monitor ............................................................... 19 Line Voltage Sag Detection ....................................................... 19 Peak Detection ............................................................................ 20 ADE7753 Interrupts ................................................................... 21 Temperature Measurement ....................................................... 22 ADE7753 Analog-to-Digital Conversion ................................ 22 Channel 1 ADC .......................................................................... 23 Channel 2 ADC .......................................................................... 25 Phase Compensation .................................................................. 27 Active Power Calculation .......................................................... 28 Energy Calculation ..................................................................... 29 Power Offset Calibration ........................................................... 31 Energy-to-Frequency Conversion............................................ 31 Line Cycle Energy Accumulation Mode ................................. 33 Positive-Only Accumulation Mode ......................................... 33 No-Load Threshold .................................................................... 33 Reactive Power Calculation ...................................................... 33 Sign of Reactive Power Calculation ......................................... 35 Apparent Power Calculation ..................................................... 35 Apparent Energy Calculation ................................................... 36 Line Apparent Energy Accumulation ...................................... 37 Energies Scaling .......................................................................... 38 Calibrating an Energy Meter Based on the ADE7753 ........... 38 CLKIN Frequency ...................................................................... 48 Suspending ADE7753 Functionality ....................................... 48 Checksum Register..................................................................... 48 ADE7753 Serial Interface .......................................................... 49 ADE7753 Registers ......................................................................... 52 ADE7753 Register Descriptions ................................................... 55 Communications Register ......................................................... 55 Mode Register (0x09) ................................................................. 55 Interrupt Status Register (0x0B), Reset Interrupt Status Register (0x0C), Interrupt Enable Register (0x0A) .............. 57 CH1OS Register (0x0D) ............................................................ 58 Outline Dimensions ....................................................................... 59 Ordering Guide .......................................................................... 59 ADE7753 Rev. C | Page 3 of 60 REVISION HISTORY 1/10—Rev. B to Rev C Changes to Figure 1 ........................................................................... 1 Changes to t6 Parameter (Table 2) ................................................... 6 Added Endnote 1 to Table 4 ............................................................. 9 Changes to Figure 32 ...................................................................... 16 Changes to Period Measurement Section .................................... 19 Changes to Temperature Measurement Section ......................... 22 Changes to Figure 51 ...................................................................... 24 Changes to Channel 1 RMS Calculation Section ........................ 25 Added Table 7 .................................................................................. 25 Changes to Channel 2 RMS Calculation Section ........................ 26 Added Table 8 .................................................................................. 26 Changes to Figure 64 ...................................................................... 29 Changes to Apparent Power Calculation Section ....................... 35 1/09—Rev. A to Rev B Changes to Features Section ............................................................ 1 Changes to Zero-Crossing Detection Section and Period Measurement Section ..................................................................... 19 Changes to Channel 1 RMS Calculation Section, Channel 1 RMS Offset Compensation Section, and Equation 4 ................. 25 Changes to Figure 56 and Channel 2 RMS Calculation Section .............................................................................................. 26 Changes to Figure 57 ...................................................................... 27 Changes to Energy Calculation Section ....................................... 30 Changes to Energy-to-Frequency Conversion Section .............. 31 Changes to Apparent Energy Calculation Section...................... 36 Changes to Line Apparent Energy Accumulation Section ........ 37 Changes to Table 10 ........................................................................ 52 Changes to Table 12 ........................................................................ 56 Changes to Table 13 ........................................................................ 57 Changes to Ordering Guide ........................................................... 59 6/04—Rev. 0 to Rev A Changes IEC Standards .................................................................... 1 Changes to Phase Error Between Channels Definition ............... 7 Changes to Figure 24 ...................................................................... 13 Changes to CH2OS Register .......................................................... 16 Change to the Period Measurement Section ............................... 18 Change to Temperature Measurement Section ........................... 21 Changes to Figure 69 ...................................................................... 31 Changes to Figure 71 ...................................................................... 33 Changes to the Apparent Energy Section .................................... 36 Changes to Energies Scaling Section ............................................ 37 Changes to Calibration Section ..................................................... 37 8/03—Revision 0: Initial Version ADE7753 Rev. C | Page 4 of 60 SPECIFICATIONS AVDD = DVDD = 5 V ± 5%, AGND = DGND = 0 V, on-chip reference, CLKIN = 3.579545 MHz XTAL, TMIN to TMAX = −40°C to +85°C. See the plots in the Typical Performance Characteristics section. Table 1. Parameter Spec Unit Test Conditions/Comments ENERGY MEASUREMENT ACCURACY Active Power Measurement Error CLKIN = 3.579545 MHz Channel 1 Range = 0.5 V Full Scale Channel 2 = 300 mV rms/60 Hz, gain = 2 Gain = 1 0.1 % typ Over a dynamic range 1000 to 1 Gain = 2 0.1 % typ Over a dynamic range 1000 to 1 Gain = 4 0.1 % typ Over a dynamic range 1000 to 1 Gain = 8 0.1 % typ Over a dynamic range 1000 to 1 Channel 1 Range = 0.25 V Full Scale Gain = 1 0.1 % typ Over a dynamic range 1000 to 1 Gain = 2 0.1 % typ Over a dynamic range 1000 to 1 Gain = 4 0.1 % typ Over a dynamic range 1000 to 1 Gain = 8 0.2 % typ Over a dynamic range 1000 to 1 Channel 1 Range = 0.125 V Full Scale Gain = 1 0.1 % typ Over a dynamic range 1000 to 1 Gain = 2 0.1 % typ Over a dynamic range 1000 to 1 Gain = 4 0.2 % typ Over a dynamic range 1000 to 1 Gain = 8 0.2 % typ Over a dynamic range 1000 to 1 Active Power Measurement Bandwidth 14 kHz Phase Error 1 between Channels1 ±0.05 max Line Frequency = 45 Hz to 65 Hz, HPF on AC Power Supply Rejection1 AVDD = DVDD = 5 V + 175 mV rms/120 Hz Output Frequency Variation (CF) 0.2 % typ Channel 1 = 20 mV rms, gain = 16, range = 0.5 V Channel 2 = 300 mV rms/60 Hz, gain = 1 DC Power Supply Rejection1 AVDD = DVDD = 5 V ± 250 mV dc Output Frequency Variation (CF) ±0.3 % typ Channel 1 = 20 mV rms/60 Hz, gain = 16, range = 0.5 V Channel 2 = 300 mV rms/60 Hz, gain = 1 IRMS Measurement Error 0.5 % typ Over a dynamic range 100 to 1 IRMS Measurement Bandwidth 14 kHz VRMS Measurement Error 0.5 % typ Over a dynamic range 20 to 1 VRMS Measurement Bandwidth 140 Hz ANALOG INPUTS2 See the Analog Inputs section Maximum Signal Levels ±0.5 V max V1P, V1N, V2N, and V2P to AGND Input Impedance (dc) 390 k min Bandwidth 14 kHz CLKIN/256, CLKIN = 3.579545 MHz Gain Error1, 2 External 2.5 V reference, gain = 1 on Channels 1 and 2 Channel 1 Range = 0.5 V Full Scale ±4 % typ V1 = 0.5 V dc Range = 0.25 V Full Scale ±4 % typ V1 = 0.25 V dc Range = 0.125 V Full Scale ±4 % typ V1 = 0.125 V dc Channel 2 ±4 % typ V2 = 0.5 V dc Offset Error1 ±32 mV max Gain 1 Channel 1 ±13 mV max Gain 16 ±32 mV max Gain 1 Channel 2 ±13 mV max Gain 16 WAVEFORM SAMPLING Sampling CLKIN/128, 3.579545 MHz/128 = 27.9 kSPS Channel 1 See the Channel 1 Sampling section Signal-to-Noise Plus Distortion 62 dB typ 150 mV rms/60 Hz, range = 0.5 V, gain = 2 Bandwidth(–3 dB) 14 kHz CLKIN = 3.579545 MHz ADE7753 Rev. C | Page 5 of 60 Parameter Spec Unit Test Conditions/Comments Channel 2 See the Channel 2 Sampling section Signal-to-Noise Plus Distortion 60 dB typ 150 mV rms/60 Hz, gain = 2 Bandwidth (–3 dB) 140 Hz CLKIN = 3.579545 MHz REFERENCE INPUT REFIN/OUT Input Voltage Range 2.6 V max 2.4 V + 8% 2.2 V min 2.4 V – 8% Input Capacitance 10 pF max ON-CHIP REFERENCE Nominal 2.4 V at REFIN/OUT pin Reference Error ±200 mV max Current Source 10 μA max Output Impedance 3.4 kΩ min Temperature Coefficient 30 ppm/°C typ CLKIN All specifications CLKIN of 3.579545 MHz Input Clock Frequency 4 MHz max 1 MHz min LOGIC INPUTS RESET, DIN, SCLK, CLKIN, and CS Input High Voltage, VINH 2.4 V min DVDD = 5 V ± 10% Input Low Voltage, VINL 0.8 V max DVDD = 5 V ± 10% Input Current, IIN ±3 μA max Typically 10 nA, VIN = 0 V to DVDD Input Capacitance, CIN 10 pF max LOGIC OUTPUTS SAG and IRQ Open-drain outputs, 10 kΩ pull-up resistor Output High Voltage, VOH 4 V min ISOURCE = 5 mA Output Low Voltage, VOL 0.4 V max ISINK = 0.8 mA ZX and DOUT Output High Voltage, VOH 4 V min ISOURCE = 5 mA Output Low Voltage, VOL 0.4 V max ISINK = 0.8 mA CF Output High Voltage, VOH 4 V min ISOURCE = 5 mA Output Low Voltage, VOL 1 V max ISINK = 7 mA POWER SUPPLY For specified performance AVDD 4.75 V min 5 V – 5% 5.25 V max 5 V + 5% DVDD 4.75 V min 5 V – 5% 5.25 V max 5 V + 5% AIDD 3 mA max Typically 2.0 mA DIDD 4 mA max Typically 3.0 mA 1 See the Terminology section for explanation of specifications. 2 See the Analog Inputs section. +2.1V1.6mAIOHIOl200μACL50pF02875-0-002TOOUTPUTPIN Figure 2. Load Circuit for Timing Specifications ADE7753 Rev. C | Page 6 of 60 TIMING CHARACTERISTICS AVDD = DVDD = 5 V ± 5%, AGND = DGND = 0 V, on-chip reference, CLKIN = 3.579545 MHz XTAL, TMIN to TMAX = −40°C to +85°C. Sample tested during initial release and after any redesign or process change that could affect this parameter. All input signals are specified with tr = tf = 5 ns (10% to 90%) and timed from a voltage level of 1.6 V. See Figure 3, Figure 4, and the ADE7753 Serial Interface section. Table 2. Parameter Spec Unit Test Conditions/Comments Write Timing t1 50 ns (min) CS falling edge to first SCLK falling edge. t2 50 ns (min) SCLK logic high pulse width. t3 50 ns (min) SCLK logic low pulse width. t4 10 ns (min) Valid data setup time before falling edge of SCLK. t5 5 ns (min) Data hold time after SCLK falling edge. t6 4 μs (min) Minimum time between the end of data byte transfers. t7 50 ns (min) Minimum time between byte transfers during a serial write. t8 100 ns (min) CS hold time after SCLK falling edge. Read Timing t91 4 μs (min) Minimum time between read command (i.e., a write to communication register) and data read. t10 50 ns (min) Minimum time between data byte transfers during a multibyte read. t11 30 ns (min) Data access time after SCLK rising edge following a write to the communications register. t122 100 ns (max) Bus relinquish time after falling edge of SCLK. 10 ns (min) t133 100 ns (max) Bus relinquish time after rising edge of CS. 10 ns (min) 1 Minimum time between read command and data read for all registers except waveform register, which is t9 = 500 ns min. 2 Measured with the load circuit in Figure 2 and defined as the time required for the output to cross 0.8 V or 2.4 V. 3 Derived from the measured time taken by the data outputs to change 0.5 V when loaded with the circuit in Figure 2. The measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the time quoted in the timing characteristics is the true bus relinquish time of the part and is independent of the bus loading. DINSCLKCSt2t3t1t4t5t7t6t8COMMAND BYTEMOST SIGNIFICANT BYTELEAST SIGNIFICANT BYTE10A4A5A3A2A1A0DB7DB0DB7DB0t702875-0-081 Figure 3. Serial Write Timing SCLKCSt1t10t1300A4A5A3A2A1A0DB0DB7DB0DB7DINDOUTt11t11t12COMMAND BYTEMOST SIGNIFICANT BYTELEAST SIGNIFICANT BYTEt902875-0-083 Figure 4. Serial Read Timing ADE7753 Rev. C | Page 7 of 60 ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. Table 3. Parameter Rating AVDD to AGND –0.3 V to +7 V DVDD to DGND –0.3 V to +7 V DVDD to AVDD –0.3 V to +0.3 V Analog Input Voltage to AGND, V1P, V1N, V2P, and V2N –6 V to +6 V Reference Input Voltage to AGND –0.3 V to AVDD + 0.3 V Digital Input Voltage to DGND –0.3 V to DVDD + 0.3 V Digital Output Voltage to DGND –0.3 V to DVDD + 0.3 V Operating Temperature Range Industrial –40°C to +85°C Storage Temperature Range –65°C to +150°C Junction Temperature 150°C 20-Lead SSOP, Power Dissipation 450 mW θJA Thermal Impedance 112°C/W Lead Temperature, Soldering Vapor Phase (60 sec) 215°C Infrared (15 sec) 220°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. ADE7753 Rev. C | Page 8 of 60 TERMINOLOGY Measurement Error The error associated with the energy measurement made by the ADE7753 is defined by the following formula: %1007753×⎟⎟⎠⎞⎜⎜⎝⎛−=EnergyTrueEnergyTrueADERegisterEnergyErrorPercentage Phase Error between Channels The digital integrator and the high-pass filter (HPF) in Channel 1 have a non-ideal phase response. To offset this phase response and equalize the phase response between channels, two phase-correction networks are placed in Channel 1: one for the digital integrator and the other for the HPF. The phase correction networks correct the phase response of the corresponding component and ensure a phase match between Channel 1 (current) and Channel 2 (voltage) to within ±0.1° over a range of 45 Hz to 65 Hz with the digital integrator off. With the digital integrator on, the phase is corrected to within ±0.4° over a range of 45 Hz to 65 Hz. Power Supply Rejection This quantifies the ADE7753 measurement error as a percentage of reading when the power supplies are varied. For the ac PSR measurement, a reading at nominal supplies (5 V) is taken. A second reading is obtained with the same input signal levels when an ac (175 mV rms/120 Hz) signal is introduced onto the supplies. Any error introduced by this ac signal is expressed as a percentage of reading—see the Measurement Error definition. For the dc PSR measurement, a reading at nominal supplies (5 V) is taken. A second reading is obtained with the same input signal levels when the supplies are varied ±5%. Any error introduced is again expressed as a percentage of the reading. ADC Offset Error The dc offset associated with the analog inputs to the ADCs. It means that with the analog inputs connected to AGND, the ADCs still see a dc analog input signal. The magnitude of the offset depends on the gain and input range selection—see the Typical Performance Characteristics section. However, when HPF1 is switched on, the offset is removed from Channel 1 (current) and the power calculation is not affected by this offset. The offsets can be removed by performing an offset calibration—see the Analog Inputs section. Gain Error The difference between the measured ADC output code (minus the offset) and the ideal output code—see the Channel 1 ADC and Channel 2 ADC sections. It is measured for each of the input ranges on Channel 1 (0.5 V, 0.25 V, and 0.125 V). The difference is expressed as a percentage of the ideal code. ADE7753 Rev. C | Page 9 of 60 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS V2N6V2P7AGND8REFIN/OUT9DGND10CLKINIRQSAGZXCF1514131211ADE7753TOP VIEW(Not to Scale)DVDD2AVDD3V1P4V1N5DOUTSCLKCSCLKOUT1918RESET1DIN20171602875-0-005 Figure 5. Pin Configuration (SSOP Package) Table 4. Pin Function Descriptions Pin No. Mnemonic Description 1 RESET1 Reset Pin for the ADE7753. A logic low on this pin holds the ADCs and digital circuitry (including the serial interface) in a reset condition. 2 DVDD Digital Power Supply. This pin provides the supply voltage for the digital circuitry in the ADE7753. The supply voltage should be maintained at 5 V ± 5% for specified operation. This pin should be decoupled to DGND with a 10 μF capacitor in parallel with a ceramic 100 nF capacitor. 3 AVDD Analog Power Supply. This pin provides the supply voltage for the analog circuitry in the ADE7753. The supply should be maintained at 5 V ± 5% for specified operation. Every effort should be made to minimize power supply ripple and noise at this pin by the use of proper decoupling. The typical performance graphs show the power supply rejection performance. This pin should be decoupled to AGND with a 10 μF capacitor in parallel with a ceramic 100 nF capacitor. 4, 5 V1P, V1N Analog Inputs for Channel 1. This channel is intended for use with a di/dt current transducer such as a Rogowski coil or another current sensor such as a shunt or current transformer (CT). These inputs are fully differential voltage inputs with maximum differential input signal levels of ±0.5 V, ±0.25 V, and ±0.125 V, depending on the full-scale selection—see the Analog Inputs section. Channel 1 also has a PGA with gain selections of 1, 2, 4, 8, or 16. The maximum signal level at these pins with respect to AGND is ±0.5 V. Both inputs have internal ESD protection circuitry, and, in addition, an overvoltage of ±6 V can be sustained on these inputs without risk of permanent damage. 6, 7 V2N, V2P Analog Inputs for Channel 2. This channel is intended for use with the voltage transducer. These inputs are fully differential voltage inputs with a maximum differential signal level of ±0.5 V. Channel 2 also has a PGA with gain selections of 1, 2, 4, 8, or 16. The maximum signal level at these pins with respect to AGND is ±0.5 V. Both inputs have internal ESD protection circuitry, and an overvoltage of ±6 V can be sustained on these inputs without risk of permanent damage. 8 AGND Analog Ground Reference. This pin provides the ground reference for the analog circuitry in the ADE7753, i.e., ADCs and reference. This pin should be tied to the analog ground plane or the quietest ground reference in the system. This quiet ground reference should be used for all analog circuitry, for example, anti-aliasing filters, current and voltage transducers, etc. To keep ground noise around the ADE7753 to a minimum, the quiet ground plane should connected to the digital ground plane at only one point. It is acceptable to place the entire device on the analog ground plane. 9 REFIN/OUT Access to the On-Chip Voltage Reference. The on-chip reference has a nominal value of 2.4 V ± 8% and a typical temperature coefficient of 30 ppm/°C. An external reference source can also be connected at this pin. In either case, this pin should be decoupled to AGND with a 1 μF ceramic capacitor. 10 DGND Digital Ground Reference. This pin provides the ground reference for the digital circuitry in the ADE7753, i.e., multiplier, filters, and digital-to-frequency converter. Because the digital return currents in the ADE7753 are small, it is acceptable to connect this pin to the analog ground plane of the system. However, high bus capacitance on the DOUT pin could result in noisy digital current, which could affect performance. 11 CF Calibration Frequency Logic Output. The CF logic output gives active power information. This output is intended to be used for operational and calibration purposes. The full-scale output frequency can be adjusted by writing to the CFDEN and CFNUM registers—see the Energy-to-Frequency Conversion section. ADE7753 Rev. C | Page 10 of 60 Pin No. Mnemonic Description 12 ZX Voltage Waveform (Channel 2) Zero-Crossing Output. This output toggles logic high and logic low at the zero crossing of the differential signal on Channel 2—see the Zero-Crossing Detection section. 13 SAG This open-drain logic output goes active low when either no zero crossings are detected or a low voltage threshold (Channel 2) is crossed for a specified duration—see the Line Voltage Sag Detection section. 14 IRQ Interrupt Request Output. This is an active low open-drain logic output. Maskable interrupts include active energy register rollover, active energy register at half level, and arrivals of new waveform samples—see the ADE7753 Interrupts section. 15 CLKIN Master Clock for ADCs and Digital Signal Processing. An external clock can be provided at this logic input. Alternatively, a parallel resonant AT crystal can be connected across CLKIN and CLKOUT to provide a clock source for the ADE7753. The clock frequency for specified operation is 3.579545 MHz. Ceramic load capacitors of between 22 pF and 33 pF should be used with the gate oscillator circuit. Refer to the crystal manufacturer’s data sheet for load capacitance requirements. 16 CLKOUT A crystal can be connected across this pin and CLKIN as described for Pin 15 to provide a clock source for the ADE7753. The CLKOUT pin can drive one CMOS load when either an external clock is supplied at CLKIN or a crystal is being used. 17 CS Chip Select. Part of the 4-wire SPI serial interface. This active low logic input allows the ADE7753 to share the serial bus with several other devices—see the ADE7753 Serial Interface section. 18 SCLK Serial Clock Input for the Synchronous Serial Interface. All serial data transfers are synchronized to this clock—see the ADE7753 Serial Interface section. The SCLK has a Schmitt-trigger input for use with a clock source that has a slow edge transition time, for example, opto-isolator output. 19 DOUT Data Output for the Serial Interface. Data is shifted out at this pin on the rising edge of SCLK. This logic output is normally in a high impedance state unless it is driving data onto the serial data bus—see the ADE7753 Serial Interface section. 20 DIN Data Input for the Serial Interface. Data is shifted in at this pin on the falling edge of SCLK—see the ADE7753 Serial Interface section. 1 It is recommended to drive the RESET, SCLK, and CS pins with either a push-pull without an external series resistor or with an open-collector with a 10 kΩ pull-up resistor. Pull-down resistors are not recommended because under some conditions, they may interact with internal circuitry. ADE7753 Rev. C | Page 11 of 60 TYPICAL PERFORMANCE CHARACTERISTICS FULL-SCALE CURRENT (%)ERROR (%)0.1–0.5–0.1–0.2–0.3–0.40.20.10.50.40.3011010002875-0-006+85°C, PF = 0.5+25°C, PF = 0.5GAIN = 1INTEGRATOR OFFINTERNAL REFERENCE+25°C, PF = 1–40°C, PF = 0.5 Figure 6. Active Energy Error as a Percentage of Reading (Gain = 1) over Power Factor with Internal Reference and Integrator Off FULL-SCALE CURRENT (%)ERROR (%)0.1–0.4–0.2–0.1–0.30.10.40.30.2011010002875-0-008+25°C, PF = 1GAIN = 8INTEGRATOR OFFINTERNAL REFERENCE–40°C, PF = 1+85°C, PF = 1 Figure 7. Active Energy as a Percentage of Reading (Gain = 8) over Temperature with Internal Reference and Integrator Off FULL-SCALE CURRENT (%)ERROR (%)0.1–0.6–0.2–0.40.20.80.60.4011010002875-0-009+85°C, PF = 0.5GAIN = 8INTEGRATOR OFFINTERNAL REFERENCE–40°C, PF = 0.5+25°C, PF = 1+25°C, PF = 0.5 Figure 8. Active Energy Error as a Percentage of Reading (Gain = 8) over Power Factor with Internal Reference and Integrator Off FULL-SCALE CURRENT (%)ERROR (%)0.1–0.3–0.1–0.20.10.30.20110100GAIN = 8INTEGRATOR OFFEXTERNAL REFERENCE+85°C, PF = 102875-0-010–40°C, PF = 1+25°C, PF = 1 Figure 9. Active Energy Error as a Percentage of Reading (Gain = 8) over Temperature with External Reference and Integrator Off FULL-SCALE CURRENT (%)ERROR (%)0.1–0.6–0.2–0.40.20.60.40110100GAIN = 8INTEGRATOR OFFEXTERNAL REFERENCE+85°C, PF = 0.502875-0-011–40°C, PF = 0.5+25°C, PF = 0.5+25°C, PF = 1 Figure 10. Active Energy Error as a Percentage of Reading (Gain = 8) over Power Factor with External Reference and Integrator Off FULL-SCALE CURRENT (%)ERROR (%)0.1–0.5–0.1–0.2–0.3–0.40.20.10.50.40.3011010002875-0-012+85°C, PF = 0.5+25°C, PF = 0.5GAIN = 1INTEGRATOR OFFINTERNAL REFERENCE+25°C, PF = 0–40°C, PF = 0.5 Figure 11. Reactive Energy Error as a Percentage of Reading (Gain = 1) over Power Factor with Internal Reference and Integrator Off ADE7753 Rev. C | Page 12 of 60 FULL-SCALE CURRENT (%)ERROR (%)0.1–0.5–0.1–0.2–0.3–0.40.20.10.50.40.3011010002875-0-013+85°C, PF = 0.5+25°C, PF = 0.5GAIN = 1INTEGRATOR OFFEXTERNAL REFERENCE+25°C, PF = 0–40°C, PF = 0.5 Figure 12. Reactive Energy Error as a Percentage of Reading (Gain = 1) over Power Factor with External Reference and Integrator Off FULL-SCALE CURRENT (%)ERROR (%)0.1–0.20–0.10–0.05–0.150.050.200.150.10011010002875-0-014+85°C, PF = 0GAIN = 8INTEGRATOR OFFINTERNAL REFERENCE–40°C, PF = 0+25°C, PF = 0 Figure 13. Reactive Energy Error as a Percentage of Reading (Gain = 8) over Temperature with Internal Reference and Integrator Off FULL-SCALE CURRENT (%)ERROR (%)0.1–0.3–0.1–0.20.10.30.20110100GAIN = 8INTEGRATOR OFFINTERNAL REFERENCE02875-0-015+25°C, PF = 0.5+25°C, PF = 0–40°C, PF = 0.5+85°C, PF = 0.5 Figure 14. Reactive Energy Error as a Percentage of Reading (Gain = 8) over Power Factor with Internal Reference and Integrator Off FULL-SCALE CURRENT (%)ERROR (%)0.1–0.35–0.15–0.05–0.250.050.350.250.15110100GAIN = 8INTEGRATOR OFFEXTERNAL REFERENCE02875-0-016–40°C, PF = 0+85°C, PF = 0+25°C, PF = 0 Figure 15. Reactive Energy Error as a Percentage of Reading (Gain = 8) over Temperature with External Reference and Integrator Off FULL-SCALE CURRENT (%)ERROR (%)0.1–0.5–0.1–0.2–0.3–0.40.20.10.50.40.3011010002875-0-017GAIN = 8INTEGRATOR OFFEXTERNAL REFERENCE+25°C, PF = 0+85°C, PF = 0.5–40°C, PF = 0.5+25°C, PF = 0.5 Figure 16. Reactive Energy Error as a Percentage of Reading (Gain = 8) over Power Factor with External Reference and Integrator Off FULL-SCALE CURRENT (%)ERROR (%)0.1–0.3–0.1–0.20.10.30.20110100GAIN = 8INTEGRATOR OFFINTERNAL REFERENCE5.25V02875-0-0184.75V5.0V Figure 17. Active Energy Error as a Percentage of Reading (Gain = 8) over Power Supply with Internal Reference and Integrator Off ADE7753 Rev. C | Page 13 of 60 LINE FREQUENCY (Hz)ERROR (%)45–0.1–0.2–0.4–0.6–0.80.40.20.10.80.605055606502875-0-019PF = 0.5GAIN = 8INTEGRATOR OFFEXTERNAL REFERENCEPF = 1 Figure 18. Active Energy Error as a Percentage of Reading (Gain = 8) over Frequency with External Reference and Integrator Off FULL-SCALE CURRENT (%)ERROR (%)0.1–0.5–0.1–0.2–0.3–0.40.20.10.50.40.3011010002875-0-020GAIN = 8INTEGRATOR OFFINTERNAL REFERENCEPF = 1PF = 0.5 Figure 19. IRMS Error as a Percentage of Reading (Gain = 8) with Internal Reference and Integrator Off FULL-SCALE CURRENT (%)ERROR (%)0.1–1.0–0.2–0.4–0.6–0.80.40.21.00.80.6011010002875-0-022GAIN = 8INTEGRATOR ONINTERNAL REFERENCE+25°C, PF = 0.5–40°C, PF = 0.5+85°C, PF = 0.5+25°C, PF = 1 Figure 20. Active Energy Error as a Percentage of Reading (Gain = 8) over Power Factor with Internal Reference and Integrator On FULL-SCALE CURRENT (%)ERROR (%)0.1–1.0–0.2–0.4–0.6–0.80.40.21.00.80.6011010002875-0-023GAIN = 8INTEGRATOR ONINTERNAL REFERENCE–40°C, PF = 185°C, PF = 125°C, PF = 1 Figure 21. Active Energy Error as a Percentage of Reading (Gain = 8) over Temperature with Internal Reference and Integrator On FULL-SCALE CURRENT (%)ERROR (%)0.1–1.0–0.2–0.4–0.6–0.80.40.21.00.80.6011010002875-0-024GAIN = 8INTEGRATOR ONINTERNAL REFERENCE+85°C, PF = 0.5–40°C, PF = 0.5+25°C, PF = 0.5+25°C, PF = 0 Figure 22. Reactive Energy Error as a Percentage of Reading (Gain = 8) over Power Factor with Internal Reference and Integrator On FULL-SCALE CURRENT (%)ERROR (%)0.1–1.0–0.2–0.4–0.6–0.80.40.21.00.80.6011010002875-0-025GAIN = 8INTEGRATOR ONINTERNAL REFERENCE+85°C, PF = 0–40°C, PF = 0+25°C, PF = 0 Figure 23. Reactive Energy Error as a Percentage of Reading (Gain = 8) over Temperature with Internal Reference and Integrator On ADE7753 Rev. C | Page 14 of 60 02875-0-026–2.0–1.5–1.0–0.500.51.01.52.02.53.0ERROR (%)4547495153555759616365FREQUENCY (Hz)GAIN = 8INTEGRATOR ONINTERNAL REFERENCEPF = 0.5PF = 1 Figure 24. Active Energy Error as a Percentage of Reading (Gain = 8) over Power Factor with Internal Reference and Integrator On FULL-SCALE CURRENT (%)ERROR (%)0.1–0.3–0.1–0.20.10.30.20110100GAIN = 8INTEGRATOR ONINTERNAL REFERENCE5.25V02875-0-0274.75V5.0V Figure 25. Active Energy Error as a Percentage of Reading (Gain = 8) over Power Supply with Internal Reference and Integrator On FULL-SCALE CURRENT (%)ERROR (%)0.1–0.5–0.1–0.2–0.3–0.40.20.10.50.40.3011010002875-0-028GAIN = 8INTEGRATOR ONINTERNAL REFERENCEPF = 1PF = 0.5 Figure 26. IRMS Error as a Percentage of Reading (Gain = 8) with Internal Reference and Integrator On FULL-SCALE VOLTAGEERROR (%)1–0.2–0.4–0.6–0.80.40.20.80.601010002875-0-029GAIN = 1EXTERNAL REFERENCE Figure 27. VRMS Error as a Percentage of Reading (Gain = 1) with External Reference 02875-0-087CH1 OFFSET (0p5V_1X) (mV)HITS–15–12–9–6–303642068 Figure 28. Channel 1 Offset (Gain = 1) ADE7753 Rev. C | Page 15 of 60 VDD10μF10μF10μF100nF100nFAVDDDVDDRESETDINDOUTSCLKCSCLKOUTCLKINIRQSAGZXCFAGNDDGNDV1PV1NV2NV2PREFIN/OUTU1ADE7753TOSPIBUS(USEDONLYFORCALIBRATION)22pF22pFY13.58MHzNOT CONNECTEDU3PS2501-1Idi/dt CURRENTSENSOR100Ω1kΩ33nF33nF100Ω1kΩ33nF33nF1kΩ33nF600kΩ110V1kΩ33nF100nFCHANNEL 1 GAIN = 8CHANNEL 2 GAIN = 1TOFREQUENCYCOUNTER02875-A-012 Figure 29. Test Circuit for Performance Curves with Integrator On CT TURN RATIO = 1800:1CHANNEL 2 GAIN = 1RB10Ω1.21ΩGAIN 1 (CH1)18NOT CONNECTEDVDD10μF1μF100nF100nFDINDOUTSCLKCSCLKOUTCLKINIRQSAGZXCFAGNDDGNDV1PV1NV2NV2PREFIN/OUTU1ADE7753TOSPIBUS(USEDONLYFORCALIBRATION)22pF22pFY13.58MHzU3PS2501-1ICURRENTTRANSFORMER1kΩ33nF1kΩ33nF1kΩ33nF600kΩ RB110V1kΩ33nF10μF100nFTOFREQUENCYCOUNTER02875-0-030AVDDDVDDRESET Figure 30. Test Circuit for Performance Curves with Integrator Off ADE7753 Rev. C | Page 16 of 60 THEORY OF OPERATION ANALOG INPUTS The ADE7753 has two fully differential voltage input channels. The maximum differential input voltage for input pairs V1P/V1N and V2P/V2N is ±0.5 V. In addition, the maximum signal level on analog inputs for V1P/V1N and V2P/ V2N is ±0.5 V with respect to AGND. Each analog input channel has a programmable gain amplifier (PGA) with possible gain selections of 1, 2, 4, 8, and 16. The gain selections are made by writing to the gain register—see Figure 32. Bits 0 to 2 select the gain for the PGA in Channel 1, and the gain selection for the PGA in Channel 2 is made via Bits 5 to 7. Figure 31 shows how a gain selection for Channel 1 is made using the gain register. V1P V1N VIN K × VIN + GAIN[7:0] 7 6 543210 0 0 000000 7 6543210 0 0000000 GAIN (K) SELECTION OFFSET ADJUST (±50mV) CH1OS[7:0] BITS 0 to 5: SIGN MAGNITUDE CODED OFFSET CORRECTION BIT 6: NOT USED BIT 7: DIGITAL INTEGRATOR (ON = 1, OFF = 0; DEFAULT OFF) 02875-0-031 Figure 31. PGA in Channel 1 In addition to the PGA, Channel 1 also has a full-scale input range selection for the ADC. The ADC analog input range selection is also made using the gain register—see Figure 32. As mentioned previously, the maximum differential input voltage is 0.5 V. However, by using Bits 3 and 4 in the gain register, the maximum ADC input voltage can be set to 0.5 V, 0.25 V, or 0.125 V. This is achieved by adjusting the ADC reference—see the ADE7753 Reference Circuit section. Table 5 summarizes the maximum differential input signal level on Channel 1 for the various ADC range and gain selections. Table 5. Maximum Input Signal Levels for Channel 1 Max Signal ADC Input Range Selection Channel 1 0.5 V 0.25 V 0.125 V 0.5 V Gain = 1 − − 0.25 V Gain = 2 Gain = 1 − 0.125 V Gain = 4 Gain = 2 Gain = 1 0.0625 V Gain = 8 Gain = 4 Gain = 2 0.0313 V Gain = 16 Gain = 8 Gain = 4 0.0156 V − Gain = 16 Gain = 8 0.00781 V − − Gain = 16 GAIN REGISTER* CHANNEL 1 AND CHANNEL 2 PGA CONTROL 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 ADDR: 0x0F *REGISTER CONTENTS SHOW POWER-ON DEFAULTS PGA 2 GAIN SELECT 000 = × 1 001 = × 2 010 = × 4 011 = × 8 100 = × 16 PGA 1 GAIN SELECT 000 = × 1 001 = × 2 010 = × 4 011 = × 8 100 = × 16 CHANNEL 1 FULL-SCALE SELECT 00 = 0.5V 01 = 0.25V 10 = 0.125V 02875-0-032 Figure 32. ADE7753 Analog Gain Register It is also possible to adjust offset errors on Channel 1 and Channel 2 by writing to the offset correction registers, CH1OS and CH2OS, respectively. These registers allow channel offsets in the range ±20 mV to ±50 mV (depending on the gain setting) to be removed. Channel 1 and 2 offset registers are sign magni- tude coded. A negative number is applied to the Channel 1 offset register, CH1OS, for a negative offset adjustment. Note that the Channel 2 offset register is inverted. A negative number is applied to CH2OS for a positive offset adjustment. It is not necessary to perform an offset correction in an energy measure- ment application if HPF in Channel 1 is switched on. Figure 33 shows the effect of offsets on the real power calculation. As seen from Figure 33, an offset on Channel 1 and Channel 2 contributes a dc component after multiplication. Because this dc component is extracted by LPF2 to generate the active (real) power information, the offsets contribute an error to the active power calculation. This problem is easily avoided by enabling HPF in Channel 1. By removing the offset from at least one channel, no error component is generated at dc by the multiplication. Error terms at cos(ωt) are removed by LPF2 and by integration of the active power signal in the active energy register (AENERGY[23:0]) —see the Energy Calculation section. ADE7753 Rev. C | Page 17 of 60 DC COMPONENT (INCLUDING ERROR TERM) IS EXTRACTED BY THE LPF FOR REAL POWER CALCULATION FREQUENCY (RAD/S) IOS × V VOS × I VOS × IOS V × I 2 0 ω 2ω 02875-0-033 Figure 33. Effect of Channel Offsets on the Real Power Calculation The contents of the offset correction registers are 6-bit, sign and magnitude coded. The weight of the LSB depends on the gain setting, i.e., 1, 2, 4, 8, or 16. Table 6 shows the correctable offset span for each of the gain settings and the LSB weight (mV) for the offset correction registers. The maximum value that can be written to the offset correction registers is ±31d—see Figure 34. Figure 34 shows the relationship between the offset correction register contents and the offset (mV) on the analog inputs for a gain setting of 1. In order to perform an offset adjustment, the analog inputs should be first connected to AGND, and there should be no signal on either Channel 1 or Channel 2. A read from Channel 1 or Channel 2 using the waveform register indicates the offset in the channel. This offset can be canceled by writing an equal and opposite offset value to the Channel 1 offset register, or an equal value to the Channel 2 offset register. The offset correction can be confirmed by performing another read. Note when adjusting the offset of Channel 1, one should disable the digital integrator and the HPF. Table 6. Offset Correction Range—Channels 1 and 2 Gain Correctable Span LSB Size 1 ±50 mV 1.61 mV/LSB 2 ±37 mV 1.19 mV/LSB 4 ±30 mV 0.97 mV/LSB 8 ±26 mV 0.84 mV/LSB 16 ±24 mV 0.77 mV/LSB CH1OS[5:0] SIGN + 5 BITS +50mV OFFSET ADJUST 0x3F 0x00 0x1F –50mV 0mV SIGN + 5 BITS 01,1111b 11,1111b 02875-0-034 Figure 34. Channel 1 Offset Correction Range (Gain = 1) The current and voltage rms offsets can be adjusted with the IRMSOS and VRMSOS registers—see Channel 1 RMS Offset Compensation and Channel 2 RMS Offset Compensation sections. di/dt CURRENT SENSOR AND DIGITAL INTEGRATOR A di/dt sensor detects changes in magnetic field caused by ac current. Figure 35 shows the principle of a di/dt current sensor. MAGNETIC FIELD CREATED BY CURRENT (DIRECTLY PROPORTIONAL TO CURRENT) + EMF (ELECTROMOTIVE FORCE) – INDUCED BY CHANGES IN MAGNETIC FLUX DENSITY (di/dt) 02875-0-035 Figure 35. Principle of a di/dt Current Sensor The flux density of a magnetic field induced by a current is directly proportional to the magnitude of the current. The changes in the magnetic flux density passing through a conductor loop generate an electromotive force (EMF) between the two ends of the loop. The EMF is a voltage signal, which is proportional to the di/dt of the current. The voltage output from the di/dt current sensor is determined by the mutual inductance between the current-carrying conductor and the di/dt sensor. The current signal needs to be recovered from the di/dt signal before it can be used. An integrator is therefore necessary to restore the signal to its original form. The ADE7753 has a built-in digital integrator to recover the current signal from the di/dt sensor. The digital integrator on Channel 1 is switched off by default when the ADE7753 is powered up. Setting the MSB of CH1OS register turns on the integrator. Figure 36 to Figure 39 show the magnitude and phase response of the digital integrator. FREQUENCY (Hz) 10 GAIN (dB) 0 –10 –20 –30 –40 –50 102 103 02875-0-036 Figure 36. Combined Gain Response of the Digital Integrator and Phase Compensator ADE7753 Rev. C | Page 18 of 60 FREQUENCY (Hz)10210302875-0-037FREQ–88.0PHASE ( Degrees)–88.5–89.0–89.5–90.0–90.5 Figure 37. Combined Phase Response of the Digital Integrator and Phase Compensator FREQUENCY (Hz)–1.0–6.0407045GAIN ( dB)50556065–1.5–2.0–2.5–3.5–4.5–5.5–3.0–4.0–5.002875-0-038 Figure 38. Combined Gain Response of the Digital Integrator and Phase Compensator (40 Hz to 70 Hz) –89.75–89.80–89.85–89.90–89.95–90.00FREQUENCY (Hz)PHASE (Degrees)40457050556065–90.05–89.7002875-0-039 Figure 39. Combined Phase Response of the Digital Integrator and Phase Compensator (40 Hz to 70 Hz) Note that the integrator has a –20 dB/dec attenuation and an approximately –90° phase shift. When combined with a di/dt sensor, the resulting magnitude and phase response should be a flat gain over the frequency band of interest. The di/dt sensor has a 20 dB/dec gain associated with it. It also generates signifi-cant high frequency noise, therefore a more effective anti-aliasing filter is needed to avoid noise due to aliasing—see the Antialias Filter section. When the digital integrator is switched off, the ADE7753 can be used directly with a conventional current sensor such as a current transformer (CT) or with a low resistance current shunt. ZERO-CROSSING DETECTION The ADE7753 has a zero-crossing detection circuit on Channel 2. This zero crossing is used to produce an external zero-crossing signal (ZX), and it is also used in the calibration mode—see the Calibrating an Energy Meter Based on the ADE7753 section. The zero-crossing signal is also used to initiate a temperature measurement on the ADE7753—see the Temperature Measurement section. Figure 40 shows how the zero-crossing signal is generated from the output of LPF1. ×1,×2,×1,×8,×16ADC 2REFERENCE1LPF1f–3dB = 140Hz–63%TO+63%FSPGA2{GAIN [7:5]}V2PV2NV2ZEROCROSSZXTOMULTIPLIER2.32° @ 60Hz1.00.93ZXV2LPF102875-0-040 Figure 40. Zero-Crossing Detection on Channel 2 The ZX signal goes logic high on a positive-going zero crossing and logic low on a negative-going zero crossing on Channel 2. The zero-crossing signal ZX is generated from the output of LPF1. LPF1 has a single pole at 140 Hz (at CLKIN = 3.579545 MHz). As a result, there is a phase lag between the analog input signal V2 and the output of LPF1. The phase response of this filter is shown in the Channel 2 Sampling section. The phase lag response of LPF1 results in a time delay of approximately 1.14 ms (@ 60 Hz) between the zero crossing on the analog inputs of Channel 2 and the rising or falling edge of ZX. The zero-crossing detection also drives the ZX flag in the interrupt status register. The ZX flag is set to Logic 0 on the rising and falling edge of the voltage waveform. It stays low until the status register is read with reset. An active low in the IRQ output also appears if the corresponding bit in the interrupt enable register is set to Logic 1. ADE7753 Rev. C | Page 19 of 60 The flag in the interrupt status register as well as the IRQ output are reset to their default values when the interrupt status register with reset (RSTSTATUS) is read. Zero-Crossing Timeout The zero-crossing detection also has an associated timeout register, ZXTOUT. This unsigned, 12-bit register is decremented (1 LSB) every 128/CLKIN seconds. The register is reset to its user programmed full-scale value every time a zero crossing is detected on Channel 2. The default power on value in this register is 0xFFF. If the internal register decrements to 0 before a zero crossing is detected and the DISSAG bit in the mode register is Logic 0, the SAG pin goes active low. The absence of a zero crossing is also indicated on the IRQ pin if the ZXTO enable bit in the interrupt enable register is set to Logic 1. Irrespective of the enable bit setting, the ZXTO flag in the interrupt status register is always set when the internal ZXTOUT register is decremented to 0—see the section. ADE7753 Interrupts The ZXOUT register can be written/read by the user and has an address of 1Dh—see the ADE7753 Serial Interface section. The resolution of the register is 128/CLKIN seconds per LSB. Thus the maximum delay for an interrupt is 0.15 second (128/CLKIN × 212). Figure 41 shows the mechanism of the zero-crossing timeout detection when the line voltage stays at a fixed dc level for more than CLKIN/128 × ZXTOUT seconds. 12-BIT INTERNALREGISTER VALUEZXTOUTCHANNEL 2ZXTODETECTIONBIT02875-0-041 Figure 41. Zero-Crossing Timeout Detection PERIOD MEASUREMENT The ADE7753 also provides the period measurement of the line. The period register is an unsigned 16-bit register and is updated every period. The MSB of this register is always zero. The resolution of this register is 2.2 μs/LSB when CLKIN = 3.579545 MHz, which represents 0.013% when the line fre-quency is 60 Hz. When the line frequency is 60 Hz, the value of the period register is approximately CLKIN/4/32/60 Hz × 16 = 7457d. The length of the register enables the measurement of line frequencies as low as 13.9 Hz. The period register is stable at ±1 LSB when the line is established and the measurement does not change. A settling time of 1.8 seconds is associated with this filter before the measurement is stable. POWER SUPPLY MONITOR The ADE7753 also contains an on-chip power supply monitor. The analog supply (AVDD) is continuously monitored by the ADE7753. If the supply is less than 4 V ± 5%, then the ADE7753 goes into an inactive state, that is, no energy is accumulated when the supply voltage is below 4 V. This is useful to ensure correct device operation at power-up and during power-down. The power supply monitor has built-in hysteresis and filtering, which give a high degree of immunity to false triggering due to noisy supplies. AVDD5V4V0VADE7753POWER-ONINACTIVESTATESAGINACTIVEACTIVEINACTIVETIME02875-0-042 Figure 42. On-Chip Power Supply Monitor As seen in Figure 42, the trigger level is nominally set at 4 V. The tolerance on this trigger level is about ±5%. The SAG pin can also be used as a power supply monitor input to the MCU. The SAG pin goes logic low when the ADE7753 is in its inactive state. The power supply and decoupling for the part should be such that the ripple at AVDD does not exceed 5 V ±5%, as specified for normal operation. LINE VOLTAGE SAG DETECTION In addition to the detection of the loss of the line voltage signal (zero crossing), the ADE7753 can also be programmed to detect when the absolute value of the line voltage drops below a certain peak value for a number of line cycles. This condition is illustrated in Figure 43. ADE7753 Rev. C | Page 20 of 60 SAGCYC [7:0] =0x043 LINE CYCLESSAG RESET HIGHWHEN CHANNEL 2EXCEEDS SAGLVL [7:0]FULL SCALESAGLVL [7:0]SAGCHANNEL 202875-0-043 Figure 43. ADE7753 Sag Detection Figure 43 shows the line voltage falling below a threshold that is set in the sag level register (SAGLVL[7:0]) for three line cycles. The quantities 0 and 1 are not valid for the SAGCYC register, and the contents represent one more than the desired number of full line cycles. For example, when the sag cycle (SAGCYC[7:0]) contains 0x04, the SAG pin goes active low at the end of the third line cycle for which the line voltage (Channel 2 signal) falls below the threshold, if the DISSAG bit in the mode register is Logic 0. As is the case when zero crossings are no longer detected, the sag event is also recorded by setting the SAG flag in the interrupt status register. If the SAG enable bit is set to Logic 1, the IRQ logic output goes active low—see the section. The ADE7753 InterruptsSAG pin goes logic high again when the absolute value of the signal on Channel 2 exceeds the sag level set in the sag level register. This is shown in when the Figure 43SAG pin goes high again during the fifth line cycle from the time when the signal on Channel 2 first dropped below the threshold level. Sag Level Set The contents of the sag level register (1 byte) are compared to the absolute value of the most significant byte output from LPF1 after it is shifted left by one bit, thus, for example, the nominal maximum code from LPF1 with a full-scale signal on Channel 2 is 0x2518—see the Channel 2 Sampling section. Shifting one bit left gives 0x4A30. Therefore writing 0x4A to the SAG level register puts the sag detection level at full scale. Writing 0x00 or 0x01 puts the sag detection level at 0. The SAG level register is compared to the most significant byte of a waveform sample after the shift left and detection is made when the contents of the sag level register are greater. PEAK DETECTION The ADE7753 can also be programmed to detect when the absolute value of the voltage or current channel exceeds a specified peak value. Figure 44 illustrates the behavior of the peak detection for the voltage channel. Both Channel 1 and Channel 2 are monitored at the same time. PKV RESET LOWWHEN RSTSTATUSREGISTER IS READVPKLVL[7:0]V2READ RSTSTATUSREGISTERPKV INTERRUPTFLAG (BIT 8 OFSTATUS REGISTER)02875-0-088 Figure 44. ADE7753 Peak Level Detection Figure 44 shows a line voltage exceeding a threshold that is set in the voltage peak register (VPKLVL[7:0]). The voltage peak event is recorded by setting the PKV flag in the interrupt status register. If the PKV enable bit is set to Logic 1 in the interrupt mask register, the IRQ logic output goes active low. Similarly, the current peak event is recorded by setting the PKI flag in the interrupt status register—see the section. ADE7753 Interrupts Peak Level Set The contents of the VPKLVL and IPKLVL registers are respectively compared to the absolute value of Channel 1 and Channel 2 after they are multiplied by 2. Thus, for example, the nominal maximum code from the Channel 1 ADC with a full-scale signal is 0x2851EC—see the Channel 1 Sampling section. Multiplying by 2 gives 0x50A3D8. Therefore, writing 0x50 to the IPKLVL register, for example, puts the Channel 1 peak detection level at full scale and sets the current peak detection to its least sensitive value. Writing 0x00 puts the Channel 1 detection level at 0. The detection is done by comparing the contents of the IPKLVL register to the incoming Channel 1 sample. The IRQ pin indicates that the peak level is exceeded if the PKI or PKV bits are set in the interrupt enable register (IRQEN[15:0]) at Address 0x0A. Peak Level Record The ADE7753 records the maximum absolute value reached by Channel 1 and Channel 2 in two different registers—IPEAK and VPEAK, respectively. VPEAK and IPEAK are 24-bit unsigned registers. These registers are updated each time the absolute value of the waveform sample from the corresponding channel is above the value stored in the VPEAK or IPEAK register. The contents of the VPEAK register correspond to 2× the maximum absolute value observed on the Channel 2 input. The contents of IPEAK represent the maximum absolute value observed on the Channel 1 input. Reading the RSTVPEAK and RSTIPEAK registers clears their respective contents after the read operation. ADE7753 Rev. C | Page 21 of 60 Using the ADE7753 Interrupts with an MCU ADE7753 INTERRUPTS Figure 46 shows a timing diagram with a suggested implemen-tation of ADE7753 interrupt management using an MCU. At time t1, the IRQ line goes active low indicating that one or more interrupt events have occurred in the ADE7753. The IRQ logic output should be tied to a negative edge-triggered external interrupt on the MCU. On detection of the negative edge, the MCU should be configured to start executing its interrupt service routine (ISR). On entering the ISR, all interrupts should be disabled by using the global interrupt enable bit. At this point, the MCU external interrupt flag can be cleared to capture interrupt events that occur during the current ISR. When the MCU interrupt flag is cleared, a read from the status register with reset is carried out. This causes the IRQ line to be reset logic high (t2)—see the section. The status register contents are used to determine the source of the interrupt(s) and therefore the appropriate action to be taken. If a subsequent interrupt event occurs during the ISR, that event is recorded by the MCU external interrupt flag being set again (t3). On returning from the ISR, the global interrupt mask is cleared (same instruction cycle), and the external interrupt flag causes the MCU to jump to its ISR once a gain. This ensures that the MCU does not miss any external interrupts. Interrupt Timing ADE7753 interrupts are managed through the interrupt status register (STATUS[15:0]) and the interrupt enable register (IRQEN[15:0]). When an interrupt event occurs in the ADE7753, the corresponding flag in the status register is set to Logic 1—see the Interrupt Status Register section. If the enable bit for this interrupt in the interrupt enable register is Logic 1, then the IRQ logic output goes active low. The flag bits in the status register are set irrespective of the state of the enable bits. To determine the source of the interrupt, the system master (MCU) should perform a read from the status register with reset (RSTSTATUS[15:0]). This is achieved by carrying out a read from Address 0x0C. The IRQ output goes logic high on completion of the interrupt status register read command—see the section. When carrying out a read with reset, the ADE7753 is designed to ensure that no interrupt events are missed. If an interrupt event occurs just as the status register is being read, the event is not lost and the Interrupt TimingIRQ logic output is guaranteed to go high for the duration of the interrupt status register data transfer before going logic low again to indicate the pending interrupt. See the next section for a more detailed description. IRQGLOBALINTERRUPTMASK SETISR RETURNGLOBAL INTERRUPTMASK RESETCLEAR MCUINTERRUPTFLAGREADSTATUS WITHRESET (0x05)ISR ACTION(BASED ON STATUS CONTENTS)MCUINTERRUPTFLAG SETMCUPROGRAMSEQUENCE02875-0-044t1t2t3JUMPTOISRJUMPTOISR Figure 45. ADE7753 Interrupt Management SCLKDINDOUTIRQt11t11t9t1READ STATUS REGISTER COMMANDSTATUS REGISTER CONTENTSDB7DB7DB0CS00000101DB002875-0-045 Figure 46. ADE7753 Interrupt Timing ADE7753 Rev. C | Page 22 of 60 Interrupt Timing The ADE7753 Serial Interface section should be reviewed first before reviewing the interrupt timing. As previously described, when the IRQ output goes low, the MCU ISR must read the interrupt status register to determine the source of the interrupt. When reading the status register contents, the IRQ output is set high on the last falling edge of SCLK of the first byte transfer (read interrupt status register command). The IRQ output is held high until the last bit of the next 15-bit transfer is shifted out (interrupt status register contents)—see . If an interrupt is pending at this time, the Figure 45IRQ output goes low again. If no interrupt is pending, the IRQ output stays high. TEMPERATURE MEASUREMENT The ADE7753 also includes an on-chip temperature sensor. A temperature measurement can be made by setting Bit 5 in the mode register. When Bit 5 is set logic high in the mode register, the ADE7753 initiates a temperature measurement on the next zero crossing. When the zero crossing on Channel 2 is detected, the voltage output from the temperature sensing circuit is connected to ADC1 (Channel 1) for digitizing. The resulting code is processed and placed in the temperature register (TEMP[7:0]) approximately 26 μs later (96/CLKIN seconds). If enabled in the interrupt enable register (Bit 5), the IRQ output goes active low when the temperature conversion is finished. The contents of the temperature register are signed (twos complement) with a resolution of approximately 1.5 LSB/°C. The temperature register produces a code of 0x00 when the ambient temperature is approximately −25°C. The temperature measurement is uncalibrated in the ADE7753 and has an offset tolerance as high as ±25°C. ADE7753 ANALOG-TO-DIGITAL CONVERSION The analog-to-digital conversion in the ADE7753 is carried out using two second-order Σ-Δ ADCs. For simplicity, the block diagram in Figure 47 shows a first-order Σ-Δ ADC. The converter is made up of the Σ-Δ modulator and the digital low-pass filter. 24DIGITALLOW-PASSFILTERRCANALOGLOW-PASS FILTER+–VREF1-BIT DACINTEGRATORMCLK/4LATCHEDCOMPARATOR.....10100101.....+–02875-0-046 Figure 47. First-Order Σ-Δ ADC A Σ-Δ modulator converts the input signal into a continuous serial stream of 1s and 0s at a rate determined by the sampling clock. In the ADE7753, the sampling clock is equal to CLKIN/4. The 1-bit DAC in the feedback loop is driven by the serial data stream. The DAC output is subtracted from the input signal. If the loop gain is high enough, the average value of the DAC out-put (and therefore the bit stream) can approach that of the input signal level. For any given input value in a single sampling interval, the data from the 1-bit ADC is virtually meaningless. Only when a large number of samples are averaged is a meaningful result obtained. This averaging is carried out in the second part of the ADC, the digital low-pass filter. By averaging a large number of bits from the modulator, the low-pass filter can produce 24-bit data-words that are proportional to the input signal level. The Σ-Δ converter uses two techniques to achieve high resolution from what is essentially a 1-bit conversion technique. The first is oversampling. Oversampling means that the signal is sampled at a rate (frequency), which is many times higher than the bandwidth of interest. For example, the sampling rate in the ADE7753 is CLKIN/4 (894 kHz) and the band of interest is 40 Hz to 2 kHz. Oversampling has the effect of spreading the quantization noise (noise due to sampling) over a wider bandwidth. With the noise spread more thinly over a wider bandwidth, the quantization noise in the band of interest is lowered—see Figure 48. However, oversampling alone is not efficient enough to improve the signal-to-noise ratio (SNR) in the band of interest. For example, an oversampling ratio of 4 is required just to increase the SNR by only 6 dB (1 bit). To keep the oversampling ratio at a reasonable level, it is possible to shape the quantization noise so that the majority of the noise lies at the higher frequencies. In the Σ-Δ modulator, the noise is shaped by the integrator, which has a high-pass-type response for the quantization noise. The result is that most of the noise is at the higher frequencies where it can be removed by the digital low-pass filter. This noise shaping is shown in Figure 48. 44708942NOISESIGNALDIGITALFILTERANTILALIASFILTER (RC)SAMPLINGFREQUENCYHIGH RESOLUTIONOUTPUT FROM DIGITALLPFSHAPEDNOISE44708942NOISESIGNALFREQUENCY (kHz)FREQUENCY (kHz)02875-0-047 Figure 48. Noise Reduction Due to Oversampling and Noise Shaping in the Analog Modulator ADE7753 Rev. C | Page 23 of 60 Antialias Filter ADE7753 Reference Circuit Figure 50 shows a simplified version of the reference output circuitry. The nominal reference voltage at the REFIN/OUT pin is 2.42 V. This is the reference voltage used for the ADCs in the ADE7753. However, Channel 1 has three input range selections that are selected by dividing down the reference value used for the ADC in Channel 1. The reference value used for Channel 1 is divided down to ½ and ¼ of the nominal value by using an internal resistor divider, as shown in Figure 50. Figure 47 also shows an analog low-pass filter (RC) on the input to the modulator. This filter is present to prevent aliasing. Aliasing is an artifact of all sampled systems. Aliasing means that frequency components in the input signal to the ADC, which are higher than half the sampling rate of the ADC, appear in the sampled signal at a frequency below half the sampling rate. Figure 49 illustrates the effect. Frequency components (arrows shown in black) above half the sampling frequency (also know as the Nyquist frequency, i.e., 447 kHz) are imaged or folded back down below 447 kHz. This happens with all ADCs regardless of the architecture. In the example shown, only frequencies near the sampling frequency, i.e., 894 kHz, move into the band of interest for metering, i.e., 40 Hz to 2 kHz. This allows the use of a very simple LPF (low-pass filter) to attenuate high frequency (near 900 kHz) noise, and prevents distortion in the band of interest. For conventional current sensors, a simple RC filter (single-pole LPF) with a corner frequency of 10 kHz produces an attenuation of approximately 40 dB at 894 kHz—see Figure 49. The 20 dB per decade attenuation is usually sufficient to eliminate the effects of aliasing for conventional current sensors. However, for a di/dt sensor such as a Rogowski coil, the sensor has a 20 dB per decade gain. This neutralizes the –20 dB per decade attenuation produced by one simple LPF. Therefore, when using a di/dt sensor, care should be taken to offset the 20 dB per decade gain. One simple approach is to cascade two RC filters to produce the –40 dB per decade attenuation needed. 60μAPTAT2.5V1.7kΩ12.5kΩ12.5kΩ12.5kΩ12.5kΩREFIN/OUT2.42VMAXIMUMLOAD = 10μAOUTPUTIMPEDANCE6kΩREFERENCE INPUTTO ADC CHANNEL 1(RANGE SELECT)2.42V, 1.21V, 0.6V02875-0-049 Figure 50. ADE7753 Reference Circuit Output The REFIN/OUT pin can be overdriven by an external source, for example, an external 2.5 V reference. Note that the nominal reference value supplied to the ADCs is now 2.5 V, not 2.42 V, which has the effect of increasing the nominal analog input signal range by 2.5/2.42 × 100% = 3% or from 0.5 V to 0.5165 V. SAMPLINGFREQUENCYIMAGEFREQUENCIESALIASING EFFECTS02447894FREQUENCY (kHz)02875-0-048 The voltage of the ADE7753 reference drifts slightly with temperature—see the ADE7753 Specifications for the temperature coefficient specification (in ppm/°C). The value of the temperature drift varies from part to part. Since the reference is used for the ADCs in both Channels 1 and 2, any x% drift in the reference results in 2×% deviation of the meter accuracy. The reference drift resulting from temperature changes is usually very small and it is typically much smaller than the drift of other components on a meter. However, if guaranteed temperature performance is needed, one needs to use an external voltage reference. Alternatively, the meter can be calibrated at multiple temperatures. Real-time compensation can be achieved easily by using the on-chip temperature sensor. Figure 49. ADC and Signal Processing in Channel 1 Outline Dimensions ADC Transfer Function The following expression relates the output of the LPF in the Σ-Δ ADC to the analog input signal level. Both ADCs in the ADE7753 are designed to produce the same output code for the same input signal level. CHANNEL 1 ADC 144,2620492.3)(××=OUTINVVADCCode (1) Figure 51 shows the ADC and signal processing chain for Channel 1. In waveform sampling mode, the ADC outputs a signed twos complement 24-bit data-word at a maximum of 27.9 kSPS (CLKIN/128). With the specified full-scale analog input signal of 0.5 V (or 0.25 V or 0.125 V—see the Analog Inputs section) the ADC produces an output code that is approximately between 0x2851EC (+2,642,412d) and 0xD7AE14 (–2,642,412d)—see Figure 51. Therefore with a full-scale signal on the input of 0.5 V and an internal reference of 2.42 V, the ADC output code is nominally 165,151 or 2851Fh. The maximum code from the ADC is ±262,144; this is equivalent to an input signal level of ±0.794 V. However, for specified performance, it is recommended that the full-scale input signal level of 0.5 V not be exceeded. ADE7753 Rev. C | Page 24 of 60 ⋅1,⋅2,⋅4,⋅8,⋅16ANALOGINPUTRANGEDIGITALINTEGRATOR*dtHPFADC 1REFERENCE2.42V, 1.21V, 0.6VV10V0.5V, 0.25V,0.125V, 62.5mV,31.3mV, 15.6mV,CHANNEL 1(CURRENT WAVEFORM)DATA RANGEACTIVE AND REACTIVEPOWER CALCULATIONWAVEFORM SAMPLEREGISTERCURRENT RMS (IRMS)CALCULATION50HzV1PV1NPGA1V1{GAIN[4:3]}{GAIN[2:0]}*WHEN DIGITAL INTEGRATOR IS ENABLED, FULL-SCALE OUTPUT DATA IS ATTENUATEDDEPENDING ON THE SIGNAL FREQUENCY BECAUSE THE INTEGRATOR HAS A –20dB/DECADEFREQUENCY RESPONSE. WHEN DISABLED, THE OUTPUT WILL NOT BE FURTHER ATTENUATED.ADC OUTPUTWORD RANGE0xD7AE140x000000x2851EC0xD7AE140x0000000x2851ECCHANNEL 1(CURRENT WAVEFORM)DATA RANGE AFTERINTEGRATOR (50Hz)0xEI08C40x0000000x1EF73C60HzCHANNEL 1(CURRENT WAVEFORM)DATA RANGE AFTERINTEGRATOR (60Hz)0xE631F80x0000000x19CE0802875-0-052 Figure 51. ADC and Signal Processing in Channel 1 Channel 1 Sampling The waveform samples can also be routed to the waveform register (MODE[14:13] = 1,0) to be read by the system master (MCU). In waveform sampling mode, the WSMP bit (Bit 3) in the interrupt enable register must also be set to Logic 1. The active, apparent power, and energy calculation remain uninterrupted during waveform sampling. When in waveform sampling mode, one of four output sample rates can be chosen by using Bits 11 and 12 of the mode register (WAVSEL1,0). The output sample rate can be 27.9 kSPS, 14 kSPS, 7 kSPS, or 3.5 kSPS—see the Mode Register (0x09) section. The interrupt request output, IRQ, signals a new sample availability by going active low. The timing is shown in . The 24-bit waveform samples are transferred from the ADE7753 one byte (eight bits) at a time, with the most significant byte shifted out first. The 24-bit data-word is right justified—see the section. The interrupt request output Figure 52ADE7753 Serial InterfaceIRQ stays low until the interrupt routine reads the reset status register—see the section. ADE7753 Interrupts CHANNEL 1 DATA(24 BITS)READ FROM WAVEFORMSIGN0IRQSCLKDINDOUT0001 HEX02875-0-050 Figure 52. Waveform Sampling Channel 1 Channel 1 RMS Calculation Root mean square (rms) value of a continuous signal V(t) is defined as VRMS = ∫×=TrmsdttVTV02)(1 (2) For time sampling signals, rms calculation involves squaring the signal, taking the average and obtaining the square root: VRMS = Σ=×=NirmsiVNV12)(1 (3) The ADE7753 simultaneously calculates the rms values for Channel 1 and Channel 2 in different registers. Figure 53 shows the detail of the signal processing chain for the rms calculation on Channel 1. The Channel 1 rms value is processed from the samples used in the Channel 1 waveform sampling mode. The Channel 1 rms value is stored in an unsigned 24-bit register (IRMS). One LSB of the Channel 1 rms register is equivalent to one LSB of a Channel 1 waveform sample. The update rate of the Channel 1 rms measurement is CLKIN/4. ADE7753 Rev. C | Page 25 of 60 IRMS(t)LPF3HPF1CHANNEL 10x1C82B30x00+IRMSOS[11:0]IRMSCURRENT SIGNAL (i(t))226225sgn22721721621502875-0-00510x2851EC0x000xD7AE142424 Figure 53. Channel 1 RMS Signal Processing With the specified full-scale analog input signal of 0.5 V, the ADC produces an output code that is approximately ±2,642,412d—see the Channel 1 ADC section. The equivalent rms value of a full-scale ac signal are 1,868,467d (0x1C82B3). The current rms measurement provided in the ADE7753 is accurate to within 0.5% for signal input between full scale and full scale/100. Table 7 shows the settling time for the IRMS measurement, which is the time it takes for the rms register to reflect the value at the input to the current channel. The conversion from the register value to amps must be done externally in the microprocessor using an amps/LSB constant. To minimize noise, synchronize the reading of the rms register with the zero crossing of the voltage input and take the average of a number of readings. Table 7. 95% 100% Integrator Off 219 ms 895 ms Integrator On 78.5 ms 1340 ms Channel 1 RMS Offset Compensation The ADE7753 incorporates a Channel 1 rms offset compensa-tion register (IRMSOS). This is a 12-bit signed register that can be used to remove offset in the Channel 1 rms calculation. An offset could exist in the rms calculation due to input noises that are integrated in the dc component of V2(t). The offset calibration allows the content of the IRMS register to match the theoretical value even when the Channel 1 input is low. One LSB of the Channel 1 rms offset is equivalent to 32,768 LSB of the square of the Channel 1 rms register. Assuming that the maximum value from the Channel 1 rms calculation is 1,868,467d with full-scale ac inputs, then 1 LSB of the Channel 1 rms offset represents 0.46% of measurement error at –60 dB down of full scale. IRMS = 3276820×+IRMSOSIRMS (4) where IRMS0 is the rms measurement without offset correction. To measure the offset of the rms measurement, two data points are needed from non-zero input values, for example, the base current, Ib, and Imax/100. The offset can be calculated from these measurements. CHANNEL 2 ADC Channel 2 Sampling In Channel 2 waveform sampling mode (MODE[14:13] = 1,1 and WSMP = 1), the ADC output code scaling for Channel 2 is not the same as Channel 1. The Channel 2 waveform sample is a 16-bit word and sign extended to 24 bits. For normal operation, the differential voltage signal between V2P and V2N should not exceed 0.5 V. With maximum voltage input (±0.5 V at PGA gain of 1), the output from the ADC swings between 0x2852 and 0xD7AE (±10,322d). However, before being passed to the wave-form register, the ADC output is passed through a single-pole, low-pass filter with a cutoff frequency of 140 Hz. The plots in Figure 54 show the magnitude and phase response of this filter. FREQUENCY (Hz)0101102103PHASE ( Degrees)–20–10–40–50–60–30–70–80–900–18GAIN ( dB)60Hz,–0.73dB50Hz,–0.52dB60Hz,–23.2°50Hz,–19.7°–8–10–14–12–16–2–4–602875-0-053 Figure 54. Magnitude and Phase Response of LPF1 The LPF1 has the effect of attenuating the signal. For example, if the line frequency is 60 Hz, then the signal at the output of LPF1 is attenuated by about 8%. dBHzHzfH73.0919.01406011)(2−==⎟⎟⎠⎞⎜⎜⎝⎛+= (5) Note LPF1 does not affect the active power calculation. The signal processing chain in Channel 2 is illustrated in Figure 55. ADE7753 Rev. C | Page 26 of 60 V1ADC 20VANALOGINPUT RANGE0.5V, 0.25, 0.125,62.5mV, 31.25mVREFERENCELPF1ACTIVEANDREACTIVEENERGYCALCULATIONVRMSCALCULATIONANDWAVEFORMSAMPLING(PEAK/SAG/ZX)PGA2×1,×2,×4,×8,×16{GAIN [7:5]}V2PV2NV22.42V0x28520x25810xDAE80xD7AE0x0000LPF OUTPUTWORD RANGE02875-0-054 Figure 55. ADC and Signal Processing in Channel 2 VRMS[23:0]LPF3|x|LPF1CHANNEL 20x17D3380x00++VRMOS[11:0]VOLTAGE SIGNAL (V(t))29sgn2822212002875-0-00550x25180x00xDAE8 Figure 56. Channel 2 RMS Signal Processing Channel 2 has only one analog input range (0.5 V differential). Like Channel 1, Channel 2 has a PGA with gain selections of 1, 2, 4, 8, and 16. For energy measurement, the output of the ADC is passed directly to the multiplier and is not filtered. An HPF is not required to remove any dc offset since it is only required to remove the offset from one channel to eliminate errors due to offsets in the power calculation. When in waveform sampling mode, one of four output sample rates can be chosen by using Bits 11 and 12 of the mode register. The available output sample rates are 27.9 kSPS, 14 kSPS, 7 kSPS, or 3.5 kSPS—see the Mode Register (0x09) section. The interrupt request output IRQ signals that a sample is available by going active low. The timing is the same as that for Channel 1, as shown in . Figure 52 Channel 2 RMS Calculation Figure 56 shows the details of the signal processing chain for the rms estimation on Channel 2. This Channel 2 rms estimation is done in the ADE7753 using the mean absolute value calculation, as shown in Figure 56. The Channel 2 rms value is processed from the samples used in the Channel 2 waveform sampling mode. The rms value is slightly attenuated because of LPF1. Channel 2 rms value is stored in the unsigned 24-bit VRMS register. The update rate of the Channel 2 rms measurement is CLKIN/4. With the specified full-scale ac analog input signal of 0.5 V, the output from the LPF1 swings between 0x2518 and 0xDAE8 at 60 Hz—see the Channel 2 ADC section. The equivalent rms value of this full-scale ac signal is approximately 1,561,400 (0x17D338) in the VRMS register. The voltage rms measure-ment provided in the ADE7753 is accurate to within ±0.5% for signal input between full scale and full scale/20. Table 8 shows the settling time for the VRMS measurement, which is the time it takes for the rms register to reflect the value at the input to the voltage channel. The conversion from the register value to volts must be done externally in the microprocessor using a volts/LSB constant. Since the low-pass filtering used for calculating the rms value is imperfect, there is some ripple noise from 2ω term present in the rms measurement. To minimize the noise effect in the reading, synchronize the rms reading with the zero crossings of the voltage input. Table 8. 95% 100% 220 ms 670 ms Channel 2 RMS Offset Compensation The ADE7753 incorporates a Channel 2 rms offset compensation register (VRMSOS). This is a 12-bit signed register that can be used to remove offset in the Channel 2 rms calculation. An offset could exist in the rms calculation due to input noises and dc offset in the input samples. The offset calibration allows the contents of the VRMS register to be maintained at 0 when no voltage is applied. One LSB of the Channel 2 rms offset is equivalent to one LSB of the rms register. Assuming that the maximum value from the Channel 2 rms calculation is 1,561,400d with full-scale ac inputs, then one LSB of the Channel 2 rms offset represents 0.064% of measurement error at –60 dB down of full scale. VRMS = VRMS0 + VRMSOS (6) where VRMS0 is the rms measurement without offset correction. The voltage rms offset compensation should be done by testing the rms results at two non-zero input levels. One measurement can be done close to full scale and the other at approximately full scale/10. The voltage offset compensation can be derived ADE7753 Rev. C | Page 27 of 60 from these measurements. If the voltage rms offset register does not have enough range, the CH2OS register can also be used. PHASE COMPENSATION When the HPF is disabled, the phase error between Channel 1 and Channel 2 is 0 from dc to 3.5 kHz. When HPF is enabled, Channel 1 has the phase response illustrated in Figure 58 and Figure 59. Also shown in Figure 60 is the magnitude response of the filter. As can be seen from the plots, the phase response is almost 0 from 45 Hz to 1 kHz. This is all that is required in typical energy measurement applications. However, despite being internally phase compensated, the ADE7753 must work with transducers, which could have inherent phase errors. For example, a phase error of 0.1° to 0.3° is not uncommon for a current transformer (CT). These phase errors can vary from part to part, and they must be corrected in order to perform accurate power calculations. The errors associated with phase mismatch are particularly noticeable at low power factors. The ADE7753 provides a means of digitally calibrating these small phase errors. The ADE7753 allows a small time delay or time advance to be introduced into the signal processing chain to compensate for small phase errors. Because the compensation is in time, this technique should be used only for small phase errors in the range of 0.1° to 0.5°. Correcting large phase errors using a time shift technique can introduce significant phase errors at higher harmonics. The phase calibration register (PHCAL[5:0]) is a twos comple-ment signed single-byte register that has values ranging from 0x21 (–31d) to 0x1F (31d). The register is centered at 0x0D, so that writing 0x0D to the register gives 0 delay. By changing the PHCAL register, the time delay in the Channel 2 signal path can change from –102.12 μs to +39.96 μs (CLKIN = 3.579545 MHz). One LSB is equivalent to 2.22 μs (CLKIN/8) time delay or advance. A line frequency of 60 Hz gives a phase resolution of 0.048° at the fundamental (i.e., 360° × 2.22 μs × 60 Hz). Figure 57 illustrates how the phase compensation is used to remove a 0.1° phase lead in Channel 1 due to the external transducer. To cancel the lead (0.1°) in Channel 1, a phase lead must also be introduced into Channel 2. The resolution of the phase adjustment allows the introduction of a phase lead in increment of 0.048°. The phase lead is achieved by introducing a time advance into Channel 2. A time advance of 4.48 μs is made by writing −2 (0x0B) to the time delay block, thus reducing the amount of time delay by 4.48 μs, or equiva-lently, a phase lead of approximately 0.1° at line frequency of 60 Hz. 0x0B represents –2 because the register is centered with 0 at 0x0D. 110100150PGA1V1PV1NV1ADC 1HPF24PGA2V2PV2NV2ADC 2DELAY BLOCK2.24μs/LSB24LPF2V2V160Hz0.1°V1V2CHANNEL 2 DELAYREDUCED BY 4.48μs(0.1°LEAD AT 60Hz)0Bh IN PHCAL [5.0]PHCAL [5:0]--100μs TO +34μs60Hz02875-0-056 Figure 57. Phase Calibration FREQUENCY (Hz)PHASE (Degrees)0.90.80.70.60.50.40.30.20.10–0.110210310402875-0-057 Figure 58. Combined Phase Response of the HPF and Phase Compensation (10 Hz to 1 kHz) FREQUENCY (Hz)0.2040PHASE ( Degrees)0.180.160.140.120.100.0800.020.040.0645505560657002875-0-058 Figure 59. Combined Phase Response of the HPF and Phase Compensation (40 Hz to 70 Hz) ADE7753 Rev. C | Page 28 of 60 FREQUENCY (Hz)0.4ERROR (%)545658606264660.30.20.10.0–0.1–0.2–0.3–0.402875-0-059 Figure 60. Combined Gain Response of the HPF and Phase Compensation ACTIVE POWER CALCULATION Power is defined as the rate of energy flow from source to load. It is defined as the product of the voltage and current wave-forms. The resulting waveform is called the instantaneous power signal and is equal to the rate of energy flow at every instant of time. The unit of power is the watt or joules/sec. Equation 9 gives an expression for the instantaneous power signal in an ac system. v(t) = )sin(2tVω× (7) i(t) = )sin(2tIω× (8) where: V is the rms voltage. I is the rms current. )()()(titvtp×= )2cos()(tVIVItpω−= (9) The average power over an integral number of line cycles (n) is given by the expression in Equation 10. P = ∫=nTVIdttpnT0)(1 (10) where: T is the line cycle period. P is referred to as the active or real power. Note that the active power is equal to the dc component of the instantaneous power signal p(t) in Equation 8, i.e., VI. This is the relationship used to calculate active power in the ADE7753. The instantaneous power signal p(t) is generated by multiplying the current and voltage signals. The dc component of the instantaneous power signal is then extracted by LPF2 (low-pass filter) to obtain the active power information. This process is illustrated in Figure 61. INSTANTANEOUSPOWER SIGNALp(t) = v×i-v×i×cos(2ωt)ACTIVEREALPOWERSIGNAL=v×i0x19999AVI0xCCCCD0x00000CURRENTi(t) = 2×i×sin(ωt)VOLTAGEv(t) = 2×v×sin(ωt)02875-0-060 Figure 61. Active Power Calculation Since LPF2 does not have an ideal “brick wall” frequency response—see Figure 62, the active power signal has some ripple due to the instantaneous power signal. This ripple is sinusoidal and has a frequency equal to twice the line frequency. Because the ripple is sinusoidal in nature, it is removed when the active power signal is integrated to calculate energy—see the Energy Calculation section. FREQUENCY (Hz)–241dB–2031030100–12–16–8–4002875-0-061 Figure 62. Frequency Response of LPF2 ADE7753 Rev. C | Page 29 of 60 APOS[15:0]WGAIN[11:0]WDIV[7:0]LPF2CURRENTCHANNELVOLTAGECHANNELOUTPUT LPF2TIME (nT)4CLKINTACTIVEPOWERSIGNAL++AENERGY [23:0]OUTPUTSFROMTHELPF2AREACCUMULATED(INTEGRATED)INTHEINTERNALACTIVEENERGYREGISTERUPPER24BITSAREACCESSIBLETHROUGHAENERGY[23:0]REGISTER230480WAVEFORMREGISTERVALUES02875-0-063% Figure 63. ADE7753 Active Energy Calculation Figure 63 shows the signal processing chain for the active power calculation in the ADE7753. As explained, the active power is calculated by low-pass filtering the instantaneous power signal. Note that when reading the waveform samples from the output of LPF2, the gain of the active energy can be adjusted by using the multiplier and watt gain register (WGAIN[11:0]). The gain is adjusted by writing a twos complement 12-bit word to the watt gain register. Equation 11 shows how the gain adjustment is related to the contents of the watt gain register: ⎟⎟⎠⎞⎜⎜⎝⎛⎭⎬⎫⎩⎨⎧+×=1221WGAINPowerActiveWGAINOutput (11) For example, when 0x7FF is written to the watt gain register, the power output is scaled up by 50%. 0x7FF = 2047d, 2047/212 = 0.5. Similarly, 0x800 = –2048d (signed twos complement) and power output is scaled by –50%. Each LSB scales the power output by 0.0244%. Figure 64 shows the maximum code (in hex) output range for the active power signal (LPF2). Note that the output range changes depending on the contents of the watt gain register. The minimum output range is given when the watt gain register contents are equal to 0x800, and the maximum range is given by writing 0x7FF to the watt gain register. This can be used to calibrate the active power (or energy) calculation in the ADE7753. 0x1333330xCCCCD0x666660xF9999A0xF333330xECCCCD0x00000ACTIVE POWER OUTPUTPOSITIVEPOWERNEGATIVEPOWER0x0000x7FF0x800{WGAIN[11:0]}ACTIVE POWERCALIBRATION RANGE02875-0-062 Figure 64. Active Power Calculation Output Range ENERGY CALCULATION As stated earlier, power is defined as the rate of energy flow. This relationship can be expressed mathematically in Equation 12. dtdEP= (12) where: P is power. E is energy. Conversely, energy is given as the integral of power. ∫=PdtE (13) ADE7753 Rev. C | Page 30 of 60 FORWAVEFORM ACCUMULATIOIN 1 24 24 LPF2 V I 0x19999 0x19999A 0x000000 INSTANTANEOUS POWER SIGNAL – p(t) FORWAVEF0RM SAMPLING 32 0xCCCCD CURRENT SIGNAL – i(t) HPF VOLTAGESIGNAL– v(t) MULTIPLIER + + APOS [15:0] sgn 26 25 2-6 2-7 2-8 02875-0-064 WGAIN[11:0] Figure 65. Active Power Signal Processing The ADE7753 achieves the integration of the active power signal by continuously accumulating the active power signal in an internal nonreadable 49-bit energy register. The active energy register (AENERGY[23:0]) represents the upper 24 bits of this internal register. This discrete time accumulation or summation is equivalent to integration in continuous time. Equation 14 expresses the relationship. ⎭ ⎬ ⎫ ⎩ ⎨ ⎧ = × = ∫ Σ ∞ →0 =1 ) ( ) ( t n T nTpLimdttpE (14) where: n is the discrete time sample number. T is the sample period. The discrete time sample period (T) for the accumulation register in the ADE7753 is 1.1μs (4/CLKIN). As well as calculating the energy, this integration removes any sinusoidal components that might be in the active power signal. Figure 65 shows this discrete time integration or accumulation. The active power signal in the waveform register is continuously added to the internal active energy register. This addition is a signed addition; therefore negative energy is subtracted from the active energy contents. The exception to this is when POAM is selected in the MODE[15:0] register. In this case, only positive energy contributes to the active energy accumulation—see the Positive-Only Accumulation Mode section. The output of the multiplier is divided by WDIV. If the value in the WDIV register is equal to 0, then the internal active energy register is divided by 1. WDIV is an 8-bit unsigned register. After dividing by WDIV, the active energy is accumulated in a 49-bit internal energy accumulation register. The upper 24 bits of this register are accessible through a read to the active energy register (AENERGY[23:0]). A read to the RAENERGY register returns the content of the AENERGY register and the upper 24 bits of the internal register are cleared. As shown in Figure 65, the active power signal is accumulated in an internal 49-bit signed register. The active power signal can be read from the waveform register by setting MODE[14:13] = 0,0 and setting the WSMP bit (Bit 3) in the interrupt enable register to 1. Like the Channel 1 and Channel 2 waveform sampling modes, the waveform date is available at sample rates of 27.9 kSPS, 14 kSPS, 7 kSPS, or 3.5 kSPS—see Figure 52. Figure 66 shows this energy accumulation for full-scale signals (sinusoidal) on the analog inputs. The three curves displayed illustrate the minimum period of time it takes the energy register to roll over when the active power gain register contents are 0x7FF, 0x000, and 0x800. The watt gain register is used to carry out power calibration in the ADE7753. As shown, the fastest integration time occurs when the watt gain register is set to maximum full scale, i.e., 0x7FF. 0x00,0000 0x7F,FFFF 0x3F,FFFF 0x40,0000 0x80,0000 AENERGY [23:0] 4 6.2 8 12.5 TIME (minutes) WGAIN = 0x7FF WGAIN = 0x000 WGAIN = 0x800 02875-0-065 Figure 66. Energy Register Rollover Time for Full-Scale Power (Minimum and Maximum Power Gain) Note that the energy register contents rolls over to full-scale negative (0x800000) and continues to increase in value when the power or energy flow is positive—see Figure 66. Conversely, if the power is negative, the energy register underflows to full- scale positive (0x7FFFFF) and continues to decrease in value. By using the interrupt enable register, the ADE7753 can be configured to issue an interrupt (IRQ) when the active energy register is greater than half-full (positive or negative) or when an overflow or underflow occurs. Integration Time under Steady Load As mentioned in the last section, the discrete time sample period (T) for the accumulation register is 1.1 μs (4/CLKIN). With full-scale sinusoidal signals on the analog inputs and the WGAIN register set to 0x000, the average word value from each LPF2 is 0xCCCCD—see Figure 61. The maximum positive value that can be stored in the internal 49-bit register is 248 or ADE7753 Rev. C | Page 31 of 60 0xFFFF,FFFF,FFFF before it overflows. The integration time under these conditions with WDIV = 0 is calculated as follows: Time = xCCCCD0FFFFFFFF,xFFFF,0× 1.12 μs = 375.8 s = 6.26 min(15) When WDIV is set to a value different from 0, the integration time varies, as shown in Equation 16. WDIVTimeTimeWDIV×==0 (16) POWER OFFSET CALIBRATION The ADE7753 also incorporates an active power offset register (APOS[15:0]). This is a signed twos complement 16-bit register that can be used to remove offsets in the active power calculation—see Figure 65. An offset could exist in the power calculation due to crosstalk between channels on the PCB or in the IC itself. The offset calibration allows the contents of the active power register to be maintained at 0 when no power is being consumed. The 256 LSBs (APOS = 0x0100) written to the active power offset register are equivalent to 1 LSB in the waveform sample register. Assuming the average value, output from LPF2 is 0xCCCCD (838,861d) when inputs on Channels 1 and 2 are both at full scale. At −60 dB down on Channel 1 (1/1000 of the Channel 1 full-scale input), the average word value output from LPF2 is 838.861 (838,861/1,000). One LSB in the LPF2 output has a measurement error of 1/838.861 × 100% = 0.119% of the average value. The active power offset register has a resolution equal to 1/256 LSB of the waveform register, therefore the power offset correction resolution is 0.00047%/LSB (0.119%/256) at –60 dB. ENERGY-TO-FREQUENCY CONVERSION ADE7753 also provides energy-to-frequency conversion for calibration purposes. After initial calibration at manufacturing, the manufacturer or end customer often verify the energy meter calibration. One convenient way to verify the meter calibration is for the manufacturer to provide an output frequency, which is proportional to the energy or active power under steady load conditions. This output frequency can provide a simple, single-wire, optically isolated interface to external calibration equipment. Figure 67 illustrates the energy-to-frequency conversion in the ADE7753. CFNUM[11:0]CF110CFDEN[11:0]110AENERGY[48:0]48002875-0-066%DFC Figure 67. ADE7753 Energy-to-Frequency Conversion A digital-to-frequency converter (DFC) is used to generate the CF pulsed output. The DFC generates a pulse each time 1 LSB in the active energy register is accumulated. An output pulse is generated when (CFDEN + 1)/(CFNUM + 1) number of pulses are generated at the DFC output. Under steady load conditions, the output frequency is proportional to the active power. The maximum output frequency, with ac input signals at full scale and CFNUM = 0x00 and CFDEN = 0x00, is approximately 23 kHz. The ADE7753 incorporates two registers, CFNUM[11:0] and CFDEN[11:0], to set the CF frequency. These are unsigned 12-bit registers, which can be used to adjust the CF frequency to a wide range of values. These frequency-scaling registers are 12-bit registers, which can scale the output frequency by 1/212 to 1 with a step of 1/212. If the value 0 is written to any of these registers, the value 1 would be applied to the register. The ratio (CFNUM + 1)/ (CFDEN + 1) should be smaller than 1 to ensure proper operation. If the ratio of the registers (CFNUM + 1)/(CFDEN + 1) is greater than 1, the register values would be adjusted to a ratio (CFNUM + 1)/(CFDEN + 1) of 1. For example, if the output frequency is 1.562 kHz while the contents of CFDEN are 0 (0x000), then the output frequency can be set to 6.1 Hz by writing 0xFF to the CFDEN register. When CFNUM and CFDEN are both set to one, the CF pulse width is fixed at 16 CLKIN/4 clock cycles, approximately 18 μs with a CLKIN of 3.579545 MHz. If the CF pulse output is longer than 180 ms for an active energy frequency of less than 5.56 Hz, the pulse width is fixed at 90 ms. Otherwise, the pulse width is 50% of the duty cycle. The output frequency has a slight ripple at a frequency equal to twice the line frequency. This is due to imperfect filtering of the instantaneous power signal to generate the active power signal—see the Active Power Calculation section. Equation 9 from the Active Power Calculation section gives an expression for the instantaneous power signal. This is filtered by LPF2, which has a magnitude response given by Equation 17. 29.811)(2ffH+= (17) The active power signal (output of LPF2) can be rewritten as p(t) = VI −⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛+29.81L2fVI× cos(4πfLt) (18) where fL is the line frequency, for example, 60 Hz. From Equation 13, E(t) = VIt − ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛+π29.814LL2ffVI× sin(4πfLt) (19) ADE7753 Rev. C | Page 32 of 60 From Equation 19 it can be seen that there is a small ripple in the energy calculation due to a sin(2 ωt) component. This is shown graphically in Figure 68. The active energy calculation is shown by the dashed straight line and is equal to V × I × t. The sinusoidal ripple in the active energy calculation is also shown. Since the average value of a sinusoid is 0, this ripple does not contribute to the energy calculation over time. However, the ripple can be observed in the frequency output, especially at higher output frequencies. The ripple gets larger as a percentage of the frequency at larger loads and higher output frequencies. The reason is simply that at higher output frequencies the integration or averaging time in the energy-to-frequency conversion process is shorter. As a consequence, some of the sinusoidal ripple is observable in the frequency output. Choosing a lower output frequency at CF for calibration can significantly reduce the ripple. Also, averaging the output frequency by using a longer gate time for the counter achieves the same results. VI–sin(4×π×fL×t)4×π×fL(1+2×fL/8.9Hz)E(t)tVlt02875-0-067 Figure 68. Output Frequency Ripple WDIV[7:0]APOS[15:0]WGAIN[11:0]LPF1++LAENERGY [23:0]ACCUMULATE ACTIVEENERGY IN INTERNALREGISTER AND UPDATETHE LAENERGY REGISTERAT THE END OF LINECYCLINE CYCLESOUTPUTFROMLPF2FROMCHANNEL 2ADC230LINECYC [15:0]48002875-0-068%ZERO CROSSDETECTIONCALIBRATIONCONTROL Figure 69. Energy Calculation Line Cycle Energy Accumulation Mode ADE7753 Rev. C | Page 33 of 60 LINE CYCLE ENERGY ACCUMULATION MODE In line cycle energy accumulation mode, the energy accumula-tion of the ADE7753 can be synchronized to the Channel 2 zero crossing so that active energy can be accumulated over an integral number of half line cycles. The advantage of summing the active energy over an integer number of line cycles is that the sinusoidal component in the active energy is reduced to 0. This eliminates any ripple in the energy calculation. Energy is calculated more accurately and in a shorter time because the integration period can be shortened. By using the line cycle energy accumulation mode, the energy calibration can be greatly simplified, and the time required to calibrate the meter can be significantly reduced. The ADE7753 is placed in line cycle energy accumulation mode by setting Bit 7 (CYCMODE) in the mode register. In line cycle energy accumulation mode, the ADE7753 accumulates the active power signal in the LAENERGY register (Address 0x04) for an integral number of line cycles, as shown in Figure 69. The number of half line cycles is specified in the LINECYC register (Address 0x1C). The ADE7753 can accumulate active power for up to 65,535 half line cycles. Because the active power is integrated on an integral number of line cycles, at the end of a line cycle energy accumu-lation cycle the CYCEND flag in the interrupt status register is set (Bit 2). If the CYCEND enable bit in the interrupt enable register is enabled, the IRQ output also goes active low. Thus the IRQ line can also be used to signal the completion of the line cycle energy accumulation. Another calibration cycle can start as long as the CYCMODE bit in the mode register is set. From Equations 13 and 18, E(t) = ∫∫⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎟⎠⎞⎜⎝⎛+−nTnTfVIdtVI020cos9.81(2πft)dt (20) where: n is an integer. T is the line cycle period. Since the sinusoidal component is integrated over an integer number of line cycles, its value is always 0. Therefore, E = + 0 (21) ∫nTVIdt0 E(t) = VInT (22) Note that in this mode, the 16-bit LINECYC register can hold a maximum value of 65,535. In other words, the line energy accumulation mode can be used to accumulate active energy for a maximum duration over 65,535 half line cycles. At 60 Hz line frequency, it translates to a total duration of 65,535/120 Hz = 546 seconds. POSITIVE-ONLY ACCUMULATION MODE In positive-only accumulation mode, the energy accumulation is done only for positive power, ignoring any occurrence of negative power above or below the no-load threshold, as shown in Figure 70. The CF pulse also reflects this accumulation method when in this mode. The ADE7753 is placed in positive-only accumulation mode by setting the MSB of the mode register (MODE[15]). The default setting for this mode is off. Transitions in the direction of power flow, going from negative to positive or positive to negative, set the IRQ pin to active low if the interrupt enable register is enabled. The interrupt status registers, PPOS and PNEG, show which transition has occurred—see the ADE7753 register descriptions in . Table 12PNEGPPOSPPOSINTERRUPT STATUS REGISTERSPPOSPNEGPNEGIRQNO-LOADTHRESHOLDACTIVE POWERNO-LOADTHRESHOLDACTIVE ENERGY02875-0-069 Figure 70. Energy Accumulation in Positive-Only Accumulation Mode NO-LOAD THRESHOLD The ADE7753 includes a no-load threshold feature on the active energy that eliminates any creep effects in the meter. The ADE7753 accomplishes this by not accumulating energy if the multiplier output is below the no-load threshold. This threshold is 0.001% of the full-scale output frequency of the multiplier. Compare this value to the IEC1036 specification, which states that the meter must start up with a load equal to or less than 0.4% Ib. This standard translates to .0167% of the full-scale output frequency of the multiplier. REACTIVE POWER CALCULATION Reactive power is defined as the product of the voltage and current waveforms when one of these signals is phase-shifted by ADE7753 Rev. C | Page 34 of 60 90°. The resulting waveform is called the instantaneous reactive power signal. Equation 25 gives an expression for the instanta-neous reactive power signal in an ac system when the phase of the current channel is shifted by +90°. The average reactive power over an integral number of lines (n) is given in Equation 26. v(t) = )sin(2θ+ωtV (23) ∫==nTVIdttRpnTRP0)sin()(1θ (26) i(t) = )sin(2tIω ⎟⎠⎞⎜⎝⎛π+ω=′2sin2)(tIti (24) where: T is the line cycle period. RP is referred to as the reactive power. Note that the reactive power is equal to the dc component of the instantaneous reactive power signal Rp(t) in Equation 25. This is the relationship used to calculate reactive power in the ADE7753. The instantaneous reactive power signal Rp(t) is generated by multiplying Channel 1 and Channel 2. In this case, the phase of Channel 1 is shifted by +90°. The dc component of the instantaneous reactive power signal is then extracted by a low-pass filter in order to obtain the reactive power informa-tion. Figure 71 shows the signal processing in the reactive power calculation in the ADE7753. where: θ is the phase difference between the voltage and current channel. V is the rms voltage. I is the rms current. Rp(t) = v(t) × i’(t) (25) Rp(t) = VI sin (θ) + VI sin(2ωt + θ) ZERO-CROSSINGDETECTIONMULTIPLIER++LVARENERGY [23:0]ACCUMULATE REACTIVEENERGY IN INTERNALREGISTER AND UPDATETHE LVARENERGY REGISTERAT THE END OF LINECYC HALFLINE CYCLESINSTANTANEOUS REACTIVEPOWER SIGNAL (Rp(t))23049002875-0-070LPF1FROMCHANNEL 2ADCLINECYC [15:0]LPF2CALIBRATIONCONTROLπ2VI90 DEGREEPHASE SHIFT Figure 71. Reactive Power Signal Processing ADE7753 Rev. C | Page 35 of 60 The features of the line reactive energy accumulation are the same as the line active energy accumulation. The number of half line cycles is specified in the LINECYC register. LINECYC is an unsigned 16-bit register. The ADE7753 can accumulate reactive power for up to 65535 combined half cycles. At the end of an energy calibration cycle, the CYCEND flag in the interrupt status register is set. If the CYCEND mask bit in the interrupt mask register is enabled, the IRQ output also goes active low. Thus the IRQ line can also be used to signal the end of a cali-bration. The ADE7753 accumulates the reactive power signal in the LVARENERGY register for an integer number of half cycles, as shown in . Figure 71 SIGN OF REACTIVE POWER CALCULATION Note that the average reactive power is a signed calculation. The phase shift filter has –90° phase shift when the integrator is enabled, and +90° phase shift when the integrator is disabled. Table 9 summarizes the relationship between the phase differ-ence between the voltage and the current and the sign of the resulting VAR calculation. Table 9. Sign of Reactive Power Calculation Angle Integrator Sign Between 0° to 90° Off Positive Between –90° to 0° Off Negative Between 0° to 90° On Positive Between –90° to 0° On Negative APPARENT POWER CALCULATION The apparent power is defined as the maximum power that can be delivered to a load. Vrms and Irms are the effective voltage and current delivered to the load; the apparent power (AP) is defined as Vrms × Irms. The angle θ between the active power and the apparent power generally represents the phase shift due to non-resistive loads. For single-phase applications, θ represents the angle between the voltage and the current signals—see Figure 72. REACTIVEPOWERAPPARENTPOWERACTIVEPOWER02875-0-071θ Figure 72. Power Triangle The apparent power is defined as Vrms × Irms. This expression is independent from the phase angle between the current and the voltage. Figure 73 illustrates the signal processing in each phase for the calculation of the apparent power in the ADE7753. VrmsIrms0xAD055APPARENTPOWERSIGNAL(P)CURRENT RMS SIGNAL– i(t)VOLTAGERMSSIGNAL– v(t)MULTIPLIER02875-0-0720x000x1C82B30x000x17D338VAGAIN Figure 73. Apparent Power Signal Processing The gain of the apparent energy can be adjusted by using the multiplier and VAGAIN register (VAGAIN[11:0]). The gain is adjusted by writing a twos complement, 12-bit word to the VAGAIN register. Equation 29 shows how the gain adjustment is related to the contents of the VAGAIN register. ⎟⎟⎠⎞⎜⎜⎝⎛⎭⎬⎫⎩⎨⎧+×=1221VAGAINPowerApparentINOutputVAGA(29) For example, when 0x7FF is written to the VAGAIN register, the power output is scaled up by 50%. 0x7FF = 2047d, 2047/212 = 0.5. Similarly, 0x800 = –2047d (signed twos complement) and power output is scaled by –50%. Each LSB represents 0.0244% of the power output. The apparent power is calculated with the current and voltage rms values obtained in the rms blocks of the ADE7753. Figure 74 shows the maximum code (hexadecimal) output range of the apparent power signal. Note that the output range changes depending on the contents of the apparent power gain registers. The minimum output range is given when the apparent power gain register content is equal to 0x800 and the maximum range is given by writing 0x7FF to the apparent power gain register. This can be used to calibrate the apparent power (or energy) calculation in the ADE7753. 0x1038800xAD0550x5682B0x000000x0000x7FF0x800{VAGAIN[11:0]}APPARENTPOWER100%FSAPPARENTPOWER150%FSAPPARENTPOWER50%FSAPPARENT POWERCALIBRATION RANGEVOLTAGE AND CURRENTCHANNEL INPUTS: 0.5V/GAIN02875-0-073 Figure 74. Apparent Power Calculation Output Range Apparent Power Offset Calibration Each rms measurement includes an offset compensation register to calibrate and eliminate the dc component in the rms value—see Channel 1 RMS Calculation and Channel 2 RMS Calculation sections. The Channel 1 and Channel 2 rms values are then multiplied together in the apparent power signal processing. Since no additional offsets are created in the multiplication of the rms values, there is no specific offset ADE7753 Rev. C | Page 36 of 60 compensation in the apparent power signal processing. The offset compensation of the apparent power measurement is done by calibrating each individual rms measurement. APPARENT ENERGY CALCULATION The apparent energy is given as the integral of the apparent power. ∫=dttPowerApparentEnergyApparent)( (30) The ADE7753 achieves the integration of the apparent power signal by continuously accumulating the apparent power signal in an internal 49-bit register. The apparent energy register (VAENERGY[23:0]) represents the upper 24 bits of this internal register. This discrete time accumulation or summation is equivalent to integration in continuous time. Equation 31 expresses the relationship ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧×=Σ∞=→00)(nTTnTPowerApparentLimEnergyApparent (31) where: n is the discrete time sample number. T is the sample period. The discrete time sample period (T) for the accumulation register in the ADE7753 is 1.1 μs (4/CLKIN). Figure 75 shows this discrete time integration or accumulation. The apparent power signal is continuously added to the internal register. This addition is a signed addition even if the apparent energy remains theoretically always positive. The 49 bits of the internal register are divided by VADIV. If the value in the VADIV register is 0, then the internal active energy register is divided by 1. VADIV is an 8-bit unsigned register. The upper 24 bits are then written in the 24-bit apparent energy register (VAENERGY[23:0]). RVAENERGY register (24 bits long) is provided to read the apparent energy. This register is reset to 0 after a read operation. Figure 76 shows this apparent energy accumulation for full-scale signals (sinusoidal) on the analog inputs. The three curves displayed illustrate the minimum time it takes the energy register to roll over when the VAGAIN registers content is equal to 0x7FF, 0x000, and 0x800. The VAGAIN register is used to carry out an apparent power calibration in the ADE7753. As shown, the fastest integration time occurs when the VAGAIN register is set to maximum full scale, i.e., 0x7FF. VADIVAPPARENT POWER++VAENERGY [23:0]APPARENTPOWERAREACCUMULATED(INTEGRATED)INTHEAPPARENTENERGYREGISTER23048048002875-0-074%TIME (nT)TACTIVEPOWERSIGNAL=P Figure 75. ADE7753 Apparent Energy Calculation 0xFF,FFFF0x80,00000x40,00000x20,00000x00,0000VAENERGY[23:0]6.2612.5218.7825.04TIME (minutes)VAGAIN = 0x7FFVAGAIN = 0x000VAGAIN = 0x80002875-0-075 Figure 76. Energy Register Rollover Time for Full-Scale Power (Maximum and Minimum Power Gain) Note that the apparent energy register is unsigned—see Figure 76. By using the interrupt enable register, the ADE7753 can be con-figured to issue an interrupt (IRQ) when the apparent energy register is more than half full or when an overflow occurs. The half full interrupt for the unsigned apparent energy register is based on 24 bits as opposed to 23 bits for the signed active energy register. Integration Times under Steady Load As mentioned in the last section, the discrete time sample period (T) for the accumulation register is 1.1 μs (4/CLKIN). With full-scale sinusoidal signals on the analog inputs and the VAGAIN register set to 0x000, the average word value from apparent power stage is 0xAD055—see the Apparent Power Calculation section. The maximum value that can be stored in the apparent energy register before it overflows is 224 or 0xFF,FFFF. The average word value is added to the internal register, which can store 248 or 0xFFFF,FFFF,FFFF before it ADE7753 Rev. C | Page 37 of 60 overflows. Therefore, the integration time under these conditions with VADIV = 0 is calculated as follows: LINE APPARENT ENERGY ACCUMULATION Time = 055xD0FFFFFFFF,xFFFF,0× 1.2 μs = 888 s = 12.52 min(32) When VADIV is set to a value different from 0, the integration time varies, as shown in Equation 33. Time = TimeWDIV = 0 × VADIV (33) The ADE7753 is designed with a special apparent energy accumulation mode, which simplifies the calibration process. By using the on-chip zero-crossing detection, the ADE7753 accumulates the apparent power signal in the LVAENERGY register for an integral number of half cycles, as shown in Figure 77. The line apparent energy accumulation mode is always active. The number of half line cycles is specified in the LINECYC register, which is an unsigned 16-bit register. The ADE7753 can accumulate apparent power for up to 65535 combined half cycles. Because the apparent power is integrated on the same integral number of line cycles as the line active energy register, these two values can be compared easily. The active energy and the apparent energy are calculated more accurately because of this precise timing control and provide all the information needed for reactive power and power factor calculation. At the end of an energy calibration cycle, the CYCEND flag in the interrupt status register is set. If the CYCEND mask bit in the interrupt mask register is enabled, the IRQ output also goes active low. Thus the IRQ line can also be used to signal the end of a calibration. The line apparent energy accumulation uses the same signal path as the apparent energy accumulation. The LSB size of these two registers is equivalent. VADIV[7:0]LPF1++LVAENERGY [23:0]LVAENERGY REGISTER ISUPDATED EVERY LINECYCZERO CROSSINGS WITH THETOTAL APPARENT ENERGYDURING THAT DURATIONAPPARENTPOWERFROMCHANNEL 2ADC230LINECYC [15:0]48002875-0-076%ZERO-CROSSINGDETECTIONCALIBRATIONCONTROL Figure 77. ADE7753 Apparent Energy Calibration ADE7753 Rev. C | Page 38 of 60 ENERGIES SCALING The ADE7753 provides measurements of active, reactive, and apparent energies. These measurements do not have the same scaling and thus cannot be compared directly to each other. Table 10. Energies Scaling PF = 1 PF = 0.707 PF = 0 Integrator On at 50 Hz Active Wh Wh × 0.707 0 Reactive 0 Wh × 0.508 Wh × 0.719 Apparent Wh × 0.848 Wh × 0.848 Wh × 0.848 Integrator Off at 50 Hz Active Wh Wh × 0.707 0 Reactive 0 Wh × 0.245 Wh × 0.347 Apparent Wh × 0.848 Wh × 0.848 Wh × 0.848 Integrator On at 60 Hz Active Wh Wh × 0.707 0 Reactive 0 Wh × 0.610 Wh × 0.863 Apparent Wh × 0.827 Wh × 0.827 Wh × 0.827 Integrator Off at 60 Hz Active Wh Wh × 0.707 0 Reactive 0 Wh × 0.204 Wh × 0.289 Apparent Wh × 0.827 Wh × 0.827 Wh × 0.827 CALIBRATING AN ENERGY METER BASED ON THE ADE7753 The ADE7753 provides gain and offset compensation for active and apparent energy calibration. Its phase compensation corrects phase error in active, apparent and reactive energy. If a shunt is used, offset and phase calibration may not be required. A reference meter or an accurate source can be used to calibrate the ADE7753. When using a reference meter, the ADE7753 calibration output frequency, CF, is adjusted to match the frequency output of the reference meter. A pulse output is only provided for the active energy measurement in the ADE7753. If it is desired to use a reference meter for calibrating the VA and VAR, then additional code would have to be written in a microprocessor to produce a pulsed output for these quantities. Otherwise, VA and VAR calibration require an accurate source. The ADE7753 provides a line cycle accumulation mode for calibration using an accurate source. In this method, the active energy accumulation rate is adjusted to produce a desired CF frequency. The benefit of using this mode is that the effect of the ripple noise in the active energy is eliminated. Up to 65535 half line cycles can be accumulated, thus providing a stable energy value to average. The accumulation time is calculated from the line cycle period, measured by the ADE7753 in the PERIOD register, and the number of half line cycles in the accumulation, fixed by the LINECYC register. Current and voltage rms offset calibration removes any apparent energy offset. A gain calibration is also provided for apparent energy. Figure 79 shows an optimized calibration flow for active energy, rms, and apparent energy. Active and apparent energy gain calibrations can take place concurrently, with a read of the accumulated apparent energy register following that of the accumulated active energy register. Figure 78 shows the calibration flow for the active energy portion of the ADE7753. Figure 78. Active Energy Calibration The ADE7753 does not provide means to calibrate reactive energy gain and offset. The reactive energy portion of the ADE7753 can be calibrated externally, through a MCU. Figure 79. Apparent and Active Energy Calibration ADE7753 Rev. C | Page 39 of 60 Watt Gain The first step of calibrating the gain is to define the line voltage, base current and the maximum current for the meter. A meter constant needs to be determined for CF, such as 3200 imp/kWh or 3.2 imp/Wh. Note that the line voltage and the maximum current scale to half of their respective analog input ranges in this example. The expected CF in Hz is CFexpected (Hz) = )cos(s/h3600(W)(imp/Wh)ϕ××LoadantMeterConst (34) whereϕis the angle between I and V, and cos is the power factor. )(ϕ The ratio of active energy LSBs per CF pulse is adjusted using the CFNUM, CFDEN, and WDIV registers. CFexpected = )1()1((s)++××CFDENCFNUMWDIVonTimeAccumulatiLAENERGY (35) The relationship between watt-hours accumulated and the quantity read from AENERGY can be determined from the amount of active energy accumulated over time with a given load: hLAENERGYTimeonAccumulatiLoads/3600(s)(W)LSBWh××= (36) where Accumulation Time can be determined from the value in the line period and the number of half line cycles fixed in the LINECYC register. Accumulation time(s) =2(s)PeriodLineLINECYCIB× (37) The line period can be determined from the PERIOD register: Line Period(s) = PERIOD ×CLKIN8 (38) The AENERGY Wh/LSB ratio can also be expressed in terms of the meter constant: (imp/Wh))1()1(LSBWhantMeterConstWDIVCFDENCFNUM×++= (39) In a meter design, WDIV, CFNUM, and CFDEN should be kept constant across all meters to ensure that the Wh/LSB constant is maintained. Leaving WDIV at its default value of 0 ensures maximum resolution. The WDIV register is not included in the CF signal chain so it does not affect the frequency pulse output. The WGAIN register is used to finely calibrate each meter. Cali-brating the WGAIN register changes both CF and AENERGY for a given load condition. AENERGYexpected = AENERGYnominal ×⎟⎠⎞⎜⎝⎛+1221WGAIN (40) CFexpected (Hz) = CFnominal × ⎟⎠⎞⎜⎝⎛+×++1221)1()1(WGAINCFDENCFNUM (41) When calibrating with a reference meter, WGAIN is adjusted until CF matches the reference meter pulse output. If an accurate source is used to calibrate, WGAIN is modified until the active energy accumulation rate yields the expected CF pulse rate. The steps of designing and calibrating the active energy portion of a meter with either a reference meter or an accurate source are outlined in the following examples. The specifications for this example are Meter Constant: MeterConstant(imp/Wh) = 3.2 Base Current: Ib = 10 A Maximum Current: IMAX = 60 A Line Voltage: Vnominal = 220 V Line Frequency: fl = 50 Hz The first step in calibration with either a reference meter or an accurate source is to calculate the CF denominator, CFDEN. This is done by comparing the expected CF pulse output to the nominal CF output with the default CFDEN = 0x3F and CFNUM = 0x3F and when the base current is applied. The expected CF output for this meter with the base current applied is 1.9556 Hz using Equation 34. CFIB(expected)(Hz) = Hz9556.1)cos(s/h3600V220A10imp/Wh200.3=ϕ××× Alternatively, CFexpected can be measured from a reference meter pulse output if available. CFexpected(Hz) = CFref (42) The maximum CF frequency measured without any frequency division and with ac inputs at full scale is 23 kHz. For this example, the nominal CF with the test current, Ib, applied is 958 Hz. In this example the line voltage and maximum current scale half of their respective analog input ranges. The line voltage and maximum current should not be fixed at the maximum analog inputs to account for occurrences such as spikes on the line. CFnominal(Hz) = MAXII×××2121kHz23 (43) CFIB(nominal)(Hz) = Hz95860102121kHz23=××× The nominal CF on a sample set of meters should be measured using the default CFDEN, CFNUM, and WDIV to ensure that the best CFDEN is chosen for the design. With the CFNUM register set to 0, CFDEN is calculated to be 489 for the example meter: ADE7753 Rev. C | Page 40 of 60 CFDEN = 1)()(−⎟⎟⎠⎞⎜⎜⎝⎛expectedIBnominalIBCFCFINT (44) CFDEN = 489)1490(19556.1958=−=−⎟⎠⎞⎜⎝⎛INT This value for CFDEN should be loaded into each meter before calibration. The WGAIN and WDIV registers can then be used to finely calibrate the CF output. The following sections explain how to calibrate a meter based on ADE7753 when using a reference meter or an accurate source. Calibrating Watt Gain Using a Reference Meter Example The CFDEN and CFNUM values for the design should be written to their respective registers before beginning the calibration steps shown in Figure 80. When using a reference meter, the %ERROR in CF is measured by comparing the CF output of the ADE7753 meter with the pulse output of the reference meter with the same test conditions applied to both meters. Equation 45 defines the percent error with respect to the pulse outputs of both meters (using the base current, Ib): %ERRORCF(IB) = 100)()(×−IBrefIBrefIBCFCFCF (45) CALCULATE CFDEN VALUE FOR DESIGNWRITE CFDEN VALUE TO CFDEN REGISTERADDR. 0x15 = CFDENWRITE WGAIN VALUE TO THE WGAINREGISTER: ADDR. 0x12MEASURE THE % ERROR BETWEENTHE CF OUTPUT AND THEREFERENCE METER OUTPUTSET ITEST = Ib, VTEST = VNOM, PF = 102875-A-006CALCULATE WGAIN. SEE EQUATION 46. Figure 80. Calibrating Watt Gain Using a Reference Meter For this example: Meter Constant: MeterConstant(imp/Wh) = 3.2 CF Numerator: CFNUM = 0 CF Denominator: CFDEN = 489 % Error measured at Base Current: %ERRORCF(IB) = -3.07% One LSB change in WGAIN changes the active energy registers and CF by 0.0244%. WGAIN is a signed twos complement register and can correct for up to a 50% error. Assuming a −3.07% error, WGAIN is 126: WGAIN = INT⎟⎟⎠⎞⎜⎜⎝⎛−%0244.0%)(IBCFERROR (46) WGAIN = INT 126%0244.0%07.3=⎟⎠⎞⎜⎝⎛−− When CF is calibrated, the AENERGY register has the same Wh/LSB constant from meter to meter if the meter constant, WDIV, and the CFNUM/CFDEN ratio remain the same. The Wh/LSB ratio for this meter is 6.378 × 10−4 using Equation 39 with WDIV at the default value. (imp/Wh))1()1(LSBWhantMeterConstWDIVCFDENCFNUM×++= 410378.62.34901imp/Wh200.3)1490(1LSBWh−×=×=+= Calibrating Watt Gain Using an Accurate Source Example The CFDEN value calculated using Equation 44 should be written to the CFDEN register before beginning calibration and zero should be written to the CFNUM register. First, the line accumulation mode and the line accumulation interrupt should be enabled. Next, the number of half line cycles for the energy accumulation is written to the LINECYC register. This sets the accumulation time. Reset the interrupt status register and wait for the line cycle accumulation interrupt. The first line cycle accumulation results may not have used the accumulation time set by the LINECYC register and should be discarded. After resetting the interrupt status register, the following line cycle readings will be valid. When LINECYC half line cycles have elapsed, the IRQ pin goes active low and the nominal LAENERGY with the test current applied can be read. This LAENERGY value is compared to the expected LAENERGY value to deter-mine the WGAIN value. If apparent energy gain calibration is performed at the same time, LVAENERGY can be read directly after LAENERGY. Both registers should be read before the next interrupt is issued on the IRQ pin. Refer to the section for more details. details the steps that calibrate the watt gain using an accurate source. Apparent Energy CalculationFigure 81 ADE7753 Rev. C | Page 41 of 60 WRITE WGAIN VALUE TO THE WGAINREGISTER: ADDR. 0x12CALCULATE CFDEN VALUE FOR DESIGNWRITE CFDEN VALUE TO CFDEN REGISTERADDR. 0x15 = CFDENSET HALF LINECYCLES FOR ACCUMULATIONIN LINECYC REGISTER ADDR. 0x1CSET ITEST = Ib, VTEST = VNOM, PF = 1CALCULATE WGAIN. SEE EQUATION 47.SET MODE FOR LINE CYCLEACCUMULATION ADDR. 0x09 = 0x0080ENABLE LINE CYCLE ACCUMULATIONINTERRUPT ADDR. 0x0A = 0x04READ LINE ACCUMULATION ENERGYADDR. 0x04RESET THE INTERRUPT STATUSREAD REGISTER ADDR. 0x0CINTERRUPT?NONOYESYES02875-A-007RESET THE INTERRUPT STATUSREAD REGISTER ADDR. 0x0CINTERRUPT? Figure 81. Calibrating Watt Gain Using an Accurate Source Equation 47 describes the relationship between the expected LAENERGY value and the LAENERGY measured in the test condition: WGAIN = INT⎟⎟⎠⎞⎜⎜⎝⎛×⎟⎟⎠⎞⎜⎜⎝⎛−12)()(21nominalIBexpectedIBLAENERGYLAENERGY (47) The nominal LAENERGY reading, LAENERGYIB(nominal), is the LAENERGY reading with the test current applied. The expected LAENERGY reading is calculated from the following equation: LAENERGYIB(expected) = INT⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛×++×WDIVCFDENCFNUMTimeonAccumulatiCFexpectedIB11(s))( (48) where CFIB(expected)(Hz) is calculated from Equation 34, accumula-tion time is calculated from Equation 37, and the line period is determined from the PERIOD register according to Equation 38. For this example: Meter Constant: MeterConstant(imp/Wh) = 3.2 Test Current: Ib = 10 A Line Voltage: Vnominal = 220 V Line Frequency: fl = 50 Hz Half Line Cycles: LINECYCIB = 2000 CF Numerator: CFNUM = 0 CF Denominator: CFDEN = 489 Energy Reading at Base Current: LAENERGYIB (nominal) = 17174 Period Register Reading: PERIOD = 8959 Clock Frequency: CLKIN = 3.579545 MHz CFexpected is calculated to be 1.9556 Hz according to Equation 34. LAENERGYexpected is calculated to be 19186 using Equation 48. CFIB(expected)(Hz) = )(cos(s/h3600A10V220imp/Wh200.3ϕ××× = 1.9556 Hz LAENERGYIB(expected) = INT⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛×++×××WDIVCFDENCFNUMCLKINPERIODLINECYCCFIBexpectedIB11/82/)( LAENERGYIB(expected) = INT114891)10579545.3/(889592/20009556.16⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+××××= 19186)4.19186(=INT WGAIN is calculated to be 480 using Equation 47. WGAIN = INT48021171741918612=⎟⎠⎞⎜⎝⎛×⎟⎠⎞⎜⎝⎛− Note that WGAIN is a signed twos complement register. With WDIV and CFNUM set to 0, LAENERGY can be expressed as ADE7753 Rev. C | Page 42 of 60 LAENERGYIB(expected) = ))1(/82/()(+××××CFDENCLKINPERIODLINECYCCFINTIBexpectedIB The calculated Wh/LSB ratio for the active energy register, using Equation 39 is 6.378 × 10−4: 410378.6imp/Wh200.3)1489(1LSBWh−×=+= Watt Offset Offset calibration allows outstanding performance over a wide dynamic range, for example, 1000:1. To do this calibration two measurements are needed at unity power factor, one at Ib and the other at the lowest current to be corrected. Either calibration frequency or line cycle accumulation measurements can be used to determine the energy offset. Gain calibration should be performed prior to offset calibration. Offset calibration is performed by determining the active energy error rate. Once the active energy error rate has been determined, the value to write to the APOS register to correct the offset is calculated. APOS = − CLKINRateErrorAENERGY352× (49) The AENERGY registers update at a rate of CLKIN/4. The twos complement APOS register provides a fine adjustment to the active power calculation. It represents a fixed amount of power offset to be adjusted every CLKIN/4. The 8 LSBs of the APOS register are fractional such that one LSB of APOS represents 1/256 of the least significant bit of the internal active energy register. Therefore, one LSB of the APOS register represents 2−33 of the AENERGY[23:0] active energy register. The steps involved in determining the active energy error rate for both line accumulation and reference meter calibration options are shown in the following sections. Calibrating Watt Offset Using a Reference Meter Example Figure 82 shows the steps involved in calibrating watt offset with a reference meter. WRITE APOS VALUE TO THE APOSREGISTER: ADDR. 0x11MEASURE THE % ERROR BETWEEN THECF OUTPUT AND THE REFERENCE METEROUTPUT, AND THE LOAD IN WATTSSET ITEST = IMIN, VTEST = VNOM, PF = 102875-A-008CALCULATE APOS. SEE EQUATION 49. Figure 82. Calibrating Watt Offset Using a Reference Meter For this example: Meter Constant: MeterConstant(imp/Wh) = 3.2 Minimum Current: IMIN = 40 mA Load at Minimum Current: WIMIN = 9.6 W CF Error at Minimum Current: %ERRORCF(IMIN) = 1.3% CF Numerator: CFNUM = 0 CF Denominator: CFDEN = 489 Clock Frequency: CLKIN = 3.579545 MHz Using Equation 49, APOS is calculated to be −522 for this example. CF Absolute Error = CFIMIN(nominal) − CFIMIN(expected) (50) CF Absolute Error = (%ERRORCF(IMIN)) × WIMIN × 3600(imp/Wh)antMeterConst (51) CF Absolute Error = Hz000110933.03600200.36.9100%3.1=××⎟⎠⎞⎜⎝⎛ Then, AENERGY Error Rate (LSB/s) = CF Absolute Error × 11++CFNUMCFDEN (52) AENERGY Error Rate (LSB/s) = 0.000110933 × 05436.01490= Using Equation 49, APOS is −522. APOS = − 52210579545.3205436.0635−=×× APOS can be represented as follows with CFNUM and WDIV set at 0: APOS = −CLKINCFDENantMeterConstWERRORIMINIMINCF35)(2)1(3600(imp/Wh))(%×+××× ADE7753 Rev. C | Page 43 of 60 Calibrating Watt Offset with an Accurate Source Example Figure 83 is the flowchart for watt offset calibration with an accurate source. SET HALF LINE CYCLES FOR ACCUMULATIONIN LINECYC REGISTER ADDR. 0x1CSET ITEST = IMIN, VTEST = VNOM, PF = 1CALCULATE APOS. SEE EQUATION 49.SET MODE FOR LINE CYCLEACCUMULATION ADDR. 0x09 = 0x0080ENABLE LINE CYCLE ACCUMULATIONINTERRUPT ADDR. 0x0A = 0x04READ LINE ACCUMULATION ENERGYADDR. 0x04RESET THE INTERRUPT STATUSREAD REGISTER ADDR. 0x0CINTERRUPT?NONOYESYESRESET THE INTERRUPT STATUSREAD REGISTER ADDR. 0x0CINTERRUPT?WRITE APOS VALUE TO THE APOSREGISTER: ADDR. 0x1102875-A-009 Figure 83. Calibrating Watt Offset with an Accurate Source For this example: Meter Constant: MeterConstant(imp/Wh) = 3.2 Line Voltage: Vnominal = 220 V Line Frequency: fl = 50 Hz CF Numerator: CFNUM = 0 CF Denominator: CFDEN = 489 Base Current: Ib = 10 A Half Line Cycles Used at Base Current: LINECYC(IB) = 2000 Period Register Reading: PERIOD = 8959 Clock Frequency: CLKIN = 3.579545 MHz Expected LAENERGY Register Value at Base Current (from the Watt Gain section):LAENERGYIB(expected) = 19186 Minimum Current: IMIN = 40 mA Number of Half Line Cycles used at Minimum Current: LINECYC(IMIN) = 35700 Active energy Reading at Minimum Current: LAENERGYIMIN(nominal) = 1395 The LAENERGYexpected at IMIN is 1370 using Equation 53. LAENERGYIMIN(expected) = INT ⎟⎟⎠⎞⎜⎜⎝⎛××IBMINexpectedIBBMINLINECYCLINECYCILAENERGYII)((53) LAENERGYIMIN(expected) = INT 1370)80.1369(200035700191861004.0==⎟⎠⎞⎜⎝⎛××INT where: LAENERGYIB(expected) is the expected LAENERGY reading at Ib from the watt gain calibration. LINECYCIMIN is the number of half line cycles that energy is accumulated over when measuring at IMIN. More line cycles could be required at the minimum current to minimize the effect of quantization error on the offset calibration. For example, if a test current of 40 mA results in an active energy accumulation of 113 after 2000 half line cycles, one LSB variation in this reading represents an 0.8% error. This measurement does not provide enough resolution to calibrate out a <1% offset error. However, if the active energy is accumulated over 37,500 half line cycles, one LSB variation results in 0.05% error, reducing the quantization error. APOS is −672 using Equations 55 and 49. LAENERGY Absolute Error = LAENERGYIMIN(nominal) − LAENERGYIMIN(expected) LAENERGY Absolute Error = 1395 − 1370 = 25 (54) AENERGY Error Rate (LSB/s) = PERIODCLKINLINECYCErrorAbsoluteLAENERGY××82/ (55) AENERGY Error Rate (LSB/s) = 069948771.08959810579545.32/35700256=××× APOS = −CLKINRateErrorAENERGY352× APOS = −67210579545.32069948771.0635−=×× ADE7753 Rev. C | Page 44 of 60 Phase Calibration The PHCAL register is provided to remove small phase errors. The ADE7753 compensates for phase error by inserting a small time delay or advance on the voltage channel input. Phase leads up to 1.84° and phase lags up to 0.72° at 50 Hz can be corrected. The error is determined by measuring the active energy at IB and two power factors, PF = 1 and PF =0.5 inductive. Some CTs may introduce large phase errors that are beyond the range of the phase calibration register. In this case, coarse phase compensation has to be done externally with an analog filter. The phase error can be obtained from either CF or LAENERGY measurements: Error = 22)()(5.,expectedIBexpectedIBPFIBLAENERGYLAENERGYLAENERGY−= (56) If watt gain and offset calibration have been performed, there should be 0% error in CF at unity power factor and then: Error = %ERRORCF(IB,PF = .5) /100 (57) The phase error is Phase Error (°) = −Arcsin⎟⎟⎠⎞⎜⎜⎝⎛3Error (58) The relationship between phase error and the PHCAL phase correction register is PHCAL= INT()+⎟⎠⎞⎜⎝⎛°×°360PERIODErrorPhase0x0D (59) The expression for PHCAL can be simplified using the assumption that at small x: Arcsin(x) ≈ x The delay introduced in the voltage channel by PHCAL is Delay = (PHCAL − 0x0D) × 8/CLKIN (60) The delay associated with the PHCAL register is a time delay if (PHCAL − 0x0D) is positive but represents a time advance if this quantity is negative. There is no time delay if PHCAL = 0x0D. The phase correction is in the opposite direction of the phase error. Phase Correction (°) = −(PHCAL − 0x0D) PERIOD°×360 (61) Calibrating Phase Using a Reference Meter Example A power factor of 0.5 inductive can be assumed if the pulse output rate of the reference meter is half of its PF = 1 rate. Then the %ERROR between CF and the pulse output of the reference meter can be used to perform the preceding calculations. WRITE PHCAL VALUE TO THE PHCALREGISTER: ADDR. 0x10MEASURE THE % ERROR BETWEENTHE CF OUTPUT AND THEREFERENCE METER OUTPUTSET ITEST = Ib, VTEST = VNOM, PF = 0.502875-A-010CALCULATE PHCAL. SEE EQUATION 59. Figure 84. Calibrating Phase Using a Reference Meter For this example: CF % Error at PF = .5 Inductive: %ERRORCF(IB,PF = .5) = 0.215% PERIOD Register Reading: PERIOD = 8959 Then PHCAL is 11 using Equations 57 through 59: Error = 0.215% / 100 = 0.00215 Phase Error (°) = −Arcsin°−=⎟⎟⎠⎞⎜⎜⎝⎛07.0300215.0 PHCAL = INT⎟⎠⎞⎜⎝⎛°×°−360895907.0+0x0D = −2 + 13 = 11 PHCAL can be expressed as follows: PHCAL = INT ⎟⎟⎠⎞⎜⎜⎝⎛π×⎟⎟⎠⎞⎜⎜⎝⎛−23ArcsinPERIODError+ 0x0D (62) Note that PHCAL is a signed twos complement register. Setting the PHCAL register to 11 provides a phase correction of 0.08° to correct the phase lead: Phase Correction (°) = PERIODPHCAL°×−−360)0x0D( Phase Correction (°) = °=°×−−08.08960360)0x0D11( ADE7753 Rev. C | Page 45 of 60 Calibrating Phase with an Accurate Source Example With an accurate source, line cycle accumulation is a good method of calibrating phase error. The value of LAENERGY must be obtained at two power factors, PF = 1 and PF = 0.5 inductive. SET HALF LINE CYCLES FOR ACCUMULATIONIN LINECYC REGISTER ADDR. 0x1CSET ITEST = Ib, VTEST = VNOM, PF = 0.5CALCULATE PHCAL. SEE EQUATION 59.SET MODE FOR LINE CYCLEACCUMULATION ADDR. 0x09 = 0x0080ENABLE LINE CYCLE ACCUMULATIONINTERRUPT ADDR. 0x0A = 0x04READ LINE ACCUMULATION ENERGYADDR. 0x04RESET THE INTERRUPT STATUSREAD REGISTER ADDR. 0x0CINTERRUPT?NONOYESYESRESET THE INTERRUPT STATUSREAD REGISTER ADDR. 0x0CINTERRUPT?WRITE PHCAL VALUE TO THE PHCALREGISTER: ADDR. 0x1002875-A-011 Figure 85. Calibrating Phase with an Accurate Source For this example: Meter Constant: MeterConstant(imp/Wh) = 3.2 Line Voltage: Vnominal = 220 V Line Frequency: fl = 50 Hz CF Numerator: CFNUM = 0 CF Denominator: CFDEN = 489 Base Current: Ib = 10 A Half Line Cycles Used at Base Current: LINECYCIB = 2000 PERIOD Register: PERIOD = 8959 Expected Line Accumulation at Unity Power Factor (from Watt Gain Section: LAENERGYIB(expected) = 19186 Active Energy Reading at PF = .5 inductive: LAENERGYIB, PF = .5 = 9613 The error using Equation 56 is Error = 0021.02191862191869613=− Phase Error (°) = −Arcsin°−=⎟⎟⎠⎞⎜⎜⎝⎛07.030021.0 Using Equation 59, PHCAL is calculated to be 11. PHCAL = INT111320x0D360895907.0=+−=+⎟⎠⎞⎜⎝⎛°×°− Note that PHCAL is a signed twos complement register. The phase lead is corrected by 0.08° when the PHCAL register is set to 11: Phase Correction (°) = PERIODPHCAL°×−−360)0x0D( Phase Correction (°) = °=°×−−08.08960360)0x0D11( VRMS and IRMS Calibration VRMS and IRMS are calculated by squaring the input in a digital multiplier. )2cos()sin(V2)sin(V2)(tVVtttv222ω×−=ω×ω= (63) The square of the rms value is extracted from v2(t) by a low-pass filter. The square root of the output of this low-pass filter gives the rms value. An offset correction is provided to cancel noise and offset contributions from the input. There is ripple noise from the 2ω term because the low-pass filter does not completely attenuate the signal. This noise can be minimized by synchronizing the rms register readings with the zero crossing of the voltage signal. The IRQ output can be configured to indicate the zero crossing of the voltage signal. This flowchart demonstrates how VRMS and IRMS readings are synchronized to the zero crossings of the voltage input. SET INTERRUPT ENABLE FOR ZEROCROSSING ADDR. 0x0A = 0x0010RESET THE INTERRUPT STATUSREAD REGISTER ADDR. 0x0CINTERRUPT?NOYES02875-A-003READ VRMS OR IRMSADDR. 0x17; 0x16RESET THE INTERRUPT STATUSREAD REGISTER ADDR. 0x0C Figure 86. Synchronizing VRMS and IRMS Readings with Zero Crossings ADE7753 Rev. C | Page 46 of 60 Apparent Energy Voltage rms compensation is done after the LPF3 filter (see Figure 56). Apparent energy gain calibration is provided for both meter-to-meter gain adjustment and for setting the VAh/LSB constant. VRMS = VRMS0 + VRMSOS (64) VAENERGY = ⎟⎠⎞⎜⎝⎛+××12211VAGAINVADIVVAENERGYinitial (68) where: VRMS0 is the rms measurement without offset correction. VRMS is linear from full-scale to full-scale/20. VADIV is similar to the CFDEN for the watt hour calibration. It should be the same across all meters and determines the VAh/LSB constant. VAGAIN is used to calibrate individual meters. To calibrate the offset, two VRMS measurements are required, for example, at Vnominal and Vnominal/10. Vnominal is set at half of the full-scale analog input range so the smallest linear VRMS reading is at Vnominal/10. VRMSOS = 121221VVVRMSVVRMSV−×−× (65) Apparent energy gain calibration should be performed before rms offset correction to make most efficient use of the current test points. Apparent energy gain and watt gain compensation require testing at Ib while rms and watt offset correction require a lower test current. Apparent energy gain calibration can be done at the same time as the watt-hour gain calibration using line cycle accumulation. In this case, LAENERGY and LVAENERGY, the line cycle accumulation apparent energy register, are both read following the line cycle accumulation interrupt. Figure 87 shows a flowchart for calibrating active and apparent energy simultaneously. where VRMS1 and VRMS2 are rms register values without offset correction for input V1 and V2, respectively. If the range of the 12-bit, twos complement VRMSOS register is not enough, the voltage channel offset register, CH2OS, can be used to correct the VRMS offset. Current rms compensation is performed before the square root: IRMS2 = IRMS02 + 32768 × IRMSOS (66) VAGAIN = INT⎟⎟⎠⎞⎜⎜⎝⎛×⎟⎟⎠⎞⎜⎜⎝⎛−12)()(21nominalIBexpectedIBLVAENERGYLVAENERGY(69) where IRMS0 is the rms measurement without offset correction. The current rms calculation is linear from full-scale to full-scale/100. LVAENERGYIB(expected) = INT⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛×××(s)s/h3600timeonAccumulaticonstantLSBVAhIVBnominal(70) To calibrate this offset, two IRMS measurements are required, for example, at Ib and IMAX/50. IMAX is set at half of the full-scale analog input range so the smallest linear IRMS reading is at IMAX/50. IRMSOS = 212221222221IIIRMSIIRMSI−×−××327681 (67) The accumulation time is determined from Equation 37 and the line period can be determined from the PERIOD register accord-ing to Equation 38. The VAh represented by the VAENERGY register is where IRMS1 and IRMS2 are rms register values without offset correction for input I1 and I2, respectively. VAh = VAENERGY × VAh/LSB constant (71) The VAh/LSB constant can be verified using this equation: LVAENERGYtimeonAccumulatiVAconstantLSBVAh3600(s)×= (72) ADE7753 Rev. C | Page 47 of 60 CALCULATE CFDEN VALUE FOR DESIGNWRITE CFDEN VALUE TO CFDEN REGISTERADDR. 0x15 = CFDENSET HALF LINE CYCLES FOR ACCUMULATIONIN LINECYC REGISTER ADDR. 0x1CSET ITEST = Ib, VTEST = VNOM, PF = 1CALCULATE WGAIN. SEE EQUATION 47.SET MODE FOR LINE CYCLEACCUMULATION ADDR. 0x09 = 0x0080ENABLE LINE CYCLE ACCUMULATIONINTERRUPT ADDR. 0x0A = 0x04READ LINE ACCUMULATION ENERGYACTIVE ENERGY: ADDR. 0x04APPARAENT ENERGY: ADDR. 0x07RESET THE INTERRUPT STATUSREAD REGISTER ADDR. = 0x0CINTERRUPT?NONOYESYES02875-A-004RESET THE INTERRUPT STATUSREAD REGISTER ADDR. = 0x0CINTERRUPT?WRITE WGAIN VALUE TO ADDR. 0x12CALCULATE VAGAIN. SEE EQUATION 69.WRITE VGAIN VALUE TO ADDR. 0x1A Figure 87. Active/Apparent Gain Calibration Reactive Energy Reactive energy is only available in line accumulation mode in the ADE7753. The accumulated reactive energy over LINECYC number of half line cycles is stored in the LVARENERGY register. In the ADE7753, a low-pass filter at 2 Hz on the current channel is implemented for the reactive power calculation. This provides the 90 degree phase shift needed to calculate the reactive power. This filter introduces 1/f attenuation in the reactive energy accumulated. Compensation for this attenuation can be done externally in a microcontroller. The microcontroller can use the LVARENERGY register in order to produce a pulse output similar to the CF pulse for reactive energy. To create a VAR pulse, an impulse/VARh constant must be determined. The 1/f attenuation correction factor is determined by comparing the nominal reactive energy accumulation rate to the expected value. The attenuation correction factor is multi-plied by the contents of the LVARENERGY register, with the ADE7753 in line accumulation mode. ADE7753 Rev. C | Page 48 of 60 The impulse/LSB ratio used to convert the value in the LVARENERGY register into a pulse output can be expressed in terms of impulses/VARh and VARh/LSB. imp/LSB = nominalexpectedIBVARCFVARCFLSBVARhVARhimp)(//=× (73) VARCFIB(expected) = )sin(s/h3600)/(ϕ×××bnominalIVVARhimptVARConstan (74) VARCFIB(nominal) = PERIODtimeonAccumulatiPERIODLVARENERGYIB××(s)Hz50 (75) where the accumulation time is calculated from Equation 37. The line period can be determined from the PERIOD register according to Equation 38. Then VAR can be determined from the LVARENERGY register value: VARh = PERIODPERIODLSBVARhLVARENERGYIBHz50/×× (76) VAR = PERIODtimeonAccumulatiPERIODLSBVARhLVARENERGYIB×××(s)s/h3600/Hz50 (77) The PERIOD50 Hz/PERIOD factor in the preceding VAR equations is the correction factor for the 1/f frequency attenuation of the low-pass filter. The PERIOD50 Hz term refers to the line period at calibration and could represent a frequency other than 50 Hz. CLKIN FREQUENCY In this data sheet, the characteristics of the ADE7753 are shown when CLKIN frequency is equal to 3.579545 MHz. However, the ADE7753 is designed to have the same accuracy at any CLKIN frequency within the specified range. If the CLKIN frequency is not 3.579545 MHz, various timing and filter characteristics need to be redefined with the new CLKIN frequency. For example, the cutoff frequencies of all digital filters such as LPF1, LPF2, or HPF1, shift in proportion to the change in CLKIN frequency according to the following equation: MHzFrequencyCLKINFrequencyOriginalFrequencyNew579545.3×= (78) The change of CLKIN frequency does not affect the timing characteristics of the serial interface because the data transfer is synchronized with serial clock signal (SCLK). But one needs to observe the read/write timing of the serial data transfer—see the ADE7753 timing characteristics in Table 2. Table 11 lists various timing changes that are affected by CLKIN frequency. Table 11. Frequency Dependencies of the ADE7753 Parameters Parameter CLKIN Dependency Nyquist Frequency for CH 1 and CH 2 ADCs CLKIN/8 PHCAL Resolution (Seconds per LSB) 4/CLKIN Active Energy Register Update Rate (Hz) CLKIN/4 Waveform Sampling Rate (per Second) WAVSEL 1,0 = 0 0 CLKIN/128 0 1 CLKIN/256 1 0 CLKIN/512 1 1 CLKIN/1024 Maximum ZXTOUT Period 524,288/CLKIN SUSPENDING ADE7753 FUNCTIONALITY The analog and the digital circuit can be suspended separately. The analog portion of the ADE7753 can be suspended by setting the ASUSPEND bit (Bit 4) of the mode register to logic high—see the Mode Register (0x9) section. In suspend mode, all wave-form samples from the ADCs are set to 0. The digital circuitry can be halted by stopping the CLKIN input and maintaining a logic high or low on the CLKIN pin. The ADE7753 can be reactivated by restoring the CLKIN input and setting the ASUSPEND bit to logic low. CHECKSUM REGISTER The ADE7753 has a checksum register (CHECKSUM[5:0]) to ensure the data bits received in the last serial read operation are not corrupted. The 6-bit checksum register is reset before the first bit (MSB of the register to be read) is put on the DOUT pin. During a serial read operation, when each data bit becomes available on the rising edge of SCLK, the bit is added to the checksum register. In the end of the serial read operation, the content of the checksum register is equal to the sum of all ones in the register previously read. Using the checksum register, the user can determine if an error has occurred during the last read operation. Note that a read to the checksum register also generates a checksum of the checksum register itself. CONTENT OF REGISTER (n-bytes)CHECKSUM REGISTERADDR:0x3E++DOUT02875-0-077 Figure 88. Checksum Register for Serial Interface Read ADE7753 Rev. C | Page 49 of 60 ADE7753 SERIAL INTERFACE All ADE7753 functionality is accessible via several on-chip registers—see Figure 89. The contents of these registers can be updated or read using the on-chip serial interface. After power-on or toggling the RESET pin low or a falling edge on CS, the ADE7753 is placed in communications mode. In communica-tions mode, the ADE7753 expects a write to its communications register. The data written to the communications register determines whether the next data transfer operation is a read or a write and also which register is accessed. Therefore all data transfer operations with the ADE7753, whether a read or a write, must begin with a write to the communications register. COMMUNICATIONSREGISTERINOUTINOUTINOUTINOUTINOUTREGISTER 1REGISTER 2REGISTER 3REGISTER n–1REGISTER nREGISTERADDRESSDECODEDINDOUT02875-0-078 Figure 89. Addressing ADE7753 Registers via the Communications Register The communications register is an 8-bit wide register. The MSB determines whether the next data transfer operation is a read or a write. The six LSBs contain the address of the register to be accessed—see the Communications Register section for a more detailed description. Figure 90 and Figure 91 show the data transfer sequences for a read and write operation, respectively. On completion of a data transfer (read or write), the ADE7753 once again enters communications mode. A data transfer is complete when the LSB of the ADE7753 register being addressed (for a write or a read) is transferred to or from the ADE7753. MULTIBYTECOMMUNICATIONS REGISTER WRITEDINSCLKCSDOUTREAD DATAADDRESS0002875-0-079 Figure 90. Reading Data from the ADE7753 via the Serial Interface COMMUNICATIONS REGISTER WRITEDINSCLKCSADDRESS0102875-0-080MULTIBYTEREAD DATA Figure 91. Writing Data to the ADE7753 via the Serial Interface The serial interface of the ADE7753 is made up of four signals: SCLK, DIN, DOUT, and CS. The serial clock for a data transfer is applied at the SCLK logic input. This logic input has a Schmitt-trigger input structure that allows slow rising (and falling) clock edges to be used. All data transfer operations are synchronized to the serial clock. Data is shifted into the ADE7753 at the DIN logic input on the falling edge of SCLK. Data is shifted out of the ADE7753 at the DOUT logic output on a rising edge of SCLK. The CS logic input is the chip-select input. This input is used when multiple devices share the serial bus. A falling edge on CS also resets the serial interface and places the ADE7753 into communications mode. The CS input should be driven low for the entire data transfer operation. Bringing CS high during a data transfer operation aborts the transfer and places the serial bus in a high impedance state. The CS logic input can be tied low if the ADE7753 is the only device on the serial bus. However, with CS tied low, all initiated data transfer operations must be fully completed, i.e., the LSB of each register must be transferred because there is no other way of bringing the ADE7753 back into communications mode without resetting the entire device by using RESET. ADE7753 Rev. C | Page 50 of 60 ADE7753 Serial Write Operation The serial write sequence takes place as follows. With the ADE7753 in communications mode (i.e., the CS input logic low), a write to the communications register first takes place. The MSB of this byte transfer is a 1, indicating that the data transfer operation is a write. The LSBs of this byte contain the address of the register to be written to. The ADE7753 starts shifting in the register data on the next falling edge of SCLK. All remaining bits of register data are shifted in on the falling edge of subsequent SCLK pulses—see . As explained earlier, the data write is initiated by a write to the communications register followed by the data. During a data write operation to the ADE7753, data is transferred to all on-chip registers one byte at a time. After a byte is transferred into the serial port, there is a finite time before it is transferred to one of the ADE7753 on-chip registers. Although another byte transfer to the serial port can start while the previous byte is being transferred to an on-chip register, this second byte transfer Figure 92 should not finish until at least 4 μs after the end of the previous byte transfer. This functionality is expressed in the timing specification t6—see Figure 92. If a write operation is aborted during a byte transfer (CS brought high), then that byte cannot be written to the destination register. Destination registers can be up to 3 bytes wide—see the ADE7753 Register Description tables. Therefore the first byte shifted into the serial port at DIN is transferred to the MSB (most significant byte) of the destination register. If, for example, the addressed register is 12 bits wide, a 2-byte data transfer must take place. The data is always assumed to be right justified, therefore in this case, the four MSBs of the first byte would be ignored and the four LSBs of the first byte written to the ADE7753 would be the four MSBs of the 12-bit word. Figure 93 illustrates this example. DINSCLKCSt2t3t1t4t5t7t6t8COMMAND BYTEMOST SIGNIFICANT BYTELEAST SIGNIFICANT BYTE10A4A5A3A2A1A0DB7DB0DB7DB0t702875-0-081 Figure 92. Serial Interface Write Timing SCLKDINXXXXDB11DB10DB9DB8DB7DB6DB5DB4DB3DB2DB1DB0MOST SIGNIFICANT BYTELEAST SIGNIFICANT BYTE02875-0-082 Figure 93. 12-Bit Serial Write Operation ADE7753 Rev. C | Page 51 of 60 ADE7753 Serial Read Operation During a data read operation from the ADE7753, data is shifted out at the DOUT logic output on the rising edge of SCLK. As is the case with the data write operation, a data read must be preceded with a write to the communications register. With the ADE7753 in communications mode (i.e., CS logic low), an 8-bit write to the communications register first takes place. The MSB of this byte transfer is a 0, indicating that the next data transfer operation is a read. The LSBs of this byte contain the address of the register that is to be read. The ADE7753 starts shifting out of the register data on the next rising edge of SCLK—see . At this point, the DOUT logic output leaves its high impedance state and starts driving the data bus. All remaining bits of register data are shifted out on subsequent SCLK rising edges. The serial interface also enters communications mode again as soon as the read has been completed. At this point, the DOUT logic output enters a high impedance state on the falling edge of the last SCLK pulse. The read operation can be aborted by bringing the Figure 94CS logic input high before the data transfer is complete. The DOUT output enters a high impedance state on the rising edge of CS. When an ADE7753 register is addressed for a read operation, the entire contents of that register are transferred to the serial port. This allows the ADE7753 to modify its on-chip registers without the risk of corrupting data during a multibyte transfer. Note that when a read operation follows a write operation, the read command (i.e., write to communications register) should not happen for at least 4 μs after the end of the write operation. If the read command is sent within 4 μs of the write operation, the last byte of the write operation could be lost. This timing constraint is given as timing specification t9. SCLKCSt1t10t1300A4A5A3A2A1A0DB0DB7DB0DB7DINDOUTt11t11t12COMMAND BYTEMOST SIGNIFICANT BYTELEAST SIGNIFICANT BYTEt902875-0-083 Figure 94. Serial Interface Read Timing ADE7753 Rev. C | Page 52 of 60 ADE7753 REGISTERS Table 12. Summary of Registers by Address Address Name R/W No. Bits Default Type1 Description 0x01 WAVEFORM R 24 0x0 S Waveform Register. This read-only register contains the sampled waveform data from either Channel 1, Channel 2, or the active power signal. The data source and the length of the waveform registers are selected by data Bits 14 and 13 in the mode register—see the Channel 1 Sampling and Channel 2 Sampling sections. 0x02 AENERGY R 24 0x0 S Active Energy Register. Active power is accumulated (integrated) over time in this 24-bit, read-only register—see the Energy Calculation section. 0x03 RAENERGY R 24 0x0 S Same as the active energy register except that the register is reset to 0 following a read operation. 0x04 LAENERGY R 24 0x0 S Line Accumulation Active Energy Register. The instantaneous active power is accumulated in this read-only register over the LINECYC number of half line cycles. 0x05 VAENERGY R 24 0x0 U Apparent Energy Register. Apparent power is accumulated over time in this read-only register. 0x06 RVAENERGY R 24 0x0 U Same as the VAENERGY register except that the register is reset to 0 following a read operation. 0x07 LVAENERGY R 24 0x0 U Line Accumulation Apparent Energy Register. The instantaneous real power is accumulated in this read-only register over the LINECYC number of half line cycles. 0x08 LVARENERGY R 24 0x0 S Line Accumulation Reactive Energy Register. The instantaneous reactive power is accumulated in this read-only register over the LINECYC number of half line cycles. 0x09 MODE R/W 16 0x000C U Mode Register. This is a 16-bit register through which most of the ADE7753 functionality is accessed. Signal sample rates, filter enabling, and calibration modes are selected by writing to this register. The contents can be read at any time—see the Mode Register (0x9) section. 0x0A IRQEN R/W 16 0x40 U Interrupt Enable Register. ADE7753 interrupts can be deactivated at any time by setting the corresponding bit in this 16- bit enable register to Logic 0. The status register continues to register an interrupt event even if disabled. However, the IRQ output is not activated—see the section. ADE7753 Interrupts 0x0B STATUS R 16 0x0 U Interrupt Status Register. This is an 16-bit read-only register. The status register contains information regarding the source of ADE7753 interrupts—the see ADE7753 Interrupts section. 0x0C RSTSTATUS R 16 0x0 U Same as the interrupt status register except that the register contents are reset to 0 (all flags cleared) after a read operation. 0x0D CH1OS R/W 8 0x00 S* Channel 1 Offset Adjust. Bit 6 is not used. Writing to Bits 0 to 5 allows offsets on Channel 1 to be removed—see the Analog Inputs and CH1OS Register (0x0D) sections. Writing a Logic 1 to the MSB of this register enables the digital integrator on Channel 1, a Logic 0 disables the integrator. The default value of this bit is 0. 0x0E CH2OS R/W 8 0x0 S* Channel 2 Offset Adjust. Bits 6 and 7 are not used. Writing to Bits 0 to 5 of this register allows any offsets on Channel 2 to be removed—see the Analog Inputs section. Note that the CH2OS register is inverted. To apply a positive offset, a negative number is written to this register. 0x0F GAIN R/W 8 0x0 U PGA Gain Adjust. This 8-bit register is used to adjust the gain selection for the PGA in Channels 1 and 2—see the Analog Inputs section. 0x10 PHCAL R/W 6 0x0D S Phase Calibration Register. The phase relationship between Channel 1 and 2 can be adjusted by writing to this 6-bit register. The valid content of this twos compliment register is between 0x1D to 0x21. At a line frequency of 60 Hz, this is a range from –2.06° to +0.7°—see the Phase Compensation section. 0x11 APOS R/W 16 0x0 S Active Power Offset Correction. This 16-bit register allows small offsets in the active power calculation to be removed—see the Active Power Calculation section. ADE7753 Rev. C | Page 53 of 60 Address Name R/W No. Bits Default Type1 Description 0x12 WGAIN R/W 12 0x0 S Power Gain Adjust. This is a 12-bit register. The active power calculation can be calibrated by writing to this register. The calibration range is ±50% of the nominal full-scale active power. The resolution of the gain adjust is 0.0244%/LSB —see the Calibrating an Energy Meter Based on the ADE7753 section. 0x13 WDIV R/W 8 0x0 U Active Energy Divider Register. The internal active energy register is divided by the value of this register before being stored in the AENERGY register. 0x14 CFNUM R/W 12 0x3F U CF Frequency Divider Numerator Register. The output frequency on the CF pin is adjusted by writing to this 12-bit read/write register—see the Energy-to-Frequency Conversion section. 0x15 CFDEN R/W 12 0x3F U CF Frequency Divider Denominator Register. The output frequency on the CF pin is adjusted by writing to this 12-bit read/write register—see the Energy-to-Frequency Conversion section. 0x16 IRMS R 24 0x0 U Channel 1 RMS Value (Current Channel). 0x17 VRMS R 24 0x0 U Channel 2 RMS Value (Voltage Channel). 0x18 IRMSOS R/W 12 0x0 S Channel 1 RMS Offset Correction Register. 0x19 VRMSOS R/W 12 0x0 S Channel 2 RMS Offset Correction Register. 0x1A VAGAIN R/W 12 0x0 S Apparent Gain Register. Apparent power calculation can be calibrated by writing to this register. The calibration range is 50% of the nominal full-scale real power. The resolution of the gain adjust is 0.02444%/LSB. 0x1B VADIV R/W 8 0x0 U Apparent Energy Divider Register. The internal apparent energy register is divided by the value of this register before being stored in the VAENERGY register. 0x1C LINECYC R/W 16 0xFFFF U Line Cycle Energy Accumulation Mode Line-Cycle Register. This 16-bit register is used during line cycle energy accumulation mode to set the number of half line cycles for energy accumulation—see the Line Cycle Energy Accumulation Mode section. 0x1D ZXTOUT R/W 12 0xFFF U Zero-Crossing Timeout. If no zero crossings are detected on Channel 2 within a time period specified by this 12-bit register, the interrupt request line (IRQ) is activated—see the section. Zero-Crossing Detection 0x1E SAGCYC R/W 8 0xFF U Sag Line Cycle Register. This 8-bit register specifies the number of consecutive line cycles the signal on Channel 2 must be below SAGLVL before the SAG output is activated—see the Line Voltage Sag Detection section. 0x1F SAGLVL R/W 8 0x0 U Sag Voltage Level. An 8-bit write to this register determines at what peak signal level on Channel 2 the SAG pin becomes active. The signal must remain low for the number of cycles specified in the SAGCYC register before the SAG pin is activated—see the section. Line Voltage Sag Detection 0x20 IPKLVL R/W 8 0xFF U Channel 1 Peak Level Threshold (Current Channel). This register sets the level of the current peak detection. If the Channel 1 input exceeds this level, the PKI flag in the status register is set. 0x21 VPKLVL R/W 8 0xFF U Channel 2 Peak Level Threshold (Voltage Channel). This register sets the level of the voltage peak detection. If the Channel 2 input exceeds this level, the PKV flag in the status register is set. 0x22 IPEAK R 24 0x0 U Channel 1 Peak Register. The maximum input value of the current channel since the last read of the register is stored in this register. 0x23 RSTIPEAK R 24 0x0 U Same as Channel 1 Peak Register except that the register contents are reset to 0 after read. 0x24 VPEAK R 24 0x0 U Channel 2 Peak Register. The maximum input value of the voltage channel since the last read of the register is stored in this register. 0x25 RSTVPEAK R 24 0x0 U Same as Channel 2 Peak Register except that the register contents are reset to 0 after a read. 0x26 TEMP R 8 0x0 S Temperature Register. This is an 8-bit register which contains the result of the latest temperature conversion—see the Temperature Measurement section. ADE7753 Rev. C | Page 54 of 60 Address Name R/W No. Bits Default Type1 Description 0x27 PERIOD R 16 0x0 U Period of the Channel 2 (Voltage Channel) Input Estimated by Zero-Crossing Processing. The MSB of this register is always zero. 0x28–0x3C Reserved. 0x3D TMODE R/W 8 – U Test Mode Register. 0x3E CHKSUM R 6 0x0 U Checksum Register. This 6-bit read-only register is equal to the sum of all the ones in the previous read—see the ADE7753 Serial Read Operation section. 0x3F DIEREV R 8 – U Die Revision Register. This 8-bit read-only register contains the revision number of the silicon. 1 Type decoder: U = unsigned, S = signed by twos complement method, and S* = signed by sign magnitude method. ADE7753 Rev. C | Page 55 of 60 ADE7753 REGISTER DESCRIPTIONS All ADE7753 functionality is accessed via the on-chip registers. Each register is accessed by first writing to the communications register and then transferring the register data. A full description of the serial interface protocol is given in the ADE7753 Serial Interface section. COMMUNICATIONS REGISTER The communications register is an 8-bit, write-only register which controls the serial data transfer between the ADE7753 and the host processor. All data transfer operations must begin with a write to the communications register. The data written to the communications register determines whether the next operation is a read or a write and which register is being accessed. Table 13 outlines the bit designations for the communications register. DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 W/R 0 A5 A4 A3 A2 A1 A0 Table 13. Communications Register Bit Location Bit Mnemonic Description 0 to 5 A0 to A5 The six LSBs of the communications register specify the register for the data transfer operation. Table 12 lists the address of each ADE7753 on-chip register. 6 RESERVED This bit is unused and should be set to 0. 7 W/R When this bit is a Logic 1, the data transfer operation immediately following the write to the communications register is interpreted as a write to the ADE7753. When this bit is a Logic 0, the data transfer operation immediately following the write to the communications register is interpreted as a read operation. MODE REGISTER (0x09) The ADE7753 functionality is configured by writing to the mode register. Table 14 describes the functionality of each bit in the register. Table 14. Mode Register Bit Location Bit Mnemonic Default Value Description 0 DISHPF 0 HPF (high-pass filter) in Channel 1 is disabled when this bit is set. 1 DISLPF2 0 LPF (low-pass filter) after the multiplier (LPF2) is disabled when this bit is set. 2 DISCF 1 Frequency output CF is disabled when this bit is set. 3 DISSAG 1 Line voltage sag detection is disabled when this bit is set. 4 ASUSPEND 0 By setting this bit to Logic 1, both ADE7753 A/D converters can be turned off. In normal operation, this bit should be left at Logic 0. All digital functionality can be stopped by suspending the clock signal at CLKIN pin. 5 TEMPSEL 0 Temperature conversion starts when this bit is set to 1. This bit is automatically reset to 0 when the temperature conversion is finished. 6 SWRST 0 Software Chip Reset. A data transfer should not take place to the ADE7753 for at least 18 μs after a software reset. 7 CYCMODE 0 Setting this bit to Logic 1 places the chip into line cycle energy accumulation mode. 8 DISCH1 0 ADC 1 (Channel 1) inputs are internally shorted together. 9 DISCH2 0 ADC 2 (Channel 2) inputs are internally shorted together. 10 SWAP 0 By setting this bit to Logic 1 the analog inputs V2P and V2N are connected to ADC 1 and the analog inputs V1P and V1N are connected to ADC 2. 12, 11 DTRT1, 0 00 These bits are used to select the waveform register update rate. DTRT 1 DTRT0 Update Rate 0 0 27.9 kSPS (CLKIN/128) 0 1 14 kSPS (CLKIN/256) 1 0 7 kSPS (CLKIN/512) 1 1 3.5 kSPS (CLKIN/1024) ADE7753 Rev. C | Page 56 of 60 Bit Location Bit Mnemonic Default Value Description 14, 13 WAVSEL1, 0 00 These bits are used to select the source of the sampled data for the waveform register. WAVSEL1, 0 Length Source 0 0 24 bits active power signal (output of LPF2) 0 1 Reserved 1 0 24 bits Channel 1 1 1 24 bits Channel 2 15 POAM 0 Writing Logic 1 to this bit allows only positive active power to be accumulated in the ADE7753. Figure 95. Mode Register ADE7753 Rev. C | Page 57 of 60 INTERRUPT STATUS REGISTER (0x0B), RESET INTERRUPT STATUS REGISTER (0x0C), INTERRUPT ENABLE REGISTER (0x0A) The status register is used by the MCU to determine the source of an interrupt request (IRQ). When an interrupt event occurs in the ADE7753, the corresponding flag in the interrupt status register is set to logic high. If the enable bit for this flag is Logic 1 in the interrupt enable register, the IRQ logic output goes active low. When the MCU services the interrupt, it must first carry out a read from the interrupt status register to determine the source of the interrupt. Table 15. Interrupt Status Register, Reset Interrupt Status Register, and Interrupt Enable Register Bit Location Interrupt Flag Description 0 AEHF Indicates that an interrupt occurred because the active energy register, AENERGY, is more than half full. 1 SAG Indicates that an interrupt was caused by a SAG on the line voltage. 2 CYCEND Indicates the end of energy accumulation over an integer number of half line cycles as defined by the content of the LINECYC register—see the Line Cycle Energy Accumulation Mode section. 3 WSMP Indicates that new data is present in the waveform register. 4 ZX This status bit is set to Logic 0 on the rising and falling edge of the the voltage waveform. See the Zero-Crossing Detection section. 5 TEMP Indicates that a temperature conversion result is available in the temperature register. 6 RESET Indicates the end of a reset (for both software or hardware reset). The corresponding enable bit has no function in the interrupt enable register, i.e., this status bit is set at the end of a reset, but it cannot be enabled to cause an interrupt. 7 AEOF Indicates that the active energy register has overflowed. 8 PKV Indicates that waveform sample from Channel 2 has exceeded the VPKLVL value. 9 PKI Indicates that waveform sample from Channel 1 has exceeded the IPKLVL value. A VAEHF Indicates that an interrupt occurred because the active energy register, VAENERGY, is more than half full. B VAEOF Indicates that the apparent energy register has overflowed. C ZXTO Indicates that an interrupt was caused by a missing zero crossing on the line voltage for the specified number of line cycles—see the Zero-Crossing Timeout section. D PPOS Indicates that the power has gone from negative to positive. E PNEG Indicates that the power has gone from positive to negative. F RESERVED Reserved. Figure 96. Interrupt Status/Interrupt Enable Register ADE7753 Rev. C | Page 58 of 60 CH1OS REGISTER (0x0D) The CH1OS register is an 8-bit, read/write enabled register. The MSB of this register is used to switch on/off the digital integrator in Channel 1, and Bits 0 to 5 indicates the amount of the offset correction in Channel 1. Table 16 summarizes the function of this register. Table 16. CH1OS Register Bit Location Bit Mnemonic Description 0 to 5 OFFSET The six LSBs of the CH1OS register control the amount of dc offset correction in Channel 1 ADC. The 6-bit offset correction is sign and magnitude coded. Bits 0 to 4 indicate the magnitude of the offset correction. Bit 5 shows the sign of the offset correction. A 0 in Bit 5 means the offset correction is positive and a 1 indicates the offset correction is negative. 6 Not Used This bit is unused. 7 INTEGRATOR This bit is used to activate the digital integrator on Channel 1. The digital integrator is switched on by setting this bit. This bit is set to be 0 on default. DIGITAL INTEGRATOR SELECTION1 = ENABLE0 = DISABLENOT USED0000000076543210ADDR: 0x0DSIGN AND MAGNITUDE CODEDOFFSET CORRECTION BITS02875-0-086 Figure 97. Channel 1 Offset Register ADE7753 Rev. C | Page 59 of 60 OUTLINE DIMENSIONS COMPLIANTTO JEDEC STANDARDS MO-150-AE060106-A20111017.507.206.908.207.807.405.605.305.00SEATINGPLANE0.05 MIN0.65 BSC2.00 MAX0.380.22COPLANARITY0.101.851.751.650.250.090.950.750.558°4°0° Figure 98. 20-Lead Shrink Small Outline Package [SSOP] (RS-20) Dimensions shown in millimeters ORDERING GUIDE Model1 Temperature Range Package Description Package Option ADE7753ARS −40°C to +85°C 20-Lead Shrink Small Outline Package [SSOP] RS-20 ADE7753ARSRL −40°C to +85°C 20-Lead Shrink Small Outline Package [SSOP] RS-20 ADE7753ARSZ −40°C to +85°C 20-Lead Shrink Small Outline Package [SSOP] RS-20 ADE7753ARSZRL −40°C to +85°C 20-Lead Shrink Small Outline Package [SSOP] RS-20 EVAL-ADE7753ZEB Evaluation Board 1 Z = RoHS Compliant Part. ADE7753 Rev. C | Page 60 of 60 NOTES Pin Programmable, Precision Voltage Reference Data Sheet AD584 Rev. C Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©1978–2012 Analog Devices, Inc. All rights reserved. FEATURES Four programmable output voltages 10.000 V, 7.500 V, 5.000 V, and 2.500 V Laser-trimmed to high accuracies No external components required Trimmed temperature coefficient 15 ppm/°C maximum, 0°C to 70°C (AD584K) 15 ppm/°C maximum, −55°C to +125°C (AD584T) Zero output strobe terminal provided 2-terminal negative reference: capability (5 V and above) Output sources or sinks current Low quiescent current: 1.0 mA maximum 10 mA current output capability MIL-STD-883 compliant versions available PIN CONFIGURATIONS Figure 1. 8-Pin TO-99 Figure 2. 8-Lead PDIP GENERAL DESCRIPTION The AD584 is an 8-terminal precision voltage reference offering pin programmable selection of four popular output voltages: 10.000 V, 7.500 V, 5.000 V and 2.500 V. Other output voltages, above, below, or between the four standard outputs, are available by the addition of external resistors. The input voltage can vary between 4.5 V and 30 V. Laser wafer trimming (LWT) is used to adjust the pin programmable output levels and temperature coefficients, resulting in the most flexible high precision voltage reference available in monolithic form. In addition to the programmable output voltages, the AD584 offers a unique strobe terminal that permits the device to be turned on or off. When the AD584 is used as a power supply reference, the supply can be switched off with a single, low power signal. In the off state, the current drained by the AD584 is reduced to approximately 100 μA. In the on state, the total supply current is typically 750 μA, including the output buffer amplifier. The AD584 is recommended for use as a reference for 8-, 10-, or 12-bit digital-to-analog converters (DACs) that require an external precision reference. In addition, the device is ideal for analog-to-digital converters (ADCs) of up to 14-bit accuracy, either successive approximation or integrating designs, and in general, it can offer better performance than that provided by standard self-contained references. The AD584J and AD584K are specified for operation from 0°C to +70°C, and the AD584S and AD584T are specified for the −55°C to +125°C range. All grades are packaged in a hermetically sealed, eight-terminal TO-99 metal can, and the AD584J and AD584K are also available in an 8-lead PDIP. PRODUCT HIGHLIGHTS 1. The flexibility of the AD584 eliminates the need to design-in and inventory several different voltage references. Furthermore, one AD584 can serve as several references simultaneously when buffered properly. 2. Laser trimming of both initial accuracy and temperature coefficient results in very low errors overtemperature without the use of external components. 3. The AD584 can be operated in a 2-terminal Zener mode at a 5 V output and above. By connecting the input and the output, the AD584 can be used in this Zener configuration as a negative reference. 4. The output of the AD584 is configured to sink or source currents. This means that small reverse currents can be tolerated in circuits using the AD584 without damage to the reference and without disturbing the output voltage (10 V, 7.5 V, and 5 V outputs). 5. The AD584 is available in versions compliant with MIL-STD-883. Refer to the Analog Devices current AD584/883B data sheet for detailed specifications. This can be found under the Additional Data Sheets section of the AD584 product page. 1267358V+TAB4AD584TOP VIEW(Not to Scale)COMMONSTROBEVBGCAP2.5V5.0V10.0V00527-00110.0V15.0V22.5V3COMMON4V+8CAP7VBG6STROBE5AD584TOP VIEW(Not to Scale)00527-002 AD584 Data Sheet Rev. C | Page 2 of 12 TABLE OF CONTENTS Features .............................................................................................. 1 Pin Configurations ........................................................................... 1 General Description ......................................................................... 1 Product Highlights ........................................................................... 1 Revision History ............................................................................... 2 Specifications ..................................................................................... 3 Absolute Maximum Ratings ............................................................ 5 ESD Caution .................................................................................. 5 Theory of Operation ........................................................................ 6 Applying the AD584 .................................................................... 6 Performance over Temperature .................................................. 7 Output Current Characteristics ...................................................7 Dynamic Performance ..................................................................7 Noise Filtering ...............................................................................8 Using the Strobe Terminal ...........................................................8 Percision High Current Supply....................................................8 The AD584 as a Current Limiter.................................................9 Negative Reference Voltages from an AD584 ...............................9 10 V Reference with Multiplying CMOS DACs or ADCs .......9 Precision DAC Reference .......................................................... 10 Outline Dimensions ....................................................................... 11 Ordering Guide .......................................................................... 12 REVISION HISTORY 5/12—Rev. B to Rev. C Deleted AD584L ................................................................. Universal Changes to Features Section, General Description Section and Product Highlights Section ............................................................. 1 Deleted Metalization Photograph .................................................. 4 Changes to 10 V Reference with Multiplying CMOS DACs or ADCs Section .................................................................................... 9 Changes to Precision DAC Reference Section and Figure 19... 10 Updated Outline Dimensions ....................................................... 11 Changes to Ordering Guide .......................................................... 12 7/01—Rev. A to Rev. B Data Sheet AD584 Rev. C | Page 3 of 12 SPECIFICATIONS VIN = 15 V and 25°C, unless otherwise noted. Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All minimum and maximum specifications are guaranteed; although, only those shown in boldface are tested on all production units. Table 1. AD584J AD584K Model Min Typ Max Min Typ Max Unit OUTPUT VOLTAGE TOLERANCE Maximum Error at Pin 1 for Nominal Outputs of 10.000 V ±30 ±10 mV 7.500 V ±20 ±8 mV 5.000 V ±15 ±6 mV 2.500 V ±7.5 ±3.5 mV OUTPUT VOLTAGE CHANGE Maximum Deviation from 25°C Value, TMIN to TMAX1 10.000 V, 7.500 V, and 5.000 V Outputs 30 15 ppm/°C 2.500 V Output 30 15 ppm/°C Differential Temperature Coefficients Between Outputs 5 3 ppm/°C QUIESCENT CURRENT 0.75 1.0 0.75 1.0 mA Temperature Variation 1.5 1.5 μA/°C TURN-ON SETTLING TIME TO 0.1% 200 200 μs NOISE (0.1 Hz TO 10 Hz) 50 50 μV p-p LONG-TERM STABILITY 25 25 ppm/1000 Hrs SHORT-CIRCUIT CURRENT 30 30 mA LINE REGULATION (NO LOAD) 15 V ≤ VIN ≤ 30 V 0.002 0.002 %/V (VOUT + 2.5 V) ≤ VIN ≤ 15 V 0.005 0.005 %/V LOAD REGULATION 0 ≤ IOUT ≤ 5 mA, All Outputs 20 50 20 50 ppm/mA OUTPUT CURRENT VIN ≥ VOUT + 2.5 V Source at 25°C 10 10 mA Source TMIN to TMAX 5 5 mA Sink TMIN to TMAX 5 5 mA TEMPERATURE RANGE Operating 0 70 0 70 °C Storage −65 +175 −65 +175 °C PACKAGE OPTION 8-Pin Metal Header (TO-99, H-08) AD584JH AD584KH 8-Lead Plastic Dual In-Line Package (PDIP, N-8) AD584JN AD584KN 1 Calculated as average over the operating temperature range. AD584 Data Sheet Rev. C | Page 4 of 12 Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All minimum and maximum specifications are guaranteed; although, only those shown in boldface are tested on all production units. Table 2. AD584S AD584T Model Min Typ Max Min Typ Max Unit OUTPUT VOLTAGE TOLERANCE Maximum Error at Pin 1 for Nominal Outputs of 10.000 V ±30 ±10 mV 7.500 V ±20 ±8 mV 5.000 V ±15 ±6 mV 2.500 V ±7.5 ±3.5 mV OUTPUT VOLTAGE CHANGE Maximum Deviation from 25°C Value, TMIN to TMAX1 10.000 V, 7.500 V, and 5.000 V Outputs 30 15 ppm/°C 2.500 V Output 30 20 ppm/°C Differential Temperature Coefficients Between Outputs 5 3 ppm/°C QUIESCENT CURRENT 0.75 1.0 0.75 1.0 mA Temperature Variation 1.5 1.5 μA/°C TURN-ON SETTLING TIME TO 0.1% 200 200 μs NOISE (0.1 Hz TO 10 Hz) 50 50 μV p-p LONG-TERM STABILITY 25 25 ppm/1000 Hrs SHORT-CIRCUIT CURRENT 30 30 mA LINE REGULATION (NO LOAD) 15 V ≤ VIN ≤ 30 V 0.002 0.002 %/V (VOUT + 2.5 V) ≤ VIN ≤ 15 V 0.005 0.005 %/V LOAD REGULATION 0 ≤ IOUT ≤ 5 mA, All Outputs 20 50 20 50 ppm/mA OUTPUT CURRENT VIN ≥ VOUT + 2.5 V Source at 25°C 10 10 mA Source TMIN to TMAX 5 5 mA Sink TMIN to TMAX 5 5 mA TEMPERATURE RANGE Operating −55 +125 −55 +125 °C Storage −65 +175 −65 +175 °C PACKAGE OPTION 8-Pin Metal Header (TO-99, H-08) AD584SH AD584TH 1 Calculated as average over the operating temperature range. Data Sheet AD584 Rev. C | Page 5 of 12 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Rating Input Voltage VIN to Ground 40 V Power Dissipation at 25°C 600 mW Operating Junction Temperature Range −55°C to +125°C Lead Temperature (Soldering 10 sec) 300°C Thermal Resistance Junction-to-Ambient (H-08A) 150°C/W Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION AD584 Data Sheet Rev. C | Page 6 of 12 THEORY OF OPERATION APPLYING THE AD584 With power applied to Pin 8 and Pin 4 and all other pins open, the AD584 produces a buffered nominal 10.0 V output between Pin 1 and Pin 4 (see Figure 3). The stabilized output voltage can be reduced to 7.5 V, 5.0 V, or 2.5 V by connecting the programming pins as shown in Table 4. Table 4. Output Voltage (V) Pin Programming 7.5 Join the 2.5 V (Pin 3) and 5.0 V (Pin 2) pins. 5.0 Connect the 5.0 V pin (Pin 2) to the output pin (Pin 1). 2.5 Connect the 2.5 V pin (Pin 3) to the output pin (Pin 1). The options shown in Table 4 are available without the use of any additional components. Multiple outputs using only one AD584 can be provided by buffering each voltage programming pin with a unity-gain, noninverting op amp. Figure 3. Variable Output Options The AD584 can also be programmed over a wide range of output voltages, including voltages greater than 10 V, by the addition of one or more external resistors. Figure 3 illustrates the general adjustment procedure, with approximate values given for the internal resistors of the AD584. The AD584 may be modeled as an op amp with a noninverting feedback connection, driven by a high stability 1.215 V band gap reference (see Figure 5 for schematic). When the feedback ratio is adjusted with external resistors, the output amplifier can be made to multiply the reference voltage by almost any convenient amount, making popular outputs of 10.24 V, 5.12 V, 2.56 V, or 6.3 V easy to obtain. The most general adjustment (which gives the greatest range and poorest resolution) uses R1 and R2 alone (see Figure 3). As R1 is adjusted to its upper limit, the 2.5V pin (Pin 3) is connected to the output, which reduces to 2.5 V. As R1 is adjusted to its lower limit, the output voltage rises to a value limited by R2. For example, if R2 is approximately 6 kΩ, the upper limit of the output range is approximately 20 V, even for the large values of R1. Do not omit R2; choose its value to limit the output to a value that can be tolerated by the load circuits. If R2 is zero, adjusting R1 to its lower limit results in a loss of control over the output voltage. When precision voltages are set at levels other than the standard outputs, account for the 20% absolute tolerance in the internal resistor ladder. Alternatively, the output voltage can be raised by loading the 2.5 V tap with R3 alone. The output voltage can be lowered by connecting R4 alone. Either of these resistors can be a fixed resistor selected by test or an adjustable resistor. In all cases, the resistors should have a low temperature coefficient to match the AD584 internal resistors, which have a negative temperature coefficient less than 60 ppm/°C. If both R3 and R4 are used, these resistors should have matching temperature coefficients. When only small adjustments or trims are required, the circuit in Figure 4 offers better resolution over a limited trim range. The circuit can be programmed to 5.0 V, 7.5 V, or 10 V, and it can be adjusted by means of R1 over a range of about ±200 mV. To trim the 2.5 V output option, R2 (see Figure 4) can be reconnected to the band gap reference (Pin 6). In this configuration, limit the adjustment to ±100 mV to avoid affecting the performance of the AD584. Figure 4. Output Trimming Figure 5. Schematic Diagram AD584VSUPPLYVOUT812361.215V10V5V*2.5V12kΩ6kΩVBGR44COMMONR1R2R36kΩ24kΩ*THE 2.5V TAP IS USED INTERNALLY AS A BIAS POINTAND SHOULD NOT BE CHANGED BY MORE THAN 100mVIN ANY TRIM CONFIGURATION.00527-004AD584VOUT110.0V8V+4COMMON25.0V32.5V6VBGR110kΩR2300kΩ00527-005R38R40Q10Q16Q13Q11Q14Q12Q15SUBCAPR41R42R34R37R35R30R31R36Q6Q8Q5C51C52C50Q20Q7STROBEV+OUT 10V5V TAP2.5V TAPVBGV–R32R33Q3Q4Q2Q1R3900527-006 Data Sheet AD584 Rev. C | Page 7 of 12 PERFORMANCE OVER TEMPERATURE Each AD584 is tested at three temperatures over the −55°C to +125°C range to ensure that each device falls within the maximum error band (see Figure 6) specified for a particular grade (that is, S and T grades); three-point measurement guarantees performance within the error band from 0°C to 70°C (that is, J and K grades). The error band guaranteed for the AD584 is the maximum deviation from the initial value at 25°C. Thus, given the grade of the AD584, the maximum total error from the initial tolerance plus the temperature variation can easily be determined. For example, for the AD584T, the initial tolerance is ±10 mV, and the error band is ±15 mV. Therefore, the unit is guaranteed to be 10.000 V ± 25 mV from −55°C to +125°C. Figure 6. Typical Temperature Characteristic OUTPUT CURRENT CHARACTERISTICS The AD584 has the capability to either source or sink current and provide good load regulation in either direction; although, it has better characteristics in the source mode (positive current into the load). The circuit is protected for shorts to either positive supply or ground. Figure 7 shows the output voltage vs. the output current characteristics of the device. Source current is displayed as negative current in the figure, and sink current is displayed as positive current. The short-circuit current (that is, 0 V output) is about 28 mA; however, when shorted to 15 V, the sink current goes to approximately 20 mA. Figure 7. Output Voltage vs. Output Current (Sink and Source) DYNAMIC PERFORMANCE Many low power instrument manufacturers are becoming increasingly concerned with the turn-on characteristics of the components being used in their systems. Fast turn-on components often enable the end user to keep power off when not needed and yet respond quickly when the power is turned on. Figure 8 displays the turn-on characteristic of the AD584. Figure 8 is generated from cold-start operation and represents the true turn-on waveform after an extended period with the supplies off. Figure 8 shows both the coarse and fine transient characteristics of the device; the total settling time to within ±10 mV is about 180 μs, and there is no long thermal tail appearing after the point. Figure 8. Output Settling Characteristic 10.00510.0009.995–5502570125VOUT ( V)TEMPERATURE (°C)00527-007OUTPUT CURRENT ( mA)OUTPUT VOLTAGE (V)05101520–5–10–15SINKSOURCE–2014121086420+VS = 15VTA = 25°C00527-008SETTLING TIME (μs)10015020025050010.03V10.02V12V11V10V20V10V0V10.01V10.00VOUTPUTOUTPUTPOWERSUPPLYINPUT00527-009 AD584 Data Sheet Rev. C | Page 8 of 12 NOISE FILTERING The bandwidth of the output amplifier in the AD584 can be reduced to filter output noise. A capacitor ranging between 0.01 μF and 0.1 μF connected between the CAP and VBG terminals further reduces the wideband and feedthrough noise in the output of the AD584, as shown in Figure 9 and Figure 10. However, this tends to increase the turn-on settling time of the device; therefore, allow for ample warm-up time. Figure 9. Additional Noise Filtering with an External Capacitor Figure 10. Spectral Noise Density and Total RMS Noise vs. Frequency USING THE STROBE TERMINAL The AD584 has a strobe input that can be used to zero the output. This unique feature permits a variety of new applications in signal and power conditioning circuits. Figure 11 illustrates the strobe connection. A simple NPN switch can be used to translate a TTL logic signal into a strobe of the output. The AD584 operates normally when there is no current drawn from Pin 5. Bringing this terminal low, to less than 200 mV, allows the output voltage to go to zero. In this mode, the AD584 is not required to source or sink current (unless a 0.7 V residual output is permissible). If the AD584 is required to sink a transient current while strobe is off, limit the strobe terminal input current by a 100 Ω resistor, as shown in Figure 11. Figure 11. Use of the Strobe Terminal The strobe terminal tolerates up to 5 μA leakage, and its driver should be capable of sinking 500 μA continuous. A low leakage, open collector gate can be used to drive the strobe terminal directly, provided the gate can withstand the AD584 output voltage plus 1 V. PERCISION HIGH CURRENT SUPPLY The AD584 can be easily connected to a power PNP or power PNP Darlington device to provide much greater output current capability. The circuit shown in Figure 12 delivers a precision 10 V output with up to 4 A supplied to the load. If the load has a significant capacitive component, the 0.1 μF capacitor is required. If the load is purely resistive, improved high frequency, supply rejection results from removing the capacitor. Figure 12. High Current Precision Supply AD584110.0V8SUPPLYV+4COMMON7CAP6VBG0.01μF*TO0.1μF*INCREASES TURN-ON TIME00527-0101000100110101001k10k100k1MFREQUENCY (Hz)NOISE SPECTRAL DENSITY (nV/ Hz)TOTAL NOISE (μV rms) UP TOSPECIFIED FREQUENCYNO CAPNO CAP100pF1000pF0.01μF00527-011AD584110.0V238V+4COMMON5STROBE10kΩ20kΩ2N2222100ΩLOGICINPUTHI = OFFLO = ON00527-012AD584110.0VVOUT10V @ 4A8V+4COMMON470Ω0.1μFVIN ≥ 15V2N604000527-013 Data Sheet AD584 Rev. C | Page 9 of 12 The AD584 can also use an NPN or NPN Darlington transistor to boost its output current. Simply connect the 10 V output terminal of the AD584 to the base of the NPN booster and take the output from the booster emitter, as shown in Figure 13. The 5.0V pin or the 2.5V pin must connect to the actual output in this configuration. Variable or adjustable outputs (as shown in Figure 3 and Figure 4) can be combined with a 5.0 V connection to obtain outputs above 5.0 V. Figure 13. NPN Output Current Booster THE AD584 AS A CURRENT LIMITER The AD584 represents an alternative to current limiter diodes that require factory selection to achieve a desired current. Use of current limiting diodes often results in temperature coefficients of 1%/°C. Use of the AD584 in this mode is not limited to a set current limit; it can be programmed from 0.75 mA to 5 mA with the insertion of a single external resistor (see Figure 14). The minimum voltage required to drive the connection is 5 V. Figure 14. A Two-Component Precision Current Limiter NEGATIVE REFERENCE VOLTAGES FROM AN AD584 The AD584 can also be used in a 2-terminal Zener mode to provide a precision −10 V, −7.5 V, or −5.0 V reference. As shown in Figure 15, the VIN and VOUT terminals are connected together to the positive supply (in this case, ground). The AD584 COMMON pin is connected through a resistor to the negative supply. The output is now taken from the COMMON pin instead of VOUT. With 1 mA flowing through the AD584 in this mode, a typical unit shows a 2 mV increase in the output level over that produced in 3-terminal mode. Also, note that the effective output impedance in this connection increases from 0.2 Ω typical to 2 Ω. It is essential to arrange the output load and the supply resistor, RS, so that the net current through the AD584 is always between 1 mA and 5 mA (between 2 mA and 5 mA for operation beyond 85°C). The temperature characteristics and long-term stability of the device is essentially the same as that of a unit used in standard 3-terminal mode. Figure 15. 2-Terminal, −5 V Reference The AD584 can also be used in 2-terminal mode to develop a positive reference. VIN and VOUT are tied together and to the positive supply through an appropriate supply resistor. The performance characteristics are similar to those of a negative 2-terminal connection. The only advantage of this connection over the standard 3-terminal connection is that a lower primary supply can be used, as low as 0.5 V above the desired output voltage. This type of operation requires considerable attention to load and to the primary supply regulation to ensure that the AD584 always remains within its regulating range of 1 mA to 5 mA (2 mA to 5 mA for operation beyond 85°C). 10 V REFERENCE WITH MULTIPLYING CMOS DACs OR ADCs The AD584 is ideal for application with the AD7533 10-bit multiplying CMOS DAC, especially for low power applications. It is equally suitable for the AD7574 8-bit ADC. In the standard hook-up, as shown in Figure 16, the standard output voltages are inverted by the amplifier/DAC configuration to produce converted voltage ranges. For example, a +10 V reference produces a 0 V to −10 V range. If an OP1177 amplifier is used, total quiescent supply current is typically 2 mA. Figure 16. Low Power 10-Bit CMOS DAC Application AD584110.0V5.0V2.5V238V+4COMMONDARLINGTONNPN 2N6057VOUT(5V, 12AAS SHOWN)1kΩRAW SUPPLY (≈5V > VOUT)00527-014AD5841VOUT = 2.5V2.5VTAP38V+4COMMON=i+ 0.75mA2.5VRRLOAD00527-015AD5841VOUTVREF–5V5.0VTAP28V+4COMMON–15VRS2.4kΩ5%ANALOGGND1μF00527-016AD58410.0VV+184COMMON+15VAD75334BIT 1 (MSB)5DIGITALINPUT131612BIT 10 (LSB)15314VREF+15V–15VVOUT0V TO –10VRFBIOUT1IOUT2COMMON00527-017 AD584 Data Sheet Rev. C | Page 10 of 12 The AD584 is normally used in the −10 V mode with the AD7574 to give a 0 V to +10 V ADC range. This is shown in Figure 17. Bipolar output applications and other operating details can be found in the data sheets for the CMOS products. Figure 17. AD584 as −10 V Reference for CMOS ADC PRECISION DAC REFERENCE The AD565A, like many DACs, can operate with an external 10 V reference element (see Figure 19). This 10 V reference voltage is converted into a reference current of approximately 0.5 mA via the internal 19.95 kΩ resistor (in series with the external 100 Ω trimmer). The gain temperature coefficient of the AD565A is primarily governed by the temperature tracking of the 19.95 kΩ resistor and the 5 kΩ/10 kΩ span resistors; this gain temperature coefficient is guaranteed to 3 ppm/°C. Therefore, using the AD584K (at 5 ppm/°C) as the 10 V reference guarantees a maximum full-scale temperature coefficient of 18 ppm/°C more than the commercial range. The 10 V reference also supplies the normal 1 mA bipolar offset current through the 9.95 kΩ bipolar offset resistor. The bipolar offset temperature coefficient thus depends only on the temperature coefficient matching of the bipolar offset resistor to the input reference resistor and is guaranteed to 3 ppm/°C. Figure 18 demonstrates the flexibility of the AD584 applied to another popular digital-to-analog configuration. Figure 18. Current Output, 8-Bit Digital-to-Analog Configuration Figure 19. Precision 12-Bit DAC –10V REFAD584418–15VV+10.0VCOMMONR31.2kΩ5%0.1μF+15V1182345AD7574(TOP VIEW)SIGNALINPUT0V TO +10VANALOGGROUNDGROUNDINTERTIEDIGITALSUPPLYRETURNR12kΩ 10%**R1 AND R2 CAN BE OMITTED IFGAIN TRIM IS NOT REQUIRED.GAIN TRIMR2 2kΩ*00527-019CA1 ( MSB)514A2615A37A48A59A610A7114IOA8 ( LSB)12COMP161VLCRLR15R14 = R15V+13V–32ADDAC08VREF (+)VREF (–)AD5844813COMMONV+2.5V10.0VR1400527-020IOUT00527-0180.5mAIREFDACAD565A5kΩ20V SPAN10V SPANDAC OUT–VEEREFGNDBIPOLAR OFF5kΩ8kΩIOCODE INPUTLSBMSB10VVCCREF OUTREFINPOWERGND19.95kΩ20kΩ9.95kΩIOUT =4 × IREF × CODE0.1μF0.1μFOP1177+15V–15V236OP AMPOUTPUT±10V+15V+15V148AD584R2100Ω15TGAINADJUSTR1100Ω15TBIPOLAR OFFSETADJUST–15V Data Sheet AD584 Rev. C | Page 11 of 12 OUTLINE DIMENSIONS Figure 20. 8-Pin Metal Header [TO-99] (H-08) Dimensions shown in inches and (millimeters) Figure 21. 8-Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N-8) Dimensions shown in inches and (millimeters) CONTROLLING DIMENSIONSARE IN INCHES; MILLIMETER DIMENSIONS(INPARENTHESES)ARE ROUNDED-OFF INCH EQUIVALENTS FORREFERENCE ONLYANDARE NOTAPPROPRIATE FOR USE IN DESIGN. COMPLIANTTO JEDEC STANDARDS MO-002-AK0.2500 (6.35) MIN0.5000 (12.70)MIN0.1850 (4.70)0.1650 (4.19)REFERENCE PLANE0.0500 (1.27) MAX0.0190 (0.48)0.0160 (0.41)0.0210 (0.53)0.0160 (0.41)0.0400 (1.02)0.0100 (0.25)0.0400 (1.02) MAX0.0340 (0.86)0.0280 (0.71)0.0450 (1.14)0.0270 (0.69)0.1600 (4.06)0.1400 (3.56)0.1000 (2.54)BSC6287 54 310.2000(5.08)BSC0.1000(2.54)BSC0.3700 ( 9.40)0.3350 (8.51)0.3350 (8.51)0.3050 (7.75)45° BSCBASE & SEATING PLANE022306-ACOMPLIANTTO JEDEC STANDARDS MS-001CONTROLLING DIMENSIONSARE IN INCHES; MILLIMETER DIMENSIONS(INPARENTHESES)ARE ROUNDED-OFF INCH EQUIVALENTS FORREFERENCE ONLYANDARE NOTAPPROPRIATE FOR USE IN DESIGN.CORNER LEADS MAY BE CONFIGUREDAS WHOLE OR HALF LEADS.070606-A0.022 ( 0.56)0.018 (0.46)0.014 (0.36)SEATINGPLANE0.015(0.38)MIN0.210 (5.33)MAX0.150 (3.81)0.130 (3.30)0.115 (2.92)0.070 (1.78)0.060 (1.52)0.045 (1.14)81450.280 (7.11)0.250 (6.35)0.240 (6.10)0.100 (2.54)BSC0.400 (10.16)0.365 (9.27)0.355 (9.02)0.060 (1.52)MAX0.430 (10.92)MAX0.014 (0.36)0.010 (0.25)0.008 (0.20)0.325 (8.26)0.310 (7.87)0.300 (7.62)0.195 (4.95)0.130 (3.30)0.115 (2.92)0.015 (0.38)GAUGEPLANE0.005 (0.13)MIN AD584 Data Sheet Rev. C | Page 12 of 12 ORDERING GUIDE Model1 Output Voltage (VO) Initial Accuracy Temperature Coefficient (ppm/°C) Temperature Range (°C) Package Description Package Option Ordering Quantity mV % AD584JH 2.5 ±7.5 0.30 30 0 to 70 8-Pin TO-99 H-08 100 AD584JNZ 2.5 ±7.5 0.30 30 0 to 70 8-Lead PDIP N-8 50 AD584KH 2.5 ±3.5 0.14 15 0 to 70 8-Pin TO-99 H-08 100 AD584KNZ 2.5 ±3.5 0.14 15 0 to 70 8-Lead PDIP N-8 50 AD584SH 2.5 ±7.5 0.30 30 −55 to +125 8-Pin TO-99 H-08 100 AD584SH/883B 2.5 ±7.5 0.30 30 −55 to +125 8-Pin TO-99 H-08 100 AD584TH 2.5 ±3.5 0.14 20 −55 to +125 8-Pin TO-99 H-08 100 AD584TH/883B 2.5 ±3.5 0.14 20 −55 to +125 8-Pin TO-99 H-08 100 AD584JH 5.0 ±15.0 0.30 30 0 to 70 8-Pin TO-99 H-08 100 AD584JNZ 5.0 ±15.0 0.30 30 0 to 70 8-Lead PDIP N-8 50 AD584KH 5.0 ±6.0 0.12 15 0 to 70 8-Pin TO-99 H-08 100 AD584KNZ 5.0 ±6.0 0.12 15 0 to 70 8-Lead PDIP N-8 50 AD584SH 5.0 ±15.0 0.14 30 −55 to +125 8-Pin TO-99 H-08 100 AD584SH/883B 5.0 ±15.0 0.30 30 −55 to +125 8-Pin TO-99 H-08 100 AD584TH 5.0 ±6.0 0.30 15 −55 to +125 8-Pin TO-99 H-08 100 AD584TH/883B 5.0 ±6.0 0.12 15 −55 to +125 8-Pin TO-99 H-08 100 AD584JH 7.5 ±20.0 0.27 30 0 to 70 8-Pin TO-99 H-08 100 AD584JNZ 7.5 ±20.0 0.27 30 0 to 70 8-Lead PDIP N-8 50 AD584KH 7.5 ±8.0 0.11 15 0 to 70 8-Pin TO-99 H-08 100 AD584KNZ 7.5 ±8.0 0.11 15 0 to 70 8-Lead PDIP N-8 50 AD584SH 7.5 ±20.0 0.27 30 −55 to +125 8-Pin TO-99 H-08 100 AD584SH/883B 7.5 ±20.0 0.27 30 −55 to +125 8-Pin TO-99 H-08 100 AD584TH 7.5 ±8.0 0.11 15 −55 to +125 8-Pin TO-99 H-08 100 AD584TH/883B 7.5 ±8.0 0.11 15 −55 to +125 8-Pin TO-99 H-08 100 AD584JH 10.0 ±30.0 0.30 30 0 to 70 8-Pin TO-99 H-08 100 AD584JNZ 10.0 ±30.0 0.30 30 0 to 70 8-Lead PDIP N-8 50 AD584KH 10.0 ±10.0 0.10 15 0 to 70 8-Pin TO-99 H-08 100 AD584KNZ 10.0 ±10.0 0.10 15 0 to 70 8-Lead PDIP N-8 50 AD584SH 10.0 ±30.0 0.30 30 −55 to +125 8-Pin TO-99 H-08 100 AD584SH/883B 10.0 ±30.0 0.30 30 −55 to +125 8-Pin TO-99 H-08 100 AD584TH 10.0 ±10.0 0.10 15 −55 to +125 8-Pin TO-99 H-08 100 AD584TH/883B 10.0 ±10.0 0.10 15 −55 to +125 8-Pin TO-99 H-08 100 1 Z = RoHS Compliant Part. ©1978–2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00527-0-5/12(C) LF to 2.5 GHz TruPwr™ Detector Data Sheet AD8361 Rev. D Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2014 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com FEATURES Calibrated rms response Excellent temperature stability Up to 30 dB input range at 2.5 GHz 700 mV rms, 10 dBm, re 50 Ω maximum input ±0.25 dB linear response up to 2.5 GHz Single-supply operation: 2.7 V to 5.5 V Low power: 3.3 mW at 3 V supply Rapid power-down to less than 1 μA APPLICATIONS Measurement of CDMA, W-CDMA, QAM, other complex modulation waveforms RF transmitter or receiver power measurement GENERAL DESCRIPTION The AD8361 is a mean-responding power detector for use in high frequency receiver and transmitter signal chains, up to 2.5 GHz. It is very easy to apply. It requires a single supply only between 2.7 V and 5.5 V, a power supply decoupling capacitor, and an input coupling capacitor in most applications. The output is a linear-responding dc voltage with a conversion gain of 7.5 V/V rms. An external filter capacitor can be added to increase the averaging time constant. Figure 1. Output in the Three Reference Modes, Supply 3 V, Frequency 1.9 GHz (6-Lead SOT-23 Package Ground Reference Mode Only) FUNCTIONAL BLOCK DIAGRAMS Figure 2. 8-Lead MSOP Figure 3. 6-Lead SOT-23 The AD8361 is intended for true power measurement of simple and complex waveforms. The device is particularly useful for measuring high crest-factor (high peak-to-rms ratio) signals, such as CDMA and W-CDMA. The AD8361 has three operating modes to accommodate a variety of analog-to-digital converter requirements: 1. Ground reference mode, in which the origin is zero. 2. Internal reference mode, which offsets the output 350 mV above ground. 3. Supply reference mode, which offsets the output to VS/7.5. The AD8361 is specified for operation from −40°C to +85°C and is available in 8-lead MSOP and 6-lead SOT-23 packages. It is fabricated on a proprietary high fT silicon bipolar process. RFIN (V rms) 3.0 1.6 0 0.1 0.5 0.20.30.4 2.6 2.2 2.0 1.8 2.8 2.4 V rms (Volts) 1.4 1.2 1.0 0.6 0.8 0.4 0.2 0.0 SUPPLY REFERENCE MODE INTERNAL REFERENCE MODE GROUND REFERENCE MODE 01088-C-001 RFIN IREF PWDN VPOS FLTR SREF VRMS COMM BAND-GAP REFERENCE ERROR AMP AD8361 INTERNAL FILTER ADD OFFSET TRANSCONDUCTANCE CELLS i i  7.5 BUFFER 2 2 01088-C-002 RFIN IREF PWDN VPOS FLTR VRMS COMM BAND-GAP REFERENCE ERROR AMP AD8361 INTERNAL FILTER TRANSCONDUCTANCE CELLS i i  7.5 BUFFER 2 2 01088-C-003 AD8361 Data Sheet Rev. D | Page 2 of 24 TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagrams ............................................................. 1 Revision History ............................................................................... 2 Specifications ..................................................................................... 3 Absolute Maximum Ratings ............................................................ 4 ESD Caution .................................................................................. 4 Pin Configuration and Function Descriptions ............................. 5 Typical Performance Characteristics ..............................................6 Circuit Description......................................................................... 11 Applications ..................................................................................... 12 Output Reference Temperature Drift Compensation ........... 16 Evaluation Board ............................................................................ 21 Characterization Setups............................................................. 23 Outline Dimensions ....................................................................... 24 Ordering Guide .......................................................................... 24 REVISION HISTORY 3/14—Rev. C to Rev. D Changes to Ordering Guide .......................................................... 24 Updated Outline Dimensions ....................................................... 24 8/04—Data Sheet Changed from Rev. B to Rev. C Changed Trimpots to Trimmable Potentiometers ......... Universal Changes to Specifications ................................................................ 3 Changed Using the AD8361 Section Title to Applications ....... 12 Changes to Figure 43 ...................................................................... 14 Changes to Ordering Guide .......................................................... 24 Updated Outline Dimensions ....................................................... 24 2/01—Data Sheet Changed from Rev. A to Rev. B. Data Sheet AD8361 Rev. D | Page 3 of 24 SPECIFICATIONS TA = 25°C, VS = 3 V, fRF = 900 MHz, ground reference output mode, unless otherwise noted. Table 1. Parameter Condition Min Typ Max Unit SIGNAL INPUT INTERFACE (Input RFIN) Frequency Range1 2.5 GHz Linear Response Upper Limit VS = 3 V 390 mV rms Equivalent dBm, re 50 Ω 4.9 dBm VS = 5 V 660 mV rms Equivalent dBm, re 50 Ω 9.4 dBm Input Impedance2 225||1 Ω||pF RMS CONVERSION (Input RFIN to Output V rms) Conversion Gain 7.5 V/V rms fRF = 100 MHz, VS = 5 V 6.5 8.5 V/V rms Dynamic Range Error Referred to Best Fit Line3 ±0.25 dB Error4 CW Input, −40°C < TA < +85°C 14 dB ±1 dB Error CW Input, −40°C < TA < +85°C 23 dB ±2 dB Error CW Input, −40°C < TA < +85°C 26 dB CW Input, VS = 5 V, −40°C < TA < +85°C 30 dB Intercept-Induced Dynamic Internal Reference Mode 1 dB Range Reduction5, 6 Supply Reference Mode, VS = 3.0 V 1 dB Supply Reference Mode, VS = 5.0 V 1.5 dB Deviation from CW Response 5.5 dB Peak-to-Average Ratio (IS95 Reverse Link) 0.2 dB 12 dB Peak-to-Average Ratio (W-CDMA 4 Channels) 1.0 dB 18 dB Peak-to-Average Ratio (W-CDMA 15 Channels) 1.2 dB OUTPUT INTERCEPT5 Inferred from Best Fit Line3 Ground Reference Mode (GRM) 0 V at SREF, VS at IREF 0 V fRF = 100 MHz, VS = 5 V −50 +150 mV Internal Reference Mode (IRM) 0 V at SREF, IREF Open 350 mV fRF = 100 MHz, VS = 5 V 300 500 mV Supply Reference Mode (SRM) 3 V at IREF, 3 V at SREF 400 mV VS at IREF, VS at SREF VS/7.5 V fRF = 100 MHz, VS = 5 V 590 750 mV POWER-DOWN INTERFACE PWDN HI Threshold 2.7 ≤ VS ≤ 5.5 V, −40°C < TA < +85°C VS − 0.5 V PWDN LO Threshold 2.7 ≤ VS ≤ 5.5 V, −40°C < TA < +85°C 0.1 V Power-Up Response Time 2 pF at FLTR Pin, 224 mV rms at RFIN 5 μs 100 nF at FLTR Pin, 224 mV rms at RFIN 320 μs PWDN Bias Current <1 μA POWER SUPPLIES Operating Range −40°C < TA < +85°C 2.7 5.5 V Quiescent Current 0 mV rms at RFIN, PWDN Input LO7 1.1 mA Power-Down Current GRM or IRM, 0 mV rms at RFIN, PWDN Input HI <1 μA SRM, 0 mV rms at RFIN, PWDN Input HI 10 × VS μA 1 Operation at arbitrarily low frequencies is possible; see Applications section. 2 Figure 17 and Figure 47 show impedance versus frequency for the MSOP and SOT-23, respectively. 3 Calculated using linear regression. 4 Compensated for output reference temperature drift; see Applications section. 5 SOT-23-6L operates in ground reference mode only. 6 The available output swing, and hence the dynamic range, is altered by both supply voltage and reference mode; see Figure 39 and Figure 40. 7 Supply current is input level dependent; see Figure 16. AD8361 Data Sheet Rev. D | Page 4 of 24 ABSOLUTE MAXIMUM RATINGS Table 2. Parameter Rating Supply Voltage VS 5.5 V SREF, PWDN 0 V, VS IREF VS − 0.3 V, VS RFIN 1 V rms Equivalent Power, re 50 Ω 13 dBm Internal Power Dissipation1 200 mW 6-Lead SOT-23 170 mW 8-Lead MSOP 200 mW Maximum Junction Temperature 125°C Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C Lead Temperature Range (Soldering 60 sec) 300°C 1 Specification is for the device in free air. 6-Lead SOT-23: θJA = 230°C/W; θJC = 92°C/W. 8-Lead MSOP: θJA = 200°C/W; θJC = 44°C/W. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION Data Sheet AD8361 Rev. D | Page 5 of 24 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS Figure 4. 8-Lead MSOP Figure 5. 6-Lead SOT-23 Table 3. Pin Function Descriptions Pin No. MSOP Pin No. SOT-23 Mnemonic Description 1 6 VPOS Supply Voltage Pin. Operational range 2.7 V to 5.5 V. 2 N/A IREF Output Reference Control Pin. Internal reference mode enabled when pin is left open; otherwise, this pin should be tied to VPOS. Do not ground this pin. 3 5 RFIN Signal Input Pin. Must be driven from an ac-coupled source. The low frequency real input impedance is 225 Ω. 4 4 PWDN Power-Down Pin. For the device to operate as a detector, it needs a logical low input (less than 100 mV). When a logic high (greater than VS − 0.5 V) is applied, the device is turned off and the supply current goes to nearly zero (ground and internal reference mode less than 1 μA, supply reference mode VS divided by 100 kΩ). 5 2 COMM Device Ground Pin. 6 3 FLTR By placing a capacitor between this pin and VPOS, the corner frequency of the modulation filter is lowered. The on-chip filter is formed with 27 pF||2 kΩ for small input signals. 7 1 VRMS Output Pin. Near rail-to-rail voltage output with limited current drive capabilities. Expected load >10 kΩ to ground. 8 N/A SREF Supply Reference Control Pin. To enable supply reference mode, this pin must be connected to VPOS; otherwise, it should be connected to COMM (ground). VPOS 1 IREF 2 RFIN 3 PWDN 4 8 SREF 7 VRMS 6 FLTR 5 COMM AD8361 TOP VIEW (Not to Scale) 01088-C-004 VRMS 1 COMM 2 FLTR 3 6 VPOS 5 RFIN 4 PWDN AD8361 TOP VIEW (Not to Scale) 01088-C-005 AD8361 Data Sheet Rev. D | Page 6 of 24 TYPICAL PERFORMANCE CHARACTERISTICS Figure 6. Output vs. Input Level, Frequencies 100 MHz, 900 MHz, 1900 MHz, and 2500 MHz, Supply 2.7 V, Ground Reference Mode, MSOP Figure 7. Output vs. Input Level, Supply 2.7 V, 3.0 V, 5.0 V, and 5.5 V, Frequency 900 MHz Figure 8. Output vs. Input Level with Different Waveforms Sine Wave (CW), IS95 Reverse Link, W-CDMA 4-Channel and W-CDMA 15-Channel, Supply 5.0 V Figure 9. Error from Linear Reference vs. Input Level, 3 Sigma to Either Side of Mean, Sine Wave, Supply 3.0 V, Frequency 900 MHz Figure 10. Error from Linear Reference vs. Input Level, 3 Sigma to Either Side of Mean, Sine Wave, Supply 5.0 V, Frequency 900 MHz Figure 11. Error from CW Linear Reference vs. Input with Different Waveforms Sine Wave (CW), IS95 Reverse Link, W-CDMA 4-Channel and W-CDMA 15-Channel, Supply 3.0 V, Frequency 900 MHz INPUT (V rms)2.82.60.800.50.10.20.30.42.01.41.21.02.42.21.61.8OUTPUT ( V)0.60.40.20.0900MHz100MHz1900MHz2.5GHz01088-C-006INPUT (V rms)5.51.500.50.10.20.30.44.03.02.52.05.04.53.5OUTPUT ( V)1.00.50.05.5V5.0V3.0V2.7V0.60.70.801088-C-007INPUT (V rms)5.01.500.50.10.20.30.44.03.02.52.04.53.5OUTPUT ( V)1.00.50.00.60.70.8CWIS95REVERSE LINKWCDMA4- AND 15-CHANNEL01088-C-008INPUT (V rms)3.02.5–1.00.4(+5dBm)0.011.50–0.52.00.51.0ERROR ( dB)–1.5–2.0–2.5–3.00.1(–7dBm)0.02(–21dBm)MEAN±3 SIGMA01088-C-009INPUT (V rms)3.02.5–1.00.6(+8.6dBm)0.011.50–0.52.00.51.0ERROR ( dB)–1.5–2.0–2.5–3.00.10.02MEAN±3 SIGMA(–7dBm)(–21dBm)01088-C-010INPUT ( V rms)3.02.5–1.01.00.010.11.50.0–0.52.00.51.0ERROR ( dB)–1.5–2.0–2.5–3.00.020.60.2IS95REVERSE LINKCW15-CHANNEL4-CHANNEL01088-C-011 Data Sheet AD8361 Rev. D | Page 7 of 24 Figure 12. Error from CW Linear Reference vs. Input, 3 Sigma to Either Side of Mean, IS95 Reverse Link Signal, Supply 3.0 V, Frequency 900 MHz Figure 13. Error from CW Linear Reference vs. Input Level, 3 Sigma to Either Side of Mean, IS95 Reverse Link Signal, Supply 5.0 V, Frequency 900 MHz Figure 14. Output Delta from +25°C vs. Input Level, 3 Sigma to Either Side of Mean Sine Wave, Supply 3.0 V, Frequency 900 MHz, Temperature −40°C to +85°C Figure 15. Output Delta from +25°C vs. Input Level, 3 Sigma to Either Side of Mean Sine Wave, Supply 3.0 V, Frequency 1900 MHz, Temperature −40°C to +85°C Figure 16. Supply Current vs. Input Level, Supplies 3.0 V, and 5.0 V, Temperatures −40°C, +25°C, and +85°C Figure 17. Input Impedance vs. Frequency, Supply 3 V, Temperatures −40°C, +25°C, and +85°C, MSOP (See Applications for SOT-23 Data) 3.02.5–1.00.4(+5dBm)0.011.50–0.52.00.51.0ERROR ( dB)–1.5–2.02.5–3.00.10.02MEAN±3 SIGMAINPUT (V rms)(–7dBm)(–21dBm)01088-C-012INPUT ( V rms)3.02.5–1.00.6(+8.6dBm)0.011.50–0.52.00.51.0ERROR ( dB)–1.5–2.0–2.5–3.00.10.02MEAN±3 SIGMA(–7dBm)(–21dBm)01088-C-013INPUT ( V rms)3.02.5–1.00.4(+5dBm)0.011.50–0.52.00.51.0ERROR ( dB)–1.5–2.0–2.5–3.00.10.02–40°C+85°C(–7dBm)(–21dBm)01088-C-014INPUT ( V rms)3.02.5–1.00.4(+5dBm)0.011.50–0.52.00.51.0ERROR ( dB)–1.5–2.0–2.5–3.00.10.02(–7dBm)(–21dBm)–40°C+85°C01088-C-015INPUT (V rms)11300.50.10.20.30.486541097SUPPLY CURRENT ( mA)2100.60.70.8+85°C–40°C+25°CVS = 5VINPUT OUTOF RANGE+25°C+85°C–40°CVS = 3VINPUT OUTOF RANGE01088-C-016FREQUENCY (MHz)05001000250200150SHUNT RESISTANCE ( Ω)100500200025001.41.21.0SHUNT CAPACITANCE ( pF)0.80.60.41500+85°C+25°C–40°C+85°C+25°C–40°C1.61.801088-C-017 AD8361 Data Sheet Rev. D | Page 8 of 24 Figure 18. Output Reference Change vs. Temperature, Supply 3 V, Ground Reference Mode Figure 19. Output Reference Change vs. Temperature, Supply 3 V, Internal Reference Mode (MSOP Only) Figure 20. Output Reference Change vs. Temperature, Supply 3 V, Supply Reference Mode (MSOP Only) Figure 21. Conversion Gain Change vs. Temperature, Supply 3 V, Ground Reference Mode, Frequency 900 MHz Figure 22. Conversion Gain Change vs. Temperature, Supply 3 V, Internal Reference Mode, Frequency 900 MHz (MSOP Only) Figure 23. Conversion Gain Change vs. Temperature, Supply 3 V, Supply Reference Mode, Frequency 900 MHz (MSOP Only) TEMPERATURE (°C)–0.0240–40–200200.030.010.00–0.010.02INTERCEPT CHANGE ( V)–0.03–0.04–0.056080100MEAN±3 SIGMA01088-C-018TEMPERATURE (°C)–0.0140–40–200200.020.010.00INTERCEPT CHANGE ( V)–0.02–0.036080100MEAN±3 SIGMA01088-C-019TEMPERATURE (°C)–0.0240–40–200200.030.010.00–0.010.02INTERCEPT CHANGE ( V)–0.03–0.04–0.056080100MEAN±3 SIGMA01088-C-020TEMPERATURE (°C)0.0240–40–200200.120.080.060.040.10GAIN CHANGE ( V/V rms)0.00–0.02–0.046080100MEAN±3 SIGMA–0.060.140.160.1801088-C-021TEMPERATURE (°C)0.0240–40–200200.120.080.060.040.10GAIN CHANGE ( V/V rms)0.00–0.02–0.046080100MEAN±3 SIGMA–0.060.140.160.1801088-C-022TEMPERATURE (°C)0.0240–40–200200.120.080.060.040.10GAIN CHANGE ( V/V rms)0.00–0.02–0.046080100MEAN±3 SIGMA–0.060.140.160.1801088-C-023 Data Sheet AD8361 Rev. D | Page 9 of 24 Figure 24. Output Response to Modulated Pulse Input for Various RF Input Levels, Supply 3 V, Modulation Frequency 900 MHz, No Filter Capacitor Figure 25. Output Response to Modulated Pulse Input for Various RF Input Levels, Supply 3 V, Modulation Frequency 900 MHz, 0.01 μF Filter Capacitor Figure 26. Hardware Configuration for Output Response to Modulated Pulse Input Figure 27. Output Response Using Power-Down Mode for Various RF Input Levels, Supply 3 V, Frequency 900 MHz, No Filter Capacitor Figure 28. Output Response Using Power-Down Mode for Various RF Input Levels, Supply 3 V, Frequency 900 MHz, 0.01 μF Filter Capacitor Figure 29. Hardware Configuration for Output Response Using Power-Down Mode 67mV 370mV 270mV 25mV 5s PER HORIZONTAL DIVISION GATE PULSE FOR 900MHz RF TONE RF INPUT 500mV PER VERTICAL DIVISION 01088-C-024 67mV 370mV 25mV 500mV PER VERTICAL DIVISION 50s PER HORIZONTAL DIVISION RF INPUT GATEPULSEFOR 900MHzRFTONE 270mV 01088-C-025 R1 75 0.1F HPE3631A POWER SUPPLY C4 0.01F C2 100pF HP8648B SIGNAL GENERATOR C1 C3 TEK TDS784C SCOPE C5 100pF TEK P6204 FET PROBE 1 2 3 4 8 7 6 5 AD8361 VPOS IREF RFIN PWDN SREF VRMS FLTR COMM 01088-C-026 RF INPUT 67mV 370mV 270mV 25mV 500mV PER VERTICAL DIVISION PWDN INPUT 2s PER HORIZONTAL DIVISION 01088-C-027 67mV 370mV 270mV 25mV 500mV PER VERTICAL DIVISION PWDN INPUT RF INPUT 01088-C-028 20s PER HORIZONTAL DIVISION R1 75 0.1F HPE3631A POWER SUPPLY C4 0.01F C2 100pF HP8648B SIGNAL GENERATOR HP8110A SIGNAL GENERATOR C1 C3 TEK TDS784C SCOPE C5 100pF TEK P6204 FET PROBE 1 2 3 4 8 7 6 5 AD8361 VPOS IREF RFIN PWDN SREF VRMS FLTR COMM 01088-C-029 AD8361 Data Sheet Rev. D | Page 10 of 24 Figure 30. Conversion Gain Change vs. Frequency, Supply 3 V, Ground Reference Mode, Frequency 100 MHz to 2500 MHz, Representative Device Figure 31. Output Response to Gating on Power Supply, for Various RF Input Levels, Supply 3 V, Modulation Frequency 900 MHz, 0.01 μF Filter Capacitor Figure 32. Hardware Configuration for Output Response to Power Supply Gating Measurements Figure 33. Conversion Gain Distribution Frequency 100 MHz, Supply 5 V, Sample Size 3000 Figure 34. Output Reference, Internal Reference Mode, Supply 5 V, Sample Size 3000 (MSOP Only) Figure 35. Output Reference, Supply Reference Mode, Supply 5 V, Sample Size 3000 (MSOP Only) CARRIER FREQUENCY (MHz)7.87.66.210010007.26.66.47.46.87.0CONVERSION GAIN ( V/V rms)6.05.85.6VS= 3V01088-C-03067mV370mV270mV25mV500mV PERVERTICALDIVISIONSUPPLY20μs PER HORIZONTAL DIVISIONRFINPUT01088-C-031R175Ω732Ω50Ω0.1μFC40.01μFC2100pFHP8648BSIGNALGENERATORC1C3TEK TDS784CSCOPEC5100pFTEK P6204FET PROBE12348765AD8361VPOSIREFRFINPWDNSREFVRMSFLTRCOMM01088-C-032HP8110APULSEGENERATORAD811CONVERSION GAIN (V/V rms)7.66.97.07.216PERCENT7.47.81412108642001088-C-033IREF MODE INTERCEPT (V)0.400.320.340.36PERCENT0.380.441210864200.4201088-C-034SREF MODE INTERCEPT (V)0.720.640.660.68PERCENT0.700.761210864200.7401088-C-035 Data Sheet AD8361 Rev. D | Page 11 of 24 CIRCUIT DESCRIPTION The AD8361 is an rms-responding (mean power) detector that provides an approach to the exact measurement of RF power that is basically independent of waveform. It achieves this function through the use of a proprietary technique in which the outputs of two identical squaring cells are balanced by the action of a high-gain error amplifier. The signal to be measured is applied to the input of the first squaring cell, which presents a nominal (LF) resistance of 225 Ω between the RFIN and COMM pins (connected to the ground plane). Because the input pin is at a bias voltage of about 0.8 V above ground, a coupling capacitor is required. By making this an external component, the measurement range may be extended to arbitrarily low frequencies. The AD8361 responds to the voltage, VIN, at its input by squaring this voltage to generate a current proportional to VIN squared. This is applied to an internal load resistor, across which a capacitor is connected. These form a low-pass filter, which extracts the mean of VIN squared. Although essentially voltage-responding, the associated input impedance calibrates this port in terms of equivalent power. Therefore, 1 mW corresponds to a voltage input of 447 mV rms. The Applications section shows how to match this input to 50 Ω. The voltage across the low-pass filter, whose frequency may be arbitrarily low, is applied to one input of an error-sensing amplifier. A second identical voltage-squaring cell is used to close a negative feedback loop around this error amplifier. This second cell is driven by a fraction of the quasi-dc output voltage of the AD8361. When the voltage at the input of the second squaring cell is equal to the rms value of VIN, the loop is in a stable state, and the output then represents the rms value of the input. The feedback ratio is nominally 0.133, making the rms-dc conversion gain ×7.5, that is rmsVVINOUT×=5.7 By completing the feedback path through a second squaring cell, identical to the one receiving the signal to be measured, several benefits arise. First, scaling effects in these cells cancel; thus, the overall calibration may be accurate, even though the open-loop response of the squaring cells taken separately need not be. Note that in implementing rms-dc conversion, no reference voltage enters into the closed-loop scaling. Second, the tracking in the responses of the dual cells remains very close over temperature, leading to excellent stability of calibration. The squaring cells have very wide bandwidth with an intrinsic response from dc to microwave. However, the dynamic range of such a system is fairly small, due in part to the much larger dynamic range at the output of the squaring cells. There are practical limitations to the accuracy of sensing very small error signals at the bottom end of the dynamic range, arising from small random offsets that limit the attainable accuracy at small inputs. On the other hand, the squaring cells in the AD8361 have a Class-AB aspect; the peak input is not limited by their quiescent bias condition but is determined mainly by the eventual loss of square-law conformance. Consequently, the top end of their response range occurs at a fairly large input level (approximately 700 mV rms) while preserving a reasonably accurate square-law response. The maximum usable range is, in practice, limited by the output swing. The rail-to-rail output stage can swing from a few millivolts above ground to less than 100 mV below the supply. An example of the output induced limit: given a gain of 7.5 and assuming a maximum output of 2.9 V with a 3 V supply, the maximum input is (2.9 V rms)/7.5 or 390 mV rms. Filtering An important aspect of rms-dc conversion is the need for averaging (the function is root-MEAN-square). For complex RF waveforms, such as those that occur in CDMA, the filtering provided by the on-chip, low-pass filter, although satisfactory for CW signals above 100 MHz, is inadequate when the signal has modulation components that extend down into the kilohertz region. For this reason, the FLTR pin is provided: a capacitor attached between this pin and VPOS can extend the averaging time to very low frequencies. Offset An offset voltage can be added to the output (when using the MSOP version) to allow the use of ADCs whose range does not extend down to ground. However, accuracy at the low end degrades because of the inherent error in this added voltage. This requires that the IREF (internal reference) pin be tied to VPOS and SREF (supply reference) to ground. In the IREF mode, the intercept is generated by an internal reference cell and is a fixed 350 mV, independent of the supply voltage. To enable this intercept, IREF should be open-circuited, and SREF should be grounded. In the SREF mode, the voltage is provided by the supply. To implement this mode, tie IREF to VPOS and SREF to VPOS. The offset is then proportional to the supply voltage and is 400 mV for a 3 V supply and 667 mV for a 5 V supply. AD8361 Data Sheet Rev. D | Page 12 of 24 APPLICATIONS Basic Connections Figure 36 through Figure 38 show the basic connections for the AD8361’s MSOP version in its three operating modes. In all modes, the device is powered by a single supply of between 2.7 V and 5.5 V. The VPOS pin is decoupled using 100 pF and 0.01 μF capacitors. The quiescent current of 1.1 mA in operating mode can be reduced to 1 μA by pulling the PWDN pin up to VPOS. A 75 Ω external shunt resistance combines with the ac-coupled input to give an overall broadband input impedance near 50 Ω. Note that the coupling capacitor must be placed between the input and the shunt impedance. Input impedance and input coupling are discussed in more detail below. The input coupling capacitor combines with the internal input resistance (Figure 37) to provide a high-pass corner frequency given by the equation INCRCf××=π21dB3 With the 100 pF capacitor shown in Figure 36 through Figure 38, the high-pass corner frequency is about 8 MHz. Figure 36. Basic Connections for Ground Reference Mode Figure 37. Basic Connections for Internal Reference Mode Figure 38. Basic Connections for Supply Referenced Mode The output voltage is nominally 7.5 times the input rms voltage (a conversion gain of 7.5 V/V rms). Three modes of operation are set by the SREF and IREF pins. In addition to the ground reference mode shown in Figure 36, where the output voltage swings from around near ground to 4.9 V on a 5.0 V supply, two additional modes allow an offset voltage to be added to the output. In the internal reference mode (Figure 37), the output voltage swing is shifted upward by an internal reference voltage of 350 mV. In supply referenced mode (Figure 38), an offset voltage of VS/7.5 is added to the output voltage. Table 4 summarizes the connections, output transfer function, and minimum output voltage (i.e., zero signal) for each mode. Output Swing Figure 39 shows the output swing of the AD8361 for a 5 V supply voltage for each of the three modes. It is clear from Figure 39 that operating the device in either internal reference mode or supply referenced mode reduces the effective dynamic range as the output headroom decreases. The response for lower supply voltages is similar (in the supply referenced mode, the offset is smaller), but the dynamic range reduces further as headroom decreases. Figure 40 shows the response of the AD8361 to a CW input for various supply voltages. Figure 39. Output Swing for Ground, Internal, and Supply Referenced Mode, VPOS = 5 V (MSOP Only) 12348765AD8361VPOSIREFRFINPWDNSREFVRMSFLTRCOMMR175Ω0.01μFCC100pFCFLTR100pF+VS 2.7V– 5.5VRFINV rms01088-C-03612348765AD8361VPOSIREFRFINPWDNSREFVRMSFLTRCOMMR175Ω0.01μFCC100pFCFLTR100pF+VS 2.7V– 5.5VRFINV rms01088-C-03712348765AD8361VPOSIREFRFINPWDNSREFVRMSFLTRCOMMR175Ω0.01μFCC100pFCFLTR100pF+VS 2.7V– 5.5VRFINV rms01088-C-038INPUT (V rms)5.04.50.000.50.10.20.30.43.01.51.00.54.03.52.02.5OUTPUT ( V)SUPPLY REFINTERNAL REFGROUND REF0.60.70.801088-C-039 Data Sheet AD8361 Rev. D | Page 13 of 24 Figure 40. Output Swing for Supply Voltages of 2.7 V, 3.0 V, 5.0 V and 5.5 V (MSOP Only) Dynamic Range Because the AD8361 is a linear-responding device with a nominal transfer function of 7.5 V/V rms, the dynamic range in dB is not clear from plots such as Figure 39. As the input level is increased in constant dB steps, the output step size (per dB) also increases. Figure 41 shows the relationship between the output step size (i.e., mV/dB) and input voltage for a nominal transfer function of 7.5 V/V rms. Table 4. Connections and Nominal Transfer Function for Ground, Internal, and Supply Reference Modes Reference Mode IREF SREF Output Intercept (No Signal) Output Ground VPOS COMM Zero 7.5 VIN Internal OPEN COMM 0.350 V 7.5 VIN + 0.350 V Supply VPOS VPOS VS/7.5 7.5 VIN + VS/7.5 Figure 41. Idealized Output Step Size as a Function of Input Voltage Plots of output voltage versus input voltage result in a straight line. It may sometimes be more useful to plot the error on a logarithmic scale, as shown in Figure 42. The deviation of the plot for the ideal straight line characteristic is caused by output clipping at the high end and by signal offsets at the low end. It should however be noted that offsets at the low end can be either positive or negative, so this plot could also trend upwards at the low end. Figure 9, Figure 10, Figure 12, and Figure 13 show a ±3 sigma distribution of the device error for a large population of devices. Figure 42. Representative Unit, Error in dB vs. Input Level, VS = 2.7 V It is also apparent in Figure 42 that the error plot tends to shift to the right with increasing frequency. Because the input impedance decreases with frequency, the voltage actually applied to the input also tends to decrease (assuming a constant source impedance over frequency). The dynamic range is almost constant over frequency, but with a small decrease in conversion gain at high frequency. Input Coupling and Matching The input impedance of the AD8361 decreases with increasing frequency in both its resistive and capacitive components (Figure 17). The resistive component varies from 225 Ω at 100 MHz down to about 95 Ω at 2.5 GHz. A number of options exist for input matching. For operation at multiple frequencies, a 75 Ω shunt to ground, as shown in Figure 43, provides the best overall match. For use at a single frequency, a resistive or a reactive match can be used. By plotting the input impedance on a Smith Chart, the best value for a resistive match can be calculated. The VSWR can be held below 1.5 at frequencies up to 1 GHz, even as the input impedance varies from part to part. (Both input impedance and input capacitance can vary by up to ±20% around their nominal values.) At very high frequencies (i.e., 1.8 GHz to 2.5 GHz), a shunt resistor is not sufficient to reduce the VSWR below 1.5. Where VSWR is critical, remove the shunt component and insert an inductor in series with the coupling capacitor as shown in Figure 44. Table 5 gives recommended shunt resistor values for various frequencies and series inductor values for high frequencies. The coupling capacitor, CC, essentially acts as an ac-short and plays no intentional part in the matching. INPUT (V rms)5.51.500.50.10.20.30.44.03.02.52.05.04.53.5OUTPUT ( V)1.00.50.05.5V5.0V3.0V2.7V0.60.70.801088-C-040INPUT (mV)7002000500100200300400500400300600mV/dB100060070080001088-C-041INPUT (V rms)2.0–0.50.010.50.01.51.0ERROR ( dB)–1.0–1.5–2.01.01.9GHz2.5GHz900MHz100MHz100MHz0.02(–21dBm)0.1(–7dBm)0.4(+5dBm)01088-C-042 AD8361 Data Sheet Rev. D | Page 14 of 24 Figure 43. Input Coupling/Matching Options, Broadband Resistor Match Figure 44. Input Coupling/Matching Options, Series Inductor Match Figure 45. Input Coupling/Matching Options, Narrowband Reactive Match Figure 46. Input Coupling/Matching Options, Attenuating the Input Signal Table 5. Recommended Component Values for Resistive or Inductive Input Matching (Figure 43 and Figure 44) Frequency Matching Component 100 MHz 63.4 Ω Shunt 800 MHz 75 Ω Shunt 900 MHz 75 Ω Shunt 1800 MHz 150 Ω Shunt or 4.7 nH Series 1900 MHz 150 Ω Shunt or 4.7 nH Series 2500 MHz 150 Ω Shunt or 2.7 nH Series Alternatively, a reactive match can be implemented using a shunt inductor to ground and a series capacitor, as shown in Figure 45. A method for hand calculating the appropriate matching components is shown on page 12 of the AD8306 data sheet. Matching in this manner results in very small values for CM, especially at high frequencies. As a result, a stray capacitance as small as 1 pF can significantly degrade the quality of the match. The main advantage of a reactive match is the increase in sensitivity that results from the input voltage being gained up (by the square root of the impedance ratio) by the matching network. Table 6 shows the recommended values for reactive matching. Table 6. Recommended Values for a Reactive Input Matching (Figure 45) Frequency (MHz) CM (pF) LM (nH) 100 16 180 800 2 15 900 2 12 1800 1.5 4.7 1900 1.5 4.7 2500 1.5 3.3 Input Coupling Using a Series Resistor Figure 46 shows a technique for coupling the input signal into the AD8361 that may be applicable where the input signal is much larger than the input range of the AD8361. A series resistor combines with the input impedance of the AD8361 to attenuate the input signal. Because this series resistor forms a divider with the frequency dependent input impedance, the apparent gain changes greatly with frequency. However, this method has the advantage of very little power being tapped off in RF power transmission applications. If the resistor is large compared to the transmission line’s impedance, then the VSWR of the system is relatively unaffected. Figure 47. Input Impedance vs. Frequency, Supply 3 V, SOT-23 Selecting the Filter Capacitor The AD8361’s internal 27 pF filter capacitor is connected in parallel with an internal resistance that varies with signal level from 2 kΩ for small signals to 500 Ω for large signals. The resulting low-pass corner frequency between 3 MHz and 12 MHz provides adequate filtering for all frequencies above 240 MHz (i.e., 10 times the frequency at the output of the squarer, which is twice the input frequency). However, signals with high peak-to-average ratios, such as CDMA or W-CDMA signals, and low frequency components require additional filtering. TDMA signals, such as GSM, PDC, or PHS, have a peak-to average ratio that is close to that of a sinusoid, and the internal filter is adequate. AD8361 RFIN RFIN RSH 01088-C-043 CC AD8361 RFIN RFIN LM 01088-C-044 CC AD8361 RFIN RFIN 01088-C-045 CM CC LM AD8361 RFIN RFIN 01088-C-046 RSERIES CC FREQUENCY (MHz) 200 0 500 RESISTANCE () 100 0 250 150 50 1000 15002000250030003500 0.2 0.5 0.8 1.1 1.4 1.7 CAPACITANCE (pF) 01088-C-047 Data Sheet AD8361 Rev. D | Page 15 of 24 The filter capacitance of the AD8361 can be augmented by connecting a capacitor between Pin 6 (FLTR) and VPOS. Table 7 shows the effect of several capacitor values for various communications standards with high peak-to-average ratios along with the residual ripple at the output, in peak-to-peak and rms volts. Note that large filter capacitors increase the enable and pulse response times, as discussed below. Table 7. Effect of Waveform and CFILT on Residual AC Output Residual AC Waveform CFILT V dc mV p-p mV rms IS95 Reverse Link Open 0.5 550 100 1.0 1000 180 2.0 2000 360 0.01 μF 0.5 40 6 1.0 160 20 2.0 430 60 0.1 μF 0.5 20 3 1.0 40 6 2.0 110 18 IS95 8-Channel 0.01 μF 0.5 290 40 Forward Link 1.0 975 150 2.0 2600 430 0.1 μF 0.5 50 7 1.0 190 30 2.0 670 95 W-CDMA 15 0.01 μF 0.5 225 35 Channel 1.0 940 135 2.0 2500 390 0.1 μF 0.5 45 6 1.0 165 25 2.0 550 80 Operation at Low Frequencies Although the AD8361 is specified for operation up to 2.5 GHz, there is no lower limit on the operating frequency. It is only necessary to increase the input coupling capacitor to reduce the corner frequency of the input high-pass filter (use an input resistance of 225 Ω for frequencies below 100 MHz). It is also necessary to increase the filter capacitor so that the signal at the output of the squaring circuit is free of ripple. The corner frequency is set by the combination of the internal resistance of 2 kΩ and the external filter capacitance. Power Consumption, Enable and Power-On The quiescent current consumption of the AD8361 varies with the size of the input signal from about 1 mA for no signal up to 7 mA at an input level of 0.66 V rms (9.4 dBm, re 50 Ω). If the input is driven beyond this point, the supply current increases steeply (see Figure 16). There is little variation in quiescent current with power supply voltage. The AD8361 can be disabled either by pulling the PWDN (Pin 4) to VPOS or by simply turning off the power to the device. While turning off the device obviously eliminates the current consumption, disabling the device reduces the leakage current to less than 1 μA. Figure 27 and Figure 28 show the response of the output of the AD8361 to a pulse on the PWDN pin, with no capacitance and with a filter capacitance of 0.01 μF, respectively; the turn-on time is a function of the filter capacitor. Figure 31 shows a plot of the output response to the supply being turned on (i.e., PWDN is grounded and VPOS is pulsed) with a filter capacitor of 0.01 μF. Again, the turn-on time is strongly influenced by the size of the filter capacitor. If the input of the AD8361 is driven while the device is disabled (PWDN = VPOS), the leakage current of less than 1 μA increases as a function of input level. When the device is disabled, the output impedance increases to approximately 16 kΩ. Volts to dBm Conversion In many of the plots, the horizontal axis is scaled in both rms volts and dBm. In all cases, dBm are calculated relative to an impedance of 50 Ω. To convert between dBm and volts in a 50 Ω system, the following equations can be used. Figure 48 shows this conversion in graphical form. ()()()()222010logW0.001Ω5010logdBmrmsVrmsVPower== ()20/10log10logΩ50W0.00111dBmdBmrmsV−−=  ××= Figure 48. Conversion from dBm to rms Volts V rmsdBm+20+100–10–20–30–4010.10.010.00101088-C-048 AD8361 Data Sheet Rev. D | Page 16 of 24 Output Drive Capability and Buffering The AD8361 is capable of sourcing an output current of approximately 3 mA. If additional current is required, a simple buffering circuit can be used as shown in Figure 51. Similar circuits can be used to increase or decrease the nominal conversion gain of 7.5 V/V rms (Figure 49 and Figure 50). In Figure 50, the AD8031 buffers a resistive divider to give a slope of 3.75 V/V rms. In Figure 49, the op amp’s gain of two increases the slope to 15 V/V rms. Using other resistor values, the slope can be changed to an arbitrary value. The AD8031 rail-to-rail op amp, used in these example, can swing from 50 mV to 4.95 V on a single 5 V supply and operate at supply voltages down to 2.7 V. If high output current is required (>10 mA), the AD8051, which also has rail-to- rail capability, can be used down to a supply voltage of 3 V. It can deliver up to 45 mA of output current. Figure 49. Output Buffering Options, Slope of 15 V/V rms Figure 50. Output Buffering Options, Slope of 3.75 V/V rms Figure 51. Output Buffering Options, Slope of 7.5 V/V rms OUTPUT REFERENCE TEMPERATURE DRIFT COMPENSATION The error due to low temperature drift of the AD8361 can be reduced if the temperature is known. Many systems incorporate a temperature sensor; the output of the sensor is typically digitized, facilitating a software correction. Using this information, only a two-point calibration at ambient is required. The output voltage of the AD8361 at ambient (25°C) can be expressed by the equation     OUT VIN GAIN V where GAIN is the conversion gain in V/V rms and VOS is the extrapolated output voltage for an input level of 0 V. GAIN and VOS (also referred to as intercept and output reference) can be calculated at ambient using a simple two-point calibration by measuring the output voltages for two specific input levels. Calibration at roughly 35 mV rms (−16 dBm) and 250 mV rms (+1 dBm) is recommended for maximum linear dynamic range. However, alternative levels and ranges can be chosen to suit the application. GAIN and VOS are then calculated using the equations   IN2 IN1 OUT2 OUT1 V V V V GAIN      OS OUT1 VIN1 GAIN V V   Both GAIN and VOS drift over temperature. However, the drift of VOS has a bigger influence on the error relative to the output. This can be seen by inserting data from Figure 18 and Figure 21 (intercept drift and conversion gain) into the equation for VOUT. These plots are consistent with Figure 14 and Figure 15, which show that the error due to temperature drift decreases with increasing input level. This results from the offset error having a diminishing influence with increasing level on the overall measurement error. From Figure 18, the average intercept drift is 0.43 mV/°C from −40°C to +25°C and 0.17 mV/°C from +25°C to +85°C. For a less rigorous compensation scheme, the average drift over the complete temperature range can be calculated as       C /V0.000304 C 40C85 V 0.028V0.010 C /V                DRIFTVOS With the drift of VOS included, the equation for VOUT becomes VOUT = (GAIN × VIN) + VOS + DRIFTVOS × (TEMP − 25°C) 0.01F 100pF 0.01F AD8361 VOUT VPOS COMM PWDN 5k 5k 5V AD8031 15V/V rms 01088-C-049 0.01F 100pF 0.01F AD8361 VOUT VPOS COMM PWDN 5V 5k AD8031 3.75V/V rms 5k 10k 01088-C-050 0.01F 100pF 0.01F AD8361 VOUT VPOS COMM PWDN 5V AD8031 7.5V/V rms 01088-C-051 Data Sheet AD8361 Rev. D | Page 17 of 24 The equation can be rewritten to yield a temperature compensated value for VIN: ()()GAINTEMPDRIFTVVVVOSOSOUTINC25°−×−−= Figure 52 shows the output voltage and error (in dB) as a function of input level for a typical device (note that output voltage is plotted on a logarithmic scale). Figure 53 shows the error in the calculated input level after the temperature compensation algorithm has been applied. For a supply voltage of 5 V, the part exhibits a worst-case linearity error over temperature of approximately ±0.3 dB over a dynamic range of 35 dB. Figure 52. Typical Output Voltage and Error vs. Input Level, 800 MHz, VPOS = 5 V Figure 53. Error after Temperature Compensation of Output Reference,800 MHz, VPOS = 5 V Extended Frequency Characterization Although the AD8361 was originally intended as a power measurement and control device for cellular wireless applications, the AD8361 has useful performance at higher frequencies. Typical applications may include MMDS, LMDS, WLAN, and other noncellular activities. In order to characterize the AD8361 at frequencies greater than 2.5 GHz, a small collection of devices were tested. Dynamic range, conversion gain, and output intercept were measured at several frequencies over a temperature range of −30°C to +80°C. Both CW and 64 QAM modulated input wave forms were used in the characterization process in order to access varying peak-to-average waveform performance. The dynamic range of the device is calculated as the input power range over which the device remains within a permissible error margin to the ideal transfer function. Devices were tested over frequency and temperature. After identifying an acceptable error margin for a given application, the usable dynamic measurement range can be identified using the plots in Figure 54 through Figure 57. For instance, for a 1 dB error margin and a modulated carrier at 3 GHz, the usable dynamic range can be found by inspecting the 3 GHz plot of Figure 57. Note that the −30°C curve crosses the −1 dB error limit at −17 dBm. For a 5 V supply, the maximum input power should not exceed 6 dBm in order to avoid compression. The resultant usable dynamic range is therefore 6 dBm − (−17 dBm) or 23 dBm over a temperature range of −30°C to +80°C. Figure 54. Transfer Function and Error Plots Measured at 1.5 GHz for a 64 QAM Modulated Signal PIN (dBm)2.5–250–20–15–10–51.02.01.50.5ERROR ( dB)510+25°C–40°C0–0.5–1.0–1.5–2.0–2.50.1101.0VOUT ( V)+85°C01088-C-052PIN (dBm)–250–20–15–10–51.02.01.50.5ERROR ( dB)5100–0.5–1.0–1.5–2.0–2.5+25°C–40°C+85°C–3.0–3001088-C-053PIN (dBm)2.5–25ERROR ( dB)2.01.51.00.50–0.5–1.0–1.5–2.0–2.5–20–15–10–505101010.1VOUT ( V)+80°C+25°C–30°C01088-0-054 AD8361 Data Sheet Rev. D | Page 18 of 24 Figure 55. Transfer Function and Error Plots Measured at 2.5 GHz for a 64 QAM Modulated Signal Figure 56. Transfer Function and Error Plots Measured at 2.7 GHz for a 64 QAM Modulated Signal Figure 57. Transfer Function and Error Plots Measured at 3.0 GHz for a 64 QAM Modulated Signal Figure 58. Error from CW Linear Reference vs. Input Drive Level for CW and 64 QAM Modulated Signals at 3.0 GHz Figure 59. Conversion Gain vs. Frequency for a Typical Device, Supply 3 V, Ground Reference Mode The transfer functions and error for a CW input and a 64 QAM input waveform is shown in Figure 58. The error curve is generated from a linear reference based on the CW data. The increased crest factor of the 64 QAM modulation results in a decrease in output from the AD8361. This decrease in output is a result of the limited bandwidth and compression of the internal gain stages. This inaccuracy should be accounted for in systems where varying crest factor signals need to be measured. The conversion gain is defined as the slope of the output voltage vs. the input rms voltage. An ideal best fit curve can be found for the measured transfer function at a given supply voltage and temperature. The slope of the ideal curve is identified as the conversion gain for a particular device. The conversion gain relates the measurement sensitivity of the AD8361 to the rms input voltage of the RF waveform. The conversion gain was measured for a number of devices over a temperature range of −30°C to +80°C. The conversion gain for a typical device is shown in Figure 59. Although the conversion gain tends to decrease with increasing frequency, the AD8361 provides measurement capability at frequencies greater than 2.5 GHz. However, it is necessary to calibrate for a given application to PIN (dBm)2.5–25ERROR ( dB)2.01.51.00.50–0.5–1.0–1.5–2.0–2.5–20–15–10–505101010.1VOUT ( V)+80°C+25°C–30°C01088-C-055PIN (dBm)2.5–25ERROR ( dB)2.01.51.00.50–0.5–1.0–1.5–2.0–2.5–20–15–10–505101010.1VOUT ( V)+80°C+25°C–30°C01088-C-056PIN (dBm)2.5–25ERROR ( dB)2.01.51.00.50–0.5–1.0–1.5–2.0–2.5–20–15–10–550101010.1VOUT ( V)+80°C+25°C–30°C01088-C-057PIN (dBm)2.5–25ERROR ( dB)2.01.51.00.50–0.5–1.0–1.5–2.0–2.5–20–15–10–550101010.1VOUT ( V)CW64 QAM01088-C-058FREQUENCY (MHz)8.0100CONVERSION GAIN ( V/V rms)7.57.06.56.05.55.020040080012001600220025002700300001088-C-059 Data Sheet AD8361 Rev. D | Page 19 of 24 accommodate for the change in conversion gain at higher frequencies. Dynamic Range Extension for the AD8361 The accurate measurement range of the AD8361 is limited by internal dc offsets for small input signals and by square law conformance errors for large signals. The measurement range may be extended by using two devices operating at different signal levels and then choosing only the output of the device that provides accurate results at the prevailing input level. Figure 60 depicts an implementation of this idea. In this circuit, the selection of the output is made gradually over an input level range of about 3 dB in order to minimize the impact of imperfect matching of the transfer functions of the two AD8361s. Such a mismatch typically arises because of the variation of the gain of the RF preamplifier U1 and both the gain and slope variations of the AD8361s with temperature. One of the AD8361s (U2) has a net gain of about 14 dB preceding it and therefore operates most accurately at low input signal levels. This is referred to as the weak signal path. U4, on the other hand, does not have the added gain and provides accurate response at high levels. The output of U2 is attenuated by R1 in order to cancel the effect of U2’s preceding gain so that the slope of the transfer function (as seen at the slider of R1) is the same as that of U4 by itself. The circuit comprising U3, U5, and U6 is a crossfader, in which the relative gains of the two inputs are determined by the output currents of a fuzzy comparator made from Q1 and Q2. Assuming that the slider of R2 is at 2.5 V dc, the fuzzy comparator commands full weighting of the weak signal path when the output of U2 is below about 2.0 V dc, and full weighting of the strong signal path when the output of U3 exceeds about 3.0 V dc. U3 and U5 are OTAs (operational transconductance amplifiers). Figure 60. Range Extender Application 87651234AD83610.1μF5V100pF5V0.01μF68ΩU2ERA-320dBU1RFC270Ω12V6dBPAD6dBSPLITTERRFINPUT12V20kΩ1kΩ1kΩ5VR210kΩQ22N3906Q12N390616kΩR15kΩCA3080+12V–5VU320kΩCA3080+12V–5VU52356235620kΩ1MΩR310kΩ–5V+5V12kΩ87651234AD83610.1μF5V100pF5V0.01μF68ΩU4AD8205VU6238.2nF476VOUT100Ω01088-C-060 AD8361 Data Sheet Rev. D | Page 20 of 24 U6 provides feedback to linearize the inherent tanh transfer function of the OTAs. When one OTA or the other is fully selected, the feedback is very effective. The active OTA has zero differential input; the inactive one has a potentially large differential input, but this does not matter because the inactive OTA is not contributing to the output. However, when both OTAs are active to some extent, and the two signal inputs to the crossfader are different, it is impossible to have zero differential inputs on the OTAs. In this event, the crossfader admittedly generates distortion because of the nonlinear transfer function of the OTAs. Fortunately, in this application, the distortion is not very objectionable for two reasons: 1. The mismatch in input levels to the crossfader is never large enough to evoke very much distortion because the AD8361s are reasonably well-behaved. 2. The effect of the distortion in this case is merely to distort the otherwise nearly linear slope of the transition between the crossfader’s two inputs. Figure 61. Slope Adjustment This circuit has three trimmable potentiometers. The suggested setup procedure is as follows: 3. Preset R3 at midrange. 4. Set R2 so that its slider’s voltage is at the middle of the desired transition zone (about 2.5 V dc is recommended). 5. Set R1 so that the transfer function’s slopes are equal on both sides of the transition zone. This is perhaps best accomplished by making a plot of the overall transfer function (using linear voltage scales for both axes) to assess the match in slope between one side of the transition region and the other (see Figure 61). Note: it may be helpful to adjust R3 to remove any large misalignment in the transfer function in order to correctly perceive slope differences. 6. Finally (re)adjust R3 as required to remove any remaining misalignment in the transfer function (see Figure 62). Figure 62. Intercept Adjustment In principle, this method could be extended to three or more AD8361s in pursuit of even more measurement range. However, it is very important to pay close attention to the matter of not excessively overdriving the AD8361s in the weaker signal paths under strong signal conditions. Figure 63 shows the extended range transfer function at multiple temperatures. The discontinuity at approximately 0.2 V rms arises as a result of component temperature dependencies. Figure 64 shows the error in dB of the range extender circuit at ambient temperature. For a 1 dB error margin, the range extender circuit offers 38 dB of measurement range. Figure 63. Output vs. Drive Level over Temperature for a 1 GHz 64 QAM Modulated Signal Figure 64. Error from Linear Reference at 25°C for a 1 GHz 64 QAM Modulated Signal VOUTm1m2m1≠m2DIFFERINGSLOPES INDICATEMALADJUSTMENTOF R1RF INPUT LEVEL– V rmsTRANSITIONREGION01088-C-061VOUTRF INPUT LEVEL– V rmsTRANSITIONREGIONMISALIGNMENT INDICATESMALADJUSTMENT OF R301088-C-062DRIVE LEVEL (V rms)3.02.5001.00.2VOUT ( V)0.40.60.82.01.51.00.5REF LINE+80°C–30°C01088-C-063DRIVE LEVEL (dBm)5–32ERROR ( dB)43210–1–2–3–4–5–27–22–17–12–7–2381301088-C-064 Data Sheet AD8361 Rev. D | Page 21 of 24 EVALUATION BOARD Figure 65 and Figure 68 show the schematic of the AD8361 evaluation board. Note that uninstalled components are drawn in as dashed. The layout and silkscreen of the component side are shown in Figure 66, Figure 67, Figure 69, and Figure 70. The board is powered by a single supply in the 2.7 V to 5.5 V range. The power supply is decoupled by 100 pF and 0.01 μF capacitors. Additional decoupling, in the form of a series resistor or inductor in R6, can also be added. Table 8 details the various configuration options of the evaluation board. Table 8. Evaluation Board Configuration Options Component Function Default Condition TP1, TP2 Ground and Supply Vector Pins. Not Applicable SW1 Device Enable. When in Position A, the PWDN pin is connected to +VS and the AD8361 is in power-down mode. In Position B, the PWDN pin is grounded, putting the device in operating mode. SW1 = B SW2/SW3 Operating Mode. Selects either ground reference mode, internal reference mode or supply reference mode. See Table 4 for more details. SW2 = A, SW3 = B (Ground Reference Mode) C1, R2 Input Coupling. The 75 Ω resistor in Position R2 combines with the AD8361’s internal input impedance to give a broadband input impedance of around 50 Ω. For more precise matching at a particular frequency, R2 can be replaced by a different value (see Input Coupling and Matching and Figure 43 through Figure 46). Capacitor C1 ac couples the input signal and creates a high-pass input filter whose corner frequency is equal to approximately 8 MHz. C1 can be increased for operation at lower frequencies. If resistive attenuation is desired at the input, series resistor R1, which is nominally 0 Ω, can be replaced by an appropriate value. R2 = 75 Ω (Size 0402) C1 = 100 pF (Size 0402) C2, C3, R6 Power Supply Decoupling. The nominal supply decoupling of 0.01 μF and 100 pF. A series inductor or small resistor can be placed in R6 for additional decoupling. C2 = 0.01 μF (Size 0402) C3 = 100 pF (Size 0402) R6 = 0 Ω (Size 0402) C5 Filter Capacitor. The internal 50 pF averaging capacitor can be augmented by placing a capacitance in C5. C5 = 1 nF (Size 0603) C4, R5 Output Loading. Resistors and capacitors can be placed in C4 and R5 to load test V rms. C4 = R5 = Open (Size 0603) AD8361 Data Sheet Rev. D | Page 22 of 24 Figure 65. Evaluation Board Schematic, MSOP Figure 66. Layout of Component Side, MSOP Figure 67. Silkscreen of Component Side, MSOP Figure 68. Evaluation Board Schematic, SOT-23 Figure 69. Layout of the Component Side, SOT-23 Figure 70. Silkscreen of the Component Side, SOT-23 12348765AD8361VPOSIREFRFINPWDNSREFVRMSFLTRCOMMC20.01μFC3100pFC1100pFC5RFINVrmsVPOSVSSW2VSSW3SW1ABAB1nFABTP2TP1VPOSVPOSR275ΩR40ΩR60ΩC4(OPEN)R5(OPEN)01088-C-06501088-C-06601088-C-067R275ΩR750ΩR40ΩC20.01μFC1100pFC3100pFC51nFJ2J3J1TP2C4(OPEN)R5(OPEN)AD8361VPOSRFINPWDNVRMSFLTRCOMMTP1SW1123VPOS12365401088-C-06801088-C-06901088-C-070 Data Sheet AD8361 Rev. D | Page 23 of 24 Problems caused by impedance mismatch may arise using the evaluation board to examine the AD8361 performance. One way to reduce these problems is to put a coaxial 3 dB attenuator on the RFIN SMA connector. Mismatches at the source, cable, and cable interconnection, as well as those occurring on the evaluation board, can cause these problems. A simple (and common) example of such a problem is triple travel due to mismatch at both the source and the evaluation board. Here the signal from the source reaches the evaluation board and mismatch causes a reflection. When that reflection reaches the source mismatch, it causes a new reflection, which travels back to the evaluation board, adding to the original signal incident at the board. The resultant voltage varies with both cable length and frequency dependence on the relative phase of the initial and reflected signals. Placing the 3 dB pad at the input of the board improves the match at the board and thus reduces the sensitivity to mismatches at the source. When such precautions are taken, measurements are less sensitive to cable length and other fixture issues. In an actual application when the distance between AD8361 and source is short and well defined, this 3 dB attenuator is not needed. CHARACTERIZATION SETUPS Equipment The primary characterization setup is shown in Figure 72. The signal source used was a Rohde & Schwarz SMIQ03B, version 3.90HX. The modulated waveforms used for IS95 reverse link, IS95 nine active channels forward (forward link 18 setting), and W-CDMA 4-channel and 15-channel were generated using the default settings coding and filtering. Signal levels were calibrated into a 50 Ω impedance. Analysis The conversion gain and output reference are derived using the coefficients of a linear regression performed on data collected in its central operating range (35 mV rms to 250 mV rms). This range was chosen to avoid areas of operation where offset distorts the linear response. Error is stated in two forms error from linear response to CW waveform and output delta from 2°C performance. The error from linear response to CW waveform is the difference in output from the ideal output defined by the conversion gain and output reference. This is a measure of both the linearity of the device response to both CW and modulated waveforms. The error in dB uses the conversion gain multiplied by the input as its reference. Error from linear response to CW waveform is not a measure of absolute accuracy, since it is calculated using the gain and output reference of each device. However, it does show the linearity and effect of modulation on the device response. Error from 25°C performance uses the performance of a given device and waveform type as the reference; it is predominantly a measure of output variation with temperature. Figure 71. Characterization Board Figure 72. Characterization Setup 1 2 3 4 8 7 6 5 AD8361 VPOS IREF RFIN PWDN SREF VRMS FLTR COMM C1 0.1F R1 75 RFIN C3 C4 0.1F C2 100pF IREF PWDN VPOS SREF VRMS 01088-C-071 AD8361 CHARACTERIZATION BOARD RFIN PRUP +VS SREF IREF VRMS SMIQ038B RF SIGNAL DC OUTPUT RF SOURCE IEEE BUS PC CONTROLLER DC MATRIX / DC SUPPLIES / DMM DC SOURCES 3dB ATTENUATOR 01088-C-072 AD8361 Data Sheet Rev. D | Page 24 of 24 OUTLINE DIMENSIONS Figure 73. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters Figure 74. 6-Lead Small Outline Transistor Package [SOT-23] (RJ-6) Dimensions shown in millimeters ORDERING GUIDE Model1 Temperature Range Package Description Package Option Branding AD8361ARM −40°C to +85°C 8-Lead MSOP, Tube RM-8 J3A AD8361ARM-REEL7 −40°C to +85°C 8-Lead MSOP, 7" Tape and Reel RM-8 J3A AD8361ARMZ −40°C to +85°C 8-Lead MSOP, Tube RM-8 J3A AD8361ARMZ-REEL −40°C to +85°C 8-Lead MSOP, 13" Tape and Reel RM-8 J3A AD8361ARMZ-REEL7 −40°C to +85°C 8-Lead MSOP, 7" Tape and Reel RM-8 J3A AD8361ARTZ-RL7 −40°C to +85°C 6-Lead SOT-23, 7" Tape and Reel RJ-6 Q0V AD8361-EVALZ Evaluation Board MSOP AD8361ART-EVAL Evaluation Board SOT-23-6L 1 Z = RoHS Compliant Part. COMPLIANT TO JEDEC STANDARDS MO-187-AA 6° 0° 0.80 0.55 0.40 4 8 1 5 0.65 BSC 0.40 0.25 1.10 MAX 3.20 3.00 2.80 COPLANARITY 0.10 0.23 0.09 3.20 3.00 2.80 5.15 4.90 4.65 PIN 1 IDENTIFIER 15° MAX 0.95 0.85 0.75 0.15 0.05 10-07-2009-B COMPLIANTTOJEDECSTANDARDSMO-178-AB 10° 4° 0° SEATING PLANE 1.90 BSC 0.95BSC 0.60 BSC 6 5 1 2 3 4 3.00 2.90 2.80 3.00 2.80 2.60 1.70 1.60 1.50 1.30 1.15 0.90 0.15MAX 0.05MIN 1.45MAX 0.95MIN 0.20MAX 0.08MIN 0.50MAX 0.30MIN 0.55 0.45 0.35 PIN1 INDICATOR 12-16-2008-A ©2014 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D01088–0–3/14(D) Fast, Voltage-Out, DC to 440 MHz, 95 dB Logarithmic Amplifier AD8310 Rev. F Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2005–2010 Analog Devices, Inc. All rights reserved. FEATURES Multistage demodulating logarithmic amplifier Voltage output, rise time <15 ns High current capacity: 25 mA into grounded RL 95 dB dynamic range: −91 dBV to +4 dBV Single supply of 2.7 V min at 8 mA typ DC to 440 MHz operation, ±0.4 dB linearity Slope of +24 mV/dB, intercept of −108 dBV Highly stable scaling over temperature Fully differential dc-coupled signal path 100 ns power-up time, 1 mA sleep current APPLICATIONS Conversion of signal level to decibel form Transmitter antenna power measurement Receiver signal strength indication (RSSI) Low cost radar and sonar signal processing Network and spectrum analyzers Signal-level determination down to 20 Hz True-decibel ac mode for multimeters FUNCTIONAL BLOCK DIAGRAM Figure 1. GENERAL DESCRIPTION The AD8310 is a complete, dc to 440 MHz demodulating logarithmic amplifier (log amp) with a very fast voltage mode output, capable of driving up to 25 mA into a grounded load in under 15 ns. It uses the progressive compression (successive detection) technique to provide a dynamic range of up to 95 dB to ±3 dB law conformance or 90 dB to a ±1 dB error bound up to 100 MHz. It is extremely stable and easy to use, requiring no significant external components. A single-supply voltage of 2.7 V to 5.5 V at 8 mA is needed, corresponding to a power consumption of only 24 mW at 3 V. A fast-acting CMOS-compatible enable pin is provided. Each of the six cascaded amplifier/limiter cells has a small-signal gain of 14.3 dB, with a −3 dB bandwidth of 900 MHz. A total of nine detector cells are used to provide a dynamic range that extends from −91 dBV (where 0 dBV is defined as the amplitude of a 1 V rms sine wave), an amplitude of about ±40 μV, up to +4 dBV (or ±2.2 V). The demodulated output is accurately scaled, with a log slope of 24 mV/dB and an intercept of −108 dBV. The scaling parameters are supply- and temperature-independent. The fully differential input offers a moderately high impedance (1 kΩ in parallel with about 1 pF). A simple network can match the input to 50 Ω and provide a power sensitivity of −78 dBm to +17 dBm. The logarithmic linearity is typically within ±0.4 dB up to 100 MHz over the central portion of the range, but it is somewhat greater at 440 MHz. There is no minimum frequency limit; the AD8310 can be used down to low audio frequencies. Special filtering features are provided to support this wide range. The output voltage runs from a noise-limited lower boundary of 400 mV to an upper limit within 200 mV of the supply voltage for light loads. The slope and intercept can be readily altered using external resistors. The output is tolerant of a wide variety of load conditions and is stable with capacitive loads of 100 pF. The AD8310 provides a unique combination of low cost, small size, low power consumption, high accuracy and stability, high dynamic range, a frequency range encompassing audio to UHF, fast response time, and good load-driving capabilities, making this product useful in numerous applications that require the reduction of a signal to its decibel equivalent. The AD8310 is available in the industrial temperature range of −40°C to +85°C in an 8-lead MSOP package. AD8310 Rev. F | Page 2 of 24 TABLE OF CONTENTS Features .............................................................................................. 1 Applications ....................................................................................... 1 Functional Block Diagram .............................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications ..................................................................................... 3 Absolute Maximum Ratings ............................................................ 4 ESD Caution .................................................................................. 4 Pin Configuration and Function Descriptions ............................. 5 Typical Performance Characteristics ............................................. 6 Theory of Operation ........................................................................ 9 Progressive Compression ............................................................ 9 Slope and Intercept Calibration ................................................ 10 Offset Control ............................................................................. 10 Product Overview ........................................................................... 11 Enable Interface .......................................................................... 11 Input Interface ............................................................................ 11 Offset Interface ........................................................................... 12 Output Interface ......................................................................... 12 Using the AD8310 .......................................................................... 14 Basic Connections ...................................................................... 14 Transfer Function in Terms of Slope and Intercept ............... 15 dBV vs. dBm ............................................................................... 15 Input Matching ........................................................................... 15 Narrow-Band Matching ............................................................ 16 General Matching Procedure .................................................... 16 Slope and Intercept Adjustments ............................................. 17 Increasing the Slope to a Fixed Value ...................................... 17 Output Filtering .......................................................................... 18 Lowering the High-Pass Corner Frequency of the Offset Compensation Loop .................................................................. 18 Applications Information .............................................................. 19 Cable-Driving ............................................................................. 19 DC-Coupled Input ..................................................................... 19 Evaluation Board ............................................................................ 20 Die Information .............................................................................. 22 Outline Dimensions ....................................................................... 23 Ordering Guide .......................................................................... 23 REVISION HISTORY 6/10—Rev. E to Rev. F Added Die Information Section ................................................... 22 Updated Outline Dimensions ....................................................... 23 Changes to Ordering Guide .......................................................... 23 6/05—Rev. D to Rev. E Changes to Figure 6 .......................................................................... 6 Change to Basic Connections Section ......................................... 14 Changes to Equation 10 ................................................................. 17 Changes to Ordering Guide .......................................................... 22 10/04—Rev. C to Rev. D Format Updated .................................................................. Universal Typical Performance Characteristics Reordered .......................... 6 Changes to Figure 41 and Figure 42 ............................................. 20 7/03—Rev. B to Rev. C Replaced TPC 12 ............................................................................... 5 Change to DC-Coupled Input Section ........................................ 14 Replaced Figure 20 ......................................................................... 15 Updated Outline Dimensions ....................................................... 16 2/03—Rev. A to Rev. B Change to Evaluation Board Section ........................................... 15 Change to Table III ......................................................................... 16 Updated Outline Dimensions ....................................................... 16 1/00—Rev. 0 to Rev. A 10/99—Revision 0: Initial Version AD8310 Rev. F | Page 3 of 24 SPECIFICATIONS TA = 25°C, VS = 5 V, unless otherwise noted. Table 1. Parameter Test Conditions/Comments Min Typ Max Unit INPUT STAGE Inputs INHI, INLO Maximum Input1 Single-ended, p-p ±2.0 ±2.2 V 4 dBV Equivalent Power in 50 Ω Termination resistor of 52.3 Ω 17 dBm Differential drive, p-p 20 dBm Noise Floor Terminated 50 Ω source 1.28 nV/√Hz Equivalent Power in 50 Ω 440 MHz bandwidth −78 dBm Input Resistance From INHI to INLO 800 1000 1200 Ω Input Capacitance From INHI to INLO 1.4 pF DC Bias Voltage Either input 3.2 V LOGARITHMIC AMPLIFIER Output VOUT ±3 dB Error Dynamic Range From noise floor to maximum input 95 dB Transfer Slope 10 MHz ≤ f ≤ 200 MHz 22 24 26 mV/dB Overtemperature, −40°C < TA < +85°C 20 26 mV/dB Intercept (Log Offset)2 10 MHz ≤ f ≤ 200 MHz −115 −108 −99 dBV Equivalent dBm (re 50 Ω) −102 −95 −86 dBm Overtemperature, −40°C ≤ TA ≤ +85°C −120 −96 dBV Equivalent dBm (re 50 Ω) −107 −83 dBm Temperature sensitivity −0.04 dB/°C Linearity Error (Ripple) Input from −88 dBV (−75 dBm) to +2 dBV (+15 dBm) ±0.4 dB Output Voltage Input = −91 dBV (−78 dBm) 0.4 V Input = 9 dBV (22 dBm) 2.6 V Minimum Load Resistance, RL 100 Ω Maximum Sink Current 0.5 mA Output Resistance 0.05 Ω Video Bandwidth 25 MHz Rise Time (10% to 90%) Input level = −43 dBV (−30 dBm), RL ≥ 402 Ω, CL ≤ 68 pF 15 ns Input level = −3 dBV (+10 dBm), RL ≥ 402 Ω, CL ≤ 68 pF 20 ns Fall Time (90% to 10%) Input level = −43 dBV (−30 dBm), RL ≥ 402 Ω, CL ≤ 68 pF 30 ns Input level = −3 dBV (+10 dBm), RL ≥ 402 Ω, CL ≤ 68 pF 40 ns Output Settling Time to 1% Input level = −13 dBV (0 dBm), RL ≥ 402 Ω, CL ≤ 68 pF 40 ns POWER INTERFACES Supply Voltage, VPOS 2.7 5.5 V Quiescent Current Zero signal 6.5 8.0 9.5 mA Overtemperature −40°C < TA < +85°C 5.5 8.5 10 mA Disable Current 0.05 μA Logic Level to Enable Power High condition, −40°C < TA < +85°C 2.3 V Input Current When High 3 V at ENBL 35 μA Logic Level to Disable Power Low condition, −40°C < TA < +85°C 0.8 V 1 The input level is specified in dBV, because logarithmic amplifiers respond strictly to voltage, not power. 0 dBV corresponds to a sinusoidal single-frequency input of 1 V rms. A power level of 0 dBm (1 mW) in a 50 Ω termination corresponds to an input of 0.2236 V rms. Therefore, the relationship between dBV and dBm is a fixed offset of 13 dBm in the special case of a 50 Ω termination. 2 Guaranteed but not tested; limits are specified at six sigma levels. AD8310 Rev. F | Page 4 of 24 ABSOLUTE MAXIMUM RATINGS Table 2. Parameter Rating Supply Voltage, VS 7.5 V Input Power (re 50 Ω), Single-Ended 18 dBm Differential Drive 22 dBm Internal Power Dissipation 200 mW θJA 200°C/W Maximum Junction Temperature 125°C Operating Temperature Range −40°C to +85°C Storage Temperature Range −65°C to +150°C Lead Temperature (Soldering 60 sec) 300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION AD8310 Rev. F | Page 5 of 24 01084-002 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS INLO1INHI8 Figure 2. Pin Configuration Table 3. Pin Function Descriptions Pin No. Mnemonic Description 1 INLO One of Two Balanced Inputs. Biased roughly to VPOS/2. 2 COMM Common Pin. Usually grounded. 3 OFLT Offset Filter Access. Nominally at about 1.75 V. 4 VOUT Low Impedance Output Voltage. Carries a 25 mA maximum load. 5 VPOS Positive Supply. 2.7 V to 5.5 V at 8 mA quiescent current. 6 BFIN Buffer Input. Used to lower postdetection bandwidth. 7 ENBL CMOS Compatible Chip Enable. Active when high. 8 INHI Second of Two Balanced Inputs. Biased roughly to VPOS/2. AD8310 Rev. F | Page 6 of 24 TYPICAL PERFORMANCE CHARACTERISTICS 3.00RSSI OUTPUT ( V)2.52.01.51.00.5TA = +85°CTA = +25°CTA =–40°C01084-011 Figure 3. RSSI Output vs. Input Level, 100 MHz Sine Input at TA = −40°C, +25°C, and +85°C, Single-Ended Input 3.0RSSI OUTPUT ( V)2.52.01.51.00.5010MHz50MHz100MHz Figure 4. RSSI Output vs. Input Level at TA = 25°C for Frequencies of 10 MHz, 50 MHz, and 100 MHz 3.00RSSI OUTPUT ( V)2.52.01.51.00.5200MHz300MHz440MHz Figure 5. RSSI Output vs. Input Level at TA = 25°C for Frequencies of 200 MHz, 300 MHz, and 440 MHz Figure 6. Log Linearity of RSSI Output vs. Input Level, 100 MHz Sine Input at TA = −40°C, +25°C, and +85°C Figure 7. Log Linearity of RSSI Output vs. Input Level at TA = 25°C for Frequencies of 10 MHz, 50 MHz, and 100 MHz Figure 8. Log Linearity of RSSI Output vs. Input Level at TA = 25°C for Frequencies of 200 MHz, 300 MHz, and 440 MHz AD8310 Rev. F | Page 7 of 24 500mV PERVERTICALDIVISIONVOUT100pF3300pFGROUND REFERENCE0.01μF Figure 9. Small-Signal AC Response of RSSI Output with External BFIN Capacitance of 100 pF, 3300 pF, and 0.01 μF GND REFERENCEINPUT 500mV PERVERTICALDIVISIONVOUT154Ω100Ω200Ω Figure 10. Large-Signal RSSI Pulse Response with CL = 100 pF and RL = 100 Ω, 154 Ω, and 200 Ω 100ns PERHORIZONTALDIVISIONGND REFERENCEINPUT500mV PERVERTICALDIVISIONVOUT Figure 12. Small-Signal RSSI Pulse Response with RL = 402 Ω and CL = 68 pF Figure 13. Large-Signal RSSI Pulse Response with RL = 100 Ω and CL = 33 pF, 68 pF, and 100 pF Figure 11. RSSI Pulse Response with RL = 402 Ω and CL = 68 pF, for Inputs Stepped from 0 dBV to −33 dBV, −23 dBV, −13 dBV, and −3 dBV 01084-008 Figure 14. Small-Signal RSSI Pulse Response with RL = 50 Ω and Back Termination of 50 Ω (Total Load = 100 Ω) AD8310 100SUPPLY CURRENT ( mA)1010.10.010.0010.0001TA = +85°CTA = +25°C Figure 18. Power-On/Off Response Time with RF Input of −83 dBV to −3 dBV Figure 15. Supply Current vs. Enable Voltage at TA = −40°C, +25°C, and +85°C 3029RSSI SLOPE ( mV/dB)24232226252827 Figure 16. RSSI Slope vs. Frequency Figure 19. RSSI Intercept vs. Frequency INTERCEPT (dBV)0–115–113 3010COUNT252015 3540NORMAL(23.6584,0.308728) Figure 17. Transfer Slope Distribution, VS = 5 V, Frequency = 100 MHz, 25°C –111–109–107–105–103–101–99–97 Figure 20. Intercept Distribution, VS = 5 V, Frequency = 100 MHz, 25°C AD8310 Rev. F | Page 9 of 24 THEORY OF OPERATION Logarithmic amplifiers perform a more complex operation than classical linear amplifiers, and their circuitry is significantly different. A good grasp of what log amps do and how they do it can help users avoid many pitfalls in their applications. For a complete discussion of the theory, see the AD8307 data sheet. The essential purpose of a log amp is not to amplify (though amplification is needed internally), but to compress a signal of wide dynamic range to its decibel equivalent. It is, therefore, a measurement device. An even better term might be logarithmic converter, because the function is to convert a signal from one domain of representation to another via a precise nonlinear transformation: ⎞⎛INV (1) where: VOUT is the output voltage. VY is the slope voltage. The logarithm is usually taken to base ten, in which case VY is also the volts-per-decade. VIN is the input voltage. VX is the intercept voltage. Log amps implicitly require two references (here VX and VY) that determine the scaling of the circuit. The accuracy of a log amp cannot be any better than the accuracy of its scaling references. In the AD8310, these are provided by a band gap reference. VOUT5VY4VY3VY2VYVY VOUT =0LOGVINVSHIFTLOWER INTERCEPTVIN=10–2VX–40dBcVIN=102VX+40dBcVIN=104VX+80dBcVIN =VX0dBc Figure 21. General Form of the Logarithmic Function While Equation 1, plotted in Figure 21, is fundamentally correct, a different formula is appropriate for specifying the calibration attributes or demodulating log amps like the AD8310, operating in RF applications with a sine wave input. (2) where: VOUT is the demodulated and filtered baseband (video or RSSI) output. VSLOPE is the logarithmic slope, now expressed in V/dB (25 mV/dB for the AD8310). PIN is the input power, expressed in dB relative to some reference power level. PO is the logarithmic intercept, expressed in dB relative to the same reference level. A widely used reference in RF systems is dB above 1 mW in 50 Ω, a level of 0 dBm. Note that the quantity (PIN − PO) is dB. The logarithmic function disappears from the formula, because the conversion has already been implicitly performed in stating the input in decibels. This is strictly a concession to popular convention. Log amps manifestly do not respond to power (tacitly, power absorbed at the input), but rather to input voltage. The input is specified in dBV (decibels with respect to 1 V rms) throughout this data sheet. This is more precise, although still incomplete, because the signal waveform is also involved. Many users specify RF signals in terms of power (usually in dBm/50 Ω), and this convention is used in this data sheet when specifying the performance of the AD8310. PROGRESSIVE COMPRESSION High speed, high dynamic-range log amps use a cascade of nonlinear amplifier cells to generate the logarithmic function as a series of contiguous segments, a type of piecewise linear technique. The AD8310 employs six cells in its main signal path, each having a small-signal gain of 14.3 dB (×5.2) and a −3 dB bandwidth of about 900 MHz. The overall gain is about 20,000 (86 dB), and the overall bandwidth of the chain is approximately 500 MHz, resulting in a gain-bandwidth product (GBW) of 10,000 GHz, about a million times that of a typical op amp. This very high GBW is essential to accurate operation under small-signal conditions and at high frequencies. The AD8310 exhibits a logarithmic response down to inputs as small as 40 μV at 440 MHz. Progressive compression log amps either provide a baseband video response or accept an RF input and demodulate this signal to develop an output that is essentially the envelope of the input represented on a logarithmic or decibel scale. The AD8310 is the latter kind. Demodulation is performed in a total of nine detector cells. Six are associated with the amplifier stages, and three are passive detectors that receive a progres-sively attenuated fraction of the full input. The maximum signal frequency can be 440 MHz, but, because all the gain stages are dc-coupled, operation at very low frequencies is possible. AD8310 Rev. F | Page 10 of 24 SLOPE AND INTERCEPT CALIBRATION All monolithic log amps from Analog Devices use precision design techniques to control the logarithmic slope and intercept. The primary source of this calibration is a pair of accurate voltage references that provide supply- and temperature-independent scaling. The slope is set to 24 mV/dB by the bias chosen for the detector cells and the subsequent gain of the postdetector output interface. With this slope, the full 95 dB dynamic range can be easily accommodated within the output swing capacity, when operating from a 2.7 V supply. Intercept positioning at −108 dBV (−95 dBm re 50 Ω) has likewise been chosen to provide an output centered in the available voltage range. Precise control of the slope and intercept results in a log amp with stable scaling parameters, making it a true measurement device as, for example, a calibrated received signal strength indicator (RSSI). In this application, the input waveform is invariably sinusoidal. The input level is correctly specified in dBV. It can alternatively be stated as an equivalent power, in dBm, but in this case, it is necessary to specify the impedance in which this power is presumed to be measured. In RF practice, it is common to assume a reference impedance of 50 Ω, in which 0 dBm (1 mW) corresponds to a sinusoidal amplitude of 316.2 mV (223.6 mV rms). However, the power metric is correct only when the input impedance is lowered to 50 Ω, either by a termination resistor added across INHI and INLO, or by the use of a narrow-band matching network. Note that log amps do not inherently respond to power, but to the voltage applied to their input. The AD8310 presents a nominal input impedance much higher than 50 Ω (typically 1 kΩ at low frequencies). A simple input matching network can considerably improve the power sensitivity of this type of log amp. This increases the voltage applied to the input and, therefore, alters the intercept. For a 50 Ω reactive match, the voltage gain is about 4.8, and the whole dynamic range moves down by 13.6 dB. The effective intercept is a function of wave-form. For example, a square-wave input reads 6 dB higher than a sine wave of the same amplitude, and a Gaussian noise input reads 0.5 dB higher than a sine wave of the same rms value. OFFSET CONTROL In a monolithic log amp, direct coupling is used between the stages for several reasons. First, it avoids the need for coupling capacitors, which typically have a chip area at least as large as that of a basic gain cell, considerably increasing die size. Second, the capacitor values predetermine the lowest frequency at which the log amp can operate. For moderate values, this can be as high as 30 MHz, limiting the application range. Third, the parasitic back-plate capacitance lowers the bandwidth of the cell, further limiting the scope of applications. However, the very high dc gain of a direct-coupled amplifier raises a practical issue. An offset voltage in the early stages of the chain is indistinguishable from a real signal. If it were as high as 400 μV, it would be 18 dB larger than the smallest ac signal (50 μV), potentially reducing the dynamic range by this amount. This problem can be averted by using a global feedback path from the last stage to the first, which corrects this offset in a similar fashion to the dc negative feedback applied around an op amp. The high frequency components of the feedback signal must, of course, be removed to prevent a reduction of the HF gain in the forward path. An on-chip filter capacitor of 33 pF provides sufficient suppres-sion of HF feedback to allow operation above 1 MHz. The −3 dB point in the high-pass response is at 2 MHz, but the usable range extends well below this frequency. To further lower the frequency range, an external capacitor can be added at OFLT (Pin 3). For example, 300 pF lowers it by a factor of 10. Operation at low audio frequencies requires a capacitor of about 1 μF. Note that this filter has no effect for input levels well above the offset voltage, where the frequency range would extend down to dc (for a signal applied directly to the input pins). The dc offset can optionally be nulled by adjusting the voltage on the OFLT pin (see the Applications Information section). AD8310 Rev. F | Page 11 of 24 PRODUCT OVERVIEW The AD8310 has six main amplifier/limiter stages. These six cells and their and associated gm styled full-wave detectors handle the lower two-thirds of the dynamic range. Three top-end detectors, placed at 14.3 dB taps on a passive attenuator, handle the upper third of the 95 dB range. The first amplifier stage provides a low noise spectral density (1.28 nV/√Hz). Biasing for these cells is provided by two references: one determines their gain, and the other is a band gap circuit that determines the logarithmic slope and stabilizes it against supply and temperature variations. The AD8310 can be enabled or disabled by a CMOS-compatible level at ENBL (Pin 7). The differential current-mode outputs of the nine detectors are summed and then converted to single-sided form, nominally scaled 2 μA/dB. The output voltage is developed by applying this current to a 3 kΩ load resistor followed by a high speed gain-of-four buffer amplifier, resulting in a logarithmic slope of 24 mV/dB (480 mV/decade) at VOUT (Pin 4). The unbuffered voltage can be accessed at BFIN (Pin 6), allowing certain functional modifications such as the addition of an external postdemodulation filter capacitor and the alteration or adjustment of slope and intercept. +–VPOSINHIINLOCOMM38mA1.0kΩBAND GAP REFERENCEAND BIASINGSIX 14.3dB 900MHzAMPLIFIER STAGESNINE DETECTOR CELLSSPACED 14.3dBINPUT-OFFSETCOMPENSATION LOOP22μA/dBMIRROR3kΩ3kΩ1kΩCOMMCOMMENBLBFINVOUTOFLTENABLEBUFFERINPUTOUTPUTOFFSETFILTERAD8310SUPPLY+INPUT–INPUTCOMMON Figure 22. Main Features of the AD8310 The last gain stage also includes an offset-sensing cell. This generates a bipolarity output current, if the main signal path exhibits an imbalance due to accumulated dc offsets. This current is integrated by an on-chip capacitor that can be increased in value by an off-chip component at OFLT (Pin 3). The resulting voltage is used to null the offset at the output of the first stage. Because it does not involve the signal input connections, whose ac-coupling capacitors otherwise introduce a second pole into the feedback path, the stability of the offset correction loop is assured. The AD8310 is built on an advanced, dielectrically isolated, complementary bipolar process. In the following interface diagrams shown in Figure 23 to Figure 26, resistors labeled as R are thin-film resistors that have a low temperature coefficient of resistance (TCR) and high linearity under large-signal conditions. Their absolute tolerance is typically within ±20%. Similarly, capacitors labeled as C have a typical tolerance of ±15% and essentially zero temperature or voltage sensitivity. Most interfaces have additional small junction capacitances associated with them, due to active devices or ESD protection, which might not be accurate or stable. Component numbering in these interface diagrams is local. ENABLE INTERFACE The chip-enable interface is shown in Figure 23. The currents in the diode-connected transistors control the turn-on and turn-off states of the band gap reference and the bias generator. They are a maximum of 100 μA when ENBL is taken to 5 V under worst-case conditions. For voltages below 1 V, the AD8310 is disabled and consumes a sleep current of less than 1 μA. When tied to the supply or a voltage above 2 V, it is fully enabled. The internal bias circuitry is very fast (typically <100 ns for either off or on). In practice, however, the latency period before the log amp exhibits its full dynamic range is more likely to be limited by factors relating to the use of ac coupling at the input or the settling of the offset-control loop (see the following sections). Figure 23. Enable Interface INPUT INTERFACE Figure 24 shows the essentials of the input interface. CP and CM are parasitic capacitances, and CD is the differential input capacitance, largely due to Q1 and Q2. In most applications, both input pins are ac-coupled. The S switches close when enable is asserted. When disabled, bias current IE is shut off and the inputs float; therefore, the coupling capacitors remain charged. If the log amp is disabled for long periods, small leakage currents discharge these capacitors. Then, if they are poorly matched, charging currents at power-up can generate a transient input voltage that can block the lower reaches of the dynamic range until it becomes much less than the signal. A single-sided signal can be applied via a blocking capacitor to either Pin 1 or Pin 8, with the other pin ac-coupled to ground. Under these conditions, the largest input signal that can be handled is 0 dBV (a sine amplitude of 1.4 V) when using a 3 V supply; a 5 dBV input (2.5 V amplitude) can be handled with a 5 V supply. When using a fully balanced drive, this maximum input level is permissible for supply voltages as low as 2.7 V. Above 10 MHz, this is easily achieved using an LC matching network. Such a network, having an inductor at the input, usefully eliminates the input transient noted above. AD8310 TOP-ENDDETECTORSCOMINHIINLOCPCDCMCOM4kΩ~3kΩ125Ω6kΩ6kΩ2kΩTYP 2.2V FOR3V SUPPLY,3.2V AT 5VSVPOSIE2.4mAQ1Q2 581 Figure 24. Signal Input Interface Occasionally, it might be desirable to use the dc-coupled potential of the AD8310 in baseband applications. The main challenge here is to present the signal at the elevated common-mode input level, which might require the use of low noise, low offset buffer amplifiers. In some cases, it might be possible to use dual supplies of ±3 V, which allow the input pins to operate at ground potential. The output, which is internally referenced to the COMM pin (now at −3 V), can be positioned back to ground level, with essentially no sensitivity to the particular value of the negative supply. OFFSET INTERFACE The input-referred dc offsets in the signal path are nulled via the interface associated with Pin 3, shown in Figure 25. Q1 and Q2 are the first-stage input transistors, having slightly unbalanced load resistors, resulting in a deliberate offset voltage of about 1.5 mV referred to the input pins. Q3 generates a small current to null this error, dependent on the voltage at the OFLT pin. When Q1 and Q2 are perfectly matched, this voltage is about 1.75 V. In practice, it can range from approximately 1 V to 2.5 V for an input-referred offset of ±1.5 mV. Figure 25. Offset Interface and Offset-Nulling Path In normal operation using an ac-coupled input signal, the OFLT pin should be left unconnected. The gm cell, which is gated off when the chip is disabled, converts a residual offset (sensed at a point near the end of the cascade of amplifiers) to a current. This is integrated by the on-chip capacitor, CHP, plus any added external capacitance, COFLT, to generate the voltage that is applied back to the input stage in the polarity needed to null the output offset. From a small-signal perspective, this feedback alters the response of the amplifier, which exhibits a zero in its ac transfer function, resulting in a closed-loop, high-pass −3 dB corner at about 2 MHz. An external capacitor lowers the high-pass corner to arbitrarily low frequencies; using 1 μF, the 3 dB corner is at 60 Hz. OUTPUT INTERFACE The nine detectors generate differential currents, having an average value that is dependent on the signal input level, plus a fluctuation at twice the input frequency. These are summed at nodes LGP and LGN in Figure 26. Further currents are added at these nodes to position the intercept by slightly raising the output for zero input and to provide temperature compensation. 0.2pF3kΩ VOUT4 Figure 26. Simplified Output Interface AD8310 Rev. F | Page 13 of 24 For zero-signal conditions, all the detector output currents are equal. For a finite input of either polarity, their difference is converted by the output interface to a single-sided unipolar current, nominally scaled 2 μA/dB (40 μA/decade), at the output pin BFIN. An on-chip resistor of ~3 kΩ, R1, converts this current to a voltage of 6 mV/dB. This is then amplified by a factor of 4 in the output buffer, which can drive a current of up to 25 mA in a grounded load resistor. The overall rise time of the AD8310 is less than 15 ns. There is also a delay time of about 6 ns when the log amp is driven by an RF burst, starting at zero amplitude. When driving capacitive loads, it is desirable to add a low value of load resistor to speed up the return to the baseline; the buffer is stable for loads of a least 100 pF. The output bandwidth can be lowered by adding a grounded capacitor at BFIN. The time-constant of the resulting single-pole filter is formed with the 3 kΩ internal load resistor (with a tolerance of 20%). Therefore, to set the −3 dB frequency to 20 kHz, use a capacitor of 2.7 nF. Using 2.7 μF, the filter corner is at 20 Hz. AD8310 Rev. F | Page 14 of 24 USING THE AD8310 The AD8310 has very high gain and bandwidth. Consequently, it is susceptible to all signals that appear at the input terminals within a very broad frequency range. Without the benefit of filtering, these are indistinguishable from the desired signal and have the effect of raising the apparent noise floor (that is, lowering the useful dynamic range). For example, while the signal of interest has an IF of 50 MHz, any of the following can easily be larger than the IF signal at the lower extremities of its dynamic range: a few hundred mV of 60 Hz hum picked up due to poor grounding techniques, spurious coupling from a digital clock source on the same PC board, local radio stations, and so on. Careful shielding and supply decoupling is, therefore, essential. A ground plane should be used to provide a low impedance connection to the common pin COMM, for the decoupling capacitor(s) used at VPOS, and for the output ground. BASIC CONNECTIONS Figure 27 shows the connections needed for most applications. A supply voltage between 2.7 V and 5.5 V is applied to VPOS and is decoupled using a 0.01 μF capacitor close to the pin. Optionally, a small series resistor can be placed in the power line to give additional filtering of power-supply noise. The ENBL input, which has a threshold of approximately 1.3 V (see Figure 15), should be tied to VPOS when this feature is not needed. VS(2.7V–5.5V)C20.01μF52.3Ω C10.01μFC40.01μFNCNCINHIENBLBFINVPOSINLOCOMMOFLTVOUTAD83104.7ΩOPTIONALVOUT (RSSI)SIGNALINPUT87651234 Figure 27. Basic Connections While the AD8310’s input can be driven differentially, the input signal is, in general, single-ended. C1 is tied to ground, and the input signal is coupled in through C2. Capacitor C1 and Capacitor C2 should have the same value to minimize start-up transients when the enable feature is used; otherwise, their values need not be equal. The 52.3 Ω resistor combines with the 1.1 kΩ input impedance of the AD8310 to yield a simple broadband 50 Ω input match. An input matching network can also be used (see the Input Matching section). The coupling time constant, 50 × CC/2, forms a high-pass corner with a 3 dB attenuation at fHP = 1/(π × 50 × CC), where C1 = C2 = CC. In high frequency applications, fHP should be as large as possible to minimize the coupling of unwanted low frequency signals. In low frequency applications, a simple RC network forming a low-pass filter should be added at the input for similar reasons. This should generally be placed at the generator side of the coupling capacitors, thereby lowering the required capacitance value for a given high-pass corner frequency. For applications in which the ground plane might not be an equi-potential (possibly due to noise in the ground plane), the low input of an unbalanced source should generally be ac-coupled through a separate connection of the low associated with the source. Furthermore, it is good practice in such situations to break the ground loop by inserting a small resistance to ground in the low side of the input connector (see Figure 28). Figure 28. Connections for Isolation of Source Ground from Device Ground Figure 29 shows the output vs. the input level for sine inputs at 10 MHz, 50 MHz, and 100 MHz. Figure 30 shows the logarith-mic conformance under the same conditions. Figure 29. Output vs. Input Level at 10 MHz, 50 MHz, and 100 MHz AD8310 Rev. F | Page 15 of 24 5ERROR ( dB)4–1–2–3–4203110MHz50MHz ±3dB DYNAMIC RANGE±1dB DYNAMIC RANGE Figure 30. Log Conformance Error vs. Input Level at 10 MHz, 50 MHz, and 100 MHz TRANSFER FUNCTION IN TERMS OF SLOPE AND INTERCEPT The transfer function of the AD8310 is characterized in terms of its slope and intercept. The logarithmic slope is defined as the change in the RSSI output voltage for a 1 dB change at the input. For the AD8310, slope is nominally 24 mV/dB. Therefore, a 10 dB change at the input results in a change at the output of approximately 240 mV. The plot of log conformance shows the range over which the device maintains its constant slope. The dynamic range of the log amp is defined as the range over which the slope remains within a certain error band, usually ±1 dB or ±3 dB. In Figure 30, for example, the ±1 dB dynamic range is approximately 95 dB (from +4 dBV to −91 dBV). The intercept is the point at which the extrapolated linear response would intersect the horizontal axis (see Figure 29). For the AD8310, the intercept is calibrated to be −108 dBV (−95 dBm). Using the slope and intercept, the output voltage can be calculated for any input level within the specified input range using the following equation: VOUT = VSLOPE × (PIN − PO) (3) where: VOUT is the demodulated and filtered RSSI output. VSLOPE is the logarithmic slope expressed in V/dB. PIN is the input signal expressed in dB relative to some reference level (either dBm or dBV in this case). PO is the logarithmic intercept expressed in dB relative to the same reference level. For example, for an input level of −33 dBV (−20 dBm), the output voltage is VOUT = 0.024 V/dB × (−33 dBV − (−108 dBV)) = 1.8 V (4) dBV vs. dBm The most widely used convention in RF systems is to specify power in dBm, decibels above 1 mW in 50 Ω. Specification of the log amp input level in terms of power is strictly a concession to popular convention. As mentioned previously, log amps do not respond to power (power absorbed at the input), but to the input voltage. The use of dBV, defined as decibels with respect to a 1 V rms sine wave, is more precise. However, this is still ambiguous, because waveform is also involved in the response of a log amp, which, for a complex input such as a CDMA signal, does not follow the rms value exactly. Because most users specify RF signals in terms of power (more specifically, in dBm/50 Ω) both dBV and dBm are used to specify the perform-ance of the AD8310, showing equivalent dBm levels for the special case of a 50 Ω environment. Values in dBV are converted to dBm re 50 Ω by adding 13 dB. Table 4. Correction for Signals with Differing Crest Factors Signal Type Correction Factor1 (dB) Sine wave 0 Square wave or dc −3.01 Triangular wave 0.9 GSM channel (all time slots on) 0.55 CDMA channel (forward link, nine channels on) 3.55 CDMA channel (reverse link) 0.5 PDC channel (all time slots on) 0.58 1 Add to the measured input level. INPUT MATCHING Where higher sensitivity is required, an input matching network is useful. Using a transformer to achieve the impedance trans-formation also eliminates the need for coupling capacitors, lowers the offset voltage generated directly at the input, and balances the drive amplitude to INLO and INHI. The choice of turns ratio depends somewhat on the frequency. At frequencies below 50 MHz, the reactance of the input capacitance is much higher than the real part of the input impedance. In this frequency range, a turns ratio of about 1:4.8 lowers the input impedance to 50 Ω, while raising the input voltage lowers the effect of the short-circuit noise voltage by the same factor. The intercept is also lowered by the turns ratio; for a 50 Ω match, it is reduced by 20 log10 (4.8) or 13.6 dB. The total noise is reduced by a somewhat smaller factor, because there is a small contribution from the input noise current. AD8310 Rev. F | Page 16 of 24 NARROW-BAND MATCHING Transformer coupling is useful in broadband applications. However, a magnetically coupled transformer might not be convenient in some situations. Table 5 lists narrow-band matching values. Table 5. Narrow-Band Matching Values fC (MHz) ZIN (Ω) C1 (pF) C2 (pF) LM (nH) Voltage Gain (dB) 10 45 160 150 3300 13.3 20 44 82 75 1600 13.4 50 46 30 27 680 13.4 100 50 15 13 270 13.4 150 57 10 8.2 220 13.2 200 57 7.5 6.8 150 12.8 250 50 6.2 5.6 100 12.3 500 54 3.9 3.3 39 10.9 10 103 100 91 5600 10.4 20 102 51 43 2700 10.4 50 99 22 18 1000 10.6 100 98 11 9.1 430 10.5 150 101 7.5 6.2 260 10.3 200 95 5.6 4.7 180 10.3 250 92 4.3 3.9 130 9.9 500 114 2.2 2.0 47 6.8 At high frequencies, it is often preferable to use a narrow-band matching network, as shown in Figure 31. This has several advan-tages. The same voltage gain is achieved, providing increased sensitivity, but a measure of selectivity is also introduced. The component count is low: two capacitors and an inexpensive chip inductor. Additionally, by making these capacitors unequal, the amplitudes at INP and INM can be equalized when driving from a single-sided source; that is, the network also serves as a balun. Figure 32 shows the response for a center frequency of 100 MHz; note the very high attenuation at low frequencies. The high fre-quency attenuation is due to the input capacitance of the log amp. C1 INHIAD8310SIGNALINPUTLM8 Figure 31. Reactive Matching Network Figure 32. Response of 100 MHz Matching Network GENERAL MATCHING PROCEDURE For other center frequencies and source impedances, the following steps can be used to calculate the basic matching parameters. Step 1: Tune Out CIN At a center frequency, fC, the shunt impedance of the input capacitance, CIN, can be made to disappear by resonating with a temporary inductor, LIN, whose value is given by (5) where CIN = 1.4 pF. For example, at fC = 100 MHz, LIN = 1.8 μH. Step 2: Calculate CO and LO Now, having a purely resistive input impedance, calculate the nominal coupling elements, CO and LO, using (6) For the AD8310, RIN is 1 kΩ. Therefore, if a match to 50 Ω is needed, at fC = 100 MHz, CO must be 7.12 pF and LO must be 356 nH. Step 3: Split CO into Two Parts To provide the desired fully balanced form of the network shown in Figure 31, two capacitors C1 and C2, each of nominally twice CO, can be used. This requires a value of 14.24 pF in this example. Under these conditions, the voltage amplitudes at INHI and INLO are similar. A somewhat better balance in the two drives can be achieved when C1 is made slightly larger than C2, which also allows a wider range of choices in selecting from standard values. For example, capacitors of C1 = 15 pF and C2 = 13 pF can be used, making CO = 6.96 pF. AD8310 Rev. F | Page 17 of 24 ( ) Step 4: Calculate LM The matching inductor required to provide both LIN and LO is the parallel combination of these. (7) With LIN = 1.8 μH and LO = 356 nH, the value of LM to complete this example of a match of 50 Ω at 100 MHz is 297.2 nH. The nearest standard value of 270 nH can be used with only a slight loss of matching accuracy. The voltage gain at resonance depends only on the ratio of impedances, as given by (8) SLOPE AND INTERCEPT ADJUSTMENTS Where system (that is, software) calibration is not available, the adjustments shown in Figure 33 can be used, either singly or in combination, to trim the absolute accuracy of the AD8310. The log slope can be raised or lowered by VR1; the values shown provide a calibration range of ±10% (22.6 mV/dB to 27.4 mV/dB), which includes full allowance for the variability in the value of the internal resistances. The adjustment can be made by alternately applying two fixed input levels, provided by an accurate signal generator, spaced over the central portion of the dynamic range, for example, −60 dBV and −20 dBV. Alternatively, an AM-modulated signal at about the center of the dynamic range can be used. For a modulation depth M, expressed as a fraction, the decibel range between the peaks and troughs over one cycle of the modulation period is given by (9) For example, using a generator output of −40 dBm with a 70% modulation depth (M = 0.7), the decibel range is 15 dB, because the signal varies from −47.5 dBm to −32.5 dBm. The log intercept is adjustable by VR2 over a −3 dB range with the component values shown. VR2 is adjusted while applying an accurately known CW signal, preferably near the lower end of the dynamic range, to minimize the effect of any residual uncertainty in the slope. For example, to position the intercept to −80 dBm, a test level of −65 dBm can be applied, and VR2 can be adjusted to produce a dc output of 15 dB above 0 at 24 mV/dB, which is 360 mV. 52.3 AD8310 Figure 33. Slope and Intercept Adjustments INCREASING THE SLOPE TO A FIXED VALUE It is also possible to increase the slope to a new fixed value and, therefore, to increase the change in output for each decibel of input change. A common example of this is the need to map the output swing of the AD8310 into the input range of an analog-to-digital converter (ADC) with a rail-to-rail input swing. Alternatively, a situation might arise when only a part of the total dynamic range is required (for example, just 20 dB) in an application where the nominal input level is more tightly constrained, and a higher sensitivity to a change in this level is required. Of course, the maximum output is limited by either the load resistance and the maximum output current rating of 25 mA or by the supply voltage (see the Specifications section). The slope can easily be raised by adding a resistor from VOUT to BFIN, as shown in Figure 34. This alters the gain of the output buffer, by means of stable positive feedback, from its normal value of 4 to an effective value that can be as high as 16, corresponding to a slope of 100 mV/dB. INHI 8765 Figure 34. Raising the Slope to 100 mV/dB The resistor, RSLOPE, is set according to the equation SlopeRSLOPEmV/dB241− = (10) AD8310 Rev. F | Page 18 of 24 OUTPUT FILTERING LOWERING THE HIGH-PASS CORNER FREQUENCY OF THE OFFSET COMPENSATION LOOP For applications in which maximum video bandwidth and, consequently, fast rise time are desired, it is essential that the BFIN pin be left unconnected and free of any stray capacitance. In normal operation using an ac-coupled input signal, the OFLT pin should be left unconnected. Input-referred dc offsets of about 1.5 mV in the signal path are nulled via an internal offset control loop. This loop has a high-pass −3 dB corner at about 2 MHz. In low frequency ac-coupled applications, it is necessary to lower this corner frequency to prevent input signals from being misinterpreted as offsets. An external capacitor on OFLT lowers the high-pass corner to arbitrarily low frequencies (Figure 36). For example, by using a 1 μF capacitor, the 3 dB corner is reduced to 60 Hz. The nominal output video bandwidth of 25 MHz can be reduced by connecting a ground-referenced capacitor (CFILT) to the BFIN pin, as shown in Figure 35. This is generally done to reduce out-put ripple (at twice the input frequency for a symmetric input waveform such as sinusoidal signals). +42μA/dB3kΩVOUTBFIN AD8310 Figure 35. Lowering the Postdemodulation Video Bandwidth CFILT is selected using the following equation: Figure 36. Lowering the High-Pass Corner Frequency of the Offset Control Loop (11) The corner frequency is set by the following equation: The video bandwidth should typically be set at a frequency equal to about one-tenth the minimum input frequency. This ensures that the output ripple of the demodulated log output, which is at twice the input frequency, is well filtered. In many log amp applications, it might be necessary to lower the corner frequency of the postdemodulation filtering to achieve low output ripple while maintaining a rapid response time to changes in signal level. An example of a 4-pole active filter is shown in the AD8307 data sheet. (12) where COFLT is the capacitor connected to OFLT. AD8310 Rev. F | Page 19 of 24 APPLICATIONS INFORMATION The AD8310 is highly versatile and easy to use. It needs only a few external components, most of which can be immediately accommodated using the simple connections shown in the Using the AD8310 section. A few examples of more specialized applications are provided in the following sections. See the AD8307 data sheet for more applications (note the slightly different pin configuration). CABLE-DRIVING For a supply voltage of 3 V or greater, the AD8310 can drive a grounded 100 Ω load to 2.5 V. If reverse-termination is required when driving a 50 Ω cable, it should be included in series with the output, as shown in Figure 37. The slope at the load is then 12 mV/dB. In some cases, it might be permissible to operate the cable without a termination at the far end, in which case the slope is not lowered. Where a further increase in slope is desirable, the scheme shown in Figure 34 can be used. AD8310VOUT50Ω50Ω Figure 37. Output Response of Cable-Driver Application DC-COUPLED INPUT It might occasionally be necessary to provide response to dc inputs. Because the AD8310 is internally dc-coupled, there is no reason why this cannot be done. However, its differential inputs must be positioned at least 2 V above the COM potential for proper biasing of the first stage. Usually, the source is a single-sided ground-referenced signal, so level-shifting and a single-ended-to-differential conversion must be provided to correctly drive the AD8310’s inputs. Figure 38 shows how a level-shift to midsupply (2.5 V in this example) and a single-ended-to-differential conversion can be accomplished using the AD8138 differential amplifier. The four 499 Ω resistors set up a gain of unity. An output common-mode (or bias) voltage of 2.5 is achieved by applying 2.5 V from a supply-referenced resistive divider to the VOCM pin of the AD8138. The differential outputs of the AD8138 directly drive the 1.1 kΩ input impedance of the AD8310. Figure 38. DC-Coupled Log Amp In this application the offset voltage of the AD8138 must be trimmed. The internal offset compensation circuitry of the AD8310 is disabled by applying a nominal voltage of ~1.9 V to the OFLT pin, so the trim on the AD8138 is effectively trimming the offsets of both devices. The trim is done by grounding the circuit’s input and slightly varying the gain resistors on the inverting input of the AD8138 (a 50 Ω potentiometer is used in this example) until the voltage on the AD8310’s output reaches a minimum. After trimming, the lower end of the dynamic range is limited by the broadband noise at the output of the AD8138, which is approximately 425 μV p-p. A differential low-pass filter can be added between the AD8138 and the AD8310 when the very fast pulse response of the circuit is not required. Figure 39. Transfer Function of DC-Coupled Log Amp Application AD8310 Rev. F | Page 20 of 24 EVALUATION BOARD An evaluation board is available that has been carefully laid out and tested to demonstrate the specified high speed performance of the AD8310. Figure 40 shows the schematic of the evaluation board, which follows the basic connections schematic shown in Figure 27. Connectors INHI, INLO, and VOUT are of the SMA type. Supply and ground are connected to the TP1 and TP2 vector pins. The layout and silkscreen for the component side of the board are shown in Figure 41 and Figure 42. Switches and component settings for different setups are described in Table 6. For ordering information, see the Ordering Guide. C20.01μFINHIENBLBFINVPOSINLOCOMMOFLTVOUTAD831012348765C40.01μFC10.01μFR352.3ΩSW1ABR40ΩR1INHIINLOTP2C7OPENW1W2R60Ω VOUTC5OPENC3OPENR50ΩTP1VPOSR2 Figure 40. Evaluation Board Schematic Figure 41. Layout of the Component Side of the Evaluation Board 01084-042 Figure 42. Component Side Silkscreen of the Evaluation Board AD8310 Rev. F | Page 21 of 24 Table 6. Evaluation Board Setup Options Component Function Default Condition TP1, TP2 Supply and Ground Vector Pins. Not applicable SW1 Device Enable. When in Position A, the ENBL pin is connected to +VS, and the AD8310 is in normal operating mode. When in Position B, the ENBL pin is connected to ground, putting the device into sleep mode. SW1 = A R1/R4 SMA Connector Grounds. Connects common of INHI and INLO SMA connectors to ground. They can be used to isolate the generator ground from the evaluation board ground. See Figure 28. R1 = R4 = 0 Ω C1, C2, R3 Input Interface. R3 (52.3 Ω) combines with the AD8310’s 1 kΩ input impedance to give an overall broadband input impedance of 50 Ω. C1, C2, and the AD8310’s input impedance combine to set a high-pass input corner of 32 kHz. Alternatively, R3, C1, and C2 can be replaced by an inductor and matching capacitors to form an input matching network. See the Input Matching section for details. R3 = 52.3 Ω, C1 = C2 = 0.01 μF C3 RSSI (Video) Bandwidth Adjust. The addition of C3 (farads) lowers the RSSI bandwidth of the AD8310’s output according to the following equation: CFILT = 1/(2π × 3 kΩ Video Bandwidth) − 2.1 pF C3 = open C4, C5, R5 Supply Decoupling. The normal supply decoupling of 0.01 μF (C4) can be augmented by a larger capacitor in C5. An inductor or small resistor can be placed in R5 for additional decoupling. C4 = 0.01 μF, C5 = open, R5 = 0 Ω R6 Output Source Impedance. In cable-driving applications, a resistor (typically 50 Ω or 75 Ω) can be placed in R6 to give the circuit a back-terminated output impedance. R6 = 0 Ω W1, W2, C6, R7 Output Loading. Resistors and capacitors can be placed in C6 and R7 to load-test VOUT. Jumper W1 and Jumper W2 are used to connect or disconnect the loads. C6 = R7 = open, W1 = W2 = installed C7 Offset Compensation Loop. A capacitor in C7 reduces the corner frequency of the offset control loop in low frequency applications. C7 = open AD8310 DIE INFORMATION Figure 43. Die Outline Dimensions Table 7. Die Pad Function Descriptions Pin No. Mnemonic Description 1 INLO One of Two Balanced Inputs. Biased roughly to VPOS/2. 2 COMM Common Pin. Usually grounded. 3 OFLT Offset Filter Access. Nominally at about 1.75 V. 4 VOUT Low Impedance Output Voltage. Carries a 25 mA maximum load. 5A, 5B VPOS Positive Supply. 2.7 V to 5.5 V at 8 mA quiescent current. 6 BFIN Buffer Input. Used to lower postdetection bandwidth. 7 ENBL CMOS Compatible Chip Enable. Active when high. 8 INHI Second of Two Balanced Inputs. Biased roughly to VPOS/2. AD8310 OUTLINE DIMENSIONS Figure 44. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters ORDERING GUIDE Model1 Temperature Range Package Description Package Option Branding AD8310ARM −40°C to +85°C 8-Lead MSOP, Tube RM-8 J6A AD8310ARM-REEL7 −40°C to +85°C 8-Lead MSOP, 7” Tape and Reel RM-8 J6A AD8310ARMZ −40°C to +85°C 8-Lead MSOP, Tube RM-8 J6A AD8310ARMZ-REEL7 −40°C to +85°C 8-Lead MSOP, 7” Tape and Reel RM-8 J6A AD8310ACHIPS −40°C to +85°C Die AD8310-EVAL Evaluation Board 1 Z = RoHS Compliant Part. AD8310 Rev. F | Page 24 of 24 NOTES © 2005–2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D01084–0–6/10(F) 3 2 1 20 19 9 10 11 12 13 4 5 6 7 8 18 17 16 15 14 Q NC G Q NC F Q Q NC E A Q NC B QC B A NC CLK CLR V Q D GND NC CC H Q NC − No internal connection 1 2 3 4 5 6 7 14 13 12 11 10 9 8 A B Q Q Q Q GND A B C D VCC Q Q Q Q CLR H G F E CLK SN54HC164, SN74HC164 www.ti.com SCLS115F –DECEMBER 1982–REVISED OCTOBER 2013 8-Bit Parallel-Out Serial Shift Registers Check for Samples: SN54HC164, SN74HC164 1FEATURES DESCRIPTION • Wide Operating Voltage Range of 2 V to 6 V These 8-bit shift registers feature AND-gated serial • Outputs Can Drive Up To 10 LSTTL Loads inputs and an asynchronous clear (CLR) input. The gated serial (A and B) inputs permit complete control • Low Power Consumption, 80-μA Max ICC over incoming data; a low at either input inhibits entry • Typical tpd= 20 ns of the new data and resets the first flip-flop to the low • ±4-mA Output Drive at 5 V level at the next clock (CLK) pulse. A high-level input enables the other input, which then determines the • Low Input Current of 1-μA Max state of the first flip-flop. Data at the serial inputs can • AND-Gated (Enable/Disable) Serial Inputs be changed while CLK is high or low, provided the • Fully Buffered Clock and Serial Inputs minimum setup time requirements are met. Clocking occurs on the low-to-high-level transition of CLK. • Direct Clear SN54HC164...J OR W PACKAGE SN74HC164...D, N, NS, OR PW PACKAGE (TOP VIEW) SN54HC164...FK PACKAGE (TOP VIEW) FUNCTION TABLE(1)(2) INPUTS OUTPUTS CLR CLK A B QA QB . . . QH L X X X L L L H L X X QA0 QB0 QH0 H ↑ H H H QAn QGn H ↑ L X L QAn QGn H ↑ X L L QAn QGn (1) QA0, QB0, QH0 = the level of QA, QB, or QH, respectively, before the indicated steady-state input conditions were established. (2) QAn, QGn = the level of QA or QG before the most recent ↑ transition of CLK: indicates a 1-bit shift. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Copyright © 1982–2013, Texas Instruments Incorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. CLK A B CLR QA QB QC QD QE QF QG QH Clear Clear Serial Inputs Outputs 9 A B CLR CLK Pin numbers shown are for the D, J, N, NS, PW, and W packages. C1 1D R 3 QA C1 1D R 4 QB C1 1D R 5 QC C1 1D R 6 QD C1 1D R 10 QE C1 1D R 11 QF C1 1D R 12 QG C1 1D R 13 QH 2 1 8 SN54HC164, SN74HC164 SCLS115F –DECEMBER 1982–REVISED OCTOBER 2013 www.ti.com LOGIC DIAGRAM (POSITIVE LOGIC) TYPICAL CLEAR, SHIFT, AND CLEAR SEQUENCE 2 Submit Documentation Feedback Copyright © 1982–2013, Texas Instruments Incorporated Product Folder Links: SN54HC164 SN74HC164 SN54HC164, SN74HC164 www.ti.com SCLS115F –DECEMBER 1982–REVISED OCTOBER 2013 ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range (unless otherwise noted)(1) MIN MAX UNITS VCC Supply voltage range −0.5 7 V IIK Input clamp current VI < 0 or VI > VCC (2) ±20 mA IOK Output clamp current VO < 0 or VO > VCC (2) ±20 mA IO Continuous output current VO = 0 to VCC ±25 mA Continuous current through VCC or GND ±50 mA D package 86 N package 80 θJA (3) Package thermal impedance °C/W NS package 76 PW package 113 Tstg Storage temperature range –65 150 °C (1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed. (3) The package thermal impedance is calculated in accordance with JESD 51-7. RECOMMENDED OPERATING CONDITIONS(1) SN54HC164 SN74HC164 UNIT MIN NOM MAX MIN NOM MAX VCC Supply voltage 2 5 6 2 5 6 V VCC = 2 V 1.5 1.5 VIH High-level input voltage VCC = 4.5 V 3.15 3.15 V VCC = 6 V 4.2 4.2 VCC = 2 V 0.5 0.5 VIL Low-level input voltage VCC = 4.5 V 1.35 1.35 V VCC = 6 V 1.8 1.8 VI Input voltage 0 VCC 0 VCC V VO Output voltage 0 VCC 0 VCC V VCC = 2 V 1000 1000 Δt/Δv(2) Input transition rise/fall time VCC = 4.5 V 500 500 ns VCC = 6 V 400 400 TA Operating free-air temperature −55 125 −40 125 °C (1) All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. (2) If this device is used in the threshold region (from VIL max = 0.5 V to VIH min = 1.5 V), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at tt = 1000 ns and VCC = 2 V does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes. Copyright © 1982–2013, Texas Instruments Incorporated Submit Documentation Feedback 3 Product Folder Links: SN54HC164 SN74HC164 SN54HC164, SN74HC164 SCLS115F –DECEMBER 1982–REVISED OCTOBER 2013 www.ti.com ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range (unless otherwise noted) SN54HC164 SN74HC164 Recommended TA = 25°C –55°C to 125°C –55°C to 85°C SN74HC164 PARAMETER TEST CONDITIONS VCC –55°C to 125°C UNIT MIN TYP MAX MIN MAX MIN MAX MIN MAX 2 V 1.9 1.998 1.9 1.9 1.9 IOH = −20 μA 4.5 V 4.4 4.499 4.4 4.4 4.4 VOH VI = VIH or VIL 6 V 5.9 5.999 5.9 5.9 5.9 V IOH = −4 mA 4.5 V 3.98 4.3 3.7 3.84 3.7 IOH = −5.2 mA 6 V 5.48 5.8 5.2 5.34 5.2 2 V 0.002 0.1 0.1 0.1 0.1 IOL = 20 μA 4.5 V 0.001 0.1 0.1 0.1 0.1 VOL VI = VIH or VIL 6 V 0.001 0.1 0.1 0.1 0.1 V IOL = 4 mA 4.5 V 0.17 0.26 0.4 0.33 0.4 IOL = 5.2 mA 6 V 0.15 0.26 0.4 0.33 0.4 II VI = VCC or 0 6 V ±0.1 ±100 ±1000 ±1000 ±1000 nA ICC VI = VCC or 0 IO = 0 6 V 8 160 80 160 μA Ci 2 V to 6 V 3 10 10 10 10 pF TIMING REQUIREMENTS over recommended operating free-air temperature range (unless otherwise noted) SN54HC164 SN74HC164 Recommended TA = 25°C –55°C to 125°C –55°C to 85°C SN74HC164 PARAMETER VCC –55°C to 125°C UNIT MIN MAX MIN MAX MIN MAX MIN MAX 2 V 6 4.2 5 4.2 fclock Clock frequency 4.5 V 31 21 25 21 MHz 6 V 36 25 28 25 2 V 100 150 125 125 CLR low 4.5 V 20 30 25 25 Pulse 6 V 17 25 21 21 tw duration ns 2 V 80 120 100 120 CLK high or low 4.5 V 16 24 20 24 6 V 14 20 18 20 2 V 100 150 125 125 Data 4.5 V 20 30 25 25 Setup time 6 V 17 25 21 25 tsu before CLK↑ ns 2 V 100 150 125 125 CLR inactive 4.5 V 20 30 25 25 6 V 17 25 21 25 2 V 5 5 5 5 th Hold time, data after CLK↑ 4.5 V 5 5 5 5 ns 6 V 5 5 5 5 4 Submit Documentation Feedback Copyright © 1982–2013, Texas Instruments Incorporated Product Folder Links: SN54HC164 SN74HC164 SN54HC164, SN74HC164 www.ti.com SCLS115F –DECEMBER 1982–REVISED OCTOBER 2013 SWITCHING CHARACTERISTICS over recommended operating free-air temperature range, CL = 50 pF (unless otherwise noted) (see Figure 1) SN54HC164 SN74HC164 Recommended PARAMETE FROM TO TA = 25°C SN74HC164 (OUTPUT VCC –55°C to 125°C –55°C to 85°C –55°C to 125°C UNIT R (INPUT) ) MIN TYP MAX MIN MAX MIN MAX MIN MAX 2 V 6 10 4.2 5 4..2 fmax 4.5 V 31 54 21 25 21 MHz 6 V 36 62 25 28 25 2 V 140 205 295 255 255 tPHL CLR Any Q 4.5 V 28 41 59 51 51 6 V 24 35 51 46 46 ns 2 V 115 175 265 220 220 tpd CLK Any Q 4.5 V 23 35 53 44 44 6 V 20 30 45 38 38 2 V 38 75 110 95 110 tt 4.5 V 8 15 22 19 22 ns 6 V 6 13 19 16 19 OPERATING CHARACTERISTICS TA = 25°C PARAMETER TEST CONDITIONS TYP UNIT Cpd Power dissipation capacitance No load 135 pF Copyright © 1982–2013, Texas Instruments Incorporated Submit Documentation Feedback 5 Product Folder Links: SN54HC164 SN74HC164 VOLTAGE WAVEFORMS SETUP AND HOLD AND INPUT RISE AND FALL TIMES VOLTAGE WAVEFORMS PULSE DURATIONS tsu th 50% 50% 50% 10% 10% 90% 90% VCC VCC 0 V 0 V tr t Reference f Input Data Input 50% High-Level Pulse 50% VCC 0 V 50% 50% VCC 0 V t Low-Level w Pulse VOLTAGE WAVEFORMS PROPAGATION DELAY AND OUTPUT TRANSITION TIMES 50% 50% 50% 10% 10% 90% 90% VCC VOH VOL 0 V tr t Input f In-Phase Output 50% tPLH tPHL 50% 50% 10% 10% 90% 90% VOH VOL tf tr tPHL tPLH Out-of-Phase Output NOTES: A. CL includes probe and test-fixture capacitance. B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR ! 1 MHz, ZO = 50 !, tr = 6 ns, tf = 6 ns. C. For clock inputs, fmax is measured when the input duty cycle is 50%. D. The outputs are measured one at a time with one input transition per measurement. E. tPLH and tPHL are the same as tpd. Test Point From Output Under Test CL = 50 pF (see Note A) LOAD CIRCUIT SN54HC164, SN74HC164 SCLS115F –DECEMBER 1982–REVISED OCTOBER 2013 www.ti.com PARAMETER MEASUREMENT INFORMATION Figure 1. Load Circuit and Voltage Waveforms 6 Submit Documentation Feedback Copyright © 1982–2013, Texas Instruments Incorporated Product Folder Links: SN54HC164 SN74HC164 SN54HC164, SN74HC164 www.ti.com SCLS115F –DECEMBER 1982–REVISED OCTOBER 2013 REVISION HISTORY Changes from Revision E (November 2010) to Revision F Page • Updated document to new TI data sheet format - no specification changes. ...................................................................... 1 • Removed ordering information. ............................................................................................................................................ 1 • Updated operating temperature range. ................................................................................................................................. 3 Copyright © 1982–2013, Texas Instruments Incorporated Submit Documentation Feedback 7 Product Folder Links: SN54HC164 SN74HC164 PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 Addendum-Page 1 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples 5962-8416201VCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 5962-8416201VC A SNV54HC164J 5962-8416201VDA ACTIVE CFP W 14 25 TBD A42 N / A for Pkg Type -55 to 125 5962-8416201VD A SNV54HC164W 84162012A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 84162012A SNJ54HC 164FK 8416201CA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 8416201CA SNJ54HC164J SN54HC164J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 SN54HC164J SN74HC164D ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 HC164 SN74HC164DE4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 HC164 SN74HC164DG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 HC164 SN74HC164DR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 125 HC164 SN74HC164DRG3 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 HC164 SN74HC164DRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 HC164 SN74HC164DT ACTIVE SOIC D 14 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 HC164 SN74HC164N ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU | CU SN N / A for Pkg Type -40 to 125 SN74HC164N SN74HC164N3 OBSOLETE PDIP N 14 TBD Call TI Call TI -40 to 125 SN74HC164NE3 PREVIEW PDIP N 14 25 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 SN74HC164N SN74HC164NE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -40 to 125 SN74HC164N PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 Addendum-Page 2 Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples SN74HC164NSR ACTIVE SO NS 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 HC164 SN74HC164PW ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 HC164 SN74HC164PWG4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 HC164 SN74HC164PWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 HC164 SN74HC164PWRE4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 HC164 SN74HC164PWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 HC164 SN74HC164PWT ACTIVE TSSOP PW 14 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 HC164 SN74HC164PWTG4 ACTIVE TSSOP PW 14 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 HC164 SNJ54HC164FK ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type -55 to 125 84162012A SNJ54HC 164FK SNJ54HC164J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type -55 to 125 8416201CA SNJ54HC164J SNJ54HC164W ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type -55 to 125 8416201DA SNJ54HC164W (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 Addendum-Page 3 Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF SN54HC164, SN54HC164-SP, SN74HC164 : • Catalog: SN74HC164, SN54HC164 • Military: SN54HC164 • Space: SN54HC164-SP NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product • Military - QML certified for Military and Defense Applications • Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant SN74HC164DR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 SN74HC164DR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 SN74HC164DR SOIC D 14 2500 330.0 16.8 6.5 9.5 2.3 8.0 16.0 Q1 SN74HC164DRG3 SOIC D 14 2500 330.0 16.8 6.5 9.5 2.3 8.0 16.0 Q1 SN74HC164DRG4 SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 SN74HC164DRG4 SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 SN74HC164DT SOIC D 14 250 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 SN74HC164NSR SO NS 14 2000 330.0 16.4 8.2 10.5 2.5 12.0 16.0 Q1 SN74HC164PWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 SN74HC164PWT TSSOP PW 14 250 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 7-Apr-2014 Pack Materials-Page 1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) SN74HC164DR SOIC D 14 2500 367.0 367.0 38.0 SN74HC164DR SOIC D 14 2500 333.2 345.9 28.6 SN74HC164DR SOIC D 14 2500 364.0 364.0 27.0 SN74HC164DRG3 SOIC D 14 2500 364.0 364.0 27.0 SN74HC164DRG4 SOIC D 14 2500 333.2 345.9 28.6 SN74HC164DRG4 SOIC D 14 2500 367.0 367.0 38.0 SN74HC164DT SOIC D 14 250 367.0 367.0 38.0 SN74HC164NSR SO NS 14 2000 367.0 367.0 38.0 SN74HC164PWR TSSOP PW 14 2000 367.0 367.0 35.0 SN74HC164PWT TSSOP PW 14 250 367.0 367.0 35.0 PACKAGE MATERIALS INFORMATION www.ti.com 7-Apr-2014 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated 0.1 GHz to 2.5 GHz 70 dB Logarithmic Detector/Controller AD8313 Rev. D Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved. FEATURES Wide bandwidth: 0.1 GHz to 2.5 GHz min High dynamic range: 70 dB to ±3.0 dB High accuracy: ±1.0 dB over 65 dB range (@ 1.9 GHz) Fast response: 40 ns full-scale typical Controller mode with error output Scaling stable over supply and temperature Wide supply range: 2.7 V to 5.5 V Low power: 40 mW at 3 V Power-down feature: 60 mW at 3 V Complete and easy to use APPLICATIONS RF transmitter power amplifier setpoint control and level monitoring Logarithmic amplifier for RSSI measurement cellular base stations, radio link, radar FUNCTIONAL BLOCK DIAGRAM +++++AD8313VOUTVSETCOMMPWDNGAINBIASBAND GAPREFERENCESLOPECONTROLINTERCEPTCONTROLEIGHT 8dB 3.5GHz AMPLIFIER STAGES8dB8dBVPOSINHIINLOVPOS8dB8dBNINE DETECTOR CELLSCINTLPI→VV→I1876523401085-C-001 Figure 1. GENERAL DESCRIPTION The AD8313 is a complete multistage demodulating logarithmic amplifier that can accurately convert an RF signal at its differ-ential input to an equivalent decibel-scaled value at its dc output. The AD8313 maintains a high degree of log conformance for signal frequencies from 0.1 GHz to 2.5 GHz and is useful over the range of 10 MHz to 3.5 GHz. The nominal input dynamic range is –65 dBm to 0 dBm (re: 50 Ω), and the sensitivity can be increased by 6 dB or more with a narrow-band input impedance matching network or a balun. Application is straightforward, requiring only a single supply of 2.7 V to 5.5 V and the addition of a suitable input and supply decoupling. Operating on a 3 V supply, its 13.7 mA consumption (for TA = 25°C) is only 41 mW. A power-down feature is provided; the input is taken high to initiate a low current (20 μA) sleep mode, with a threshold at half the supply voltage. The AD8313 uses a cascade of eight amplifier/limiter cells, each having a nominal gain of 8 dB and a −3 dB bandwidth of 3.5 GHz. This produces a total midband gain of 64 dB. At each amplifier output, a detector (rectifier) cell is used to convert the RF signal to baseband form; a ninth detector cell is placed directly at the input of the AD8313. The current-mode outputs of these cells are summed to generate a piecewise linear approxi-mation to the logarithmic function. They are converted to a low impedance voltage-mode output by a transresistance stage, which also acts as a low-pass filter. When used as a log amplifier, scaling is determined by a separate feedback interface (a transconductance stage) that sets the slope to approximately 18 mV/dB; used as a controller, this stage accepts the setpoint input. The logarithmic intercept is positioned to nearly −100 dBm, and the output runs from about 0.45 V dc at −73 dBm input to 1.75 V dc at 0 dBm input. The scale and intercept are supply- and temperature-stable. The AD8313 is fabricated on Analog Devices’ advanced 25 GHz silicon bipolar IC process and is available in an 8-lead MSOP package. The operating temperature range is −40°C to +85°C. An evaluation board is available. INPUT AMPLITUDE (dBm)2.0–80OUTPUT VOLTAGE ( V DC)1.81.61.41.21.00.80.60.40.20–70–60–50–40–30–20–100FREQUENCY = 1.9GHz543210–1–2–3–4–5OUTPUT ERROR ( dB)01085-C-002 Figure 2. Typical Logarithmic Response and Error vs. Input Amplitude AD8313 Rev. D | Page 2 of 24 TABLE OF CONTENTS Specifications.....................................................................................3 Absolute Maximum Ratings............................................................6 ESD Caution..................................................................................6 Pin Configurations and Function Description.............................7 Typical Performance Characteristics.............................................8 Circuit Description.........................................................................11 Interfaces..........................................................................................13 Power-Down Interface, PWDN................................................13 Signal Inputs, INHI, INLO........................................................13 Logarithmic/Error Output, VOUT..........................................13 Setpoint Interface, VSET............................................................14 Applications.....................................................................................15 Basic Connections for Log (RSSI) Mode.................................15 Operating in Controller Mode.................................................15 Input Coupling...........................................................................16 Narrow-Band LC Matching Example at 100 MHz................16 Adjusting the Log Slope.............................................................18 Increasing Output Current........................................................19 Effect of Waveform Type on Intercept.....................................19 Evaluation Board............................................................................20 Schematic and Layout................................................................20 General Operation.....................................................................20 Using the AD8009 Operational Amplifier..............................20 Varying the Logarithmic Slope.................................................20 Operating in Controller Mode.................................................20 RF Burst Response.....................................................................20 Outline Dimensions.......................................................................24 Ordering Guide..........................................................................24 REVISION HISTORY 6/04—Data Sheet Changed from Rev. C to Rev. D Updated Evaluation Board Section..............................................21 2/03—Data Sheet changed from Rev. B to Rev. C TPCs and Figures Renumbered........................................Universal Edits to SPECIFICATIONS.............................................................2 Updated ESD CAUTION................................................................4 Updated OUTLINE DIMENSIONS..............................................7 8/99—Data Sheet changed from Rev. A to Rev. B 5/99—Data Sheet changed from Rev. 0 to Rev. A 8/98—Revision 0: Initial Version AD8313 Rev. D | Page 3 of 24 SPECIFICATIONS TA = 25°C, VS = 5 V1, RL 10 kΩ, unless otherwise noted. Table 1. Parameter Conditions Min2 Typ Max2 Unit SIGNAL INPUT INTERFACE Specified Frequency Range 0.1 2.5 GHz DC Common-Mode Voltage VPOS – 0.75 V Input Bias Currents 10 μA Input Impedance fRF < 100 MHz3 900||1.1 Ω||pF4 LOG (RSSI) MODE Sinusoidal, input termination configuration shown in Figure 29 100 MHz5 Nominal conditions ±3 dB Dynamic Range6 53.5 65 dB Range Center −31.5 dBm ±1 dB Dynamic Range 56 dB Slope 17 19 21 mV/dB Intercept −96 −88 −80 dBm 2.7 V ≤ VS ≤ 5.5 V, −40°C ≤ T ≤ +85°C ±3 dB Dynamic Range 51 64 dB Range Center −31 dBm ±1 dB Dynamic Range 55 dB Slope 16 19 22 mV/dB Intercept −99 −89 −75 dBm Temperature Sensitivity PIN = −10 dBm −0.022 dB/°C 900 MHz5 Nominal conditions ±3 dB Dynamic Range 60 69 dB Range Center −32.5 dBm ±1 dB Dynamic Range 62 dB Slope 15.5 18 20.5 mV/dB Intercept −105 −93 −81 dBm 2.7 V ≤ VS ≤ 5.5 V, –40°C ≤ T ≤ +85°C ±3 dB Dynamic Range 55.5 68.5 dB Range Center –32.75 dBm ±1 dB Dynamic Range 61 dB Slope 15 18 21 mV/dB Intercept –110 –95 –80 dBm Temperature Sensitivity PIN = –10 dBm –0.019 dB/°C 1.9 GHz7 Nominal conditions ±3 dB Dynamic Range 52 73 dB Range Center –36.5 dBm ±1 dB Dynamic Range 62 dB Slope 15 17.5 20.5 mV/dB Intercept –115 –100 –85 dBm 2.7 V ≤ VS ≤ 5.5 V, –40°C ≤ T ≤ +85°C ±3 dB Dynamic Range 50 73 dB Range Center –36.5 dBm ±1 dB Dynamic Range 60 dB Slope 14 17.5 21.5 mV/dB Intercept –125 –101 –78 dBm Temperature Sensitivity PIN = –10 dBm –0.019 dB/°C AD8313 Rev. D | Page 4 of 24 Parameter Conditions Min2 Typ Max2 Unit 2.5 GHz7 Nominal conditions ±3 dB Dynamic Range 48 66 dB Range Center –34 dBm ±1 dB Dynamic Range 46 dB Slope 16 20 25 mV/dB Intercept –111 –92 –72 dBm 2.7 V ≤ VS ≤ 5.5 V, –40°C ≤ T ≤ +85°C ±3 dB Dynamic Range 47 68 dB Range Center –34.5 dBm ±1 dB Dynamic Range 46 dB Slope 14.5 20 25 mV/dB Intercept –128 –92 –56 dBm Temperature Sensitivity PIN =–10 dBm –0.040 dB/°C 3.5 GHz5 Nominal conditions ±3 dB Dynamic Range 43 dB ±1 dB Dynamic Range 35 dB Slope 24 mV/dB Intercept –65 dBm CONTROL MODE Controller Sensitivity f = 900 MHz 23 V/dB Low Frequency Gain VSET to VOUT8 84 dB Open-Loop Corner Frequency VSET to VOUT8 700 Hz Open-Loop Slew Rate f = 900 MHz 2.5 V/μs VSET Delay Time 150 ns VOUT INTERFACE Current Drive Capability Source Current 400 μA Sink Current 10 mA Minimum Output Voltage Open-loop 50 mV Maximum Output Voltage Open-loop VPOS – 0.1 V Output Noise Spectral Density PIN = –60 dBm, fSPOT = 100 Hz 2.0 μV/√Hz PIN = –60 dBm, fSPOT = 10 MHz 1.3 μV/√Hz Small Signal Response Time PIN = –60 dBm to –57 dBm, 10% to 90% 40 60 ns Large Signal Response Time PIN = No signal to 0 dBm; settled to 0.5 dB 110 160 ns VSET INTERFACE Input Voltage Range 0 VPOS V Input Impedance 18||1 kΩ||pF4 POWER-DOWN INTERFACE PWDN Threshold VPOS/2 V Power-Up Response Time Time delay following high to low transition until device meets full specifications. 1.8 μs PWDN Input Bias Current PWDN = 0 V 5 μA PWDN = VS <1 μA POWER SUPPLY Operating Range 2.7 5.5 V Powered-Up Current 13.7 15.5 mA 4.5 V ≤VS ≤ 5.5 V, –40°C ≤ T ≤ +85°C 18.5 mA 2.7 V ≤VS ≤ 3.3 V, –40°C ≤ T ≤ +85°C 18.5 mA Powered-Down Current 4.5 V ≤VS ≤ 5.5 V, –40°C ≤ T ≤ +85°C 50 150 μA 2.7 V ≤VS ≤ 3.3 V, –40°C ≤ T ≤ +85°C 20 50 μA AD8313 Rev. D | Page 5 of 24 1 Except where otherwise noted; performance at VS = 3 V is equivalent to 5 V operation. 2 Minimum and maximum specified limits on parameters that are guaranteed but not tested are 6 sigma values. 3 Input impedance shown over frequency range in Figure 26. 4 Double vertical bars (||) denote “in parallel with.” 5 Linear regression calculation for error curve taken from –40 dBm to –10 dBm for all parameters. 6 Dynamic range refers to range over which the linearity error remains within the stated bound. 7 Linear regression calculation for error curve taken from –60 dBm to –5 dBm for 3 dB dynamic range. All other regressions taken from –40 dBm to –10 dBm. 8 AC response shown in Figure 12. AD8313 Rev. D | Page 6 of 24 ABSOLUTE MAXIMUM RATINGS Table 2. Supply Voltage VS 5.5 V VOUT, VSET, PWDN 0 V, VPOS Input Power Differential (re: 50 Ω, 5.5 V) 25 dBm Input Power Single-Ended (re: 50 Ω, 5.5 V) 19 dBm Internal Power Dissipation 200 mW θJA 200°C/W Maximum Junction Temperature 125°C Operating Temperature Range –40°C to +85°C Storage Temperature Range –65°C to +150°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. AD8313 Rev. D | Page 7 of 24 PIN CONFIGURATIONS AND FUNCTION DESCRIPTION VPOS1INHI2INLO3VPOS4VOUT8VSET7COMM6PWDN5AD8313TOP VIEW(Not to Scale)01085-C-003 Figure 3. Pin Configuration Table 3. Pin Function Descriptions Pin No. Mnemonic Description 1, 4 VPOS Positive Supply Voltage (VPOS), 2.7 V to 5.5 V. 2 INHI Noninverting Input. This input should be ac-coupled. 3 INLO Inverting Input. This input should be ac-coupled. 5 PWDN Connect Pin to Ground for Normal Operating Mode. Connect this pin to the supply for power-down mode. 6 COMM Device Common. 7 VSET Setpoint Input for Operation in Controller Mode. To operate in RSSI mode, short VSET and VOUT. 8 VOUT Logarithmic/Error Output. AD8313 Rev. D | Page 8 of 24 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VS = 5 V, RL input match shown in Figure 29, unless otherwise noted. INPUT AMPLITUDE (dBm)2.0–70VOUT ( V)1.81.61.41.21.00.80.60.40.20–60–50–40–30–20–100101.9GHz2.5GHz900MHz100MHz01085-C-004 Figure 4. VOUT vs. Input Amplitude INPUT AMPLITUDE (dBm)6–6–7010–60ERROR ( dB)–50–40–30–20–100420–2–4900MHz100MHz100MHz900MHz1.9GHz2.5GHz2.5GHz1.9GHz01085-C-005 Figure 5. Log Conformance vs. Input Amplitude INPUT AMPLITUDE (dBm)2.0–70VOUT ( V)1.81.61.41.21.00.80.60.40.20–60–50–40–30–20–10010543210–1–2–3–4–5ERROR ( dB)–40°C+25°C+85°CSLOPE AND INTERCEPT NORMALIZED AT +25°CAND APPLIED TO–40°C AND +85°C01085-C-006 Figure 6. VOUT and Log Conformance vs. Input Amplitude at 100 MHz for Multiple Temperatures INPUT AMPLITUDE (dBm)2.0–70VOUT ( V)1.81.61.41.21.00.80.60.40.20–60–50–40–30–20–10010543210–1–2–3–4–5ERROR ( dB)+25°C+85°C–40°CSLOPE AND INTERCEPT NORMALIZED AT +25°CAND APPLIED TO–40°C AND +85°C01-85-C-007 Figure 7. VOUT and Log Conformance vs. Input Amplitude at 900 MHz for Multiple Temperatures INPUT AMPLITUDE (dBm)2.0–70VOUT ( V)1.81.61.41.21.00.80.60.40.20–60–50–40–30–20–10010543210–1–2–3–4–5ERROR ( dB)–40°C+25°C+85°CSLOPE AND INTERCEPT NORMALIZED AT +25°CAND APPLIED TO–40°C AND +85°C01085-C-008 Figure 8. VOUT and Log Conformance vs. Input Amplitude at 1.9 GHz for Multiple Temperatures INPUT AMPLITUDE (dBm)2.0–70VOUT ( V)1.81.61.41.21.00.80.60.40.20–60–50–40–30–20–10010543210–1–2–3–4–5ERROR ( dB)–40°C+25°C+85°CSLOPE AND INTERCEPTNORMALIZED AT +25°C ANDAPPLIED TO–40°C AND +85°C01085-C-009 Figure 9. VOUT and Log Conformance vs. Input Amplitude at 2.5 GHz for Multiple Temperatures AD8313 Rev. D | Page 9 of 24 FREQUENCY (MHz)22211602500500SLOPE ( mV/dB)10001500200020191817–40°C+25°C+85°C01085-C-010 Figure 10. VOUT Slope vs. Frequency for Multiple Temperatures SUPPLY VOLTAGE (V)242.5SLOPE ( mV/dB)232221201918171615143.03.54.04.55.05.56.01.9GHz2.5GHz900MHz100MHzSPECIFIED OPERATING RANGE01085-C-011 Figure 11. VOUT Slope vs. Supply Voltage FREQUENCY (Hz)VSET TO VOUT GAIN (dB)1001k10k100k1M REF LEVEL = 92dBSCALE: 10dB/DIV01085-C-012 Figure 12. AC Response from VSET to VOUTFREQUENCY (MHz)–11002500500INTERCEPT ( dBm)100015002000–70–80–90–100+85°C–40°C+25°C01085-C-013 Figure 13. VOUT Intercept vs. Frequency for Multiple Temperatures SUPPLY VOLTAGE (V)–702.5INTERCEPT ( dBm)–75–80–85–90–95–100–105–1103.03.54.04.55.05.56.01.9GHz2.5GHz900MHz100MHzSPECIFIED OPERATING RANGE01085-C-014 Figure 14. VOUT Intercept vs. Supply Voltage FREQUENCY (Hz)100100.1μV/ Hz11k10k100k1M10M2GHz RF INPUTRF INPUT–70dBm–60dBm–55dBm–50dBm–45dBm–40dBm–35dBm–30dBm01085-C-015 Figure 15. VOUT Noise Spectral Density AD8313 Rev. D | Page 10 of 24 PWDN VOLTAGE (V)0100.00SUPPLY CURRENT ( mA)10.001.000.100.012134 5 40μAVPOS = +3VVPOS = +5V20μA13.7mA01085-C-016 Figure 16. Typical Supply Current vs. PWDN Voltage CH. 1 AND CH. 2: 1V/DIVCH. 3: 5V/DIVHORIZONTAL: 1μs/DIVVOUT @VS = +5.5VPWDNCH. 1 GNDCH. 2 GNDCH. 3 GNDVOUT @VS = +2.7V01085-C-017 Figure 17. PWDN Response Time CH. 1CH. 1 GNDCH. 2 GNDCH. 2CH. 1 AND CH. 2: 200mV/DIVAVERAGE: 50 SAMPLESVS = +5.5VVS = +2.7VHORIZONTAL: 50ns/DIVPULSED RF100MHz,–45dBm01085-C-019 Figure 18. Response Time, No Signal to –45 dBm CH.1&CH.2:500mV/DIVAVERAGE:50SAMPLESHORIZONTAL:50ns/DIVCH. 1 GNDCH. 2 GNDPULSED RF100MHz,0dBmCH.1CH.2VS = +5.5VVS = +2.7V01085-C-020 Figure 19. Response Time, No Signal to 0 dBm ________________________________________________________________________________________________________________________________ HP8648BSIGNALGENERATORHP8112APULSEGENERATOR0.1μF54.9Ω0.01μF0.01μF10Ω10Ω0.1μF+VS+VSTEKTDS784CSCOPE87651234VPOSVOUTINHIINLOVPOSPWDNCOMMVSETAD8313TEK P6205FET PROBETRIG0603 SIZE SURFACEMOUNT COMPONENTS ONA LOW LEAKAGE PC BOARDEXT TRIGOUTPIN = 0dBmRF OUT10MHz REF OUTPUT01085-C-018 Figure 20. Test Setup for PWDN Response Time 0.1μF54.9Ω0.01μF0.01μF10Ω10Ω0.1μF+VS+VSTEKTDS784CSCOPE87651234VPOSVOUTINHIINLOVPOSPWDNCOMMVSETAD8313TEK P6205FET PROBETRIG0603 SIZE SURFACEMOUNT COMPONENTS ONA LOW LEAKAGE PC BOARD01085-C-021TRIGOUTEXT TRIGRF OUT10MHz REF OUTPUT–6dBRFSPLITTER–6dBHP8648BSIGNALGENERATORPULSEMODULATIONMODEPULSE MODE INOUTHP8112APULSEGENERATOR Figure 21. Test Setup for RSSI Mode Pulse Response AD8313 Rev. D | Page 11 of 24 CIRCUIT DESCRIPTION The AD8313 is an 8-stage logarithmic amplifier, specifically designed for use in RF measurement and power amplifier control applications at frequencies up to 2.5 GHz. A block diagram is shown in Figure 22. For a detailed description of log amp theory and design principles, refer to the AD8307 data sheet. +++++AD8313VOUTVSETCOMMPWDNGAINBIASBAND GAPREFERENCESLOPECONTROLINTERCEPTCONTROLEIGHT 8dB 3.5GHz AMPLIFIER STAGES8dB8dBVPOSINHIINLOVPOS8dB8dBNINE DETECTOR CELLSCINTLPI→VV→I1876523401085-C-001 Figure 22. Block Diagram A fully differential design is used. Inputs INHI and INLO (Pins 2 and 3) are internally biased to approximately 0.75 V below the supply voltage, and present a low frequency impedance of nominally 900 Ω in parallel with 1.1 pF. The noise spectral density referred to the input is 0.6 nV/√Hz, equivalent to a voltage of 35 V rms in a 3.5 GHz bandwidth, or a noise power of −76 dBm re: 50 Ω. This sets the lower limit to the dynamic range; the Applications section shows how to increase the sensitivity by using a matching network or input transformer. However, the low end accuracy of the AD8313 is enhanced by specially shaping the demodulation transfer characteristic to partially compensate for errors due to internal noise. Each of the eight cascaded stages has a nominal voltage gain of 8 dB and a bandwidth of 3.5 GHz. Each stage is supported by precision biasing cells that determine this gain and stabilize it against supply and temperature variations. Since these stages are direct-coupled and the dc gain is high, an offset compensation loop is included. The first four stages and the biasing system are powered from Pin 4, while the later stages and the output inter-faces are powered from Pin 1. The biasing is controlled by a logic interface PWDN (Pin 5); this is grounded for normal operation, but may be taken high (to VS) to disable the chip. The threshold is at VPOS/2 and the biasing functions are enabled and disabled within 1.8 μs. Each amplifier stage has a detector cell associated with its output. These nonlinear cells perform an absolute value (full-wave rectification) function on the differential voltages along this backbone in a transconductance fashion; their outputs are in current-mode form and are thus easily summed. A ninth detector cell is added at the input of the AD8313. Since the midrange response of each of these nine detector stages is separated by 8 dB, the overall dynamic range is about 72 dB (Figure 23). The upper end of this range is determined by the capacity of the first detector cell, and occurs at approximately 0 dBm. The practical dynamic range is over 70 dB to the ±3 dB error points. However, some erosion of this range can occur at temperature and frequency extremes. Useful operation to over 3 GHz is possible, and the AD8313 remains serviceable at 10 MHz, needing only a small amount of additional ripple filtering. INPUT AMPLITUDE (dBm)2.0–80VOUT ( V)1.81.61.41.21.00.80.60.40.20–70–60–50–40–30–20–100543210–1–2–3–4–5ERROR ( dB)–90INTERCEPT =–100dBmSLOPE = 18mV/dB01085-c-023 Figure 23. Typical RSSI Response and Error vs. Input Power at 1.9 GHz The fluctuating current output generated by the detector cells, with a fundamental component at twice the signal frequency, is filtered first by a low-pass section inside each cell, and then by the output stage. The output stage converts these currents to a voltage, VOUT, at VOUT (Pin 8), which can swing rail-to-rail. The filter exhibits a 2-pole response with a corner at approximately 12 MHz and full-scale rise time (10% to 90%) of 40 ns. The residual output ripple at an input frequency of 100 MHz has an amplitude of under 1 mV. The output can drive a small resistive load; it can source currents of up to 400 μA, and sink up to 10 mA. The output is stable with any capacitive load, though settling time could be impaired. The low frequency incremental output impedance is approximately 0.2 Ω. In addition to its use as an RF power measurement device (that is, as a logarithmic amplifier), the AD8313 may also be used in controller applications by breaking the feedback path from VOUT to VSET (Pin 7), which determines the slope of the output (nominally 18 mV/dB). This pin becomes the setpoint input in controller modes. In this mode, the voltage VOUT remains close to ground (typically under 50 mV) until the decibel equivalent of the voltage VSET is reached at the input, when VOUT makes a rapid transition to a voltage close to VPOS (see the Operating in Controller Mode section). The logarithmic intercept is nominally positioned at −100 dBm (re: 50 Ω); this is effective in both the log amp mode and the controller mode. AD8313 Rev. D | Page 12 of 24 With Pins 7 and 8 connected (log amp mode), the output can be stated as )dBm100(+=INSLOPEOUTPVV where PIN is the input power stated in dBm when the source is directly terminated in 50 Ω. However, the input impedance of the AD8313 is much higher than 50 Ω, and the sensitivity of this device may be increased by about 12 dB by using some type of matching network (see below), which adds a voltage gain and lowers the intercept by the same amount. Dependence on the ref-erence impedance can be avoided by restating the expression as )V2.2/(log20μ×××=INSLOPEOUTVVV where VIN is the rms value of a sinusoidal input appearing across Pins 2 and 3; here, 2.2 μV corresponds to the intercept, expressed in voltage terms. For detailed information on the effect of signal waveform and metrics on the intercept positioning for a log amp, refer to the AD8307 data sheet. With Pins 7 and 8 disconnected (controller mode), the output can be stated as SETINSLOPESOUTVPVVV>→)100/(logwhen SETINSLOPEOUTVPVV<→)100/(logwhen0 when the input is stated in terms of the power of a sinusoidal signal across a net termination impedance of 50 Ω. The transition zone between high and low states is very narrow since the output stage behaves essentially as a fast integrator. The above equations can be restated as SETINSLOPESOUTVVVVV>μ→)V2.2/(logwhen SETINSLOPEOUTVVVV<μ→)V2.2/(logwhen0 Another use of the separate VOUT and VSET pins is in raising the load-driving current capability by including an external NPN emitter follower. More complete information about usage in these modes is provided in the Applications section. AD8313 Rev. D | Page 13 of 24 INTERFACES This section describes the signal and control interfaces and their behavior. On-chip resistances and capacitances exhibit variations of up to ±20%. These resistances are sometimes temperature-dependent, and the capacitances may be voltage-dependent. POWER-DOWN INTERFACE, PWDN The power-down threshold is accurately centered at the midpoint of the supply as shown in Figure 24. If Pin 5 is left unconnected or tied to the supply voltage (recommended), the bias enable current is shut off, and the current drawn from the supply is predominately through a nominal 300 kΩ chain (20 μA at 3 V). When grounded, the bias system is turned on. The threshold level is accurately at VPOS/2. When operating in the device ON state, the input bias current at the PWDN pin is approximately 5 μA for VPOS = 3 V. 5PWDNVPOS75kΩ6COMM150kΩ50kΩ150kΩTO BIASENABLE401085-C-024 Figure 24. Power-Down Threshold Circuitry SIGNAL INPUTS, INHI, INLO The simplest low frequency ac model for this interface consists of just a 900 Ω resistance, RIN, in shunt with a 1.1 pF input cap-acitance, CIN, connected across INHI and INLO. Figure 25 shows these distributed in the context of a more complete schematic. The input bias voltage shown is for the enabled chip; when disabled, it rises by a few hundred millivolts. If the input is coupled via capacitors, this change may cause a low level signal transient to be introduced, having a time constant formed by these capacitors and RIN. For this reason, large coupling capacitors should be well matched. This is not necessary when using the small capacitors found in many impedance transforming networks used at high frequencies. 1.25kΩCOMMVPOSINHIINLOVPOS0.5pF0.5pF0.7pF2.5kΩ2.5kΩ~0.75V(1ST DETECTOR)250Ω~1.4mA125Ω125Ω1.25kΩ1.24VGAIN BIASTO 2NDSTAGETO STAGES1 TO 4123401085-C-025 Figure 25. Input Interface Simplified Schematic For high frequency use, Figure 26 shows the input impedance plotted on a Smith chart. This measured result of a typical device includes a 191 mil 50 Ω trace and a 680 pF capacitor to ground from the INLO pin. 1.1pF900Ω1.9GHzFrequency100MHz900MHz1.9GHz2.5GHzR650552223+jX–j400–j135–j65–j432.5GHz900MHz100MHzAD8313 MEASURED01085-C-026 Figure 26. Typical Input Impedance LOGARITHMIC/ERROR OUTPUT, VOUT The rail-to-rail output interface is shown in Figure 27. VOUT can run from within about 50 mV of ground, to within about 100 mV of the supply voltage, and is short-circuit safe to either supply. However, the sourcing load current, ISOURCE, is limited to that which is provided by the PNP transistor, typically 400 μA. Larger load currents can be provided by adding an external NPN transistor (see the Applications section). The dc open-loop gain of this amplifier is high, and it may be regarded as an integrator having a capacitance of 2 pF (CINT) driven by the current-mode signal generated by the summed outputs of the nine detector stages, which is scaled approximately 4.0 μA/dB. COMMgmSTAGECINTLPLM10mAMAXVOUTCLBIASISOURCE400μAVPOSFROMSETPOINTSUMMEDDETECTOROUTPUTS68101085-C-027 Figure 27. Output Interface Circuitry Thus, for midscale RF input of about 3 mV, which is some 40 dB above the minimum detector output, this current is 160 μA, and the output changes by 8 V/μs. When VOUT is connected to VSET, the rise and fall times are approximately 40 ns (for RL ≥ 10 kΩ ). The nominal slew rate is 2.5 V/μs. The HF compensation tech-nique results in stable operation with a large capacitive load, CL, though the positive-going slew rate is then limited by ISOURCE/CL to 1 V/μs for CL = 400 pF. AD8313 Rev. D | Page 14 of 24 SETPOINT INTERFACE, VSET The setpoint interface is shown in Figure 28. The voltage, VSET, is divided by a factor of 3 in a resistive attenuator of 18 kΩ total resistance. The signal is converted to a current by the action of the op amp and the resistor R3 (1.5 kΩ), which balances the current generated by the summed output of the nine detector cells at the input to the previous cell. The logarithmic slope is nominally 3 μs × 4.0 μA/dB × 1.5 kΩ = 18 mV/dB. 8VSETVPOSR112kΩR26kΩ6COMM25μA25μAFDBKTO O/PSTAGE1R31.5kΩLP01085-C-028 Figure 28. Setpoint Interface Circuitry AD8313 Rev. D | Page 15 of 24 APPLICATIONS BASIC CONNECTIONS FOR LOG (RSSI) MODE Figure 29 shows the AD8313 connected in its basic measurement mode. A power supply between 2.7 V and 5.5 V is required. The power supply to each of the VPOS pins should be decoupled with a 0.1 μF surface-mount ceramic capacitor and a 10 Ω series resistor. The PWDN pin is shown as grounded. The AD8313 may be disabled by a logic high at this pin. When disabled, the chip current is reduced to about 20 μA from its normal value of 13.7 mA. The logic threshold is at VPOS/2, and the enable function occurs in about 1.8 μs. However, that additional settling time is generally needed at low input levels. While the input in this case is terminated with a simple 50 Ω broadband resistive match, there are many ways in which the input termi-nation can be accomplished. These are discussed in the Input Coupling section. VSET is connected to VOUT to establish a feedback path that controls the overall scaling of the logarithmic amplifier. The load resistance, RL, should not be lower than 5 kΩ so that the full-scale output of 1.75 V can be generated with the limited available current of 400 μA max. As stated in the Absolute Maximum Ratings table, an externally applied overvoltage on the VOUT pin, which is outside the range 0 V to VPOS, is sufficient to cause permanent damage to the device. If overvoltages are expected on the VOUT pin, a series resistor, RPROT, should be included as shown. A 500 Ω resistor is sufficient to protect against overvoltage up to ±5 V; 1000 Ω should be used if an overvoltage of up to ±15 V is expected. Since the output stage is meant to drive loads of no more than 400 μA, this resistor does not impact device perform-ance for higher impedance drive applications (higher output current applications are discussed in the Increasing Output Current section). 0.1μF53.6Ω680pF680pFR110ΩR210Ω0.1μF+VS+VS87651234VPOSVOUTINHIINLOVPOSPWDNCOMMVSETAD8313RPROTRL= 1MΩ01085-C-029 Figure 29. Basic Connections for Log (RSSI) Mode OPERATING IN CONTROLLER MODE Figure 30 shows the basic connections for operation in controller mode. The link between VOUT and VSET is broken and a set-point is applied to VSET. Any difference between VSET and the equivalent input power to the AD8313 drives VOUT either to the supply rail or close to ground. If VSET is greater than the equivalent input power, VOUT is driven toward ground, and vice versa. 0.1μFR110ΩR310Ω0.1μF+VS+VS87651234VPOSVOUTINHIINLOVPOSPWDNCOMMVSETAD8313RPROT01085-C-030 Figure 30. Basic Connections for Operation in the Controller Mode This mode of operation is useful in applications where the output power of an RF power amplifier (PA) is to be controlled by an analog AGC loop (Figure 31). In this mode, a setpoint voltage, proportional in dB to the desired output power, is applied to the VSET pin. A sample of the output power from the PA, via a directional coupler or other means, is fed to the input of the AD8313. SETPOINTCONTROL DACRFINVOUTVSETAD8313DIRECTIONALCOUPLERPOWERAMPLIFIERRF INENVELOPE OFTRANSMITTEDSIGNAL01085-C-031 Figure 31. Setpoint Controller Operation VOUT is applied to the gain control terminal of the power amplifier. The gain control transfer function of the power amplifier should be an inverse relationship, that is, increasing voltage decreases gain. A positive input step on VSET (indicating a demand for increased power from the PA) drives VOUT toward ground. This should be arranged to increase the gain of the PA. The loop settles when VOUT settles to a voltage that sets the input power to the AD8313 to the dB equivalent of VSET. AD8313 Rev. D | Page 16 of 24 INPUT COUPLING The signal can be coupled to the AD8313 in a variety of ways. In all cases, there must not be a dc path from the input pins to ground. Some of the possibilities include dual-input coupling capacitors, a flux-linked transformer, a printed circuit balun, direct drive from a directional coupler, or a narrow-band impedance matching network. Figure 32 shows a simple broadband resistive match. A termination resistor of 53.6 Ω combines with the internal input impedance of the AD8313 to give an overall resistive input impedance of approximately 50 Ω. It is preferable to place the termination resistor directly across the input pins, INHI to INLO, where it lowers the possible deleterious effects of dc offset voltages on the low end of the dynamic range. At low frequencies, this may not be quite as beneficial, since it requires larger coupling capacitors. The two 680 pF input coupling capacitors set the high-pass corner frequency of the network at 9.4 MHz. RMATCH53.6ΩC2680pFC1680pFCINRINAD831350Ω50ΩSOURCE01085-C-032 Figure 32. A Simple Broadband Resistive Input Termination The high-pass corner frequency can be set higher according to the equation 50213××π×=CfdB where: C2C1C2C1C××= In high frequency applications, the use of a transformer, balun, or matching network is advantageous. The impedance matching characteristics of these networks provide what is essentially a gain stage before the AD8313 that increases the device sensitivity. This gain effect is explored in the following matching example. Figure 33 and Figure 34 show device performance under these three input conditions at 900 MHz and 1.9 GHz. While the 900 MHz case clearly shows the effect of input matching by realigning the intercept as expected, little improvement is seen at 1.9 GHz. Clearly, if no improvement in sensitivity is required, a simple 50 Ω termination may be the best choice for a given design based on ease of use and cost of components. INPUT AMPLITUDE (dBm)–80–70–60–50–40–30–20–103210–1–2–3ERROR ( dB)TERMINATEDDR = 66dB–90100BALANCEDMATCHEDBALANCEDDR = 71dBMATCHEDDR = 69dB01085-C-033 Figure 33. Comparison of Terminated, Matched, and Balanced Input Drive at 900 MHz INPUT AMPLITUDE (dBm)–80–70–60–50–40–30–20–1003210–1–2–3ERROR ( dB)–9010TERMINATEDDR = 75dBBALANCEDBALANCEDDR = 75dBMATCHEDDR = 73dBMATCHEDTERMINATED01085-C-034 Figure 34. Comparison of Terminated, Matched, and Balanced Input Drive at 1.9 GHz NARROW-BAND LC MATCHING EXAMPLE AT 100 MHz While numerous software programs provide an easy way to calculate the values of matching components, a clear under-standing of the calculations involved is valuable. A low frequency (100 MHz) value has been used for this example because of the deleterious board effects at higher frequencies. RF layout simulation software is useful when board design at higher frequencies is required. A narrow-band LC match can be implemented either as a series-inductance/shunt-capacitance or as a series-capacitance/ shunt-inductance. However, the concurrent requirement that the AD8313 inputs, INHI and INLO, be ac-coupled, makes a series-capacitance/shunt-inductance type match more appropriate (Figure 35). AD8313 Rev. D | Page 17 of 24 LMATCHC2C1CINRINAD831350Ω50ΩSOURCE01085-C-035 Figure 35. Narrow-Band Reactive Match Typically, the AD8313 needs to be matched to 50 Ω. The input impedance of the AD8313 at 100 MHz can be read from the Smith chart (Figure 26) and corresponds to a resistive input impedance of 900 Ω in parallel with a capacitance of 1.1 pF. To make the matching process simpler, the AD8313 input cap-acitance, CIN, can be temporarily removed from the calculation by adding a virtual shunt inductor (L2), which resonates away CIN (Figure 36). This inductor is factored back into the calculation later. This allows the main calculation to be based on a simple resistive-to-resistive match, that is, 50 Ω to 900 Ω. The resonant frequency is defined by the equation INCL2×=ω1 therefore, H3.212μ=ω=INCL2 L1C2C1CINCMATCH=(C1× C2)(C1 + C2)RINAD831350Ω50ΩSOURCE01085-C-036L2TEMPORARYINDUCTANCELMATCH=(C1× C2)(C1 + C2) Figure 36. Input Matching Example With CIN and L2 temporarily out of the picture, the focus is now on matching a 50 Ω source resistance to a (purely resistive) load of 900 Ω and calculating values for CMATCH and L1. When MATCHINSCL1RR= the input looks purely resistive at a frequency given by MHz10021=×π=MATCH0CL1f Solving for CMATCH gives pF5.72110=π×=fRRCINSMATCH Solving for L1 gives nH6.33720=π=fRRL1INS Because L1 and L2 are parallel, they can be combined to give the final value for LMATCH, that is, nH294=+×=L2L1L2L1LMATCH C1 and C2 can be chosen in a number of ways. First, C2 can be set to a large value, for example, 1000 pF, so that it appears as an RF short. C1 would then be set equal to the calculated value of CMATCH. Alternatively, C1 and C2 can each be set to twice CMATCH so that the total series capacitance is equal to CMATCH. By making C1 and C2 slightly unequal (that is, select C2 to be about 10% less than C1) but keeping their series value the same, the ampli-tude of the signals on INHI and INLO can be equalized so that the AD8313 is driven in a more balanced manner. Any of the options detailed above can be used provided that the combined series value of C1 and C2, that is, C1 × C2/(C1 + C2) is equal to CMATCH. In all cases, the values of CMATCH and LMATCH must be chosen from standard values. At this point, these values need now be installed on the board and measured for performance at 100 MHz. Because of board and layout parasitics, the component values from the preceding example had to be tuned to the final values of CMATCH = 8.9 pF and LMATCH = 270 nH as shown in Table 4. Assuming a lossless matching network and noting conservation of power, the impedance transformation from RS to RIN (50 Ω to 900 Ω) has an associated voltage gain given by dB6.12log20dB=×=SINRRGain Because the AD8313 input responds to voltage and not to true power, the voltage gain of the matching network increases the effective input low-end power sensitivity by this amount. Thus, in this case, the dynamic range is shifted downward, that is, the 12.6 dB voltage gain shifts the 0 dBm to −65 dBm input range downward to −12.6 dBm to −77.6 dBm. However, because of network losses, this gain is not be fully realized in practice. Refer to Figure 33 and Figure 34 for an example of practical attainable voltage gains. Table 4 shows recommended values for the inductor and cap-acitors in Figure 35 for some selected RF frequencies in addition to the associated theoretical voltage gain. These values for a reactive match are optimal for the board layout detailed as Figure 45. AD8313 Rev. D | Page 18 of 24 As previously discussed, a modification of the board layout produces networks that may not perform as specified. At 2.5 GHz, a shunt inductor is sufficient to achieve proper matching. Con-sequently, C1 and C2 are set sufficiently high that they appear as RF shorts. Table 4. Recommended Values for C1, C2, and LMATCH in Figure 35 Freq. (MHz) CMATCH (pF) C1 (pF) C2 (pF) LMATCH (nH) Voltage Gain(dB) 100 8.9 22 15 270 12.6 1000 270 900 1.5 3 3 8.2 9.0 1.5 1000 8.2 1900 1.5 3 3 2.2 6.2 1.5 1000 2.2 2500 Large 390 390 2.2 3.2 Figure 37 shows the voltage response of the 100 MHz matching network. Note the high attenuation at lower frequencies typical of a high-pass network. FREQUENCY (MHz)1550VOLTAGE GAIN ( dB)1050–510020001085-C-037 Figure 37. Voltage Response of 100 MHz Narrow-Band Matching Network ADJUSTING THE LOG SLOPE Figure 38 shows how the log slope can be adjusted to an exact value. The idea is simple: the output at the VOUT pin is attenu-ated by the variable resistor R2 working against the internal 18 kΩ of input resistance at the VSET pin. When R2 is 0, the attenu-ation it introduces is 0, and thus the slope is the basic 18 mV/dB. Note that this value varies with frequency, (Figure 10). When R2 is set to its maximum value of 10 kΩ, the attenuation from VOUT to VSET is the ratio 18/(18 + 10), and the slope is raised to (28/18) × 18 mV, or 28 mV/dB. At about the midpoint, the nominal scale is 23 mV/dB. Thus, a 70 dB input range changes the output by 70 × 23 mV, or 1.6 V. 0.1μFR110ΩR310ΩR210kΩ0.1μF+VS+VS87651234VPOSVOUTINHIINLOVPOSPWDNCOMMVSETAD831301085-C-03818–30mV/dB Figure 38. Adjusting the Log Slope As stated, the unadjusted log slope varies with frequency from 17 mV/dB to 20 mV/dB, as shown in Figure 10. By placing a resistor between VOUT and VSET, the slope can be adjusted to a convenient 20 mV/dB as shown in Figure 39. Table 5 shows the recommended values for this resistor, REXT. Also shown are values for REXT, which increase the slope to approximately 50 mV/dB. The corresponding voltage swings for a −65 dBm to 0 dBm input range are also shown in Table 6. 0.1μFR110ΩR310ΩREXT0.1μF+VS+VS87651234VPOSVOUTINHIINLOVPOSPWDNCOMMVSETAD831301085-C-03920mV/dB Figure 39. Adjusting the Log Slope to a Fixed Value Table 5. Values for R in Figure 39EXT Frequency MHz REXT kV Slope mV/dB VOUT Swing for Pin −65 dBm to 0 dBm – V 100 0.953 20 0.44 to 1.74 900 2.00 20 0.58 to 1.88 1900 2.55 20 0.70 to 2.00 2500 0 20 0.54 to 1.84 100 29.4 50 1.10 to 4.35 900 32.4 50.4 1.46 to 4.74 1900 33.2 49.8 1.74 to 4.98 2500 26.7 49.7 1.34 to 4.57 The value for REXT is calculated by ()Ω×−=k18SlopeOriginalSlopeOriginalSlopeNewREXT The value for the Original Slope, at a particular frequency, can be read from Figure 10. The resulting output swing is calculated by simply inserting the New Slope value and the intercept at that frequency (Figure 10 and Figure 13) into the general equation for the AD8313’s output voltage: VOUT = Slope(PIN − Intercept) AD8313 Rev. D | Page 19 of 24 INCREASING OUTPUT CURRENT To drive a more substantial load, either a pull-up resistor or an emitter-follower can be used. In Figure 40, a 1 kΩ pull-up resistor is added at the output, which provides the load current necessary to drive a 1 kΩ load to 1.7 V for VS = 2.7 V. The pull-up resistor slightly lowers the intercept and the slope. As a result, the transfer function of the AD8313 is shifted upward (intercept shifts downward). 0.1μFR110ΩR310Ω0.1μF+VS+VS87651234VPOSVOUTINHIINLOVPOSPWDNCOMMVSETAD831301085-C-0401kΩRL= 1kΩ+VS20mV/dB Figure 40. Increasing AD8313 Output Current Capability In Figure 41, an emitter-follower provides the current gain, when a 100 Ω load can readily be driven to full-scale output. While a high ß transistor such as the BC848BLT1 (min ß = 200) is recommended, a 2 kΩ pull-up resistor between VOUT and +VS can provide additional base current to the transistor. βMIN = 2000.1μFR110ΩR310Ω0.1μF+VS+VS+VS87651234VPOSVOUTINHIINLOVPOSPWDNCOMMVSETAD831301085-C-041RL100ΩOUTPUT13kΩ10kΩBC848BLT1 Figure 41. Output Current Drive Boost Connection In addition to providing current gain, the resistor/potentiometer combination between VSET and the emitter of the transistor increases the log slope to as much as 45 mV/dB, at maximum resistance. This gives an output voltage of 4 V for a 0 dBm input. If no increase in the log slope is required, VSET can be connected directly to the emitter of the transistor. EFFECT OF WAVEFORM TYPE ON INTERCEPT Although specified for input levels in dBm (dB relative to 1 mW), the AD8313 responds to voltage and not to power. A direct consequence of this characteristic is that input signals of equal rms power but differing crest factors produce different results at the log amp’s output. Different signal waveforms vary the effective value of the log amp’s intercept upward or downward. Graphically, this looks like a vertical shift in the log amp’s transfer function. The device’s logarithmic slope, however, is in principle not affected. For example, if the AD8313 is being fed alternately from a continuous wave and from a single CDMA channel of the same rms power, the AD8313 output voltage differs by the equivalent of 3.55 dB (64 mV) over the complete dynamic range of the device (the output for a CDMA input being lower). Table 6 shows the correction factors that should be applied to measure the rms signal strength of a various signal types. A continuous wave input is used as a reference. To measure the rms power of a square wave, for example, the mV equivalent of the dB value given in the table (18 mV/dB × 3.01 dB) should be subtracted from the output voltage of the AD8313. Table 6. Shift in AD8313 Output for Signals with Differing Crest Factors Signal Type Correction Factor (Add to Output Reading) CW Sine Wave 0 dB Square Wave or DC −3.01 dB Triangular Wave +0.9 dB GSM Channel (All Time Slots On) +0.55 dB CDMA Channel +3.55 dB PDC Channel (All Time Slots On) +0.58 dB Gaussian Noise +2.51 dB AD8313 Rev. D | Page 20 of 24 EVALUATION BOARD SCHEMATIC AND LAYOUT Figure 44 shows the schematic of the AD8313 evaluation board. Note that uninstalled components are indicated as open. This board contains the AD8313 as well as the AD8009 current-feedback operational amplifier. This is a 4-layer board (top and bottom signal layers, ground, and power). The top layer silkscreen and layout are shown in Figure 42 and Figure 43. A detailed drawing of the recommended PCB footprint for the MSOP package and the pads for the matching components are shown in Figure 45. The vacant portions of the signal and power layers are filled out with ground plane for general noise suppression. To ensure a low impedance connection between the planes, there are multiple through-hole connections to the RF ground plane. While the ground planes on the power and signal planes are used as general-purpose ground returns, any RF grounds related to the input matching network (for example, C2) are returned directly to the RF internal ground plane. GENERAL OPERATION The AD8313 should be powered by a single supply in the range of 2.7 V to 5.5 V. The power supply to each AD8313 VPOS pin is decoupled by a 10 Ω resistor and a 0.1 μF capacitor. The AD8009 can run on either single or dual supplies, +5 V to ±6 V. Both the positive and negative supply traces are decoupled using a 0.1 μF capacitor. Pads are provided for a series resistor or inductor to provide additional supply filtering. The two signal inputs are ac-coupled using 680 pF high quality RF capacitors (C1, C2). A 53.6 Ω resistor across the differential signal inputs (INHI, INLO) combines with the internal 900 Ω input impedance to give a broadband input impedance of 50.6 Ω. This termination is not optimal from a noise perspective due to the Johnson noise of the 53.6 Ω resistor. Neither does it account for the AD8313’s reactive input impedance nor for the decrease over frequency of the resistive component of the input imped-ance. However, it does allow evaluation of the AD8313 over its complete frequency range without having to design multiple matching networks. For optimum performance, a narrow-band match can be implemented by replacing the 53.6 Ω resistor (labeled L/R) with an RF inductor and replacing the 680 pF capacitors with appropriate values. The Narrow-Band LC Matching Example at 100 MHz section includes a table of recommended values for selected frequencies and explains the method of calculation. Switch 1 is used to select between power-up and power-down modes. Connecting the PWDN pin to ground enables normal operation of the AD8313. In the opposite position, the PWDN pin can be driven externally (SMA connector labeled ENBL) to either device state, or it can be allowed to float to a disabled device state. The evaluation board comes with the AD8313 configured to operate in RSSI/measurement mode. This mode is set by the 0 Ω resistor (R11), which shorts the VOUT and VSET pins to each other. When using the AD8009, the AD8313 logarithmic output appears on the SMA connector labeled VOUT. Using only the AD8313, the log output can be measured at TP1 or the SMA connector labeled VSET. USING THE AD8009 OPERATIONAL AMPLIFIER The AD8313 can supply only 400 μA at VOUT. It is also sensitive to capacitive loading, which can cause inaccurate measurements, especially in applications where the AD8313 is used to measure the envelope of RF bursts. The AD8009 alleviates both of these issues. It is an ultrahigh speed current feedback amplifier capable of delivering over 175 mA of load current, with a slew rate of 5,500 V/μs, which results in a rise time of 545 ps, making it ideal as a pulse amplifier. The AD8009 is configured as a buffer amplifier with a gain of 1. Other gain options can be implemented by installing the appro-priate resistors at R10 and R12. Various output filtering and loading options are available using R5, R6, and C6. Note that some capacitive loads may cause the AD8009 to become unstable. It is recommended that a 42.2 Ω resistor be installed at R5 when driving a capacitive load. More details can be found in the AD8009 data sheet. VARYING THE LOGARITHMIC SLOPE The slope of the AD8313 can be increased from its nominal value of 18 mV/dB to a maximum of 40 mV/dB by removing R11, the 0 Ω resistor, which shorts VSET to VOUT. VSET and VOUT are now connected through the 20 kΩ potentiometer. The AD8009 must be configured for a gain of 1 to accurately vary the slope of the AD8313. OPERATING IN CONTROLLER MODE To put the AD8313 into controller mode, R7 and R11 should be removed, breaking the link between VOUT and VSET. The VSET pin can then be driven externally via the SMA connector labeled VSET. RF BURST RESPONSE The VOUT pin of the AD8313 is very sensitive to capacitive loading, as a result care must be taken when measuring the device’s response to RF bursts. For best possible response time measurements it is recommended that the AD8009 be used to buffer the output from the AD8313. No connection should be made to TP1, the added load will effect the response time. AD8313 Rev. D | Page 21 of 24 001085-C-048 Figure 42. Layout of Signal Layer 01085-C-049 Figure 43. Signal Layer Silkscreen AD8313 Rev. D | Page 22 of 24 VPS1VPS101085-C-046R210ΩEXT ENABLESW1R110Ω1234INHIINLOVPOSPWDNCOMMVSETAD83138765INHIVOUTEXT VSETAD8009VPOSVOUTC70.1μFC1680pFC2680pFC30.1μFC50.1μFR40ΩR12301ΩR50ΩR70ΩR30ΩR110ΩR90ΩR210ΩL/R53.6ΩVNEGVPS2INLOTP1Z1Z2R10OPENR6OPENR820kΩC6OPENABC40.1μF Figure 44. Evaluation Board Schematic Table 7. Evaluation Board Configuration Options Component Function Default VPS1, VPS2, GND, VNEG Supply Pins. VPS1 is the positive supply pin for the AD8313. VPS2 and VNEG are the positive and negative supply pins for the AD8009. If the AD8009 is being operated from a single supply, VNEG should be connected to GND. VPS1 and VPS2 are independent. GND is shared by both devices. Not Applicable Z1 AD8313 Logarithmic Amplifier. If the AD8313 is used in measurement mode, it is not necessary to power up the AD8009 op amp. The log output can be measured at TP1 or at the SMA connector labeled VSET. Installed Z1 AD8009 Operational Amplifier. Installed SW1 Device Enable. When in Position A, the PWDN pin is connected to ground and the AD8313 is in normal operating mode. In Position B, the PWDN pin is connected to an SMA connector labeled ENBL. A signal can be applied to this connector. SW1 = A R7, R8 Slope Adjust. The slope of the AD8313 can be increased from its nominal value of 18 mV/dB to a maximum of 40 mV/dB by removing R11, the 0 Ω resistor, which shorts VSET to VOUT, and installing a 0 Ω resistor at R7. The 20 kΩ potentiometer at R8 can then be used to change the slope. R7 = 0 Ω (Size 0603) R8 = installed Operating in Controller Mode. To put the AD8313 into controller mode, R7 and R11 should be removed, breaking the link between VOUT and VSET. The VSET pin can then be driven externally via the SMA connector labeled VSET. L/R, C1, C2, R9 Input Interface. The 52.3 Ω resistor in position L/R, along with C1 and C2, create a wideband 50 Ω input. Alternatively, the 52.3 Ω resistor can be replaced by an inductor to form an input matching network. See Input Coupling section for more details. Remove the 0 Ω resistor at R9 for differential drive applications. L/R = 53.6 Ω (Size 0603) C1 = C2 = 680 pF (Size 0603) R9 = 0 Ω (Size 0603) R10, R12 Op Amp Gain Adjust. The AD8009 is initially configured as a buffer; gain = 1. To increase the gain of the op amp, modify the resistor values R10 and R12. R10 = open (Size 0603) R12 = 301 Ω (Size 0603) R5, R6, C6 Op Amp Output Loading/Filtering. A variety of loading and filtering options are available for the AD8009. The robust output of the op amp is capable of driving low impedances such as 50 Ω or 75 Ω, configure R5 and R6 accordingly. See the AD8009 data sheet for more details. R5 = 0 Ω (Size 0603) R6 = open (Size 0603) C6 = open (Size 0603) R1, R2, R3, R4, C3, C4, C5, C7 Supply Decoupling. R1 = R2 = 10 Ω (Size 0603) R3 = R4 = 0 Ω (Size 0603) C3 = C4 = 0.1 μF (Size 0603) C5 = C7 = 0.1 μF (Size 0603) AD8313 Rev. D | Page 23 of 24 4854.490.6282027.57550201950354122464851.791.3511016126TRACE WIDTH15.4NOT CRITICAL DIMENSIONSUNIT = MILS01085-C-047 Figure 45. Detail of PCB Footprint for Package and Pads for Matching Network AD8313 Rev. D | Page 24 of 24 OUTLINE DIMENSIONS 0.800.600.408°0°4854.90BSCPIN 10.65 BSC3.00BSCSEATINGPLANE0.150.000.380.221.10 MAX3.00BSCCOPLANARITY0.100.230.08COMPLIANT TO JEDEC STANDARDS MO-187AA Figure 46 . 8-Lead MicroSOIC Package [MSOP] (RM-08) Dimensions shown in millimeters and (inches) ORDERING GUIDE Model Temperature Range Package Descriptions Package Option Branding AD8313ARM −40°C to +85°C 8-Lead MSOP RM-08 J1A AD8313ARM-REEL −40°C to +85°C 13" Tape and Reel RM-08 J1A AD8313ARM-REEL7 −40°C to +85°C 7" Tape and Reel RM-08 J1A AD8313ARMZ1 −40°C to +85°C 8-Lead MSOP AD8313ARMZ-REEL71 −40°C to +85°C 7" Tape and Reel AD8313-EVAL Evaluation Board 1 Z = Pb-free part. TUSB3410, TUSB3410I USB to Serial Port Controller January 2010 Connectivity Interface Solutions Data Manual SLLS519H Contents May 2008 SLLS519G iii Contents Section Page 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Controller Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 USB Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 General Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Enhanced UART Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 Terminal Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Detailed Controller Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 USB Interface Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.1 External Memory Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2.2 Host Download Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 USB Data Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4 Serial Port Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.5 Serial Port Data Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.5.1 RS-232 Data Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.5.2 RS-485 Data Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.5.3 IrDA Data Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 MCU Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1 Miscellaneous Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1.1 ROMS: ROM Shadow Configuration Register (Addr:FF90h) . . . . . . . . . . . . . . . . . . . 14 4.1.2 Boot Operation (MCU Firmware Loading) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1.3 WDCSR: Watchdog Timer, Control, and Status Register (Addr:FF93h) . . . . . . . . . 15 4.2 Buffers + I/O RAM Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3 Endpoint Descriptor Block (EDB−1 to EDB−3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3.1 OEPCNF_n: Output Endpoint Configuration (n = 1 to 3) (Base Addr: FF08h, FF10h, FF18h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3.2 OEPBBAX_n: Output Endpoint X-Buffer Base Address (n = 1 to 3) (Offset 1) . . . . 19 4.3.3 OEPBCTX_n: Output Endpoint X Byte Count (n = 1 to 3) (Offset 2) . . . . . . . . . . . . 20 4.3.4 OEPBBAY_n: Output Endpoint Y-Buffer Base Address (n = 1 to 3) (Offset 5) . . . . 20 4.3.5 OEPBCTY_n: Output Endpoint Y-Byte Count (n = 1 to 3) (Offset 6) . . . . . . . . . . . . 20 4.3.6 OEPSIZXY_n: Output Endpoint X-/Y-Buffer Size (n = 1 to 3) (Offset 7) . . . . . . . . . 21 4.3.7 IEPCNF_n: Input Endpoint Configuration (n = 1 to 3) (Base Addr: FF48h, FF50h, FF58h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3.8 IEPBBAX_n: Input Endpoint X-Buffer Base Address (n = 1 to 3) (Offset 1) . . . . . . 21 4.3.9 IEPBCTX_n: Input Endpoint X-Byte Count (n = 1 to 3) (Offset 2) . . . . . . . . . . . . . . 22 4.3.10 IEPBBAY_n: Input Endpoint Y-Buffer Base Address (n = 1 to 3) (Offset 5) . . . . . . 22 4.3.11 IEPBCTY_n: Input Endpoint Y-Byte Count (n = 1 to 3) (Offset 6) . . . . . . . . . . . . . . . 22 4.3.12 IEPSIZXY_n: Input Endpoint X-/Y-Buffer Size (n = 1 to 3) (Offset 7) . . . . . . . . . . . . 23 4.4 Endpoint-0 Descriptor Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4.1 IEPCNFG_0: Input Endpoint-0 Configuration Register (Addr:FF80h) . . . . . . . . . . . 23 4.4.2 IEPBCNT_0: Input Endpoint-0 Byte Count Register (Addr:FF81h) . . . . . . . . . . . . . 24 4.4.3 OEPCNFG_0: Output Endpoint-0 Configuration Register (Addr:FF82h) . . . . . . . . . 24 4.4.4 OEPBCNT_0: Output Endpoint-0 Byte Count Register (Addr:FF83h) . . . . . . . . . . . 24 Contents iv SLLS519G May 2008 Section Page 5 USB Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.1 FUNADR: Function Address Register (Addr:FFFFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2 USBSTA: USB Status Register (Addr:FFFEh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3 USBMSK: USB Interrupt Mask Register (Addr:FFFDh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.4 USBCTL: USB Control Register (Addr:FFFCh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.5 MODECNFG: Mode Configuration Register (Addr:FFFBh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.6 Vendor ID/Product ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.7 SERNUM7: Device Serial Number Register (Byte 7) (Addr:FFEFh) . . . . . . . . . . . . . . . . . . . . . . 28 5.8 SERNUM6: Device Serial Number Register (Byte 6) (Addr:FFEEh) . . . . . . . . . . . . . . . . . . . . . . 29 5.9 SERNUM5: Device Serial Number Register (Byte 5) (Addr:FFEDh) . . . . . . . . . . . . . . . . . . . . . . 29 5.10 SERNUM4: Device Serial Number Register (Byte 4) (Addr:FFECh) . . . . . . . . . . . . . . . . . . . . . . 29 5.11 SERNUM3: Device Serial Number Register (Byte 3) (Addr:FFEBh) . . . . . . . . . . . . . . . . . . . . . . 29 5.12 SERNUM2: Device Serial Number Register (Byte 2) (Addr:FFEAh) . . . . . . . . . . . . . . . . . . . . . . 30 5.13 SERNUM1: Device Serial Number Register (Byte 1) (Addr:FFE9h) . . . . . . . . . . . . . . . . . . . . . . 30 5.14 SERNUM0: Device Serial Number Register (Byte 0) (Addr:FFE8h) . . . . . . . . . . . . . . . . . . . . . . 30 5.15 Function Reset And Power-Up Reset Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.16 Pullup Resistor Connect/Disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6 DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.1 DMA Controller Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.1.1 DMACDR1: DMA Channel Definition Register (UART Transmit Channel) (Addr:FFE0h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.1.2 DMACSR1: DMA Control And Status Register (UART Transmit Channel) (Addr:FFE1h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.1.3 DMACDR3: DMA Channel Definition Register (UART Receive Channel) (Addr:FFE4h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.1.4 DMACSR3: DMA Control And Status Register (UART Receive Channel) (Addr:FFE5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.2 Bulk Data I/O Using the EDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.2.1 IN Transaction (TUSB3410 to Host) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.2.2 OUT Transaction (Host to TUSB3410) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7 UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.1 UART Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.1.1 RDR: Receiver Data Register (Addr:FFA0h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.1.2 TDR: Transmitter Data Register (Addr:FFA1h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.1.3 LCR: Line Control Register (Addr:FFA2h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.1.4 FCRL: UART Flow Control Register (Addr:FFA3h) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.1.5 Transmitter Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.1.6 MCR: Modem-Control Register (Addr:FFA4h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.1.7 LSR: Line-Status Register (Addr:FFA5h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7.1.8 MSR: Modem-Status Register (Addr:FFA6h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.1.9 DLL: Divisor Register Low Byte (Addr:FFA7h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.1.10 DLH: Divisor Register High Byte (Addr:FFA8h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.1.11 Baud-Rate Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.1.12 XON: Xon Register (Addr:FFA9h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.1.13 XOFF: Xoff Register (Addr:FFAAh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.1.14 MASK: UART Interrupt-Mask Register (Addr:FFABh) . . . . . . . . . . . . . . . . . . . . . . . . 48 Contents May 2008 SLLS519G v Section Page 7.2 UART Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.2.1 Receiver Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.2.2 Hardware Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.2.3 Auto RTS (Receiver Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.2.4 Auto CTS (Transmitter Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.2.5 Xon/Xoff Receiver Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.2.6 Xon/Xoff Transmit Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 8 Expanded GPIO Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.1 Input/Output and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.1.1 PUR_3: GPIO Pullup Register For Port 3 (Addr:FF9Eh) . . . . . . . . . . . . . . . . . . . . . . 51 9 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 9.1 8052 Interrupt and Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 9.1.1 8052 Standard Interrupt Enable (SIE) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 9.1.2 Additional Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 9.1.3 VECINT: Vector Interrupt Register (Addr:FF92h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9.1.4 Logical Interrupt Connection Diagram (Internal/External) . . . . . . . . . . . . . . . . . . . . . . 55 10 I2C Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 10.1 I2C Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 10.1.1 I2CSTA: I2C Status and Control Register (Addr:FFF0h) . . . . . . . . . . . . . . . . . . . . . . 57 10.1.2 I2CADR: I2C Address Register (Addr:FFF3h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 10.1.3 I2CDAI: I2C Data-Input Register (Addr:FFF2h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 10.1.4 I2CDAO: I2C Data-Output Register (Addr:FFF1h) . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 10.2 Random-Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 10.3 Current-Address Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 10.4 Sequential-Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 10.5 Byte-Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 10.6 Page-Write Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 11 TUSB3410 Bootcode Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 11.2 Bootcode Programming Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 11.3 Default Bootcode Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 11.3.1 Device Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 11.3.2 Configuration Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 11.3.3 Interface Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 11.3.4 Endpoint Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 11.3.5 String Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 11.4 External I2C Device Header Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 11.4.1 Product Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 11.4.2 Descriptor Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 11.5 Checksum in Descriptor Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 11.6 Header Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 11.6.1 TUSB3410 Bootcode Supported Descriptor Block . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 11.6.2 USB Descriptor Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 11.6.3 Autoexec Binary Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 11.7 USB Host Driver Downloading Header Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Contents vi SLLS519G May 2008 Section Page 11.8 Built-In Vendor Specific USB Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 11.8.1 Reboot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 11.8.2 Force Execute Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 11.8.3 External Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 11.8.4 External Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 11.8.5 I2C Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 11.8.6 I2C Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 11.8.7 Internal ROM Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 11.9 Bootcode Programming Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 11.9.1 USB Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 11.9.2 Hardware Reset Introduced by the Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 11.10 File Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 12 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 12.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 12.2 Commercial Operating Condition (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 12.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 13 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 13.1 Crystal Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 13.2 External Circuit Required for Reliable Bus Powered Suspend Operation . . . . . . . . . . . . . . . . . . 81 13.3 Wakeup Timing (WAKEUP or RI/CP Transitions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 13.4 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 List of Illustrations May 2008 SLLS519G vii List of Illustrations Figure Title Page 1−1 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1−2 USB-to-Serial (Single Channel) Controller Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3−1 RS-232 and IR Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3−2 USB-to-Serial Implementation (RS-232) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3−3 RS-485 Bus Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4−1 MCU Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5−1 Reset Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5−2 Pullup Resistor Connect/Disconnect Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7−1 MSR and MCR Registers in Loop-Back Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7−2 Receiver/Transmitter Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7−3 Auto Flow Control Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 9−1 Internal Vector Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 11−1 Control Read Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 11−2 Control Write Transfer Without Data Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 13−1 Crystal Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 13−2 External Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 13−3 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 List of Tables viii SLLS519G May 2008 List of Tables Table Title Page 2−1 Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4−1 ROM/RAM Size Definition Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4−2 XDATA Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4−3 Memory-Mapped Registers Summary (XDATA Range = FF80h ” FFFFh) . . . . . . . . . . . . . . . . . . . . 16 4−4 EDB Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4−5 Endpoint Registers and Offsets in RAM (n = 1 to 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4−6 Endpoint Registers Base Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4−7 Input/Output EDB-0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6−1 DMA Controller Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6−2 DMA IN-Termination Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7−1 UART Registers Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7−2 Transmitter Flow-Control Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7−3 Receiver Flow-Control Possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7−4 DLL/DLH Values and Resulted Baud Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 9−1 8052 Interrupt Location Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 9−2 Vector Interrupt Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 11−1 Device Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 11−2 Configuration Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 11−3 Interface Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 11−4 Output Endpoint1 Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 11−5 String Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 11−6 USB Descriptors Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 11−7 Autoexec Binary Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 11−8 Host Driver Downloading Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 11−9 Bootcode Response to Control Read Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 11−10 Bootcode Response to Control Write Without Data Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 11−11 Vector Interrupt Values and Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Introduction SLLS519H—January 2010 TUSB3410, TUSB3410I 1 1 Introduction 1.1 Controller Description The TUSB3410 provides bridging between a USB port and an enhanced UART serial port. The TUSB3410 contains all the necessary logic to communicate with the host computer using the USB bus. It contains an 8052 microcontroller unit (MCU) with 16K bytes of RAM that can be loaded from the host or from the external on-board memory via an I2C bus. It also contains 10K bytes of ROM that allow the MCU to configure the USB port at boot time. The ROM code also contains an I2C boot loader. All device functions, such as the USB command decoding, UART setup, and error reporting, are managed by the internal MCU firmware under the auspices of the PC host. The TUSB3410 can be used to build an interface between a legacy serial peripheral device and a PC with USB ports, such as a legacy-free PC. Once configured, data flows from the host to the TUSB3410 via USB OUT commands and then out from the TUSB3410 on the SOUT line. Conversely, data flows into the TUSB3410 on the SIN line and then into the host via USB IN commands. Host (PC or On-The-Go Dual-Role Device) USB Out In TUSB3410 SOUT SIN Legacy Serial Peripheral Figure 1−1. Data Flow Introduction 2 TUSB3410, TUSB3410I SLLS519H—January 2010 8052 Core Clock Oscillator 12 MHz PLL and Dividers 10K × 8 ROM 8 8 2 × 16-Bit Timers 16K × 8 RAM 8 8 4 Port 3 2K × 8 SRAM 8 8 I2C Controller 8 UART−1 CPU-I/F Suspend/ Resume 8 UBM USB Buffer Manager 8 8 USB Serial Interface Engine USB TxR TDM Control Logic P3.4 P3.3 P3.1 P3.0 I2C Bus DP, DM 8 DMA-1 DMA-3 RTS CTS DTR DSR MUX IR Encoder SOUT/IR_SOUT MUX IR Decoder SIN/IR_SIN 24 MHz SIN SOUT Figure 1−2. USB-to-Serial (Single Channel) Controller Block Diagram Introduction SLLS519H—January 2010 TUSB3410, TUSB3410I 3 1.2 Ordering Information T PACKAGED DEVICES TA COMMENT 32-TERMINAL LQFP PACKAGE 32-TERMINAL QFN PACKAGE 40°C to 85°C TUSB3410 I VF TUSB3410 I RHB Industrial temperature range Shipped in trays −TUSB3410 I RHBR Industrial temperature range Tape and Reel Option 0°C to 70°C TUSB3410 VF TUSB3410 RHB Shipped in trays TUSB3410 RHBR Tape and Reel Option 1.3 Revision History Version Date Changes Mar−2002 Initial Release A Apr−2002 1. General grammatical corrections 2. Added Design−in warning on cover sheet 3. Removed references to Optional preprogrammed VID/PID Registers from Section 5.1.6 through 5.1.11. Renumber the remainder of Section 5.1 accordingly – option no longer supported. 4. Clarified GPIO pin availability B Jun−2002 1. Removed Design−in warning from cover sheet 2. Added Note 8 to Terminal Functions Table for GPIO Pins. 3. Removed Section 3.2.3 – Production Programming Mode – Mode no longer supported. 4. Added Clock Output Control description to section 5.1.5. 5. Removed Section 11.6.4 USB Descriptor with Binary Firmware 6. Added Icc Spec to Table 12.3 C Nov−2003 1. Added Industrial Temperature Option and Information 2. Added USB Logo to Cover D July 2005 1. General grammatical corrections 2. Numerous technical corrections F July 2007 1. Added ordering information for TUSB3410IRHBR and TUSB3410RHBR G May 2008 1. Added terminal assignments for RHB package H Jan 2010 1. Removed reference to 48-MHz in 13.4 Introduction 4 TUSB3410, TUSB3410I SLLS519H—January 2010 Main Features SLLS519H—January 2010 TUSB3410, TUSB3410I 5 2 Main Features 2.1 USB Features • Fully compliant with USB 2.0 full speed specifications: TID #40340262 • Supports 12-Mbps USB data rate (full speed) • Supports USB suspend, resume, and remote wakeup operations • Supports two power source modes: − Bus-powered mode − Self-powered mode • Can support a total of three input and three output (interrupt, bulk) endpoints 2.2 General Features • Integrated 8052 microcontroller with − 256 × 8 RAM for internal data − 10K × 8 ROM (with USB and I2C boot loader) − 16K × 8 RAM for code space loadable from host or I2C port − 2K × 8 shared RAM used for data buffers and endpoint descriptor blocks (EDB) − Four GPIO terminals from 8052 port 3 − Master I2C controller for EEPROM device access − MCU operates at 24 MHz providing 2 MIPS operation − 128-ms watchdog timer • Built-in two-channel DMA controller for USB/UART bulk I/O • Operates from a 12-MHz crystal • Supports USB suspend and resume • Supports remote wake-up • Available in 32-terminal LQFP • 3.3-V operation with 1.8-V core operating voltage provided by on-chip 1.8-V voltage regulator 2.3 Enhanced UART Features • Software/hardware flow control: − Programmable Xon/Xoff characters − Programmable Auto-RTS/DTR and Auto-CTS/DSR • Automatic RS-485 bus transceiver control, with and without echo • Selectable IrDA mode for up to 115.2 kbps transfer • Software selectable baud rate from 50 to 921.6 k baud • Programmable serial-interface characteristics − 5-, 6-, 7-, or 8-bit characters − Even, odd, or no parity-bit generation and detection − 1-, 1.5-, or 2-stop bit generation Main Features 6 TUSB3410, TUSB3410I SLLS519H—January 2010 • Line break generation and detection • Internal test and loop-back capabilities • Modem-control functions (CTS, RTS, DSR, DTR, RI, and DCD) • Internal diagnostics capability − Loopback control for communications link-fault isolation − Break, parity, overrun, framing-error simulation 2.4 Terminal Assignment VF PACKAGE (TOP VIEW) 23 22 21 20 19 1 2 25 26 27 28 29 30 31 32 16 15 14 13 12 11 10 9 RI/CP DCD DSR CTS WAKEUP SCL SDA RESET VCC X2 X1/CLKI GND P3.4 P3.3 P3.1 P3.0 24 18 3 4 5 6 7 8 17 TEST1 TEST0 CLKOUT DTR RTS SOUT/IR_SOUT GND SIN/IR_SIN VREGEN SUSPEND VCC VDD18 PUR DP DM GND RHB PACKAGE (BOTTOM VIEW) 1 2 3 4 6 7 8 24 23 22 21 19 18 17 9 10 11 12 13 14 15 16 32 31 30 29 28 27 26 25 VREGEN SUSPEND VCC VDD18 PUR DP DM GND TEST1 TEST0 CLKOUT SOUT/IR_SOUT GND SIN/IR_SIN DTR RTS RESET WAKEUP CTS DSR DCD RI SDA SCL /CP P3.0 P3.1 P3.3 P3.4 GND X1/CLKI X2 VCC 20 Main Features SLLS519H—January 2010 TUSB3410, TUSB3410I 7 Table 2−1. Terminal Functions TERMINAL I/O DESCRIPTION NAME NO. CLKOUT 22 O Clock output (controlled by bits 2 (CLKOUTEN) and 3(CLKSLCT) in the MODECNFG register (see Section 5.5 and Note 1) CTS 13 I UART: Clear to send (see Note 4) DCD 15 I UART: Data carrier detect (see Note 4) DM 7 I/O Upstream USB port differential data minus DP 6 I/O Upstream USB port differential data plus DSR 14 I UART: Data set ready (see Note 4) DTR 21 O UART: Data terminal ready (see Note 1) GND 8, 18, 28 GND Digital ground P3.0 32 I/O General-purpose I/O 0 (port 3, terminal 0) (see Notes 3, 5, and 8) P3.1 31 I/O General-purpose I/O 1 (port 3, terminal 1) (see Notes 3, 5, and 8) P3.3 30 I/O General-purpose I/O 3 (port 3, terminal 3) (see Notes 3, 5, and 8) P3.4 29 I/O General-purpose I/O 4 (port 3, terminal 4) (see Notes 3, 5, and 8) PUR 5 O Pull-up resistor connection (see Note 2) RESET 9 I Device master reset input (see Note 4) RI/CP 16 I UART: Ring indicator (see Note 4) RTS 20 O UART: Request to send (see Note 1) SCL 11 O Master I2C controller: clock signal (see Note 1) SDA 10 I/O Master I2C controller: data signal (see Notes 1 and 5) SIN/IR_SIN 17 I UART: Serial input data / IR Serial data input (see Note 6) SOUT/IR_SOUT 19 O UART: Serial output data / IR Serial data output (see Note 7) SUSPEND 2 O Suspend indicator terminal (see Note 3). When this terminal is asserted high, the device is in suspend mode. TEST0 23 I Test input (for factory test only) (see Note 5). This terminal must be tied to VCC through a 10-kΩ resistor. TEST1 24 I Test input (for factory test only) (see Note 5). This terminal must be tied to VCC through a 10-kΩ resistor. VCC 3, 25 PWR 3.3 V VDD18 4 PWR 1.8-V supply. An internal voltage regulator generates this supply voltage when terminal VREGEN is low. When VREGEN is high, 1.8 V must be supplied externally. VREGEN 1 I This active-low terminal is used to enable the 3.3-V to 1.8-V voltage regulator. WAKEUP 12 I Remote wake-up request terminal. When low, wakes up system (see Note 5) X1/CLKI 27 I 12-MHz crystal input or clock input X2 26 O 12-MHz crystal output NOTES: 1. 3-state CMOS output (±4-mA drive/sink) 2. 3-state CMOS output (±8-mA drive/sink) 3. 3-state CMOS output (±12-mA drive/sink) 4. TTL-compatible, hysteresis input 5. TTL-compatible, hysteresis input, with internal 100-μA active pullup resistor 6. TTL-compatible input without hysteresis, with internal 100-μA active pullup resistor 7. Normal or IR mode: 3-state CMOS output (±4-mA drive/sink) 8. The MCU treats the outputs as open drain types in that the output can be driven low continuously, but a high output is driven for two clock cycles and then the output is high impedance. Main Features 8 TUSB3410, TUSB3410I SLLS519H—January 2010 Detailed Controller Description SLLS519H—January 2010 TUSB3410, TUSB3410I 9 3 Detailed Controller Description 3.1 Operating Modes The TUSB3410 controls its USB interface in response to USB commands, and this action is independent of the serial port mode selected. On the other hand, the serial port can be configured in three different modes. As with any interface device, data movement is the main function of the TUSB3410, but typically the initial configuration and error handling consume most of the support code. The following sections describe the various modes the device can be used in and the means of configuring the device. 3.2 USB Interface Configuration The TUSB3410 contains onboard ROM microcode, which enables the MCU to enumerate the device as a USB peripheral. The ROM microcode can also load application code into internal RAM from either external memory via the I2C bus or from the host via the USB. 3.2.1 External Memory Case After reset, the TUSB3410 is disconnected from the USB. Bit 7 (CONT) in the USBCTL register (see Section 5.4) is cleared. The TUSB3410 checks the I2C port for the existence of valid code; if it finds valid code, then it uploads the code from the external memory device into the RAM program space. Once loaded, the TUSB3410 connects to the USB by setting the CONT bit and enumeration and configuration are performed. This is the most likely use of the device. 3.2.2 Host Download Case If the valid code is not found at the I2C port, then the TUSB3410 connects to the USB by setting bit 7 (CONT) in the USBCTL register (see Section 5.4), and then an enumeration and default configuration are performed. The host can download additional microcode into RAM to tailor the application. Then, the MCU causes a disconnect and reconnect by clearing and setting the CONT bit, which causes the TUSB3410 to be re-enumerated with a new configuration. 3.3 USB Data Movement From the USB perspective, the TUSB3410 looks like a USB peripheral device. It uses endpoint 0 as its control endpoint, as do all USB peripherals. It also configures up to three input and three output endpoints, although most applications use one bulk input endpoint for data in, one bulk output endpoint for data out, and one interrupt endpoint for status updates. The USB configuration likely remains the same regardless of the serial port configuration. Most data is moved from the USB side to the UART side and from the UART side to the USB side using on-chip DMA transfers. Some special cases may use programmed I/O under control of the MCU. 3.4 Serial Port Setup The serial port requires a few control registers to be written to configure its operation. This configuration likely remains the same regardless of the data mode used. These registers include the line control register that controls the serial word format and the divisor registers that control the baud rate. These registers are usually controlled by the host application. 3.5 Serial Port Data Modes The serial port can be configured in three different, although similar, data modes: the RS-232 data mode, the RS-485 data mode, and the IrDA data mode. Similar to the USB mode, once configured for a specific application, it is unlikely that the mode would be changed. The different modes affect the timing of the serial input and output or the use of the control signals. However, the basic serial-to-parallel conversion of the receiver and parallel-to-serial conversion of the transmitter remain the same in all modes. Some features are available in all modes, but are only applicable in certain modes. For instance, software flow control via Xoff/Xon characters can be used in all modes, but would usually only be used in RS-232 or IrDA mode because the RS-485 mode is half-duplex communication. Similarly, hardware flow control via RTS/CTS (or DTR/DSR) handshaking is available in RS-232 or IrDA mode. However, this would probably be used only in RS-232 mode, since in IrDA mode only the SIN and SOUT paths are optically coupled. Detailed Controller Description 10 TUSB3410, TUSB3410I SLLS519H—January 2010 3.5.1 RS-232 Data Mode The default mode is called the RS-232 mode and is typically used for full duplex communication on SOUT and SIN. In this mode, the modem control outputs (RTS and DTR) communicate to a modem or are general outputs. The modem control inputs (CTS, DSR, DCD, and RI/CP) communicate to a modem or are general inputs. Alternatively, RTS and CTS (or DTR and DSR) can throttle the data flow on SOUT and SIN to prevent receive FIFO overruns. Finally, software flow control via Xoff/Xon characters can be used for the same purpose. This mode represents the most general-purpose applications, and the other modes are subsets of this mode. 3.5.2 RS-485 Data Mode The RS-485 mode is very similar to the RS-232 mode in that the SOUT and SIN formats remain the same. Since RS-485 is a bus architecture, it is inherently a single duplex communication system. The TUSB3410 in RS-485 mode controls the RTS and DTR signals such that either can enable an RS-485 driver or RS-485 receiver. When in RS-485 mode, the enable signals for transmitting are automatically asserted whenever the DMA is set up for outbound data. The receiver can be left enabled while the driver is enabled to allow an echo if desired, but when receive data is expected, the driver must be disabled. Note that this precludes use of hardware flow control, since this is a half-duplex operation, it would not be effective. Software flow control is supported, but may be of limited value. The RS-485 mode is enabled by setting bit 7 (485E) in the FCRL register (see Section 7.1.4), and bit 1 (RCVE) in the MCR register (see Section 7.1.6) allows the receiver to eavesdrop while in the RS-485 mode. 3.5.3 IrDA Data Mode The IrDA mode encodes SOUT and decodes SIN in the manner prescribed by the IrDA standard, up to 115.2 kbps. Connection to an external IrDA transceiver is required. Communications is usually full duplex. Generally, in an IrDA system, only the SOUT and SIN paths are connected so hardware flow control is usually not an option. Software flow control is supported. The IrDA mode is enabled by setting bit 6 (IREN) in the USBCTL register (see Section 5.4). The IR encoder and decoder circuitry work with the UART to change the serial bit stream into a series of pulses and back again. For every zero bit in the outbound serial stream, the encoder sends a low-to-high-to-low pulse with the duration of 3/16 of a bit frame at the middle of the bit time. For every one bit in the serial stream, the output remains low for the entire bit time. The decoding process consists of receiving the signal from the IrDA receiver and converting it into a series of zeroes and ones. As the converse to the encoder, the decoder converts a pulse to a zero bit and the lack of a pulse to a one bit. Detailed Controller Description SLLS519H—January 2010 TUSB3410, TUSB3410I 11 From UART MUX IR Encoder SOUT/IR_SOUT Terminal 1 0 IR_TX SOUT UART BaudOut Clock IREN (in USBCTL Register) MUX 1 0 SOFTSW (in MODECNFG Register) TXCNTL (in MODECNFG Register) MUX 1 0 CLKOUT CLKOUTEN Terminal (in MODECNFG Register) 3.556 MHz MUX 1 0 CLKSLCT (in MODECNFG Register) To UART Receiver IR Decoder IR_RX SIN/IR_SIN Terminal 3.3 V SOUT SIN Figure 3−1. RS-232 and IR Mode Select Detailed Controller Description 12 TUSB3410, TUSB3410I SLLS519H—January 2010 4 7 1 6 8 3 2 Transceivers DTR RTS DCD DSR CTS SOUT SIN P3.0 P3.1 P3.3 Serial Port GPIO Terminals for Other Onboard Control Function TUSB3410 12 MHz USB-0 DB9 Connector RI/CP P3.4 X1/CLKI X2 DP DM Figure 3−2. USB-to-Serial Implementation (RS-232) 12 MHz USB-0 RS-485 Transceiver RTS DTR SOUT SIN TUSB3410 RS-485 Bus 2-Bit Time 1-Bit Max Receiver is Disabled if RCVE = 0 SOUT DTR RTS X1/CLKI X2 DP DM Figure 3−3. RS-485 Bus Implementation MCU Memory Map SLLS519H—January 2010 TUSB3410, TUSB3410I 13 4 MCU Memory Map Figure 4−1 illustrates the MCU memory map under boot and normal operation. NOTE: The internal 256 bytes of RAM are not shown, since they are assumed to be in the standard 8052 location (0000h to 00FFh). The shaded areas represent the internal ROM/RAM. • When bit 0 (SDW) of the ROMS register is 0 (boot mode) The 10K ROM is mapped to address (0x0000−0x27FF) and is duplicated in location (0x8000−0xA7FF) in code space. The internal 16K RAM is mapped to address range (0x0000−0x3FFF) in data space. Buffers, MMR, and I/O are mapped to address range (0xF800−0xFFFF) in data space. • When bit 0 (SDW) is 1 (normal mode) The 10K ROM is mapped to (0x8000−0xA7FF) in code space. The internal 16K RAM is mapped to address range (0x0000−0x3FFF) in code space. Buffers, MMR, and I/O are mapped to address range (0xF800−0xFFFF) in data space. Normal Mode (SDW = 1) 0000h CODE XDATA 16K Code RAM Read Only 2K Data MMR 10K Boot ROM Boot Mode (SDW = 0) CODE XDATA 10K Boot ROM 2K Data MMR 10K Boot ROM (16K) Read/Write 27FFh 3FFFh 8000h A7FFh F800h FF7Fh FF80h FFFFh Figure 4−1. MCU Memory Map MCU Memory Map 14 TUSB3410, TUSB3410I SLLS519H—January 2010 4.1 Miscellaneous Registers 4.1.1 ROMS: ROM Shadow Configuration Register (Addr:FF90h) This register is used by the MCU to switch from boot mode to normal operation mode (boot mode is set on power-on reset only). In addition, this register provides the device revision number and the ROM/RAM configuration. 7 6 5 4 3 2 1 0 ROA S1 S0 RSVD RSVD RSVD RSVD SDW R/O R/O R/O R/O R/O R/O R/O R/W BIT NAME RESET FUNCTION 0 SDW 0 This bit enables/disables boot ROM. (Shadow the ROM). SDW = 0 When clear, the MCU executes from the 10K boot ROM space. The boot ROM appears in two locations: 0000h and 8000h. The 16K RAM is mapped to XDATA space; therefore, a read/write operation is possible. This bit is set by the MCU after the RAM load is completed. The MCU cannot clear this bit; it is cleared on power-up reset or watchdog time-out reset. SDW = 1 When set by the MCU, the 10K boot ROM maps to location 8000h, and the 16K RAM is mapped to code space, starting at location 0000h. At this point, the MCU executes from RAM, and the write operation is disabled (no write operation is possible in code space). 4−1 RSVD No effect These bits are always read as 0000b. 6−5 S[1:0] No effect Code space size. These bits define the ROM or RAM code-space size (bit 7 (ROA) defines ROM or RAM). These bits are permanently set to 10b, indicating 16K bytes of code space, and are not affected by reset (see Table 4−1). 00 = 4K bytes code space size 01 = 8K bytes code space size 10 = 16K bytes code space size 11 = 32K bytes code space size 7 ROA No effect ROM or RAM version. This bit indicates whether the code space is RAM or ROM based. This bit is permanently set to 1, indicating the code space is RAM, and is not affected by reset (see Table 4−1). ROA = 0 Code space is ROM ROA = 1 Code space is RAM Table 4−1. ROM/RAM Size Definition Table ROMS REGISTER BOOT ROM RAM CODE ROM CODE ROA S1 S0 0 0 0 None None 4K 0 0 1 None None 8K 0 1 0 None None 16K (reserved) 1 1 1 None None 32K (reserved) 1 0 0 10K 4K None 1 0 1 10K 8K None 1† 1† 0† 10K† 16K† None† 1 1 1 10K 32K (reserved) None † This is the hardwired setting. 4.1.2 Boot Operation (MCU Firmware Loading) Since the code space is in RAM (with the exception of the boot ROM), the TUSB3410 firmware must be loaded from an external source. Two sources are available for booting: one from an external serial EEPROM connected to the I2C bus and the other from the host via the USB. On device reset, bit 0 (SDW) in the ROMS register (see Section 4.1.1) and bit 7 (CONT) in the USBCTL register (see Section 5.4) are cleared. This configures the memory space to boot mode (see Table 4−3) and keeps the device disconnected from the host. The first instruction is fetched from location 0000h (which is in the 10K ROM). The 16K RAM is mapped to XDATA space (location 0000h). The MCU executes a read from an external EEPROM and tests whether it contains the code (by testing for boot signature). If it contains the code, then the MCU reads from EEPROM MCU Memory Map SLLS519H—January 2010 TUSB3410, TUSB3410I 15 and writes to the 16K RAM in XDATA space. If it does not contain the code, then the MCU proceeds to boot from the USB. Once the code is loaded, the MCU sets the SDW bit to 1 in the ROMS register. This switches the memory map to normal mode; that is, the 16K RAM is mapped to code space, and the MCU starts executing from location 0000h. Once the switch is done, the MCU sets the CONT bit to 1 in the USBCTL register. This connects the device to the USB and results in normal USB device enumeration. 4.1.3 WDCSR: Watchdog Timer, Control, and Status Register (Addr:FF93h) A watchdog timer (WDT) with 1-ms clock is provided. If this register is not accessed for a period of 128 ms, then the WDT counter resets the MCU (see Figure 5−1). The watchdog timer is enabled by default and can be disabled by writing a pattern of 101010b into the WDD[5:0] bits. The 1-ms clock for the watchdog timer is generated from the SOF pulses. Therefore, in order for the watchdog timer to count, bit 7 (CONT) in the USBCTL register (see Section 5.4) must be set. 7 6 5 4 3 2 1 0 WDD0 WDR WDD5 WDD4 WDD3 WDD2 WDD1 WDT R/W R/C R/W R/W R/W R/W R/W W/O BIT NAME RESET FUNCTION 0 WDT 0 MCU must write a 1 to this bit to prevent the watchdog timer from resetting the MCU. If the MCU does not write a 1 in a period of 128 ms, the watchdog timer resets the device. Writing a 0 has no effect on the watchdog timer. (The watchdog timer is a 7-bit counter using a 1-ms CLK.) This bit is read as 0. 5−1 WDD[5:1] 00000 These bits disable the watchdog timer. For the timer to be disabled these bits must be set to 10101b and bit 7 (WDD0) must also be set to 0. If any other pattern is present, then the watchdog timer is in operation. 6 WDR 0 Watchdog reset indication bit. This bit indicates if the reset occurred due to power-on reset or watchdog timer reset. WDR = 0 A power-up reset occurred WDR = 1 A watchdog time-out reset occurred. To clear this bit, the MCU must write a 1. Writing a 0 has no effect. 7 WDD0 1 This bit is one of the six disable bits for the watchdog timer. This bit must be cleared in order for the watchdog timer to be disabled. 4.2 Buffers + I/O RAM Map The address range from F800h to FFFFh (2K bytes) is reserved for data buffers, setup packet, endpoint descriptors block (EDB), and all I/O. There are 128 locations reserved for memory-mapped registers (MMR). Table 4−2 represents the XDATA space allocation and access restriction for the DMA, USB buffer manager (UBM), and MCU. Table 4−2. XDATA Space DESCRIPTION ADDRESS RANGE UBM ACCESS DMA ACCESS MCU ACCESS Internal MMRs (Memory-Mapped Registers) FFFFh−FF80h No (Only EDB-0) No (only data register and EDB-0) Yes EDB (Endpoint Descriptors Block) FF7Fh−FF08h Only for EDB update Only for EDB update Yes Setup Packet FF07h−FF00h Yes No Yes Input Endpoint-0 Buffer FEFFh−FEF8h Yes Yes Yes Output Endpoint-0 Buffer FEF7h−FEF0h Yes Yes Yes Data Buffers FEEFh−F800h Yes Yes Yes MCU Memory Map 16 TUSB3410, TUSB3410I SLLS519H—January 2010 Table 4−3. Memory-Mapped Registers Summary (XDATA Range = FF80h → FFFFh) ADDRESS REGISTER DESCRIPTION FFFFh FUNADR Function address register FFFEh USBSTA USB status register FFFDh USBMSK USB interrupt mask register FFFCh USBCTL USB control register FFFBh MODECNFG Mode configuration register FFFAh−FFF4h Reserved FFF3h I2CADR I2C-port address register FFF2h I2CDATI I2C-port data input register FFF1h I2CDATO I2C-port data output register FFF0h I2CSTA I2C-port status register FFEFh SERNUM7 Serial number byte 7 register FFEEh SERNUM6 Serial number byte 6 register FFEDh SERNUM5 Serial number byte 5 register FFECh SERNUM4 Serial number byte 4 register FFEBh SERNUM3 Serial number byte 3 register FFEAh SERNUM2 Serial number byte 2 register FFE9h SERNUM1 Serial number byte 1 register FFE8h SERNUM0 Serial number byte 0 register FFE7h−FFE6h Reserved FFE5h DMACSR3 DMA-3: Control and status register FFE4h DMACDR3 DMA-3: Channel definition register FFE3h−FFE2h Reserved FFE1h DMACSR1 DMA-1: Control and status register FFE0h DMACDR1 DMA-1: Channel definition register FFDFh−FFACh Reserved FFABh MASK UART: Interrupt mask register FFAAh XOFF UART: Xoff register FFA9h XON UART: Xon register FFA8h DLH UART: Divisor high-byte register FFA7h DLL UART: Divisor low-byte register FFA6h MSR UART: Modem status register FFA5h LSR UART: Line status register FFA4h MCR UART: Modem control register FFA3h FCRL UART: Flow control register FFA2h LCR UART: Line control registers FFA1h TDR UART: Transmitter data registers FFA0h RDR UART: Receiver data registers FF9Eh PUR_3 GPIO: Pullup register for port 3 MCU Memory Map SLLS519H—January 2010 TUSB3410, TUSB3410I 17 Table 4−3. Memory-Mapped Registers Summary (XDATA Range = FF80h → FFFFh) (Continued) ADDRESS REGISTER DESCRIPTION FF9Dh−FF94h FF93h Reserved WDCSR Watchdog timer control and status register FF92h VECINT Vector interrupt register FF91h Reserved FF90h ROMS ROM shadow configuration register FF8Fh−FF84h Reserved FF83h OEPBCNT_0 Output endpoint_0: Byte count register FF82h OEPCNFG_0 Output endpoint_0: Configuration register FF81h IEPBCNT_0 Input endpoint_0: Byte count register FF80h IEPCNFG_0 Input endpoint_0: Configuration register Table 4−4. EDB Memory Locations ADDRESS REGISTER DESCRIPTION FF7Fh−FF60h Reserved FF5Fh IEPSIZXY_3 Input endpoint_3: X-Y buffer size FF5Eh IEPBCTY_3 Input endpoint_3: Y-byte count FF5Dh IEPBBAY_3 Input endpoint_3: Y-buffer base address FF5Ch − Reserved FF5Bh − Reserved FF5Ah IEPBCTX_3 Input endpoint_3: X-byte count FF59h IEPBBAX Input endpoint_3: X-buffer base address FF58h IEPCNF_3 Input endpoint_3: Configuration FF57h IEPSIZXY_2 Input endpoint_2: X-Y buffer size FF56h IEPBCTY_2 Input endpoint_2: Y-byte count FF55h IEPBBAY_2 Input endpoint_2: Y-buffer base address FF54h − Reserved FF53h − Reserved FF52h IEPBCTX_2 Input endpoint_2: X-byte count FF51h IEPBBAX_2 Input endpoint_2: X-buffer base address FF50h IEPCNF_2 Input endpoint_2: Configuration FF4Fh IEPSIZXY_1 Input endpoint_1: X-Y buffer size FF4Eh IEPBCTY_1 Input endpoint_1: Y-byte count FF4Dh IEPBBAY_1 Input endpoint_1: Y-buffer base address FF4Ch − Reserved FF4Bh − Reserved FF4Ah IEPBCTX_1 Input endpoint_1: X-byte count FF49h IEPBBAX_1 Input endpoint_1: X-buffer base address FF48h IEPCNF_1 Input endpoint_1: Configuration FF47h ↑ Reserved FF20h FF1Fh OEPSIZXY_3 Output endpoint_3: X-Y buffer size FF1Eh OEPBCTY_3 Output endpoint_3: Y-byte count FF1Dh OEPBBAY_3 Output endpoint_3: Y-buffer base address FF1Bh−FF1Ch − Reserved MCU Memory Map 18 TUSB3410, TUSB3410I SLLS519H—January 2010 Table 4−4. EDB Memory Locations (Continued) ADDRESS REGISTER DESCRIPTION FF1Ah OEPBCTX_3 Output endpoint_3: X-byte count FF19h OEPBBAX_3 Output endpoint_3: X-buffer base address FF18h OEPCNF_3 Output endpoint_3: Configuration FF17h OEPSIZXY_2 Output endpoint_2: X-Y buffer size FF16h OEPBCTY_2 Output endpoint_2: Y-byte count FF15h OEPBBAY_2 Output endpoint_2: Y-buffer base address FF14h−FF13h − Reserved FF12h OEPBCTX_2 Output endpoint_2: X-byte count FF11h OEPBBAX_2 Output endpoint_2: X-buffer base address FF10h OEPCNF_2 Output endpoint_2: Configuration FF0Fh OEPSIZXY_1 Output endpoint_1: X-Y buffer size FF0Eh OEPBCTY_1 Output endpoint_1: Y-byte count FF0Dh OEPBBAY_1 Output endpoint_1: Y-buffer base address FF0Ch−FF0Bh − Reserved FF0Ah OEPBCTX_1 Output endpoint_1: X-byte count FF09h OEPBBAX_1 Output endpoint_1: X-buffer base address FF08h OEPCNF_1 Output endpoint_1: Configuration FF07h ↑ (8 bytes) Setup packet block FF00h FEFFh ↑ (8 bytes) Input endpoint_0 buffer FEF8h FEF7h ↑ (8 bytes) Output endpoint_0 buffer FEF0h FEEFh TOPBUFF Top of buffer space ↑ Buffer space F800h STABUFF Start of buffer space 4.3 Endpoint Descriptor Block (EDB−1 to EDB−3) Data transfers between the USB, the MCU, and external devices that are defined by an endpoint descriptor block (EDB). Three input and three output EDBs are provided. With the exception of EDB-0 (I/O endpoint-0), all EDBs are located in SRAM as per Table 4−3. Each EDB contains information describing the X- and Y-buffers. In addition, each EDB provides general status information. Table 4−5 describes the EDB entries for EDB−1 to EDB−3. EDB−0 registers are described in Table 4−6. MCU Memory Map SLLS519H—January 2010 TUSB3410, TUSB3410I 19 Table 4−5. Endpoint Registers and Offsets in RAM (n = 1 to 3) OFFSET ENTRY NAME DESCRIPTION 07 EPSIZXY_n I/O endpoint_n: X/Y-buffer size 06 EPBCTY_n I/O endpoint_n: Y-byte count 05 EPBBAY_n I/O endpoint_n: Y-buffer base address 04 SPARE Not used 03 SPARE Not used 02 EPBCTX_n I/O endpoint_n: X-byte count 01 EPBBAX_n I/O endpoint_n: X-buffer base address 00 EPCNF_n I/O endpoint_n: Configuration Table 4−6. Endpoint Registers Base Addresses BASE ADDRESS DESCRIPTION FF08h Output endpoint 1 FF10h Output endpoint 2 FF18h Output endpoint 3 FF48h Input endpoint 1 FF50h Input endpoint 2 FF58h Input endpoint 3 4.3.1 OEPCNF_n: Output Endpoint Configuration (n = 1 to 3) (Base Addr: FF08h, FF10h, FF18h) 7 6 5 4 3 2 1 0 UBME ISO=0 TOGLE DBUF STALL USBIE RSV RSV R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 1−0 RSV x Reserved = 0 2 USBIE x USB interrupt enable on transaction completion. Set/cleared by the MCU. USBIE = 0 No interrupt on transaction completion USBIE = 1 Interrupt on transaction completion 3 STALL 0 USB stall condition indication. Set/cleared by the MCU. STALL = 0 STALL = 1 No stall USB stall condition. If set by the MCU, then a STALL handshake is initiated and the bit is cleared by the MCU. 4 DBUF x Double-buffer enable. Set/cleared by the MCU. DBUF = 0 Primary buffer only (X-buffer only) DBUF = 1 Toggle bit selects buffer 5 TOGLE x USB toggle bit. This bit reflects the toggle sequence bit of DATA0, DATA1. 6 ISO x ISO = 0 Nonisochronous transfer. This bit must be cleared by the MCU since only nonisochronous transfer is supported. 7 UBME x USB buffer manager (UBM) enable/disable bit. Set/cleared by the MCU. UBME = 0 UBM cannot use this endpoint UBME = 1 UBM can use this endpoint 4.3.2 OEPBBAX_n: Output Endpoint X-Buffer Base Address (n = 1 to 3) (Offset 1) 7 6 5 4 3 2 1 0 A10 A9 A8 A7 A6 A5 A4 A3 R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 7−0 A[10:3] x A[10:3] of X-buffer base address (padded with 3 LSBs of zeros for a total of 11 bits). This value is set by the MCU. The UBM or DMA uses this value as the start-address of a given transaction. Note that the UBM or DMA does not change this value at the end of a transaction. MCU Memory Map 20 TUSB3410, TUSB3410I SLLS519H—January 2010 4.3.3 OEPBCTX_n: Output Endpoint X Byte Count (n = 1 to 3) (Offset 2) 7 6 5 4 3 2 1 0 NAK C6 C5 C4 C3 C2 C1 C0 R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 6−0 C[6:0] x X-buffer byte count: X000.0000b Count = 0 X000.0001b Count = 1 byte : : X011.1111b Count = 63 bytes X100.0000b Count = 64 bytes Any value ≥ 100.0001b may result in unpredictable results. 7 NAK x NAK = 0 NAK = 1 No valid data in buffer. Ready for host OUT Buffer contains a valid packet from host (gives NAK response to Host OUT request) 4.3.4 OEPBBAY_n: Output Endpoint Y-Buffer Base Address (n = 1 to 3) (Offset 5) 7 6 5 4 3 2 1 0 A10 A9 A8 A7 A6 A5 A4 A3 R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 7−0 A[10:3] x A[10:3] of Y-buffer base address (padded with 3 LSBs of zeros for a total of 11 bits). This value is set by the MCU. The UBM or DMA uses this value as the start-address of a given transaction. Furthermore, UBM or DMA does not change this value at the end of a transaction. 4.3.5 OEPBCTY_n: Output Endpoint Y-Byte Count (n = 1 to 3) (Offset 6) 7 6 5 4 3 2 1 0 NAK C6 C5 C4 C3 C2 C1 C0 R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 6−0 C[6:0] x Y-byte count: X000.0000b Count = 0 X000.0001b Count = 1 byte : : X011.1111b Count = 63 bytes X100.0000b Count = 64 bytes Any value ≥ 100.0001b may result in unpredictable results. 7 NAK x NAK = 0 NAK = 1 No valid data in buffer. Ready for host OUT Buffer contains a valid packet from host (gives NAK response to Host OUT request) MCU Memory Map SLLS519H—January 2010 TUSB3410, TUSB3410I 21 4.3.6 OEPSIZXY_n: Output Endpoint X-/Y-Buffer Size (n = 1 to 3) (Offset 7) 7 6 5 4 3 2 1 0 RSV S6 S5 S4 S3 S2 S1 S0 R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 6−0 S[6:0] x X- and Y-buffer size: 0000.0000b Size = 0 0000.0001b Size = 1 byte : : 0011.1111b Size = 63 bytes 0100.0000b Size = 64 bytes Any value ≥ 100.0001b may result in unpredictable results. 7 RSV x Reserved = 0 4.3.7 IEPCNF_n: Input Endpoint Configuration (n = 1 to 3) (Base Addr: FF48h, FF50h, FF58h) 7 6 5 4 3 2 1 0 UBME ISO=0 TOGLE DBUF STALL USBIE RSV RSV R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 1−0 RSV x Reserved = 0 2 USBIE x USB interrupt enable on transaction completion USBIE = 0 No interrupt on transaction completion USBIE = 1 Interrupt on transaction completion 3 STALL 0 USB stall condition indication. Set by the UBM but can be set/cleared by the MCU STALL = 0 No stall STALL = 1 USB stall condition. If set by the MCU, then a STALL handshake is initiated and the bit is cleared automatically. 4 DBUF x Double buffer enable DBUF = 0 Primary buffer only (X-buffer only) DBUF = 1 Toggle bit selects buffer 5 TOGLE x USB toggle bit. This bit reflects the toggle sequence bit of DATA0, DATA1 6 ISO x ISO = 0 Nonisochronous transfer. This bit must be cleared by the MCU since only nonisochronous transfer is supported 7 UBME x UBM enable/disable bit. Set/cleared by the MCU UBME = 0 UBM cannot use this endpoint UBME = 1 UBM can use this endpoint 4.3.8 IEPBBAX_n: Input Endpoint X-Buffer Base Address (n = 1 to 3) (Offset 1) 7 6 5 4 3 2 1 0 A10 A9 A8 A7 A6 A5 A4 A3 R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 7−0 A[10:3] x A[10:3] of X-buffer base address (padded with 3 LSBs of zeros for a total of 11 bits). This value is set by the MCU. The UBM or DMA uses this value as the start-address of a given transaction, but note that the UBM or DMA does not change this value at the end of a transaction. MCU Memory Map 22 TUSB3410, TUSB3410I SLLS519H—January 2010 4.3.9 IEPBCTX_n: Input Endpoint X-Byte Count (n = 1 to 3) (Offset 2) 7 6 5 4 3 2 1 0 NAK C6 C5 C4 C3 C2 C1 C0 R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 6−0 C[6:0] x X-Buffer byte count: X000.0000b Count = 0 X000.0001b Count = 1 byte : : X011.1111b Count = 63 bytes X100.0000b Count = 64 bytes Any value ≥ 100.0001b may result in unpredictable results. 7 NAK x NAK = 0 NAK = 1 Buffer contains a valid packet for host-IN transaction Buffer is empty (gives NAK response to host-IN request) 4.3.10 IEPBBAY_n: Input Endpoint Y-Buffer Base Address (n = 1 to 3) (Offset 5) 7 6 5 4 3 2 1 0 A10 A9 A8 A7 A6 A5 A4 A3 R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 7−0 A[10:3] x A[10:3] of Y-buffer base address (padded with 3 LSBs of zeros for a total of 11 bits). This value is set by the MCU. The UBM or DMA uses this value as the start-address of a given transaction, but note that the UBM or DMA does not change this value at the end of a transaction. 4.3.11 IEPBCTY_n: Input Endpoint Y-Byte Count (n = 1 to 3) (Offset 6) 7 6 5 4 3 2 1 0 NAK C6 C5 C4 C3 C2 C1 C0 R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 6−0 C[6:0] x Y-Byte count: X000.0000b Count = 0 X000.0001b Count = 1 byte : : X011.1111b Count = 63 bytes X100.0000b Count = 64 bytes Any value ≥ 100.0001b may result in unpredictable results. 7 NAK x NAK = 0 NAK = 1 Buffer contains a valid packet for host-IN transaction Buffer is empty (gives NAK response to host-IN request) MCU Memory Map SLLS519H—January 2010 TUSB3410, TUSB3410I 23 4.3.12 IEPSIZXY_n: Input Endpoint X-/Y-Buffer Size (n = 1 to 3) (Offset 7) 7 6 5 4 3 2 1 0 RSV S6 S5 S4 S3 S2 S1 S0 R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 6−0 S[6:0] x X- and Y-buffer size: 0000.0000b Size = 0 0000.0001b Size = 1 byte : : 0011.1111b Size = 63 bytes 0100.0000b Size = 64 bytes Any value ≥ 100.0001b may result in unpredictable results. 7 RSV x Reserved = 0 4.4 Endpoint-0 Descriptor Registers Unlike registers EDB-1 to EDB-3, which are defined as memory entries in SRAM, endpoint-0 is described by a set of four registers (two for output and two for input). The registers and their respective addresses, used for EDB-0 description, are defined in Table 4−7. EDB-0 has no buffer base-address register, since these addresses are hardwired to FEF8h and FEF0h. Note that the bit positions have been preserved to provide consistency with EDB-n (n = 1 to 3). Table 4−7. Input/Output EDB-0 Registers ADDRESS REGISTER NAME DESCRIPTION BUFFER BASE ADDRESS FF83h FF82h OEPBCNT_0 OEPCNFG_0 Output endpoint_0: Byte count register Output endpoint_0: Configuration register FEF0h FF81h FF80h IEPBCNT_0 IEPCNFG_0 Input endpoint_0: Byte count register Input endpoint_0: Configuration register FEF8h 4.4.1 IEPCNFG_0: Input Endpoint-0 Configuration Register (Addr:FF80h) 7 6 5 4 3 2 1 0 UBME RSV TOGLE RSV STALL USBIE RSV RSV R/W R/O R/O R/O R/W R/W R/O R/O BIT NAME RESET FUNCTION 1−0 RSV 0 Reserved = 0 2 USBIE 0 USB interrupt enable on transaction completion. Set/cleared by the MCU. USBIE = 0 No interrupt USBIE = 1 Interrupt on transaction completion 3 STALL 0 USB stall condition indication. Set/cleared by the MCU STALL = 0 No stall STALL = 1 USB stall condition. If set by the MCU, then a STALL handshake is initiated and the bit is cleared automatically by the next setup transaction. 4 RSV 0 Reserved = 0 5 TOGLE 0 USB toggle bit. This bit reflects the toggle sequence bit of DATA0, DATA1. 6 RSV 0 Reserved = 0 7 UBME 0 UBM enable/disable bit. Set/cleared by the MCU UBME = 0 UBM cannot use this endpoint UBME = 1 UBM can use this endpoint MCU Memory Map 24 TUSB3410, TUSB3410I SLLS519H—January 2010 4.4.2 IEPBCNT_0: Input Endpoint-0 Byte Count Register (Addr:FF81h) 7 6 5 4 3 2 1 0 NAK RSV RSV RSV C3 C2 C1 C0 R/W R/O R/O R/O R/W R/W R/W R/W BIT NAME RESET FUNCTION 3−0 C[3:0] 0h Byte count: 0000b Count = 0 : : 0111b Count = 7 1000b Count = 8 1001b to 1111b are reserved. (If used, they default to 8) 6−4 RSV 0 Reserved = 0 7 NAK 1 NAK = 0 NAK = 1 Buffer contains a valid packet for host-IN transaction Buffer is empty (gives NAK response to host-IN request) 4.4.3 OEPCNFG_0: Output Endpoint-0 Configuration Register (Addr:FF82h) 7 6 5 4 3 2 1 0 UBME RSV TOGLE RSV STALL USBIE RSV RSV R/W R/O R/O R/O R/W R/W R/O R/O BIT NAME RESET FUNCTION 1−0 RSV 0 Reserved = 0 2 USBIE 0 USB interrupt enable on transaction completion. Set/cleared by the MCU. USBIE = 0 No interrupt on transaction completion USBIE = 1 Interrupt on transaction completion 3 STALL 0 USB stall condition indication. Set/cleared by the MCU STALL = 0 No stall STALL = 1 USB stall condition. If set by the MCU, a STALL handshake is initiated and the bit is cleared automatically. 4 RSV 0 Reserved = 0 5 TOGLE 0 USB \toggle bit. This bit reflects the toggle sequence bit of DATA0, DATA1. 6 RSV 0 Reserved = 0 7 UBME 0 UBM enable/disable bit. Set/cleared by the MCU UBME = 0 UBM cannot use this endpoint UBME = 1 UBM can use this endpoint 4.4.4 OEPBCNT_0: Output Endpoint-0 Byte Count Register (Addr:FF83h) 7 6 5 4 3 2 1 0 NAK RSV RSV RSV C3 C2 C1 C0 R/W R/O R/O R/O R/O R/O R/O R/O BIT NAME RESET FUNCTION 3−0 C[3:0] 0h Byte count: 0000b Count = 0 : : 0111b Count = 7 1000b Count = 8 1001b to 1111b are reserved 6−4 RSV 0 Reserved = 0 7 NAK 1 NAK =0 NAK = 1 No valid data in buffer. Ready for host OUT Buffer contains a valid packet from host (gives NAK response to host-OUT request). USB Registers SLLS519H—January 2010 TUSB3410, TUSB3410I 25 5 USB Registers 5.1 FUNADR: Function Address Register (Addr:FFFFh) This register contains the device function address. 7 6 5 4 3 2 1 0 RSV FA6 FA5 FA4 FA3 FA2 FA1 FA0 R/O R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 6−0 FA[6:0] 0 These bits define the current device address assigned to the function. The MCU writes a value to this register because of the SET-ADDRESS host command. 7 RSV 0 Reserved = 0 5.2 USBSTA: USB Status Register (Addr:FFFEh) All bits in this register are set by the hardware and are cleared by the MCU when writing a 1 to the proper bit location (writing a 0 has no effect). In addition, each bit can generate an interrupt if its corresponding mask bit is set (R/C notation indicates read and clear only by the MCU). 7 6 5 4 3 2 1 0 RSTR SUSR RESR RSV URRI SETUP WAKEUP STPOW R/C R/C R/C R/O R/C R/C R/C R/C BIT NAME RESET FUNCTION 0 STPOW 0 SETUP overwrite bit. Set by hardware when a setup packet is received while there is already a packet in the setup buffer. STPOW = 0 STPOW = 1 MCU can clear this bit by writing a 1 (writing 0 has no effect). SETUP overwrite 1 WAKEUP 0 Remote wakeup bit WAKEUP = 0 WAKEUP = 1 The MCU can clear this bit by writing a 1 (writing 0 has no effect). Remote wakeup request from WAKEUP terminal 2 SETUP 0 SETUP transaction received bit. As long as SETUP is 1, IN and OUT on endpoint-0 are NAKed, regardless of their real NAK bits value. SETUP = 0 SETUP = 1 MCU can clear this bit by writing a 1 (writing 0 has no effect). SETUP transaction received 3 URRI 0 UART RI (ring indicate) status bit – a rising edge causes this bit to be set. URRI = 0 URRI = 1 The MCU can clear this bit by writing a 1 (writing 0 has no effect). Ring detected, which is used to wake the chip up (bring it out of suspend). 4 RSV 0 Reserved 5 RESR 0 Function resume request bit RESR = 0 RESR = 1 The MCU can clear this bit by writing a 1 (writing 0 has no effect). Function resume is detected 6 SUSR 0 Function suspended request bit. This bit is set in response to a global or selective suspend condition. SUSR = 0 SUSR = 1 The MCU can clear this bit by writing a 1 (writing 0 has no effect). Function suspend is detected 7 RSTR 0 Function reset request bit. This bit is set in response to the USB host initiating a port reset. This bit is not affected by the USB function reset. RSTR = 0 RSTR = 1 The MCU can clear this bit by writing a 1 (writing 0 has no effect). Function reset is detected USB Registers 26 TUSB3410, TUSB3410I SLLS519H—January 2010 5.3 USBMSK: USB Interrupt Mask Register (Addr:FFFDh) 7 6 5 4 3 2 1 0 RSTR SUSR RESR RSV URRI SETUP WAKEUP STPOW R/W R/W R/W R/O R/W R/W R/W R/W BIT NAME RESET FUNCTION 0 STPOW 0 SETUP overwrite interrupt-enable bit STPOW = 0 STPOW = 1 STPOW interrupt disabled STPOW interrupt enabled 1 WAKEUP 0 Remote wakeup interrupt enable bit WAKEUP = 0 WAKEUP = 1 WAKEUP interrupt disable WAKEUP interrupt enable 2 SETUP 0 SETUP interrupt enable bit SETUP = 0 SETUP = 1 SETUP interrupt disabled SETUP interrupt enabled 3 URRI 0 UART RI interrupt enable bit URRI = 0 URRI = 1 UART RI interrupt disable UART RI interrupt enable 4 RSV 0 Reserved 5 RESR 0 Function resume interrupt enable bit RESR = 0 RESR = 1 Function resume interrupt disabled Function resume interrupt enabled 6 SUSR 0 Function suspend interrupt enable SUSR = 0 SUSR = 1 Function suspend interrupt disabled Function suspend interrupt enabled 7 RSTR 0 Function reset interrupt bit. This bit is not affected by USB function reset. RSTR = 0 RSTR = 1 Function reset interrupt disabled Function reset interrupt enabled USB Registers SLLS519H—January 2010 TUSB3410, TUSB3410I 27 5.4 USBCTL: USB Control Register (Addr:FFFCh) Unlike the rest of the registers, this register is cleared by the power-up reset signal only. The USB reset cannot reset this register (see Figure 5−1). 7 6 5 4 3 2 1 0 CONT IREN RWUP FRSTE RSV RSV SIR DIR R/W R/W R/C R/W R/W R/W R/W R/W BIT NAME RESET 0 DIR 0 As a response to a setup packet, the MCU decodes the request and sets/clears this bit to reflect the data transfer direction. DIR = 0 DIR = 1 USB data-OUT transaction (from host to TUSB3410) USB data-IN transaction (from TUSB3410 to host) 1 SIR 0 SETUP interrupt-status bit. This bit is controlled by the MCU to indicate to the hardware when the SETUP interrupt is being serviced. SIR = 0 SIR = 1 SETUP interrupt is not served. The MCU clears this bit before exiting the SETUP interrupt routine. SETUP interrupt is in progress. The MCU sets this bit when servicing the SETUP interrupt. 2 RSV 0 Reserved = 0 3 RSV 0 This bit must always be written as 0. 4 FRSTE 1 Function reset-connection bit. This bit connects/disconnects the USB function reset to/from the MCU reset. FRSTE = 0 FRSTE = 1 Function reset is not connected to MCU reset Function reset is connected to MCU reset 5 RWUP 0 Device remote wakeup request. This bit is set by the MCU and is cleared automatically. RWUP = 0 RWUP = 1 Writing a 0 to this bit has no effect When MCU writes a 1, a remote-wakeup pulse is generated. 6 IREN 0 IR mode enable. This bit is set and cleared by firmware. IREN = 0 IREN = 1 IR encoder/decoder is disabled, UART mode is selected IR encoder/decoder is enabled, UART mode is deselected 7 CONT 0 Connect/disconnect bit CONT = 0 CONT = 1 Upstream port is disconnected. Pullup disabled. Upstream port is connected. Pullup enabled. 5.5 MODECNFG: Mode Configuration Register (Addr:FFFBh) This register is cleared by the power-up reset signal only. The USB reset cannot reset this register. 7 6 5 4 3 2 1 0 RSV RSV RSV RSV CLKSLCT CLKOUTEN SOFTSW TXCNTL R/O R/O R/O R/O R/W R/W R/W R/W BIT NAME RESET FUNCTION 0 TXCNTL 0 Transmit output control: Hardware or firmware switching select for 3-state serial output buffer. TXCNTL = 0 TXCNTL = 1 Hardware automatic switching is selected Firmware toggle switching is selected 1 SOFTSW 0 Soft switch: Firmware controllable 3-state output buffer enable for serial output terminal. SOFTSW = 0 SOFTSW = 1 Serial output buffer is enabled Serial output buffer is disabled 2 CLKOUTEN 0 Clock output enable: Enables/disables the clock output at CLKOUT terminal. CLKOUTEN = 0 CLKOUTEN = 1 Clock output is disabled. Device drives low at CLKOUT terminal. Clock output is enabled 3 CLKSLCT 0 Clock output source select: Selects between 3.556-MHz fixed clock or UART baud out clock as output clock source. CLKSLCT = 0 CLKSLCT = 1 UART baud out clock is selected as clock output Fixed 3.556-MHz free running clock is selected as clock output 4−7 RSV 0 Reserved USB Registers 28 TUSB3410, TUSB3410I SLLS519H—January 2010 Clock Output Control Bit 2 (CLKOUTEN) in the MODECNFG register enables or disables the clock output at the CLKOUT terminal of the TUSB3410. The power up default of CLKOUT is disabled. Firmware can write a 1 to enable the clock output if needed. Bit 3 (CLKSLCT) in the MODECNFG register selects the output clock source from either a fixed 3.556-MHz free-running clock or the UART BaudOut clock. 5.6 Vendor ID/Product ID USB−IF and Microsoft WHQL certification requires that end equipment makers use their own unique vendor ID and product ID for each product (model). OEMs cannot use silicon vendor’s (for instance, TI’s default) VID/PID in their end products. A unique VID/PID combination will avoid potential driver conflicts and enable logo certification. See www.usb.org for more information. 5.7 SERNUM7: Device Serial Number Register (Byte 7) (Addr:FFEFh) Each TUSB3410 device has a unique 64-bit serial die id number, which is generated during manufacturing. The die id is incremented sequentially, however there is no assurance that numbers will not be skipped. The device serial number registers mirror this unique 64-bit serial die id value. After power-up reset, this read-only register (SERNUM7) contains the most significant byte (byte 7) of the complete 64-bit device serial number. This register cannot be reset. 7 6 5 4 3 2 1 0 D63 D62 D61 D60 D59 D58 D57 D56 R/O R/O R/O R/O R/O R/O R/O R/O BIT NAME RESET FUNCTION 7−0 D[63:56] Device serial number byte 7 value Device serial number byte 7 value Procedure to load device serial number value in shared RAM: • After power-up reset, the boot code copies the predefined USB descriptors to shared RAM. As a result, the default serial number hard-coded in the boot code (0x00 hex) is copied to the shared RAM data space. • The boot code checks to see if an EEPROM is present on the I2C port. If an EEPROM is present and contains a valid device serial number as part of the USB device descriptor information stored in EEPROM, then the boot code overwrites the serial number value stored in shared RAM with the one found in EEPROM. Otherwise, the device serial number value stored in shared RAM remains unchanged. If firmware is stored in the EEPROM, then it is executed. This firmware can read the SERNUM7 through SERNUM0 registers and overwrite the serial number stored in RAM or store a custom number in RAM. • In summary, the serial number value in external EEPROM has the highest priority to be loaded into shared RAM data space. The serial number value stored in shared RAM is used as part of the valid device descriptor information during normal operation. USB Registers SLLS519H—January 2010 TUSB3410, TUSB3410I 29 5.8 SERNUM6: Device Serial Number Register (Byte 6) (Addr:FFEEh) The device serial number registers mirror the unique 64-bit die id value. After power-up reset, this read-only register (SERNUM6) contains byte 6 of the complete 64-bit device serial number. This register cannot be reset. 7 6 5 4 3 2 1 0 D55 D54 D53 D52 D51 D50 D49 D48 R/O R/O R/O R/O R/O R/O R/O R/O BIT NAME RESET FUNCTION 7−0 D[55:48] Device serial number byte 6 value Device serial number byte 6 value NOTE: See the procedure described in the SERNUM7 register (see Section 5.7) to load the device serial number into shared RAM. 5.9 SERNUM5: Device Serial Number Register (Byte 5) (Addr:FFEDh) The device serial number registers mirror the unique 64-bit die id value. After power-up reset, this read-only register (SERNUM5) contains byte 5 of the complete 64-bit device serial number. This register cannot be reset. 7 6 5 4 3 2 1 0 D47 D46 D45 D44 D43 D42 D41 D40 R/O R/O R/O R/O R/O R/O R/O R/O BIT NAME RESET FUNCTION 7−0 D[47:40] Device serial number byte 5 value Device serial number byte 5 value NOTE: See the procedure described in the SERNUM7 register (see Section 5.7) to load the device serial number into shared RAM. 5.10 SERNUM4: Device Serial Number Register (Byte 4) (Addr:FFECh) The device serial number registers mirror the unique 64-bit die id value. After power-up reset, this read-only register (SERNUM4) contains byte 4 of the complete 64-bit device serial number. This register cannot be reset. 7 6 5 4 3 2 1 0 D39 D38 D37 D36 D35 D34 D33 D32 R/O R/O R/O R/O R/O R/O R/O R/O BIT NAME RESET FUNCTION 7−0 D[39:32] Device serial number byte 4 value Device serial number byte 4 value NOTE: See the procedure described in the SERNUM7 register (see Section 5.7) to load the device serial number into shared RAM. 5.11 SERNUM3: Device Serial Number Register (Byte 3) (Addr:FFEBh) The device serial number registers mirror the unique 64-bit die id value. After power-up reset, this read-only register (SERNUM3) contains byte 3 of the complete 64-bit device serial number. This register cannot be reset. 7 6 5 4 3 2 1 0 D31 D30 D29 D28 D27 D26 D25 D24 R/O R/O R/O R/O R/O R/O R/O R/O BIT NAME RESET FUNCTION 7−0 D[31:24] Device serial number byte 3 value Device serial number byte 3 value NOTE: See the procedure described in the SERNUM7 register (see Section 5.7) to load the device serial number into shared RAM. USB Registers 30 TUSB3410, TUSB3410I SLLS519H—January 2010 5.12 SERNUM2: Device Serial Number Register (Byte 2) (Addr:FFEAh) The device serial number registers mirror the unique 64-bit die id value. After power-up reset, this read-only register (SERNUM2) contains byte 2 of the complete 64-bit device serial number. This register cannot be reset. 7 6 5 4 3 2 1 0 D23 D22 D21 D20 D19 D18 D17 D16 R/O R/O R/O R/O R/O R/O R/O R/O BIT NAME RESET FUNCTION 7−0 D[23:16] 0 Device serial number byte 2 value NOTE: See the procedure described in the SERNUM7 register (see Section 5.7) to load the device serial number into shared RAM. 5.13 SERNUM1: Device Serial Number Register (Byte 1) (Addr:FFE9h) The device serial number registers mirror the unique 64-bit die id value. After power-up reset, this read-only register (SERNUM1) contains byte 1 of the complete 64-bit device serial number. This register cannot be reset. 7 6 5 4 3 2 1 0 D15 D14 D13 D12 D11 D10 D9 D8 R/O R/O R/O R/O R/O R/O R/O R/O BIT NAME RESET FUNCTION 7−0 D[15:8] Device serial number byte 1 value Device serial number byte 1 value NOTE: See the procedure described in the SERNUM7 register (see Section 5.7) to load the device serial number into shared RAM. 5.14 SERNUM0: Device Serial Number Register (Byte 0) (Addr:FFE8h) The device serial number registers mirror the unique 64-bit die id value. After power-up reset, this read-only register (SERNUM0) contains byte 0 of the complete 64-bit device serial number. This register cannot be reset. 7 6 5 4 3 2 1 0 D7 D6 D5 D4 D3 D2 D1 D0 R/O R/O R/O R/O R/O R/O R/O R/O BIT NAME RESET FUNCTION 7−0 D[7:0] Device serial number byte 0 value Device serial number byte 0 value NOTE: See the procedure described in the SERNUM7 register (see Section 5.7) to load the device serial number into shared RAM. USB Registers SLLS519H—January 2010 TUSB3410, TUSB3410I 31 5.15 Function Reset And Power-Up Reset Interconnect Figure 5−1 represents the logical connection of the USB-function reset (USBR) signal and the power-up reset (RESET) terminal. The internal RESET signal is generated from the RESET terminal (PURS signal) or from the USB reset (USBR signal). The USBR can be enabled or disabled by bit 4 (FRSTE) in the USBCTL register (see Section 5.4) (on power up, FRSTE = 0). The internal RESET is used to reset all registers and logic, with the exception of the USBCTL and MODECNFG registers which are cleared by the PURS signal only. USBCTL Register MODECNFG Register PURS USBR RESET MCU FRSTE USB Function Reset To Internal MMRs RESET G2 WDD[5:0] WDT Reset Figure 5−1. Reset Diagram 5.16 Pullup Resistor Connect/Disconnect The TUSB3410 enumeration can be activated by the MCU (there is no need to disconnect the cable physically). Figure 5−2 represents the implementation of the TUSB3410 connect and disconnect from a USB up-stream port. When bit 7 (CONT) is 1 in the USBCTL register (see Section 5.4), the CMOS driver sources VDD to the pullup resistor (PUR terminal) presenting a normal connect condition to the USB host. When CONT is 0, the PUR terminal is driven low. In this state, the 1.5-kΩ resistor is connected to GND, resulting in the device disconnection state. The PUR driver is a CMOS driver that can provide (VDD − 0.1 V) minimum at 8-mA source current. HOST D+ D− 15 kΩ TUSB3410 1.5 kΩ CMOS PUR CONT Bit DP0 DM0 Figure 5−2. Pullup Resistor Connect/Disconnect Circuit USB Registers 32 TUSB3410, TUSB3410I SLLS519H—January 2010 DMA Controller SLLS519H—January 2010 TUSB3410, TUSB3410I 33 6 DMA Controller Table 6−1 outlines the DMA channels and their associated transfer directions. Two channels are provided for data transfer between the host and the UART. Table 6−1. DMA Controller Registers DMA CHANNEL TRANSFER DIRECTION COMMENTS DMA−1 Host to UART DMA writes to UART TDR register DMA−3 UART to host DMA reads from UART RDR register 6.1 DMA Controller Registers Each DMA channel can point to one of three EDBs (EDB-1 to EDB-3) and transfer data to/from the UART channel. The DMA can move data from a given out-point buffer (defined by the EDB) to the destination port. Similarly, the DMA can move data from a port to a given input-endpoint buffer. At the end of a block transfer, the DMA updates the byte count and bit 7 (NAK) in the EDB (see Section 4.3) when receiving. In addition, it uses bit 4 (XY) in the DMACDR register to switch automatically, without interrupting the MCU (the XY bit toggle is performed by the UBM). The DMA stops only when a time-out or error condition occurs. When the DMA is transmitting (from the X/Y buffer) it continues alternating between X/Y buffers until it detects a byte count smaller than the buffer size (buffer size is typically 64 bytes). At that point it completes the transfer and stops. DMA Controller 34 TUSB3410, TUSB3410I SLLS519H—January 2010 6.1.1 DMACDR1: DMA Channel Definition Register (UART Transmit Channel) (Addr:FFE0h) These registers define the EDB number that the DMA uses for data transfer to the UARTS. In addition, these registers define the data transfer direction and selects X or Y as the transaction buffer. 7 6 5 4 3 2 1 0 EN INE CNT XY T/R E2 E1 E0 R/W R/W R/W R/W R/O R/W R/W R/W BIT NAME RESET FUNCTION 2−0 E[2:0] 0 Endpoint descriptor pointer. This field points to a set of EDB registers that is to be used for a given transfer. 3 T/R 0 This bit is always 1, indicating that the DMA data transfer is from SRAM to the UART TDR register (see Section 7.1.2). (The MCU cannot change this bit.) 4 XY 0 X/Y buffer select bit. XY = 0 XY = 1 Next buffer to transmit/receive is the X buffer Next buffer to transmit/receive is the Y buffer 5 CNT 0 DMA continuous transfer control bit. This bit defines the mode of the DMA transfer. This bit must always be written as 1. In this mode, the DMA and UBM alternate between the X- and Y-buffers. The DMA sets bit 4 (XY) and the UBM uses it for the transfer. The DMA alternates between the X-/Y-buffers and continues transmitting (from X-/Y-buffer) without MCU intervention. The DMA terminates, and interrupts the MCU, under the following conditions: 1. When the UBM byte count < buffer size (in EDB), the DMA transfers the partial packet and interrupt the MCU on completion. 2. Transaction timer expires. The DMA interrupts the MCU. 6 INE 0 DMA Interrupt enable/disable bit. This bit enables/disables the interrupt on transfer completion. INE = 0 Interrupt is disabled. In addition, bit 0 (PPKT) in the DMACSR1 register (see Section 6.1.2) does not clear bit 7 (EN) and the DMAC is not disabled. INE = 1 Enables the EN interrupt. When this bit is set, the DMA interrupts the MCU on a 1 to 0 transition of the bit 7 (EN). (When transfer is completed, EN = 0.) 7 EN 0 DMA channel enable bit. The MCU sets this bit to start the DMA transfer. When the transfer completes, or when it is terminated due to error, this bit is cleared. The 1 to 0 transition of this bit generates an interrupt (if the interrupt is enabled). EN = 0 DMA is halted. The DMA is halted when the byte count reaches zero or transaction time-out occurs. When halted, the DMA updates the byte count, sets NAK = 0 in the output endpoint byte count register, and interrupts the MCU (if bit 6 (INE) = 1). EN = 1 Setting this bit starts the DMA transfer. 6.1.2 DMACSR1: DMA Control And Status Register (UART Transmit Channel) (Addr:FFE1h) This register defines the transaction time-out value. In addition, it contains a completion code that reports any errors or a time-out condition. 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 PPKT R R R R R R R R/C BIT NAME RESET FUNCTION 0 PPKT 0 Partial packet condition bit. This bit is set by the DMA and cleared by the MCU. PPKT = 0 No partial-packet condition PPKT = 1 Partial-packet condition detected. When INE = 0, this bit does not clear bit 7 (EN) in the DMACDR1 register; therefore, the DMAC stays enabled, ready for the next transaction. Clears when MCU writes a 1. Writing a 0 has no effect. 7−1 − 0 These bits are read-only and return 0s when read. DMA Controller SLLS519H—January 2010 TUSB3410, TUSB3410I 35 6.1.3 DMACDR3: DMA Channel Definition Register (UART Receive Channel) (Addr:FFE4h) These registers define the EDB number that the DMA uses for data transfer from the UARTS. In addition, these registers define the data transfer direction and selects X or Y as the transaction buffer. 7 6 5 4 3 2 1 0 EN INE CNT XY T/R E2 E1 E0 R/W R/W R/W R/W R/O R/W R/W R/W BIT NAME RESET FUNCTION 2−0 E[2:0] 0 Endpoint descriptor pointer. This field points to a set of EDB registers that are used for a given transfer. 3 T/R 1 This bit is always read as 1. This bit must be written as 0 to update the X/Y buffer bit (bit 4 in this register) which must only be performed in burst mode. 4 XY 0 X/Y buffer select bit. XY = 0 XY = 1 Next buffer to transmit/receive is X Next buffer to transmit/receive is Y 5 CNT 0 DMA continuous transfer control bit. This bit defines the mode of the DMA transfer. This bit must always be written as 1. In this mode, the DMA and UBM alternate between the X- and Y-buffers. The UBM sets bit 4 (XY) and the DMA uses it for the transfer. The DMA alternates between the X-/Y-buffers and continues receiving (to X-/Y-buffer) without MCU intervention. The DMA terminates the transfer and interrupts the MCU, under the following conditions: 1. Transaction time-out expired: DMA updates EDB and interrupts the MCU. UBM transfers the partial packet to the host. 2. UART receiver error condition: DMA updates EDB and does not interrupt the MCU. UBM transfers the partial packet to the host. 6 INE 0 DMA interrupt enable/disable bit. This bit enables/disables the interrupt on transfer completion. INE = 0 Interrupt is disabled. In addition, bit 0 (OVRUN) and bit 1 (TXFT) in the DMACSR3 register (see Section 6.1.4) do not clear bit 7 (EN) and the DMAC is not disabled. INE = 1 Enables the EN interrupt. When this bit is set, the DMA interrupts the MCU on a 1-to-0 transition of bit 7 (EN). (When transfer is completed, EN = 0). 7 EN 0 DMA channel enable bit. The MCU sets this bit to start the DMA transfer. When transfer completes, or when terminated due to error, this bit is cleared. The 1-to-0 transition of this bit generates an interrupt (if the interrupt is enabled). EN = 0 DMA is halted. The DMA is halted when transaction time-out occurs, or under a UART receiver-error condition. When halted, the DMA updates the byte count and sets NAK = 0 in the input endpoint byte count register. If the termination is due to transaction time-out, then the DMA generates an interrupt. However, if the termination is due to a UART error condition, then the DMA does not generate an interrupt. (The UART generates the interrupt.) EN = 1 Setting this bit starts the DMA transfer. DMA Controller 36 TUSB3410, TUSB3410I SLLS519H—January 2010 6.1.4 DMACSR3: DMA Control And Status Register (UART Receive Channel) (Addr:FFE5h) This register defines the transaction time-out value. In addition, it contains a completion code that reports any errors or a time-out condition. 7 6 5 4 3 2 1 0 TEN C4 C3 C2 C1 C0 TXFT OVRUN R/W R/W R/W R/W R/W R/W R/C R/C BIT NAME RESET FUNCTION 0 OVRUN 0 Overrun condition bit. This bit is set by DMA and cleared by the MCU (see Table 6−2) OVRUN = 0 No overrun condition OVRUN = 1 Overrun condition detected. When IEN = 0, this bit does not clear bit 7 (EN) in the DMACDR register; therefore, the DMAC stays enabled, ready for the next transaction. Clears when the MCU writes a 1. Writing a 0 has no effect. 1 TXFT 0 Transfer time-out condition bit (see Table 6−2) TXFT = 0 DMA stopped transfer without time-out TXFT =1 DMA stopped due to transaction time-out. When IEN = 0, this bit does not clear bit 7 (EN) in the DMACDR3 register (see Section 6.1.3); therefore, the DMAC stays enabled, ready for the next transaction. Clears when the MCU writes a 1. Writing a 0 has no effect. 6−2 C[4:0] 00000b This field defines the transaction time-out value in 1-ms increments. This value is loaded to a down counter every time a byte transfer occurs. The down counter is decremented every SOF pulse (1 ms). If the counter decrements to zero, then it sets bit 1 (TXFT) = 1 and halts the DMA transfer. The counter starts counting only when bit 7 (TEN) = 1 and bit 7 (EN) = 1 in the DMACDR3 register and the first byte has been received. 00000 = 0-ms time-out : : 11111 = 31-ms time-out 7 TEN 0 Transaction time-out counter enable/disable bit TEN = 0 TEN = 1 Counter is disabled (does not time-out) Counter is enabled Table 6−2. DMA IN-Termination Condition IN TERMINATION TXFT OVRUN COMMENTS UART error 0 0 UART error condition detected UART partial packet 1 0 This condition occurs when UART receiver has no more data for the host (data starvation). UART overrun 1 1 This condition occurs when X- and Y-input buffers are full and the UART FIFO is full (host is busy). 6.2 Bulk Data I/O Using the EDB The UBM (USB buffer manager) and the DMAC (DMA controller) access the EDB to fetch buffer parameters for IN and OUT transactions (IN and OUT are with respect to host). In this discussion, it is assumed that: • The MCU initialized the EDBs • DMA-continuous mode is being used • Double buffering is being used • The X/Y toggle is controlled by the UBM DMA Controller SLLS519H—January 2010 TUSB3410, TUSB3410I 37 6.2.1 IN Transaction (TUSB3410 to Host) 1. The MCU initializes the IEDB (64-byte packet, and double buffering is used) and the following DMA registers: • DMACSR3: Defines the transaction time-out value. • DMACDR3: Defines the IEDB being used and the DMA mode of operation (continuous mode). Once this register is set with EN = 1, the transfer starts. 2. The DMA transfers data from the UART to the X buffer. When a block of 64 bytes is transferred, the DMA updates the byte count and sets NAK to 0 in the input endpoint byte count register (indicating to the UBM that the X buffer is ready to be transferred to host). The UBM starts X-buffer transfer to host using the byte-count value in the input endpoint byte count register and toggles the X/Y bit. The DMA continues transferring data from a device to Y-buffer. At the end of the block transfer, the DMA updates the byte count and sets NAK to 0 in the input endpoint byte count register (indicating to the UBM that the Y-buffer is ready to be transferred to host). The DMA continues the transfer from the device to host, alternating between X-and Y-buffers without MCU intervention. 3. Transfer termination: As mentioned, the DMA/UBM continues the data transfer, alternating between the X- and Y-buffers. Termination of the transfer can happen under the following conditions: • Stop Transfer: The host notifies the MCU (via control-end-point) to stop the transfer. Under this condition, the MCU sets bit 7 (EN) to 0 in the DMACDR register. • Partial Packet: The device receiver has no data to be transferred to host. Under this condition, the byte-count value is less than 64 when the transaction timer time-out occurs. When the DMA detects this condition, it sets bit 1 (TXFT) to 1 and bit 0 (OVRUN) to 0 in the DMACSR3 register, updates the byte count and NAK bit in the the input endpoint byte count register, and interrupts the MCU. The UBM transfers the partial packet to host. • Buffer Overrun: The host is busy, X- and Y-buffers are full (X-NAK = 0 and Y-NAK = 0), and the DMA cannot write to these buffers. The transaction time-out stops the DMA transfer, the DMA sets bit 1 (TXFT) to 1 and bit 0 (OVRUN) to 1 in the DMACSR3 register, and interrupts the MCU. • UART Error Condition: When receiving from a UART, a receiver-error condition stops the DMA and sets bit 1 (TXFT) to 1 and bit 0 (OVRUN) to 0 in the DMACSR3 register, but the EN bit remains set at 1. Therefore, the DMA does not interrupt the MCU. However, the UART generates a status interrupt, notifying the MCU that an error condition has occurred. DMA Controller 38 TUSB3410, TUSB3410I SLLS519H—January 2010 6.2.2 OUT Transaction (Host to TUSB3410) 1. The MCU initializes the OEDB (64-byte packet, and double buffering is used) and the following DMA registers: • DMACSR1: Provides an indication of a partial packet. • DMACDR1: Defines the output endpoint being used, and the DMA mode of operation (continuous mode). Once the EN bit is set to 1 in this register, the transfer starts. 2. The UBM transfers data from host to X-buffer. When a block of 64 bytes is transferred, the UBM updates the byte count and sets NAK to 1 in the output endpoint byte count register (indicating to DMA that the X-buffer is ready to be transferred to the UART). The DMA starts X-buffer transfer using the byte-count value in the output endpoint byte count register. The UBM continues transferring data from host to Y-buffer. At the end of the block transfer, the UBM updates the byte count and sets NAK to 1 in the output endpoint byte count register (indicating to DMA that the Y-buffer is ready to be transferred to device). The DMA continues the transfer from the X-/Y-buffers to the device, alternating between X- and Y-buffers without MCU intervention. 3. Transfer termination: The DMA/UBM continues the data transfer alternating between X- and Y-buffers. The termination of the transfer can happen under the following conditions: • Stop Transfer: The host notifies the MCU (via control-end point) to stop the transfer. Under this condition, the MCU sets EN to 0 in the DMACDR1 register. • Partial-Packet: UBM receives a partial packet from host. Under this condition, the byte-count value is less than 64. When the DMA detects this condition, it transfers the partial packet to the device, sets PPKT to 1, updates NAK to 0 in the output endpoint byte count register, and interrupts the MCU. UART SLLS519H—January 2010 TUSB3410, TUSB3410I 39 7 UART 7.1 UART Registers Table 7−1 summarizes the UART registers. These registers are used for data I/O, control, and status information. UART setup is done by the MCU. Data transfer is typically performed by the DMAC. However, the MCU can perform data transfer without a DMA; this is useful when debugging the firmware. Table 7−1. UART Registers Summary REGISTER ADDRESS REGISTER NAME ACCESS FUNCTION COMMENTS FFA0h RDR R/O UART receiver data register Can be accessed by MCU or DMA FFA1h TDR W/O UART transmitter data register Can be accessed by MCU or DMA FFA2h LCR R/W UART line control register FFA3h FCRL R/W UART flow control register FFA4h MCR R/W UART modem control register FFA5h LSR R/O UART line status register Can generate an interrupt FFA6h MSR R/O UART modem status register Can generate an interrupt FFA7h DLL R/W UART divisor register (low byte) FFA8h DLH R/W UART divisor register (high byte) FFA9h XON R/W UART Xon register FFAAh XOFF R/W UART Xoff register FFABh MASK R/W UART interrupt mask register Can control three interrupt sources 7.1.1 RDR: Receiver Data Register (Addr:FFA0h) The receiver data register consists of a 32-byte FIFO. Data received via the SIN terminal is converted from serial-to-parallel format and stored in this FIFO. Data transfer from this register to the RAM buffer is the responsibility of the DMA controller. 7 6 5 4 3 2 1 0 D7 D6 D5 D4 D3 D2 D1 D0 R/O R/O R/O R/O R/O R/O R/O R/O BIT NAME RESET FUNCTION 7−0 D[7:0] 0 Receiver byte 7.1.2 TDR: Transmitter Data Register (Addr:FFA1h) The transmitter data register is double buffered. Data written to this register is loaded into the shift register, and shifted out on SOUT. Data transfer from the RAM buffer to this register is the responsibility of the DMA controller. 7 6 5 4 3 2 1 0 D7 D6 D5 D4 D3 D2 D1 D0 W/O W/O W/O W/O W/O W/O W/O W/O BIT NAME RESET FUNCTION 7−0 D[7:0] 0 Transmit byte UART 40 TUSB3410, TUSB3410I SLLS519H—January 2010 7.1.3 LCR: Line Control Register (Addr:FFA2h) This register controls the data communication format. The word length, number of stop bits, and parity type are selected by writing the appropriate bits to the LCR. 7 6 5 4 3 2 1 0 FEN BRK FPTY EPRTY PRTY STP WL1 WL0 R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 1:0 WL[1:0] 0 Specifies the word length for transmit and receive 00b = 5 bits 01b = 6 bits 10b = 7 bits 11b = 8 bits 2 STP 0 Specifies the number of stop bits for transmit and receive STP = 0 STP = 1 STP = 1 1 stop bit (word length = 5, 6, 7, 8) 1.5 stop bits (word length = 5) 2 stop bits (word length = 6, 7, 8) 3 PRTY 0 Specifies whether parity is used PRTY = 0 PRTY = 1 No parity Parity is generated 4 EPRTY 0 Specifies whether even or odd parity is generated EPRTY = 0 EPRTY = 1 Odd parity is generated (if bit 3 (PRTY) = 1) Even parity is generated (if PRTY = 1) 5 FPTY 0 Selects the forced parity bit FPTY = 0 FPTY = 1 Parity is not forced Parity bit is forced. If bit 4 (EPRTY) = 0, the parity bit is forced to 1 6 BRK 0 This bit is the break-control bit BRK = 0 BRK = 1 Normal operation Forces SOUT into break condition (logic 0) 7 FEN 0 FIFO enable. This bit disables/enables the FIFO. To reset the FIFO, the MCU clears and then sets this bit. FEN = 0 FEN = 1 The FIFO is cleared and disabled. When disabled, the selected receiver flow control is activated. The FIFO is enabled and it can receive data. UART SLLS519H—January 2010 TUSB3410, TUSB3410I 41 7.1.4 FCRL: UART Flow Control Register (Addr:FFA3h) This register provides the flow-control modes of operation (see Table 7−3 for more details). 7 6 5 4 3 2 1 0 485E DTR RTS RXOF DSR CTS TXOA TXOF R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 0 TXOF 0 This bit controls the transmitter Xon/Xoff flow control. TXOF = 0 TXOF = 1 Disable transmitter Xon/Xoff flow control Enable transmitter Xon/Xoff flow control 1 TXOA 0 This bit controls the transmitter Xon-on-any/Xoff flow control TXOA = 0 TXOA = 1 Disable the transmitter Xon-on-any/Xoff flow control Enable the transmitter Xon-on-any/Xoff flow control 2 CTS 0 Transmitter CTS flow-control enable bit CTS = 0 CTS = 1 Disables transmitter CTS flow control CTS flow control is enabled, that is, when CTS input terminal is high, transmission is halted; when the CTS terminal is low, transmission resumes. When loopback mode is enabled, this bit must be set if flow control is also required. 3 DSR 0 Transmitter DSR flow-control enable bit DSR = 0 DSR = 1 Disables transmitter DSR flow control DSR flow control is enabled, that is, when DSR input terminal is high, transmission is halted; when the DSR terminal is low, transmission resumes. When loopback mode is enabled, this bit must be set if flow control is also required. 4 RXOF 0 This bit controls the receiver Xon/Xoff flow control. RXOF = 0 RXOF = 1 Receiver does not attempt to match Xon/Xoff characters Receiver searches for Xon/Xoff characters 5 RTS 0 Receiver RTS flow control enable bit RTS = 0 RTS = 1 Disables receiver RTS flow control Receiver RTS flow control is enabled. RTS output terminal goes high when the receiver FIFO HALT trigger level is reached; it goes low, when the receiver FIFO RESUME receiving trigger level is reached. 6 DTR 0 Receiver DTR flow-control enable bit DTR = 0 DTR = 1 Disables receiver DTR flow control Receiver DTR flow control is enabled. DTR output terminal goes high when the receiver FIFO HALT trigger level is reached; it goes low, when the receiver FIFO RESUME receiving trigger level is reached. 7 485E 0 RS-485 enable bit. This bit configures the UART to control external RS-485 transceivers. When configured in half-duplex mode (485E = 1), RTS or DTR can be used to enable the RS-485 driver or receiver. See Figure 3−3. 485E = 0 485E = 1 UART is in normal operation mode (full duplex) The UART is in half duplex RS-485 mode. In this mode, RTS and DTR are active with opposite polarity (when RTS = 0, DTR = 1). When the DMA is ready to transmit, it drives RTS = 1 (and DTR = 0) 2-bit times before the transmission starts. When the DMA terminates the transmission, it drives RTS = 0 (and DTR = 1) after the transmission stops. When 485E is set to 1, bit 4 (DTR) and bit 5 (RTS) in the MCR register (see Section 7.1.6) have no effect. Also, see bit 1 (RCVE) in the MCR register. UART 42 TUSB3410, TUSB3410I SLLS519H—January 2010 7.1.5 Transmitter Flow Control On reset (power up, USB, or soft reset) the transmitter defaults to the Xon state and the flow control is set to mode-0 (flow control is disabled). Table 7−2. Transmitter Flow-Control Modes BIT 3 BIT 2 BIT 1 BIT 0 DSR CTS TXOA TXOF All flow control is disabled 0 0 0 0 Xon/Xoff flow control is enabled 0 0 0 1 Xon on any/ Xoff flow control 0 0 1 0 Not permissible (see Note 9) X X 1 1 CTS flow control 0 1 0 0 Combination flow control (see Note 10) 0 1 0 1 Combination flow control 0 1 1 0 DSR flow control 1 0 0 0 1 0 0 1 1 0 1 0 Combination flow control 1 1 0 0 1 1 0 1 1 1 1 0 NOTES: 9. This is a nonpermissible combination. If used, TXOA and TXOF are cleared. 10. Combination example: Transmitter stops when either CTS or Xoff is detected. Transmitter resumes when both CTS is negated and Xon is detected. Table 7−3. Receiver Flow-Control Possibilities MODE BIT 6 BIT 5 BIT 4 DTR RTS RXOF 0 All flow control is disabled 0 0 0 1 Xon/Xoff flow control is enabled 0 0 1 2 RTS flow control 0 1 0 3 Combination flow control (see Note 11) 0 1 1 4 DTR flow control 1 0 0 5 Combination flow control 1 0 1 6 Combination flow control (see Note 12) 1 1 0 7 Combination flow control 1 1 1 NOTES: 11. Combination example: Both RTS is asserted and Xoff transmitted when the FIFO is full. Both RTS is deasserted and Xon is transmitted when the FIFO is empty. 12. Combination example: Both DTR and RTS are asserted when the FIFO is full. Both DTR and RTS are deasserted when the FIFO is empty. UART SLLS519H—January 2010 TUSB3410, TUSB3410I 43 7.1.6 MCR: Modem-Control Register (Addr:FFA4h) This register provides control for modem interface I/O and definition of the flow control mode. 7 6 5 4 3 2 1 0 LCD LRI RTS DTR RSV LOOP RCVE URST R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 0 URST 0 UART soft reset. This bit can be used by the MCU to reset the UART. URST = 0 Normal operation. Writing a 0 by MCU has no effect. URST = 1 When the MCU writes a 1 to this bit, a UART reset is generated (ORed with hard reset). When the UART exits the reset state, URST is cleared. The MCU can monitor this bit to determine if the UART completed the reset cycle. 1 RCVE 0 Receiver enable bit. This bit is valid only when bit 7 (485E) in the FCRL register (see Section 7.1.4) is 1 (RS-485 mode). When 485E = 0, this bit has no effect on the receiver. RCVE = 0 When 485E = 1, the UART receiver is disabled when RTS = 1, i.e., when data is being transmitted, the UART receiver is disabled. RCVE = 1 When 485E = 1, the UART receiver is enabled regardless of the RTS state, i.e., UART receiver is enabled all the time. This mode can detect collisions on the RS-485 bus when received data does not match transmitted data. 2 LOOP 0 This bit controls the normal-/loop-back mode of operation (see Figure 7−1). LOOP = 0 Normal operation LOOP = 1 Enable loop-back mode of operation. In this mode the following occur:  SOUT is set high  SIN is disconnected from the receiver input.  The transmitter serial output is looped back into the receiver serial input.  The four modem-control inputs: CTS, DSR, DCD, and RI/CP are disconnected.  DTR, RTS, LRI and LCD are internally connected to the four modem-control inputs, and read in the MSR register (see Section 7.1.8) as described below. Note: the FCRL register (see Section 7.1.4) must be configured to enable bits 2 (CTS) and 3 (DSR) to maintain proper operation with flow control and loop back.  DTR is reflected in MSR register bit 4 (LCTS)  RTS is reflected in MSR register bit 5 (LDSR)  LRI is reflected in MSR register bit 6 (LRI)  LCD is reflected in MSR register bit 7 (LCD) 3 RSV 0 Reserved 4 DTR 0 This bit controls the state of the DTR output terminal (see Figure 7−1). This bit has no effect when auto-flow control is used or when bit 7 (485E) = 1 (in the FCRL register, see Section 7.1.4). DTR = 0 Forces the DTR output terminal to inactive (high) DTR = 1 Forces the DTR output terminal to active (low) 5 RTS 0 This bit controls the state of the RTS output terminal (see Figure 7−1). This bit has no effect when auto-flow control is used or when bit 7 (485E) = 1 (in the FCRL register, see Section 7.1.4). RTS = 0 Forces the RTS output terminal to inactive (high) RTS = 1 Forces the RTS output terminal to active (low) 6 LRI 0 This bit is used for loop-back mode only. When in loop-back mode, this bit is reflected in bit 6 (LRI) in the MSR register, see Section 7.1.8 (see Figure 7−1). LRI = 0 Clears the MSR register bit 6 to 0 LRI = 1 Sets the MSR register bit 6 to 1 7 LCD 0 This bit is used for loop-back mode only. When in loop-back mode, this bit is reflected in bit 7 (LCD) in the MSR register, see Section 7.1.8 (see Figure 7−1). LCD = 0 Clears the MSR register bit 7 to 0 LCD = 1 Sets the MSR register bit 7 to 1 UART 44 TUSB3410, TUSB3410I SLLS519H—January 2010 7.1.7 LSR: Line-Status Register (Addr:FFA5h) This register provides the status of the data transfer. DMA transfer is halted when any of bit 0 (OVR), bit 1 (PTE), bit 2 (FRE), or bit 3 (BRK) is 1. 7 6 5 4 3 2 1 0 RSV TEMT TxE RxF BRK FRE PTE OVR R/O R/O R/O R/O R/C R/C R/C R/C BIT NAME RESET FUNCTION 0 OVR 0 This bit indicates the overrun condition of the receiver. If set, it halts the DMA transfer and generates a status interrupt (if enabled). OVR = 0 OVR = 1 No overrun error Overrun error has occurred. Clears when the MCU writes a 1. Writing a 0 has no effect. 1 PTE 0 This bit indicates the parity condition of the received byte. If set, it halts the DMA transfer and generates a status interrupt (if enabled). PTE = 0 PTE = 1 No parity error in data received Parity error in data received. Clears when the MCU writes a 1. Writing a 0 has no effect. 2 FRE 0 This bit indicates the framing condition of the received byte. If set, it halts the DMA transfer and generates a status interrupt (if enabled). FRE = 0 FRE = 1 No framing error in data received Framing error in data received. Clears when MCU writes a 1. Writing a 0 has no effect. 3 BRK 0 This bit indicates the break condition of the received byte. If set, it halts the DMA transfer and generates a status interrupt (if enabled). BRK = 0 BRK = 1 No break condition A break condition in data received was detected. Clears when the MCU writes a 1. Writing a 0 has no effect. 4 RxF 0 This bit indicates the condition of the receiver data register. Typically, the MCU does not monitor this bit since data transfer is done by the DMA controller. RxF = 0 RxF = 1 No data in the RDR RDR contains data. Generates Rx interrupt (if enabled). 5 TxE 1 This bit indicates the condition of the transmitter data register. Typically, the MCU does not monitor this bit since data transfer is done by the DMA controller. TxE = 0 TxE = 1 TDR is not empty TDR is empty. Generates Tx interrupt (if enabled). 6 TEMT 1 This bit indicates the condition of both transmitter data register and shift register is empty. TEMT = 0 TEMT = 1 Either TDR or TSR is not empty Both TDR and TSR are empty 7 RSV 0 Reserved = 0 UART SLLS519H—January 2010 TUSB3410, TUSB3410I 45 CTS Modem Status Register Modem Control Register Bit 4 LCTS Bit 5 LDSR Bit 6 LRI Bit 7 LCD Bit 5 RTS Bit 4 DTR Bit 6 LRI Bit 7 LCD Bit 2 LOOP DSR RI/CP DCD RTS DTR FCRL Register Setting FCRL Register Setting Device Terminals Figure 7−1. MSR and MCR Registers in Loop-Back Mode UART 46 TUSB3410, TUSB3410I SLLS519H—January 2010 7.1.8 MSR: Modem-Status Register (Addr:FFA6h) This register provides information about the current state of the control lines from the modem. 7 6 5 4 3 2 1 0 LCD LRI LDSR LCTS ΔCD TRI ΔDSR ΔCTS R/O R/O R/O R/O R/C R/C R/C R/C BIT NAME RESET FUNCTION 0 ΔCTS 0 This bit indicates that the CTS input has changed state. Cleared when the MCU writes a 1 to this bit. Writing a 0 has no effect. 1 ΔDSR 0 This bit indicates that the DSR input has changed state. Cleared when the MCU writes a 1 to this bit. Writing a 0 has no effect. ΔDSR = 0 ΔDSR = 1 Indicates no change in the DSR input Indicates that the DSR input has changed state since the last time it was read. Clears when the MCU writes a 1. Writing a 0 has no effect. 2 TRI 0 Trailing edge of the ring indicator. This bit indicates that the RI/CP input has changed from low to high. This bit is cleared when the MCU writes a 1 to this bit. Writing a 0 has no effect. TRI = 0 TRI = 1 Indicates no applicable transition on the RI/CP input Indicates that an applicable transition has occurred on the RI/CP input. 3 ΔCD 0 This bit indicates that the CD input has changed state. Cleared when the MCU writes a 1 to this bit. Writing a 0 has no effect. ΔCD = 0 ΔCD = 1 Indicates no change in the CD input Indicates that the CD input has changed state since the last time it was read. 4 LCTS 0 During loopback, this bit reflects the status of bit 4 (DTR) in the MCR register, see Section 7.1.6 (see Figure 7−1) LCTS = 0 LCTS = 1 CTS input is high CTS input is low 5 LDSR 0 During loop back, this bit reflects the status of bit 5 (RTS) in the MCR register, see Section 7.1.6 (see Figure 7−1) LDSR = 0 LDSR= 1 DSR input is high DSR input is low 6 LRI 0 During loop back, this bit reflects the status of bit 6 (LRI) in the MCR register, see Section 7.1.6 (see Figure 7−1) LRI = 0 LRI = 1 RI/CP input is high RI/CP input is low 7 LCD 0 During loopback, this bit reflects the status of bit 7 (LCD) in the MCR register, see Section 7.1.6 (see Figure 7−1) LCD = 0 LCD = 0 CD input is high CD input is low 7.1.9 DLL: Divisor Register Low Byte (Addr:FFA7h) This register contains the low byte of the baud-rate divisor. 7 6 5 4 3 2 1 0 D7 D6 D5 D4 D3 D2 D1 D0 R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 7−0 D[7:0] 08h Low-byte value of the 16-bit divisor for generation of the baud clock in the baud-rate generator. UART SLLS519H—January 2010 TUSB3410, TUSB3410I 47 7.1.10 DLH: Divisor Register High Byte (Addr:FFA8h) This register contains the high byte of the baud-rate divisor. 7 6 5 4 3 2 1 0 D15 D14 D13 D12 D11 D10 D9 D8 R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 7−0 D[15:8] 00h High-byte value of the 16-bit divisor for generation of the baud clock in the baud-rate generator. 7.1.11 Baud-Rate Calculation The following formulas calculate the baud-rate clock and the divisors. The baud-rate clock is derived from the 96-MHz master clock (dividing by 6.5). The table below presents the divisors used to achieve the desired baud rates, together with the associate rounding errors. Baud CLK  96 MHz 6.5  14.76923077 MHz Divisor  14.76923077106 Desired Baud Rate 16 Table 7−4. DLL/DLH Values and Resulted Baud Rates DESIRED BAUD DLL/DLH VALUE ACTUAL BAUD ERROR % RATE DECIMAL HEXADECIMAL RATE 1 200 769 0301 1 200.36 0.03 2 400 385 0181 2 397.60 0.01 4 800 192 00C0 4 807.69 0.16 7 200 128 0080 7 211.54 0.16 9 600 96 0060 9 615.38 0.16 14 400 64 0040 14 423.08 0.16 19 200 48 0030 19 230.77 0.16 38 400 24 0018 38 461.54 0.16 57 600 16 0010 57 692.31 0.16 115 200 8 0008 115 384.62 0.16 230 400 4 0004 230 769.23 0.16 460 800 2 0002 461 538.46 0.16 921 600 1 0001 923 076.92 0.16 NOTE: The TUSB3410 does support baud rates lower than 1200 bps, which are not listed due to less interest. 7.1.12 XON: Xon Register (Addr:FFA9h) This register contains a value that is compared to the received data stream. Detection of a match interrupts the MCU (only if the interrupt enable bit is set). This value is also used for Xon transmission. 7 6 5 4 3 2 1 0 D7 D6 D5 D4 D3 D2 D1 D0 R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 7−0 D[7:0] 0000 Xon value to be compared to the incoming data stream UART 48 TUSB3410, TUSB3410I SLLS519H—January 2010 7.1.13 XOFF: Xoff Register (Addr:FFAAh) This register contains a value that is compared to the received data stream. Detection of a match halts the DMA transfer, and interrupts the MCU (only if the interrupt enable bit is set). This value is also used for Xoff transmission. 7 6 5 4 3 2 1 0 D7 D6 D5 D4 D3 D2 D1 D0 R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 7−0 D[7:0] 0000 Xoff value to be compared to the incoming data stream 7.1.14 MASK: UART Interrupt-Mask Register (Addr:FFABh) This register controls the UARTs interrupt sources. 7 6 5 4 3 2 1 0 RSV RSV RSV RSV RSV TRI SIE MIE R/O R/O R/O R/O R/O R/W R/W R/W BIT NAME RESET FUNCTION 0 MIE 0 This bit controls the UART-modem interrupt. MIE = 0 MIE = 1 Modem interrupt is disabled Modem interrupt is enabled 1 SIE 0 This bit controls the UART-status interrupt. SIE = 0 SIE = 1 Status interrupt is disabled Status interrupt is enabled 2 TRI 0 This bit controls the UART-TxE/RxF interrupts TRI = 0 TRI = 1 TxE/RxF interrupts are disabled TxE/RxF interrupts are enabled 7−3 RSV 0 Reserved = 0 7.2 UART Data Transfer Figure 7−2 illustrates the data transfer between the UART and the host using the DMA controller and the USB buffer manager (UBM). A buffer of 512 bytes is reserved for buffering the UART channel (transmit and receive buffers). The UART channel has 64 bytes of double-buffer space (X- and Y-buffer). When the DMA writes to the X-buffer, the UBM reads from the Y-buffer. Similarly, when the DMA reads from the X-buffer, the UBM writes to the Y-buffer. The DMA channel is configured to operate in the continuous mode (by setting bit 5 (CNT) in the DMACDR registers = 1). Once the MCU enables the DMA, data transfer toggles between the UMB and the DMA without MCU intervention. See Section 6.2.1, IN Transaction (TUSB3410 to Host), for DMA transfer-termination condition. 7.2.1 Receiver Data Flow The UART receiver has a 32-byte FIFO. The receiver FIFO has two trigger levels. One is the high-level mark (HALT), which is set to 12 bytes, and the other is the low-level mark (RESUME), which is set to 4 bytes. When the HALT mark is reached, either the RTS terminal goes high or Xoff is transmitted (depending on the auto setting). When the FIFO reaches the RESUME mark, then either the RTS terminal goes low or Xon is transmitted. UART SLLS519H—January 2010 TUSB3410, TUSB3410I 49 64-Byte Y-Buffer 64-Byte X-Buffer DMA DMACDR3 USB Buffer Manager X/Y 4 8 Receiver Halt on Error or Time-Out RDR: 32-Byte FIFO RTS/DTR = 1 or Xoff Transmitted RTS/DTR = 0 or Xon Transmitted Xoff/Xon CTS/DTR = 1/0 64-Byte Y-Buffer 64-Byte X-Buffer DMA DMACDR1 SIN SOUT TDR Pause/Run Host Figure 7−2. Receiver/Transmitter Data Flow 7.2.2 Hardware Flow Control Figure 7−3 illustrates the connection necessary to achieve hardware flow control. The CTS and RTS signals are provided for this purpose. Auto CTS and auto RTS (and Xon/Xoff) can be enabled/disabled independently by programming the UART flow control register (FCRL). TUSB3410 SIN RTS SOUT CTS External Device SOUT CTS SIN RTS Figure 7−3. Auto Flow Control Interconnect 7.2.3 Auto RTS (Receiver Control) In this mode, the RTS output terminal signals the receiver-FIFO status to an external device. The RTS output signal is controlled by the high- and low-level marks of the FIFO. When the high-level mark is reached, RTS goes high, signaling to an external sending device to halt its transfer. Conversely, when the low-level mark is reached, RTS goes low, signaling to an external sending device to resume its transfer. Data transfer from the FIFO to the X-/Y-buffer is performed by the DMA controller. See Section 6.2.1, IN Transaction (TUSB3410 to Host), for DMA transfer-termination condition. 7.2.4 Auto CTS (Transmitter Control) In this mode, the CTS input terminal controls the transfer from internal buffer (X or Y) to the TDR. When the DMA controller transfers data from the Y-buffer to the TDR and the CTS input terminal goes high, the DMA controller is suspended until CTS goes low. Meanwhile, the UBM is transferring data from the host to the X-buffer. When CTS goes low, the DMA resumes the transfer. Data transfer continues alternating between the X- and Y-buffers, without MCU intervention. See Section 6.2.2, OUT Transaction (Host to TUSB3410), for DMA transfer-termination condition. UART 50 TUSB3410, TUSB3410I SLLS519H—January 2010 7.2.5 Xon/Xoff Receiver Flow Control To enable Xon/Xoff flow control, certain bits within the modem control register must be set as follows: MCR bit 5 = 1 and MCR bits 6 and 7 = 00. In this mode, the Xon/Xoff bytes are transmitted to an external sending device to control the device’s transmission. When the high-level mark (of the FIFO) is reached, the Xoff byte is transmitted, signaling to an external sending device to halt its transfer. Conversely, when the low-level mark is reached, the Xon byte is transmitted, signaling to an external sending device to resume its transfer. The data transfer from the FIFO to X-/Y-buffer is performed by the DMA controller. 7.2.6 Xon/Xoff Transmit Flow Control To enable Xon/Xoff flow control, certain bits within the modem control register must be set as follows: MCR bit 5 = 1 and MCR bits 6 and 7 = 00. In this mode, the incoming data are compared to the XON and XOFF registers. If a match to XOFF is detected, the DMA is paused. If a match to XON is detected, the DMA resumes. Meanwhile, the UBM is transferring data from the host to the X-buffer. The MCU does not switch the buffers unless the Y-buffer is empty and the X-buffer is full. When Xon is detected, the DMA resumes the transfer. Expanded GPIO Port SLLS519H—January 2010 TUSB3410, TUSB3410I 51 8 Expanded GPIO Port 8.1 Input/Output and Control Registers The TUSB3410 has four general-purpose I/O terminals (P3.0, P3.1, P3.3, and P3.4) that are controlled by firmware running on the MCU. Each terminal can be controlled individually and each is implemented with a 12-mA push/pull CMOS output with 3-state control plus input. The MCU treats the outputs as open drain types in that the output can be driven low continuously, but a high output is driven for two clock cycles and then the output is high impedance. An input terminal can be read using the MOV instruction. For example, MOV C,P3.3 reads the input on P3.3. As a precaution, be certain the associated output is high impedance before reading the input. An output can be set high (and then high impedance) using the SETB instruction. For example, SETB P3.1 sets P3.1 high. An output can be set low using the CLR instruction, as in CLR P3.4, which sets P3.4 low (driven continuously until changed). Each GPIO terminal has an associated internal pullup resistor. It is strongly recommended that the pullup resistor remain connected to the terminal to prevent oscillations in the input buffer. The only exception is if an external source always drives the input. 8.1.1 PUR_3: GPIO Pullup Register For Port 3 (Addr:FF9Eh) 7 6 5 4 3 2 1 0 RSV RSV RSV Pin4 Pin3 RSV Pin1 Pin0 R/O R/O R/O R/W R/W R/O R/W R/W BIT NAME RESET FUNCTION 0 1 3 4 Pin0 Pin1 Pin3 Pin4 0 The MCU may write to this register. If the MCU sets any of these bits to 1, then the pullup resistor is disconnected from the associated terminal. If the MCU clears any of these bits to 0, then the pullup resistor is connected from the terminal. The pullup resistor is connected to the VCC power supply. 2, 5, 6, 7 RSV 0 Reserved Expanded GPIO Port 52 TUSB3410, TUSB3410I SLLS519H—January 2010 Interrupts SLLS519H—January 2010 TUSB3410, TUSB3410I 53 9 Interrupts 9.1 8052 Interrupt and Status Registers All 8052 standard, five interrupt sources are preserved. SIE is the standard interrupt-enable register that controls the five interrupt sources. This is also known as IE0 located at S:A8h in the special function register area. All the additional interrupt sources are ORed together to generate EX0. Table 9−1. 8052 Interrupt Location Map INTERRUPT SOURCE DESCRIPTION START ADDRESS COMMENTS ES UART interrupt 0023h ET1 Timer-1 interrupt 001Bh EX1 External interrupt-1 0013h ET0 Timer-0 interrupt 000Bh EX0 External interrupt-0 0003h Used for all internal peripherals Reset 0000h 9.1.1 8052 Standard Interrupt Enable (SIE) Register 7 6 5 4 3 2 1 0 EA RSV RSV ES ET1 EX1 ET0 EX0 R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 0 EX0 0 Enable or disable external interrupt-0 EX0 = 0 EX0 = 1 External interrupt-0 is disabled External interrupt-0 is enabled 1 ET0 0 Enable or disable timer-0 interrupt ET0 = 0 ET0 = 1 Timer-0 interrupt is disabled Timer-0 interrupt is enabled 2 EX1 0 Enable or disable external interrupt-1 EX1 = 0 EX1 = 1 External interrupt-1 is disabled External interrupt-1 is enabled 3 ET1 0 Enable or disable timer-1 interrupt ET1 = 0 EX1 = 1 Timer-1 interrupt is disabled Timer-1 interrupt is enabled 4 ES 0 Enable or disable serial port interrupts ES = 0 ES = 1 Serial-port interrupt is disabled Serial-port interrupt is enabled 5, 6 RSV 0 Reserved 7 EA 0 Enable or disable all interrupts (global disable) EA = 0 EA = 1 Disable all interrupts Each interrupt source is individually controlled 9.1.2 Additional Interrupt Sources All nonstandard 8052 interrupts (DMA, I2C, etc.) are ORed to generate an internal INT0. Furthermore, the INT0 must be programmed as an active low-level interrupt (not edge-triggered). After reset, if INT0 is not changed, then it is an edge-triggered interrupt. A vector interrupt register is provided to identify all interrupt sources (see Section 9.1.3, VECINT: Vector Interrupt Register). Up to 64 interrupt vectors are provided. It is the responsibility of the MCU to read the vector and dispatch to the proper interrupt routine. Interrupts 54 TUSB3410, TUSB3410I SLLS519H—January 2010 9.1.3 VECINT: Vector Interrupt Register (Addr:FF92h) This register contains a vector value, which identifies the internal interrupt source that is trapped to location 0003h. Writing (any value) to this register removes the vector and updates the next vector value (if another interrupt is pending). Note: the vector value is offset; therefore, its value is in increments of two (bit 0 is set to 0). When no interrupt is pending, the vector is set to 00h (see Table 9−2). As shown, the interrupt vector is divided to two fields: I[2:0] and G[3:0]. The I field defines the interrupt source within a group (on a first-come-first-served basis). In the G field, which defines the group number, group G0 is the lowest and G15 is the highest priority. 7 6 5 4 3 2 1 0 G3 G2 G1 G0 I2 I1 I0 0 R/O R/O R/O R/O R/O R/O R/O R/O BIT NAME RESET FUNCTION 3−1 I[2:0] 0H This field defines the interrupt source in a given group. See Table 9−2. Bit 0 = 0 always; therefore, vector values are offset by two. 7−4 G[3:0] 0H This field defines the interrupt group. I[2:0] and G[3:0] combine to produce the actual interrupt vector. Table 9−2. Vector Interrupt Values G[3:0] (Hex) I[2:0] (Hex) VECTOR (Hex) INTERRUPT SOURCE 0 0 00 No interrupt 1 1 1 1 1 0 1 2 3 4−7 10 12 14 16 18−1E Not used Output endpoint-1 Output endpoint-2 Output endpoint-3 Reserved 2 2 2 2 2 0 1 2 3 4−7 20 22 24 26 28−2E Reserved Input endpoint-1 Input endpoint-2 Input endpoint-3 Reserved 3 3 3 3 3 3 3 3 0 1 2 3 4 5 6 7 30 32 34 36 38 3A 3C 3E STPOW packet received SETUP packet received Reserved Reserved RESR interrupt SUSR interrupt RSTR interrupt Wakeup 4 4 4 4 4 0 1 2 3 4−7 40 42 44 46 48 → 4E I2C TXE interrupt I2C RXF interrupt Input endpoint-0 Output endpoint-0 Reserved 5 5 5 0 1 2−7 50 52 54 → 5E UART status interrupt UART modem interrupt Reserved 6 6 6 0 1 2−7 60 62 64 → 6E UART RXF interrupt UART TXE interrupt Reserved 7 0−7 70 → 7E Reserved 8 8 8 0 2 3−7 80 84 86−8E DMA1 interrupt DMA3 interrupt Reserved 9−15 X 90 → FE Not used Interrupts SLLS519H—January 2010 TUSB3410, TUSB3410I 55 9.1.4 Logical Interrupt Connection Diagram (Internal/External) Figure 9−1 shows the logical connection of the interrupt sources and its relationship to INT0. The priority encoder generates an 8-bit vector, corresponding to 64 interrupt sources (not all are used). The interrupt priorities are hardwired. Vector 0x88 is the highest and 0x12 is the lowest. Priority Encoder Interrupts IEO (INT0) IEO Vector Figure 9−1. Internal Vector Interrupt Interrupts 56 TUSB3410, TUSB3410I SLLS519H—January 2010 I2C Port SLLS519H—January 2010 TUSB3410, TUSB3410I 57 10 I2C Port 10.1 I2C Registers 10.1.1 I2CSTA: I2C Status and Control Register (Addr:FFF0h) This register controls the stop condition for read and write operations. In addition, it provides transmitter and receiver handshake signals with their respective interrupt enable bits. 7 6 5 4 3 2 1 0 RXF RIE ERR 1/4 TXE TIE SRD SWR R/O R/W R/C R/W R/O R/W R/W R/W BIT NAME RESET FUNCTION 0 SWR 0 Stop write condition. This bit determines if the I2C controller generates a stop condition when data from the I2CDAO register is transmitted to an external device. SWR = 0 Stop condition is not generated when data from the I2CDAO register is shifted out to an external device. SWR = 1 Stop condition is generated when data from the I2CDAO register is shifted out to an external device. 1 SRD 0 Stop read condition. This bit determines if the I2C controller generates a stop condition when data is received and loaded into the I2CDAI register. SRD = 0 Stop condition is not generated when data from the SDA line is shifted into the I2CDAI register. SRD = 1 Stop condition is generated when data from the SDA line are shifted into the I2CDAI register. 2 TIE 0 I2C transmitter empty interrupt enable TIE = 0 TIE = 1 Interrupt disable Interrupt enable 3 TXE 1 I2C transmitter empty. This bit indicates that data can be written to the transmitter. It can be used for polling or it can generate an interrupt. TXE = 0 Transmitter is full. This bit is cleared when the MCU writes a byte to the I2CDAO register. TXE = 1 Transmitter is empty. The I2C controller sets this bit when the contents of the I2CDAO register are copied to the SDA shift register. 4 1/4 0 Bus speed selection (see Note 13) 1/4 = 0 1/4 = 1 100-kHz bus speed 400-kHz bus speed 5 ERR 0 Bus error condition. This bit is set by the hardware when the device does not respond. It is cleared by the MCU. ERR = 0 No bus error ERR = 1 Bus error condition has been detected. Clears when the MCU writes a 1. Writing a 0 has no effect. 6 RIE 0 I2C receiver ready interrupt enable RIE = 0 RIE = 1 Interrupt disable Interrupt enable 7 RXF 0 I2C receiver full. This bit indicates that the receiver contains new data. It can be used for polling or it can generate an interrupt. RXF = 0 Receiver is empty. This bit is cleared when the MCU reads the I2CDAI register. RXF = 1 Receiver contains new data. This bit is set by the I2C controller when the received serial data has been loaded into the I2CDAI register. NOTE 13: The bootcode automatically sets the I2C bus speed to 400 kHz. Only 400-kHz I2C EEPROMs can be used. I2C Port 58 TUSB3410, TUSB3410I SLLS519H—January 2010 10.1.2 I2CADR: I2C Address Register (Addr:FFF3h) This register holds the device address and the read/write command bit. 7 6 5 4 3 2 1 0 A6 A5 A4 A3 A2 A1 A0 R/W R/W R/W R/W R/W R/W R/W R/W R/W BIT NAME RESET FUNCTION 0 R/W 0 Read/write command bit R/W = 0 R/W = 1 Write operation Read operation 7−1 A[6:0] 0h Seven address bits for device addressing 10.1.3 I2CDAI: I2C Data-Input Register (Addr:FFF2h) This register holds the received data from an external device. 7 6 5 4 3 2 1 0 D7 D6 D5 D4 D3 D2 D1 D0 R/O R/O R/O R/O R/O R/O R/O R/O BIT NAME RESET FUNCTION 7−0 D[7:0] 0 8-bit input data from an I2C device 10.1.4 I2CDAO: I2C Data-Output Register (Addr:FFF1h) This register holds the data to be transmitted to an external device. Writing to this register starts the transfer on the SDA line. 7 6 5 4 3 2 1 0 D7 D6 D5 D4 D3 D2 D1 D0 W/O W/O W/O W/O W/O W/O W/O W/O BIT NAME RESET FUNCTION 7−0 D[7:0] 0 8-bit output data to an I2C device 10.2 Random-Read Operation A random read requires a dummy byte-write sequence to load in the data word address. Once the device-address word and the data-word address are clocked out and acknowledged by the device, the MCU starts a current-address sequence. The following describes the sequence of events to accomplish this transaction. Device Address + EPROM [High Byte] • The MCU clears bit 1 (SRD) within the I2CSTA register. This forces the I2C controller not to generate a stop condition after the contents of the I2CDAI register are received. • The MCU clears bit 0 (SWR) within the I2CSTA register. This forces the I2C controller not to generate a stop condition after the contents of the I2CDAO register are transmitted. • The MCU writes the device address (bit 0 (R/W) = 0) to the I2CADR register (write operation) • The MCU writes the high byte of the EEPROM address into the I2CDAO register (this starts the transfer on the SDA line). • Bit 3 (TXE) in the I2CSTA register is automatically cleared (indicates busy) by writing data to the I2CDAO register. • The contents of the I2CADR register are transmitted to EEPROM (preceded by start condition on SDA). I2C Port SLLS519H—January 2010 TUSB3410, TUSB3410I 59 • The contents of the I2CDAO register are transmitted to EEPROM (EPROM address). • Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register has been transmitted. • A stop condition is not generated. EPROM [Low Byte] • The MCU writes the low byte of the EEPROM address into the I2CDAO register. • Bit 3 (TXE) in the I2CSTA register is automatically cleared (indicates busy) by writing to the I2CDAO register. • The contents of the I2CDAO register are transmitted to the device (EEPROM address). • Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register has been transmitted. • This completes the dummy write operation. At this point, the EEPROM address is set and the MCU can do either a single- or a sequential-read operation. 10.3 Current-Address Read Operation Once the EEPROM address is set, the MCU can read a single byte by executing the following steps: • The MCU sets bit 1 (SRD) in the I2CSTA register to 1. This forces the I2C controller to generate a stop condition after the I2CDAI-register contents are received. • The MCU writes the device address (bit 0 (R/W) = 1) to the I2CADR register (read operation). • The MCU writes a dummy byte to the I2CDAO register (this starts the transfer on SDA line). • Bit 7 (RXF) in the I2CSTA register is cleared (RX is empty). • The contents of the I2CADR register are transmitted to the device (preceded by start condition on SDA). • The data from EEPROM are latched into the I2CDAI register (stop condition is transmitted). • Bit 7 (RXF) in the I2CSTA register is set and interrupts the MCU, indicating that the data are available. • The MCU reads the I2CDAI register. This clears bit 7 (RXF) in the I2CSTA register. 10.4 Sequential-Read Operation Once the EEPROM address is set, the MCU can execute a sequential read operation by executing the following (this example illustrates a 32-byte sequential read): Device Address • The MCU clears bit 1 (SRD) in the I2CSTA register. This forces the I2C controller to not generate a stop condition after the I2CDAI register contents are received. • The MCU writes the device address (bit 0 (R/W) = 1) to the I2CADR register (read operation). • The MCU writes a dummy byte to the I2CDAO register (this starts the transfer on the SDA line). • Bit 7 (RXF) in the I2CSTA register is cleared (RX is empty). • The contents of the I2CADR register are transmitted to the device (preceded by start condition on SDA). I2C Port 60 TUSB3410, TUSB3410I SLLS519H—January 2010 N-Byte Read (31 Bytes) • The data from the device is latched into the I2CDAI register (stop condition is not transmitted). • Bit 7 (RXF) in the I2CSTA register is set and interrupts the MCU, indicating that data is available. • The MCU reads the I2CDAI register. This clears bit 7 (RXF) in the I2CSTA register. • This operation repeats 31 times. Last-Byte Read (Byte 32) • MCU sets bit 1 (SRD) in the I2STA register to 1. This forces the I2C controller to generate a stop condition after the I2CDAI register contents are received. • The data from the device is latched into the I2CDAI register (stop condition is transmitted). • Bit 7 (RXF) in the I2CSTA register is set and interrupts the MCU, indicating that data is available. • The MCU reads the I2CDAI register. This clears bit 7 (RXF) in the I2CSTA register. 10.5 Byte-Write Operation The byte-write operation involves three phases: device address + EPROM [high byte] phase, EPROM [low byte] phase, and EPROM [DATA] phase. The following describes the sequence of events to accomplish the byte-write transaction. Device Address + EPROM [High Byte] • The MCU sets clears the SWR bit in the I2CSTA register. This forces the I2C controller to not generate a stop condition after the contents of the I2CDAO register are transmitted. • The MCU writes the device address (bit 0 (R/W) = 0) to the I2CADR register (write operation). • The MCU writes the high byte of the EEPROM address into the I2CDAO register (this starts the transfer on the SDA line). • Bit 3 (TXE) in the I2CSTA register is cleared (indicates busy). • The contents of the I2CADR register are transmitted to the device (preceded by start condition on SDA). • The contents of the I2CDAO register are transmitted to the device (EEPROM high address). • Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register contents have been transmitted. EPROM [Low Byte] • The MCU writes the low byte of the EEPROM address into the I2CDAO register. • Bit 3 (TXE) in the I2CSTA register is cleared (indicating busy). • The contents of the I2CDAO register are transmitted to the device (EEPROM address). • Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register contents have been transmitted. EPROM [DATA] • The MCU sets bit 0 (SWR) in the I2CSTA register. This forces the I2C controller to generate a stop condition after the contents of the I2CDAO register are transmitted. • The data to be written to the EPROM is written by the MCU into the I2CDAO register. • Bit 3 (TXE) in the I2CSTA register is cleared (indicates busy). • The contents of the I2CDAO register are transmitted to the device (EEPROM data). • Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register contents have been transmitted. • The I2C controller generates a stop condition after the contents of the I2CDAO register are transmitted. I2C Port SLLS519H—January 2010 TUSB3410, TUSB3410I 61 10.6 Page-Write Operation The page-write operation is initiated in the same way as byte write, with the exception that a stop condition is not generated after the first EPROM [DATA] is transmitted. The following describes the sequence of writing 32 bytes in page mode. Device Address + EPROM [High Byte] • The MCU clears bit 0 (SWR) in the I2CSTA register. This forces the I2C controller to not generate a stop condition after the contents of the I2CDAO register are transmitted. • The MCU writes the device address (bit 0 (R/W) = 0) to the I2CADR register (write operation). • The MCU writes the high byte of the EEPROM address into the I2CDAO register • Bit 3 (TXE) in the I2CSTA register is cleared (indicating busy). • The contents of the I2CADR register are transmitted to the device (preceded by start condition on SDA). • The contents of the I2CDAO register are transmitted to the device (EEPROM address). • Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register contents have been transmitted. EPROM [Low Byte] • The MCU writes the low byte of the EEPROM address into the I2CDAO register. • Bit 3 (TXE) in the I2CSTA register is cleared (indicates busy). • The contents of the I2CDAO register are transmitted to the device (EEPROM address). • Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register contents have been transmitted. EPROM [DATA]—31 Bytes • The data to be written to the EEPROM are written by the MCU into the I2CDAO register. • Bit 3 (TXE) in the I2CSTA register is cleared (indicates busy). • The contents of the I2CDAO register are transmitted to the device (EEPROM data). • Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register contents have been transmitted. • This operation repeats 31 times. EPROM [DATA]—Last Byte • The MCU sets bit 0 (SWR) in the I2CSTA register. This forces the I2C controller to generate a stop condition after the contents of the I2CDAO register are transmitted. • The MCU writes the last date byte to be written to the EEPROM, into the I2CDAO register. • Bit 3 (TXE) in the I2CSTA register is cleared (indicates busy). • The contents of the I2CDAO register are transmitted to EEPROM (EEPROM data). • Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register contents have been transmitted. • The I2C controller generates a stop condition after the contents of the I2CDAO register are transmitted. I2C Port 62 TUSB3410, TUSB3410I SLLS519H—January 2010 TUSB3410 Bootcode Flow SLLS519H—January 2010 TUSB3410, TUSB3410I 63 11 TUSB3410 Bootcode Flow 11.1 Introduction TUSB3410 bootcode is a program embedded in the 10k-byte boot ROM within the TUSB3410. This program is designed to load application firmware from either an external I2C memory device or USB host bootloader device driver. After the TUSB3410 finishes downloading, the bootcode releases its control to the application firmware. This section describes how the bootcode initializes the TUSB3410 device in detail. In addition, the default USB descriptor, I2C device header format, USB host driver firmware downloading format, and supported built-in USB vendor specific requests are listed for reference. Users should carefully follow the appropriate format to interface with the bootcode. Unsupported formats may cause unexpected results. The bootcode source code is also provided for programming reference. 11.2 Bootcode Programming Flow After power-on reset, the bootcode initializes the I2C and USB registers along with internal variables. The bootcode then checks to see if an I2C device is present and contains a valid signature. If an I2C device is present and contains a valid signature, the bootcode continues searching for descriptor blocks and then processes them if the checksum is correct. If application firmware was found, then the bootcode downloads it and releases the control to the application firmware. Otherwise, the bootcode connects to the USB and waits for host driver to download application firmware. Once firmware downloading is complete, the bootcode releases the control to the firmware. The following is the bootcode step-by-step operation. • Check if bootcode is in the application mode. This is the mode that is entered after application code is downloaded via either an I2C device or the USB. If the bootcode is in the application mode, then the bootcode releases the control to the application firmware. Otherwise, the bootcode continues. • Initialize all the default settings. − Call CopyDefaultSettings() routine. Set I2C to 400-kHz speed. − Call UsbDataInitialization() routine. Set bFUNADR = 0 Disconnect from USB (bUSBCTL = 0x00) Bootcode handles USB reset Copy predefined device, configuration, and string descriptors to RAM Disable all endpoints and enable USB interrupts (SETUP, RSTR, SUSR, and RESR) • Search for product signature − Check if valid signature is in I2C. If not, skip the I2C process. Read 2 bytes from address 0x0000 with type III and device address 0. Stop searching if valid signature is found. Read 2 bytes from address 0x0000 with type II and device address 4. Stop searching if valid signature is found. • If a valid I2C signature is found, then load the customized device, configuration and string descriptors from I2C EEPROM. − Process each descriptor block from I2C until end of header is found If the descriptor block contains device, configuration, or string descriptors, then the bootcode overwrites the default descriptors. TUSB3410 Bootcode Flow 64 TUSB3410, TUSB3410I SLLS519H—January 2010 If the descriptor block contains binary firmware, then the bootcode sets the header pointer to the beginning of the binary firmware in the I2C EEPROM. If the descriptor block is end of header, then the bootcode stops searching. • Enable global and USB interrupts and set the connection bit to 1. − Enable global interrupts by setting bit 7 (EA) within the SIE register (see Section 9.1.1) to 1. − Enable all internal peripheral interrupts by setting the EX0 bit within the SIE register to 1. − Connect to the USB by setting bit 7 (CONT) within the USBCNTL register (see Section 5.4) to 1. • Wait for any interrupt events until Get DEVICE DESCIPTOR setup packet arrives. − Suspend interrupt The idle bit in the MCU PCON register is set and suspend mode is entered. USB reset wakes up the microcontroller. − Resume interrupt Bootcode wakes up and waits for new USB requests. − Reset interrupt Call UsbReset() routine. − Setup interrupt Bootcode processes the request. − USB reboot request Disconnect from the USB by clearing bit 7 (CONT) in the USBCTL register and restart at address 0x0000. • Download firmware from I2C EEPROM − Disable global interrupts by clearing bit 7 (EA) within the SIE register − Load firmware to XDATA space if available. • Download firmware from the USB. − If no firmware is found in an I2C EEPROM, the USB host downloads firmware via output endpoint 1. − In the first data packet to output endpoint 1, the USB host driver adds 3 bytes before the application firmware in binary format. These three bytes are the LSB and MSB indicating the firmware size and followed by the arithmetic checksum of the binary firmware. • Release control to the application firmware. − Update the USB configuration and interface number. − Release control to application firmware. • Application firmware − Either disconnect from the USB or continue responding to USB requests. 11.3 Default Bootcode Settings The bootcode has its own predefined device, configuration, and string descriptors. These default descriptors should be used in evaluation only. They must not be used in the end-user product. 11.3.1 Device Descriptor The device descriptor provides the USB version that the device supports, device class, protocol, vendor and product identifications, strings, and number of possible configurations. The operation system (Windows, MAC, or Linux) reads this descriptor to decide which device driver should be used to communicate with this device. TUSB3410 Bootcode Flow SLLS519H—January 2010 TUSB3410, TUSB3410I 65 The bootcode uses 0x0451 (Texas Instruments) as the vendor ID and 0x3410 (TUSB3410) as the product ID. It also supports three different strings and one configuration. Table 11−1 lists the device descriptor. Table 11−1. Device Descriptor OFFSET (decimal) FIELD SIZE VALUE DESCRIPTION 0 bLength 1 0x12 Size of this descriptor in bytes 1 bDescriptorType 1 1 Device descriptor type 2 bcdUSB 2 0x0110 USB spec 1.1 4 bDeviceClass 1 0xFF Device class is vendor−specific 5 bDeviceSubClass 1 0 We have no subclasses. 6 bDeviceProtocol 1 0 We use no protocols. 7 bMaxPacketSize0 1 8 Max. packet size for endpoint zero 8 idVendor 2 0x0451 USB−assigned vendor ID = TI 10 idProduct 2 0x3410 TI part number = TUSB3410 12 bcdDevice 2 0x100 Device release number = 1.0 14 iManufacturer 1 1 Index of string descriptor describing manufacturer 15 iProducct 1 2 Index of string descriptor describing product 16 iSerialNumber 1 3 Index of string descriptor describing device’s serial number 17 bNumConfigurations 1 1 Number of possible configurations: 11.3.2 Configuration Descriptor The configuration descriptor provides the number of interfaces supported by this configuration, power configuration, and current consumption. The bootcode declares only one interface running in bus-powered mode. It consumes up to 100 mA at boot time. Table 11−2 lists the configuration descriptor. Table 11−2. Configuration Descriptor OFFSET (decimal) FIELD SIZE VALUE DESCRIPTION 0 bLength 1 9 Size of this descriptor in bytes. 1 bDescriptor Type 1 2 Configuration descriptor type 2 wTotalLength 2 25 = 9 + 9 + 7 Total length of data returned for this configuration. Includes the combined length of all descriptors (configuration, interface, endpoint, and class- or vendor-specific) returned for this configuration. 4 bNumInterfaces 1 1 Number of interfaces supported by this configuration 5 bConfigurationValue 1 1 Value to use as an argument to the SetConfiguration() request to select this configuration. 6 iConfiguration 1 0 Index of string descriptor describing this configuration. 7 bmAttributes 1 0x80 Configuration characteristics D7: Reserved (set to one) D6: Self-powered D5: Remote wakeup is supported D4−0: Reserved (reset to zero) 8 bMaxPower 1 0x32 This device consumes 100 mA. TUSB3410 Bootcode Flow 66 TUSB3410, TUSB3410I SLLS519H—January 2010 11.3.3 Interface Descriptor The interface descriptor provides the number of endpoints supported by this interface as well as interface class, subclass, and protocol. The bootcode supports only one endpoint and use its own class. Table 11−3 lists the interface descriptor. Table 11−3. Interface Descriptor OFFSET (decimal) FIELD SIZE VALUE DESCRIPTION 0 bLength 1 9 Size of this descriptor in bytes 1 bDescriptorType 1 4 Interface descriptor type 2 bInterfaceNumber 1 0 Number of interface. Zero-based value identifying the index in the array of concurrent interfaces supported by this configuration. 3 bAlternateSetting 1 0 Value used to select alternate setting for the interface identified in the prior field 4 bNumEndpoints 1 1 Number of endpoints used by this interface (excluding endpoint zero). If this value is zero, this interface only uses the default control pipe. 5 bInterfaceClass 1 0xFF The interface class is vendor specific. 6 bInterfaceSubClass 1 0 7 bInterfaceProtocol 1 0 8 iInterface 1 0 Index of string descriptor describing this interface 11.3.4 Endpoint Descriptor The endpoint descriptor provides the type and size of communication pipe supported by this endpoint. The bootcode supports only one output endpoint with the size of 64 bytes in addition to control endpoint 0 (required by all USB devices). Table 11−4 lists the endpoint descriptor. Table 11−4. Output Endpoint1 Descriptor OFFSET (decimal) FIELD SIZE VALUE DESCRIPTION 0 bLength 1 7 Size of this descriptor in bytes 1 bDescriptorType 1 5 Endpoint descriptor type 2 bEndpointAddress 1 0x01 Bit 3…0: The endpoint number Bit 7: Direction 0 = OUT endpoint 1 = IN endpoint 3 bmAttributes 1 2 Bit 1…0: Transfer type 10 = Bulk 11 = Interrupt 4 wMaxPacketSize 2 64 Maximum packet size this endpoint is capable of sending or receiving when this configuration is selected. 6 bInterval 1 0 Interval for polling endpoint for data transfers. Expressed in milliseconds. 11.3.5 String Descriptor The string descriptor contains data in the unicode format. It is used to show the manufacturers name, product model, and serial number in human readable format. The bootcode supports three strings. The first string is the manufacturers name. The second string is the product name. The third string is the serial number. Table 11−5 lists the string descriptor. TUSB3410 Bootcode Flow SLLS519H—January 2010 TUSB3410, TUSB3410I 67 Table 11−5. String Descriptor OFFSET (decimal) FIELD SIZE VALUE DESCRIPTION 0 bLength 1 4 Size of string 0 descriptor in bytes 1 bDescriptorType 1 0x03 String descriptor type 2 wLANGID[0] 2 0x0409 English 4 bLength 1 36 (decimal) Size of string 1 descriptor in bytes 5 bDescriptorType 1 0x03 String descriptor type 6 bString 2 ‘T’,0x00 Unicode, T is the first byte 8 2 ‘e’,0x00 Texas Instruments 10 2 ‘x’,0x00 12 2 ‘a’,0x00 14 2 ‘s’,0x00 16 2 ‘ ’,0x00 18 2 ‘I’,0x00 20 2 ‘n’,0x00 22 2 ‘s’,0x00 24 2 ‘t’,0x00 26 2 ‘r’,0x00 28 2 ‘u’,0x00 30 2 ‘m’,0x00 32 2 ‘e’,0x00 34 2 ‘n’,0x00 36 2 ‘t’,0x00 38 2 ‘s’,0x00 40 bLength 1 42 (decimal) Size of string 2 descriptor in bytes 41 bDescriptorType 1 0x03 STRING descriptor type 42 bString 2 ‘T’,0x00 UNICODE, T is first byte 44 2 ‘U’,0x00 TUSB3410 boot device 46 2 ‘S’,0x00 48 2 ‘B’,0x00 50 2 ‘3’,0x00 52 2 ‘4’,0x00 54 2 ‘1’,0x00 56 2 ‘0’,0x00 58 2 ‘ ‘,0x00 60 2 ‘B‘,0x00 62 2 ‘o’,0x00 64 2 ‘o’,0x00 66 2 ‘t’,0x00 TUSB3410 Bootcode Flow 68 TUSB3410, TUSB3410I SLLS519H—January 2010 Table 11−5. String Descriptor (Continued) OFFSET FIELD SIZE VALUE DESCRIPTION 68 2 ‘ ’,0x00 70 2 ‘D’,0x00 72 2 ‘e‘,0x00 74 2 ‘v’,0x00 76 2 ‘I,0x00 78 2 ‘c’,0x00 80 2 ‘e’,0x00 82 bLength 1 34 (decimal) Size of string 3 descriptor in bytes 84 bDescriptorType 1 0x03 STRING descriptor type 86 bString 2 r0,0x00 UNICODE 88 2 r1,0x00 R0 to rF are BCD of SERNUM0 to 90 2 r2,0x00 SERNUM7 registers. 16 digit hex 92 2 r3,0x00 16 digit hex numbers are created from 94 2 r4,0x00 SERNUM0 to SERNUM7 registers 96 2 r5,0x00 98 2 r6,0x00 100 2 r7,0x00 102 2 r8,0x00 104 2 r9,0x00 106 2 rA,0x00 108 2 rB,0x00 110 2 rC,0x00 112 2 rD,0x00 114 2 rE,0x00 116 2 rF,0x00 11.4 External I2C Device Header Format A valid header should contain a product signature and one or more descriptor blocks. The descriptor block contains the descriptor prefix and content. In the descriptor prefix, the data type, size, and checksum are specified to describe the content. The descriptor content contains the necessary information for the bootcode to process. The header processing routine always counts from the first descriptor block until the desired block number is reached. The header reads in the descriptor prefix with a size of 4 bytes. This prefix contains the type of block, size, and checksum. For example, if the bootcode would like to find the position of the third descriptor block, then it reads in the first descriptor prefix, calculates the position on the second descriptor prefix based on the size specified in the prefix. bootcode, then repeats the same calculation to find out the position of the third descriptor block. 11.4.1 Product Signature The product signature must be stored at the first 2 bytes within the I2C storage device. These 2 bytes must match the product number. The order of these 2 bytes must be the LSB first followed by the MSB. For example, the TUSB3410 is 0x3410. Therefore, the first byte must be 0x10 and the second byte must be 0x34. The TUSB3410 bootcode searches the first 2 bytes of the I2C device. If the first 2 bytes are not 0x10 and 0x34, then the bootcode skips the header processing. TUSB3410 Bootcode Flow SLLS519H—January 2010 TUSB3410, TUSB3410I 69 11.4.2 Descriptor Block Each descriptor block contains a prefix and content. The size of the prefix is always 4 bytes. It contains the data type, size, and checksum for data integrity. The descriptor content contains the corresponding information specified in the prefix. It could be as small as 1 byte or as large as 65535 bytes. The next descriptor immediately follows the previous descriptor. If there are no more descriptors, then an extra byte with a value of zero should be added to indicate the end of header. 11.4.2.1 Descriptor Prefix The first byte of the descriptor prefix is the data type. This tells the bootcode how to process the data in the descriptor content. The second and third bytes are the size of descriptor content. The second byte is the low byte of the size and the third byte is the high byte. The last byte is the 8-bit arithmetic checksum of descriptor content. 11.4.2.2 Descriptor Content Information stored in the descriptor content can be the USB information, firmware, or other type of data. The size of the content should be from 1 byte to 65535 bytes. 11.5 Checksum in Descriptor Block Each descriptor prefix contains one checksum of the descriptor content. If the checksum is wrong, the bootcode simply ignores the descriptor block. 11.6 Header Examples The header can be specified in different ways. The following descriptors show examples of the header format and the supported descriptor block. 11.6.1 TUSB3410 Bootcode Supported Descriptor Block The TUSB3410 bootcode supports the following descriptor blocks. • USB Device Descriptor • USB Configuration Descriptor • USB String Descriptor • Binary Firmware1 • Autoexec Binary Firmware2 11.6.2 USB Descriptor Header Table 11−6 contains the USB device, configuration, and string descriptors for the bootcode. The last byte is zero to indicate the end of header. 1 Binary firmware is loaded when the bootcode receives the first get device descriptor request from host. Downloading the firmware should either continue that request in the data stage or disconnect from the USB and then reconnect to the USB as a new device. 2 The bootcode loads this autoexec binary firmware before it connects to the USB. The firmware should connect to the USB once it is loaded. TUSB3410 Bootcode Flow 70 TUSB3410, TUSB3410I SLLS519H—January 2010 Table 11−6. USB Descriptors Header OFFSET TYPE SIZE VALUE DESCRIPTION 0 Signature0 1 0x10 FUNCTION_PID_L 1 Signature1 1 0x34 FUNCTION_PID_H 2 Data Type 1 0x03 USB device descriptor 3 Data Size (low byte) 1 0x12 The device descriptor is 18 (decimal) bytes. 4 Data Size (high byte) 1 0x00 5 Check Sum 1 0xCC Checksum of data below 6 bLength 1 0x12 Size of device descriptor in bytes 7 bDescriptorType 1 0x01 Device descriptor type 8 bcdUSB 2 0x0110 USB spec 1.1 10 bDeviceClass 1 0xFF Device class is vendor-specific 11 bDeviceSubClass 1 0x00 We have no subclasses. 12 bDeviceProtocol 1 0x00 We use no protocols 13 bMaxPacketSize0 1 0x08 Maximum packet size for endpoint zero 14 idVendor 2 0x0451 USB−assigned vendor ID = TI 16 idProduct 2 0x3410 TI part number = TUSB3410 18 bcdDevice 2 0x0100 Device release number = 1.0 20 iManufacturer 1 0x01 Index of string descriptor describing manufacturer 21 iProducct 1 0x02 Index of string descriptor describing product 22 iSerialNumber 1 0x03 Index of string descriptor describing device’s serial number 23 bNumConfigurations 1 0x01 Number of possible configurations: 24 Data Type 1 0x04 USB configuration descriptor 25 Data Size (low byte) 1 0x19 25 bytes 26 Data Size (high byte) 1 0x00 27 Check Sum 1 0xC6 Checksum of data below 28 bLength 1 0x09 Size of this descriptor in bytes 29 bDescriptorType 1 0x02 CONFIGURATION descriptor type 30 wTotalLength 2 25(0x19) = 9 + 9 + 7 Total length of data returned for this configuration. Includes the combined length of all descriptors (configuration, interface, endpoint, and class- or vendor-specific) returned for this configuration. 32 bNumInterfaces 1 0x01 Number of interfaces supported by this configuration 33 bConfigurationValue 1 0x01 Value to use as an argument to the SetConfiguration() request to select this configuration 34 iConfiguration 1 0x00 Index of string descriptor describing this configuration. 35 bmAttributes 1 0xE0 Configuration characteristics D7: Reserved (set to one) D6: Self-powered D5: Remote wakeup is supported D4−0: Reserved (reset to zero) 36 bMaxPower 1 0x64 This device consumes 100 mA. 37 bLength 1 0x09 Size of this descriptor in bytes 38 bDescriptorType 1 0x04 INTERFACE descriptor type 39 bInterfaceNumber 1 0x00 Number of interface. Zero-based value identifying the index in the array of concurrent interfaces supported by this configuration. TUSB3410 Bootcode Flow SLLS519H—January 2010 TUSB3410, TUSB3410I 71 Table 11−6. USB Descriptors Header (Continued) OFFSET TYPE SIZE VALUE DESCRIPTION 40 bAlternateSetting 1 0x00 Value used to select alternate setting for the interface identified in the prior field 41 bNumEndpoints 1 0x01 Number of endpoints used by this interface (excluding endpoint zero). If this value is zero, this interface only uses the default control pipe. 42 bInterfaceClass 1 0xFF The interface class is vendor specific. 43 bInterfaceSubClass 1 0x00 44 bInterfaceProtocol 1 0x00 45 iInterface 1 0x00 Index of string descriptor describing this interface 46 bLength 1 0x07 Size of this descriptor in bytes 47 bDescriptorType 1 0x05 ENDPOINT descriptor type 48 bEndpointAddress 1 0x01 Bit 3…0: The endpoint number Bit 7: Direction 0 = OUT endpoint 1 = IN endpoint 49 bmAttributes 1 0x02 Bit 1…0: Transfer Type 10 = Bulk 11 = Interrupt 50 wMaxPacketSize 2 0x0040 Maximum packet size this endpoint is capable of sending or receiving when this configuration is selected. 52 bInterval 1 0x00 Interval for polling endpoint for data transfers. Expressed in milliseconds. 53 Data Type 1 0x05 USB String descriptor 54 Data Size (low byte) 1 0x1A 26(0x1A) = 4 + 6 + 6 + 10 55 Data Size (high byte) 1 0x00 56 Check Sum 1 0x50 Checksum of data below 57 bLength 1 0x04 Size of string 0 descriptor in bytes 58 bDescriptorType 1 0x03 STRING descriptor type 59 wLANGID[0] 2 0x0409 English 61 bLength 1 0x06 Size of string 1 descriptor in bytes 62 bDescriptorType 1 0x03 STRING descriptor type 63 bString 2 ‘T’,0x00 UNICODE, ‘T’ is the first byte. 65 2 ‘I’,0x00 TI = 0x54, 0x49 67 bLength 1 0x06 Size of string 2 descriptor in bytes 68 bDescriptorType 1 0x03 STRING descriptor type 69 bString 2 ‘u’,0x00 UNICODE, ‘u’ is the first byte. 71 2 ‘C’,0x00 ‘uC’ = 0x75, 0x43 73 bLength 1 0x0A Size of string 3 descriptor in bytes 74 bDescriptorType 1 0x03 STRING descriptor type 75 bString 2 ‘3’,0x00 UNICODE, ‘T’ is the first byte. 77 2 ‘4’,0x00 ‘3410’ = 0x33, 0x34, 0x31, 0x30 79 2 ‘1’,0x00 81 2 ‘0’,0x00 83 Data Type 1 0x00 End of header 11.6.3 Autoexec Binary Firmware If the application requires firmware loaded prior to establishing a USB connection, then the following header can be used. The bootcode loads the firmware and releases control to the firmware directly without connecting to the USB. However, per the USB specification requirement, any USB device should connect to the bus and respond to the host within the first 100 ms. Therefore, if downloading time is more than 100 ms, the USB and header speed descriptor blocks should be added before the autoexec binary firmware. Table 11−7 shows an example of autoexec binary firmware header. TUSB3410 Bootcode Flow 72 TUSB3410, TUSB3410I SLLS519H—January 2010 Table 11−7. Autoexec Binary Firmware OFFSET TYPE SIZE VALUE DESCRIPTION 0x0000 Signature0 1 0x10 FUNCTION_PID_L 0x0001 Signature1 1 0x34 FUNCTION_PID_H 0x0002 Data Type 1 0x07 Autoexec binary firmware 0x0003 Data Size (low byte) 1 0x67 0x4567 bytes of application code 0x0004 Data Size (high byte) 1 0x45 0x0005 Check Sum 1 0xNN Checksum of the following firmware 0x0006 Program 0x4567 Binary application code 0x456d Data Type 1 0x00 End of header 11.7 USB Host Driver Downloading Header Format If firmware downloading from the USB host driver is desired, then the USB host driver must follow the format in Table 11−8. The Texas Instruments bootloader driver generates the proper format. Therefore, users only need to provide the binary image of the application firmware for the Bootloader. If the checksum is wrong, then the bootcode disconnects from the USB and waits before it reconnects to the USB. Table 11−8. Host Driver Downloading Format OFFSET TYPE SIZE VALUE DESCRIPTION 0x0000 Firmware size (low byte) 1 0xXX Application firmware size 0x0001 Firmware size (low byte) 1 0xYY 0x0002 Checksum 1 0xZZ Checksum of binary application code 0x0003 Program 0xYYXX Binary application code 11.8 Built-In Vendor Specific USB Requests The bootcode supports several vendor specific USB requests. These requests are primarily for internal testing only. These functions should not be used in normal operation. 11.8.1 Reboot The reboot command forces the bootcode to execute. bmRequestType USB_REQ_TYPE_DEVICE | USB_REQ_TYPE_VENDOR | USB_REQ_TYPE_OUT 01000000b bRequest BTC_REBOOT 0x85 wValue None 0x0000 wIndex None 0x0000 wLength None 0x0000 Data None 11.8.2 Force Execute Firmware The force execute firmware command requests the bootcode to execute the downloaded firmware unconditionally. bmRequestType USB_REQ_TYPE_DEVICE | USB_REQ_TYPE_VENDOR | USB_REQ_TYPE_OUT 01000000b bRequest BTC_FORCE_EXECUTE_FIRMWARE 0x8F wValue None 0x0000 wIndex None 0x0000 wLength None 0x0000 Data None TUSB3410 Bootcode Flow SLLS519H—January 2010 TUSB3410, TUSB3410I 73 11.8.3 External Memory Read The bootcode returns the content of the specified address. bmRequestType USB_REQ_TYPE_DEVICE | USB_REQ_TYPE_VENDOR | USB_REQ_TYPE_IN 11000000b bRequest BTC_EXETERNAL_MEMORY_READ 0x90 wValue None 0x0000 wIndex Data address 0xNNNN (From 0x0000 to 0xFFFF) wLength 1 byte 0x0001 Data Byte in the specified address 0xNN 11.8.4 External Memory Write The external memory write command tells the bootcode to write data to the specified address. bmRequestType USB_REQ_TYPE_DEVICE | USB_REQ_TYPE_VENDOR | USB_REQ_TYPE_OUT 01000000b bRequest BTC_EXETERNAL_MEMORY_WRITE 0x91 wValue HI: 0x00 LO: Data 0x00NN wIndex Data address 0xNNNN (From 0x0000 to 0xFFFF) wLength None 0x0000 Data None 11.8.5 I2C Memory Read The bootcode returns the content of the specified address in I2C EEPROM. In the wValue field, the I2C device number is from 0x00 to 0x07 in the high byte. The memory type is from 0x01 to 0x03 for CAT I to CAT III devices. If bit 7 of bValueL is set, then the bus speed is 400 kHz. This request is also used to set the device number and speed before the I2C write request. bmRequestType USB_REQ_TYPE_DEVICE | USB_REQ_TYPE_VENDOR | USB_REQ_TYPE_IN 11000000b bRequest BTC_I2C_MEMORY_READ 0x92 wValue HI: I2C device number LO: Memory type bit[1:0] Speed bit[7] 0xXXYY wIndex Data address 0xNNNN (From 0x0000 to 0xFFFF) wLength 1 byte 0x0001 Data Byte in the specified address 0xNN 11.8.6 I2C Memory Write The I2C memory write command tells the bootcode to write data to the specified address. bmRequestType USB_REQ_TYPE_DEVICE | USB_REQ_TYPE_VENDOR | USB_REQ_TYPE_OUT 01000000b bRequest BTC_I2C_MEMORY_WRITE 0x93 wValue HI: should be zero LO: Data 0x00NN wIndex Data address 0xNNNN (From 0x0000 to 0xFFFF) wLength None 0x0000 Data None TUSB3410 Bootcode Flow 74 TUSB3410, TUSB3410I SLLS519H—January 2010 11.8.7 Internal ROM Memory Read The bootcode returns the byte of the specified address within the boot ROM. That is, the binary code of the bootcode. bmRequestType USB_REQ_TYPE_DEVICE | USB_REQ_TYPE_VENDOR | USB_REQ_TYPE_OUT 01000000b bRequest BTC_INTERNAL_ROM_MEMORY_READ 0x94 wValue None 0x0000 wIndex Data address 0xNNNN (From 0x0000 to 0xFFFF) wLength 1 byte 0x0001 Data Byte in the specified address 0xNN 11.9 Bootcode Programming Consideration 11.9.1 USB Requests For each USB request, the bootcode follows the steps below to ensure proper operation of the hardware. 1. Determine the direction of the request by checking the MSB of the bmRequestType field and set the DIR bit within the USBCTL register accordingly. 2. Decode the command 3. If another setup is pending, then return. Otherwise, serve the request. 4. Check again, if another setup is pending then go to step 2. 5. Clear the interrupt source and then the VECINT register. 6. Exit the interrupt routine. 11.9.1.1 USB Request Transfers The USB request consist of three types of transfers. They are control-read-with-data-stage, control-writewithout- data-stage, and control-write-with-data-stage transfer. In each transfer, arrows indicate interrupts generated after receiving the setup packet, in or out token. Figure 11−1 and Figure 11−2 show the USB data flow and how the hardware and firmware respond to the USB requests. Table 11−9 and Table 11−10 lists the bootcode reposes to the standard USB requests. TUSB3410 Bootcode Flow SLLS519H—January 2010 TUSB3410, TUSB3410I 75 Setup (0) IN(1) IN(0) IN(0/1) OUT(1) INT INT INT INT More Packets Setup Stage Data Stage StatusStage 1.Hardware generates interrupt to MCU. 2.Hardware sets NAK on both the IN and the OUT endpoints. 3.Set DIR bit in USBCTL to indicate the data direction. 4.Decode the setup packet. 5.If another setup packet arrives, abandon this one. 6.Execute appropriate routine per a) Clear NAK bit in OUT endpoint. b) Copy data to IN endpoint buffer and set byte count. 1.Hardware generates interrupt to MCU. 2.Copy data to IN buffer. 3.Clear the NAK bit. 4.If all data has been sent, stall input endpoint. 1.Hardware does NOT generate interrupt to MCU. Table 11-9. Figure 11−1. Control Read Transfer Table 11−9. Bootcode Response to Control Read Transfer CONTROL READ ACTION IN BOOTCODE Get status of device Return power and remote wakeup settings Get status of interface Return 2 bytes of zeros Get status of endpoint Return endpoint status Get descriptor of device Return device descriptor Get descriptor of configuration Return configuration descriptor Get descriptor of string Return string descriptor Get descriptor of interface Stall Get descriptor of endpoint Stall Get configuration Return bConfiguredNumber value Get interface Return bInterfaceNumber value TUSB3410 Bootcode Flow 76 TUSB3410, TUSB3410I SLLS519H—January 2010 Setup (0) IN(1) INT Setup Stage Status Stage 1.Hardware generates interrupt to MCU. 2.Hardware sets NAK on both the IN and the OUT endpoints. 3.Set DIR bit in USBCTL to indicate the data direction. 4.Decode the setup packet. 5.If another setup packet arrives, abandon this one. 6.Execute appropriate routine per 1.Hardware does NOT generates interrupt to MCU. Table 11−10. Figure 11−2. Control Write Transfer Without Data Stage Table 11−10. Bootcode Response to Control Write Without Data Stage CONTROL WRITE WITHOUT DATA STAGE ACTION IN BOOTCODE Clear feature of device Stall Clear feature of interface Stall Clear feature of endpoint Clear endpoint stall Set feature of device Stall Set feature of interface Stall Set feature of endpoint Stall endpoint Set address Set device address Set descriptor Stall Set configuration Set bConfiguredNumber Set interface SetbInterfaceNumber Sync. frame Stall 11.9.1.2 Interrupt Handling Routine The higher-vector number has a higher priority than the lower-vector number. Table 11−11 lists all the interrupts and source of interrupts. TUSB3410 Bootcode Flow SLLS519H—January 2010 TUSB3410, TUSB3410I 77 Table 11−11. Vector Interrupt Values and Sources G[3:0] (Hex) I[2:0] (Hex) VECTOR (Hex) INTERRUPT SOURCE INTERRUPT SOURCE SHOULD BE CLEARED 0 0 00 No Interrupt No Source 1 1 12 Output−endpoint−1 VECINT register 1 2 14 Output−endpoint−2 VECINT register 1 3 16 Output−endpoint−3 VECINT register 1 4−7 18→1E Reserved 2 1 22 Input−endpoint−1 VECINT register 2 2 24 Input−endpoint−2 VECINT register 2 3 26 Input−endpoint−3 VECINT register 2 4−7 28→2E Reserved 3 0 30 STPOW packet received USBSTA/ VECINT registers 3 1 32 SETUP packet received USBSTA/ VECINT registers 3 2 34 Reserved 3 3 36 Reserved 3 4 38 RESR interrupt USBSTA/ VECINT registers 3 5 3A SUSR interrupt USBSTA/ VECINT registers 3 6 3C RSTR interrupt USBSTA/ VECINT registers 3 7 3E Wakeup interrupt USBSTA/ VECINT registers 4 0 40 I2C TXE interrupt VECINT register 4 1 42 I2C TXE interrupt VECINT register 4 2 44 Input−endpoint−0 VECINT register 4 3 46 Output−endpoint−0 VECINT register 4 4−7 48→4E Reserved 5 0 50 UART1 status interrupt LSR/VECNT register 5 1 52 UART1 modern interrupt LSR/VECINT register 5 2−7 54→5E Reserved 6 0 60 UART1 RXF interrupt LSR/VECNT register 6 1 62 UART1 TXE interrupt LSR/VECINT register 6 2−7 64→6E Reserved 7 0−7 70→7E Reserved 8 0 80 DMA1 interrupt DMACSR/VECINT register 8 1 82 Reserved 8 2 84 DMA3 interrupt DMACSR/VECINT register 8 3−7 86→7E Reserved 9−15 0−7 90→FE Reserved 11.9.2 Hardware Reset Introduced by the Firmware This feature can be used during a firmware upgrade. Once the upgrade is complete, the application firmware disconnects from the USB for at least 200 ms to ensure the operating system has unloaded the device driver. The firmware then enables the watchdog timer (enabled by default after power-on reset) and enters an endless loop without resetting the watchdog timer. Once the watchdog timer times out, it resets the TUSB3410 similar to a power on reset. The bootcode takes control and executes the power-on boot sequence. TUSB3410 Bootcode Flow 78 TUSB3410, TUSB3410I SLLS519H—January 2010 11.10 File Listings The TUSB3410 Bootcode Source Listing (SLLC139.zip) is available under the TUSB3410 product page on the TI website. Look under the Related Software link. The files listed below are included in the zip file. • Types.h • USB.h • TUSB3410.h • Bootcode.h • Watchdog.h • Bootcode.c • Bootlsr.c • BootUSB.c • Header.h • Header.c • I2c.h • I2c.c Electrical Specifications SLLS519H—January 2010 TUSB3410, TUSB3410I 79 12 Electrical Specifications 12.1 Absolute Maximum Ratings† Supply voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 3.6 V Input voltage, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V Output voltage, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V Input clamp current, IIK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Output clamp current, IOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 12.2 Commercial Operating Condition (3.3 V) PARAMETER MIN TYP MAX UNIT VCC Supply voltage 3 3.3 3.6 V VI Input voltage 0 VCC V V High level input voltage TTL 2 VCC VIH High-V CMOS 0.7 × VCC VCC V Low level input voltage TTL 0 0.8 VIL Low-V CMOS 0 0.2 × VCC T Operating temperature Commercial range 0 70 °C TA Industrial range −40 85 °C 12.3 Electrical Characteristics TA = 25°C, VCC = 3.3 V ±5%, VSS = 0 V PARAMETER TEST CONDITIONS MIN TYP MAX UNIT V High level output voltage TTL I 4 mA VCC – 0.5 VOH High-V CMOS IOH = −VCC – 0.5 V Low level output voltage TTL I 4 mA 0.5 VOL Low-V CMOS IOL = 0.5 V Positive threshold voltage TTL V V 1.8 VIT+ V CMOS VI = VIH 0.7 × VCC V Negative threshold voltage TTL V V 0.8 1.8 VIT− V CMOS VI = VIH 0.2 × VCC V Hysteresis (V V ) TTL V V 0.3 0.7 Vhys VIT+ − VIT−) V CMOS VI = VIH 0.17 × VCC 0.3 × VCC I High level input current TTL V V ±20 IIH High-A CMOS VI = VIH ±1 μA I Low level input current TTL V V ±20 IIL Low-A CMOS VI = VIL ±1 μA IOZ Output leakage current (Hi-Z) VI = VCC or VSS ±20 μA IOL Output low drive current 0.1 mA IOH Output high drive current 0.1 mA I Supply current (operating) Serial data at 921.6 k 15 mA ICC Supply current (suspended) 200 μA Electrical Specifications 80 TUSB3410, TUSB3410I SLLS519H—January 2010 Electrical Characteristics (continued) TA = 25°C, VCC = 3.3 V ±5%, VSS = 0 V PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Clock duty cycle‡ 50% Jitter specification‡ ±100 ppm CI Input capacitance 18 pF CO Output capacitance 10 pF ‡ Applies to all clock outputs Application Notes SLLS519H—January 2010 TUSB3410, TUSB3410I 81 13 Application Notes 13.1 Crystal Selection The TUSB3410 requires a 12-MHz clock source to work properly. This clock source can be a crystal placed across the X1 and X2 terminals. A parallel resonant crystal is recommended. Most parallel resonant crystals are specified at a frequency with a load capacitance of 18 pF. This load can be realized by placing 33-pF capacitors from each end of the crystal to ground. Together with the input capacitance of the TUSB3410 and stray board capacitance, this provides close to two 36-pF capacitors in series to emulate the 18-pF load requirement. Note, that when using a crystal, it takes about 2 ms after power up for a stable clock to be produced. When using a clock oscillator, the signal applied to the X1/CLKI terminal must not exceed 1.8 V. In this configuration, the X2 terminal is unconnected. TUSB3410 X1/CLKI 33 pF 12 MHz X2 33 pF Figure 13−1. Crystal Selection 13.2 External Circuit Required for Reliable Bus Powered Suspend Operation TI has found a potential problem with the action of the SUSPEND output terminal immediately after power on. In some cases the SUSPEND terminal can power up asserted high. When used in a bus powered application this can cause a problem because the VREGEN input is usually connected to the SUSPEND output. This in turn causes the internal 1.8-V voltage regulator to shut down, which means an external crystal may not have time to begin oscillating, thus the device will not initialize itself correctly. TI has determined that using components R2 and D1 (rated to 25 mA) in the circuit shown below can be used as a workaround. Note that R1 and C1 are required components for proper reset operation, unless the reset signal is provided by another means. Note that use of an external oscillator (1.8-V output) versus a crystal would avoid this situation. Self-powered applications would probably not see this problem because the VREGEN input would likely be tied low, enabling the internal 1.8-V regulator at all times. TUSB3410 SUSPEND D1 VREGEN RESET R2 32 kΩ C1 1 μF 3.3 V R1 15 kΩ Figure 13−2. External Circuit Application Notes 82 TUSB3410, TUSB3410I SLLS519H—January 2010 13.3 Wakeup Timing (WAKEUP or RI/CP Transitions) The TUSB3410 can be brought out of the suspended state, or woken up, by a command from the host. The TUSB3410 also supports remote wakeup and can be awakened by either of two input signals. A low pulse on the WAKEUP terminal or a low-to-high transition on the RI/CP terminal wakes the device up. Note that for reliable operation, either condition must persist for approximately 3 ms minimum. This allows time for the crystal to power up since in the suspend mode the crystal interface is powered down. The state of the WAKEUP or RI/CP terminal is then sampled by the clock to verify there was a valid wakeup event. 13.4 Reset Timing There are three requirements for the reset signal timing. First, the minimum reset pulse duration is 100 μs. At power up, this time is measured from the time the power ramps up to 90% of the nominal VCC until the reset signal exceeds 1.2 V. The second requirement is that the clock must be valid during the last 60 μs of the reset window. The third requirement is that, according to the USB specification, the device must be ready to respond to the host within 100 ms. This means that within the 100-ms window, the device must come out of reset, load any pertinent data from the I2C EEPROM device, and transfer execution to the application firmware if any is present. Because the latter two events can require significant time, the amount of which can change from system to system, TI recommends having the device come out of reset within 30 ms, leaving 70 ms for the other events to complete. This means the reset signal must rise to 1.8 V within 30 ms. These requirements are depicted in Figure 13−3. Notice that when using a 12-MHz crystal, the clock signal may take several milliseconds to ramp up and become valid after power up. Therefore, the reset window may need to be elongated up to 10 ms or more to ensure that there is a 60-μs overlap with a valid clock. CLK RESET t VCC 90% 3.3 V 1.2 V 0 V >60 μs 100 μs < RESET TIME 1.8 V RESET TIME < 30 ms Figure 13−3. Reset Timing PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2014 Addendum-Page 1 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples TUSB3410IRHB ACTIVE VQFN RHB 32 73 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 3410I TUSB3410IRHBG4 ACTIVE VQFN RHB 32 73 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 3410I TUSB3410IRHBR ACTIVE VQFN RHB 32 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 3410I TUSB3410IRHBRG4 ACTIVE VQFN RHB 32 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 3410I TUSB3410IRHBT ACTIVE VQFN RHB 32 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 3410I TUSB3410IVF ACTIVE LQFP VF 32 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 TUSB3410I TUSB3410IVFG4 ACTIVE LQFP VF 32 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 TUSB3410I TUSB3410RHB ACTIVE VQFN RHB 32 73 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 0 to 70 3410 TUSB3410RHBG4 ACTIVE VQFN RHB 32 73 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 0 to 70 3410 TUSB3410RHBR ACTIVE VQFN RHB 32 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 0 to 70 3410 TUSB3410RHBRG4 ACTIVE VQFN RHB 32 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 0 to 70 3410 TUSB3410RHBT ACTIVE VQFN RHB 32 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 0 to 70 3410 TUSB3410VF ACTIVE LQFP VF 32 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR 0 to 70 TUSB3410 TUSB3410VFG4 ACTIVE LQFP VF 32 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR 0 to 70 TUSB3410 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2014 Addendum-Page 2 (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TUSB3410 : • Automotive: TUSB3410-Q1 NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant TUSB3410IRHBR VQFN RHB 32 3000 330.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 TUSB3410IRHBT VQFN RHB 32 250 180.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 TUSB3410RHBR VQFN RHB 32 3000 330.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 TUSB3410RHBT VQFN RHB 32 250 180.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2 PACKAGE MATERIALS INFORMATION www.ti.com 27-Jul-2013 Pack Materials-Page 1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TUSB3410IRHBR VQFN RHB 32 3000 338.1 338.1 20.6 TUSB3410IRHBT VQFN RHB 32 250 210.0 185.0 35.0 TUSB3410RHBR VQFN RHB 32 3000 338.1 338.1 20.6 TUSB3410RHBT VQFN RHB 32 250 210.0 185.0 35.0 PACKAGE MATERIALS INFORMATION www.ti.com 27-Jul-2013 Pack Materials-Page 2 MECHANICAL DATA MTQF002B – JANUARY 1995 – REVISED MAY 2000 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 VF (S-PQFP-G32) PLASTIC QUAD FLATPACK 4040172/D 04/00 Gage Plane Seating Plane 1,60 MAX 1,45 1,35 8,80 9,20 SQ 0,05 MIN 0,45 0,75 0,25 0,13 NOM 5,60 TYP 1 32 7,20 6,80 24 25 SQ 8 9 17 16 0,25 0,45 0,10 0°–7° 0,80 0,20 M NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated DB OR PW PACKAGE (TOP VIEW) 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 EN C1+ V+ C1− C2+ C2− V− RIN FORCEOFF VCC GND DOUT FORCEON DIN INVALID ROUT MAX3221 www.ti.com SLLS348N –JUNE 1999–REVISED JANUARY 2014 MAX3221 3-V to 5.5-V Multichannel RS-232 Line Driver/Receiver With ±15-kV ESD Protection Check for Samples: MAX3221 1FEATURES DESCRIPTION • RS-232 Bus-Pin ESD Protection Exceeds The MAX3221 device consists of one line driver, one ±15 kV Using Human-Body Model (HBM) line receiver, and a dual charge-pump circuit with ±15-kV ESD protection pin to pin (serial-port • Meets or Exceeds the Requirements of connection pins, including GND). The device meets TIA/EIA-232-F and ITU V.28 Standards the requirements of TIA/EIA-232-F and provides the • Operates With 3-V to 5.5-V VCC Supply electrical interface between an asynchronous • Operates Up To 250 kbit/s communication controller and the serial-port connector. The charge pump and four small external • One Driver and One Receiver capacitors allow operation from a single 3-V to 5.5-V • Low Standby Current: 1 μA Typical supply. These devices operate at data signaling rates • External Capacitors: 4 × 0.1 μF up to 250 kbit/s and a maximum of 30-V/μs driver output slew rate. • Accepts 5-V Logic Input With 3.3-V Supply • Alternative High-Speed Pin-Compatible Flexible control options for power management are Device (1 Mbit/s) available when the serial port is inactive. The auto- powerdown feature functions when FORCEON is low – SNx5C3221 and FORCEOFF is high. During this mode of • Auto-Powerdown Feature Automatically operation, if the device does not sense a valid RS- Disables Drivers for Power Savings 232 signal on the receiver input, the driver output is disabled. If FORCEOFF is set low and EN is high, APPLICATIONS both the driver and receiver are shut off, and the supply current is reduced to 1 μA. Disconnecting the • Battery-Powered, Hand-Held, and Portable serial port or turning off the peripheral drivers causes Equipment the auto-powerdown condition to occur. Auto• PDAs and Palmtop PCs powerdown can be disabled when FORCEON and • Notebooks, Subnotebooks, and Laptops FORCEOFF are high. With auto-powerdown enabled, the device is activated automatically when a valid • Digital Cameras signal is applied to the receiver input. The INVALID • Mobile Phones and Wireless Devices output notifies the user if an RS-232 signal is present at the receiver input. INVALID is high (valid data) if the receiver input voltage is greater than 2.7 V or less than −2.7 V, or has been between −0.3 V and 0.3 V for less than 30 μs. INVALID is low (invalid data) if the receiver input voltage is between −0.3 V and 0.3 V for more than 30 μs. Refer to Figure 5 for receiver input levels. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Copyright © 1999–2014, Texas Instruments Incorporated Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. DIN DOUT Auto-powerdown INVALID RIN FORCEOFF FORCEON ROUT EN 11 16 9 13 10 8 1 12 MAX3221 SLLS348N –JUNE 1999–REVISED JANUARY 2014 www.ti.com This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. Function Tables xxx Each Driver(1) INPUTS DIN FORCEON FORCEOFF VALID RIN RS-232 OUPUT DOUT DRIVER STATUS LEVEL X X L X Z Powered off L H H X H Normal operation H H H X L with auto-powerdown disabled L L H Yes H Normal operation H L H Yes L with auto-powerdown enabled L L H No Z Powered off by autoH L H No Z powerdown feature (1) H = high level, L = low level, X = irrelevant, Z = high impedance Each Receiver(1) INPUTS OUTPUT ROUT RIN EN VALID RIN RS-232 LEVEL L L X H H L X L X H X Z Open L No H (1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = disconnected input or connected driver off Logic Diagram (Positive Logic) 2 Submit Documentation Feedback Copyright © 1999–2014, Texas Instruments Incorporated Product Folder Links :MAX3221 MAX3221 www.ti.com SLLS348N –JUNE 1999–REVISED JANUARY 2014 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) MIN MAX UNIT VCC Supply voltage range(2) –0.3 6 V V+ Positive output supply voltage range(2) –0.3 7 V V– Negative output supply voltage range(2) 0.3 –7 V V+ – V– Supply voltage difference(2) 13 V Driver (FORCEOFF, FORCEON, EN) –0.3 6 VI Input voltage range V Receiver –25 25 Driver –13.2 13.2 VO Output voltage range V Receiver (INVALID) –0.3 VCC + 0.3 DB package 82 θJA Package thermal impedance(3) (4) °C/W PW package 108 TJ Operating virtual junction temperature 150 °C Tstg Storage temperature range –65 150 °C (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) All voltages are with respect to network GND. (3) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability. (4) The package thermal impedance is calculated in accordance with JESD 51-7. Recommended Operating Conditions (see Figure 6)(1) MIN NOM MAX UNIT VCC = 3.3 V 3 3.3 3.6 Supply voltage V VCC = 5 V 4.5 5 5.5 DIN, FORCEOFF, VCC = 3.3 V 2 VIH Driver high-level input voltage FORCEON, EN V VCC = 5 V 2.4 V DIN, FORCEOFF, IL Driver low-level input voltage FORCEON, EN 0.8 V Driver input voltage DIN, FORCEOFF, 0 5.5 VI FORCEON, EN V Receiver input voltage –25 25 MAX3221C 0 70 TA Operating free-air temperature °C MAX3221I –40 85 (1) Test conditions are C1−C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2−C4 = 0.33 μF at VCC = 5 V ± 0.5 V. Copyright © 1999–2014, Texas Instruments Incorporated Submit Documentation Feedback 3 Product Folder Links :MAX3221 MAX3221 SLLS348N –JUNE 1999–REVISED JANUARY 2014 www.ti.com Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 6) PARAMETER TEST CONDITIONS MIN TYP(2) MAX UNIT I FORCEOFF, FORCEON, I Input leakage current EN ±0.01 ±1 μA Auto-powerdown No load, FORCEOFF and 0.3 1 mA disabled FORCEON at VCC I Powered off No load, FORCEOFF at GND 1 10 CC Supply current No load, VCC = 3.3 V to 5 V No load, FORCEOFF at VCC, μA Auto-powerdown enabled FORCEON at GND, 1 10 All RIN are open or grounded (1) Test conditions are C1−C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2−C4 = 0.33 μF at VCC = 5 V ± 0.5 V. (2) All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. Driver Section Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 6) PARAMETER TEST CONDITIONS MIN TYP(2) MAX UNIT VOH High-level output voltage DOUT at RL = 3 kΩ to GND, DIN = GND 5 5.4 V VOL Low-level output voltage DOUT at RL = 3 kΩ to GND, DIN = VCC –5 –5.4 V IIH High-level input current VI = VCC ±0.01 ±1 μA IIL Low-level input current VI at GND ±0.01 ±1 μA VCC = 3.6 V VO = 0 V ±35 ±60 IOS Short-circuit output current(3) mA VCC = 5.5 V VO = 0 V ±35 ±60 rO Output resistance VCC, V+, and V– = 0 V VO = ±2 V 300 10M Ω VO = ±12 V, ±25 VCC = 3 V to 3.6 V Ioff Output leakage current FORCEOFF = GND μA VO = ±12 V, ±25 VCC = 4.5 V to 5.5V (1) Test conditions are C1−C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2−C4 = 0.33 μF at VCC = 5 V ± 0.5 (2) All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. (3) Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time. Switching Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 6) PARAMETER TEST CONDITIONS MIN TYP(2) MAX UNIT Maximum data rate CL = 1000 pF, RL = 3 kΩ, 150 250 kbit/s See Figure 1 t CL = 150 to 2500 pF, RL = 3 kΩ to 7 kΩ, sk(p) Pulse skew(3) See Figure 2 100 ns Slew rate, transition region VCC = 3.3 V, CL = 150 to 1000 pF 6 30 SR(tr) (see Figure 1) R V/μs L = 3 kΩ to 7 kΩ CL = 150 to 2500 pF 4 30 (1) Test conditions are C1−C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2−C4 = 0.33 μF at VCC = 5 V ± 0.5 V. (2) All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. (3) Pulse skew is defined as |tPLH − tPHL| of each channel of the same device. ESD Protection TERMINAL TEST CONDITIONS TYP UNIT NAME NO DOUT 13 HBM ±15 kV 4 Submit Documentation Feedback Copyright © 1999–2014, Texas Instruments Incorporated Product Folder Links :MAX3221 MAX3221 www.ti.com SLLS348N –JUNE 1999–REVISED JANUARY 2014 Receiver Section Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 6) PARAMETER TEST CONDITIONS MIN TYP(2) MAX UNIT VOH High-level output voltage IOH = –1 mA VCC – 0.6 VCC – 0.1 V VOL Low-level output voltage IOL = 1.6 mA 0.4 V VCC = 3.3 V 1.5 2.4 VIT+ Positive-going input threshold voltage V VCC = 5 V 1.8 2.4 VCC = 3.3 V 0.6 1.1 VIT– Negative-going input threshold voltage V VCC = 5 V 0.8 1.4 Vhys Input hysteresis (VIT+ – VIT–) 0.5 V Ioff Output leakage current FORCEOFF = 0 V ±0.05 ±10 μA ri Input resistance VI = ±3 V to ±25 V 3 5 7 kΩ (1) Test conditions are C1−C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2−C4 = 0.33 μF at VCC = 5 V ± 0.5 V. (2) All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. Switching Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 3) PARAMETER TEST CONDITIONS MIN TYP(2) MAX UNIT t CL = 150 pF, PLH Propagation delay time, low- to high-level output See Figure 3 150 ns t CL = 150 pF, PHL Propagation delay time, high- to low-level output See Figure 3 150 ns t CL = 150 pF, RL = 3kΩ, en Output enable time See Figure 4 200 ns t CL = 150 pF, RL = 3kΩ, dis Output disable time See Figure 4 200 ns tsk(p) Pulse skew(3) See Figure 3 50 ns (1) Test conditions are C1−C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2−C4 = 0.33 μF at VCC = 5 V ± 0.5 V. (2) All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. (3) Pulse skew is defined as |tPLH − tPHL| of each channel of the same device. ESD Protection TERMINAL TEST CONDITIONS TYP UNIT NAME NO RIN 13 HBM ±15 kV Copyright © 1999–2014, Texas Instruments Incorporated Submit Documentation Feedback 5 Product Folder Links :MAX3221 MAX3221 SLLS348N –JUNE 1999–REVISED JANUARY 2014 www.ti.com Auto-Powerdown Section Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 5) PARAMETER TEST CONDITIONS MIN MAX UNIT V Receiver input threshold for INVALID high-level FORCEON = GND, T+(valid) output voltage FORCEOFF = V 2.7 V CC V Receiver input threshold for INVALID high-level FORCEON = GND, T–(valid) output voltage FORCEOFF = V –2.7 V CC V Receiver input threshold for INVALID low-level FORCEON = GND, T(invalid) output voltage FORCEOFF = V –0.3 0.3 V CC IOH = –1 mA, VOH INVALID high-level output voltage FORCEON = GND, VCC – 0.6 V FORCEOFF = VCC IOH = –1 mA, VOL INVALID low-level output voltage FORCEON = GND, 0.4 V FORCEOFF = VCC (1) Test conditions are C1−C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2−C4 = 0.33 μF at VCC = 5 V ± 0.5 V. Switching Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 5) PARAMETER MIN TYP(2) MAX UNIT tvalid Propagation delay time, low- to high-level output 1 μs tinvalid Propagation delay time, high- to low-level output 30 μs ten Supply enable time 100 μs (1) Test conditions are C1−C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2−C4 = 0.33 μF at VCC = 5 V ± 0.5 V. (2) All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C. 6 Submit Documentation Feedback Copyright © 1999–2014, Texas Instruments Incorporated Product Folder Links :MAX3221 TEST CIRCUIT VOLTAGE WAVEFORMS 50 ! −3 V 3 V Output Input VOL VOH Generator tPHL (see Note B) tPLH Output CL (see Note A) 3 V or 0 V FORCEON 3 V FORCEOFF 1.5 V 1.5 V 50% 50% 50 ! TEST CIRCUIT VOLTAGE WAVEFORMS 0 V 3 V Output Input VOL VOH tPLH Generator (see Note B) RL 3 V FORCEOFF RS-232 Output CL tPHL (see Note A) 50% 50% 1.5 V 1.5 V 50 ! TEST CIRCUIT VOLTAGE WAVEFORMS −3 V −3 V 3 V 3 V 0 V 3 V Output Input VOL VOH tTLH Generator (see Note B) RL 3 V FORCEOFF RS-232 Output C tTHL L (see Note A) SR(tr) = 6 V tTHL or tTLH MAX3221 www.ti.com SLLS348N –JUNE 1999–REVISED JANUARY 2014 Parameter Measurement Information A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 250 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns. Figure 1. Driver Slew Rate A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 250 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns. Figure 2. Driver Pulse Skew A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns. Figure 3. Receiver Propagation Delay Times Copyright © 1999–2014, Texas Instruments Incorporated Submit Documentation Feedback 7 Product Folder Links :MAX3221 TEST CIRCUIT VOLTAGE WAVEFORMS 50 ! Generator (see Note B) 3 V or 0 V Output VOL VOH tPZH (S1 at GND) 3 V 0 V 0.3 V Output Input 0.3 V 3 V or 0 V FORCEON EN 1.5 V 1.5 V 50% tPHZ (S1 at GND) tPLZ (S1 at VCC) 50% tPZL (S1 at VCC) RL S1 VCC GND CL (see Note A) Output MAX3221 SLLS348N –JUNE 1999–REVISED JANUARY 2014 www.ti.com Parameter Measurement Information (continued) A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns. C. tPLZ and tPHZ are the same as tdis. D. tPZL and tPZH are the same as ten. Figure 4. Receiver Enable and Disable Times 8 Submit Documentation Feedback Copyright © 1999–2014, Texas Instruments Incorporated Product Folder Links :MAX3221 TEST CIRCUIT 50 ! Generator (see Note B) FORCEOFF ROUT FORCEON Autopowerdown INVALID DIN DOUT CL = 30 pF (see Note A) 2.7 V −2.7 V 0.3 V −0.3 V 0 V Valid RS-232 Level, INVALID High Indeterminate Indeterminate If Signal Remains Within This Region For More Than 30 μs, INVALID Is Low† Valid RS-232 Level, INVALID High † Auto-powerdown disables drivers and reduces supply current to 1 μA. VOLTAGE WAVEFORMS 3 V 2.7 V −2.7 V INVALID Output Receiver Input tvalid 0 V 0 V −3 V VCC 0 V !V+ 0 V !V− V+ VCC ten V− 50% VCC 50% VCC 2.7 V −2.7 V 0.3 V 0.3 V tinvalid Supply Voltages MAX3221 www.ti.com SLLS348N –JUNE 1999–REVISED JANUARY 2014 Parameter Measurement Information (continued) Figure 5. INVALID Propagation Delay Times and Driver Enabling Time Copyright © 1999–2014, Texas Instruments Incorporated Submit Documentation Feedback 9 Product Folder Links :MAX3221 CBYPASS = 0.1 μF Autopowerdown VCC C1 C2, C3, and C4 3.3 V ± 0.3 V 5 V ± 0.5 V 3 V to 5.5 V 0.1 μF 0.047 μF 0.1 μF 0.1 μF 0.33 μF 0.47 μF VCC vs CAPACITOR VALUES FORCEOFF + − + − + − + − + − 1 8 2 3 5 6 7 4 16 13 12 11 10 9 15 14 VCC GND C1+ V+ C2+ C1− C2− V− DOUT FORCEON DIN INVALID ROUT EN RIN C1 C2 C4 5 k! C3† † C3 can be connected to VCC or GND. NOTES: A. Resistor values shown are nominal. B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown. MAX3221 SLLS348N –JUNE 1999–REVISED JANUARY 2014 www.ti.com APPLICATION INFORMATION Figure 6. Typical Operating Circuit and Capacitor Values 10 Submit Documentation Feedback Copyright © 1999–2014, Texas Instruments Incorporated Product Folder Links :MAX3221 MAX3221 www.ti.com SLLS348N –JUNE 1999–REVISED JANUARY 2014 REVISION HISTORY Changes from Revision M (March 2004) to Revision N Page • Updated document to new TI data sheet format - no specification changes. ...................................................................... 1 • Deleted Ordering Information table. ...................................................................................................................................... 1 • Added ESD warning. ............................................................................................................................................................ 2 Copyright © 1999–2014, Texas Instruments Incorporated Submit Documentation Feedback 11 Product Folder Links :MAX3221 PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 Addendum-Page 1 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples MAX3221CDB ACTIVE SSOP DB 16 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MA3221C MAX3221CDBE4 ACTIVE SSOP DB 16 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MA3221C MAX3221CDBG4 ACTIVE SSOP DB 16 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MA3221C MAX3221CDBR ACTIVE SSOP DB 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MA3221C MAX3221CDBRG4 ACTIVE SSOP DB 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MA3221C MAX3221CPW ACTIVE TSSOP PW 16 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MA3221C MAX3221CPWE4 ACTIVE TSSOP PW 16 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MA3221C MAX3221CPWG4 ACTIVE TSSOP PW 16 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MA3221C MAX3221CPWR ACTIVE TSSOP PW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MA3221C MAX3221CPWRE4 ACTIVE TSSOP PW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MA3221C MAX3221CPWRG4 ACTIVE TSSOP PW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 0 to 70 MA3221C MAX3221IDB ACTIVE SSOP DB 16 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MB3221I MAX3221IDBE4 ACTIVE SSOP DB 16 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MB3221I MAX3221IDBG4 ACTIVE SSOP DB 16 80 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MB3221I MAX3221IDBR ACTIVE SSOP DB 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MB3221I MAX3221IDBRE4 ACTIVE SSOP DB 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MB3221I MAX3221IDBRG4 ACTIVE SSOP DB 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MB3221I PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 Addendum-Page 2 Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish (6) MSL Peak Temp (3) Op Temp (°C) Device Marking (4/5) Samples MAX3221IPW ACTIVE TSSOP PW 16 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MB3221I MAX3221IPWG4 ACTIVE TSSOP PW 16 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MB3221I MAX3221IPWR ACTIVE TSSOP PW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 85 MB3221I MAX3221IPWRG4 ACTIVE TSSOP PW 16 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MB3221I (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 Addendum-Page 3 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF MAX3221 : • Enhanced Product: MAX3221-EP NOTE: Qualified Version Definitions: • Enhanced Product - Supports Defense, Aerospace and Medical Applications TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant MAX3221CDBR SSOP DB 16 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1 MAX3221CPWR TSSOP PW 16 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 MAX3221IDBR SSOP DB 16 2000 330.0 16.4 8.2 6.6 2.5 12.0 16.0 Q1 MAX3221IPWR TSSOP PW 16 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 MAX3221IPWR TSSOP PW 16 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 MAX3221IPWRG4 TSSOP PW 16 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 29-Apr-2014 Pack Materials-Page 1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MAX3221CDBR SSOP DB 16 2000 367.0 367.0 38.0 MAX3221CPWR TSSOP PW 16 2000 367.0 367.0 35.0 MAX3221IDBR SSOP DB 16 2000 367.0 367.0 38.0 MAX3221IPWR TSSOP PW 16 2000 364.0 364.0 27.0 MAX3221IPWR TSSOP PW 16 2000 367.0 367.0 35.0 MAX3221IPWRG4 TSSOP PW 16 2000 367.0 367.0 35.0 PACKAGE MATERIALS INFORMATION www.ti.com 29-Apr-2014 Pack Materials-Page 2 MECHANICAL DATA MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE 4040065 /E 12/01 28 PINS SHOWN Gage Plane 8,20 7,40 0,55 0,95 0,25 38 12,90 12,30 28 10,50 24 8,50 Seating Plane 7,90 9,90 30 10,50 9,90 0,38 5,60 5,00 15 0,22 14 A 28 1 16 20 6,50 6,50 14 0,05 MIN 5,90 5,90 DIM A MAX A MIN PINS ** 2,00 MAX 6,90 7,50 0,65 0,15 M 0°–8° 0,10 0,09 0,25 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated Poly Phase Multifunction Energy Metering IC with Per Phase Information Data Sheet ADE7758 Rev. E Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2004–2011 Analog Devices, Inc. All rights reserved. FEATURES Highly accurate; supports IEC 60687, IEC 61036, IEC 61268, IEC 62053-21, IEC 62053-22, and IEC 62053-23 Compatible with 3-phase/3-wire, 3-phase/4-wire, and other 3-phase services Less than 0.1% active energy error over a dynamic range of 1000 to 1 at 25°C Supplies active/reactive/apparent energy, voltage rms, current rms, and sampled waveform data Two pulse outputs, one for active power and the other selectable between reactive and apparent power with programmable frequency Digital power, phase, and rms offset calibration On-chip, user-programmable thresholds for line voltage SAG and overvoltage detections An on-chip, digital integrator enables direct interface-to-current sensors with di/dt output A PGA in the current channel allows direct interface to current transformers An SPI®-compatible serial interface with IRQ Proprietary ADCs and DSP provide high accuracy over large variations in environmental conditions and time Reference 2.4 V (drift 30 ppm/°C typical) with external overdrive capability Single 5 V supply, low power (70 mW typical) GENERAL DESCRIPTION The ADE7758 is a high accuracy, 3-phase electrical energy measurement IC with a serial interface and two pulse outputs. The ADE7758 incorporates second-order Σ-Δ ADCs, a digital integrator, reference circuitry, a temperature sensor, and all the signal processing required to perform active, reactive, and apparent energy measurement and rms calculations. The ADE7758 is suitable to measure active, reactive, and apparent energy in various 3-phase configurations, such as WYE or DELTA services, with both three and four wires. The ADE7758 provides system calibration features for each phase, that is, rms offset correction, phase calibration, and power calibration. The APCF logic output gives active power information, and the VARCF logic output provides instantaneous reactive or apparent power information. FUNCTIONAL BLOCK DIAGRAM PHASE BANDPHASE CDATA4AVDDPOWERSUPPLYMONITOR12REFIN/OUT11AGNDADC–+9ICP10ICNPGA1ADC–+14VCP13VNPGA2ACTIVE/REACTIVE/APPARENT ENERGIESAND VOLTAGE/CURRENT RMS CALCULATIONFOR PHASE C(SEE PHASE A FOR DETAILED SIGNALPATH)ADC–+7IBP8IBNPGA1ADC–+15VBPPGA2ACTIVE/REACTIVE/APPARENT ENERGIESAND VOLTAGE/CURRENT RMS CALCULATIONFOR PHASE B(SEE PHASE A FOR DETAILED SIGNALPATH)ADC–+5IAP6IANPGA1ADC–+16VAPPGA2AVRMSGAIN[11:0]AVAG[11:0]|X|APHCAL[6:0]ΦHPFINTEGRATORdtAVAROS[11:0]AVARG[11:0]LPF290° PHASESHIFTING FILTERπ2AWATTOS[11:0]AWG[11:0]LPF222DIN24DOUT23SCLK21CS18IRQADE7758 REGISTERSANDSERIAL INTERFACEWDIV[7:0]%VARDIV[7:0]%VADIV[7:0]%AIRMSOS[11:0]X2LPF2.4VREF4kΩDFC÷APCFNUM[11:0]APCFDEN[11:0]ACTIVE POWER1APCF3DVDD2DGND19CLKIN20CLKOUTDFCVARCFNUM[11:0]VARCFDEN[11:0]REACTIVE ORAPPARENT POWER17VARCFADE7758AVRMSOS[11:0]04443-001÷ Figure 1. ADE7758 Data Sheet Rev. E | Page 2 of 72 TABLE OF CONTENTS Features..............................................................................................1 General Description.........................................................................1 Functional Block Diagram..............................................................1 General Description.........................................................................4 Specifications.....................................................................................5 Timing Characteristics................................................................6 Timing Diagrams..............................................................................7 Absolute Maximum Ratings............................................................8 ESD Caution..................................................................................8 Pin Configuration and Function Descriptions.............................9 Terminology....................................................................................11 Typical Performance Characteristics...........................................12 Test Circuits.....................................................................................17 Theory of Operation......................................................................18 Antialiasing Filter.......................................................................18 Analog Inputs..............................................................................18 Current Channel ADC...............................................................19 di/dt Current Sensor and Digital Integrator...............................20 Peak Current Detection.............................................................21 Overcurrent Detection Interrupt.............................................21 Voltage Channel ADC...............................................................22 Zero-Crossing Detection...........................................................23 Phase Compensation..................................................................23 Period Measurement..................................................................25 Line Voltage SAG Detection.....................................................25 SAG Level Set..............................................................................26 Peak Voltage Detection..............................................................26 Phase Sequence Detection.........................................................26 Power-Supply Monitor...............................................................27 Reference Circuit........................................................................27 Temperature Measurement.......................................................27 Root Mean Square Measurement.............................................28 Active Power Calculation..........................................................30 Reactive Power Calculation......................................................35 Apparent Power Calculation.....................................................39 Energy Registers Scaling...........................................................41 Waveform Sampling Mode.......................................................41 Calibration...................................................................................42 Checksum Register.....................................................................55 Interrupts.....................................................................................55 Using the Interrupts with an MCU..........................................56 Interrupt Timing........................................................................56 Serial Interface............................................................................56 Serial Write Operation...............................................................57 Serial Read Operation................................................................59 Accessing the On-Chip Registers.............................................59 Registers...........................................................................................60 Communications Register.........................................................60 Operational Mode Register (0x13)..........................................64 Measurement Mode Register (0x14).......................................64 Waveform Mode Register (0x15).............................................65 Computational Mode Register (0x16).....................................66 Line Cycle Accumulation Mode Register (0x17)...................67 Interrupt Mask Register (0x18)................................................68 Interrupt Status Register (0x19)/Reset Interrupt Status Register (0x1A)...........................................................................69 Outline Dimensions.......................................................................70 Ordering Guide..........................................................................70 Revision History 10/11—Rev. D to Rev. E Changes to Figure 1..........................................................................1 Changes to Figure 41......................................................................19 Changes to Figure 60......................................................................27 Added Figure 61; Renumbered Sequentially..............................27 Changes to Phase Sequence Detection Section..........................27 Changes to Power-Supply Monitor Section................................27 Changes to Figure 62......................................................................28 Changes to Figure 67......................................................................32 Changes to Figure 68......................................................................32 Changes to Equation 25.................................................................34 Changes to Figure 69......................................................................34 Changes to Table 17.......................................................................62 Change to Table 18.........................................................................64 Changes to Table 24.......................................................................69 Changes to Ordering Guide..........................................................70 10/08—Rev. C to Rev. D Changes to Figure 1...........................................................................1 Changes to Phase Sequence Detection Section and Figure 60.27 Data Sheet ADE7758 Rev. E | Page 3 of 72 Changes to Current RMS Calculation Section............................28 Changes to Voltage Channel RMS Calculation Section and Figure 63...........................................................................................29 Changes to Table 17........................................................................60 Changes to Ordering Guide...........................................................70 7/06—Rev. B to Rev. C Updated Format..................................................................Universal Changes to Figure 1...........................................................................1 Changes to Table 2............................................................................6 Changes to Table 4............................................................................9 Changes to Figure 34 and Figure 35.............................................17 Changes to Current Waveform Gain Registers Section and Current Channel Sampling Section..............................................19 Changes to Voltage Channel Sampling Section..........................22 Changes to Zero-Crossing Timeout Section...............................23 Changes to Figure 60......................................................................27 Changes to Current RMS Calculation Section............................28 Changes to Current RMS Offset Compensation Section and Voltage Channel RMS Calculation Section.................................29 Added Table 7 and Table 9; Renumbered Sequentially..............29 Changes to Figure 65......................................................................30 Changes to Active Power Offset Calibration Section.................31 Changes to Reactive Power Frequency Output Section.............38 Changes to Apparent Power Frequency Output Section and Waveform Sampling Mode Section..............................................41 Changes to Gain Calibration Using Line Accumulation Section....................................................................49 Changes to Example: Power Offset Calibration Using Line Accumulation Section....................................................................53 Changes to Calibration of IRMS and VRMS Offset Section.....54 Changes to Table 18........................................................................64 Changes to Table 20........................................................................65 11/05—Rev. A to Rev. B Changes to Table 1............................................................................5 Changes to Figure 23 Caption.......................................................14 Changes to Current Waveform Gain Registers Section.............19 Changes to di/dt Current Sensor and Digital Integrator Section............................................................................20 Changes to Phase Compensation Section....................................23 Changes to Figure 57......................................................................25 Changes to Figure 60......................................................................27 Changes to Temperature Measurement Section and Root Mean Square Measurement Section............................28 Inserted Table 6................................................................................28 Changes to Current RMS Offset Compensation Section..........29 Inserted Table 7................................................................................29 Added Equation 17.........................................................................31 Changes to Energy Accumulation Mode Section.......................33 Changes to the Reactive Power Calculation Section..................35 Added Equation 32...........................................................................36 Changes to Energy Accumulation Mode Section.......................38 Changes to the Reactive Power Frequency Output Section......38 Changes to the Apparent Energy Calculation Section...............40 Changes to the Calibration Section..............................................42 Changes to Figure 76 through Figure 84...............................43–54 Changes to Table 15........................................................................59 Changes to Table 16........................................................................63 Changes to Ordering Guide...........................................................69 9/04—Rev. 0 to Rev. A Changed Hexadecimal Notation......................................Universal Changes to Features List...................................................................1 Changes to Specifications Table......................................................5 Change to Figure 25........................................................................16 Additions to the Analog Inputs Section.......................................19 Added Figures 36 and 37; Renumbered Subsequent Figures....19 Changes to Period Measurement Section....................................26 Change to Peak Voltage Detection Section.................................26 Added Figure 60..............................................................................27 Change to the Current RMS Offset Compensation Section.....29 Edits to Active Power Frequency Output Section......................33 Added Figure 68; Renumbered Subsequent Figures..................33 Changes to Reactive Power Frequency Output Section.............37 Added Figure 73; Renumbered Subsequent Figures..................38 Change to Gain Calibration Using Pulse Output Example.......44 Changes to Equation 37.................................................................45 Changes to Example—Phase Calibration of Phase A Using Pulse Output.........................................................................45 Changes to Equations 56 and 57...................................................53 Addition to the ADE7758 Interrupts Section.............................54 Changes to Example-Calibration of RMS Offsets......................54 Addition to Table 20.......................................................................66 1/04—Revision 0: Initial Version ADE7758 Data Sheet Rev. E | Page 4 of 72 GENERAL DESCRIPTION The ADE7758 has a waveform sample register that allows access to the ADC outputs. The part also incorporates a detection circuit for short duration low or high voltage variations. The voltage threshold levels and the duration (number of half-line cycles) of the variation are user programmable. A zero-crossing detection is synchronized with the zero-crossing point of the line voltage of any of the three phases. This information can be used to measure the period of any one of the three voltage inputs. The zero-crossing detection is used inside the chip for the line cycle energy accumulation mode. This mode permits faster and more accurate calibration by synchronizing the energy accumulation with an integer number of line cycles. Data is read from the ADE7758 via the SPI serial interface. The interrupt request output (IRQ) is an open-drain, active low logic output. The IRQ output goes active low when one or more interrupt events have occurred in the . A status register indicates the nature of the interrupt. The is available in a 24-lead SOIC package. ADE7758ADE7758 Data Sheet ADE7758 Rev. E | Page 5 of 72 SPECIFICATIONS AVDD = DVDD = 5 V ± 5%, AGND = DGND = 0 V, on-chip reference, CLKIN = 10 MHz XTAL, TMIN to TMAX = −40°C to +85°C. Table 1. Parameter1, 2 Specification Unit Test Conditions/Comments ACCURACY Active Energy Measurement Error (per Phase) 0.1 % typ Over a dynamic range of 1000 to 1 Phase Error Between Channels Line frequency = 45 Hz to 65 Hz, HPF on PF = 0.8 Capacitive ±0.05 °max Phase lead 37° PF = 0.5 Inductive ±0.05 °max Phase lag 60° AC Power Supply Rejection AVDD = DVDD = 5 V + 175 mV rms/120 Hz Output Frequency Variation 0.01 % typ V1P = V2P = V3P = 100 mV rms DC Power Supply Rejection AVDD = DVDD = 5 V ± 250 mV dc Output Frequency Variation 0.01 % typ V1P = V2P = V3P = 100 mV rms Active Energy Measurement Bandwidth 14 kHz IRMS Measurement Error 0.5 % typ Over a dynamic range of 500:1 IRMS Measurement Bandwidth 14 kHz VRMS Measurement Error 0.5 % typ Over a dynamic range of 20:1 VRMS Measurement Bandwidth 260 Hz ANALOG INPUTS See the Analog Inputs section Maximum Signal Levels ±500 mV max Differential input Input Impedance (DC) 380 kΩ min ADC Offset Error3 ±30 mV max Uncalibrated error, see the Terminology section Gain Error3 ±6 % typ External 2.5 V reference WAVEFORM SAMPLING Sampling CLKIN/128, 10 MHz/128 = 78.1 kSPS Current Channels See the Current Channel ADC section Signal-to-Noise Plus Distortion 62 dB typ Bandwidth (−3 dB) 14 kHz Voltage Channels See the Voltage Channel ADC section Signal-to-Noise Plus Distortion 62 dB typ Bandwidth (−3 dB) 260 Hz REFERENCE INPUT REFIN/OUT Input Voltage Range 2.6 V max 2.4 V + 8% 2.2 V min 2.4 V − 8% Input Capacitance 10 pF max ON-CHIP REFERENCE Nominal 2.4 V at REFIN/OUT pin Reference Error ±200 mV max Current Source 6 μA max Output Impedance 4 kΩ min Temperature Coefficient 30 ppm/°C typ CLKIN All specifications CLKIN of 10 MHz Input Clock Frequency 15 MHz max 5 MHz min LOGIC INPUTS DIN, SCLK, CLKIN, and CS Input High Voltage, VINH 2.4 V min DVDD = 5 V ± 5% Input Low Voltage, VINL 0.8 V max DVDD = 5 V ± 5% Input Current, IIN ±3 μA max Typical 10 nA, VIN = 0 V to DVDD Input Capacitance, CIN 10 pF max ADE7758 Data Sheet Rev. E | Page 6 of 72 Parameter1, 2 Specification Unit Test Conditions/Comments LOGIC OUTPUTS DVDD = 5 V ± 5% IRQ, DOUT, and CLKOUT IRQ is open-drain, 10 kΩ pull-up resistor Output High Voltage, VOH 4 V min ISOURCE = 5 mA Output Low Voltage, VOL 0.4 V max ISINK = 1 mA APCF and VARCF Output High Voltage, VOH 4 V min ISOURCE = 8 mA Output Low Voltage, VOL 1 V max ISINK = 5 mA POWER SUPPLY For specified performance AVDD 4.75 V min 5 V − 5% 5.25 V max 5 V + 5% DVDD 4.75 V min 5 V − 5% 5.25 V max 5 V + 5% AIDD 8 mA max Typically 5 mA DIDD 13 mA max Typically 9 mA 1 See the Typical Performance Characteristics. 2 See the Terminology section for a definition of the parameters. 3 See the Analog Inputs section. TIMING CHARACTERISTICS AVDD = DVDD = 5 V ± 5%, AGND = DGND = 0 V, on-chip reference, CLKIN = 10 MHz XTAL, TMIN to TMAX = −40°C to +85°C. Table 2. Parameter1, 2 Specification Unit Test Conditions/Comments WRITE TIMING t1 50 ns (min) CS falling edge to first SCLK falling edge t2 50 ns (min) SCLK logic high pulse width t3 50 ns (min) SCLK logic low pulse width t4 10 ns (min) Valid data setup time before falling edge of SCLK t5 5 ns (min) Data hold time after SCLK falling edge t6 1200 ns (min) Minimum time between the end of data byte transfers t7 400 ns (min) Minimum time between byte transfers during a serial write t8 100 ns (min) CS hold time after SCLK falling edge READ TIMING t93 4 μs (min) Minimum time between read command (that is, a write to communication register) and data read t10 50 ns (min) Minimum time between data byte transfers during a multibyte read t114 30 ns (min) Data access time after SCLK rising edge following a write to the communications register t125 100 ns (max) Bus relinquish time after falling edge of SCLK 10 ns (min) t135 100 ns (max) Bus relinquish time after rising edge of CS 10 ns (min) 1 Sample tested during initial release and after any redesign or process change that may affect this parameter. All input signals are specified with tr = tf = 5 ns (10% to 90%) and timed from a voltage level of 1.6 V. 2 See the timing diagrams in Figure 3 and Figure 4 and the Serial Interface section. 3 Minimum time between read command and data read for all registers except waveform register, which is t9 = 500 ns min. 4 Measured with the load circuit in Figure 2 and defined as the time required for the output to cross 0.8 V or 2.4 V. 5 Derived from the measured time taken by the data outputs to change 0.5 V when loaded with the circuit in Figure 2. The measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the time quoted here is the true bus relinquish time of the part and is independent of the bus loading. Data Sheet ADE7758 Rev. E | Page 7 of 72 TIMING DIAGRAMS 200μAIOL1.6mAIOH2.1VTO OUTPUTPINCL50pF04443-002 Figure 2. Load Circuit for Timing Specifications DINSCLKCSt2t3t1t4t5t7t6t8COMMAND BYTEMOST SIGNIFICANT BYTELEAST SIGNIFICANT BYTE1A6A4A5A3A2A1A0DB7DB0DB7DB0t704443-003 Figure 3. Serial Write Timing SCLKCSt1t10t130A6A4A5A3A2A1A0DB0DB7DB0DB7DINDOUTt11t12COMMAND BYTEMOST SIGNIFICANT BYTELEAST SIGNIFICANT BYTEt904443-004 Figure 4. Serial Read Timing ADE7758 Data Sheet Rev. E | Page 8 of 72 ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. Table 3. Parameter Rating AVDD to AGND –0.3 V to +7 V DVDD to DGND –0.3 V to +7 V DVDD to AVDD –0.3 V to +0.3 V Analog Input Voltage to AGND, IAP, IAN, IBP, IBN, ICP, ICN, VAP, VBP, VCP, VN –6 V to +6 V Reference Input Voltage to AGND –0.3 V to AVDD + 0.3 V Digital Input Voltage to DGND –0.3 V to DVDD + 0.3 V Digital Output Voltage to DGND –0.3 V to DVDD + 0.3 V Operating Temperature Industrial Range –40°C to +85°C Storage Temperature Range –65°C to +150°C Junction Temperature 150°C 24-Lead SOIC, Power Dissipation 88 mW θJA Thermal Impedance 53°C/W Lead Temperature, Soldering Vapor Phase (60 sec) 215°C Infrared (15 sec) 220°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION Data Sheet ADE7758 Rev. E | Page 9 of 72 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS APCF1DGND2DVDD3AVDD4DOUT24SCLK23DIN22CS21IAP5CLKOUT20IAN6CLKIN19IBP7IRQ18IBN8VARCF17ICP9VAP16ICN10VBP15AGND11VCP14REFIN/OUT12VN13ADE7758TOP VIEW(Not to Scale)04443-005 Figure 5. Pin Configuration Table 4. Pin Function Descriptions Pin No. Mnemonic Description 1 APCF Active Power Calibration Frequency (APCF) Logic Output. It provides active power information. This output is used for operational and calibration purposes. The full-scale output frequency can be scaled by writing to the APCFNUM and APCFDEN registers (see the Active Power Frequency Output section). 2 DGND This provides the ground reference for the digital circuitry in the ADE7758, that is, the multiplier, filters, and digital-to-frequency converter. Because the digital return currents in the ADE7758 are small, it is acceptable to connect this pin to the analog ground plane of the whole system. However, high bus capacitance on the DOUT pin can result in noisy digital current that could affect performance. 3 DVDD Digital Power Supply. This pin provides the supply voltage for the digital circuitry in the ADE7758. The supply voltage should be maintained at 5 V ± 5% for specified operation. This pin should be decoupled to DGND with a 10 μF capacitor in parallel with a ceramic 100 nF capacitor. 4 AVDD Analog Power Supply. This pin provides the supply voltage for the analog circuitry in the ADE7758. The supply should be maintained at 5 V ± 5% for specified operation. Every effort should be made to minimize power supply ripple and noise at this pin by the use of proper decoupling. The Typical Performance Characteristics show the power supply rejection performance. This pin should be decoupled to AGND with a 10 μF capacitor in parallel with a ceramic 100 nF capacitor. 5, 6, 7, 8, 9, 10 IAP, IAN, IBP, IBN, ICP, ICN Analog Inputs for Current Channel. This channel is used with the current transducer and is referenced in this document as the current channel. These inputs are fully differential voltage inputs with maximum differential input signal levels of ±0.5 V, ±0.25 V, and ±0.125 V, depending on the gain selections of the internal PGA (see the Analog Inputs section). All inputs have internal ESD protection circuitry. In addition, an overvoltage of ±6 V can be sustained on these inputs without risk of permanent damage. 11 AGND This pin provides the ground reference for the analog circuitry in the ADE7758, that is, ADCs, temperature sensor, and reference. This pin should be tied to the analog ground plane or the quietest ground reference in the system. This quiet ground reference should be used for all analog circuitry, for example, antialiasing filters, current, and voltage transducers. To keep ground noise around the ADE7758 to a minimum, the quiet ground plane should be connected to the digital ground plane at only one point. It is acceptable to place the entire device on the analog ground plane. 12 REFIN/OUT This pin provides access to the on-chip voltage reference. The on-chip reference has a nominal value of 2.4 V ± 8% and a typical temperature coefficient of 30 ppm/°C. An external reference source can also be connected at this pin. In either case, this pin should be decoupled to AGND with a 1 μF ceramic capacitor. 13, 14, 15, 16 VN, VCP, VBP, VAP Analog Inputs for the Voltage Channel. This channel is used with the voltage transducer and is referenced as the voltage channels in this document. These inputs are single-ended voltage inputs with the maximum signal level of ±0.5 V with respect to VN for specified operation. These inputs are voltage inputs with maximum input signal levels of ±0.5 V, ±0.25 V, and ±0.125 V, depending on the gain selections of the internal PGA (see the Analog Inputs section). All inputs have internal ESD protection circuitry, and in addition, an overvoltage of ±6 V can be sustained on these inputs without risk of permanent damage. ADE7758 Data Sheet Rev. E | Page 10 of 72 Pin No. Mnemonic Description 17 VARCF Reactive Power Calibration Frequency Logic Output. It gives reactive power or apparent power information depending on the setting of the VACF bit of the WAVMODE register. This output is used for operational and calibration purposes. The full-scale output frequency can be scaled by writing to the VARCFNUM and VARCFDEN registers (see the Reactive Power Frequency Output section). 18 IRQ Interrupt Request Output. This is an active low open-drain logic output. Maskable interrupts include: an active energy register at half level, an apparent energy register at half level, and waveform sampling up to 26 kSPS (see the Interrupts section). 19 CLKIN Master Clock for ADCs and Digital Signal Processing. An external clock can be provided at this logic input. Alternatively, a parallel resonant AT crystal can be connected across CLKIN and CLKOUT to provide a clock source for the ADE7758. The clock frequency for specified operation is 10 MHz. Ceramic load capacitors of a few tens of picofarad should be used with the gate oscillator circuit. Refer to the crystal manufacturer’s data sheet for the load capacitance requirements 20 CLKOUT A crystal can be connected across this pin and CLKIN as previously described to provide a clock source for the ADE7758. The CLKOUT pin can drive one CMOS load when either an external clock is supplied at CLKIN or a crystal is being used. 21 CS Chip Select. Part of the 4-wire serial interface. This active low logic input allows the ADE7758 to share the serial bus with several other devices (see the Serial Interface section). 22 DIN Data Input for the Serial Interface. Data is shifted in at this pin on the falling edge of SCLK (see the Serial Interface section). 23 SCLK Serial Clock Input for the Synchronous Serial Interface. All serial data transfers are synchronized to this clock (see the Serial Interface section). The SCLK has a Schmidt-trigger input for use with a clock source that has a slow edge transition time, for example, opto-isolator outputs. 24 DOUT Data Output for the Serial Interface. Data is shifted out at this pin on the rising edge of SCLK. This logic output is normally in a high impedance state, unless it is driving data onto the serial data bus (see the Serial Interface section). Data Sheet ADE7758 Rev. E | Page 11 of 72 TERMINOLOGY Measurement Error The error associated with the energy measurement made by the ADE7758 is defined by %100–×=EnergyTrueEnergyTrueADE7758byRegisteredEnergyErrortMeasuremen (1) Phase Error Between Channels The high-pass filter (HPF) and digital integrator introduce a slight phase mismatch between the current and the voltage channel. The all-digital design ensures that the phase matching between the current channels and voltage channels in all three phases is within ±0.1° over a range of 45 Hz to 65 Hz and ±0.2° over a range of 40 Hz to 1 kHz. This internal phase mismatch can be combined with the external phase error (from current sensor or component tolerance) and calibrated with the phase calibration registers. Power Supply Rejection (PSR) This quantifies the ADE7758 measurement error as a percentage of reading when the power supplies are varied. For the ac PSR measurement, a reading at nominal supplies (5 V) is taken. A second reading is obtained with the same input signal levels when an ac signal (175 mV rms/100 Hz) is introduced onto the supplies. Any error introduced by this ac signal is expressed as a percentage of reading—see the Measurement Error definition. For the dc PSR measurement, a reading at nominal supplies (5 V) is taken. A second reading is obtained with the same input signal levels when the power supplies are varied ±5%. Any error introduced is again expressed as a percentage of the reading. ADC Offset Error This refers to the dc offset associated with the analog inputs to the ADCs. It means that with the analog inputs connected to AGND that the ADCs still see a dc analog input signal. The magnitude of the offset depends on the gain and input range selection (see the Typical Performance Characteristics section). However, when HPFs are switched on, the offset is removed from the current channels and the power calculation is not affected by this offset. Gain Error The gain error in the ADCs of the ADE7758 is defined as the difference between the measured ADC output code (minus the offset) and the ideal output code (see the Current Channel ADC section and the Voltage Channel ADC section). The difference is expressed as a percentage of the ideal code. Gain Error Match The gain error match is defined as the gain error (minus the offset) obtained when switching between a gain of 1, 2, or 4. It is expressed as a percentage of the output ADC code obtained under a gain of 1. ADE7758 Data Sheet Rev. E | Page 12 of 72 TYPICAL PERFORMANCE CHARACTERISTICS 0.5–0.5–0.4–0.3–0.2–0.100.10.20.30.40.010.1110100PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)+25°CPF = 1+85°C–40°C04443-006 Figure 6. Active Energy Error as a Percentage of Reading (Gain = +1) over Temperature with Internal Reference and Integrator Off 0.3–0.3–0.2–0.100.10.20.010.1110100PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)PF = +1, +25°CPF = +0.5, +25°CPF =–0.5, +25°CPF = +0.5, +85°CPF = +0.5,–40°C04443-007 Figure 7. Active Energy Error as a Percentage of Reading (Gain = +1) over Power Factor with Internal Reference and Integrator Off 0.3–0.3–0.2–0.100.10.20.010.1110100PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)GAIN = +2GAIN = +4PF = 1GAIN = +104443-008 Figure 8. Active Energy Error as a Percentage of Reading over Gain with Internal Reference and Integrator Off 0.20–0.20–0.15–0.10–0.0500.050.100.150.010.1110100PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)PF =–0.5, +25°CPF = +0.5, +25°CPF = +0.5,–40°CPF = +0.5, +85°C04443-009 Figure 9. Active Energy Error as a Percentage of Reading (Gain = +1) over Temperature with External Reference and Integrator Off 0.50.6–0.2–0.3–0.4–0.100.10.20.30.44547495153555759616365LINE FREQUENCY (Hz)PERCENT ERROR (%)WITH RESPECT TO 55HzPF = 1PF = 0.504443-010 Figure 10. Active Energy Error as a Percentage of Reading (Gain = +1) over Frequency with Internal Reference and Integrator Off 0.080.10–0.06–0.08–0.10–0.04–0.0200.020.040.060.010.1110100PERCENTFULL-SCALECURRENT(%)PERCENT ERROR (%)WITH RESPECTTO 5V; 3AVDD=5VVDD=5.25VVDD=4.75VPF=104443-011 Figure 11. Active Energy Error as a Percentage of Reading (Gain = +1) over Power Supply with Internal Reference and Integrator Off Data Sheet ADE7758 Rev. E | Page 13 of 72 0.200.25–0.15–0.20–0.25–0.10–0.0500.050.100.150.010.1110100PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)PHASE APHASE BPHASE CALL PHASESPF = 104443-012 Figure 12. APCF Error as a Percentage of Reading (Gain = +1) with Internal Reference and Integrator Off 0.4–0.4–0.3–0.2–0.100.10.20.30.010.1110100PF = 0, +25°CPF = 0, +85°CPF = 0,–40°CPERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)04443-013 Figure 13. Reactive Energy Error as a Percentage of Reading (Gain = +1) over Temperature with Internal Reference and Integrator Off 0.8–0.8–0.6–0.4–0.200.20.40.60.010.1110100PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)PF = 0, +25°CPF =–0.866, +25°CPF = +0.866, +25°CPF = +0.866, +85°CPF = +0.866,–40°C04443-014 Figure 14. Reactive Energy Error as a Percentage of Reading (Gain = +1) over Power Factor with Internal Reference and Integrator Off 0.3–0.3–0.2–0.100.10.20.010.1110100PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)PF = 0, +25°CPF = 0, +85°CPF = 0,–40°C04443-015 Figure 15. Reactive Energy Error as a Percentage of Reading (Gain = +1) over Temperature with External Reference and Integrator Off 0.3–0.3–0.2–0.100.10.20.010.1110100PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)PF = 0, +25°CPF =–0.866, +25°CPF = +0.866, +25°CPF = +0.866, +85°CPF = +0.866,–40°C04443-016 Figure 16. Reactive Energy Error as a Percentage of Reading (Gain = +1) over Power Factor with External Reference and Integrator Off 0.8–0.8–0.6–0.4–0.200.20.40.64547495153555759616365LINE FREQUENCY (Hz)PERCENT ERROR (%)WITH RESPECT TO 55HzPF = 0PF = 0.86604443-017 Figure 17. Reactive Energy Error as a Percentage of Reading (Gain = +1) over Frequency with Internal Reference and Integrator Off ADE7758 Data Sheet Rev. E | Page 14 of 72 0.10–0.10–0.08–0.06–0.04–0.0200.020.040.060.080.010.1110100PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)WITH RESPECT TO 5V; 3A5V5.25V4.75V04443-018 Figure 18. Reactive Energy Error as a Percentage of Reading (Gain = +1) over Supply with Internal Reference and Integrator Off 0.3–0.3–0.2–0.100.10.20.010.1110100PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)GAIN = +1GAIN = +2GAIN = +4PF = 004443-019 Figure 19. Reactive Energy Error as a Percentage of Reading over Gain with Internal Reference and Integrator Off 0.4–0.4–0.2–0.3–0.100.10.20.30.010.1110100PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)PHASE AALL PHASESPHASE CPHASE BPF = 104443-020 Figure 20. VARCF Error as a Percentage of Reading (Gain = +1) with Internal Reference and Integrator Off 0.3–0.3–0.2–0.100.10.20.010.1110100PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)+25°C+85°C–40°C04443-021 Figure 21. Active Energy Error as a Percentage of Reading (Gain = +4) over Temperature with Internal Reference and Integrator On 0.50.4–0.5–0.4–0.2–0.3–0.100.10.20.30.010.1110100PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)PF = +1, +25°CPF =–0.5, +25°CPF = +0.5, +25°CPF = +0.5, +85°CPF = +0.5,–40°C04443-022 Figure 22. Active Energy Error as a Percentage of Reading (Gain = +4) over Power Factor with Internal Reference and Integrator On 0.8–0.8–0.4–0.6–0.200.20.40.60.010.1110100PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)PF = 0, +25°CPF = +0.866, +25°CPF =–0.866, +25°CPF =–0.866, +85°CPF =–0.866,–40°C04443-023 Figure 23. Reactive Energy Error as a Percentage of Reading (Gain = +4) over Power Factor with Internal Reference and Integrator On Data Sheet ADE7758 Rev. E | Page 15 of 72 0.4–0.5–0.4–0.2–0.3–0.100.10.20.30.010.1110100PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)+25°C+85°C–40°CPF = 004443-024 Figure 24. Reactive Energy Error as a Percentage of Reading (Gain = +4) over Temperature with Internal Reference and Integrator On 0.50.4–0.5–0.4–0.2–0.3–0.100.10.20.34547495153555759616365LINE FREQUENCY (Hz)PERCENT ERROR (%)PF = 1PF = 0.504443-025 Figure 25. Active Energy Error as a Percentage of Reading (Gain = +4) over Frequency with Internal Reference and Integrator On 1.21.0–0.8–0.6–0.2–0.400.20.40.60.84547495153555759616365LINE FREQUENCY (Hz)PERCENT ERROR (%)PF = 0.866PF = 004443-026 Figure 26. Reactive Energy Error as a Percentage of Reading (Gain = +4) over Frequency with Internal Reference and Integrator On 0.80.6–1.2–1.0–0.6–0.8–0.4–0.200.20.40.010.1110100PF = 0.5PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)PF = 104443-027 Figure 27. IRMS Error as a Percentage of Reading (Gain = +1) with Internal Reference and Integrator Off 0.80.6–1.0–0.6–0.8–0.4–0.200.20.40.1110100PF = +1PF =–0.5PERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)04443-028 Figure 28. IRMS Error as a Percentage of Reading (Gain = +4) with Internal Reference and Integrator On 0.4–0.4–0.3–0.2–0.100.10.20.3110100VOLTAGE (V)PERCENT ERROR (%)04443-029 Figure 29. VRMS Error as a Percentage of Reading (Gain = +1) with Internal Reference ADE7758 Data Sheet Rev. E | Page 16 of 72 1.5–1.5–1.0–0.500.51.00.011100.1100+25°C+85°C–40°CPERCENT FULL-SCALE CURRENT (%)PERCENT ERROR (%)04443-030 –2024681012182115129630CH 1 PhB OFFSET (mV)HITSMEAN: 6.5149SD: 2.81604443-032 Figure 30. Apparent Energy Error as a Percentage of Reading (Gain = +1) over Temperature with Internal Reference and Integrator Off Figure 32. Phase B Channel 1 Offset Distribution 2468101412121086420CH 1 PhC OFFSET (mV)HITSMEAN: 6.69333SD: 2.7044304443-033 –4–20246810121815129630CH 1 PhA OFFSET (mV)HITSMEAN: 5.55393SD: 3.298504443-031 Figure 33. Phase C Channel 1 Offset Distribution Figure 31. Phase A Channel 1 Offset Distribution Data Sheet ADE7758 Rev. E | Page 17 of 72 TEST CIRCUITS REFIN/OUT33nF1kΩ100nF33nF1kΩ10μFVDDVNIANIBPIBNICPICNVAPAVDDDVDDVBPVCPAGNDDGNDDOUTSCLKAPCFCLKOUTCLKINCSDINIRQ10MHz22pF22pFPS2501-1131121TO FREQ.COUNTER142320IAPRBSAMEASIAP, IAN98710161514100nF10μF33nF1kΩ1MΩ220V33nF1kΩ825ΩITO SPI BUS341956242321221812SAMEASIAP, IANSAMEAS VAPSAMEAS VAPADE7758CURRENTTRANSFORMER17VARCFCT TURN RATIO 1800:1CHANNEL 2 GAIN = +1CHANNEL 1 GAINRB110Ω25Ω42.5Ω81.25Ω04443-034 Figure 34. Test Circuit for Integrator Off REFIN/OUT33nF1kΩ33nF1kΩ33nF1kΩ33nF1kΩ100nF10μFVDDVNIANIBPIBNICPICNVAPAVDDDVDDVBPVCPAGNDDGNDDOUTSCLKAPCFCLKOUTCLKINCSDINIRQ10MHz22pF22pFPS2501-1131121TO FREQ.COUNTER142320IAPSAMEASIAP, IAN98710161514100nF10μF33nF1kΩ1MΩ220V33nF1kΩ825ΩTO SPI BUS341956242321221812SAMEASIAP, IANSAMEAS VAPSAMEAS VAPADE7758Idi/dt SENSOR17VARCFCHANNEL 1 GAIN = +8CHANNEL 2 GAIN = +104443-035 Figure 35. Test Circuit for Integrator On ADE7758 Data Sheet Rev. E | Page 18 of 72 THEORY OF OPERATION ANTIALIASING FILTER This filter prevents aliasing, which is an artifact of all sampled systems. Input signals with frequency components higher than half the ADC sampling rate distort the sampled signal at a fre-quency below half the sampling rate. This happens with all ADCs, regardless of the architecture. The combination of the high sampling rate Σ-Δ ADC used in the ADE7758 with the relatively low bandwidth of the energy meter allows a very simple low-pass filter (LPF) to be used as an antialiasing filter. A simple RC filter (single pole) with a corner frequency of 10 kHz produces an attenuation of approximately 40 dB at 833 kHz. This is usually sufficient to eliminate the effects of aliasing. ANALOG INPUTS The ADE7758 has six analog inputs divided into two channels: current and voltage. The current channel consists of three pairs of fully differential voltage inputs: IAP and IAN, IBP and IBN, and ICP and ICN. These fully differential voltage input pairs have a maximum differential signal of ±0.5 V. The current channel has a programmable gain amplifier (PGA) with possible gain selection of 1, 2, or 4. In addition to the PGA, the current channels also have a full-scale input range selection for the ADC. The ADC analog input range selection is also made using the gain register (see Figure 38). As mentioned previously, the maximum differential input voltage is ±0.5 V. However, by using Bit 3 and Bit 4 in the gain register, the maximum ADC input voltage can be set to ±0.5 V, ±0.25 V, or ±0.125 V on the current channels. This is achieved by adjusting the ADC reference (see the Reference Circuit section). Figure 36 shows the maximum signal levels on the current channel inputs. The maximum common-mode signal is ±25 mV, as shown in Figure 37. DIFFERENTIAL INPUTV1 + V2 = 500mV MAX PEAK+500mVVCMV1IAP, IBP,OR ICPVCM–500mVCOMMON-MODE±25mV MAXV1 + V2V2IAN, IBN,OR ICN04443-036 Figure 36. Maximum Signal Levels, Current Channels, Gain = 1 The voltage channel has three single-ended voltage inputs: VAP, VBP, and VCP. These single-ended voltage inputs have a maximum input voltage of ±0.5 V with respect to VN. Both the current and voltage channel have a PGA with possible gain selections of 1, 2, or 4. The same gain is applied to all the inputs of each channel. Figure 37 shows the maximum signal levels on the voltage channel inputs. The maximum common-mode signal is ±25 mV, as shown in Figure 36. SINGLE-ENDED INPUT±500mV MAX PEAK+500mVAGNDVCMV2VAP, VBP,OR VCPVCM–500mVCOMMON-MODE±25mV MAXVNV204443-037 Figure 37. Maximum Signal Levels, Voltage Channels, Gain = 1 The gain selections are made by writing to the gain register. Bit 0 to Bit 1 select the gain for the PGA in the fully differential current channel. The gain selection for the PGA in the single-ended voltage channel is made via Bit 5 to Bit 6. Figure 38 shows how a gain selection for the current channel is made using the gain register. IAP, IBP, ICPIAN, IBN, ICNVINK ×VINGAIN[7:0]GAIN (K)SELECTION04443-038 Figure 38. PGA in Current Channel Figure 39 shows how the gain settings in PGA 1 (current channel) and PGA 2 (voltage channel) are selected by various bits in the gain register. GAIN REGISTER1CURRENT AND VOLTAGE CHANNEL PGA CONTROL7 6 5 4 3 2 1 00 0 0 0 0 0 0 0ADDRESS: 0x23RESERVED1REGISTER CONTENTS SHOW POWER-ON DEFAULTSPGA 2 GAIN SELECT00 = ×101 = ×210 = ×4INTEGRATOR ENABLE0 = DISABLE1 = ENABLEPGA 1 GAIN SELECT00 = ×101 = ×210 = ×4CURRENT INPUT FULL-SCALE SELECT00 = 0.5V01 = 0.25V10 = 0.125V04443-039 Figure 39. Analog Gain Register Bit 7 of the gain register is used to enable the digital integrator in the current signal path. Setting this bit activates the digital integrator (see the DI/DT Current Sensor and Digital Integrator section). Data Sheet ADE7758 Rev. E | Page 19 of 72 CURRENT CHANNEL ADC Figure 41 shows the ADC and signal processing path for the input IA of the current channels (same for IB and IC). In waveform sampling mode, the ADC outputs are signed twos complement 24-bit data-words at a maximum of 26.0 kSPS (thousand samples per second). With the specified full-scale analog input signal of ±0.5 V, the ADC produces its maximum output code value (see Figure 41). This diagram shows a full-scale voltage signal being applied to the differential inputs IAP and IAN. The ADC output swings between 0xD7AE14 (−2,642,412) and 0x2851EC (+2,642,412). Current Channel Sampling The waveform samples of the current channel can be routed to the WFORM register at fixed sampling rates by setting the WAVSEL[2:0] bit in the WAVMODE register to 000 (binary) (see Table 20). The phase in which the samples are routed is set by setting the PHSEL[1:0] bits in the WAVMODE register. Energy calculation remains uninterrupted during waveform sampling. When in waveform sample mode, one of four output sample rates can be chosen by using Bit 5 and Bit 6 of the WAVMODE register (DTRT[1:0]). The output sample rate can be 26.04 kSPS, 13.02 kSPS, 6.51 kSPS, or 3.25 kSPS. By setting the WFSM bit in the interrupt mask register to Logic 1, the interrupt request output IRQ goes active low when a sample is available. The timing is shown in . The 24-bit waveform samples are transferred from the one byte (8-bits) at a time, with the most significant byte shifted out first. Figure 40ADE7758READ FROMWAVEFORM0SGNCURRENT CHANNEL DATA–24 BITS0x12SCLKDINDOUTIRQ04443-040 Figure 40. Current Channel Waveform Sampling The interrupt request output IRQ stays low until the interrupt routine reads the reset status register (see the section). InterruptsDIGITALINTEGRATOR1GAIN[7]ADCREFERENCEACTIVEAND REACTIVEPOWER CALCULATIONWAVEFORM SAMPLEREGISTERCURRENT RMS (IRMS)CALCULATIONIAPIANPGA1VINGAIN[4:3]2.42V, 1.21V, 0.6VGAIN[1:0]×1, ×2, ×4ANALOGINPUTRANGEVIN0V0.5V/GAIN0.25V/GAIN0.125V/GAINADC OUTPUTWORD RANGECHANNEL 1(CURRENTWAVEFORM)DATA RANGE0xD7AE140x0000000x2851EC50HzCHANNEL 1 (CURRENTWAVEFORM)DATA RANGEAFTER INTEGRATOR(50HzANDAIGAIN[11:0] = 0x000)0xCB2E480x0000000x34D1B860HzCHANNEL 1 (CURRENTWAVEFORM)DATA RANGEAFTER INTEGRATOR(60HzANDAIGAIN[11:0] = 0x000)0xD4176D0x0000000x2BE893HPF04443-0411WHEN DIGITAL INTEGRATOR IS ENABLED, FULL-SCALE OUTPUT DATA ISATTENUATED DEPENDING ON THE SIGNAL FREQUENCY BECAUSE THE INTEGRATOR HAS A –20dB/DECADE FREQUENCY RESPONSE. WHEN DISABLED, THE OUTPUT WILL NOT BE FURTHERATTENUATED. Figure 41. Current Channel Signal Path ADE7758 Data Sheet Rev. E | Page 20 of 72 DI/DT CURRENT SENSOR AND DIGITAL INTEGRATOR The di/dt sensor detects changes in the magnetic field caused by the ac current. Figure 42 shows the principle of a di/dt current sensor. MAGNETIC FIELD CREATED BY CURRENT (DIRECTLY PROPORTIONAL TO CURRENT) + EMF (ELECTROMOTIVE FORCE) – INDUCED BY CHANGES IN MAGNETIC FLUX DENSITY (di/dt) 04443-042 Figure 42. Principle of a di/dt Current Sensor The flux density of a magnetic field induced by a current is directly proportional to the magnitude of the current. The changes in the magnetic flux density passing through a conductor loop generate an electromotive force (EMF) between the two ends of the loop. The EMF is a voltage signal that is propor- tional to the di/dt of the current. The voltage output from the di/dt current sensor is determined by the mutual inductance between the current carrying conductor and the di/dt sensor. The current signal needs to be recovered from the di/dt signal before it can be used. An integrator is therefore necessary to restore the signal to its original form. The ADE7758 has a built- in digital integrator to recover the current signal from the di/dt sensor. The digital integrator on Channel 1 is disabled by default when the ADE7758 is powered up. Setting the MSB of the GAIN[7:0] register turns on the integrator. Figure 43 to Figure 46 show the magnitude and phase response of the digital integrator. 10 100 1k 10k 20 –50 –40 –30 –20 –10 0 10 FREQUENCY (Hz) GAIN (dB) 04443-043 Figure 43. Combined Gain Response of the Digital Integrator and Phase Compensator 10 100 1k 10k 80 91 90 89 88 87 86 85 84 83 82 81 FREQUENCY (Hz) PHASE (Degrees) 04443-044 Figure 44. Combined Phase Response of the Digital Integrator and Phase Compensator 40 45 50 55 60 65 70 5 –1 0 1 2 3 4 FREQUENCY (Hz) MAGNITUDE (dB) 04443-045 Figure 45. Combined Gain Response of the Digital Integrator and Phase Compensator (40 Hz to 70 Hz) 40 45 50 55 60 65 70 89.80 90.10 90.05 90.00 89.95 89.90 89.85 FREQUENCY (Hz) PHASE (Degrees) 04443-046 Figure 46. Combined Phase Response of the Digital Integrator and Phase Compensator (40 Hz to 70 Hz) Data Sheet ADE7758 Rev. E | Page 21 of 72 Note that the integrator has a −20 dB/dec attenuation and approximately −90° phase shift. When combined with a di/dt sensor, the resulting magnitude and phase response should be a flat gain over the frequency band of interest. However, the di/dt sensor has a 20 dB/dec gain associated with it and generates significant high frequency noise. A more effective antialiasing filter is needed to avoid noise due to aliasing (see the Theory of Operation section). When the digital integrator is switched off, the ADE7758 can be used directly with a conventional current sensor, such as a current transformer (CT) or a low resistance current shunt. PEAK CURRENT DETECTION The ADE7758 can be programmed to record the peak of the current waveform and produce an interrupt if the current exceeds a preset limit. Peak Current Detection Using the PEAK Register The peak absolute value of the current waveform within a fixed number of half-line cycles is stored in the IPEAK register. Figure 47 illustrates the timing behavior of the peak current detection. L2 L1 CONTENT OF IPEAK[7:0] 00 L1L2L1 NO. OF HALF LINE CYCLES SPECIFIED BY LINECYC[15:0] REGISTER CURRENT WAVEFORM (PHASE SELECTED BY PEAKSEL[2:0] IN MMODE REGISTER) 04443-047 Figure 47. Peak Current Detection Using the IPEAK Register Note that the content of the IPEAK register is equivalent to Bit 14 to Bit 21 of the current waveform sample. At full-scale analog input, the current waveform sample is 0x2851EC. The IPEAK at full-scale input is therefore expected to be 0xA1. In addition, multiple phases can be activated for the peak detection simultaneously by setting more than one of the PEAKSEL[2:4] bits in the MMODE register to logic high. These bits select the phase for both voltage and current peak measurements. Note that if more than one bit is set, the VPEAK and IPEAK registers can hold values from two different phases, that is, the voltage and current peak are independently processed (see the Peak Current Detection section). Note that the number of half-line cycles is based on counting the zero crossing of the voltage channel. The ZXSEL[2:0] bits in the LCYCMODE register determine which voltage channels are used for the zero-crossing detection. The same signal is also used for line cycle energy accumulation mode if activated (see the Line Cycle Accumulation Mode Register (0X17) section). OVERCURRENT DETECTION INTERRUPT Figure 48 illustrates the behavior of the overcurrent detection. IPINTLVL[7:0] READ RSTATUS REGISTER PKI INTERRUPT FLAG (BIT 15 OF STATUS REGISTER) PKI RESET LOW WHEN RSTATUS REGISTER IS READ CURRENT PEAK WAVEFORM BEING MONITORED (SELECTED BY PKIRQSEL[2:0] IN MMODE REGISTER) 04443-048 Figure 48. ADE7758 Overcurrent Detection Note that the content of the IPINTLVL[7:0] register is equivalent to Bit 14 to Bit 21 of the current waveform sample. Therefore, setting this register to 0xA1 represents putting peak detection at full-scale analog input. Figure 48 shows a current exceeding a threshold. The overcurrent event is recorded by setting the PKI flag (Bit 15) in the interrupt status register. If the PKI enable bit is set to Logic 1 in the interrupt mask register, the IRQ logic output goes active low (see the Interrupts section). Similar to peak level detection, multiple phases can be activated for peak detection. If any of the active phases produce waveform samples above the threshold, the PKI flag in the interrupt status register is set. The phase of which overcurrent is monitored is set by the PKIRQSEL[2:0] bits in the MMODE register (see Table 19). ADE7758 Data Sheet Rev. E | Page 22 of 72 ADCTO VOLTAGE RMSCALCULATION ANDWAVEFORM SAMPLINGTO ACTIVE ANDREACTIVE ENERGYCALCULATIONVAP+–VNPGAVAGAIN[6:5]×1, ×2, ×4LPF OUTPUTWORD RANGE0xD8690x00x279750HzLPF OUTPUTWORD RANGE0xD8B80x00x274860Hz0xD7AE0x00x2852PHASECALIBRATIONPHCAL[6:0]ΦANALOG INPUTRANGEVA0V0.5VGAINLPF1f3dB = 260Hz04443-049 Figure 49. ADC and Signal Processing in Voltage Channel VOLTAGE CHANNEL ADC Figure 49 shows the ADC and signal processing chain for the input VA in the voltage channel. The VB and VC channels have similar processing chains. For active and reactive energy measurements, the output of the ADC passes to the multipliers directly and is not filtered. This solution avoids the much larger multibit multiplier and does not affect the accuracy of the measurement. An HPF is not implemented on the voltage channel to remove the dc offset because the HPF on the current channel alone should be sufficient to eliminate error due to ADC offsets in the power calculation. However, ADC offset in the voltage channels produces large errors in the voltage rms calculation and affects the accuracy of the apparent energy calculation. Voltage Channel Sampling The waveform samples on the voltage channels can also be routed to the WFORM register. However, before passing to the WFORM register, the ADC outputs pass through a single-pole, low-pass filter (LPF1) with a cutoff frequency at 260 Hz. Figure 50 shows the magnitude and phase response of LPF1. This filter attenuates the signal slightly. For example, if the line frequency is 60 Hz, the signal at the output of LPF1 is attenuated by 3.575%. The waveform samples are 16-bit, twos complement data ranging between 0x2748 (+10,056d) and 0xD8B8 (−10,056d). The data is sign extended to 24-bit in the WFORM register. ()dB225.0974.0Hz260Hz60112−==⎟⎟⎠⎞⎜⎜⎝⎛+=fH (3) 0–20–40–60–800–10–20–30–40101001kFREQUENCY (Hz)PHASE (Degrees)GAIN (dB)(60Hz;–0.2dB)(60Hz;–13°)04443-050 Figure 50. Magnitude and Phase Response of LPF1 Note that LPF1 does not affect the active and reactive energy calculation because it is only used in the waveform sampling signal path. However, waveform samples are used for the voltage rms calculation and the subsequent apparent energy accumulation. The WAVSEL[2:0] bits in the WAVMODE register should be set to 001 (binary) to start the voltage waveform sampling. The PHSEL[1:0] bits control the phase from which the samples are routed. In waveform sampling mode, one of four output sample rates can be chosen by changing Bit 5 and Bit 6 of the WAVMODE register (see Table 20). The available output sample rates are 26.0 kSPS, 13.5 kSPS, 6.5 kSPS, or 3.3 kSPS. By setting the WFSM bit in the interrupt mask register to Logic 1, the interrupt request output IRQ goes active low when a sample is available. The 24-bit waveform samples are transferred from the one byte (8 bits) at a time, with the most significant byte shifted out first. ADE7758 The sign of the register is extended in the upper 8 bits. The timing is the same as for the current channels, as seen in Figure 40. Data Sheet ADE7758 Rev. E | Page 23 of 72 ZERO-CROSSING DETECTION The ADE7758 has zero-crossing detection circuits for each of the voltage channels (VAN, VBN, and VCN). Figure 51 shows how the zero-cross signal is generated from the output of the ADC of the voltage channel. REFERENCEADCZERO-CROSSINGDETECTORPGAVAN,VBN,VCNGAIN[6:5]×1,×2,×4LPF1f–3dB=260Hz24.8°@60HzANALOGVOLTAGEWAVEFORM(VAN,VBN, ORVCN)LPF1OUTPUTREADRSTATUSIRQ1.00.90804443-051 Figure 51. Zero-Crossing Detection on Voltage Channels The zero-crossing interrupt is generated from the output of LPF1. LPF1 has a single pole at 260 Hz (CLKIN = 10 MHz). As a result, there is a phase lag between the analog input signal of the voltage channel and the output of LPF1. The phase response of this filter is shown in the Voltage Channel Sampling section. The phase lag response of LPF1 results in a time delay of approximately 1.1 ms (at 60 Hz) between the zero crossing on the voltage inputs and the resulting zero-crossing signal. Note that the zero-crossing signal is used for the line cycle accumulation mode, zero-crossing interrupt, and line period/frequency measurement. When one phase crosses from negative to positive, the corresponding flag in the interrupt status register (Bit 9 to Bit 11) is set to Logic 1. An active low in the IRQ output also appears if the corresponding ZX bit in the interrupt mask register is set to Logic 1. Note that only zero crossing from negative to positive generates an interrupt. The flag in the interrupt status register is reset to 0 when the interrupt status register with reset (RSTATUS) is read. Each phase has its own interrupt flag and mask bit in the interrupt register. Zero-Crossing Timeout Each zero-crossing detection has an associated internal timeout register (not accessible to the user). This unsigned, 16-bit register is decreased by 1 every 384/CLKIN seconds. The registers are reset to a common user-programmed value, that is, the zero-crossing timeout register (ZXTOUT[15:0], Address 0x1B), every time a zero crossing is detected on its associated input. The default value of ZXTOUT is 0xFFFF. If the internal register decrements to 0 before a zero crossing at the corresponding input is detected, it indicates an absence of a zero crossing in the time determined by the ZXTOUT[15:0]. The ZXTOx detection bit of the corresponding phase in the interrupt status register is then switched on (Bit 6 to Bit 8). An active low on the IRQ output also appears if the ZXTOx mask bit for the corresponding phase in the interrupt mask register is set to Logic 1. shows the mechanism of the zero-crossing timeout detection when the Line Voltage A stays at a fixed dc level for more than 384/CLKIN × ZXTOUT[15:0] seconds. Figure 52ZXTOADETECTION BITREADRSTATUSVOLTAGECHANNEL AZXTOUT[15:0]16-BIT INTERNALREGISTER VALUE04443-052 Figure 52. Zero-Crossing Timeout Detection PHASE COMPENSATION When the HPF in the current channel is disabled, the phase error between the current channel (IA, IB, or IC) and the corresponding voltage channel (VA, VB, or VC) is negligible. When the HPF is enabled, the current channels have phase response (see Figure 53 through Figure 55). The phase response is almost 0 from 45 Hz to 1 kHz. The frequency band is sufficient for the requirements of typical energy measurement applications. However, despite being internally phase compensated, the ADE7758 must work with transducers that may have inherent phase errors. For example, a current transformer (CT) with a phase error of 0.1° to 0.3° is not uncommon. These phase errors can vary from part to part, and they must be corrected to perform accurate power calculations. The errors associated with phase mismatch are particularly noticeable at low power factors. The ADE7758 provides a means of digitally calibrating these small phase errors. The ADE7758 allows a small time delay or time advance to be introduced into the signal processing chain to compensate for the small phase errors. The phase calibration registers (APHCAL, BPHCAL, and CPHCAL) are twos complement, 7-bit sign-extended registers that can vary the time advance in the voltage channel signal path from +153.6 μs to −75.6 μs (CLKIN = 10 MHz), ADE7758 Data Sheet Rev. E | Page 24 of 72 407065605550450.200.150.100.050–0.05–0.10FREQUENCY (Hz)PHASE (Degrees)04443-054 respectively. Negative values written to the PHCAL registers represent a time advance, and positive values represent a time delay. One LSB is equivalent to 1.2 μs of time delay or 2.4 μs of time advance with a CLKIN of 10 MHz. With a line frequency of 60 Hz, this gives a phase resolution of 0.026° (360° × 1.2 μs × 60 Hz) at the fundamental in the positive direction (delay) and 0.052° in the negative direction (advance). This corresponds to a total correction range of −3.32° to +1.63° at 60 Hz. Figure 56 illustrates how the phase compensation is used to remove a 0.1° phase lead in IA of the current channel from the external current transducer. To cancel the lead (0.1°) in the current channel of Phase A, a phase lead must be introduced into the corresponding voltage channel. The resolution of the phase adjustment allows the introduction of a phase lead of 0.104°. The phase lead is achieved by introducing a time advance into VA. A time advance of 4.8 μs is made by writing −2 (0x7E) to the time delay block (APHCAL[6:0]), thus reducing the amount of time delay by 4.8 μs or equivalently, 360° × 4.8 μs × 60 Hz = 0.104° at 60 Hz. Figure 54. Phase Response of the HPF and Phase Compensation (40 Hz to 70 Hz) 445654525048460.100.080.060.040.020–0.02FREQUENCY (Hz)PHASE (Degrees)04443-055 01002003004005006007008001k9009001020304050607080FREQUENCY (Hz)PHASE (Degrees)04443-053 Figure 55. Phase Response of HPF and Phase Compensation (44 Hz to 56 Hz) Figure 53. Phase Response of the HPF and Phase Compensation (10 Hz to 1 kHz) Data Sheet ADE7758 Rev. E | Page 25 of 72 PGA1IAPIANIAADCHPFPGA2VAPVNVAADC60Hz0.1°IAVARANGE OF PHASECALIBRATION111110060APHCAL[6:0]–153.6μsTO +75.6μsVAVAADVANCED BY 4.8μs(+0.104° @ 60Hz)0x7EIA60HzDIGITALINTEGRATORACTIVE ANDREACTIVEENERGYCALCULATION+1.36°, –2.76° @ 50Hz; 0.022°, 0.043°+1.63°, –3.31° @ 60Hz; 0.026°, 0.052°04443-056 Figure 56. Phase Calibration on Voltage Channels PERIOD MEASUREMENT The ADE7758 provides the period or frequency measurement of the line voltage. The period is measured on the phase specified by Bit 0 to Bit 1 of the MMODE register. The period register is an unsigned 12-bit FREQ register and is updated every four periods of the selected phase. Bit 7 of the LCYCMODE selects whether the period register displays the frequency or the period. Setting this bit causes the register to display the period. The default setting is logic low, which causes the register to display the frequency. When set to measure the period, the resolution of this register is 96/CLKIN per LSB (9.6 μs/LSB when CLKIN is 10 MHz), which represents 0.06% when the line frequency is 60 Hz. At 60 Hz, the value of the period register is 1737d. At 50 Hz, the value of the period register is 2084d. When set to measure frequency, the value of the period register is approximately 960d at 60 Hz and 800d at 50 Hz. This is equivalent to 0.0625 Hz/LSB. LINE VOLTAGE SAG DETECTION The ADE7758 can be programmed to detect when the absolute value of the line voltage of any phase drops below a certain peak value for a number of half cycles. Each phase of the voltage channel is controlled simultaneously. This condition is illustrated in Figure 57. Figure 57 shows a line voltage fall below a threshold, which is set in the SAG level register (SAGLVL[7:0]), for nine half cycles. Because the SAG cycle register indicates a six half-cycle threshold (SAGCYC[7:0] = 0x06), the SAG event is recorded at the end of the sixth half cycle by setting the SAG flag of the corresponding phase in the interrupt status register (Bit 1 to Bit 3 in the interrupt status register). If the SAG enable bit is set to Logic 1 for this phase (Bit 1 to Bit 3 in the interrupt mask register), the IRQ logic output goes active low (see the section). The phases are compared to the same parameters defined in the SAGLVL and SAGCYC registers. InterruptsSAGLVL[7:0]FULL-SCALEREAD RSTATUSREGISTERSAGCYC[7:0]=0x066HALFCYCLESSAG INTERRUPT FLAG(BIT 3 TO BIT 5 OFSTATUS REGISTER)VAP, VBP, OR VCPSAG EVENT RESET LOWWHEN VOLTAGE CHANNELEXCEEDS SAGLVL[7:0]04443-057 Figure 57. ADE7758 SAG Detection Figure 57 shows a line voltage fall below a threshold, which is set in the SAG level register (SAGLVL[7:0]), for nine half cycles. Because the SAG cycle register indicates a six half-cycle threshold (SAGCYC[7:0] = 0x06), the SAG event is recorded at the end of the sixth half cycle by setting the SAG flag of the corresponding phase in the interrupt status register (Bit 1 to Bit 3 in the interrupt status register). If the SAG enable bit is set to Logic 1 for this phase (Bit 1 to Bit 3 in the interrupt mask register), the IRQ logic output goes active low (see the section). The phases are compared to the same parameters defined in the SAGLVL and SAGCYC registers. Interrupts ADE7758 Data Sheet Rev. E | Page 26 of 72 SAG LEVEL SET The contents of the single-byte SAG level register, SAGLVL[0:7], are compared to the absolute value of Bit 6 to Bit 13 from the voltage waveform samples. For example, the nominal maximum code of the voltage channel waveform samples with a full-scale signal input at 60 Hz is 0x2748 (see the Voltage Channel Sampling section). Bit 13 to Bit 6 are 0x9D. Therefore, writing 0x9D to the SAG level register puts the SAG detection level at full scale and sets the SAG detection to its most sensitive value. The detection is made when the content of the SAGLVL[7:0] register is greater than the incoming sample. Writing 0x00 puts the SAG detection level at 0. The detection of a decrease of an input voltage is disabled in this case. PEAK VOLTAGE DETECTION The ADE7758 can record the peak of the voltage waveform and produce an interrupt if the current exceeds a preset limit. Peak Voltage Detection Using the VPEAK Register The peak absolute value of the voltage waveform within a fixed number of half-line cycles is stored in the VPEAK register. Figure 58 illustrates the timing behavior of the peak voltage detection. L2L1CONTENT OFVPEAK[7:0]00L1L2L1NO. OF HALFLINE CYCLESSPECIFIED BYLINECYC[15:0]REGISTERVOLTAGE WAVEFORM(PHASE SELECTED BYPEAKSEL[2:4]IN MMODE REGISTER)04443-058 Figure 58. Peak Voltage Detection Using the VPEAK Register Note that the content of the VPEAK register is equivalent to Bit 6 to Bit 13 of the 16-bit voltage waveform sample. At full-scale analog input, the voltage waveform sample at 60 Hz is 0x2748. The VPEAK at full-scale input is, therefore, expected to be 0x9D. In addition, multiple phases can be activated for the peak detection simultaneously by setting multiple bits among the PEAKSEL[2:4] bits in the MMODE register. These bits select the phase for both voltage and current peak measurements. Note that if more than one bit is set, the VPEAK and IPEAK registers can hold values from two different phases, that is, the voltage and current peak are independently processed (see the Peak Current Detection section). Note that the number of half-line cycles is based on counting the zero crossing of the voltage channel. The ZXSEL[2:0] bits in the LCYCMODE register determine which voltage channels are used for the zero-crossing detection (see Table 22). The same signal is also used for line cycle energy accumulation mode if activated. Overvoltage Detection Interrupt Figure 59 illustrates the behavior of the overvoltage detection. VPINTLVL[7:0]READ RSTATUSREGISTERPKV INTERRUPT FLAG(BIT 14 OF STATUSREGISTER)PKV RESET LOWWHEN RSTATUSREGISTER IS READVOLTAGE PEAK WAVEFORM BEING MONITORED(SELECTED BY PKIRQSEL[5:7] IN MMODE REGISTER)04443-059 Figure 59. ADE7758 Overvoltage Detection Note that the content of the VPINTLVL[7:0] register is equivalent to Bit 6 to Bit 13 of the 16-bit voltage waveform samples; therefore, setting this register to 0x9D represents putting the peak detection at full-scale analog input. Figure 59 shows a voltage exceeding a threshold. By setting the PKV flag (Bit 14) in the interrupt status register, the overvoltage event is recorded. If the PKV enable bit is set to Logic 1 in the interrupt mask register, the IRQ logic output goes active low (see the section). Interrupts Multiple phases can be activated for peak detection. If any of the active phases produce waveform samples above the threshold, the PKV flag in the interrupt status register is set. The phase in which overvoltage is monitored is set by the PKIRQSEL[5:7] bits in the MMODE register (see Table 19). PHASE SEQUENCE DETECTION The ADE7758 has an on-chip phase sequence error detection interrupt. This detection works on phase voltages and considers all associated zero crossings. The regular succession of these zero crossings events is a negative to positive transition on Phase A, followed by a positive to negative transition on Phase C, followed by a negative to positive transition on Phase B, and so on. Data Sheet ADE7758 Rev. E | Page 27 of 72 On the ADE7758, if the regular succession of the zero crossings presented above happens, the SEQERR bit (Bit 19) in the STATUS register is set (Figure 60). If SEQERR is set in the mask register, the IRQ logic output goes active low (see the section). Interrupts If the regular zero crossing succession does not occur, that is when a negative to positive transition on Phase A followed by a positive to negative transition on Phase B, followed by a negative to positive transition on Phase C, and so on, the SEQERR bit (Bit 19) in the STATUS register is cleared to 0. To have the ADE7758 trigger SEQERR status bit when the zero crossing regular succession does not occur, the analog inputs for Phase C and Phase B should be swapped. In this case, the Phase B voltage input should be wired to the VCP pin, and the Phase C voltage input should be wired to the VBP pin. 04443-060ABSEQERR BIT OF STATUS REGISTER IS SETA = 0°B = –120°C = +120°CVOLTAGEWAVEFORMSZEROCROSSINGSCABCACAB Figure 60. Regular Phase Sequence Sets SEQERR Bit to 1 04443-160ACSEQERR BIT OF STATUS REGISTER IS NOT SETA = 0°C = –120°B = +120°BZEROCROSSINGSVOLTAGEWAVEFORMSBACBABAC Figure 61. Erroneous Phase Sequence Clears SEQERR Bit to 0 POWER-SUPPLY MONITOR The ADE7758 also contains an on-chip power-supply monitor. The analog supply (AVDD) is monitored continuously by the ADE7758. If the supply is less than 4 V ± 5%, the ADE7758 goes into an inactive state, that is, no energy is accumulated when the supply voltage is below 4 V. This is useful to ensure correct device operation at power-up and during power-down. The power-supply monitor has built-in hysteresis and filtering. This gives a high degree of immunity to false triggering due to noisy supplies. When AVDD returns above 4 V ± 5%, the ADE7758 waits 18 μs for the voltage to achieve the recommended voltage range, 5 V ± 5% and then becomes ready to function. Figure 62 shows the behavior of the ADE7758 when the voltage of AVDD falls below the power-supply monitor threshold. The power supply and decoupling for the part should be designed such that the ripple at AVDD does not exceed 5 V ± 5% as specified for normal operation. AVDD5V4V0VADE7758INTERNALCALCULATIONSACTIVEINACTIVEINACTIVETIME04443-061 Figure 62. On-Chip, Power-Supply Monitoring REFERENCE CIRCUIT The nominal reference voltage at the REFIN/OUT pin is 2.42 V. This is the reference voltage used for the ADCs in the ADE7758. However, the current channels have three input range selections (full scale is selectable among 0.5 V, 0.25 V, and 0.125 V). This is achieved by dividing the reference internally by 1, ½, and ¼. The reference value is used for the ADC in the current channels. Note that the full-scale selection is only available for the current inputs. The REFIN/OUT pin can be overdriven by an external source, for example, an external 2.5 V reference. Note that the nominal reference value supplied to the ADC is now 2.5 V and not 2.42 V. This has the effect of increasing the nominal analog input signal range by 2.5/2.42 × 100% = 3% or from 0.5 V to 0.5165 V. The voltage of the ADE7758 reference drifts slightly with temperature; see the Specifications section for the temperature coefficient specification (in ppm/°C). The value of the temperature drift varies from part to part. Because the reference is used for all ADCs, any ×% drift in the reference results in a 2×% deviation of the meter accuracy. The reference drift resulting from temperature changes is usually very small and typically much smaller than the drift of other components on a meter. Alternatively, the meter can be calibrated at multiple temperatures. TEMPERATURE MEASUREMENT The ADE7758 also includes an on-chip temperature sensor. A temperature measurement is made every 4/CLKIN seconds. The output from the temperature sensing circuit is connected to an ADC for digitizing. The resultant code is processed and placed in the temperature register (TEMP[7:0]). This register can be read by the user and has an address of 0x11 (see the Serial Interface section). The contents of the temperature register are signed (twos complement) with a resolution of 3°C/LSB. The offset of this register may vary significantly from part to part. To calibrate this register, the nominal value should be measured, and the equation should be adjusted accordingly. ADE7758 Data Sheet Rev. E | Page 28 of 72 Temp (°C) = [(TEMP[7:0] − Offset) × 3°C/LSB] + Ambient(°C) (4) For example, if the temperature register produces a code of 0x46 at ambient temperature (25°C), and the temperature register currently reads 0x50, then the temperature is 55°C : Temp (°C) = [(0x50 – 0x46) × 3°C/LSB] + 25°C = 55°C Depending on the nominal value of the register, some finite temperature can cause the register to roll over. This should be compensated for in the system master (MCU). The ADE7758 temperature register varies with power supply. It is recommended to use the temperature register only in applications with a fixed, stable power supply. Typical error with respect to power supply variation is show in Table 5. Table 5. Temperature Register Error with Power Supply Variation 4.5 V 4.75 V 5 V 5.25 V 5.5 V Register Value 219 216 214 211 208 % Error +2.34 +0.93 0 −1.40 −2.80 ROOT MEAN SQUARE MEASUREMENT Root mean square (rms) is a fundamental measurement of the magnitude of an ac signal. Its definition can be both practical and mathematical. Defined practically, the rms value assigned to an ac signal is the amount of dc required to produce an equivalent amount of power in the load. Mathematically, the rms value of a continuous signal f(t) is defined as ()dtT120TtfFRMS∫= (5) For time sampling signals, rms calculation involves squaring the signal, taking the average, and obtaining the square root. ][112nfNFRMSNnΣ== (6) The method used to calculate the rms value in the ADE7758 is to low-pass filter the square of the input signal (LPF3) and take the square root of the result (see Figure 63). i(t) = √2 × IRMS × sin(ωt) (7) then i2(t) = IRMS2 − IRMS2 × cos(ωt) (8) The rms calculation is simultaneously processed on the six analog input channels. Each result is available in separate registers. While the ADE7758 measures nonsinusoidal signals, it should be noted that the voltage rms measurement, and therefore the apparent energy, are bandlimited to 260 Hz. The current rms as well as the active power have a bandwidth of 14 kHz. Current RMS Calculation Figure 63 shows the detail of the signal processing chain for the rms calculation on one of the phases of the current channel. The current channel rms value is processed from the samples used in the current channel waveform sampling mode. The current rms values are stored in 24-bit registers (AIRMS, BIRMS, and CIRMS). One LSB of the current rms register is equivalent to one LSB of the current waveform sample. The update rate of the current rms measurement is CLKIN/12. SGN224223222216215214CURRENT SIGNALFROM HPF ORINTEGRATOR(IF ENABLED)0x1D37810x00++0x2851EC0x00xD7AE14X2LPF3AIRMS[23:0]AIRMSOS[11:0]04443-062 Figure 63. Current RMS Signal Processing With the specified full-scale analog input signal of 0.5 V, the ADC produces an output code that is approximately ±2,642,412d (see the Current Channel ADC section). The equivalent rms value of a full-scale sinusoidal signal at 60 Hz is 1,914,753 (0x1D3781). The accuracy of the current rms is typically 0.5% error from the full-scale input down to 1/500 of the full-scale input. Additionally, this measurement has a bandwidth of 14 kHz. It is recommended to read the rms registers synchronous to the voltage zero crossings to ensure stability. The IRQ can be used to indicate when a zero crossing has occurred (see the Interrupts section). Table 6 shows the settling time for the IRMS measurement, which is the time it takes for the rms register to reflect the value at the input to the current channel. Table 6. Settling Time for IRMS Measurement 63% 100% Integrator Off 80 ms 960 ms Integrator On 40 ms 1.68 sec Data Sheet ADE7758 Rev. E | Page 29 of 72 Current RMS Offset Compensation The ADE7758 incorporates a current rms offset compensation register for each phase (AIRMSOS, BIRMSOS, and CIRMSOS). These are 12-bit signed registers that can be used to remove offsets in the current rms calculations. An offset can exist in the rms calculation due to input noises that are integrated in the dc component of I2(t). Assuming that the maximum value from the current rms calculation is 1,914,753d with full-scale ac inputs (60 Hz), one LSB of the current rms offset represents 0.94% of the measurement error at 60 dB down from full scale. The IRMS measurement is undefined at zero input. Calibration of the offset should be done at low current and values at zero input should be ignored. For details on how to calibrate the current rms measurement, see the Calibration section. IRMS IRMS 2 IRMSOS 0    16384 (9) where IRMS0 is the rms measurement without offset correction. Table 7. Approximate IRMS Register Values Frequency (Hz) Integrator Off (d) Integrator On (d) 50 1,921,472 2,489,581 60 1,914,752 2,067,210 Voltage Channel RMS Calculation Figure 64 shows the details of the signal path for the rms estimation on Phase A of the voltage channel. This voltage rms estimation is done in the ADE7758 using the mean absolute value calculation, as shown in Figure 64.The voltage channel rms value is processed from the waveform samples after the low-pass filter LPF1. The output of the voltage channel ADC can be scaled by ±50% by changing VRMSGAIN[11:0] registers to perform an overall rms voltage calibration. The VRMSGAIN registers scale the rms calculations as well as the apparent energy calculation because apparent power is the product of the voltage and current rms values. The voltage rms values are stored in 24-bit registers (AVRMS, BVRMS, and CVRMS). One LSB of a voltage waveform sample is approximately equivalent to 256 LSBs of the voltage rms register. The update rate of the voltage rms measurement is CLKIN/12. With the specified full-scale ac analog input signal of 0.5 V, the LPF1 produces an output code that is approximately 63% of its full-scale value, that is, ±9,372d, at 60 Hz (see the Voltage Channel ADC section). The equivalent rms value of a full-scale ac signal is approximately 1,639,101 (0x1902BD) in the VRMS register. The accuracy of the VRMS measurement is typically 0.5% error from the full-scale input down to 1/20 of the full-scale input. Additionally, this measurement has a bandwidth of 260 Hz. It is recommended to read the rms registers synchronous to the voltage zero crossings to ensure stability. The IRQ can be used to indicate when a zero crossing has occurred (see the Interrupts section). VAN AVRMSGAIN[11:0] 0x2748 LPF OUTPUT WORD RANGE 0x0 60Hz 0xD8B8 0x2797 LPF OUTPUT WORD RANGE 0x0 50Hz 0xD869 LPF1 VOLTAGE SIGNAL–V(t) 0.5 GAIN 0x193504 50Hz 0x0 0x1902BD 60Hz 0x0 |X| AVRMS[23:0] LPF3 SGN216 215 214 28 27 26 VRMSOS[11:0] + + 04443-063 Figure 64. Voltage RMS Signal Processing Table 8 shows the settling time for the VRMS measurement, which is the time it takes for the rms register to reflect the value at the input to the voltage channel. Table 8. Settling Time for VRMS Measurement 63% 100% 100 ms 960 ms Voltage RMS Offset Compensation The ADE7758 incorporates a voltage rms offset compensation for each phase (AVRMSOS, BVRMSOS, and CVRMSOS). These are 12-bit signed registers that can be used to remove offsets in the voltage rms calculations. An offset can exist in the rms calculation due to input noises and offsets in the input samples. It should be noted that the offset calibration does not allow the contents of the VRMS registers to be maintained at 0 when no voltage is applied. This is caused by noise in the voltage rms calculation, which limits the usable range between full scale and 1/50th of full scale. One LSB of the voltage rms offset is equivalent to 64 LSBs of the voltage rms register. Assuming that the maximum value from the voltage rms calculation is 1,639,101d with full-scale ac inputs, then 1 LSB of the voltage rms offset represents 0.042% of the measurement error at 1/10 of full scale. VRMS = VRMS0 + VRMSOS × 64 (10) where VRMS0 is the rms measurement without the offset correction. Table 9. Approximate VRMS Register Values Frequency (Hz) Value (d) 50 1,678,210 60 1,665,118 ADE7758 Data Sheet Rev. E | Page 30 of 72 Voltage RMS Gain Adjust The ADC gain in each phase of the voltage channel can be adjusted for the rms calculation by using the voltage rms gain registers (AVRMSGAIN, BVRMSGAIN, and CVRMSGAIN). The gain of the voltage waveforms before LPF1 is adjusted by writing twos complement, 12-bit words to the voltage rms gain registers. Equation 11 shows how the gain adjustment is related to the contents of the voltage gain register.        212 ValuesWithout Gain 1 VRMSGAIN RMS Nominal VRMSRegister ofContent (11) For example, when 0x7FF is written to the voltage gain register, the RMS value is scaled up by 50%. 0x7FF = 2047d 2047/212 = 0.5 Similarly, when 0x800, which equals –2047d (signed twos complement), is written the ADC output is scaled by –50%. ACTIVE POWER CALCULATION Electrical power is defined as the rate of energy flow from source to load. It is given by the product of the voltage and current waveforms. The resulting waveform is called the instantaneous power signal and it is equal to the rate of energy flow at every instant of time. The unit of power is the watt or joules/sec. Equation 14 gives an expression for the instantaneous power signal in an ac system. v(t) = √2 × VRMS × sin(ωt) (12) i(t) = √2 × IRMS × sin(ωt) (13) where VRMS = rms voltage and IRMS = rms current. p(t) = v(t) × i(t) p(t) = IRMS × VRMS − IRMS × VRMS × cos(2ωt) (14) The average power over an integral number of line cycles (n) is given by the expression in Equation 15.   VRMS IRMS dttp nT p nT     0 1 (15) where: t is the line cycle period. P is referred to as the active or real power. Note that the active power is equal to the dc component of the instantaneous power signal p(t) in Equation 14, that is, VRMS × IRMS. This is the relationship used to calculate the active power in the ADE7758 for each phase. The instantaneous power signal p(t) is generated by multiplying the current and voltage signals in each phase. The dc component of the instantaneous power signal in each phase (A, B, and C) is then extracted by LPF2 (the low-pass filter) to obtain the average active power information on each phase. Figure 65 shows this process. The active power of each phase accumulates in the corresponding 16-bit watt-hour register (AWATTHR, BWATTHR, or CWATTHR). The input to each active energy register can be changed depending on the accumulation mode setting (see Table 22). INSTANTANEOUS POWER SIGNAL p(t) = VRMS×IRMS – VRMS×IRMS×cos(2ωt) ACTIVE REAL POWER SIGNAL = VRMS × IRMS 0x19999A VRMS ×IRMS 0xCCCCD 0x00000 CURRENT i(t) = 2 ×IRMS ×sin(ωt) VOLTAGE v(t) = 2 ×VRMS ×sin(ωt) 04443-064 Figure 65. Active Power Calculation Because LPF2 does not have an ideal brick wall frequency response (see Figure 66), the active power signal has some ripple due to the instantaneous power signal. This ripple is sinusoidal and has a frequency equal to twice the line frequency. Because the ripple is sinusoidal in nature, it is removed when the active power signal is integrated over time to calculate the energy. 0 –4 –8 –12 GAIN (dB) –16 –20 –24 1 3 18 0 FREQUENCY(Hz) 30 100 04443-065 Figure 66. Frequency Response of the LPF Used to Filter Instantaneous Power in Each Phase Data Sheet ADE7758 Rev. E | Page 31 of 72 Active Power Gain Calibration Note that the average active power result from the LPF output in each phase can be scaled by ±50% by writing to the phase’s watt gain register (AWG, BWG, or CWG). The watt gain registers are twos complement, signed registers and have a resolution of 0.024%/LSB. Equation 16 describes mathematically the function of the watt gain registers. ⎟⎠⎞⎜⎝⎛+×=12212gisterReGainWattOutputLPFDataPowerAverage (16) The REVPAP bit (Bit 17) in the interrupt status register is set if the average power from any one of the phases changes sign. The phases monitored are selected by TERMSEL bits in the COMPMODE register (see Table 21). The TERMSEL bits are also used to select which phases are included in the APCF and VARCF pulse outputs. If the REVPAP bit is set in the mask register, the IRQ logic output goes active low (see the section). Note that this bit is set whenever there are sign changes, that is, the REVPAP bit is set for both a positive-to-negative change and a negative-to-positive change of the sign bit. The response time of this bit is approximately 176 ms for a full-scale signal, which has an average value of 0xCCCCD at the low pass filter output. For smaller inputs, the time is longer. Interrupts The output is scaled by −50% by writing 0x800 to the watt gain registers and increased by +50% by writing 0x7FF to them. These registers can be used to calibrate the active power (or energy) calculation in the ADE7758 for each phase. CLKINValueAveragemsTimesponseRe4252601×⎥⎥⎦⎤⎢⎢⎣⎡+≅(17) Active Power Offset Calibration The APCFNUM [15:13] indicate reverse power on each of the individual phases. Bit 15 is set if the sign of the power on Phase A is negative, Bit 14 for Phase B, and Bit 13 for Phase C. The ADE7758 also incorporates a watt offset register on each phase (AWATTOS, BWATTOS, and CWATTOS). These are signed twos complement, 12-bit registers that are used to remove offsets in the active power calculations. An offset can exist in the power calculation due to crosstalk between channels on the PCB or in the chip itself. The offset calibration allows the contents of the active power register to be maintained at 0 when no power is being consumed. One LSB in the active power offset register is equivalent to 1/16 LSB in the active power multiplier output. At full-scale input, if the output from the multiplier is 0xCCCCD (838,861d), then 1 LSB in the LPF2 output is equivalent to 0.0075% of measurement error at 60 dB down from full scale on the current channel. At −60 dB down on full scale (the input signal level is 1/1000 of full-scale signal inputs), the average word value from LPF2 is 838.861 (838,861/1000). One LSB is equivalent to 1/838.861/16 × 100% = 0.0075% of the measured value. The active power offset register has a correction resolution equal to 0.0075% at −60 dB. No-Load Threshold The ADE7758 has an internal no-load threshold on each phase. The no-load threshold can be activated by setting the NOLOAD bit (Bit 7) of the COMPMODE register. If the active power falls below 0.005% of full-scale input, the energy is not accumulated in that phase. As stated, the average multiplier output with full-scale input is 0xCCCCD. Therefore, if the average multiplier output falls below 0x2A, the power is not accumulated to avoid creep in the meter. The no-load threshold is implemented only on the active energy accumulation. The reactive and apparent energies do not have the no-load threshold option. Active Energy Calculation As previously stated, power is defined as the rate of energy flow. This relationship can be expressed mathematically as dtdEnergyPower= (18) Sign of Active Power Calculation Note that the average active power is a signed calculation. If the phase difference between the current and voltage waveform is more than 90°, the average power becomes negative. Negative power indicates that energy is being placed back on the grid. The ADE7758 has a sign detection circuitry for active power calculation. Conversely, Energy is given as the integral of power. ()dtp∫=tEnergy (19) ADE7758 Data Sheet Rev. E | Page 32 of 72 AWG[11:0]WDIV[7:0]DIGITALINTEGRATORMULTIPLIERIVHPFCURRENT SIGNAL–i(t)0x2851EC0x000xD7AE14VOLTAGE SIGNAL–v(t)0x2852000x0xD7AE++++LPF2%SIGN26202–12–22–32–4AWATTOS[11:0]AWATTHR[15:0]150400TOTAL ACTIVE POWER ISACCUMULATED (INTEGRATED) INTHE ACTIVE ENERGY REGISTERTIME (nT)TAVERAGE POWERSIGNAL–P0xCCCCD0x00000PHCAL[6:0]Φ04443-066 Figure 67. ADE7758 Active Energy Accumulation The ADE7758 achieves the integration of the active power signal by continuously accumulating the active power signal in the internal 41-bit energy registers. The watt-hr registers (AWATTHR, BWATTHR, and CWATTHR) represent the upper 16 bits of these internal registers. This discrete time accumulation or summation is equivalent to integration in continuous time. Equation 20 expresses the relationship. ()()⎭⎬⎫⎩⎨⎧×==Σ∫∞=→00TLimnTnTpdttpEnergy (20) where: n is the discrete time sample number. T is the sample period. Figure 67 shows a signal path of this energy accumulation. The average active power signal is continuously added to the internal active energy register. This addition is a signed operation. Negative energy is subtracted from the active energy register. Note the values shown in Figure 67 are the nominal full-scale values, that is, the voltage and current inputs at the corresponding phase are at their full-scale input level. The average active power is divided by the content of the watt divider register before it is added to the corresponding watt-hr accumulation registers. When the value in the WDIV[7:0] register is 0 or 1, active power is accumulated without division. WDIV is an 8-bit unsigned register that is useful to lengthen the time it takes before the watt-hr accumulation registers overflow. Figure 68 shows the energy accumulation for full-scale signals (sinusoidal) on the analog inputs. The three displayed curves show the minimum time it takes for the watt-hr accumulation register to overflow when the watt gain register of the corre-sponding phase equals to 0x7FF, 0x000, and 0x800. The watt gain registers are used to carry out a power calibration in the ADE7758. As shown, the fastest integration time occurs when the watt gain registers are set to maximum full scale, that is, 0x7FF. This is the time it takes before overflow can be scaled by writing to the WDIV register and therefore can be increased by a maximum factor of 255. Note that the active energy register content can roll over to full-scale negative (0x8000) and continue increasing in value when the active power is positive (see Figure 67). Conversely, if the active power is negative, the energy register would under flow to full-scale positive (0x7FFF) and continue decreasing in value. By setting the AEHF bit (Bit 0) of the interrupt mask register, the ADE7758 can be configured to issue an interrupt (IRQ) when Bit 14 of any one of the three watt-hr accumulation registers has changed, indicating that the accumulation register is half full (positive or negative). Setting the RSTREAD bit (Bit 6) of the LCYMODE register enables a read-with-reset for the watt-hr accumulation registers, that is, the registers are reset to 0 after a read operation. CONTENTS OFWATT-HRACCUMULATION REGISTER0x7FFF0x3FFF0x00000xC0000x8000TIME (Sec)0.340.681.021.361.702.04WATT GAIN = 0x7FFWATT GAIN = 0x000WATT GAIN = 0x80004443-067 Figure 68. Energy Register Roll-Over Time for Full-Scale Power (Minimum and Maximum Power Gain) Data Sheet ADE7758 Rev. E | Page 33 of 72 Integration Time Under Steady Load The discrete time sample period (T) for the accumulation register is 0.4 μs (4/CLKIN). With full-scale sinusoidal signals on the analog inputs and the watt gain registers set to 0x000, the average word value from each LPF2 is 0xCCCCD (see Figure 65 and Figure 67). The maximum value that can be stored in the watt-hr accumulation register before it overflows is 215 − 1 or 0x7FFF. Because the average word value is added to the internal register, which can store 240 − 1 or 0xFF, FFFF, FFFF before it overflows, the integration time under these conditions with WDIV = 0 is calculated as sec0.524μs0.40xCCCCDFFFFFFFF,0xFF,=×=Time (21) When WDIV is set to a value different from 0, the time before overflow is scaled accordingly as shown in Equation 22. Time = Time (WDIV = 0) × WDIV[7:0] (22) Energy Accumulation Mode The active power accumulated in each watt-hr accumulation register (AWATTHR, BWATTHR, or CWATTHR) depends on the configuration of the CONSEL bits in the COMPMODE register (Bit 0 and Bit 1). The different configurations are described in Table 10. Table 10. Inputs to Watt-Hr Accumulation Registers CONSEL[1, 0] AWATTHR BWATTHR CWATTHR 00 VA × IA VB × IB VC × IC 01 VA × (IA – IB) 0 VC × (IC – IB) 10 VA × (IA – IB) 0 VC × IC 11 Reserved Reserved Reserved Depending on the poly phase meter service, the appropriate formula should be chosen to calculate the active energy. The American ANSI C12.10 Standard defines the different configurations of the meter. Table 11 describes which mode should be chosen in these different configurations. Table 11. Meter Form Configuration ANSI Meter Form CONSEL (d) TERMSEL (d) 5S/13S 3-Wire Delta 0 3, 5, or 6 6S/14S 4-Wire Wye 1 7 8S/15S 4-Wire Delta 2 7 9S/16S 4-Wire Wye 0 7 Active Power Frequency Output Pin 1 (APCF) of the ADE7758 provides frequency output for the total active power. After initial calibration during manufac-turing, the manufacturer or end customer often verifies the energy meter calibration. One convenient way to verify the meter calibration is for the manufacturer to provide an output frequency that is proportional to the energy or active power under steady load conditions. This output frequency can provide a simple, single-wire, optically isolated interface to external calibration equipment. Figure 69 illustrates the energy-to-frequency conversion in the ADE7758. INPUTTOBWATTHRREGISTERINPUTTOAWATTHRREGISTERINPUTTOCWATTHRREGISTERDFCAPCFAPCFNUM[11:0]APCFDEN[11:0]÷+++÷404443-068 Figure 69. Active Power Frequency Output A digital-to-frequency converter (DFC) is used to generate the APCF pulse output from the total active power. The TERMSEL bits (Bit 2 to Bit 4) of the COMPMODE register can be used to select which phases to include in the total power calculation. Setting Bit 2, Bit 3, and Bit 4 includes the input to the AWATTHR, BWATTHR, and CWATTHR registers in the total active power calculation. The total active power is signed addition. However, setting the ABS bit (Bit 5) in the COMPMODE register enables the absolute-only mode; that is, only the absolute value of the active power is considered. The output from the DFC is divided down by a pair of frequency division registers before being sent to the APCF pulse output. Namely, APCFDEN/APCFNUM pulses are needed at the DFC output before the APCF pin outputs a pulse. Under steady load conditions, the output frequency is directly proportional to the total active power. The pulse width of APCF is 64/CLKIN if APCFNUM and APCFDEN are both equal. If APCFDEN is greater than APCFNUM, the pulse width depends on APCFDEN. The pulse width in this case is T × (APCFDEN/2), where T is the period of the APCF pulse and APCFDEN/2 is rounded to the nearest whole number. An exception to this is when the period is greater than 180 ms. In this case, the pulse width is fixed at 90 ms. The maximum output frequency (APCFNUM = 0x00 and APCFDEN = 0x00) with full-scale ac signals on one phase is approximately 16 kHz. The ADE7758 incorporates two registers to set the frequency of APCF (APCFNUM[11:0] and APCFDEN[11:0]). These are unsigned 12-bit registers that can be used to adjust the frequency of APCF by 1/212 to 1 with a step of 1/212. For example, if the output frequency is 1.562 kHz while the contents of APCFDEN are 0 (0x000), then the output frequency can be set to 6.103 Hz by writing 0xFF to the APCFDEN register. If 0 were written to any of the frequency division registers, the divider would use 1 in the frequency division. In addition, the ratio APCFNUM/APCFDEN should be set not greater than 1 to ensure proper operation. In other words, the APCF output frequency cannot be higher than the frequency on the DFC output. The output frequency has a slight ripple at a frequency equal to 2× the line frequency. This is due to imperfect filtering of the instantaneous power signal to generate the active power signal ADE7758 Data Sheet Rev. E | Page 34 of 72 (see the Active Power Calculation section). Equation 14 gives an expression for the instantaneous power signal. This is filtered by LPF2, which has a magnitude response given by Equation 23. ()22811Hff+= (23) –E(t)tVltVI×cos(4π×f1 ×t)4π×f11 +22f1804443-069 The active power signal (output of the LPF2) can be rewritten as ()()(tffIRMSVRMSIRMSVRMStp12214cos821π×⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+×−×= (24) Figure 70. Output Frequency Ripple where f1 is the line frequency, for example, 60 Hz. Line Cycle Active Energy Accumulation Mode From Equation 24, E(t) equals The ADE7758 is designed with a special energy accumulation mode that simplifies the calibration process. By using the on-chip, zero-crossing detection, the ADE7758 updates the watt-hr accumulation registers after an integer number of zero crossings (see Figure 71). The line-active energy accumulation mode for watt-hr accumulation is activated by setting the LWATT bit (Bit 0) of the LCYCMODE register. The total energy accumu-lated over an integer number of half-line cycles is written to the watt-hr accumulation registers after the LINECYC number of zero crossings is detected. When using the line cycle accumulation mode, the RSTREAD bit (Bit 6) of the LCYCMODE register should be set to Logic 0. ())4cos(8214–12211tfffIRMSVRMStIRMSVRMSππ×⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+××× (25) From Equation 25, it can be seen that there is a small ripple in the energy calculation due to the sin(2ωt) component (see Figure 70). The ripple gets larger with larger loads. Choosing a lower output frequency for APCF during calibration by using a large APCFDEN value and keeping APCFNUM relatively small can significantly reduce the ripple. Averaging the output frequency over a longer period achieves the same results. ZXSEL01ZERO-CROSSINGDETECTION(PHASEA)ZXSEL11ZERO-CROSSINGDETECTION(PHASEB)ZXSEL21ZERO-CROSSINGDETECTION(PHASEC)1ZXSEL[0:2]AREBITS3TO5 INTHELCYCMODEREGISTERCALIBRATIONCONTROLLINECYC[15:0]WATTOS[11:0]WG[11:0]WDIV[7:0]++%++WATTHR[15:0]ACCUMULATEACTIVEPOWERFORLINECYCNUMBER OFZERO-CROSSINGS;WATT-HRACCUMULATIONREGISTERSAREUPDATED ONCEEVERYLINECYCNUMBER OFZERO-CROSSINGSACTIVEPOWER15040004443-070 Figure 71. ADE7758 Line Cycle Active Energy Accumulation Mode Data Sheet ADE7758 Rev. E | Page 35 of 72 Phase A, Phase B, and Phase C zero crossings are, respectively, included when counting the number of half-line cycles by setting ZXSEL[0:2] bits (Bit 3 to Bit 5) in the LCYCMODE register. Any combination of the zero crossings from all three phases can be used for counting the zero crossing. Only one phase should be selected at a time for