SL3S1203_1213 - NXP Semiconductors - Farnell Element 14 - Revenir à l'accueil
Farnell Element 14 :
Analog-Devices-ADC-S..> 09-Sep-2014 08:21 2.4M
Analog-Devices-ADMC2..> 09-Sep-2014 08:21 2.4M
Analog-Devices-ADMC4..> 09-Sep-2014 08:23 2.3M
Analog-Devices-AN300..> 08-Sep-2014 17:42 2.0M
Analog-Devices-ANF32..> 09-Sep-2014 08:18 2.6M
Analog-Devices-Basic..> 08-Sep-2014 17:49 1.9M
Analog-Devices-Compl..> 08-Sep-2014 17:38 2.0M
Analog-Devices-Convo..> 09-Sep-2014 08:26 2.1M
Analog-Devices-Convo..> 09-Sep-2014 08:25 2.2M
Analog-Devices-Convo..> 09-Sep-2014 08:25 2.2M
Analog-Devices-Digit..> 08-Sep-2014 18:02 2.1M
Analog-Devices-Digit..> 08-Sep-2014 18:03 2.0M
Analog-Devices-Gloss..> 08-Sep-2014 17:36 2.0M
Analog-Devices-Intro..> 08-Sep-2014 17:39 1.9M
Analog-Devices-The-C..> 08-Sep-2014 17:41 1.9M
Analog-Devices-Visua..> 09-Sep-2014 08:18 2.5M
Analog-Devices-Wi-Fi..> 09-Sep-2014 08:23 2.3M
Electronique-Basic-o..> 08-Sep-2014 17:43 1.8M
Farnell-0050375063-D..> 18-Jul-2014 17:03 2.5M
Farnell-03-iec-runds..> 04-Jul-2014 10:40 3.7M
Farnell-0430300011-D..> 14-Jun-2014 18:13 2.0M
Farnell-0433751001-D..> 18-Jul-2014 17:02 2.5M
Farnell-06-6544-8-PD..> 26-Mar-2014 17:56 2.7M
Farnell-1N4148WS-Fai..> 06-Jul-2014 10:04 1.9M
Farnell-2-GBPS-Diffe..> 28-Jul-2014 17:42 2.7M
Farnell-2N3906-Fairc..> 08-Sep-2014 07:22 2.1M
Farnell-2N7002DW-Fai..> 06-Jul-2014 10:03 886K
Farnell-3M-Polyimide..> 21-Mar-2014 08:09 3.9M
Farnell-3M-VolitionT..> 25-Mar-2014 08:18 3.3M
Farnell-4-Bit-Magnit..> 08-Jul-2014 18:53 2.2M
Farnell-10BQ060-PDF.htm 14-Jun-2014 09:50 2.4M
Farnell-10TPB47M-End..> 14-Jun-2014 18:16 3.4M
Farnell-12mm-Size-In..> 14-Jun-2014 09:50 2.4M
Farnell-24AA024-24LC..> 23-Jun-2014 10:26 3.1M
Farnell-50A-High-Pow..> 20-Mar-2014 17:31 2.9M
Farnell-74AC00-74ACT..> 06-Jul-2014 10:03 911K
Farnell-74LCX573-Fai..> 06-Jul-2014 10:05 1.9M
Farnell-197.31-KB-Te..> 04-Jul-2014 10:42 3.3M
Farnell-270-Series-O..> 08-Jul-2014 18:49 2.3M
Farnell-760G-French-..> 07-Jul-2014 19:45 1.2M
Farnell-851-Series-P..> 08-Jul-2014 18:47 3.0M
Farnell-900-Series-B..> 08-Jul-2014 18:50 2.3M
Farnell-1734-ARALDIT..> 07-Jul-2014 19:45 1.2M
Farnell-1907-2006-PD..> 26-Mar-2014 17:56 2.7M
Farnell-2020-Manuel-..> 08-Jul-2014 18:55 2.1M
Farnell-3367-ARALDIT..> 07-Jul-2014 19:46 1.2M
Farnell-5910-PDF.htm 25-Mar-2014 08:15 3.0M
Farnell-6517b-Electr..> 29-Mar-2014 11:12 3.3M
Farnell-43031-0002-M..> 18-Jul-2014 17:03 2.5M
Farnell-A-4-Hardener..> 07-Jul-2014 19:44 1.4M
Farnell-A-True-Syste..> 29-Mar-2014 11:13 3.3M
Farnell-AC-DC-Power-..> 15-Jul-2014 16:47 845K
Farnell-ACC-Silicone..> 04-Jul-2014 10:40 3.7M
Farnell-AD524-PDF.htm 20-Mar-2014 17:33 2.8M
Farnell-AD584-Rev-C-..> 08-Sep-2014 07:20 2.2M
Farnell-AD586BRZ-Ana..> 08-Sep-2014 08:09 1.6M
Farnell-AD620-Rev-H-..> 09-Sep-2014 08:13 2.6M
Farnell-AD736-Rev-I-..> 08-Sep-2014 07:31 1.3M
Farnell-AD7171-16-Bi..> 06-Jul-2014 10:06 1.0M
Farnell-AD7719-Low-V..> 18-Jul-2014 16:59 1.4M
Farnell-AD8300-Data-..> 18-Jul-2014 16:56 1.3M
Farnell-AD8307-Data-..> 08-Sep-2014 07:30 1.3M
Farnell-AD8310-Analo..> 08-Sep-2014 07:24 2.1M
Farnell-AD8313-Analo..> 08-Sep-2014 07:26 2.0M
Farnell-AD8361-Rev-D..> 08-Sep-2014 07:23 2.1M
Farnell-AD9833-Rev-E..> 08-Sep-2014 17:49 1.8M
Farnell-AD9834-Rev-D..> 08-Sep-2014 07:32 1.2M
Farnell-ADE7753-Rev-..> 08-Sep-2014 07:20 2.3M
Farnell-ADE7758-Rev-..> 08-Sep-2014 07:28 1.7M
Farnell-ADL6507-PDF.htm 14-Jun-2014 18:19 3.4M
Farnell-ADSP-21362-A..> 20-Mar-2014 17:34 2.8M
Farnell-ADuM1200-ADu..> 08-Sep-2014 08:09 1.6M
Farnell-ADuM1300-ADu..> 08-Sep-2014 08:11 1.7M
Farnell-ALF1210-PDF.htm 06-Jul-2014 10:06 4.0M
Farnell-ALF1225-12-V..> 01-Apr-2014 07:40 3.4M
Farnell-ALF2412-24-V..> 01-Apr-2014 07:39 3.4M
Farnell-AN10361-Phil..> 23-Jun-2014 10:29 2.1M
Farnell-ARADUR-HY-13..> 26-Mar-2014 17:55 2.8M
Farnell-ARALDITE-201..> 21-Mar-2014 08:12 3.7M
Farnell-ARALDITE-CW-..> 26-Mar-2014 17:56 2.7M
Farnell-AT89C5131-Ha..> 29-Jul-2014 10:31 1.2M
Farnell-AT90USBKey-H..> 29-Jul-2014 10:31 902K
Farnell-ATMEL-8-bit-..> 19-Mar-2014 18:04 2.1M
Farnell-ATMEL-8-bit-..> 11-Mar-2014 07:55 2.1M
Farnell-ATmega640-VA..> 14-Jun-2014 09:49 2.5M
Farnell-ATtiny20-PDF..> 25-Mar-2014 08:19 3.6M
Farnell-ATtiny26-L-A..> 18-Jul-2014 17:00 2.6M
Farnell-ATtiny26-L-A..> 13-Jun-2014 18:40 1.8M
Farnell-Alimentation..> 07-Jul-2014 19:43 1.8M
Farnell-Alimentation..> 14-Jun-2014 18:24 2.5M
Farnell-Alimentation..> 01-Apr-2014 07:42 3.4M
Farnell-Amplificateu..> 29-Mar-2014 11:11 3.3M
Farnell-Amplifier-In..> 06-Jul-2014 10:02 940K
Farnell-An-Improved-..> 14-Jun-2014 09:49 2.5M
Farnell-Araldite-Fus..> 07-Jul-2014 19:45 1.2M
Farnell-Arithmetic-L..> 08-Jul-2014 18:54 2.1M
Farnell-Atmel-ATmega..> 19-Mar-2014 18:03 2.2M
Farnell-Avvertenze-e..> 14-Jun-2014 18:20 3.3M
Farnell-BA-Series-Oh..> 08-Jul-2014 18:50 2.3M
Farnell-BAV99-Fairch..> 06-Jul-2014 10:03 896K
Farnell-BC846DS-NXP-..> 13-Jun-2014 18:42 1.6M
Farnell-BC847DS-NXP-..> 23-Jun-2014 10:24 3.3M
Farnell-BD6xxx-PDF.htm 22-Jul-2014 12:33 1.6M
Farnell-BF545A-BF545..> 23-Jun-2014 10:28 2.1M
Farnell-BGA7124-400-..> 18-Jul-2014 16:59 1.5M
Farnell-BK889B-PONT-..> 07-Jul-2014 19:42 1.8M
Farnell-BK2650A-BK26..> 29-Mar-2014 11:10 3.3M
Farnell-BT151-650R-N..> 13-Jun-2014 18:40 1.7M
Farnell-BTA204-800C-..> 13-Jun-2014 18:42 1.6M
Farnell-BUJD203AX-NX..> 13-Jun-2014 18:41 1.7M
Farnell-BYV29F-600-N..> 13-Jun-2014 18:42 1.6M
Farnell-BYV79E-serie..> 10-Mar-2014 16:19 1.6M
Farnell-BZX384-serie..> 23-Jun-2014 10:29 2.1M
Farnell-Battery-GBA-..> 14-Jun-2014 18:13 2.0M
Farnell-Both-the-Del..> 06-Jul-2014 10:01 948K
Farnell-C.A-6150-C.A..> 14-Jun-2014 18:24 2.5M
Farnell-C.A 8332B-C...> 01-Apr-2014 07:40 3.4M
Farnell-CC-Debugger-..> 07-Jul-2014 19:44 1.5M
Farnell-CC2530ZDK-Us..> 08-Jul-2014 18:55 2.1M
Farnell-CC2531-USB-H..> 07-Jul-2014 19:43 1.8M
Farnell-CC2560-Bluet..> 29-Mar-2014 11:14 2.8M
Farnell-CD4536B-Type..> 14-Jun-2014 18:13 2.0M
Farnell-CIRRUS-LOGIC..> 10-Mar-2014 17:20 2.1M
Farnell-CLASS 1-or-2..> 22-Jul-2014 12:30 4.7M
Farnell-CRC-HANDCLEA..> 07-Jul-2014 19:46 1.2M
Farnell-CS5532-34-BS..> 01-Apr-2014 07:39 3.5M
Farnell-Cannon-ZD-PD..> 11-Mar-2014 08:13 2.8M
Farnell-Ceramic-tran..> 14-Jun-2014 18:19 3.4M
Farnell-Circuit-Impr..> 25-Jul-2014 12:22 3.1M
Farnell-Circuit-Note..> 26-Mar-2014 18:00 2.8M
Farnell-Circuit-Note..> 26-Mar-2014 18:00 2.8M
Farnell-Cles-electro..> 21-Mar-2014 08:13 3.9M
Farnell-Clipper-Seri..> 08-Jul-2014 18:48 2.8M
Farnell-Compensating..> 09-Sep-2014 08:16 2.6M
Farnell-Compensating..> 09-Sep-2014 08:16 2.6M
Farnell-Conception-d..> 11-Mar-2014 07:49 2.4M
Farnell-Connectors-N..> 14-Jun-2014 18:12 2.1M
Farnell-Construction..> 14-Jun-2014 18:25 2.5M
Farnell-Controle-de-..> 11-Mar-2014 08:16 2.8M
Farnell-Cordless-dri..> 14-Jun-2014 18:13 2.0M
Farnell-Cube-3D-Prin..> 18-Jul-2014 17:02 2.5M
Farnell-Current-Tran..> 26-Mar-2014 17:58 2.7M
Farnell-Current-Tran..> 26-Mar-2014 17:58 2.7M
Farnell-Current-Tran..> 26-Mar-2014 17:59 2.7M
Farnell-Current-Tran..> 26-Mar-2014 17:59 2.7M
Farnell-DAC8143-Data..> 18-Jul-2014 16:59 1.5M
Farnell-DC-DC-Conver..> 15-Jul-2014 16:48 781K
Farnell-DC-Fan-type-..> 14-Jun-2014 09:48 2.5M
Farnell-DC-Fan-type-..> 14-Jun-2014 09:51 1.8M
Farnell-DG411-DG412-..> 07-Jul-2014 19:47 1.0M
Farnell-DP83846A-DsP..> 18-Jul-2014 16:55 1.5M
Farnell-DS3231-DS-PD..> 18-Jul-2014 16:57 2.5M
Farnell-Data-Sheet-K..> 07-Jul-2014 19:46 1.2M
Farnell-Data-Sheet-M..> 09-Sep-2014 08:05 2.8M
Farnell-Data-Sheet-S..> 18-Jul-2014 17:00 1.2M
Farnell-Datasheet-FT..> 09-Sep-2014 08:10 2.8M
Farnell-Datasheet-Fa..> 06-Jul-2014 10:04 861K
Farnell-Datasheet-Fa..> 15-Jul-2014 17:05 1.0M
Farnell-Datasheet-NX..> 15-Jul-2014 17:06 1.0M
Farnell-Davum-TMC-PD..> 14-Jun-2014 18:27 2.4M
Farnell-De-la-puissa..> 29-Mar-2014 11:10 3.3M
Farnell-Decapant-KF-..> 07-Jul-2014 19:45 1.2M
Farnell-Directive-re..> 25-Mar-2014 08:16 3.0M
Farnell-Documentatio..> 14-Jun-2014 18:26 2.5M
Farnell-Download-dat..> 16-Jul-2014 09:02 2.2M
Farnell-Download-dat..> 13-Jun-2014 18:40 1.8M
Farnell-Dremel-Exper..> 22-Jul-2014 12:34 1.6M
Farnell-Dual-MOSFET-..> 28-Jul-2014 17:41 2.8M
Farnell-ECO-Series-T..> 20-Mar-2014 08:14 2.5M
Farnell-EE-SPX303N-4..> 15-Jul-2014 17:06 969K
Farnell-ELMA-PDF.htm 29-Mar-2014 11:13 3.3M
Farnell-EMC1182-PDF.htm 25-Mar-2014 08:17 3.0M
Farnell-EPCOS-173438..> 04-Jul-2014 10:43 3.3M
Farnell-EPCOS-Sample..> 11-Mar-2014 07:53 2.2M
Farnell-ES1F-ES1J-fi..> 06-Jul-2014 10:04 867K
Farnell-ES2333-PDF.htm 11-Mar-2014 08:14 2.8M
Farnell-ESCON-Featur..> 06-Jul-2014 10:05 938K
Farnell-ESCON-Featur..> 06-Jul-2014 10:02 931K
Farnell-Ed.081002-DA..> 19-Mar-2014 18:02 2.5M
Farnell-Encodeur-USB..> 08-Jul-2014 18:56 2.0M
Farnell-Evaluating-t..> 22-Jul-2014 12:28 4.9M
Farnell-Everything-Y..> 11-Oct-2014 12:05 1.5M
Farnell-Excalibur-Hi..> 28-Jul-2014 17:10 2.4M
Farnell-Excalibur-Hi..> 28-Jul-2014 17:10 2.4M
Farnell-Explorer-16-..> 29-Jul-2014 10:31 1.3M
Farnell-F28069-Picco..> 14-Jun-2014 18:14 2.0M
Farnell-F42202-PDF.htm 19-Mar-2014 18:00 2.5M
Farnell-FAN6756-Fair..> 06-Jul-2014 10:04 850K
Farnell-FDC2512-Fair..> 06-Jul-2014 10:03 886K
Farnell-FDS-ITW-Spra..> 14-Jun-2014 18:22 3.3M
Farnell-FDV301N-Digi..> 06-Jul-2014 10:03 886K
Farnell-FICHE-DE-DON..> 10-Mar-2014 16:17 1.6M
Farnell-Fast-Charge-..> 28-Jul-2014 17:12 6.4M
Farnell-Fastrack-Sup..> 23-Jun-2014 10:25 3.3M
Farnell-Ferric-Chlor..> 29-Mar-2014 11:14 2.8M
Farnell-Fiche-de-don..> 14-Jun-2014 09:47 2.5M
Farnell-Fiche-de-don..> 14-Jun-2014 18:26 2.5M
Farnell-Fluke-1730-E..> 14-Jun-2014 18:23 2.5M
Farnell-Full-Datashe..> 15-Jul-2014 17:08 951K
Farnell-Full-Datashe..> 15-Jul-2014 16:47 803K
Farnell-GALVA-A-FROI..> 26-Mar-2014 17:56 2.7M
Farnell-GALVA-MAT-Re..> 26-Mar-2014 17:57 2.7M
Farnell-GN-RELAYS-AG..> 20-Mar-2014 08:11 2.6M
Farnell-Gertboard-Us..> 29-Jul-2014 10:30 1.4M
Farnell-HC49-4H-Crys..> 14-Jun-2014 18:20 3.3M
Farnell-HFE1600-Data..> 14-Jun-2014 18:22 3.3M
Farnell-HI-70300-Sol..> 14-Jun-2014 18:27 2.4M
Farnell-HIP4081A-Int..> 07-Jul-2014 19:47 1.0M
Farnell-HUNTSMAN-Adv..> 10-Mar-2014 16:17 1.7M
Farnell-Haute-vitess..> 11-Mar-2014 08:17 2.4M
Farnell-Hex-Inverter..> 29-Jul-2014 10:31 875K
Farnell-High-precisi..> 08-Jul-2014 18:51 2.3M
Farnell-ICM7228-Inte..> 07-Jul-2014 19:46 1.1M
Farnell-IP4252CZ16-8..> 13-Jun-2014 18:41 1.7M
Farnell-ISL6251-ISL6..> 07-Jul-2014 19:47 1.1M
Farnell-Instructions..> 19-Mar-2014 18:01 2.5M
Farnell-Jeu-multi-la..> 25-Jul-2014 12:23 3.0M
Farnell-KSZ8851SNL-S..> 23-Jun-2014 10:28 2.1M
Farnell-Keyboard-Mou..> 22-Jul-2014 12:27 5.9M
Farnell-L-efficacite..> 11-Mar-2014 07:52 2.3M
Farnell-L78S-STMicro..> 22-Jul-2014 12:32 1.6M
Farnell-L293d-Texas-..> 08-Jul-2014 18:53 2.2M
Farnell-LCW-CQ7P.CC-..> 25-Mar-2014 08:19 3.2M
Farnell-LD-WSECO16-P..> 25-Jul-2014 12:22 3.1M
Farnell-LM3S6952-Mic..> 22-Jul-2014 12:27 5.9M
Farnell-LM19-Texas-I..> 18-Jul-2014 17:00 1.2M
Farnell-LM324-Texas-..> 29-Jul-2014 10:32 1.5M
Farnell-LM386-Low-Vo..> 29-Jul-2014 10:32 1.5M
Farnell-LM555-Timer-..> 08-Jul-2014 18:53 2.2M
Farnell-LM7805-Fairc..> 09-Sep-2014 08:13 2.7M
Farnell-LME49725-Pow..> 14-Jun-2014 09:49 2.5M
Farnell-LMH6518-Texa..> 18-Jul-2014 16:59 1.3M
Farnell-LMP91051-Use..> 29-Jul-2014 10:30 1.4M
Farnell-LMT88-2.4V-1..> 28-Jul-2014 17:42 2.8M
Farnell-LOCTITE-542-..> 25-Mar-2014 08:15 3.0M
Farnell-LOCTITE-3463..> 25-Mar-2014 08:19 3.0M
Farnell-LPC11U3x-32-..> 16-Jul-2014 09:01 2.4M
Farnell-LPC81xM-32-b..> 16-Jul-2014 09:02 2.0M
Farnell-LPC408x-7x 3..> 16-Jul-2014 09:03 1.6M
Farnell-LPC1769-68-6..> 16-Jul-2014 09:02 1.9M
Farnell-LPC3220-30-4..> 16-Jul-2014 09:02 2.2M
Farnell-LQ-RELAYS-AL..> 06-Jul-2014 10:02 924K
Farnell-LT1961-Linea..> 18-Jul-2014 16:58 1.6M
Farnell-LT3757-Linea..> 18-Jul-2014 16:58 1.6M
Farnell-LT6233-Linea..> 18-Jul-2014 16:56 1.3M
Farnell-LUMINARY-MIC..> 22-Jul-2014 12:31 3.6M
Farnell-LUXEON-Guide..> 11-Mar-2014 07:52 2.3M
Farnell-Leaded-Trans..> 23-Jun-2014 10:26 3.2M
Farnell-Les-derniers..> 11-Mar-2014 07:50 2.3M
Farnell-Loctite3455-..> 25-Mar-2014 08:16 3.0M
Farnell-Low-Noise-24..> 06-Jul-2014 10:05 1.0M
Farnell-Low-cost-Enc..> 13-Jun-2014 18:42 1.7M
Farnell-Lubrifiant-a..> 26-Mar-2014 18:00 2.7M
Farnell-MAX232-MAX23..> 08-Jul-2014 18:52 2.3M
Farnell-MAX1365-MAX1..> 18-Jul-2014 16:56 1.4M
Farnell-MAX3221-Rev-..> 08-Sep-2014 07:28 1.8M
Farnell-MAX4661-MAX4..> 09-Sep-2014 08:10 2.8M
Farnell-MC3510-PDF.htm 25-Mar-2014 08:17 3.0M
Farnell-MC21605-PDF.htm 11-Mar-2014 08:14 2.8M
Farnell-MCF532x-7x-E..> 29-Mar-2014 11:14 2.8M
Farnell-MCOC1-Farnel..> 16-Jul-2014 09:04 1.0M
Farnell-MCP3421-Micr..> 18-Jul-2014 17:00 1.2M
Farnell-MICREL-KSZ88..> 11-Mar-2014 07:54 2.2M
Farnell-MICROCHIP-PI..> 19-Mar-2014 18:02 2.5M
Farnell-MICROCHIP-PI..> 25-Jul-2014 12:34 6.7M
Farnell-MIDAS-un-tra..> 15-Jul-2014 17:05 1.0M
Farnell-MOLEX-39-00-..> 10-Mar-2014 17:19 1.9M
Farnell-MOLEX-43020-..> 10-Mar-2014 17:21 1.9M
Farnell-MOLEX-43160-..> 10-Mar-2014 17:21 1.9M
Farnell-MOLEX-87439-..> 10-Mar-2014 17:21 1.9M
Farnell-MPXV7002-Rev..> 20-Mar-2014 17:33 2.8M
Farnell-MSP-EXP430F5..> 29-Jul-2014 10:31 1.2M
Farnell-MSP430-Hardw..> 29-Jul-2014 10:36 1.1M
Farnell-MSP430F15x-M..> 08-Sep-2014 07:32 1.3M
Farnell-MTX-3250-MTX..> 18-Jul-2014 17:01 2.5M
Farnell-MTX-Compact-..> 18-Jul-2014 17:01 2.5M
Farnell-MULTICOMP-Ra..> 22-Jul-2014 12:57 5.9M
Farnell-MX670-MX675-..> 14-Jun-2014 09:46 2.5M
Farnell-Microchip-MC..> 13-Jun-2014 18:27 1.8M
Farnell-Microship-PI..> 11-Mar-2014 07:53 2.2M
Farnell-Midas-Active..> 14-Jun-2014 18:17 3.4M
Farnell-Midas-MCCOG4..> 14-Jun-2014 18:11 2.1M
Farnell-Mini-Fit-Jr-..> 18-Jul-2014 17:03 2.5M
Farnell-Miniature-Ci..> 26-Mar-2014 17:55 2.8M
Farnell-Mistral-PDF.htm 14-Jun-2014 18:12 2.1M
Farnell-Molex-83421-..> 14-Jun-2014 18:17 3.4M
Farnell-Molex-COMMER..> 14-Jun-2014 18:16 3.4M
Farnell-Molex-Crimp-..> 10-Mar-2014 16:27 1.7M
Farnell-Multi-Functi..> 20-Mar-2014 17:38 3.0M
Farnell-NA555-NE555-..> 08-Jul-2014 18:53 2.2M
Farnell-NA555-NE555-..> 08-Sep-2014 07:51 1.5M
Farnell-NE5532-Texas..> 29-Jul-2014 10:32 1.5M
Farnell-NTE_SEMICOND..> 11-Mar-2014 07:52 2.3M
Farnell-NVE-datashee..> 28-Jul-2014 17:12 6.5M
Farnell-NXP-74VHC126..> 10-Mar-2014 16:17 1.6M
Farnell-NXP-BT136-60..> 11-Mar-2014 07:52 2.3M
Farnell-NXP-PBSS9110..> 10-Mar-2014 17:21 1.9M
Farnell-NXP-PCA9555 ..> 11-Mar-2014 07:54 2.2M
Farnell-NXP-PMBFJ620..> 10-Mar-2014 16:16 1.7M
Farnell-NXP-PSMN1R7-..> 10-Mar-2014 16:17 1.6M
Farnell-NXP-PSMN7R0-..> 10-Mar-2014 17:19 2.1M
Farnell-NXP-TEA1703T..> 11-Mar-2014 08:15 2.8M
Farnell-NaPiOn-Panas..> 06-Jul-2014 10:02 911K
Farnell-Nilï¬-sk-E-..> 14-Jun-2014 09:47 2.5M
Farnell-Novembre-201..> 20-Mar-2014 17:38 3.3M
Farnell-OMRON-INDUST..> 25-Jul-2014 12:31 6.9M
Farnell-OMRON-INDUST..> 25-Jul-2014 12:32 6.9M
Farnell-OMRON-Master..> 10-Mar-2014 16:26 1.8M
Farnell-OPA627-Texas..> 09-Sep-2014 08:08 2.8M
Farnell-OSLON-SSL-Ce..> 19-Mar-2014 18:03 2.1M
Farnell-OXPCIE958-FB..> 13-Jun-2014 18:40 1.8M
Farnell-Octal-Genera..> 28-Jul-2014 17:42 2.8M
Farnell-PADO-semi-au..> 04-Jul-2014 10:41 3.7M
Farnell-PBSS5160T-60..> 19-Mar-2014 18:03 2.1M
Farnell-PCF8574-PCF8..> 16-Jul-2014 09:03 1.7M
Farnell-PDTA143X-ser..> 20-Mar-2014 08:12 2.6M
Farnell-PDTB123TT-NX..> 13-Jun-2014 18:43 1.5M
Farnell-PESD5V0F1BL-..> 13-Jun-2014 18:43 1.5M
Farnell-PESD9X5.0L-P..> 13-Jun-2014 18:43 1.6M
Farnell-PIC12F609-61..> 04-Jul-2014 10:41 3.7M
Farnell-PIC18F2420-2..> 18-Jul-2014 16:57 2.5M
Farnell-PIC18F2455-2..> 23-Jun-2014 10:27 3.1M
Farnell-PIC24FJ256GB..> 14-Jun-2014 09:51 2.4M
Farnell-PMBT3906-PNP..> 13-Jun-2014 18:44 1.5M
Farnell-PMBT4403-PNP..> 23-Jun-2014 10:27 3.1M
Farnell-PMEG4002EL-N..> 14-Jun-2014 18:18 3.4M
Farnell-PMEG4010CEH-..> 13-Jun-2014 18:43 1.6M
Farnell-PN512-Full-N..> 16-Jul-2014 09:03 1.4M
Farnell-Panasonic-15..> 23-Jun-2014 10:29 2.1M
Farnell-Panasonic-EC..> 20-Mar-2014 17:36 2.6M
Farnell-Panasonic-EZ..> 20-Mar-2014 08:10 2.6M
Farnell-Panasonic-Id..> 20-Mar-2014 17:35 2.6M
Farnell-Panasonic-Ne..> 20-Mar-2014 17:36 2.6M
Farnell-Panasonic-Ra..> 20-Mar-2014 17:37 2.6M
Farnell-Panasonic-TS..> 20-Mar-2014 08:12 2.6M
Farnell-Panasonic-Y3..> 20-Mar-2014 08:11 2.6M
Farnell-PiFace-Digit..> 25-Jul-2014 12:25 3.0M
Farnell-Pico-Spox-Wi..> 10-Mar-2014 16:16 1.7M
Farnell-PicoScope-42..> 25-Jul-2014 12:23 3.0M
Farnell-PicoScope-se..> 25-Jul-2014 12:24 3.0M
Farnell-Pompes-Charg..> 24-Apr-2014 20:23 3.3M
Farnell-Ponts-RLC-po..> 14-Jun-2014 18:23 3.3M
Farnell-Portable-Ana..> 29-Mar-2014 11:16 2.8M
Farnell-Power-suppli..> 25-Jul-2014 12:29 7.0M
Farnell-Premier-Farn..> 21-Mar-2014 08:11 3.8M
Farnell-Produit-3430..> 14-Jun-2014 09:48 2.5M
Farnell-Proskit-SS-3..> 10-Mar-2014 16:26 1.8M
Farnell-Puissance-ut..> 11-Mar-2014 07:49 2.4M
Farnell-Q48-PDF.htm 23-Jun-2014 10:29 2.1M
Farnell-QRE1113-Fair..> 06-Jul-2014 10:03 879K
Farnell-Quadruple-2-..> 08-Sep-2014 07:29 1.5M
Farnell-Quick-Start-..> 25-Jul-2014 12:25 3.0M
Farnell-RASPBERRY-PI..> 22-Jul-2014 12:35 5.9M
Farnell-RDS-80-PDF.htm 18-Jul-2014 16:57 1.3M
Farnell-REF19x-Serie..> 09-Sep-2014 08:08 2.8M
Farnell-REF102-10V-P..> 28-Jul-2014 17:09 2.4M
Farnell-RF-short-tra..> 28-Jul-2014 17:16 6.3M
Farnell-Radial-Lead-..> 20-Mar-2014 08:12 2.6M
Farnell-RaspiCam-Doc..> 22-Jul-2014 12:32 1.6M
Farnell-Realiser-un-..> 11-Mar-2014 07:51 2.3M
Farnell-Reglement-RE..> 21-Mar-2014 08:08 3.9M
Farnell-Repartiteurs..> 14-Jun-2014 18:26 2.5M
Farnell-S-TRI-SWT860..> 21-Mar-2014 08:11 3.8M
Farnell-S1A-Fairchil..> 06-Jul-2014 10:03 896K
Farnell-SB175-Connec..> 11-Mar-2014 08:14 2.8M
Farnell-SB520-SB5100..> 22-Jul-2014 12:32 1.6M
Farnell-SERIAL-TFT-M..> 15-Jul-2014 17:05 1.0M
Farnell-SICK-OPTIC-E..> 18-Jul-2014 16:58 1.5M
Farnell-SL3ICS1002-1..> 16-Jul-2014 09:05 2.5M
Farnell-SL3S1203_121..> 16-Jul-2014 09:04 1.1M
Farnell-SL3S4011_402..> 16-Jul-2014 09:03 1.1M
Farnell-SL59830-Inte..> 06-Jul-2014 10:11 1.0M
Farnell-SMBJ-Transil..> 29-Mar-2014 11:12 3.3M
Farnell-SMU-Instrume..> 08-Jul-2014 18:51 2.3M
Farnell-SN54HC164-SN..> 08-Sep-2014 07:25 2.0M
Farnell-SN54HC244-SN..> 08-Jul-2014 18:52 2.3M
Farnell-SN54LV4053A-..> 28-Jul-2014 17:20 5.9M
Farnell-SO967460-PDF..> 11-Oct-2014 12:05 2.9M
Farnell-SOT-23-Multi..> 11-Mar-2014 07:51 2.3M
Farnell-SOURIAU-Cont..> 08-Jul-2014 19:04 3.0M
Farnell-SPLC780A1-16..> 14-Jun-2014 18:25 2.5M
Farnell-SSC7102-Micr..> 23-Jun-2014 10:25 3.2M
Farnell-STM32F103x8-..> 22-Jul-2014 12:33 1.6M
Farnell-STM32F405xxS..> 27-Aug-2014 18:27 1.8M
Farnell-SVPE-series-..> 14-Jun-2014 18:15 2.0M
Farnell-Schroff-A108..> 25-Jul-2014 12:27 2.8M
Farnell-Schroff-Main..> 25-Jul-2014 12:26 2.9M
Farnell-Schroff-mult..> 25-Jul-2014 12:26 2.9M
Farnell-Sensorless-C..> 04-Jul-2014 10:42 3.3M
Farnell-Septembre-20..> 20-Mar-2014 17:46 3.7M
Farnell-Serial-File-..> 06-Jul-2014 10:02 941K
Farnell-Serie-PicoSc..> 19-Mar-2014 18:01 2.5M
Farnell-Serie-Standa..> 14-Jun-2014 18:23 3.3M
Farnell-Series-2600B..> 20-Mar-2014 17:30 3.0M
Farnell-Series-TDS10..> 04-Jul-2014 10:39 4.0M
Farnell-Signal-PCB-R..> 14-Jun-2014 18:11 2.1M
Farnell-Silica-Gel-M..> 07-Jul-2014 19:46 1.2M
Farnell-Single-Chip-..> 08-Sep-2014 07:30 1.5M
Farnell-SmartRF06-Ev..> 07-Jul-2014 19:43 1.6M
Farnell-Strangkuhlko..> 21-Mar-2014 08:09 3.9M
Farnell-Supercapacit..> 26-Mar-2014 17:57 2.7M
Farnell-Synchronous-..> 08-Jul-2014 18:54 2.1M
Farnell-T672-3000-Se..> 08-Jul-2014 18:59 2.0M
Farnell-TAS1020B-USB..> 28-Jul-2014 17:19 6.2M
Farnell-TCL-DC-traco..> 15-Jul-2014 16:46 858K
Farnell-TDK-Lambda-H..> 14-Jun-2014 18:21 3.3M
Farnell-TEKTRONIX-DP..> 10-Mar-2014 17:20 2.0M
Farnell-TEL-5-Series..> 15-Jul-2014 16:47 814K
Farnell-TEN-8-WI-Ser..> 15-Jul-2014 16:46 939K
Farnell-TEP-150WI-Se..> 15-Jul-2014 16:47 837K
Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:29 4.8M
Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:31 2.4M
Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:30 4.6M
Farnell-TIS-Instruct..> 15-Jul-2014 16:47 845K
Farnell-TIS-series-t..> 15-Jul-2014 16:46 875K
Farnell-TKC2-Dusters..> 07-Jul-2014 19:46 1.2M
Farnell-TL082-Wide-B..> 28-Jul-2014 17:16 6.3M
Farnell-TLV320AIC23B..> 08-Sep-2014 07:18 2.4M
Farnell-TLV320AIC325..> 28-Jul-2014 17:45 2.9M
Farnell-TMLM-Series-..> 15-Jul-2014 16:47 810K
Farnell-TMP006EVM-Us..> 29-Jul-2014 10:30 1.3M
Farnell-TMR-2-Series..> 15-Jul-2014 16:46 897K
Farnell-TMR-2-series..> 15-Jul-2014 16:48 787K
Farnell-TMR-3-WI-Ser..> 15-Jul-2014 16:46 939K
Farnell-TMS320F28055..> 28-Jul-2014 17:09 2.7M
Farnell-TOS-tracopow..> 15-Jul-2014 16:47 852K
Farnell-TPS40060-Wid..> 28-Jul-2014 17:19 6.3M
Farnell-TSV6390-TSV6..> 28-Jul-2014 17:14 6.4M
Farnell-TXL-series-t..> 15-Jul-2014 16:47 829K
Farnell-TYCO-ELECTRO..> 25-Jul-2014 12:30 6.9M
Farnell-Tektronix-AC..> 13-Jun-2014 18:44 1.5M
Farnell-Telemetres-l..> 20-Mar-2014 17:46 3.7M
Farnell-Termometros-..> 14-Jun-2014 18:14 2.0M
Farnell-The-Discrete..> 08-Sep-2014 17:44 1.8M
Farnell-The-essentia..> 10-Mar-2014 16:27 1.7M
Farnell-Thermometre-..> 29-Jul-2014 10:30 1.4M
Farnell-Tiva-C-Serie..> 08-Jul-2014 18:49 2.6M
Farnell-Trust-Digita..> 25-Jul-2014 12:24 3.0M
Farnell-U2270B-PDF.htm 14-Jun-2014 18:15 3.4M
Farnell-ULINKpro-Deb..> 25-Jul-2014 12:35 5.9M
Farnell-ULN2803A-Rev..> 09-Sep-2014 19:26 2.9M
Farnell-USB-Buccanee..> 14-Jun-2014 09:48 2.5M
Farnell-USB-to-Seria..> 08-Sep-2014 07:27 2.0M
Farnell-USB1T11A-PDF..> 19-Mar-2014 18:03 2.1M
Farnell-UTO-Souriau-..> 08-Jul-2014 18:48 2.8M
Farnell-UTS-Series-S..> 08-Jul-2014 18:49 2.8M
Farnell-UTS-Series-S..> 08-Jul-2014 18:49 2.5M
Farnell-User-Guide-M..> 07-Jul-2014 19:41 2.0M
Farnell-V4N-PDF.htm 14-Jun-2014 18:11 2.1M
Farnell-Videk-PDF.htm 06-Jul-2014 10:01 948K
Farnell-WIRE-WRAP-50..> 25-Jul-2014 12:34 5.9M
Farnell-WetTantalum-..> 11-Mar-2014 08:14 2.8M
Farnell-XPS-AC-Octop..> 14-Jun-2014 18:11 2.1M
Farnell-XPS-MC16-XPS..> 11-Mar-2014 08:15 2.8M
Farnell-XPSAF5130-PD..> 18-Jul-2014 16:56 1.4M
Farnell-YAGEO-DATA-S..> 11-Mar-2014 08:13 2.8M
Farnell-ZigBee-ou-le..> 11-Mar-2014 07:50 2.4M
Farnell-celpac-SUL84..> 21-Mar-2014 08:11 3.8M
Farnell-china_rohs_o..> 21-Mar-2014 10:04 3.9M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:34 2.8M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:35 2.7M
Farnell-cree-Xlamp-X..> 20-Mar-2014 17:31 2.9M
Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32 2.9M
Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32 2.9M
Farnell-ev-relays-ae..> 06-Jul-2014 10:02 926K
Farnell-fiche-de-don..> 07-Jul-2014 19:44 1.4M
Farnell-fx-3650P-fx-..> 29-Jul-2014 10:42 1.5M
Farnell-iServer-Micr..> 22-Jul-2014 12:32 1.6M
Farnell-ir1150s_fr.p..> 29-Mar-2014 11:11 3.3M
Farnell-manual-bus-p..> 10-Mar-2014 16:29 1.9M
Farnell-maxim-integr..> 28-Jul-2014 17:14 6.4M
Farnell-pmbta13_pmbt..> 15-Jul-2014 17:06 959K
Farnell-propose-plus..> 11-Mar-2014 08:19 2.8M
Farnell-safety-data-..> 07-Jul-2014 19:44 1.4M
Farnell-techfirst_se..> 21-Mar-2014 08:08 3.9M
Farnell-tesa®pack63..> 08-Jul-2014 18:56 2.0M
Farnell-testo-205-20..> 20-Mar-2014 17:37 3.0M
Farnell-testo-470-Fo..> 20-Mar-2014 17:38 3.0M
Farnell-uC-OS-III-Br..> 10-Mar-2014 17:20 2.0M
Farnell-user-manuel-..> 29-Jul-2014 10:29 1.5M
Sefram-7866HD.pdf-PD..> 29-Mar-2014 11:46 472K
Sefram-CAT_ENREGISTR..> 29-Mar-2014 11:46 461K
Sefram-CAT_MESUREURS..> 29-Mar-2014 11:46 435K
Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46 481K
Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46 442K
Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46 422K
Sefram-SP270.pdf-PDF..> 29-Mar-2014 11:46 464K
Farnell-AN2794-Appli..> 13-Oct-2014 10:02 1.0M
Farnell-Data-Sheet-S..> 13-Oct-2014 10:09 1.2M
Farnell-ESM6045DV-ST..> 13-Oct-2014 10:07 850K
Farnell-L78-Positive..> 13-Oct-2014 10:05 1.8M
Farnell-L78S-STMicro..> 13-Oct-2014 10:09 1.6M
Farnell-L4978-STMicr..> 13-Oct-2014 10:08 783K
Farnell-L6384E-STMic..> 13-Oct-2014 10:03 1.9M
Farnell-L6562-STMicr..> 13-Oct-2014 10:08 754K
Farnell-LM139-LM239-..> 13-Oct-2014 10:08 771K
Farnell-LM217-LM317-..> 13-Oct-2014 10:05 1.7M
Farnell-LM350-STMicr..> 13-Oct-2014 10:04 1.8M
Farnell-LM2904-LM290..> 13-Oct-2014 10:05 1.7M
Farnell-MC34063ABD-T..> 13-Oct-2014 10:07 844K
Farnell-SG2525A-SG35..> 13-Oct-2014 10:02 1.0M
Farnell-SMAJ-STMicro..> 13-Oct-2014 10:08 734K
Farnell-ST1S10PHR-ST..> 13-Oct-2014 10:08 820K
Farnell-ST3232B-ST32..> 13-Oct-2014 10:07 867K
Farnell-STEVAL-TDR02..> 13-Oct-2014 10:02 960K
Farnell-STM32F030x4-..> 13-Oct-2014 10:07 1.1M
Farnell-STM32F103x8-..> 13-Oct-2014 10:07 1.0M
Farnell-STM32F205xx-..> 13-Oct-2014 10:06 1.7M
Farnell-STM32F405xx-..> 13-Oct-2014 10:06 1.4M
Farnell-STP16NF06L-n..> 13-Oct-2014 10:06 1.7M
Farnell-STP80NF55L-0..> 13-Oct-2014 10:06 1.7M
Farnell-Smart-street..> 13-Oct-2014 10:04 1.8M
Farnell-TIP41C-TIP42..> 13-Oct-2014 10:08 829K
Farnell-TIP102-TIP10..> 13-Oct-2014 10:07 853K
Farnell-TSV6390-TSV6..> 13-Oct-2014 10:10 6.4M
Farnell-ULN2001-ULN2..> 13-Oct-2014 10:03 1.9M
Farnell-ULQ2001-ULQ2..> 13-Oct-2014 10:03 1.9M
Farnell-VND920P-E-ST..> 13-Oct-2014 10:04 1.8M
1. General description NXP’s UCODE G2iL series transponder ICs offer leading-edge read range and support industry-first features such as a Tag Tamper Alarm, Data Transfer, Digital Switch, and advanced privacy-protection modes. Very high chip sensitivity (18 dBm) enables longer read ranges with simple, single-port antenna designs. When connected to a power supply, the READ as well as the WRITE range can be boosted to a sensitivity of 27 dBm. In fashion and retail the UCODE G2iL series improve read rates and provide for theft deterrence. For consumer electronics the UCODE G2iL series is suited for device configuration, activation, production control, and PCB tagging. In authentication applications the transponders can be used to protect brands and guard against counterfeiting. They can also be used to tag containers, electronic vehicles, airline baggage, and more. In addition to the EPC specifications the G2iL offers an integrated Product Status Flag (PSF) feature and read protection of the memory content. On top of the G2iL features the G2iL+ offers an integrated tag tamper alarm, RF field detection, digital switch, external supply mode, read range reduction and data transfer mode. 2. Features and benefits 2.1 Key features UHF RFID Gen2 tag chip according EPCglobal v1.2.0 with 128 bit EPC memory Memory read protection Integrated Product Status Flag (PSF) Tag tamper alarm RF field detection Digital switch Data transfer mode Real Read Range Reduction (Privacy Mode) External supply mode where both the READ & WRITE range are boosted to -27dBm 2.1.1 Memory 128-bit of EPC memory 64-bit Tag IDentifier (TID) including 32-bit factory locked unique serial number 32-bit kill password to permanently disable the tag 32-bit access password to allow a transition into the secured state SL3S1203_1213 UCODE G2iL and G2iL+ Rev. 4.4 — 17 March 2014 178844 Product data sheet COMPANY PUBLICSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 2 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ Data retention: 20 years Broad international operating frequency: from 840 MHz to 960 MHz Long read/write ranges due to extremely low power design Reliable operation of multiple tags due to advanced anti-collision READ protection WRITE Lock Wide specified temperature range: 40 C up to +85 C 2.2 Key benefits 2.2.1 End user benefit Prevention of unauthorized memory access through read protection Indication of tag tampering attempt by use of the tag tamper alarm feature Electronic device configuration and / or activation by the use of the digital switch / data transfer mode Theft deterrence supported by the PSF feature (PSF alarm or EPC code) Small label sizes, long read ranges due to high chip sensitivity Product identification through unalterable extended TID range, including a 32-bit serial number Reliable operation in dense reader and noisy environments through high interference suppression 2.2.2 Antenna design benefits High sensitivity enables small and cost efficient antenna designs Low Q-Value eases broad band antenna design for global usage 2.2.3 Label manufacturer benefit Consistent performance on different materials due to low Q-factor Ease of assembly and high assembly yields through large chip input capacitance Fast first WRITE of the EPC memory for fast label initialization 2.3 Custom commands PSF Alarm Built-in PSF (Product Status Flag), enables the UHF RFID tag to be used as EAS tag (Electronic Article Surveillance) tag without the need for a back-end data base. Read Protect Protects all memory content including CRC16 from unauthorized reading. ChangeConfig Configures the additional features of the chip like external supply mode, tamper alarm, digital switch, read range reduction or data transfer. The UCODE G2iL is equipped with a number of additional features and custom commands. Nevertheless, the chip is designed in a way standard EPCglobal READ/WRITE/ACCESS commands can be used to operate the features. No custom commands are needed to take advantage of all the features in case of unlocked EPC memory.SL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 3 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 3. Applications 3.1 Markets Fashion (Apparel and footwear) Retail Electronics Fast Moving Consumer Goods Asset management Electronic Vehicle Identification 3.2 Applications Supply chain management Item level tagging Pallet and case tracking Container identification Product authentication PCB tagging Cost efficient, low level seals Wireless firmware download Wireless product activation Outside above mentioned applications, please contact NXP Semiconductors for support. 4. Ordering information 5. Marking Table 1. Ordering information Type number Package Name IC type Description Version SL3S1203FUF Wafer G2iL bumped die on sawn 8” 75 m wafer not applicable SL3S1213FUF Wafer G2iL+ bumped die on sawn 8” 75 m wafer not applicable SL3S1203FUD/BG Wafer G2iL bumped die on sawn 8” 120 m wafer, 7 m Polyimide spacer not applicable SL3S1213FUD/BG Wafer G2iL+ bumped die on sawn 8” 120 m wafer, 7 m Polyimide spacer not applicable SL3S1203FTB0 XSON6 G2iL plastic extremely thin small outline package; no leads; 6 terminals; body 1 1.45 0.5 mm SOT886F1 Table 2. Marking codes Type number Marking code Comment Version SL3S1203FTB0 UN UCODE G2iL SOT886SL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 4 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 6. Block diagram The SL3S12x3 IC consists of three major blocks: - Analog Interface - Digital Control - EEPROM The analog part provides stable supply voltage and demodulates data received from the reader for being processed by the digital part. Further, the modulation transistor of the analog part transmits data back to the reader. The digital section includes the state machines, processes the protocol and handles communication with the EEPROM, which contains the EPC and the user data. Fig 1. Block diagram of G2iL IC 001aam226 MOD DEMOD VREG VDD VDD data in data out R/W ANALOG RF INTERFACE PAD PAD RECT DIGITAL CONTROL ANTENNA ANTICOLLISION READ/WRITE CONTROL ACCESS CONTROL EEPROM INTERFACE CONTROL RF INTERFACE CONTROL I/O CONTROL I/O CONTROL EEPROM MEMORY SEQUENCER CHARGE PUMP PAD OUT PADSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 5 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 7. Pinning information 7.1 Pin description Fig 2. Pinning bare die Fig 3. Pin configuration for SOT886 001aam529 VDD OUT RFN NXP trademark RFP SL3S12x3FTB0 n.c. 001aan103 RFP RFN n.c. VDD OUT Transparent top view 2 3 1 5 4 6 Table 3. Pin description bare die Symbol Description OUT output pin RFN grounded antenna connector VDD external supply RFP ungrounded antenna connector Table 4. Pin description SOT886 Pin Symbol Description 1 RFP ungrounded antenna connector 2 n.c. not connected 3 RFN grounded antenna connector 4 OUT output pin 5 n.c. not connected 6 VDD external supplySL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 6 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 8. Wafer layout 8.1 Wafer layout (1) Die to Die distance (metal sealring - metal sealring) 21,4 m, (X-scribe line width: 15 m) (2) Die to Die distance (metal sealring - metal sealring) 21,4 m, (Y-scribe line width: 15 m) (3) Chip step, x-length: 485 m (4) Chip step, y-length: 435 m (5) Bump to bump distance X (OUT - RFN): 383 m (6) Bump to bump distance Y (RFN - RFP): 333 m (7) Distance bump to metal sealring X: 40,3 m (outer edge - top metal) (8) Distance bump to metal sealring Y: 40,3 m Bump size X x Y: 60 m x 60 m Remark: OUT and VDD are used with G2iL+ only Fig 4. G2iL wafer layout not to scale! 001aak871 (1) (7) (2) (8) (5) (6) (4) (3) Y X VDD OUT RFN RFPSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 7 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 9. Mechanical specification The UCODE G2iL/G2iL+ wafers are available in 75 m and 120 m thickness. The 75m thick wafer allows ultra thin label design but require a proper tuning of the glue dispenser during production. Because of the more robust structure of the 120m wafer, the wafer is ideal for harsh applications. The 120 m thick wafer is also enhanced with 7m Polyimide spacer allowing additional protection of the active circuit. 9.1 Wafer specification See Ref. 20 “Data sheet - Delivery type description – General specification for 8” wafer on UV-tape with electronic fail die marking, BU-ID document number: 1093**”. 9.1.1 Wafer Table 5. Specifications Wafer Designation each wafer is scribed with batch number and wafer number Diameter 200 mm (8”) Thickness SL3S12x3FUF 75 m 15 m SL3S12x3FUD 120 m 15 m Number of pads 4 Pad location non diagonal/ placed in chip corners Distance pad to pad RFN-RFP 333.0 m Distance pad to pad OUT-RFN 383.0 m Process CMOS 0.14 m Batch size 25 wafers Potential good dies per wafer 139.351 Wafer backside Material Si Treatment ground and stress release Roughness Ra max. 0.5 m, Rt max. 5 m Chip dimensions Die size including scribe 0.485 mm 0.435 mm = 0.211 mm2 Scribe line width: x-dimension = 15 m y-dimension = 15 m Passivation on front Type Sandwich structure Material PE-Nitride (on top) Thickness 1.75 m total thickness of passivation Polyimide spacer 7 m 1 m (SL3S12x3FUD only) Au bump Bump material > 99.9 % pure AuSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 8 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ [1] Because of the 7 m spacer, the bump will measure 18 m relative height protruding the spacer. 9.1.2 Fail die identification No inkdots are applied to the wafer. Electronic wafer mapping (SECS II format) covers the electrical test results and additionally the results of mechanical/visual inspection. See Ref. 20 “Data sheet - Delivery type description – General specification for 8” wafer on UV-tape with electronic fail die marking, BU-ID document number: 1093**” 9.1.3 Map file distribution See Ref. 20 “Data sheet - Delivery type description – General specification for 8” wafer on UV-tape with electronic fail die marking, BU-ID document number: 1093**” 10. Functional description 10.1 Air interface standards The UCODE G2iL fully supports all parts of the "Specification for RFID Air Interface EPCglobal, EPC Radio-Frequency Identity Protocols, Class-1 Generation-2 UHF RFID, Protocol for Communications at 860 MHz to 960 MHz, Version 1.2.0". 10.2 Power transfer The interrogator provides an RF field that powers the tag, equipped with a UCODE G2iL. The antenna transforms the impedance of free space to the chip input impedance in order to get the maximum possible power for the G2iL on the tag. The G2iL+ can also be supplied externally. The RF field, which is oscillating on the operating frequency provided by the interrogator, is rectified to provide a smoothed DC voltage to the analog and digital modules of the IC. Bump hardness 35 – 80 HV 0.005 Bump shear strength > 70 MPa Bump height SL3S12x3FUF 18 m SL3S12x3FUD 25 m[1] Bump height uniformity within a die 2 m – within a wafer 3 m – wafer to wafer 4 m Bump flatness 1.5 m Bump size – RFP, RFN 60 60 m – OUT, VDD 60 60 m Bump size variation 5 m Table 5. SpecificationsSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 9 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ The antenna that is attached to the chip may use a DC connection between the two antenna pads. Therefore the G2iL also enables loop antenna design. Possible examples of supported antenna structures can be found in the reference antenna design guide. 10.3 Data transfer 10.3.1 Reader to tag Link An interrogator transmits information to the UCODE G2iL by modulating an UHF RF signal. The G2iL receives both information and operating energy from this RF signal. Tags are passive, meaning that they receive all of their operating energy from the interrogator's RF waveform. In order to further improve the read range the UCODE G2iL+ can be externally supplied as well so the energy to operate the chip does not need to be transmitted by the reader. An interrogator is using a fixed modulation and data rate for the duration of at least one inventory round. It communicates to the G2iL by modulating an RF carrier using DSB-ASK with PIE encoding. For further details refer to Section 16, Ref. 1. Interrogator-to-tag (R=>T) communications. 10.3.2 Tag to reader Link An interrogator receives information from a G2iL by transmitting an unmodulated RF carrier and listening for a backscattered reply. The G2iL backscatters by switching the reflection coefficient of its antenna between two states in accordance with the data being sent. For further details refer to Section 16, Ref. 1, chapter 6.3.1.3. The UCODE G2iL communicates information by backscatter-modulating the amplitude and/or phase of the RF carrier. Interrogators shall be capable of demodulating either demodulation type. The encoding format, selected in response to interrogator commands, is either FM0 baseband or Miller-modulated subcarrier. 10.4 G2iL and G2iL+ differences The UCODE G2iL is tailored for application where mainly EPC or TID number space is needed. The G2iL+ in addition provides functionality such as tag tamper alarm, external supply operation to further boost read/write range (external supply mode), a Privacy mode reducing the read range or I/O functionality (data transfer to externally connected devices) required. The following table provides an overview of G2iL, G2iL+ special features. Table 6. Overview of G2iL and G2iL+ features Features G2iL G2iL+ Read protection (bankwise) yes yes PSF (Built-in Product Status Flag) yes yes Backscatter strength reduction yes yes Real read range reduction yes yes Digital switch / Digital input - yes External supply mode - yesSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 10 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 10.5 Supported commands The G2iL supports all mandatory EPCglobal V1.2.0 commands. In addition the G2iL supports the following optional commands: • ACCESS • Block Write (32 bit) The G2iL features the following custom commands described more in detail later: • ResetReadProtect (backward compatible to G2X) • ReadProtect (backward compatible to G2X) • ChangeEAS (backward compatible to G2X) • EAS_Alarm (backward compatible to G2X) • ChangeConfig (new with G2iL) 10.6 G2iL, G2iL+ memory The G2iL, G2iL+ memory is implemented according EPCglobal Class1Gen2 and organized in three sections: The logical address of all memory banks begin at zero (00h). In addition to the three memory banks one configuration word to handle the G2iL specific features is available at EPC bank 01 address 200h. The configuration word is described in detail in Section 10.7.1 “ChangeConfig”. Memory pages (16 bit words) pre-programmed to zero will not execute an erase cycle before writing data to it. This approach accelerates initialization of the chip and enables faster programming of the memory. RF field detection - yes Data transfer - yes Tag tamper alarm - yes Table 6. Overview of G2iL and G2iL+ features …continued Features G2iL G2iL+ Table 7. G2iL memory sections Name Size Bank Reserved memory (32 bit ACCESS and 32 bit KILL password) 64 bit 00b EPC (excluding 16 bit CRC-16 and 16 bit PC) 128 bit 01b G2iL Configuration Word 16 bit 01b TID (including permalocked unique 32 bit serial number) 64 bit 10bSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 11 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 10.6.1 G2iL, G2iL+ overall memory map [1] See Figure 5 [2] Indicates the existence of a Configuration Word at the end of the EPC number [3] See also Table 12 for further details. Table 8. G2iL, G2iL+ overall memory map Bank address Memory address Type Content Initial Remark Bank 00 00h to 1Fh reserved kill password all 00h unlocked memory 20h to 3Fh reserved access password all 00h unlocked memory Bank 01 EPC 00h to 0Fh EPC CRC-16: refer to Ref. 16 memory mapped calculated CRC 10h to 14h EPC backscatter length 00110b unlocked memory 15h EPC UMI 0b unlocked memory 16h EPC XPC indicator 0b hardwired to 0 17h to 1Fh EPC numbering system indicator 00h unlocked memory 20h to 9Fh EPC EPC [1] unlocked memory Bank 01 Config Word 200h EPC tamper alarm flag 0b[3] indicator bit 201h EPC external supply flag or input signal 0b[3] indicator bit 202h EPC RFU 0b[3] locked memory 203h EPC RFU 0b[3] locked memory 204h EPC invert digital output: 0b[3] temporary bit 205h EPC transparent mode on/off 0b[3] temporary bit 206h EPC transparent mode data/raw 0b[3] temporary bit 207h EPC RFU 0b[3] locked memory 208h EPC RFU 0b[3] locked memory 209h EPC max. backscatter strength 1b[3] unlocked memory 20Ah EPC digital output 0b[3] unlocked memory 20Bh EPC read range reduction on/off 0b[3] unlocked memory 20Ch EPC RFU 0b[3] locked memory 20Dh EPC read protect EPC Bank 0b[3] unlocked memory 20Eh EPC read protect TID 0b[3] unlocked memory 20Fh EPC PSF alarm flag 0b[3] unlocked memory Bank 10 TID 00h to 07h TID allocation class identifier 1110 0010b locked memory 08h to 13h TID tag mask designer identifier 0000 0000 0110b locked memory 14h TID config word indicator 1b[2] locked memory 14h to 1Fh TID tag model number TMNR[1] locked memory 20h to 3Fh TID serial number SNR locked memoryxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx SL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. COMPANY PUBLIC Product data sheet Rev. 4.4 — 17 March 2014 178844 12 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 10.6.2 G2iL TID memory details Fig 5. G2iL TID memory structure aaa-010217 E2006906 E2h 006h 1 0010b 0000110b Ucode G2iL+ E2006807 E2h 006h 1 0000b 0000111b E2006907 E2h 006h 1 0010b 0000111b Ucode G2iL E2006806 E2h 006h 1 0000b 0000110b First 32 bit of TID memory Class ID Mask Designer ID Config Word Indicator Sub Version Nr. Model Number Version (Silicon) Nr. Class Identifier MS Byte MS Bit LS Bit LS Byte TID MS Bit LS Bit Mask-Designer Identifier Model Number Serial Number Bits 7 0 00 11 11 31 0 Addresses 00h 07h 13h 1Fh 3Fh Addresses 00h 3Fh 08h 14h 20h E2h (EAN.UCC) 006h (NXP) 806h or 906h or B06h (UCODE G2iL) 00000001h to FFFFFFFFh Sub Version Number Version Number 000b or 001b or 0110b 0000110b (UCODE G2iL) Bits 0 3 0 6 0 Addresses 14h 18h 19h 1Fh E2006B06 E2h 006h 1 0110b 0000110b E2006B07 E2h 006h 1 0110b 0000111bSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 13 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 10.7 Custom commands The UCODE G2iL, G2iL+ is equipped with a number of additional features and custom commands. Nevertheless, the chip is designed in a way standard EPCglobal READ/WRITE/ACCESS commands can be used to operate the features. The memory map stated in the previous section describes the Configuration Word used to control the additional features located at address 200h of the EPC memory. For this reason the standard READ/WRITE commands of an UHF EPCglobal compliant reader can be used to select the flags or activate/deactivate features. The features can only be activated/deactivated (written) using standard EPC WRITE command as long the EPC is not locked. In case the EPC is locked either the bank needs to be unlocked to apply changes or the ChangeConfig custom command is used to change the settings. The UCODE G2iL is also equipped with the complete UCODE G2X command set for backward compatibility reasons. Nevertheless, the one ChangeConfig command of the G2iL can be used instead of the entire G2X command set. Bit 14h of the TID indicates the existence of a Configuration Word. This flag will enable selecting Config-Word enhanced transponders in mixed tag populations. 10.7.1 ChangeConfig Although G2iL is tailored for supply chain management, item level tagging and product authentication the G2iL+ version enables active interaction with products. Among the password protected features are the capability of download firmware to electronics, activate/deactivate electronics which can also be used as theft deterrence, a dedicated privacy mode by reducing the read range, integrated PSF (Product Status Flag) or Tag Tamper Alarm. The G2iL ChangeConfig custom command allows handling the special NXP Semiconductors features described in the following paragraph. Please also see the memory map in Section 10.6 “G2iL, G2iL+ memory” and “Section 10.7.2 “G2iL, G2iL+ special features control mechanism”. If the EPC memory is not write locked the standard EPC READ/WRITE command can be used to change the settings. G2iL, G2iL+ special features1 UCODE G2iL and G2iL+ common special features are: • Bank wise read protection (separate for EPC and TID) EPC bank and the serial number part of the TID can be read protected independently. When protected reading of the particular memory will return '0'. The flags of the configuration word can be selected using the standard SELECT2 command. Only read protected parts will then participate an inventory round. The G2X ReadProtect command will set both EPC and TID read protect flags. 1. The features can only be manipulated (enabled/disabled) with unlocked EPC bank, otherwise the ChangeConfig command can be used. 2. SELECT has to be applied onto the Configuration Word with pointer address 200h. Selecting bits within the Configuration Word using a pointer address not equal to 200h is not possible.SL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 14 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ • Integrated PSF (Product Status Flag) The PSF is a general purpose flag that can be used as an EAS (Electronic Article Surveillance) flag, quality checked flag or similar. The G2iL offers two ways of detecting an activated PSF. In cases extremely fast detection is needed the EAS_Alarm command can be used. The UCODE G2iL will reply a 64-bit alarm code like described in section EAS_Alarm upon sending the command. As a second option the EPC SELECT2 command selecting the PSF flag of the configuration word can be used. In the following inventory round only PSF enabled chips will reply their EPC number. • Backscatter strength reduction The UCODE G2iL features two levels of backscatter strengths. Per default maximum backscatter is enabled in order to enable maximum read rates. When clearing the flag the strength can be reduced if needed. • Real Read Range Reduction 4R Some applications require the reduction of the read range to close proximity for privacy reasons. Setting the 4R flag will significantly reduce the chip sensitivity to +12 dBm. The +12 dBm have to be available at chip start up (slow increase of field strength is not applicable). For additional privacy, the read protection can be activated in the same configuration step. The related flag of the configuration word can be selected using the standard SELECT2 command so only chips with reduced read range will be part of an inventory. Remark: The attenuation will result in only a few centimeter of read range at 36 dBm EIRP! UCODE G2iL+ specific special features are:1 • Tag Tamper Alarm (G2iL+ only) The UCODE G2iL+ Tamper Alarm will flag the status of the VDD to OUT pad connection which can be designed as an predetermined breaking point (see Figure 6). The status of the pad connection (open/closed) can be read in the configuration register and/or selected using the EPC SELECT2. This feature will enable designing a wireless RFID safety seal. When breaking the connection by peeling off the label or manipulating a lock an alarm can be triggered. Fig 6. Schematic of connecting VDD and OUT pad with a predetermined breaking point to turn a standard RFID label into a wireless safety seal 001aam228 OUT VDD GND RFPSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 15 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ • RF field detection (G2iL+ only) The UCODE G2iL+ VDD pin can be also used as a RF field detector. Upon bringing the tag within an RF field, a pulse signal will be immediately sent from the VDD test pad. (for details see Ref. 21). • Digital Switch (G2iL+ only) The UCODE G2iL+ OUT pin can be used as digital switch. The state of the output pad can be switched to VDD or GND depending on the Digital OUT bit of the Configuration Word register. The state of the output is persistent in the memory even after KILL or switching off the supply. This feature will allow activating/deactivating externally connected peripherals or can be used as theft deterrence of electronics. The state of the OUT pin can also be changed temporary by toggling the 'Invert Digital Output' bit. • Data transfer Mode (G2iL+ only) In applications where not switching the output like described in "Digital Switch" but external device communication is needed the G2iL+ Data Transfer Mode can be used by setting the according bit of the Configuration Word register. When activated the air interface communication will be directly transferred to the OUT pad of the chip. Two modes of data transfer are available and can be switched using the Transparent Mode DATA/RAW bit. The default Transparent Mode DATA will remove the Frame Sync of the communication and toggle the output with every raising edge in the RF field. This will allow implementing a Manchester type of data transmission. The Transparent Mode RAW will switch the demodulated air interface communication to the OUT pad. • External Supply Indicator - Digital Input (G2iL+ only) The VDD pad of the UCODE G2iL+ can be used as a single bit digital input pin. The state of the pad is directly associated with the External Supply Indicator bit of the configuration register. Simple one bit return signaling (chip to reader) can be implemented by polling this Configuration Word register flag. RF reset is necessary for proper polling. • External Supply Mode (G2iL+ only) The UCODE G2iL+ can be supplied externally by connecting 1.85 V (Iout = 0µA) supply. When externally supplied less energy from the RF field is needed to operate the chip. This will not just enable further improved sensitivity and read ranges (up to 27 dBm) but also enable a write range that is equal to the read range. The figure schematically shows the supply connected to the UCODE G2iL+. Remark: When permanently externally supplied there will not be a power-on-reset. This will result in the following limitations: • When externally supplied session flag S0 will keep it’s state during RF-OFF phase. • When externally supplied session flag S2, S3, SL will have infinite persistence time and will behave similar to S0. • Session flag S1 will behave regular like in pure passive operation.SL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 16 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ The bits to be toggled in the configuration register need to be set to '1'. E.g. sending 0000 0000 0001 0001 XOR RN16 will activate the 4R and PSF. Sending the very same command a second time will disable the features again. The reply of the ChangeConfig will return the current register setting. Fig 7. Schematic of external power supply Table 9. ChangeConfig custom command Command RFU Data RN CRC-16 No. of bits 16 8 16 16 16 Description 11100000 00000111 00000000 Toggle bits XOR RN 16 handle - Table 10. ChangeConfig custom command reply Header Status bits RN CRC-16 No. of bits 1 16 16 16 Description 0 Config-Word Handle - Table 11. ChangeConfig command-response table Starting state Condition Response Next state ready all - ready arbitrate, reply, acknowledged all - arbitrate open valid handle Status word needs to change Backscatter unchanged Config-WordConfig-Word immediately open valid handle Status word does not need to change Backscatter Config-Word immediately open secured valid handle Status word needs to change Backscatter modified Config-Word, when done secured valid handle Status word does not need to change Backscatter Config-Word immediately secured killed all - killed 001aam229 OUT VDD Vsupply GND RFPSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 17 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ The features can only be activated/deactivated using standard EPC WRITE if the EPC bank is unlocked. The permanent and temporary bits of the Configuration Word can be toggled without the need for an ACCESS password in case the ACCESS password is set to zero. In case the EPC bank is locked the lock needs to be removed before applying changes or the ChangeConfig command has to be used. 10.7.2 G2iL, G2iL+ special features control mechanism Special features of the G2iL are managed using a configuration word (Config-Word) located at address 200h in the EPC memory bank. The entire Config-Word is selectable (using the standard EPC SELECT2 command) and can be read using standard EPC READ command and modified using the standard EPC WRITE or ChangeConfig custom command in case the EPC memory is locked for writing. ChangeConfig can be executed from the OPEN and SECURED state. The chip will take all “Toggle Bits” for ’0’ if the chip is in the OPEN state or the ACCESS password is zero; therefore it will not alter any status bits, but report the current status only. The command will be ignored with an invalid CRC-16 or an invalid handle. The chip will then remain in the current state. The CRC-16 is calculated from the first command-code bit to the last handle bit. A ChangeConfig command without frame-sync and proceeding Req_RN will be ignored. The command will also be ignored if any of the RFU bits are toggled. In order to change the configuration, to activate/deactivate a feature a ’1’ has to be written to the corresponding register flag to toggle the status. E.g. sending 0x0002 to the register will activate the read protection of the TID. Sending the same command a second time will again clear the read protection of the TID. Invalid toggling on indicator or RFU bits are ignored. Executing the command with zero as payload or in the OPEN state will return the current register settings. The chip will reply to a successful ChangeConfig with an extended preamble regardless of the TRext value of the Query command. After sending a ChangeConfig an interrogator shall transmit CW for less than TReply or 20 ms, where TReply is the time between the interrogator's ChangeConfig command and the chip’s backscattered reply. An interrogator may observe three possible responses after sending a ChangeConfig, depending on the success or failure of the operation • ChangeConfigChangeConfig succeeded: The chip will backscatter the reply shown above comprising a header (a 0-bit), the current Status Word setting, the handle, and a CRC-16 calculated over the 0-bit, the status word and the handle. If the interrogator observes this reply within 20 ms then the ChangeConfig completed successfully. • The chip encounters an error: The chip will backscatter an error code during the CW period rather than the reply shown below (see EPCglobal Spec for error-code definitions and for the reply format). • ChangeConfig does not succeed: If the interrogator does not observe a reply within 20 ms then the ChangeStatus did not complete successfully. The interrogator may issue a Req_RN command (containing the handle) to verify that the chip is still in the interrogator's field, and may reissue the ChangeConfig command. The G2iL configuration word is located at address 200h of the EPC memory and is structured as following:SL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 18 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ The configuration word contains three different type of bits: • Indicator bits cannot be changed by command: Tag Tamper Alarm Indicator External Supply Indicator (digital input) • Temporary bits are reset at power up: Invert Output Transparent Mode on/off Data Mode data/raw • Permanent bits: permanently stored bits in the memory Max. Backscatter Strength Digital Output Read Range Reduction Read Protect EPC Read Protect TID PSF Alarm 10.7.3 ReadProtect3 The G2iL ReadProtect custom command enables reliable read protection of the entire G2iL memory. Executing ReadProtect from the Secured state will set the ProtectEPC and ProtectTID bits of the Configuration Word to '1'. With the ReadProtect-Bit set the G2iL will continue to work unaffected but veil its protected content. The read protection can be removed by executing Reset ReadProtect. The ReadProtect-Bits will than be cleared. Devices whose access password is zero will ignore the command. A frame-sync must be pre-pended the command. After sending the ReadProtect command an interrogator shall transmit CW for the lesser of TReply or 20 ms, where TReply is the time between the interrogator's ReadProtect command and the backscattered reply. An interrogator may observe three possible responses after sending a ReadProtect, depending on the success or failure of the operation: Table 12. Address 200h to 207h Indicator bits Temporary bits Tamper indicator External supply indicator RFU RFU Invert Output Transparent mode on/off Data mode data/raw RFU 0 1 2 34 5 6 7 Table 13. Address 208h to 20Fh Permanent bits RFU max. backscatter strength Digital output Privacy mode RFU Protect EPC Protect TID PSF Alarm bit 8 9 10 11 12 13 14 15 3. Note: The ChangeConfig command can be used instead of “ReadProtect”, “ResetReadProtect”, “ChangeEAS”.SL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 19 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ • ReadProtect succeeds: After completing the ReadProtect the G2iL shall backscatter the reply shown in Table 15 comprising a header (a 0-bit), the tag's handle, and a CRC-16 calculated over the 0-bit and handle. Immediately after this reply the G2iL will render itself to this ReadProtect mode. If the interrogator observes this reply within 20 ms then the ReadProtect completed successfully. • The G2iL encounters an error: The G2iL will backscatter an error code during the CW period rather than the reply shown in the EPCglobal Spec (see Annex I for error-code definitions and for the reply format). • ReadProtect does not succeed: If the interrogator does not observe a reply within 20 ms then the ReadProtect did not complete successfully. The interrogator may issue a Req_RN command (containing the handle) to verify that the G2iL is still in the interrogation zone, and may re-initiate the ReadProtect command. The G2iL reply to the ReadProtect command will use the extended preamble shown in EPCglobal Spec (Figure 6.11 or Figure 6.15), as appropriate (i.e. a Tag shall reply as if TRext=1) regardless of the TRext value in the Query that initiated the round. 10.7.4 Reset ReadProtect3 Reset ReadProtect allows an interrogator to clear the ProtectEPC and ProtectTID bits of the Configuration Word. This will re-enable reading of the related G2iL memory content. For details on the command response please refer to Table 17 “Reset ReadProtect command”. Table 14. ReadProtect command Command RN CRC-16 # of bits 16 16 16 description 11100000 00000001 handle - Table 15. G2iL reply to a successful ReadProtect procedure Header RN CRC-16 # of bits 1 16 16 description 0 handle - Table 16. ReadProtect command-response table Starting State Condition Response Next State ready all – ready arbitrate, reply, acknowledged all – arbitrate open all - open secured valid handle & invalid access password – arbitrate valid handle & valid non zero access password Backscatter handle, when done secured invalid handle – secured killed all – killedSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 20 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ After sending a Reset ReadProtect an interrogator shall transmit CW for the lesser of TReply or 20 ms, where TReply is the time between the interrogator's Reset ReadProtect command and the G2iL backscattered reply. A Req_RN command prior to the Reset ReadProtect is necessary to successfully execute the command. A frame-sync must be pre-pended the command. An interrogator may observe three possible responses after sending a Reset ReadProtect, depending on the success or failure of the operation: • Reset ReadProtect succeeds: After completing the Reset ReadProtect a G2iL will backscatter the reply shown in Table 18 comprising a header (a 0-bit), the handle, and a CRC-16 calculated over the 0-bit and handle. If the interrogator observes this reply within 20 ms then the Reset ReadProtect completed successfully. • The G2iL encounters an error: The G2iL will backscatter an error code during the CW period rather than the reply shown in Table 18 (see EPCglobal Spec for error-code definitions and for the reply format). • Reset ReadProtect does not succeed: If the interrogator does not observe a reply within 20 ms then the Reset ReadProtect did not complete successfully. The interrogator may issue a Req_RN command (containing the handle) to verify that the G2iL is still in the interrogation zone, and may reissue the Reset ReadProtect command. The G2iL reply to the Reset ReadProtect command will use the extended preamble shown in EPCglobal Spec (Figure 6.11 or Figure 6.15), as appropriate (i.e. a G2iL will reply as if TRext=1 regardless of the TRext value in the Query that initiated the round. The Reset ReadProtect command is structured as following: • 16 bit command • Password: 32 bit Access-Password XOR with 2 times current RN16 Remark: To generate the 32 bit password the 16 bit RN16 is duplicated and used two times to generate the 32 bit (e.g. a RN16 of 1234 will result in 1234 1234). • 16 bit handle • CRC-16 calculate over the first command-code bit to the last handle bit Table 17. Reset ReadProtect command Command Password RN CRC-16 # of bits 16 32 16 16 description 11100000 00000010 (access password) 2*RN16 handle - Table 18. G2iL reply to a successful Reset ReadProtect command Header RN CRC-16 # of bits 1 16 16 description 0 handle -SL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 21 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 10.7.5 ChangeEAS3 UCODE G2iL equipped RFID tags will also feature a stand-alone operating EAS alarm mechanism for fast and offline electronic article surveillance. The PSF bit of the Configuration Word directly relates to the EAS Alarm feature. With an PSF bit set to '1' the tag will reply to an EAS_Alarm command by backscattering a 64 bit alarm code without the need of a Select or Query. The EAS is a built-in solution so no connection to a backend database is required. In case the EAS_Alarm command is not implemented in the reader a standard EPC SELCET to the Configuration Word and Query can be used. When using standard SELECT/QUERY the EPC will be returned during inventory. ChangeEAS can be executed from the Secured state only. The command will be ignored if the Access Password is zero, the command will also be ignored with an invalid CRC-16 or an invalid handle, the G2iL will than remain in the current state. The CRC-16 is calculated from the first command-code bit to the last handle bit. A frame-sync must be pre-pended the command. The G2iL reply to a successful ChangeEAS will use the extended preamble, as appropriate (i.e. a Tag shall reply as if TRext=1) regardless of the TRext value in the Query that initiated the round. After sending a ChangeEAS an interrogator shall transmit CW for less than TReply or 20 ms, where TReply is the time between the interrogator's ChangeEAS command and the G2iL backscattered reply. An interrogator may observe three possible responses after sending a ChangeEAS, depending on the success or failure of the operation • ChangeEAS succeeds: After completing the ChangeEAS a G2iL will backscatter the reply shown in Table 21 comprising a header (a 0-bit), the handle, and a CRC-16 calculated over the 0-bit and handle. If the interrogator observes this reply within 20 ms then the ChangeEAS completed successfully. • The G2iL encounters an error: The G2iL will backscatter an error code during the CW period rather than the reply shown in Table 21 (see EPCglobal Spec for error-code definitions and for the reply format). Table 19. Reset ReadProtect command-response table Starting State Condition Response Next State ready all – ready arbitrate, reply, acknowledged all – arbitrate open valid handle & valid access password Backscatter handle, when done open valid handle & invalid access password – arbitrate invalid handle – open secured valid handle & valid access password Backscatter handle, when done secured valid handle & invalid access password – arbitrate invalid handle – secured killed all – killedSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 22 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ • ChangeEAS does not succeed: If the interrogator does not observe a reply within 20 ms then the ChangeEAS did not complete successfully. The interrogator may issue a Req_RN command (containing the handle) to verify that the G2iL is still in the interrogator's field, and may reissue the ChangeEAS command. Upon receiving a valid ChangeEAS command a G2iL will perform the commanded set/reset operation of the PSF bit of the Configuration Word. If PSF bit is set, the EAS_Alarm command will be available after the next power up and reply the 64 bit EAS code upon execution. Otherwise the EAS_Alarm command will be ignored. 10.7.6 EAS_Alarm Upon receiving an EAS_Alarm custom command the UCODE G2iL will immediately backscatter an EAS-Alarmcode in case the PSF bit of the Configuration Word is set. The alarm code is returned without any delay caused by Select, Query and without the need for a backend database. The EAS feature of the G2iL is available after enabling it by sending a ChangeEAS command described in Section 10.7.5 “ChangeEAS3” or after setting the PSF bit of the Configuration Word to ’1’. With the EAS-Alarm enabled the G2iL will reply to an EAS_Alarm command by backscattering a fixed 64 bit alarm code. A G2iL will reply to an EAS_Alarm command from the ready state only. As an alternative to the fast EAS_Alarm command a standard SELECT2 (upon the Configuration Word) and QUERY can be used. If the PSF bit is reset to '0' by sending a ChangeEAS command in the password protected Secure state or clearing the PSF bit the G2iL will not reply to an EAS_Alarm command. Table 20. ChangeEAS command Command ChangeEAS RN CRC-16 # of bits 16 1 16 16 description 11100000 00000011 1 ... set PSF bit 0 ... reset PSF bit handle Table 21. G2iL reply to a successful ChangeEAS command Header RN CRC-16 # of bits 1 16 16 description 0 handle - Table 22. ChangeEAS command-response table Starting State Condition Response Next state ready all – ready arbitrate, reply, acknowledged all – arbitrate open all – open secured valid handle backscatter handle, when done secured invalid handle – secured killed all – killedSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 23 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ The EAS_Alarm command is structured as following: • 16 bit command • 16 bit inverted command • DR (TRcal divide ratio) sets the T=>R link frequency as described in EPCglobal Spec. 6.3.1.2.8 and Table 6.9. • M (cycles per symbol) sets the T=>R data rate and modulation format as shown in EPCglobal Spec. Table 6.10. • TRext chooses whether the T=>R preamble is pre-pended with a pilot tone as described in EPCglobal Spec. 6.3.1.3. A preamble must be pre-pended the EAS_Alarm command according EPCglobal Spec, 6.3.1.2.8. Upon receiving an EAS_Alarm command the tag loads the CRC5 register with 01001b and backscatters the 64 bit alarm code accordingly. The reader is now able to calculate the CRC5 over the backscattered 64 bits received to verify the received code. Table 23. EAS_Alarm command Command Inv_Command DR M TRext CRC-16 # of bits 16 16 1 2 1 16 description 11100000 00000100 00011111 11111011 0: DR = 8 1: DR = 64/3 00: M = 1 01: M = 2 10: M = 4 11: M = 8 0: no pilot tone 1: use pilot tone - Table 24. G2iL reply to a successful EAS_Alarm command Header EAS Code # of bits 1 64 description 0 CRC5 (MSB) Table 25. EAS_Alarm command-response table Starting State Condition Response Next state ready PSF bit is set PSF bit is cleard backscatter alarm code -- ready arbitrate, reply, acknowledged all – arbitrate open all – open secured all – secured killed all – killedSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 24 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 11. Limiting values [1] Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the Operating Conditions and Electrical Characteristics section of this specification is not implied. [2] This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima. [3] For ESD measurement, the die chip has been mounted into a CDIP20 package. Table 26. Limiting values[1][2] In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to RFN Symbol Parameter Conditions Min Max Unit Bare die and SOT886 limitations Tstg storage temperature 55 +125 C Tamb ambient temperature 40 +85 C VESD electrostatic discharge voltage Human body model [3] - 2 kV Pad limitations Vi input voltage absolute limits, VDD-OUT pad 0.5 +2.5 V Io output current absolute limits input/output current, VDD-OUT pad 0.5 +0.5 mA Pi input power maximum power dissipation, RFP pad - 100 mWSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 25 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 12. Characteristics 12.1 UCODE G2iL, G2iL+ bare die characteristics [1] Power to process a Query command. [2] Measured with a 50 source impedance. [3] At minimum operating power. [4] It has to be assured the reader (system) is capable of providing enough field strength to give +12 dBm at the chip otherwise communication with the chip will not be possible. [5] Enables tag designs to be within ETSI limits for return link data rates of e.g. 320 kHz/M4. [6] Will result in up to 10 dB higher tag backscatter power at high field strength. [7] Results in approx. 18.5 dBm tag sensitivity on a 2 dBi gain antenna. Table 27. G2iL, G2iL+ RF interface characteristics (RFN, RFP) Symbol Parameter Conditions Min Typ Max Unit fi input frequency 840 - 960 MHz Normal mode - no external supply, read range reduction OFF Pi(min) minimum input power READ sensitivity [1][2][7] - 18 - dBm Pi(min) minimum input power WRITE sensitivity, (write range/read range - ratio) - 30 - % Ci input capacitance parallel [3] - 0.77 - pF Q quality factor 915 MHz [3] - 9.7 - - Z impedance 866 MHz [3] - 25 -j237 - 915 MHz [3] - 23 -j224 - 953 MHz [3] - 21 -j216 - External supply mode - VDD pad supplied, read range reduction OFF Pi(min) minimum input power Ext. supplied READ [1][2] - 27 - dBm Ext. supplied WRITE [2] - 27 - dBm Z impedance externally supplied, 915 MHz [3] - 7 -j230 - Read range reduction ON - no external supply Pi(min) minimum input power 4R on READ [1][2][4] - +12 - dBm 4R on WRITE [2][4] - +12 - dBm Z impedance 4R on, 915 MHz [3] - 18 -j2 - Modulation resistance R resistance modulation resistance, max. backscatter = off [5] - 170 - modulation resistance, max. backscatter = on [6] - 55 - SL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 26 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ [1] Activates Digital Output (OUT pin), increases read range (external supplied). [2] Activates Digital Output (OUT pin), increases read and write range (external supplied). [3] Operating the chip outside the specified voltage range may lead to undefined behaviour. [4] Either the voltage or the current needs to be above given values to guarantee specified functionality. [5] No proper operation is guaranteed if both, voltage and current, limits are exceeded. [1] Is the sum of the allowed capacitance of the VDD and OUT pin referenced to RFN. [2] Is the maximum allowed RF input voltage coupling to the VDD/OUT pin to guarantee undisturbed chip functionality. [3] Resistance between VDD and OUT pin in checked during power up only. [4] Resistance range to achieve tamper alarm flag = 1. [5] Resistance range to achieve tamper alarm flag = 0: Table 28. VDD pin characteristics Symbol Parameter Conditions Min Typ Max Unit Minimum supply voltage/current - without assisted EEPROM WRITE [1][3][4] VDD supply voltage minimum voltage - - 1.8 V IDD supply current minimum current, Iout-^- = 0 A -- 7 A Iout = 100 A -- 110 A Minimum supply voltage/current - assisted EEPROM READ and WRITE [2][3][4] VDD supply voltage minimum voltage, Iout = 0 A - 1.8 1.85 V Iout = 100 A -- 1.95 V IDD supply current minimum current, Iout = 0 A - - 125 A Iout = 100 A -- 265 A Maximum supply voltage/current [3][5] VDD supply voltage absolute maximum voltage 2.2 - - V Ii(max) maximum input current absolute maximum current 280 - - A Table 29. G2iL, G2iL+ VDD and OUT pin characteristics Symbol Parameter Conditions Min Typ Max Unit OUT pin characteristics VOL Low-level output voltage Isink = 1 mA - - 100 mV VOH HIGH-level output voltage VDD = 1.8 V; Isource = 100 µA 1.5 - - V VDD/OUT pin characteristics CL load capacitance VDD - OUT pin max. [1] - - 5 pF Vo output voltage maximum RF peak voltage on VDD-OUT pins [2] - - 500 mV VDD/OUT pin tamper alarm characteristics [3] RL(max) maximum load resistance resistance range high [4] - - <2 M RL(min) minimum load resistance resistance range low [5] >20 - - MSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 27 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ For further reading we recommend application note “FAQ UCODE G2iL+“ (Ref. 21) describing the output characteristics more in detail. An example schematic is available in application note “UCODE G2iL+ Demo board Manual“ (Ref. 22). The documents are available at NXP Document Control or at the website www.nxp.com. [1] Tamb 25 C 12.2 UCODE G2iL SOT886 characteristics [1] Power to process a Query command. [2] Measured with a 50 source impedance. [3] At minimum operating power. Remark: For DC and memory characteristics refer to Table 28, Table 29 and Table 30. Table 30. G2iL, G2iL+ memory characteristics Symbol Parameter Conditions Min Typ Max Unit EEPROM characteristics tret retention time Tamb 55 C 20 - - year Nendu(W) write endurance 1000 10000[1] - cycle Table 31. G2iL RF interface characteristics (RFN, RFP) Symbol Parameter Conditions Min Typ Max Unit Normal mode - no external supply, read range reduction OFF Pi(min) minimum input power READ sensitivity [1][2] - 17.6 - dB m Z impedance 915 MHz [3] - 21 j199 - Normal mode - externally supplied, read range reduction OFF Pi(min) minimum input power READ sensitivity [1][2] - 27 - dB m Z impedance 915 MHz [3] - 5.6 j204 - SL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 28 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 13. Package outline Fig 8. Package outline SOT886 Outline References version European projection Issue date IEC JEDEC JEITA SOT886 MO-252 sot886_po 04-07-22 12-01-05 Unit mm max nom min 0.5 0.04 1.50 1.45 1.40 1.05 1.00 0.95 0.35 0.30 0.27 0.40 0.35 0.32 0.6 A(1) Dimensions (mm are the original dimensions) Notes 1. Including plating thickness. 2. Can be visible in some manufacturing processes. XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm SOT886 A1 b 0.25 0.20 0.17 D E ee1 0.5 L L1 terminal 1 index area D E e1 e A1 b L L 1 e1 0 1 2 mm scale 1 6 2 5 3 4 6x (2) 4x (2) ASL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 29 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 14. Packing information 14.1 Wafer See Ref. 20 “Data sheet - Delivery type description – General specification for 8” wafer on UV-tape with electronic fail die marking, BU-ID document number: 1093**” 14.2 SOT886 Part orientation T1. For details please refer to http://www.standardics.nxp.com/packaging/packing/pdf/sot886.t1.t4.pdf 15. Abbreviations Table 32. Abbreviations Acronym Description CRC Cyclic Redundancy Check CW Continuous Wave DSB-ASK Double Side Band-Amplitude Shift Keying DC Direct Current EAS Electronic Article Surveillance EEPROM Electrically Erasable Programmable Read Only Memory EPC Electronic Product Code (containing Header, Domain Manager, Object Class and Serial Number) FM0 Bi phase space modulation G2 Generation 2 IC Integrated Circuit PIE Pulse Interval Encoding RRRR Real Read Range Reduction PSF Product Status Flag RF Radio Frequency UHF Ultra High Frequency SECS Semi Equipment Communication Standard TID Tag IDentifier SL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 30 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 16. References [1] EPCglobal: EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for Communications at 860 MHz – 960 MHz, Version 1.1.0 (December 17, 2005) [2] EPCglobal: EPC Tag Data Standards [3] EPCglobal (2004): FMCG RFID Physical Requirements Document (draft) [4] EPCglobal (2004): Class-1 Generation-2 UHF RFID Implementation Reference (draft) [5] European Telecommunications Standards Institute (ETSI), EN 302 208: Electromagnetic compatibility and radio spectrum matters (ERM) – Radio-frequency identification equipment operating in the band 865 MHz to 868 MHz with power levels up to 2 W, Part 1 – Technical characteristics and test methods [6] European Telecommunications Standards Institute (ETSI), EN 302 208: Electromagnetic compatibility and radio spectrum matters (ERM) – Radio-frequency identification equipment operating in the band 865 MHz to 868 MHz with power levels up to 2 W, Part 2 – Harmonized EN under article 3.2 of the R&TTE directive [7] [CEPT1]: CEPT REC 70-03 Annex 1 [8] [ETSI1]: ETSI EN 330 220-1, 2 [9] [ETSI3]: ETSI EN 302 208-1, 2 V<1.1.1> (2004-09-Electromagnetic compatibility And Radio spectrum Matters (ERM) Radio Frequency Identification Equipment operating in the band 865 - MHz to 868 MHz with power levels up to 2 W Part 1: Technical characteristics and test methods. [10] [FCC1]: FCC 47 Part 15 Section 247 [11] ISO/IEC Directives, Part 2: Rules for the structure and drafting of International Standards [12] ISO/IEC 3309: Information technology – Telecommunications and information exchange between systems – High-level data link control (HDLC) procedures – Frame structure [13] ISO/IEC 15961: Information technology, Automatic identification and data capture – Radio frequency identification (RFID) for item management – Data protocol: application interface [14] ISO/IEC 15962: Information technology, Automatic identification and data capture techniques – Radio frequency identification (RFID) for item management – Data protocol: data encoding rules and logical memory functions [15] ISO/IEC 15963: Information technology — Radio frequency identification for item management — Unique identification for RF tags [16] ISO/IEC 18000-1: Information technology — Radio frequency identification for item management — Part 1: Reference architecture and definition of parameters to be standardized [17] ISO/IEC 18000-6: Information technology automatic identification and data capture techniques — Radio frequency identification for item management air interface — Part 6: Parameters for air interface communications at 860–960 MHz [18] ISO/IEC 19762: Information technology AIDC techniques – Harmonized vocabulary – Part 3: radio-frequency identification (RFID) SL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 31 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ [19] U.S. Code of Federal Regulations (CFR), Title 47, Chapter I, Part 15: Radio-frequency devices, U.S. Federal Communications Commission. [20] Data sheet - Delivery type description – General specification for 8” wafer on UV-tape with electronic fail die marking, BU-ID document number: 1093**4 [21] Application note - FAQ UCODE G2i, BU-ID document number: AN10940 [22] Application note - UCODE G2iM+ demo board documentation, BU-ID document number: AN11237 4. ** ... document version numberSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 32 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 17. Revision history Table 33. Revision history Document ID Release date Data sheet status Change notice Supersedes SL3S1203_1213 v.4.4 20140317 Product data sheet - SL3S1203_1213 v.4.3 Modifications: • Table 8 “G2iL, G2iL+ overall memory map”: Table notes updated • Figure 5 “G2iL TID memory structure”: TIDs updated SL3S1203_1213 v.4.3 20131127 Product data sheet - SL3S1203_1213 v.4.2 Modifications: • Figure 5 “G2iL TID memory structure”: updated SL3S1203_1213 v.4.2 20130701 Product data sheet - SL3S1203_1213 v.4.1 Modifications: • Update of delivery form • Update RF field detection SL3S1203_1213 v.4.1 20120917 Product data sheet - SL3S1203_1213 v.4.0 Modifications: • Update of delivery form SL3S1203_1213 v.4.0 20120227 Product data sheet - SL3S1203_1213 v.3.9 Modifications: • Figure 4 “G2iL wafer layout”: Figure notes (1) and (2) updated SL3S1203_1213 v.3.9 20120130 Product data sheet - SL3S1203_1213 v.3.8 Modifications: • Table 6 “Specifications”: “Passivation on front” updated • Section 15.2.1 “General assembly recommendations”: updated SL3S1203_1213 v.3.8 20120111 Product data sheet - SL3S1203_1213 v.3.7 Modifications: • Section 8.1 “Wafer layout”: Figure notes (1) and (2) updated SL3S1203_1213 v.3.7 20111124 Product data sheet - SL3S1203_1213 v.3.6 Modifications: • Table 11 “G2iL, G2iL+ overall memory map”: updated • Table 34 “G2iL, G2iL+ RF interface characteristics (RFN, RFP)”: updated SL3S1203_1213 v.3.6 20110803 Product data sheet - SL3S1203_1213 v.3.5 Modifications: • Real Read Range Reduction feature added to G2iL SL3S1203_1213 v.3.5 20110531 Product data sheet - SL3S1203_1213 v.3.4 Modifications: • Superfluous text removed from Table 6 SL3S1203_1213 v.3.4 20110511 Product data sheet - SL3S1203_1213 v.3.3 Modifications: • Security status changed into COMPANY PUBLIC • Delivery form of FCS2 strap added • Section 13 “Package information”, Section 15 “Handling information” and Section 16 “Packing information” added SL3S1203_1213 v.3.3 20110131 Product data sheet - SL3S1203_1213 v.3.2 Modifications: • Section 4 “Ordering information”: new types SL3S1203FUD and SL3S1213FUD added • Section 9 “Mechanical specification”: updated according to the new types • Replaced wording of “ChangeStatus” with “ChangeConfig” SL3S1203_1213 v.3.2 20101109 Product data sheet - SL3S1203_1213 v.3.1 Modifications: • Version SOT886F1 added • Section 5 “Marking”, Section 13 “Package outline” and Section 14 “Packing information” added SL3S1203_1213 v.3.1 20100922 Product data sheet - SL3S1203_1213 v.3.0 Modifications: • General Modifications SL3S1203_1213 v.3.0 20100621 Product data sheet - 178810SL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 33 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ Modifications: • General update 178810 20100304 Objective data sheet - - Table 33. Revision history …continued Document ID Release date Data sheet status Change notice SupersedesSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 34 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 18. Legal information 18.1 Data sheet status [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 18.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. 18.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. SL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 35 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications. Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. 18.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. UCODE — is a trademark of NXP Semiconductors N.V. 19. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.comSL3S1203_1213 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.4 — 17 March 2014 178844 36 of 37 NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ 20. Tables Table 1. Ordering information. . . . . . . . . . . . . . . . . . . . . .3 Table 2. Marking codes . . . . . . . . . . . . . . . . . . . . . . . . . .3 Table 3. Pin description bare die . . . . . . . . . . . . . . . . . . .5 Table 4. Pin description SOT886 . . . . . . . . . . . . . . . . . . .5 Table 5. Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Table 6. Overview of G2iL and G2iL+ features . . . . . . . .9 Table 7. G2iL memory sections . . . . . . . . . . . . . . . . . . .10 Table 8. G2iL, G2iL+ overall memory map. . . . . . . . . . . 11 Table 9. ChangeConfig custom command . . . . . . . . . . .16 Table 10. ChangeConfig custom command reply. . . . . . .16 Table 11. ChangeConfig command-response table . . . . .16 Table 12. Address 200h to 207h . . . . . . . . . . . . . . . . . . .18 Table 13. Address 208h to 20Fh . . . . . . . . . . . . . . . . . . .18 Table 14. ReadProtect command. . . . . . . . . . . . . . . . . . .19 Table 15. G2iL reply to a successful ReadProtect procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Table 16. ReadProtect command-response table . . . . . .19 Table 17. Reset ReadProtect command . . . . . . . . . . . . .20 Table 18. G2iL reply to a successful Reset ReadProtect command. . . . . . . . . . . . . . . . . . .20 Table 19. Reset ReadProtect command-response table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 20. ChangeEAS command . . . . . . . . . . . . . . . . . . 22 Table 21. G2iL reply to a successful ChangeEAS command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 22. ChangeEAS command-response table . . . . . . 22 Table 23. EAS_Alarm command . . . . . . . . . . . . . . . . . . . 23 Table 24. G2iL reply to a successful EAS_Alarm c ommand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 25. EAS_Alarm command-response table . . . . . . 23 Table 26. Limiting values[1][2] . . . . . . . . . . . . . . . . . . . . . . 24 Table 27. G2iL, G2iL+ RF interface characteristics (RFN, RFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 28. VDD pin characteristics . . . . . . . . . . . . . . . . . . 26 Table 29. G2iL, G2iL+ VDD and OUT pin characteristics . . . . . . . . . . . . . . . . . . . . . . 26 Table 30. G2iL, G2iL+ memory characteristics . . . . . . . . 27 Table 31. G2iL RF interface characteristics (RFN, RFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 32. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 33. Revision history . . . . . . . . . . . . . . . . . . . . . . . . 32 21. Figures Fig 1. Block diagram of G2iL IC . . . . . . . . . . . . . . . . . . .4 Fig 2. Pinning bare die. . . . . . . . . . . . . . . . . . . . . . . . . . .5 Fig 3. Pin configuration for SOT886 . . . . . . . . . . . . . . . .5 Fig 4. G2iL wafer layout. . . . . . . . . . . . . . . . . . . . . . . . . .6 Fig 5. G2iL TID memory structure . . . . . . . . . . . . . . . . .12 Fig 6. Schematic of connecting VDD and OUT pad with a predetermined breaking point to turn a standard RFID label into a wireless safety seal. .14 Fig 7. Schematic of external power supply . . . . . . . . . .16 Fig 8. Package outline SOT886. . . . . . . . . . . . . . . . . . .28NXP Semiconductors SL3S1203_1213 UCODE G2iL and G2iL+ © NXP Semiconductors N.V. 2014. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 17 March 2014 178844 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. 22. Contents 1 General description . . . . . . . . . . . . . . . . . . . . . . 1 2 Features and benefits . . . . . . . . . . . . . . . . . . . . 1 2.1 Key features . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.1.1 Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.2 Key benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2.1 End user benefit . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2.2 Antenna design benefits . . . . . . . . . . . . . . . . . . 2 2.2.3 Label manufacturer benefit. . . . . . . . . . . . . . . . 2 2.3 Custom commands. . . . . . . . . . . . . . . . . . . . . . 2 3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1 Markets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 Ordering information. . . . . . . . . . . . . . . . . . . . . 3 5 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7 Pinning information. . . . . . . . . . . . . . . . . . . . . . 5 7.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5 8 Wafer layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 8.1 Wafer layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 9 Mechanical specification . . . . . . . . . . . . . . . . . 7 9.1 Wafer specification . . . . . . . . . . . . . . . . . . . . . . 7 9.1.1 Wafer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 9.1.2 Fail die identification . . . . . . . . . . . . . . . . . . . . 8 9.1.3 Map file distribution. . . . . . . . . . . . . . . . . . . . . . 8 10 Functional description . . . . . . . . . . . . . . . . . . . 8 10.1 Air interface standards . . . . . . . . . . . . . . . . . . . 8 10.2 Power transfer . . . . . . . . . . . . . . . . . . . . . . . . . 8 10.3 Data transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . 9 10.3.1 Reader to tag Link . . . . . . . . . . . . . . . . . . . . . . 9 10.3.2 Tag to reader Link. . . . . . . . . . . . . . . . . . . . . . . 9 10.4 G2iL and G2iL+ differences . . . . . . . . . . . . . . . 9 10.5 Supported commands . . . . . . . . . . . . . . . . . . 10 10.6 G2iL, G2iL+ memory . . . . . . . . . . . . . . . . . . . 10 10.6.1 G2iL, G2iL+ overall memory map. . . . . . . . . . 11 10.6.2 G2iL TID memory details . . . . . . . . . . . . . . . . 12 10.7 Custom commands. . . . . . . . . . . . . . . . . . . . . 13 10.7.1 ChangeConfig. . . . . . . . . . . . . . . . . . . . . . . . . 13 G2iL, G2iL+ special features . . . . . . . . . . . . . .13 10.7.2 G2iL, G2iL+ special features control mechanism . . . . . . . . . . . . . . . . . . . . . 17 10.7.3 ReadProtect . . . . . . . . . . . . . . . . . . . . . . . . . . 18 10.7.4 Reset ReadProtect3 . . . . . . . . . . . . . . . . . . . . 19 10.7.5 ChangeEAS3 . . . . . . . . . . . . . . . . . . . . . . . . . 21 10.7.6 EAS_Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . 22 11 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 24 12 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 25 12.1 UCODE G2iL, G2iL+ bare die characteristics 25 12.2 UCODE G2iL SOT886 characteristics . . . . . . 27 13 Package outline. . . . . . . . . . . . . . . . . . . . . . . . 28 14 Packing information . . . . . . . . . . . . . . . . . . . . 29 14.1 Wafer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 14.2 SOT886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 15 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 29 16 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 17 Revision history . . . . . . . . . . . . . . . . . . . . . . . 32 18 Legal information . . . . . . . . . . . . . . . . . . . . . . 34 18.1 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 34 18.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 18.3 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 34 18.4 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 35 19 Contact information . . . . . . . . . . . . . . . . . . . . 35 20 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 21 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 22 Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1. Introduction This document describes the functionality and electrical specifications of the transceiver IC PN512. The PN512 is a highly integrated transceiver IC for contactless communication at 13.56 MHz. This transceiver IC utilizes an outstanding modulation and demodulation concept completely integrated for different kinds of contactless communication methods and protocols at 13.56 MHz. 1.1 Different available versions The PN512 is available in three versions: • PN5120A0HN1/C2 (HVQFN32), PN5120A0HN/C2 (HVQFN40) and PN5120A0ET/C2 (TFBGA64), hereafter named as version 2.0 • PN512AA0HN1/C2 (HVQFN32) and PN512AA0HN1/C2BI (HVQFN32 with Burn In), hereafter named as industrial version, fulfilling the automotive qualification stated in AEC-Q100 grade 3 from the Automotive Electronics Council, defining the critical stress test qualification for automotive integrated circuits (ICs). • PN5120A0HN1/C1(HVQFN32) and PN5120A0HN/C1 (HVQFN40), hereafter named as version 1.0 The data sheet describes the functionality for the industrial version and version 2.0. The differences of the version 1.0 to the version 2.0 are summarized in Section 21. The industrial version has only differences within the outlined characteristics and limitations. 2. General description The PN512 transceiver ICs support 4 different operating modes • Reader/Writer mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme • Reader/Writer mode supporting ISO/IEC 14443B • Card Operation mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme • NFCIP-1 mode Enabled in Reader/Writer mode for ISO/IEC 14443A/MIFARE, the PN512’s internal transmitter part is able to drive a reader/writer antenna designed to communicate with ISO/IEC 14443A/ MIFARE cards and transponders without additional active circuitry. The receiver part provides a robust and efficient implementation of a demodulation and PN512 Full NFC Forum compliant solution Rev. 4.5 — 17 December 2013 111345 Product data sheet COMPANY PUBLICPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 2 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution decoding circuitry for signals from ISO/IEC 14443A/MIFARE compatible cards and transponders. The digital part handles the complete ISO/IEC 14443A framing and error detection (Parity & CRC). The PN512 supports MIFARE 1K or MIFARE 4K emulation products. The PN512 supports contactless communication using MIFARE higher transfer speeds up to 424 kbit/s in both directions. Enabled in Reader/Writer mode for FeliCa, the PN512 transceiver IC supports the FeliCa communication scheme. The receiver part provides a robust and efficient implementation of the demodulation and decoding circuitry for FeliCa coded signals. The digital part handles the FeliCa framing and error detection like CRC. The PN512 supports contactless communication using FeliCa Higher transfer speeds up to 424 kbit/s in both directions. The PN512 supports all layers of the ISO/IEC 14443B reader/writer communication scheme, given correct implementation of additional components, like oscillator, power supply, coil etc. and provided that standardized protocols, e.g. like ISO/IEC 14443-4 and/or ISO/IEC 14443B anticollision are correctly implemented. In Card Operation mode, the PN512 transceiver IC is able to answer to a reader/writer command either according to the FeliCa or ISO/IEC 14443A/MIFARE card interface scheme. The PN512 generates the digital load modulated signals and in addition with an external circuit the answer can be sent back to the reader/writer. A complete card functionality is only possible in combination with a secure IC using the S2C interface. Additionally, the PN512 transceiver IC offers the possibility to communicate directly to an NFCIP-1 device in the NFCIP-1 mode. The NFCIP-1 mode offers different communication mode and transfer speeds up to 424 kbit/s according to the Ecma 340 and ISO/IEC 18092 NFCIP-1 Standard. The digital part handles the complete NFCIP-1 framing and error detection. Various host controller interfaces are implemented: • 8-bit parallel interface1 • SPI interface • serial UART (similar to RS232 with voltage levels according pad voltage supply) • I 2C interface. A purchaser of this NXP IC has to take care for appropriate third party patent licenses. 1. 8-bit parallel Interface only available in HVQFN40 package.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 3 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 3. Features and benefits Highly integrated analog circuitry to demodulate and decode responses Buffered output drivers for connecting an antenna with the minimum number of external components Integrated RF Level detector Integrated data mode detector Supports ISO/IEC 14443 A/MIFARE Supports ISO/IEC 14443 B Read/Write modes Typical operating distance in Read/Write mode up to 50 mm depending on the antenna size and tuning Typical operating distance in NFCIP-1 mode up to 50 mm depending on the antenna size and tuning and power supply Typical operating distance in ISO/IEC 14443A/MIFARE card or FeliCa Card Operation mode of about 100 mm depending on the antenna size and tuning and the external field strength Supports MIFARE 1K or MIFARE 4K emulation encryption in Reader/Writer mode ISO/IEC 14443A higher transfer speed communication at 212 kbit/s and 424 kbit/s Contactless communication according to the FeliCa scheme at 212 kbit/s and 424 kbit/s Integrated RF interface for NFCIP-1 up to 424 kbit/s S2C interface Additional power supply to directly supply the smart card IC connected via S2C Supported host interfaces SPI up to 10 Mbit/s I 2C-bus interface up to 400 kBd in Fast mode, up to 3400 kBd in High-speed mode RS232 Serial UART up to 1228.8 kBd, with voltage levels dependant on pin voltage supply 8-bit parallel interface with and without Address Latch Enable FIFO buffer handles 64 byte send and receive Flexible interrupt modes Hard reset with low power function Power-down mode per software Programmable timer Internal oscillator for connection to 27.12 MHz quartz crystal 2.5 V to 3.6 V power supply CRC coprocessor Programmable I/O pins Internal self-testPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 4 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 4. Quick reference data [1] Supply voltages below 3 V reduce the performance in, for example, the achievable operating distance. [2] VDDA, VDDD and VDD(TVDD) must always be the same voltage. [3] VDD(PVDD) must always be the same or lower voltage than VDDD. [4] Ipd is the total current for all supplies. [5] IDD(PVDD) depends on the overall load at the digital pins. [6] IDD(TVDD) depends on VDD(TVDD) and the external circuit connected to pins TX1 and TX2. [7] During typical circuit operation, the overall current is below 100 mA. [8] Typical value using a complementary driver configuration and an antenna matched to 40 between pins TX1 and TX2 at 13.56 MHz. Table 1. Quick reference data Symbol Parameter Conditions Min Typ Max Unit VDDA analog supply voltage VDD(PVDD) VDDA = VDDD = VDD(TVDD); VSSA = VSSD = VSS(PVSS) = VSS(TVSS) =0V [1][2] 2.5 - 3.6 V VDDD digital supply voltage VDD(TVDD) TVDD supply voltage VDD(PVDD) PVDD supply voltage [3] 1.6 - 3.6 V VDD(SVDD) SVDD supply voltage VSSA = VSSD = VSS(PVSS) = VSS(TVSS) = 0 V 1.6 - 3.6 V Ipd power-down current VDDA = VDDD = VDD(TVDD) =VDD(PVDD) =3V hard power-down; pin NRSTPD set LOW [4] --5 A soft power-down; RF level detector on [4] - - 10 A IDDD digital supply current pin DVDD; VDDD =3V - 6.5 9 mA IDDA analog supply current pin AVDD; VDDA = 3 V, CommandReg register’s RcvOff bit = 0 - 7 10 mA pin AVDD; receiver switched off; VDDA = 3 V, CommandReg register’s RcvOff bit = 1 - 3 5 mA IDD(PVDD) PVDD supply current pin PVDD [5] - - 40 mA IDD(TVDD) TVDD supply current pin TVDD; continuous wave [6][7][8] - 60 100 mA Tamb ambient temperature HVQFN32, HVQFN40, TFBGA64 30 +85 C lndustrial version: Ipd power-down current VDDA = VDDD = VDD(TVDD) =VDD(PVDD) =3V hard power-down; pin NRSTPD set LOW [4] - - 15 A soft power-down; RF level detector on [4] - - 30 A Tamb ambient temperature HVQFN32 40 - +90 CPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 5 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 5. Ordering information Table 2. Ordering information Type number Package Name Description Version PN5120A0HN1/C2 HVQFN32 plastic thermal enhanced very thin quad flat package; no leads; 32 terminal; body 5 5 0.85 mm SOT617-1 PN5120A0HN/C2 HVQFN40 plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body 6 6 0.85 mm SOT618-1 PN512AA0HN1/C2 HVQFN32 plastic thermal enhanced very thin quad flat package; no leads; 32 terminal; body 5 5 0.85 mm SOT617-1 PN512AA0HN1/C2BI HVQFN32 plastic thermal enhanced very thin quad flat package; no leads; 32 terminal; body 5 5 0.85 mm SOT617-1 PN5120A0HN1/C1 HVQFN32 plastic thermal enhanced very thin quad flat package; no leads; 32 terminal; body 5 5 0.85 mm SOT617-1 PN5120A0HN/C1 HVQFN40 plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body 6 6 0.85 mm SOT618-1 PN5120A0ET/C2 TFBGA64 plastic thin fine-pitch ball grid array package; 64 balls SOT1336-1PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 6 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 6. Block diagram The analog interface handles the modulation and demodulation of the analog signals according to the Card Receiving mode, Reader/Writer mode and NFCIP-1 mode communication scheme. The RF level detector detects the presence of an external RF-field delivered by the antenna to the RX pin. The Data mode detector detects a MIFARE, FeliCa or NFCIP-1 mode in order to prepare the internal receiver to demodulate signals, which are sent to the PN512. The communication (S2C) interface provides digital signals to support communication for transfer speeds above 424 kbit/s and digital signals to communicate to a secure IC. The contactless UART manages the protocol requirements for the communication protocols in cooperation with the host. The FIFO buffer ensures fast and convenient data transfer to and from the host and the contactless UART and vice versa. Various host interfaces are implemented to meet different customer requirements. Fig 1. Simplified block diagram of the PN512 001aaj627 HOST ANTENNA FIFO BUFFER ANALOG INTERFACE CONTACTLESS UART SERIAL UART SPI I 2C-BUS REGISTER BANKPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 7 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution Fig 2. Detailed block diagram of the PN512 001aak602 DVDD NRSTPD IRQ MFIN MFOUT SVDD OSCIN OSCOUT VMID AUX1 AUX2 RX TVSS TX1 TX2 TVDD 16 19 20 17 10, 14 11 13 12 DVSS AVDD SDA/NSS/RX EA I2C PVDD PVSS 24 32 1 52 D1/ADR_5 25 D2/ADR_4 26 D3/ADR_3 27 D4/ADR_2 28 D5/ADR_1/ SCK/DTRQ 29 D6/ADR_0/ MOSI/MX 30 D7/SCL/ MISO/TX 31 AVSS 3 6 23 7 8 9 21 22 4 15 18 FIFO CONTROL MIFARE CLASSIC UNIT STATE MACHINE COMMAND REGISTER PROGRAMABLE TIMER INTERRUPT CONTROL CRC16 GENERATION AND CHECK PARALLEL/SERIAL CONVERTER SERIAL DATA SWITCH TRANSMITTER CONTROL BIT COUNTER PARITY GENERATION AND CHECK FRAME GENERATION AND CHECK BIT DECODING BIT ENCODING RANDOM NUMBER GENERATOR ANALOG TO DIGITAL CONVERTER I-CHANNEL AMPLIFIER ANALOG TEST MULTIPLEXOR AND DIGITAL TO ANALOG CONVERTER I-CHANNEL DEMODULATOR Q-CHANNEL AMPLIFIER CLOCK GENERATION, FILTERING AND DISTRIBUTION Q-CLOCK GENERATION OSCILLATOR TEMPERATURE SENSOR Q-CHANNEL DEMODULATOR AMPLITUDE RATING REFERENCE VOLTAGE 64-BYTE FIFO BUFFER CONTROL REGISTER BANK SPI, UART, I2C-BUS INTERFACE CONTROL VOLTAGE MONITOR AND POWER ON DETECT RESET CONTROL POWER-DOWN CONTROLPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 8 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 7. Pinning information 7.1 Pinning Fig 3. Pinning configuration HVQFN32 (SOT617-1) Fig 4. Pinning configuration HVQFN40 (SOT618-1) 001aan212 PN512 Transparent top view RX SIGIN SIGOUT AVSS NRSTPD AUX1 PVSS AUX2 DVSS OSCIN DVDD OSCOUT PVDD IRQ A1 ALE SVDD TVSS TX1 TVDD TX2 TVSS AVDD VMID A0D7 D6 D5 D4 D3 D2 D1 8 17 7 18 6 19 5 20 4 21 3 22 2 23 1 24 9 10 11 12 13 14 15 16 32 31 30 29 28 27 26 25 terminal 1 index area 001aan213 PN512 AVSS NRSTPD SIGIN AUX1 PVSS AUX2 DVSS OSCIN DVDD OSCOUT PVDD IRQ A5 NWR A4 NRD A3 ALE A2 NCS SIGOUT SVDD TVSS TX1 TVDD TX2 TVSS AVDD VMIDRX A1A0D7 D6 D5 D4 D3 D2 D1 D0 10 21 9 22 8 23 7 24 6 25 5 26 4 27 3 28 2 29 1 30 11121314151617181920 40393837363534333231 terminal 1 index area Transparent top viewPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 9 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution Fig 5. Pin configuration TFBGA64 (SOT1336-1) aaa-005873 TFBGA64 Transparent top view ball A1 index area H G F E D C B A 1 3 5 78 246PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 10 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 7.2 Pin description Table 3. Pin description HVQFN32 Pin Symbol Type Description 1 A1 I Address Line 2 PVDD PWR Pad power supply 3 DVDD PWR Digital Power Supply 4 DVSS PWR Digital Ground 5 PVSS PWR Pad power supply ground 6 NRSTPD I Not Reset and Power Down: When LOW, internal current sinks are switched off, the oscillator is inhibited, and the input pads are disconnected from the outside world. With a positive edge on this pin the internal reset phase starts. 7 SIGIN I Communication Interface Input: accepts a digital, serial data stream 8 SIGOUT O Communication Interface Output: delivers a serial data stream 9 SVDD PWR S2C Pad Power Supply: provides power to the S2C pads 10 TVSS PWR Transmitter Ground: supplies the output stage of TX1 and TX2 11 TX1 O Transmitter 1: delivers the modulated 13.56 MHz energy carrier 12 TVDD PWR Transmitter Power Supply: supplies the output stage of TX1 and TX2 13 TX2 O Transmitter 2: delivers the modulated 13.56 MHz energy carrier 14 TVSS PWR Transmitter Ground: supplies the output stage of TX1 and TX2 15 AVDD PWR Analog Power Supply 16 VMID PWR Internal Reference Voltage: This pin delivers the internal reference voltage. 17 RX I Receiver Input 18 AVSS PWR Analog Ground 19 AUX1 O Auxiliary Outputs: These pins are used for testing. 20 AUX2 O 21 OSCIN I Crystal Oscillator Input: input to the inverting amplifier of the oscillator. This pin is also the input for an externally generated clock (fosc = 27.12 MHz). 22 OSCOUT O Crystal Oscillator Output: Output of the inverting amplifier of the oscillator. 23 IRQ O Interrupt Request: output to signal an interrupt event 24 ALE I Address Latch Enable: signal to latch AD0 to AD5 into the internal address latch when HIGH. 25 to 31 D1 to D7 I/O 8-bit Bi-directional Data Bus. Remark: An 8-bit parallel interface is not available. Remark: If the host controller selects I2C as digital host controller interface, these pins can be used to define the I2C address. Remark: For serial interfaces this pins can be used for test signals or I/Os. 32 A0 I Address LinePN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 11 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution Table 4. Pin description HVQFN40 Pin Symbol Type Description 1 to 4 A2 to A5 I Address Line 5 PVDD PWR Pad power supply 6 DVDD PWR Digital Power Supply 7 DVSS PWR Digital Ground 8 PVSS PWR Pad power supply ground 9 NRSTPD I Not Reset and Power Down: When LOW, internal current sinks are switched off, the oscillator is inhibited, and the input pads are disconnected from the outside world. With a positive edge on this pin the internal reset phase starts. 10 SIGIN I Communication Interface Input: accepts a digital, serial data stream 11 SIGOUT O Communication Interface Output: delivers a serial data stream 12 SVDD PWR S2C Pad Power Supply: provides power to the S2C pads 13 TVSS PWR Transmitter Ground: supplies the output stage of TX1 and TX2 14 TX1 O Transmitter 1: delivers the modulated 13.56 MHz energy carrier 15 TVDD PWR Transmitter Power Supply: supplies the output stage of TX1 and TX2 16 TX2 O Transmitter 2: delivers the modulated 13.56 MHz energy carrier 17 TVSS PWR Transmitter Ground: supplies the output stage of TX1 and TX2 18 AVDD PWR Analog Power Supply 19 VMID PWR Internal Reference Voltage: This pin delivers the internal reference voltage. 20 RX I Receiver Input 21 AVSS PWR Analog Ground 22 AUX1 O Auxiliary Outputs: These pins are used for testing. 23 AUX2 O 24 OSCIN I Crystal Oscillator Input: input to the inverting amplifier of the oscillator. This pin is also the input for an externally generated clock (fosc = 27.12 MHz). 25 OSCOUT O Crystal Oscillator Output: Output of the inverting amplifier of the oscillator. 26 IRQ O Interrupt Request: output to signal an interrupt event 27 NWR I Not Write: strobe to write data (applied on D0 to D7) into the PN512 register 28 NRD I Not Read: strobe to read data from the PN512 register (applied on D0 to D7) 29 ALE I Address Latch Enable: signal to latch AD0 to AD5 into the internal address latch when HIGH. 30 NCS I Not Chip Select: selects and activates the host controller interface of the PN512 31 to 38 D0 to D7 I/O 8-bit Bi-directional Data Bus. Remark: For serial interfaces this pins can be used for test signals or I/Os. Remark: If the host controller selects I2C as digital host controller interface, these pins can be used to define the I2C address. 39 to 40 A0 to A1 I Address LinePN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 12 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution Table 5. Pin description TFBGA64 Pin Symbol Type Description A1 to A5, A8, B3, B4, B8, E1 PVSS PWR Pad power supply ground A6 D4 I/O 8-bit Bi-directional Data Bus. Remark: For serial interfaces this pins can be used for test signals or I/Os. Remark: If the host controller selects I2C as digital host controller interface, these pins can be used to define the I2C address. A7 D2 I/O B1 PVDD PWR Pad power supply B2 A0 I Address Line B5 D5 I/O 8-bit Bi-directional Data Bus. Remark: For serial interfaces this pins can be used for test signals or I/Os. Remark: If the host controller selects I2C as digital host controller interface, these pins can be used to define the I2C address. B6 D3 I/O B7 D1 I/O C1 DVDD PWR Digital Power Supply C2 A1 I Address Line C3 D7 I/O 8-bit Bi-directional Data Bus. Remark: For serial interfaces this pins can be used for test signals or I/Os. Remark: If the host controller selects I2C as digital host controller interface, these pins can be used to define the I2C address. C4 D6 I/O C5 IRQ O Interrupt Request: output to signal an interrupt event C6 ALE I Address Latch Enable: signal to latch AD0 to AD5 into the internal address latch when HIGH. C7, C8, D6, D8, E6, E8, F7, G8, H8 AVSS PWR Analog Ground D1 DVSS PWR Digital Ground D2 NRSTPD I Not Reset and Power Down: When LOW, internal current sinks are switched off, the oscillator is inhibited, and the input pads are disconnected from the outside world. With a positive edge on this pin the internal reset phase starts. D3 to D5, E3 to E5, F3, F4, G1 to G6, H1, H2, H6 TVSS PWR Transmitter Ground: supplies the output stage of TX1 and TX2 D7 OSCOUT O Crystal Oscillator Output: Output of the inverting amplifier of the oscillator. E2 SIGIN I Communication Interface Input: accepts a digital, serial data stream E7 OSCIN I Crystal Oscillator Input: input to the inverting amplifier of the oscillator. This pin is also the input for an externally generated clock (fosc = 27.12 MHz). F1 SVDD PWR S2C Pad Power Supply: provides power to the S2C pads F2 SIGOUT O Communication Interface Output: delivers a serial data stream F5 AUX1 O Auxiliary Outputs: These pins are used for testing. F6 AUX2 O F8 RX I Receiver Input G7 VMID PWR Internal Reference Voltage: This pin delivers the internal reference voltage. H3 TX1 O Transmitter 1: delivers the modulated 13.56 MHz energy carrierPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 13 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution H4 TVDD PWR Transmitter Power Supply: supplies the output stage of TX1 and TX2 H5 TX2 O Transmitter 2: delivers the modulated 13.56 MHz energy carrier H7 AVDD PWR Analog Power Supply Table 5. Pin description TFBGA64 Pin Symbol Type DescriptionPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 14 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 8. Functional description The PN512 transmission module supports the Read/Write mode for ISO/IEC 14443 A/MIFARE and ISO/IEC 14443 B using various transfer speeds and modulation protocols. PN512 transceiver IC supports the following operating modes: • Reader/Writer mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme • Card Operation mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme • NFCIP-1 mode The modes support different transfer speeds and modulation schemes. The following chapters will explain the different modes in detail. Note: All indicated modulation indices and modes in this chapter are system parameters. This means that beside the IC settings a suitable antenna tuning is required to achieve the optimum performance. 8.1 ISO/IEC 14443 A/MIFARE functionality The physical level communication is shown in Figure 7. The physical parameters are described in Table 4. Fig 6. PN512 Read/Write mode 001aan218 BATTERY reader/writer contactless card MICROCONTROLLER PN512 ISO/IEC 14443 A CARD Fig 7. ISO/IEC 14443 A/MIFARE Read/Write mode communication diagram Table 6. Communication overview for ISO/IEC 14443 A/MIFARE reader/writer Communication direction Signal type Transfer speed 106 kBd 212 kBd 424 kBd Reader to card (send data from the PN512 to a card) reader side modulation 100 % ASK 100 % ASK 100 % ASK bit encoding modified Miller encoding modified Miller encoding modified Miller encoding bit length 128 (13.56 s) 64 (13.56 s) 32 (13.56 s) (1) (2) 001aan219 PN512 ISO/IEC 14443 A CARD ISO/IEC 14443 A READERPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 15 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution The PN512’s contactless UART and dedicated external host must manage the complete ISO/IEC 14443 A/MIFARE protocol. Figure 8 shows the data coding and framing according to ISO/IEC 14443 A/MIFARE. The internal CRC coprocessor calculates the CRC value based on ISO/IEC 14443 A part 3 and handles parity generation internally according to the transfer speed. Automatic parity generation can be switched off using the ManualRCVReg register’s ParityDisable bit. 8.2 ISO/IEC 14443 B functionality The PN512 reader IC fully supports international standard ISO 14443 which includes communication schemes ISO 14443 A and ISO 14443 B. Refer to the ISO 14443 reference documents Identification cards - Contactless integrated circuit cards - Proximity cards (parts 1 to 4). Remark: NXP Semiconductors does not offer a software library to enable design-in of the ISO 14443 B protocol. Card to reader (PN512 receives data from a card) card side modulation subcarrier load modulation subcarrier load modulation subcarrier load modulation subcarrier frequency 13.56 MHz/16 13.56 MHz/16 13.56 MHz/16 bit encoding Manchester encoding BPSK BPSK Table 6. Communication overview for ISO/IEC 14443 A/MIFARE reader/writer …continued Communication direction Signal type Transfer speed 106 kBd 212 kBd 424 kBd Fig 8. Data coding and framing according to ISO/IEC 14443 A 001aak585 ISO/IEC 14443 A framing at 106 kBd 8-bit data 8-bit data 8-bit data odd parity odd parity start odd start bit is 1 parity ISO/IEC 14443 A framing at 212 kBd, 424 kBd and 848 kBd 8-bit data 8-bit data 8-bit data odd parity odd parity start even parity start bit is 0 burst of 32 subcarrier clocks even parity at the end of the framePN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 16 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 8.3 FeliCa reader/writer functionality The FeliCa mode is the general reader/writer to card communication scheme according to the FeliCa specification. The following diagram describes the communication on a physical level, the communication overview describes the physical parameters. The contactless UART of PN512 and a dedicated external host controller are required to handle the complete FeliCa protocol. 8.3.1 FeliCa framing and coding To enable the FeliCa communication a 6 byte preamble (00h, 00h, 00h, 00h, 00h, 00h) and 2 bytes Sync bytes (B2h, 4Dh) are sent to synchronize the receiver. The following Len byte indicates the length of the sent data bytes plus the LEN byte itself. The CRC calculation is done according to the FeliCa definitions with the MSB first. To transmit data on the RF interface, the host controller has to send the Len- and databytes to the PN512's FIFO-buffer. The preamble and the sync bytes are generated by the PN512 automatically and must not be written to the FIFO by the host controller. The PN512 performs internally the CRC calculation and adds the result to the data frame. Example for FeliCa CRC Calculation: Fig 9. FeliCa reader/writer communication diagram Table 7. Communication overview for FeliCa reader/writer Communication direction FeliCa FeliCa Higher transfer speeds Transfer speed 212 kbit/s 424 kbit/s PN512 card Modulation on reader side 8-30 % ASK 8-30 % ASK bit coding Manchester Coding Manchester Coding Bitlength (64/13.56) s (32/13.56) s card PN512 Loadmodulation on card side > 12 % ASK > 12 % ASK bit coding Manchester coding Manchester coding 2. PICC to PCD, > 12 % ASK loadmodulation Manchester coded, baudrate 212 to 424 kbaud 1. PCD to PICC, 8-30 % ASK Manchester coded, baudrate 212 to 424 kbaud 001aan214 PN512 FeliCa CARD (PICC) Felica READER (PCD) Table 8. FeliCa framing and coding Preamble Sync Len n-Data CRC 00h 00h 00h 00h 00h 00h B2h 4Dh Table 9. Start value for the CRC Polynomial: (00h), (00h) Preamble Sync Len 2 Data Bytes CRC 00h 00h 00h 00h 00h 00h B2h 4Dh 03h ABh CDh 90h 35hPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 17 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 8.4 NFCIP-1 mode The NFCIP-1 communication differentiates between an active and a Passive Communication mode. • Active Communication mode means both the initiator and the target are using their own RF field to transmit data. • Passive Communication mode means that the target answers to an initiator command in a load modulation scheme. The initiator is active in terms of generating the RF field. • Initiator: generates RF field at 13.56 MHz and starts the NFCIP-1 communication • Target: responds to initiator command either in a load modulation scheme in Passive Communication mode or using a self generated and self modulated RF field for Active Communication mode. In order to fully support the NFCIP-1 standard the PN512 supports the Active and Passive Communication mode at the transfer speeds 106 kbit/s, 212 kbit/s and 424 kbit/s as defined in the NFCIP-1 standard. Fig 10. NFCIP-1 mode 001aan215 BATTERY initiator: active target: passive or active MICROCONTROLLER PN512 BATTERY MICROCONTROLLER PN512PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 18 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 8.4.1 Active communication mode Active communication mode means both the initiator and the target are using their own RF field to transmit data. The contactless UART of PN512 and a dedicated host controller are required to handle the NFCIP-1 protocol. Note: Transfer Speeds above 424 kbit/s are not defined in the NFCIP-1 standard. The PN512 supports these transfer speeds only with dedicated external circuits. Fig 11. Active communication mode Table 10. Communication overview for Active communication mode Communication direction 106 kbit/s 212 kbit/s 424 kbit/s 848 kbit/s 1.69 Mbit/s, 3.39 Mbit/s Initiator Target According to ISO/IEC 14443A 100 % ASK, Modified Miller Coded According to FeliCa, 8-30 % ASK Manchester Coded digital capability to handle this communication Target Initiator host NFC INITIATOR powered to generate RF field 1. initiator starts communication at selected transfer speed Initial command response 2. target answers at the same transfer speed host NFC INITIATOR powered for digital processing host host NFC TARGET NFC TARGET powered for digital processing powered to generate RF field 001aan216PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 19 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 8.4.2 Passive communication mode Passive Communication mode means that the target answers to an initiator command in a load modulation scheme. The initiator is active meaning generating the RF field. The contactless UART of PN512 and a dedicated host controller are required to handle the NFCIP-1 protocol. Note: Transfer Speeds above 424 kbit/s are not defined in the NFCIP-1 standard. The PN512 supports these transfer speeds only with dedicated external circuits. Fig 12. Passive communication mode Table 11. Communication overview for Passive communication mode Communication direction 106 kbit/s 212 kbit/s 424 kbit/s 848 kbit/s 1.69 Mbit/s, 3.39 Mbit/s Initiator Target According to ISO/IEC 14443A 100 % ASK, Modified Miller Coded According to FeliCa, 8-30 % ASK Manchester Coded digital capability to handle this communication Target Initiator According to ISO/IEC 14443A subcarrier load modulation, Manchester Coded According to FeliCa, > 12 % ASK Manchester Coded host NFC INITIATOR powered to generate RF field 1. initiator starts communication at selected transfer speed 2. targets answers using load modulated data at the same transfer speed host NFC TARGET powered for digital processing 001aan217PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 20 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 8.4.3 NFCIP-1 framing and coding The NFCIP-1 framing and coding in Active and Passive Communication mode is defined in the NFCIP-1 standard. 8.4.4 NFCIP-1 protocol support The NFCIP-1 protocol is not completely described in this document. For detailed explanation of the protocol refer to the NFCIP-1 standard. However the datalink layer is according to the following policy: • Speed shall not be changed while continuum data exchange in a transaction. • Transaction includes initialization and anticollision methods and data exchange (in continuous way, meaning no interruption by another transaction). In order not to disturb current infrastructure based on 13.56 MHz general rules to start NFCIP-1 communication are defined in the following way. 1. Per default NFCIP-1 device is in Target mode meaning its RF field is switched off. 2. The RF level detector is active. 3. Only if application requires the NFCIP-1 device shall switch to Initiator mode. 4. Initiator shall only switch on its RF field if no external RF field is detected by RF Level detector during a time of TIDT. 5. The initiator performs initialization according to the selected mode. 8.4.5 MIFARE Card operation mode Table 12. Framing and coding overview Transfer speed Framing and Coding 106 kbit/s According to the ISO/IEC 14443A/MIFARE scheme 212 kbit/s According to the FeliCa scheme 424 kbit/s According to the FeliCa scheme Table 13. MIFARE Card operation mode Communication direction ISO/IEC 14443A/ MIFARE MIFARE Higher transfer speeds transfer speed 106 kbit/s 212 kbit/s 424 kbit/s reader/writer PN512 Modulation on reader side 100 % ASK 100 % ASK 100 % ASK bit coding Modified Miller Modified Miller Modified Miller Bitlength (128/13.56) s (64/13.56) s (32/13.56) s PN512 reader/ writer Modulation on PN512 side subcarrier load modulation subcarrier load modulation subcarrier load modulation subcarrier frequency 13.56 MHz/16 13.56 MHz/16 13.56 MHz/16 bit coding Manchester coding BPSK BPSKPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 21 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 8.4.6 FeliCa Card operation mode 9. PN512 register SET 9.1 PN512 registers overview Table 14. FeliCa Card operation mode Communication direction FeliCa FeliCa Higher transfer speeds Transfer speed 212 kbit/s 424 kbit/s reader/writer PN512 Modulation on reader side 8-30 % ASK 8-30 % ASK bit coding Manchester Coding Manchester Coding Bitlength (64/13.56) s (32/13.56) s PN512 reader/ writer Load modulation on PN512 side > 12 % ASK load modulation > 12 % ASK load modulation bit coding Manchester coding Manchester coding Table 15. PN512 registers overview Addr (hex) Register Name Function Page 0: Command and Status 0 PageReg Selects the register page 1 CommandReg Starts and stops command execution 2 ComlEnReg Controls bits to enable and disable the passing of Interrupt Requests 3 DivlEnReg Controls bits to enable and disable the passing of Interrupt Requests 4 ComIrqReg Contains Interrupt Request bits 5 DivIrqReg Contains Interrupt Request bits 6 ErrorReg Error bits showing the error status of the last command executed 7 Status1Reg Contains status bits for communication 8 Status2Reg Contains status bits of the receiver and transmitter 9 FIFODataReg In- and output of 64 byte FIFO-buffer A FIFOLevelReg Indicates the number of bytes stored in the FIFO B WaterLevelReg Defines the level for FIFO under- and overflow warning C ControlReg Contains miscellaneous Control Registers D BitFramingReg Adjustments for bit oriented frames E CollReg Bit position of the first bit collision detected on the RF-interface F RFU Reserved for future use Page 1: Command 0 PageReg Selects the register page 1 ModeReg Defines general modes for transmitting and receiving 2 TxModeReg Defines the data rate and framing during transmission 3 RxModeReg Defines the data rate and framing during receiving 4 TxControlReg Controls the logical behavior of the antenna driver pins TX1 and TX2 5 TxAutoReg Controls the setting of the antenna driversPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 22 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 6 TxSelReg Selects the internal sources for the antenna driver 7 RxSelReg Selects internal receiver settings 8 RxThresholdReg Selects thresholds for the bit decoder 9 DemodReg Defines demodulator settings A FelNFC1Reg Defines the length of the valid range for the receive package B FelNFC2Reg Defines the length of the valid range for the receive package C MifNFCReg Controls the communication in ISO/IEC 14443/MIFARE and NFC target mode at 106 kbit D ManualRCVReg Allows manual fine tuning of the internal receiver E TypeBReg Configure the ISO/IEC 14443 type B F SerialSpeedReg Selects the speed of the serial UART interface Page 2: CFG 0 PageReg Selects the register page 1 CRCResultReg Shows the actual MSB and LSB values of the CRC calculation 2 3 GsNOffReg Selects the conductance of the antenna driver pins TX1 and TX2 for modulation, when the driver is switched off 4 ModWidthReg Controls the setting of the ModWidth 5 TxBitPhaseReg Adjust the TX bit phase at 106 kbit 6 RFCfgReg Configures the receiver gain and RF level 7 GsNOnReg Selects the conductance of the antenna driver pins TX1 and TX2 for modulation when the drivers are switched on 8 CWGsPReg Selects the conductance of the antenna driver pins TX1 and TX2 for modulation during times of no modulation 9 ModGsPReg Selects the conductance of the antenna driver pins TX1 and TX2 for modulation during modulation A TModeReg TPrescalerReg Defines settings for the internal timer B C TReloadReg Describes the 16-bit timer reload value D E TCounterValReg Shows the 16-bit actual timer value F Page 3: TestRegister 0 PageReg selects the register page 1 TestSel1Reg General test signal configuration 2 TestSel2Reg General test signal configuration and PRBS control 3 TestPinEnReg Enables pin output driver on 8-bit parallel bus (Note: For serial interfaces only) 4 TestPin ValueReg Defines the values for the 8-bit parallel bus when it is used as I/O bus 5 TestBusReg Shows the status of the internal testbus 6 AutoTestReg Controls the digital selftest Table 15. PN512 registers overview …continued Addr (hex) Register Name FunctionPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 23 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.1.1 Register bit behavior Depending on the functionality of a register, the access conditions to the register can vary. In principle bits with same behavior are grouped in common registers. In Table 16 the access conditions are described. 7 VersionReg Shows the version 8 AnalogTestReg Controls the pins AUX1 and AUX2 9 TestDAC1Reg Defines the test value for the TestDAC1 A TestDAC2Reg Defines the test value for the TestDAC2 B TestADCReg Shows the actual value of ADC I and Q C-F RFT Reserved for production tests Table 15. PN512 registers overview …continued Addr (hex) Register Name Function Table 16. Behavior of register bits and its designation Abbreviation Behavior Description r/w read and write These bits can be written and read by the -Controller. Since they are used only for control means, there content is not influenced by internal state machines, e.g. the PageSelect-Register may be written and read by the -Controller. It will also be read by internal state machines, but never changed by them. dy dynamic These bits can be written and read by the -Controller. Nevertheless, they may also be written automatically by internal state machines, e.g. the Command-Register changes its value automatically after the execution of the actual command. r read only These registers hold bits, which value is determined by internal states only, e.g. the CRCReady bit can not be written from external but shows internal states. w write only Reading these registers returns always ZERO. RFU - These registers are reserved for future use. In case of a PN512 Version version 2.0 (VersionReg = 82h) a read access to these registers returns always the value “0”. Nevertheless this is not guaranteed for future chips versions where the value is undefined. In case of a write access, it is recommended to write always the value “0”. RFT - These registers are reserved for production tests and shall not be changed.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 24 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2 Register description 9.2.1 Page 0: Command and status 9.2.1.1 PageReg Selects the register page. 9.2.1.2 CommandReg Starts and stops command execution. Table 17. PageReg register (address 00h); reset value: 00h, 0000000b 7 6 5 4 3 2 1 0 UsePage Select 0 0 0 0 0 PageSelect Access Rights r/w RFU RFU RFU RFU RFU r/w r/w Table 18. Description of PageReg bits Bit Symbol Description 7 UsePageSelect Set to logic 1, the value of PageSelect is used as register address A5 and A4. The LSB-bits of the register address are defined by the address pins or the internal address latch, respectively. Set to logic 0, the whole content of the internal address latch defines the register address. The address pins are used as described in Section 10.1 “Automatic microcontroller interface detection”. 6 to 2 - Reserved for future use. 1 to 0 PageSelect The value of PageSelect is used only if UsePageSelect is set to logic 1. In this case it specifies the register page (which is A5 and A4 of the register address). Table 19. CommandReg register (address 01h); reset value: 20h, 00100000b 7 6 5 4 3 2 1 0 0 0 RcvOff Power Down Command Access Rights RFU RFU r/w dy dy dy dy dy Table 20. Description of CommandReg bits Bit Symbol Description 7 to 6 - Reserved for future use. 5 RcvOff Set to logic 1, the analog part of the receiver is switched off. 4 PowerDown Set to logic 1, Soft Power-down mode is entered. Set to logic 0, the PN512 starts the wake up procedure. During this procedure this bit still shows a 1. A 0 indicates that the PN512 is ready for operations; see Section 16.2 “Soft power-down mode”. Note: The bit Power Down cannot be set, when the command SoftReset has been activated. 3 to 0 Command Activates a command according to the Command Code. Reading this register shows, which command is actually executed (see Section 19.3 “PN512 command overview”).PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 25 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.1.3 CommIEnReg Control bits to enable and disable the passing of interrupt requests. Table 21. CommIEnReg register (address 02h); reset value: 80h, 10000000b 7 6 5 4 3 2 1 0 IRqInv TxIEn RxIEn IdleIEn HiAlertIEn LoAlertIEn ErrIEn TimerIEn Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 22. Description of CommIEnReg bits Bit Symbol Description 7 IRqInv Set to logic 1, the signal on pin IRQ is inverted with respect to bit IRq in the register Status1Reg. Set to logic 0, the signal on pin IRQ is equal to bit IRq. In combination with bit IRqPushPull in register DivIEnReg, the default value of 1 ensures, that the output level on pin IRQ is 3-state. 6 TxIEn Allows the transmitter interrupt request (indicated by bit TxIRq) to be propagated to pin IRQ. 5 RxIEn Allows the receiver interrupt request (indicated by bit RxIRq) to be propagated to pin IRQ. 4 IdleIEn Allows the idle interrupt request (indicated by bit IdleIRq) to be propagated to pin IRQ. 3 HiAlertIEn Allows the high alert interrupt request (indicated by bit HiAlertIRq) to be propagated to pin IRQ. 2 LoAlertIEn Allows the low alert interrupt request (indicated by bit LoAlertIRq) to be propagated to pin IRQ. 1 ErrIEn Allows the error interrupt request (indicated by bit ErrIRq) to be propagated to pin IRQ. 0 TimerIEn Allows the timer interrupt request (indicated by bit TimerIRq) to be propagated to pin IRQ. PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 26 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.1.4 DivIEnReg Control bits to enable and disable the passing of interrupt requests. Table 23. DivIEnReg register (address 03h); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 IRQPushPull 0 0 SiginActIEn ModeIEn CRCIEn RFOnIEn RFOffIEn Access Rights r/w RFU RFU r/w r/w r/w r/w r/w Table 24. Description of DivIEnReg bits Bit Symbol Description 7 IRQPushPull Set to logic 1, the pin IRQ works as standard CMOS output pad. Set to logic 0, the pin IRQ works as open drain output pad. 6 to 5 - Reserved for future use. 4 SiginActIEn Allows the SIGIN active interrupt request to be propagated to pin IRQ. 3 ModeIEn Allows the mode interrupt request (indicated by bit ModeIRq) to be propagated to pin IRQ. 2 CRCIEn Allows the CRC interrupt request (indicated by bit CRCIRq) to be propagated to pin IRQ. 1 RfOnIEn Allows the RF field on interrupt request (indicated by bit RfOnIRq) to be propagated to pin IRQ. 0 RfOffIEn Allows the RF field off interrupt request (indicated by bit RfOffIRq) to be propagated to pin IRQ.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 27 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.1.5 CommIRqReg Contains Interrupt Request bits. Table 25. CommIRqReg register (address 04h); reset value: 14h, 00010100b 7 6 5 4 3 2 1 0 Set1 TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq Access Rights w dy dy dy dy dy dy dy Table 26. Description of CommIRqReg bits All bits in the register CommIRqReg shall be cleared by software. Bit Symbol Description 7 Set1 Set to logic 1, Set1 defines that the marked bits in the register CommIRqReg are set. Set to logic 0, Set1 defines, that the marked bits in the register CommIRqReg are cleared. 6 TxIRq Set to logic 1 immediately after the last bit of the transmitted data was sent out. 5 RxIRq Set to logic 1 when the receiver detects the end of a valid datastream. If the bit RxNoErr in register RxModeReg is set to logic 1, bit RxIRq is only set to logic 1 when data bytes are available in the FIFO. 4 IdleIRq Set to logic 1, when a command terminates by itself e.g. when the CommandReg changes its value from any command to the Idle Command. If an unknown command is started, the CommandReg changes its content to the idle state and the bit IdleIRq is set. Starting the Idle Command by the -Controller does not set bit IdleIRq. 3 HiAlertIRq Set to logic 1, when bit HiAlert in register Status1Reg is set. In opposition to HiAlert, HiAlertIRq stores this event and can only be reset as indicated by bit Set1. 2 LoAlertIRq Set to logic 1, when bit LoAlert in register Status1Reg is set. In opposition to LoAlert, LoAlertIRq stores this event and can only be reset as indicated by bit Set1. 1 ErrIRq Set to logic 1 if any error bit in the Error Register is set. 0 TimerIRq Set to logic 1 when the timer decrements the TimerValue Register to zero.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 28 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.1.6 DivIRqReg Contains Interrupt Request bits Table 27. DivIRqReg register (address 05h); reset value: XXh, 000X00XXb 7 6 5 4 3 2 1 0 Set2 0 0 SiginActIRq ModeIRq CRCIRq RFOnIRq RFOffIRq Access Rights w RFU RFU dy dy dy dy dy Table 28. Description of DivIRqReg bits All bits in the register DivIRqReg shall be cleared by software. Bit Symbol Description 7 Set2 Set to logic 1, Set2 defines that the marked bits in the register DivIRqReg are set. Set to logic 0, Set2 defines, that the marked bits in the register DivIRqReg are cleared 6 to 5 - Reserved for future use. 4 SiginActIRq Set to logic 1, when SIGIN is active. See Section 12.6 “S2C interface support”. This interrupt is set when either a rising or falling signal edge is detected. 3 ModeIRq Set to logic 1, when the mode has been detected by the Data mode detector. Note: The Data mode detector can only be activated by the AutoColl command and is terminated automatically having detected the Communication mode. Note: The Data mode detector is automatically restarted after each RF Reset. 2 CRCIRq Set to logic 1, when the CRC command is active and all data are processed. 1 RFOnIRq Set to logic 1, when an external RF field is detected. 0 RFOffIRq Set to logic 1, when a present external RF field is switched off.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 29 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.1.7 ErrorReg Error bit register showing the error status of the last command executed. [1] Command execution will clear all error bits except for bit TempErr. A setting by software is impossible. Table 29. ErrorReg register (address 06h); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 WrErr TempErr RFErr BufferOvfl CollErr CRCErr ParityErr ProtocolErr Access Rights r rr r r r r r Table 30. Description of ErrorReg bits Bit Symbol Description 7 WrErr Set to logic 1, when data is written into FIFO by the host controller during the AutoColl command or MFAuthent command or if data is written into FIFO by the host controller during the time between sending the last bit on the RF interface and receiving the last bit on the RF interface. 6 TempErr[1] Set to logic 1, if the internal temperature sensor detects overheating. In this case, the antenna drivers are switched off automatically. 5 RFErr Set to logic 1, if in Active Communication mode the counterpart does not switch on the RF field in time as defined in NFCIP-1 standard. Note: RFErr is only used in Active Communication mode. The bits RxFraming or the bits TxFraming has to be set to 01 to enable this functionality. 4 BufferOvfl Set to logic 1, if the host controller or a PN512’s internal state machine (e.g. receiver) tries to write data into the FIFO-bufferFIFO-buffer although the FIFO-buffer is already full. 3 CollErr Set to logic 1, if a bit-collision is detected. It is cleared automatically at receiver start-up phase. This bit is only valid during the bitwise anticollision at 106 kbit. During communication schemes at 212 and 424 kbit this bit is always set to logic 1. 2 CRCErr Set to logic 1, if bit RxCRCEn in register RxModeReg is set and the CRC calculation fails. It is cleared to 0 automatically at receiver start-up phase. 1 ParityErr Set to logic 1, if the parity check has failed. It is cleared automatically at receiver start-up phase. Only valid for ISO/IEC 14443A/MIFARE or NFCIP-1 communication at 106 kbit. 0 ProtocolErr Set to logic 1, if one out of the following cases occur: • Set to logic 1 if the SOF is incorrect. It is cleared automatically at receiver start-up phase. The bit is only valid for 106 kbit in Active and Passive Communication mode. • If bit DetectSync in register ModeReg is set to logic 1 during FeliCa communication or active communication with transfer speeds higher than 106 kbit, the bit ProtocolErr is set to logic 1 in case of a byte length violation. • During the AutoColl command, bit ProtocolErr is set to logic 1, if the bit Initiator in register ControlReg is set to logic 1. • During the MFAuthent Command, bit ProtocolErr is set to logic 1, if the number of bytes received in one data stream is incorrect. • Set to logic 1, if the Miller Decoder detects 2 pulses below the minimum time according to the ISO/IEC 14443A definitions.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 30 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.1.8 Status1Reg Contains status bits of the CRC, Interrupt and FIFO-buffer. Table 31. Status1Reg register (address 07h); reset value: XXh, X100X01Xb 7 6 5 4 3 2 1 0 RFFreqOK CRCOk CRCReady IRq TRunning RFOn HiAlert LoAlert Access Rights r r r r r rr r Table 32. Description of Status1Reg bits Bit Symbol Description 7 RFFreqOK Indicates if the frequency detected at the RX pin is in the range of 13.56 MHz. Set to logic 1, if the frequency at the RX pin is in the range 12 MHz < RX pin frequency < 15 MHz. Note: The value of RFFreqOK is not defined if the external RF frequency is in the range from 9 to 12 MHz or in the range from 15 to 19 MHz. 6 CRCOk Set to logic 1, if the CRC Result is zero. For data transmission and reception the bit CRCOk is undefined (use CRCErr in register ErrorReg). CRCOk indicates the status of the CRC co-processor, during calculation the value changes to ZERO, when the calculation is done correctly, the value changes to ONE. 5 CRCReady Set to logic 1, when the CRC calculation has finished. This bit is only valid for the CRC co-processor calculation using the command CalcCRC. 4 IRq This bit shows, if any interrupt source requests attention (with respect to the setting of the interrupt enable bits, see register CommIEnReg and DivIEnReg). 3 TRunning Set to logic 1, if the PN512’s timer unit is running, e.g. the timer will decrement the TCounterValReg with the next timer clock. Note: In the gated mode the bit TRunning is set to logic 1, when the timer is enabled by the register bits. This bit is not influenced by the gated signal. 2 RFOn Set to logic 1, if an external RF field is detected. This bit does not store the state of the RF field. 1 HiAlert Set to logic 1, when the number of bytes stored in the FIFO-buffer fulfills the following equation: Example: FIFOLength = 60, WaterLevel = 4 HiAlert = 1 FIFOLength = 59, WaterLevel = 4 HiAlert = 0 0 LoAlert Set to logic 1, when the number of bytes stored in the FIFO-buffer fulfills the following equation: Example: FIFOLength = 4, WaterLevel = 4 LoAlert = 1 FIFOLength = 5, WaterLevel = 4 LoAlert = 0 HiAlert 64 FIFOLength = – WaterLevel LoAlert FIFOLength WaterLevel = PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 31 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.1.9 Status2Reg Contains status bits of the Receiver, Transmitter and Data mode detector. Table 33. Status2Reg register (address 08h); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 TempSensClear I2CForceHS 0 TargetActivated MFCrypto1On Modem State Access Rights r/w r/w RFU dy dy r r r Table 34. Description of Status2Reg bits Bit Symbol Description 7 TempSensClear Set to logic 1, this bit clears the temperature error, if the temperature is below the alarm limit of 125 C. 6 I2CForceHS I2C input filter settings. Set to logic 1, the I2C input filter is set to the High-speed mode independent of the I2C protocol. Set to logic 0, the I 2C input filter is set to the used I2C protocol. 5 - Reserved for future use. 4 TargetActivated Set to logic 1 if the Select command or if the Polling command was answered. Note: This bit can only be set during the AutoColl command in Passive Communication mode. Note: This bit is cleared automatically by switching off the external RF field. 3 MFCrypto1On This bit indicates that the MIFARE Crypto1 unit is switched on and therefore all data communication with the card is encrypted. This bit can only be set to logic 1 by a successful execution of the MFAuthent Command. This bit is only valid in Reader/Writer mode for MIFARE cards. This bit shall be cleared by software. 2 to 0 Modem State ModemState shows the state of the transmitter and receiver state machines. Value Description 000 IDLE 001 Wait for StartSend in register BitFramingReg 010 TxWait: Wait until RF field is present, if the bit TxWaitRF is set to logic 1. The minimum time for TxWait is defined by the TxWaitReg register. 011 Sending 100 RxWait: Wait until RF field is present, if the bit RxWaitRF is set to logic 1. The minimum time for RxWait is defined by the RxWaitReg register. 101 Wait for data 110 ReceivingPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 32 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.1.10 FIFODataReg In- and output of 64 byte FIFO-buffer. 9.2.1.11 FIFOLevelReg Indicates the number of bytes stored in the FIFO. Table 35. FIFODataReg register (address 09h); reset value: XXh, XXXXXXXXb 7 6 5 4 3 2 1 0 FIFOData Access Rights dy dy dy dy dy dy dy dy Table 36. Description of FIFODataReg bits Bit Symbol Description 7 to 0 FIFOData Data input and output port for the internal 64 byte FIFO-buffer. The FIFO-buffer acts as parallel in/parallel out converter for all serial data stream in- and outputs. Table 37. FIFOLevelReg register (address 0Ah); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 FlushBuffer FIFOLevel Access Rights w rrrrrrr Table 38. Description of FIFOLevelReg bits Bit Symbol Description 7 FlushBuffer Set to logic 1, this bit clears the internal FIFO-buffer’s read- and write-pointer and the bit BufferOvfl in the register ErrReg immediately. Reading this bit will always return 0. 6 to 0 FIFOLevel Indicates the number of bytes stored in the FIFO-buffer. Writing to the FIFODataReg increments, reading decrements the FIFOLevel.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 33 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.1.12 WaterLevelReg Defines the level for FIFO under- and overflow warning. 9.2.1.13 ControlReg Miscellaneous control bits. Table 39. WaterLevelReg register (address 0Bh); reset value: 08h, 00001000b 7 6 5 4 3 2 1 0 0 0 WaterLevel Access Rights RFU RFU r/w r/w r/w r/w r/w r/w Table 40. Description of WaterLevelReg bits Bit Symbol Description 7 to 6 - Reserved for future use. 5 to 0 WaterLevel This register defines a warning level to indicate a FIFO-buffer over- or underflow: The bit HiAlert in Status1Reg is set to logic 1, if the remaining number of bytes in the FIFO-buffer space is equal or less than the defined number of WaterLevel bytes. The bit LoAlert in Status1Reg is set to logic 1, if equal or less than WaterLevel bytes are in the FIFO. Note: For the calculation of HiAlert and LoAlert see Table 31 Table 41. ControlReg register (address 0Ch); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 TStopNow TStartNow WrNFCIDtoFIFO Initiator 0 RxLastBits Access Rights w w dy r/w RFU r r r Table 42. Description of ControlReg bits Bit Symbol Description 7 TStopNow Set to logic 1, the timer stops immediately. Reading this bit will always return 0. 6 TStartNow Set to logic 1 starts the timer immediately. Reading this bit will always return 0. 5 WrNFCIDtoFIFO Set to logic 1, the internal stored NFCID (10 bytes) is copied into the FIFO. Afterwards the bit is cleared automatically 4 Initiator Set to logic 1, the PN512 acts as initiator, otherwise it acts as target 3 - Reserved for future use. 2 to 0 RxLastBits Shows the number of valid bits in the last received byte. If zero, the whole byte is valid.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 34 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.1.14 BitFramingReg Adjustments for bit oriented frames. Table 43. BitFramingReg register (address 0Dh); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 StartSend RxAlign 0 TxLastBits Access Rights w r/w r/w r/w RFU r/w r/w r/w Table 44. Description of BitFramingReg bits Bit Symbol Description 7 StartSend Set to logic 1, the transmission of data starts. This bit is only valid in combination with the Transceive command. 6 to 4 RxAlign Used for reception of bit oriented frames: RxAlign defines the bit position for the first bit received to be stored in the FIFO. Further received bits are stored at the following bit positions. Example: RxAlign = 0: the LSB of the received bit is stored at bit 0, the second received bit is stored at bit position 1. RxAlign = 1: the LSB of the received bit is stored at bit 1, the second received bit is stored at bit position 2. RxAlign = 7: the LSB of the received bit is stored at bit 7, the second received bit is stored in the following byte at bit position 0. This bit shall only be used for bitwise anticollision at 106 kbit/s in Passive Communication mode. In all other modes it shall be set to logic 0. 3 - Reserved for future use. 2 to 0 TxLastBits Used for transmission of bit oriented frames: TxLastBits defines the number of bits of the last byte that shall be transmitted. A 000 indicates that all bits of the last byte shall be transmitted.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 35 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.1.15 CollReg Defines the first bit collision detected on the RF interface. Table 45. CollReg register (address 0Eh); reset value: XXh, 101XXXXXb 7 6 5 4 3 2 1 0 Values AfterColl 0 CollPos NotValid CollPos Access Rights r/w RFU r r r r r r Table 46. Description of CollReg bits Bit Symbol Description 7 ValuesAfterColl If this bit is set to logic 0, all receiving bits will be cleared after a collision. This bit shall only be used during bitwise anticollision at 106 kbit, otherwise it shall be set to logic 1. 6 - Reserved for future use. 5 CollPosNotValid Set to logic 1, if no Collision is detected or the Position of the Collision is out of the range of bits CollPos. This bit shall only be interpreted in Passive Communication mode at 106 kbit or ISO/IEC 14443A/MIFARE Reader/Writer mode. 4 to 0 CollPos These bits show the bit position of the first detected collision in a received frame, only data bits are interpreted. Example: 00h indicates a bit collision in the 32th bit 01h indicates a bit collision in the 1st bit 08h indicates a bit collision in the 8th bit These bits shall only be interpreted in Passive Communication mode at 106 kbit or ISO/IEC 14443A/MIFARE Reader/Writer mode if bit CollPosNotValid is set to logic 0.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 36 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.2 Page 1: Communication 9.2.2.1 PageReg Selects the register page. Table 47. PageReg register (address 10h); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 UsePage Select 0 0 0 0 0 PageSelect Access Rights r/w RFU RFU RFU RFU RFU r/w r/w Table 48. Description of PageReg bits Bit Symbol Description 7 UsePage Select Set to logic 1, the value of PageSelect is used as register address A5 and A4. The LSB-bits of the register address are defined by the address pins or the internal address latch, respectively. Set to logic 0, the whole content of the internal address latch defines the register address. The address pins are used as described in Section 10.1 “Automatic microcontroller interface detection”. 6 to 2 - Reserved for future use. 1 to 0 PageSelect The value of PageSelect is used only, if UsePageSelect is set to logic 1. In this case it specifies the register page (which is A5 and A4 of the register address).PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 37 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.2.2 ModeReg Defines general mode settings for transmitting and receiving. Table 49. ModeReg register (address 11h); reset value: 3Bh, 00111011b 7 6 5 4 3 2 1 0 MSBFirst Detect Sync TxWaitRF RxWaitRF PolSigin ModeDetOff CRCPreset Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 50. Description of ModeReg bits Bit Symbol Description 7 MSBFirst Set to logic 1, the CRC co-processor calculates the CRC with MSB first and the CRCResultMSB and the CRCResultLSB in the CRCResultReg register are bit reversed. Note: During RF communication this bit is ignored. 6 Detect Sync If set to logic 1, the contactless UART waits for the value F0h before the receiver is activated and F0h is added as a Sync-byte for transmission. This bit is only valid for 106 kbit during NFCIP-1 data exchange protocol. In all other modes it shall be set to logic 0. 5 TxWaitRF Set to logic 1 the transmitter in reader/writer or initiator mode for NFCIP-1 can only be started, if an RF field is generated. 4 RxWaitRF Set to logic 1, the counter for RxWait starts only if an external RF field is detected in Target mode for NFCIP-1 or in Card Communication mode. 3 PolSigin PolSigin defines the polarity of the SIGIN pin. Set to logic 1, the polarity of SIGIN pin is active high. Set to logic 0 the polarity of SIGIN pin is active low. Note: The internal envelope signal is coded active low. Note: Changing this bit will generate a SiginActIRq event. 2 ModeDetOff Set to logic 1, the internal mode detector is switched off. Note: The mode detector is only active during the AutoColl command. 1 to 0 CRCPreset Defines the preset value for the CRC co-processor for the command CalCRC. Note: During any communication, the preset values is selected automatically according to the definition in the bits RxMode and TxMode. Value Description 00 0000 01 6363 10 A671 11 FFFFPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 38 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.2.3 TxModeReg Defines the data rate and framing during transmission. Table 51. TxModeReg register (address 12h); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 TxCRCEn TxSpeed InvMod TxMix TxFraming Access Rights r/w dy dy dy r/w r/w dy dy Table 52. Description of TxModeReg bits Bit Symbol Description 7 TxCRCEn Set to logic 1, this bit enables the CRC generation during data transmission. Note: This bit shall only be set to logic 0 at 106 kbit. 6 to 4 TxSpeed Defines the bit rate while data transmission. Value Description 000 106 kbit 001 212 kbit 010 424 kbit 011 848 kbit 100 1696 kbit 101 3392 kbit 110 Reserved 111 Reserved Note: The bit coding for transfer speeds above 424 kbit is equivalent to the bit coding of Active Communication mode 424 kbit (Ecma 340). 3 InvMod Set to logic 1, the modulation for transmitting data is inverted. 2 TxMix Set to logic 1, the signal at pin SIGIN is mixed with the internal coder (see Section 12.6 “S2C interface support”). 1 to 0 TxFraming Defines the framing used for data transmission. Value Description 00 ISO/IEC 14443A/MIFARE and Passive Communication mode 106 kbit 01 Active Communication mode 10 FeliCa and Passive communication mode 212 and 424 kbit 11 ISO/IEC 14443BPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 39 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.2.4 RxModeReg Defines the data rate and framing during reception. Table 53. RxModeReg register (address 13h); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 RxCRCEn RxSpeed RxNoErr RxMultiple RxFraming Access Rights r/w dy dy dy r/w r/w dy dy Table 54. Description of RxModeReg bits Bit Symbol Description 7 RxCRCEn Set to logic 1, this bit enables the CRC calculation during reception. Note: This bit shall only be set to logic 0 at 106 kbit. 6 to 4 RxSpeed Defines the bit rate while data transmission. The PN512’s analog part handles only transfer speeds up to 424 kbit internally, the digital UART handles the higher transfer speeds as well. Value Description 000 106 kbit 001 212 kbit 010 424 kbit 011 848 kbit 100 1696 kbit 101 3392 kbit 110 Reserved 111 Reserved Note: The bit coding for transfer speeds above 424 kbit is equivalent to the bit coding of Active Communication mode 424 kbit (Ecma 340). 3 RxNoErr If set to logic 1 a not valid received data stream (less than 4 bits received) will be ignored. The receiver will remain active. For ISO/IEC14443B also RxSOFReq logic 1 is required to ignore a non valid datastream. 2 RxMultiple Set to logic 0, the receiver is deactivated after receiving a data frame. Set to logic 1, it is possible to receive more than one data frame. Having set this bit, the receive and transceive commands will not terminate automatically. In this case the multiple receiving can only be deactivated by writing any command (except the Receive command) to the CommandReg register or by clearing the bit by the host controller. At the end of a received data stream an error byte is added to the FIFO. The error byte is a copy of the ErrorReg register. The behaviour for version 1.0 is described in Section 21 “Errata sheet” on page 109.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 40 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.2.5 TxControlReg Controls the logical behavior of the antenna driver pins Tx1 and Tx2. 1 to 0 RxFraming Defines the expected framing for data reception. Value Description 00 ISO/IEC 14443A/MIFARE and Passive Communication mode 106 kbit 01 Active Communication mode 10 FeliCa and Passive Communication mode 212 and 424 kbit 11 ISO/IEC 14443B Table 54. Description of RxModeReg bits Bit Symbol Description Table 55. TxControlReg register (address 14h); reset value: 80h, 10000000b 7 6 5 4 3 2 1 0 InvTx2RF On InvTx1RF On InvTx2RF Off InvTx1RF Off Tx2CW CheckRF Tx2RF En Tx1RF En Access Rights r/w r/w r/w r/w r/w w r/w r/w Table 56. Description of TxControlReg bits Bit Symbol Description 7 InvTx2RFOn Set to logic 1, the output signal at pin TX2 will be inverted, if driver TX2 is enabled. 6 InvTx1RFOn Set to logic 1, the output signal at pin TX1 will be inverted, if driver TX1 is enabled. 5 InvTx2RFOff Set to logic 1, the output signal at pin TX2 will be inverted, if driver TX2 is disabled. 4 InvTx1RFOff Set to logic 1, the output signal at pin TX1 will be inverted, if driver TX1 is disabled. 3 Tx2CW Set to logic 1, the output signal on pin TX2 will deliver continuously the un-modulated 13.56 MHz energy carrier. Set to logic 0, Tx2CW is enabled to modulate the 13.56 MHz energy carrier. 2 CheckRF Set to logic 1, Tx2RFEn and Tx1RFEn can not be set if an external RF field is detected. Only valid when using in combination with bit Tx2RFEn or Tx1RFEn 1 Tx2RFEn Set to logic 1, the output signal on pin TX2 will deliver the 13.56 MHz energy carrier modulated by the transmission data. 0 Tx1RFEn Set to logic 1, the output signal on pin TX1 will deliver the 13.56 MHz energy carrier modulated by the transmission data.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 41 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.2.6 TxAutoReg Controls the settings of the antenna driver. Table 57. TxAutoReg register (address 15h); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 AutoRF OFF Force100 ASK Auto WakeUp 0 CAOn InitialRF On Tx2RFAut oEn Tx1RFAuto En Access Rights r/w r/w r/w RFU r/w r/w r/w r/w Table 58. Description of TxAutoReg bits Bit Symbol Description 7 AutoRFOFF Set to logic 1, all active antenna drivers are switched off after the last data bit has been transmitted as defined in the NFCIP-1. 6 Force100ASK Set to logic 1, Force100ASK forces a 100% ASK modulation independent of the setting in register ModGsPReg. 5 AutoWakeUp Set to logic 1, the PN512 in soft Power-down mode will be started by the RF level detector. 4 - Reserved for future use. 3 CAOn Set to logic 1, the collision avoidance is activated and internally the value n is set in accordance to the NFCIP-1 Standard. 2 InitialRFOn Set to logic 1, the initial RF collision avoidance is performed and the bit InitialRFOn is cleared automatically, if the RF is switched on. Note: The driver, which should be switched on, has to be enabled by bit Tx2RFAutoEn or bit Tx1RFAutoEn. 1 Tx2RFAutoEn Set to logic 1, the driver Tx2 is switched on after the external RF field is switched off according to the time TADT. If the bits InitialRFOn and Tx2RFAutoEn are set to logic 1, Tx2 is switched on if no external RF field is detected during the time TIDT. Note: The times TADT and TIDT are defined in the NFC IP-1 standard (ISO/IEC 18092). 0 Tx1RFAutoEn Set to logic 1, the driver Tx1 is switched on after the external RF field is switched off according to the time TADT. If the bit InitialRFOn and Tx1RFAutoEn are set to logic 1, Tx1 is switched on if no external RF field is detected during the time TIDT. Note: The times TADT and TIDT are defined in the NFC IP-1 standard (ISO/IEC 18092).PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 42 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.2.7 TxSelReg Selects the sources for the analog part. Table 59. TxSelReg register (address 16h); reset value: 10h, 00010000b 7 6 5 4 3 2 1 0 0 0 DriverSel SigOutSel Access Rights RFU RFU r/w r/w r/w r/w r/w r/w Table 60. Description of TxSelReg bits Bit Symbol Description 7 to 6 - Reserved for future use. 5 to 4 DriverSel Selects the input of driver Tx1 and Tx2. Value Description 00 Tristate Note: In soft power down the drivers are only in Tristate mode if DriverSel is set to Tristate mode. 01 Modulation signal (envelope) from the internal coder 10 Modulation signal (envelope) from SIGIN 11 HIGH Note: The HIGH level depends on the setting of InvTx1RFOn/ InvTx1RFOff and InvTx2RFOn/InvTx2RFOff.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 43 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 3 to 0 SigOutSel Selects the input for the SIGOUT Pin. Value Description 0000 Tristate 0001 Low 0010 High 0011 TestBus signal as defined by bit TestBusBitSel in register TestSel1Reg. 0100 Modulation signal (envelope) from the internal coder 0101 Serial data stream to be transmitted 0110 Output signal of the receiver circuit (card modulation signal regenerated and delayed). This signal is used as data output signal for SAM interface connection using 3 lines. Note: To have a valid signal the PN512 has to be set to the receiving mode by either the Transceive or Receive command. The bit RxMultiple can be used to keep the PN512 in receiving mode. Note: Do not use this setting in MIFARE mode. Manchester coding as data collisions will not be transmitted on the SIGOUT line. 0111 Serial data stream received. Note: Do not use this setting in MIFARE mode. Miller coding parameters as the bit length can vary. 1000-1011 FeliCa Sam modulation 1000 RX* 1001 TX 1010 Demodulator comparator output 1011 RFU Note: * To have a valid signal the PN512 has to be set to the receiving mode by either the Transceive or Receive command. The bit RxMultiple can be used to keep the PN512 in receiving mode. 1100-1111 MIFARE Sam modulation 1100 RX* with RF carrier 1101 TX with RF carrier 1110 RX with RF carrier un-filtered 1111 RX envelope un-filtered Note: *To have a valid signal the PN512 has to be set to the receiving mode by either the Transceive or Receive command. The bit RxMultiple can be used to keep the PN512 in receiving mode. Table 60. Description of TxSelReg bits …continued Bit Symbol DescriptionPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 44 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.2.8 RxSelReg Selects internal receiver settings. 9.2.2.9 RxThresholdReg Selects thresholds for the bit decoder. Table 61. RxSelReg register (address 17h); reset value: 84h, 10000100b 7 6 5 4 3 2 1 0 UartSel RxWait Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 62. Description of RxSelReg bits Bit Symbol Description 7 to 6 UartSel Selects the input of the contactless UART Value Description 00 Constant Low 01 Envelope signal at SIGIN 10 Modulation signal from the internal analog part 11 Modulation signal from SIGIN pin. Only valid for transfer speeds above 424 kbit 5 to 0 RxWait After data transmission, the activation of the receiver is delayed for RxWait bit-clocks. During this ‘frame guard time’ any signal at pin RX is ignored. This parameter is ignored by the Receive command. All other commands (e.g. Transceive, Autocoll, MFAuthent) use this parameter. Depending on the mode of the PN512, the counter starts different. In Passive Communication mode the counter starts with the last modulation pulse of the transmitted data stream. In Active Communication mode the counter starts immediately after the external RF field is switched on. Table 63. RxThresholdReg register (address 18h); reset value: 84h, 10000100b 7 6 5 4 3 2 1 0 MinLevel 0 CollLevel Access Rights r/w r/w r/w r/w RFU r/w r/w r/w Table 64. Description of RxThresholdReg bits Bit Symbol Description 7 to 4 MinLevel Defines the minimum signal strength at the decoder input that shall be accepted. If the signal strength is below this level, it is not evaluated. 3 - Reserved for future use. 2 to 0 CollLevel Defines the minimum signal strength at the decoder input that has to be reached by the weaker half-bit of the Manchester-coded signal to generate a bit-collision relatively to the amplitude of the stronger half-bit.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 45 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.2.10 DemodReg Defines demodulator settings. Table 65. DemodReg register (address 19h); reset value: 4Dh, 01001101b 7 6 5 4 3 2 1 0 AddIQ FixIQ TPrescal Even TauRcv TauSync Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 66. Description of DemodReg bits Bit Symbol Description 7 to 6 AddIQ Defines the use of I and Q channel during reception Note: FixIQ has to be set to logic 0 to enable the following settings. Value Description 00 Select the stronger channel 01 Select the stronger and freeze the selected during communication 10 combines the I and Q channel 11 Reserved 5 FixIQ If set to logic 1 and the bits of AddIQ are set to X0, the reception is fixed to I channel. If set to logic 1 and the bits of AddIQ are set to X1, the reception is fixed to Q channel. NOTE: If SIGIN/SIGOUT is used as S2C interface FixIQ set to 1 and AddIQ set to X0 is rewired. 4 TPrescalE ven If set to logic 0 the following formula is used to calculate fTimer of the prescaler: fTimer = 13.56 MHz / (2 * TPreScaler + 1). If set to logic 1 the following formula is used to calculate fTimer of the prescaler: fTimer = 13.56 MHz / (2 * TPreScaler + 2). (Default TPrescalEven is logic 0) The behaviour for the version 1.0 is described in Section 21 “Errata sheet” on page 109. 3 to 2 TauRcv Changes the time constant of the internal during data reception. Note: If set to 00, the PLL is frozen during data reception. 1 to 0 TauSync Changes the time constant of the internal PLL during burst.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 46 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.2.11 FelNFC1Reg Defines the length of the FeliCa Sync bytes and the minimum length of the received packet. Table 67. FelNFC1Reg register (address 1Ah); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 FelSyncLen DataLenMin Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 68. Description of FelNFC1Reg bits Bit Symbol Description 7 to 6 FelSyncLen Defines the length of the Sync bytes. Value Sync- bytes in hex 00 B2 4D 01 00 B2 4D 10 00 00 B2 4D 11 00 00 00 B2 4D 5 to 0 DataLenMin These bits define the minimum length of the accepted packet length: DataLenMin * 4 data packet length This parameter is ignored at 106 kbit if the bit DetectSync in register ModeReg is set to logic 0. If a received data packet is shorter than the defined DataLenMin value, the data packet will be ignored.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 47 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.2.12 FelNFC2Reg Defines the maximum length of the received packet. Table 69. FelNFC2Reg register (address1Bh); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 WaitForSelected ShortTimeSlot DataLenMax Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 70. Description of FelNFC2Reg bits Bit Symbol Description 7 WaitForSelected Set to logic 1, the AutoColl command is only terminated automatically when: 1. A valid command has been received after performing a valid Select procedure according ISO/IEC 14443A. 2. A valid command has been received after performing a valid Polling procedure according to the FeliCa specification. Note: If this bit is set, no active communication is possible. Note: Setting this bit reduces the host controller interaction in case of a communication to another device in the same RF field during Passive Communication mode. 6 ShortTimeSlot Defines the time slot length for Passive Communication mode at 424 kbit. Set to logic 1 a short time slot is used (half of the timeslot at 212 kbit). Set to logic 0 a long timeslot is used (equal to the timeslot for 212 kbit). 5 to 0 DataLenMax These bits define the maximum length of the accepted packet length: DataLenMax * 4 data packet length Note: If set to logic 0 the maximum data length is 256 bytes. This parameter is ignored at 106 kbit if the bit DetectSync in register ModeReg is set to logic 0. If a received packet is larger than the defined DataLenMax value, the packet will be ignored.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 48 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.2.13 MifNFCReg Defines ISO/IEC 14443A/MIFARE/NFC specific settings in target or Card Operating mode. Table 71. MifNFCReg register (address 1Ch); reset value: 62h, 01100010b 7 6 5 4 3 2 1 0 SensMiller TauMiller MFHalted TxWait Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 72. Description of MifNFCReg bits Bit Symbol Description 7 to 5 SensMiller These bits define the sensitivity of the Miller decoder. 4 to 3 TauMiller These bits define the time constant of the Miller decoder. 2 MFHalted Set to logic 1, this bit indicates that the PN512 is set to HALT mode in Card Operation mode at 106 kbit. This bit is either set by the host controller or by the internal state machine and indicates that only the code 52h is accepted as a request command. This bit is cleared automatically by a RF reset. 1 to 0 TxWait These bits define the minimum response time between receive and transmit in number of data bits + 7 data bits. The shortest possible minimum response time is 7 data bits. (TxWait=0). The minimum response time can be increased by the number of bits defined in TxWait. The longest minimum response time is 10 data bits (TxWait = 3). If a transmission of a frame is started before the minimum response time is over, the PN512 waits before transmitting the data until the minimum response time is over. If a transmission of a frame is started after the minimum response time is over, the frame is started immediately if the data bit synchronization is correct. (adjustable with TxBitPhase).PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 49 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.2.14 ManualRCVReg Allows manual fine tuning of the internal receiver. Remark: For standard applications it is not recommended to change this register settings. Table 73. ManualRCVReg register (address 1Dh); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 0 FastFilt MF_SO Delay MF_SO Parity Disable LargeBW PLL Manual HPCF HPFC Access Rights RFU r/w r/w r/w r/w r/w r/w r/w Table 74. Description of ManualRCVReg bits Bit Symbol Description 7 - Reserved for future use. 6 FastFilt MF_SO If this bit is set to logic 1, the internal filter for the Miller-Delay Circuit is set to Fast mode. Note: This bit should only set to logic 1, if Millerpulses of less than 400 ns Pulse length are expected. At 106 kBaud the typical value is 3 us. 5 Delay MF_SO If this bit is set to logic 1, the Signal at SIGOUT-pin is delayed, so that in SAM mode the Signal at SIGIN must be 128/fc faster compared to the ISO/IEC 14443A, to reach the ISO/IEC 14443A restrictions on the RF-Field. Note: This delay shall only be activated for setting bits SigOutSel to (1110b) or (1111b) in register TxSelReg. 4 Parity Disable If this bit is set to logic 1, the generation of the Parity bit for transmission and the Parity-Check for receiving is switched off. The received Parity bit is handled like a data bit. 3 LargeBWPLL Set to logic 1, the bandwidth of the internal PLL used for clock recovery is extended. 2 ManualHPCF Set to logic 0, the HPCF bits are ignored and the HPCF settings are adapted automatically to the receiving mode. Set to logic 1, values of HPCF are valid. 1 to 0 HPFC Selects the High Pass Corner Frequency (HPCF) of the filter in the internal receiver chain 00 For signals with frequency spectrum down to 106 kHz. 01 For signals with frequency spectrum down to 212 kHz. 10 For signals with frequency spectrum down to 424 kHz. 11 For signals with frequency spectrum down to 848 kHzPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 50 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.2.15 TypeBReg 9.2.2.16 SerialSpeedReg Selects the speed of the serial UART interface. Table 75. TypeBReg register (address 1Eh); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 RxSOF Req RxEOF Req 0 EOFSO FWidth NoTxSOF NoTxEOF TxEGT Access Rights r/w r/w RFU r/w r/w r/w r/w r/w Table 76. Description of TypeBReg bits Bit Symbol Description 7 RxSOFReq If this bit is set to logic 1, the SOF is required. A datastream starting without SOF is ignored. If this bit is cleared, a datastream with and without SOF is accepted. The SOF will be removed and not written into the FIFO. 6 RxEOFReq If this bit is set to logic 1, the EOF is required. A datastream ending without EOF will generate a Protocol-Error. If this bit is cleared, a datastream with and without EOF is accepted. The EOF will be removed and not written into the FIFO. For the behaviour in version 1.0, see Section 21 “Errata sheet” on page 109. 5 - Reserved for future use. 4 EOFSOFWidth If this bit is set to logic 1 and EOFSOFAdjust bit is logic 0, the SOF and EOF will have the maximum length defined in ISO/IEC 14443B. If this bit is cleared and EOFSOFAdjust bit is logic 0, the SOF and EOF will have the minimum length defined in ISO/IEC 14443B. If this bit is set to 1 and the EOFSOFadjust bit is logic 1 will result in SOF low = (11etu 8 cycles)/fc SOF high = (2 etu + 8 cycles)/fc EOF low = (11 etu 8 cycles)/fc If this bit is set to 0 and the EOFSOFAdjust bit is logic 1 will result in an incorrect system behavior in respect to ISO specification. For the behaviour in version 1.0, see Section 21 “Errata sheet” on page 109. 3 NoTxSOF If this bit is set to logic 1, the generation of the SOF is suppressed. 2 NoTxEOF If this bit is set to logic 1, the generation of the EOF is suppressed. 1 to 0 TxEGT These bits define the length of the EGT. Value Description 00 0 bit 01 1 bit 10 2 bits 11 3 bitsPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 51 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution Table 77. SerialSpeedReg register (address 1Fh); reset value: EBh, 11101011b 7 6 5 4 3 2 1 0 BR_T0 BR_T1 Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 78. Description of SerialSpeedReg bits Bit Symbol Description 7 to 5 BR_T0 Factor BR_T0 to adjust the transfer speed, for description see Section 10.3.2 “Selectable UART transfer speeds”. 3 to 0 BR_T1 Factor BR_T1 to adjust the transfer speed, for description see Section 10.3.2 “Selectable UART transfer speeds”.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 52 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.3 Page 2: Configuration 9.2.3.1 PageReg Selects the register page. 9.2.3.2 CRCResultReg Shows the actual MSB and LSB values of the CRC calculation. Note: The CRC is split into two 8-bit register. Note: Setting the bit MSBFirst in ModeReg register reverses the bit order, the byte order is not changed. Table 79. PageReg register (address 20h); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 UsePageSelect 0 0 0 0 0 PageSelect Access Rights r/w RFU RFU RFU RFU RFU r/w r/w Table 80. Description of PageReg bits Bit Symbol Description 7 UsePageSelect Set to logic 1, the value of PageSelect is used as register address A5 and A4. The LSB-bits of the register address are defined by the address pins or the internal address latch, respectively. Set to logic 0, the whole content of the internal address latch defines the register address. The address pins are used as described in Section 10.1 “Automatic microcontroller interface detection”. 6 to 2 - Reserved for future use. 1 to 0 PageSelect The value of PageSelect is used only if UsePageSelect is set to logic 1. In this case, it specifies the register page (which is A5 and A4of the register address). Table 81. CRCResultReg register (address 21h); reset value: FFh, 11111111b 7 6 5 4 3 2 1 0 CRCResultMSB Access Rights r r r r r r r r Table 82. Description of CRCResultReg bits Bit Symbol Description 7 to 0 CRCResultMSB This register shows the actual value of the most significant byte of the CRCResultReg register. It is valid only if bit CRCReady in register Status1Reg is set to logic 1. Table 83. CRCResultReg register (address 22h); reset value: FFh, 11111111b 7 6 5 4 3 2 1 0 CRCResultLSB Access Rights r r r r r r r r Table 84. Description of CRCResultReg bits Bit Symbol Description 7 to 0 CRCResultLSB This register shows the actual value of the least significant byte of the CRCResult register. It is valid only if bit CRCReady in register Status1Reg is set to logic 1.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 53 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.3.3 GsNOffReg Selects the conductance for the N-driver of the antenna driver pins TX1 and TX2 when the driver is switched off. Table 85. GsNOffReg register (address 23h); reset value: 88h, 10001000b 7 6 5 4 3 2 1 0 CWGsNOff ModGsNOff Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 86. Description of GsNOffReg bits Bit Symbol Description 7 to 4 CWGsNOff The value of this register defines the conductance of the output N-driver during times of no modulation. Note: The conductance value is binary weighted. Note: During soft Power-down mode the highest bit is forced to 1. Note: The value of the register is only used if the driver is switched off. Otherwise the bit value CWGsNOn of register GsNOnReg is used. Note: This value is used for LoadModulation. 3 to 0 ModGsNOff The value of this register defines the conductance of the output N-driver for the time of modulation. This may be used to regulate the modulation index. Note: The conductance value is binary weighted. Note: During soft Power-down mode the highest bit is forced to 1. Note: The value of the register is only used if the driver is switched off. Otherwise the bit value ModGsNOn of register GsNOnReg is used Note: This value is used for LoadModulation.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 54 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.3.4 ModWidthReg Controls the modulation width settings. 9.2.3.5 TxBitPhaseReg Adjust the bitphase at 106 kbit during transmission. Table 87. ModWidthReg register (address 24h); reset value: 26h, 00100110b 7 6 5 4 3 2 1 0 ModWidth Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 88. Description of ModWidthReg bits Bit Symbol Description 7 to 0 ModWidth These bits define the width of the Miller modulation as initiator in Active and Passive Communication mode as multiples of the carrier frequency (ModWidth + 1/fc). The maximum value is half the bit period. Acting as a target in Passive Communication mode at 106 kbit or in Card Operating mode for ISO/IEC 14443A/MIFARE these bits are used to change the duty cycle of the subcarrier frequency. The resulting number of carrier periods are calculated according to the following formulas: LOW value: #clocksLOW = (ModWidth modulo 8) + 1. HIGH value: #clocksHIGH = 16-#clocksLOW. Table 89. TxBitPhaseReg register (address 25h); reset value: 87h, 10000111b 7 6 5 4 3 2 1 0 RcvClkChange TxBitPhase Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 90. Description of TxBitPhaseReg bits Bit Symbol Description 7 RcvClkChange Set to logic 1, the demodulator’s clock is derived by the external RF field. 6 to 0 TxBitPhase These bits are representing the number of carrier frequency clock cycles, which are added to the waiting period before transmitting data in all communication modes. TXBitPhase is used to adjust the TX bit synchronization during passive NFCIP-1 communication mode at 106 kbit and in ISO/IEC 14443A/MIFARE card mode.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 55 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.3.6 RFCfgReg Configures the receiver gain and RF level detector sensitivity. Table 91. RFCfgReg register (address 26h); reset value: 48h, 01001000b 7 6 5 4 3 2 1 0 RFLevelAmp RxGain RFLevel Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 92. Description of RFCfgReg bits Bit Symbol Description 7 RFLevelAmp Set to logic 1, this bit activates the RF level detectors’ amplifier. 6 to 4 RxGain This register defines the receivers signal voltage gain factor: Value Description 000 18 dB 001 23 dB 010 18 dB 011 23 dB 100 33 dB 101 38 dB 110 43 dB 111 48 dB 3 to 0 RFLevel Defines the sensitivity of the RF level detector, for description see Section 12.3 “RF level detector”.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 56 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.3.7 GsNOnReg Selects the conductance for the N-driver of the antenna driver pins TX1 and TX2 when the driver is switched on. 9.2.3.8 CWGsPReg Defines the conductance of the P-driver during times of no modulation Table 93. GsNOnReg register (address 27h); reset value: 88h, 10001000b 7 6 5 4 3 2 1 0 CWGsNOn ModGsNOn Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 94. Description of GsNOnReg bits Bit Symbol Description 7 to 4 CWGsNOn The value of this register defines the conductance of the output N-driver during times of no modulation. This may be used to regulate the output power and subsequently current consumption and operating distance. Note: The conductance value is binary weighted. Note: During soft Power-down mode the highest bit is forced to 1. Note: This value is only used if the driver TX1 or TX2 are switched on. Otherwise the value of the bits CWGsNOff of register GsNOffReg is used. 3 to 0 ModGsNOn The value of this register defines the conductance of the output N-driver for the time of modulation. This may be used to regulate the modulation index. Note: The conductance value is binary weighted. Note: During soft Power-down mode the highest bit is forced to 1. Note: This value is only used if the driver TX1 or Tx2 are switched on. Otherwise the value of the bits ModsNOff of register GsNOffReg is used. Table 95. CWGsPReg register (address 28h); reset value: 20h, 00100000b 7 6 5 4 3 2 1 0 0 0 CWGsP Access Rights RFU RFU r/w r/w r/w r/w r/w r/w Table 96. Description of CWGsPReg bits Bit Symbol Description 7 to 6 - Reserved for future use. 5 to 0 CWGsP The value of this register defines the conductance of the output P-driver. This may be used to regulate the output power and subsequently current consumption and operating distance. Note: The conductance value is binary weighted. Note: During soft Power-down mode the highest bit is forced to 1.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 57 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.3.9 ModGsPReg Defines the driver P-output conductance during modulation. [1] If Force100ASK is set to logic 1, the value of ModGsP has no effect. 9.2.3.10 TMode Register, TPrescaler Register Defines settings for the timer. Note: The Prescaler value is split into two 8-bit registers Table 97. ModGsPReg register (address 29h); reset value: 20h, 00100000b 7 6 5 4 3 2 1 0 0 0 ModGsP Access Rights RFU RFU r/w r/w r/w r/w r/w r/w Table 98. Description of ModGsPReg bits Bit Symbol Description 7 to 6 - Reserved for future use. 5 to 0 ModGsP[1] The value of this register defines the conductance of the output P-driver for the time of modulation. This may be used to regulate the modulation index. Note: The conductance value is binary weighted. Note: During soft Power-down mode the highest bit is forced to 1. Table 99. TModeReg register (address 2Ah); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 TAuto TGated TAutoRestart TPrescaler_Hi Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 100. Description of TModeReg bits Bit Symbol Description 7 TAuto Set to logic 1, the timer starts automatically at the end of the transmission in all communication modes at all speeds or when bit InitialRFOn is set to logic 1 and the RF field is switched on. In mode MIFARE and ISO14443-B 106kbit/s the timer stops after the 5th bit (1 startbit, 4 databits) if the bit RxMultiple in the register RxModeReg is not set. In all other modes, the timer stops after the 4th bit if the bit RxMultiple the register RxModeReg is not set. If RxMultiple is set to logic 1, the timer never stops. In this case the timer can be stopped by setting the bit TStopNow in register ControlReg to 1. Set to logic 0 indicates, that the timer is not influenced by the protocol.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 58 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 6 to 5 TGated The internal timer is running in gated mode. Note: In the gated mode, the bit TRunning is 1 when the timer is enabled by the register bits. This bit does not influence the gating signal. Value Description 00 Non gated mode 01 Gated by SIGIN 10 Gated by AUX1 11 Gated by A3 4 TAutoRestart Set to logic 1, the timer automatically restart its count-down from TReloadValue, instead of counting down to zero. Set to logic 0 the timer decrements to ZERO and the bit TimerIRq is set to logic 1. 3 to 0 TPrescaler_Hi Defines higher 4 bits for TPrescaler. The following formula is used to calculate fTimer if TPrescalEven bit in Demot Reg is set to logic 0: fTimer = 13.56 MHz/(2*TPreScaler+1). Where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo] (TPrescaler value on 12 bits) (Default TPrescalEven is logic 0) The following formula is used to calculate fTimer if TPrescalEven bit in Demot Reg is set to logic 1: fTimer = 13.56 MHz/(2*TPreScaler+2). For detailed description see Section 15 “Timer unit”. For the behaviour within version 1.0, see Section 21 “Errata sheet” on page 109. Table 101. TPrescalerReg register (address 2Bh); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 TPrescaler_Lo Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 102. Description of TPrescalerReg bits Bit Symbol Description 7 to 0 TPrescaler_Lo Defines lower 8 bits for TPrescaler. The following formula is used to calculate fTimer if TPrescalEven bit in Demot Reg is set to logic 0: fTimer = 13.56 MHz/(2*TPreScaler+1). Where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo] (TPrescaler value on 12 bits) The following formula is used to calculate fTimer if TPrescalEven bit in Demot Reg is set to logic 1: fTimer = 13.56 MHz/(2*TPreScaler+2). Where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo] (TPrescaler value on 12 bits) For detailed description see Section 15 “Timer unit”. Table 100. Description of TModeReg bits …continued Bit Symbol DescriptionPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 59 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.3.11 TReloadReg Describes the 16-bit long timer reload value. Note: The Reload value is split into two 8-bit registers. Table 103. TReloadReg (Higher bits) register (address 2Ch); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 TReloadVal_Hi Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 104. Description of the higher TReloadReg bits Bit Symbol Description 7 to 0 TReloadVal_Hi Defines the higher 8 bits for the TReloadReg. With a start event the timer loads the TReloadVal. Changing this register affects the timer only at the next start event. Table 105. TReloadReg (Lower bits) register (address 2Dh); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 TReloadVal_Lo Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 106. Description of lower TReloadReg bits Bit Symbol Description 7 to 0 TReloadVal_Lo Defines the lower 8 bits for the TReloadReg. With a start event the timer loads the TReloadVal. Changing this register affects the timer only at the next start event. PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 60 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.3.12 TCounterValReg Contains the current value of the timer. Note: The Counter value is split into two 8-bit register. 9.2.4 Page 3: Test 9.2.4.1 PageReg Selects the register page. Table 107. TCounterValReg (Higher bits) register (address 2Eh); reset value: XXh, XXXXXXXXb 7 6 5 4 3 2 1 0 TCounterVal_Hi Access Rights rrrrrrrr Table 108. Description of the higher TCounterValReg bits Bit Symbol Description 7 to 0 TCounterVal_Hi Current value of the timer, higher 8 bits. Table 109. TCounterValReg (Lower bits) register (address 2Fh); reset value: XXh, XXXXXXXXb 7 6 5 4 3 2 1 0 TCounterVal_Lo Access Rights rrrrrrrr Table 110. Description of lower TCounterValReg bits Bit Symbol Description 7 to 0 TCounterVal_Lo Current value of the timer, lower 8 bits. Table 111. PageReg register (address 30h); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 UsePageSelect 0 0 0 0 0 PageSelect Access Rights r/w RFU RFU RFU RFU RFU r/w r/wPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 61 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution Table 112. Description of PageReg bits Bit Symbol Description 7 UsePageSelect Set to logic 1, the value of PageSelect is used as register address A5 and A4. The LSB-bits of the register address are defined by the address pins or the internal address latch, respectively. Set to logic 0, the whole content of the internal address latch defines the register address. The address pins are used as described in Section 10.1 “Automatic microcontroller interface detection”. 6 to 2 - Reserved for future use. 1 to 0 PageSelect The value of PageSelect is used only if UsePageSelect is set to logic 1. In this case, it specifies the register page (which is A5 and A4 of the register address).PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 62 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.4.2 TestSel1Reg General test signal configuration. 9.2.4.3 TestSel2Reg General test signal configuration and PRBS control Table 113. TestSel1Reg register (address 31h); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 - - SAMClockSel SAMClkD1 TstBusBitSel Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 114. Description of TestSel1Reg bits Bit Symbol Description 7 to 6 - Reserved for future use. 5 to 4 SAMClockSel Defines the source for the 13.56 MHz SAM clock Value Description 00 GND- Sam Clock switched off 01 clock derived by the internal oscillator 10 internal UART clock 11 clock derived by the RF field 3 SAMClkD1 Set to logic 1, the SAM clock is delivered to D1. Note: Only possible if the 8bit parallel interface is not used. 2 to 0 TstBusBitSel Select the TestBus bit from the testbus to be propagated to SIGOUT. Table 115. TestSel2Reg register (address 32h); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 TstBusFlip PRBS9 PRBS15 TestBusSel Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 116. Description of TestSel2Reg bits Bit Symbol Description 7 TstBusFlip If set to logic 1, the testbus is mapped to the parallel port by the following order: D4, D3, D2, D6, D5, D0, D1. See Section 20 “Testsignals”. 6 PRBS9 Starts and enables the PRBS9 sequence according ITU-TO150. Note: All relevant registers to transmit data have to be configured before entering PRBS9 mode. Note: The data transmission of the defined sequence is started by the send command. 5 PRBS15 Starts and enables the PRBS15 sequence according ITU-TO150. Note: All relevant registers to transmit data have to be configured before entering PRBS15 mode. Note: The data transmission of the defined sequence is started by the send command. 4 to 0 TestBusSel Selects the testbus. See Section 20 “Testsignals”PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 63 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.4.4 TestPinEnReg Enables the pin output driver on the 8-bit parallel bus. 9.2.4.5 TestPinValueReg Defines the values for the 7-bit parallel port when it is used as I/O. Table 117. TestPinEnReg register (address 33h); reset value: 80h, 10000000b 7 6 5 4 3 2 1 0 RS232LineEn TestPinEn Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 118. Description of TestPinEnReg bits Bit Symbol Description 7 RS232LineEn Set to logic 0, the lines MX and DTRQ for the serial UART are disabled. 6 to 0 TestPinEn Enables the pin output driver on the 8-bit parallel interface. Example: Setting bit 0 to 1 enables D0 Setting bit 5 to 1 enables D5 Note: Only valid if one of serial interfaces is used. If the SPI interface is used only D0 to D4 can be used. If the serial UART interface is used and RS232LineEn is set to logic 1 only D0 to D4 can be used. Table 119. TestPinValueReg register (address 34h); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 UseIO TestPinValue Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 120. Description of TestPinValueReg bits Bit Symbol Description 7 UseIO Set to logic 1, this bit enables the I/O functionality for the 7-bit parallel port in case one of the serial interfaces is used. The input/output behavior is defined by TestPinEn in register TestPinEnReg. The value for the output behavior is defined in the bits TestPinVal. Note: If SAMClkD1 is set to logic 1, D1 can not be used as I/O. 6 to 0 TestPinValue Defines the value of the 7-bit parallel port, when it is used as I/O. Each output has to be enabled by the TestPinEn bits in register TestPinEnReg. Note: Reading the register indicates the actual status of the pins D6 - D0 if UseIO is set to logic 1. If UseIO is set to logic 0, the value of the register TestPinValueReg is read back. PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 64 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.4.6 TestBusReg Shows the status of the internal testbus. 9.2.4.7 AutoTestReg Controls the digital selftest. 9.2.4.8 VersionReg Shows the version. Table 121. TestBusReg register (address 35h); reset value: XXh, XXXXXXXXb 7 6 5 4 3 2 1 0 TestBus Access Rights r r r r r r r r Table 122. Description of TestBusReg bits Bit Symbol Description 7 to 0 TestBus Shows the status of the internal testbus. The testbus is selected by the register TestSel2Reg. See Section 20 “Testsignals”. Table 123. AutoTestReg register (address 36h); reset value: 40h, 01000000b 7 6 5 4 3 2 1 0 0 AmpRcv EOFSO FAdjust - SelfTest Access Rights RFT r/w RFU RFU r/w r/w r/w r/w Table 124. Description of bits Bit Symbol Description 7 - Reserved for production tests. 6 AmpRcv If set to logic 1, the internal signal processing in the receiver chain is performed non-linear. This increases the operating distance in communication modes at 106 kbit. Note: Due to the non linearity the effect of the bits MinLevel and CollLevel in the register RxThreshholdReg are as well non linear. 5 EOFSOFAdjust If set to logic 0 and the EOFSOFwidth is set to 1 will result in the Maximum length of SOF and EOF according to ISO/IEC14443B If set to logic 0 and the EOFSOFwidth is set to 0 will result in the Minimum length of SOF and EOF according to ISO/IEC14443B If this bit is set to 1 and the EOFSOFwidth bit is logic 1 will result in SOF low = (11 etu 8 cycles)/fc SOF high = (2 etu + 8 cycles)/fc EOF low = (11 etu 8 cycles)/fc For the behaviour in version 1.0, see Section 21 “Errata sheet” on page 109. 4 - Reserved for future use. 3 to 0 SelfTest Enables the digital self test. The selftest can be started by the selftest command in the command register. The selftest is enabled by 1001. Note: For default operation the selftest has to be disabled by 0000.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 65 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution Table 125. VersionReg register (address 37h); reset value: XXh, XXXXXXXXb 7 6 5 4 3 2 1 0 Version Access Rights r r r r r r r r Table 126. Description of VersionReg bits Bit Symbol Description 7 to 0 Version 80h indicates PN512 version 1.0, differences to version 2.0 are described within Section 21 “Errata sheet” on page 109. 82h indicates PN512 version 2.0, which covers also the industrial version.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 66 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.4.9 AnalogTestReg Controls the pins AUX1 and AUX2 Table 127. AnalogTestReg register (address 38h); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 AnalogSelAux1 AnalogSelAux2 Access Rights r/w r/w r/w r/w r/w r/w r/w r/w Table 128. Description of AnalogTestReg bits Bit Symbol Description 7 to 4 3 to 0 AnalogSelAux1 AnalogSelAux2 Controls the AUX pin. Note: All test signals are described in Section 20 “Testsignals”. Value Description 0000 Tristate 0001 Output of TestDAC1 (AUX1), output of TESTDAC2 (AUX2) Note: Current output. The use of 1 k pull-down resistor on AUX is recommended. 0010 Testsignal Corr1 Note: Current output. The use of 1 k pull-down resistor on AUX is recommended. 0011 Testsignal Corr2 Note: Current output. The use of 1 k pull-down resistor on AUX is recommended. 0100 Testsignal MinLevel Note: Current output. The use of 1 k pull-down resistor on AUX is recommended. 0101 Testsignal ADC channel I Note: Current output. The use of 1 k pull-down resistor on AUX is recommended. 0110 Testsignal ADC channel Q Note: Current output. The use of 1 k pull-down resistor on AUX is recommended. 0111 Testsignal ADC channel I combined with Q Note: Current output. The use of 1 k pull-down resistor on AUX is recommended. 1000 Testsignal for production test Note: Current output. The use of 1 k pull-down resistor on AUX is recommended. 1001 SAM clock (13.56 MHz) 1010 HIGH 1011 LOW 1100 TxActive At 106 kbit: HIGH during Startbit, Data bit, Parity and CRC. At 212 and 424 kbit: High during Preamble, Sync, Data and CRC. 1101 RxActive At 106 kbit: High during databit, Parity and CRC. At 212 and 424 kbit: High during data and CRC. 1110 Subcarrier detected 106 kbit: not applicable 212 and 424 kbit: High during last part of Preamble, Sync data and CRC 1111 TestBus-Bit as defined by the TstBusBitSel in register TestSel1Reg.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 67 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.4.10 TestDAC1Reg Defines the testvalues for TestDAC1. 9.2.4.11 TestDAC2Reg Defines the testvalue for TestDAC2. 9.2.4.12 TestADCReg Shows the actual value of ADC I and Q channel. Table 129. TestDAC1Reg register (address 39h); reset value: XXh, 00XXXXXXb 7 6 5 4 3 2 1 0 0 0 TestDAC1 Access Rights RFT RFU r/w r/w r/w r/w r/w r/w Table 130. Description of TestDAC1Reg bits Bit Symbol Description 7 - Reserved for production tests. 6 - Reserved for future use. 5 to 0 TestDAC1 Defines the testvalue for TestDAC1. The output of the DAC1 can be switched to AUX1 by setting AnalogSelAux1 to 0001 in register AnalogTestReg. Table 131. TestDAC2Reg register (address 3Ah); reset value: XXh, 00XXXXXXb 7 6 5 4 3 2 1 0 0 0 TestDAC2 Access Rights RFU RFU r/w r/w r/w r/w r/w r/w Table 132. Description ofTestDAC2Reg bits Bit Symbol Description 7 to 6 - Reserved for future use. 5 to 0 TestDAC2 Defines the testvalue for TestDAC2. The output of the DAC2 can be switched to AUX2 by setting AnalogSelAux2 to 0001 in register AnalogTestReg. Table 133. TestADCReg register (address 3Bh); reset value: XXh, XXXXXXXXb 7 6 5 4 3 2 1 0 ADC_I ADC_Q Access Rights Table 134. Description of TestADCReg bits Bit Symbol Description 7 to 4 ADC_I Shows the actual value of ADC I channel. 3 to 0 ADC_Q Shows the actual value of ADC Q channel. PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 68 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 9.2.4.13 RFTReg 10. Digital interfaces 10.1 Automatic microcontroller interface detection The PN512 supports direct interfacing of hosts using SPI, I2C-bus or serial UART interfaces. The PN512 resets its interface and checks the current host interface type automatically after performing a power-on or hard reset. The PN512 identifies the host interface by sensing the logic levels on the control pins after the reset phase. This is done using a combination of fixed pin connections. Table 141 shows the different connection configurations. Table 135. RFTReg register (address 3Ch); reset value: FFh, 11111111b 7 6 5 4 3 2 1 0 11111111 Access Rights RFT RFT RFT RFT RFT RFT RFT RFT Table 136. Description of RFTReg bits Bit Symbol Description 7 to 0 - Reserved for production tests. Table 137. RFTReg register (address 3Dh, 3Fh); reset value: 00h, 00000000b 7 6 5 4 3 2 1 0 00000000 Access Rights RFT RFT RFT RFT RFT RFT RFT RFT Table 138. Description of RFTReg bits Bit Symbol Description 7 to 0 - Reserved for production tests. Table 139. RFTReg register (address 3Eh); reset value: 03h, 00000011b 7 6 5 4 3 2 1 0 00000011 Access Rights RFT RFT RFT RFT RFT RFT RFT RFT Table 140. Description of RFTReg bits Bit Symbol Description 7 to 0 - Reserved for production tests.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 69 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution [1] only available in HVQFN 40. Table 141. Connection protocol for detecting different interface types Pin Interface type UART (input) SPI (output) I 2C-bus (I/O) SDA RX NSS SDA I 2C0 0 1 EA 0 1 EA D7 TX MISO SCL D6 MX MOSI ADR_0 D5 DTRQ SCK ADR_1 D4 - - ADR_2 D3 - - ADR_3 D2 - - ADR_4 D1 - - ADR_5 Table 142. Connection scheme for detecting the different interface types PN512 Parallel Interface Type Serial Interface Types Separated Read/Write Strobe Common Read/Write Strobe Pin Dedicated Address Bus Multiplexed Address Bus Dedicated Address Bus Multiplexed Address Bus UART SPI I 2C ALE 1 ALE 1 AS RX NSS SDA A5[1] A5 0 A5 0 0 0 0 A4[1] A4 0 A4 0 0 0 0 A3[1] A3 0 A3 0 0 0 0 A2[1] A2 1 A2 1 0 0 0 A1 A1 1 A1 1 0 0 1 A0 A0 1 A0 0 0 1 EA NRD[1] NRD NRD NDS NDS 1 1 1 NWR[1] NWR NWR RD/NWR RD/NWR 1 1 1 NCS[1] NCS NCS NCS NCS NCS NCS NCS D7 D7 D7 D7 D7 TX MISO SCL D6 D6 D6 D6 D6 MX MOSI ADR_0 D5 D5 AD5 D5 AD5 DTRQ SCK ADR_1 D4 D4 AD4 D4 AD4 - - ADR_2 D3 D3 AD3 D3 AD3 - - ADR_3 D2 D2 AD2 D2 AD2 - - ADR_4 D1 D1 AD1 D1 AD1 - - ADR_5 D0 D0 AD0 D0 AD0 - - ADR_6 Remark: Overview on the pin behavior Pin behavior Input Output In/OutPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 70 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 10.2 Serial Peripheral Interface A serial peripheral interface (SPI compatible) is supported to enable high-speed communication to the host. The interface can handle data speeds up to 10 Mbit/s. When communicating with a host, the PN512 acts as a slave, receiving data from the external host for register settings, sending and receiving data relevant for RF interface communication. An interface compatible with SPI enables high-speed serial communication between the PN512 and a microcontroller. The implemented interface is in accordance with the SPI standard. The timing specification is given in Section 26.1 on page 117. The PN512 acts as a slave during SPI communication. The SPI clock signal SCK must be generated by the master. Data communication from the master to the slave uses the MOSI line. The MISO line is used to send data from the PN512 to the master. Data bytes on both MOSI and MISO lines are sent with the MSB first. Data on both MOSI and MISO lines must be stable on the rising edge of the clock and can be changed on the falling edge. Data is provided by the PN512 on the falling clock edge and is stable during the rising clock edge. 10.2.1 SPI read data Reading data using SPI requires the byte order shown in Table 143 to be used. It is possible to read out up to n-data bytes. The first byte sent defines both the mode and the address. [1] X = Do not care. Remark: The MSB must be sent first. 10.2.2 SPI write data To write data to the PN512 using SPI requires the byte order shown in Table 144. It is possible to write up to n data bytes by only sending one address byte. Fig 13. SPI connection to host 001aan220 PN512 SCK SCK MOSI MOSI MISO MISO NSS NSS Table 143. MOSI and MISO byte order Line Byte 0 Byte 1 Byte 2 To Byte n Byte n + 1 MOSI address 0 address 1 address 2 ... address n 00 MISO X[1] data 0 data 1 ... data n 1 data nPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 71 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution The first send byte defines both the mode and the address byte. [1] X = Do not care. Remark: The MSB must be sent first. 10.2.3 SPI address byte The address byte has to meet the following format. The MSB of the first byte defines the mode used. To read data from the PN512 the MSB is set to logic 1. To write data to the PN512 the MSB must be set to logic 0. Bits 6 to 1 define the address and the LSB is set to logic 0. 10.3 UART interface 10.3.1 Connection to a host Remark: Signals DTRQ and MX can be disabled by clearing TestPinEnReg register’s RS232LineEn bit. 10.3.2 Selectable UART transfer speeds The internal UART interface is compatible with an RS232 serial interface. The default transfer speed is 9.6 kBd. To change the transfer speed, the host controller must write a value for the new transfer speed to the SerialSpeedReg register. Bits BR_T0[2:0] and BR_T1[4:0] define the factors for setting the transfer speed in the SerialSpeedReg register. The BR_T0[2:0] and BR_T1[4:0] settings are described in Table 10. Examples of different transfer speeds and the relevant register settings are given in Table 11. Table 144. MOSI and MISO byte order Line Byte 0 Byte 1 Byte 2 To Byte n Byte n + 1 MOSI address 0 data 0 data 1 ... data n 1 data n MISO X[1] X[1] X[1] ... X[1] X[1] Table 145. Address byte 0 register; address MOSI 7 (MSB) 6 5 4 3 2 1 0 (LSB) 1 = read 0 = write address 0 Fig 14. UART connection to microcontrollers 001aan221 PN512 RX RX TX TX DTRQ DTRQ MX MXPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 72 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution [1] The resulting transfer speed error is less than 1.5 % for all described transfer speeds. The selectable transfer speeds shown in Table 11 are calculated according to the following equations: If BR_T0[2:0] = 0: (1) If BR_T0[2:0] > 0: (2) Remark: Transfer speeds above 1228.8 kBd are not supported. 10.3.3 UART framing Table 146. BR_T0 and BR_T1 settings BR_Tn Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 BR_T0 factor 1 1 2 4 8 16 32 64 BR_T1 range 1 to 32 33 to 64 33 to 64 33 to 64 33 to 64 33 to 64 33 to 64 33 to 64 Table 147. Selectable UART transfer speeds Transfer speed (kBd) SerialSpeedReg value Transfer speed accuracy (%)[1] Decimal Hexadecimal 7.2 250 FAh 0.25 9.6 235 EBh 0.32 14.4 218 DAh 0.25 19.2 203 CBh 0.32 38.4 171 ABh 0.32 57.6 154 9Ah 0.25 115.2 122 7Ah 0.25 128 116 74h 0.06 230.4 90 5Ah 0.25 460.8 58 3Ah 0.25 921.6 28 1Ch 1.45 1228.8 21 15h 0.32 transfer speed 27.12 106 BR_T0 1 + = -------------------------------- transfer speed 27.12 106 BR_T1 33 + 2 BR_T0 1 – ----------------------------------- ----------------------------------- = Table 148. UART framing Bit Length Value Start 1-bit 0 Data 8 bits data Stop 1-bit 1PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 73 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution Remark: The LSB for data and address bytes must be sent first. No parity bit is used during transmission. Read data: To read data using the UART interface, the flow shown in Table 149 must be used. The first byte sent defines both the mode and the address. Write data: To write data to the PN512 using the UART interface, the structure shown in Table 150 must be used. The first byte sent defines both the mode and the address. Table 149. Read data byte order Pin Byte 0 Byte 1 RX (pin 24) address - TX (pin 31) - data 0 (1) Reserved. Fig 15. UART read data timing diagram 001aak588 SA ADDRESS RX TX MX DTRQ A0 A1 A2 A3 A4 A5 (1) SO SA D0 D1 D2 D3 D4 D5 D6 D7 SO DATA R/W Table 150. Write data byte order Pin Byte 0 Byte 1 RX (pin 24) address 0 data 0 TX (pin 31) - address 0xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. COMPANY PUBLIC Product data sheet Rev. 4.5 — 17 December 2013 111345 74 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution Remark: The data byte can be sent directly after the address byte on pin RX. Address byte: The address byte has to meet the following format: (1) Reserved. Fig 16. UART write data timing diagram 001aak589 SA ADDRESS RX TX MX DTRQ A0 A1 A2 A3 A4 A5 (1) SO SA D0 D1 D2 D3 D4 D5 D6 D7 SO SA A0 A1 A2 A3 A4 A5 (1) SO DATA ADDRESS R/W R/WPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 75 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution The MSB of the first byte sets the mode used. To read data from the PN512, the MSB is set to logic 1. To write data to the PN512 the MSB is set to logic 0. Bit 6 is reserved for future use, and bits 5 to 0 define the address; see Table 151. 10.4 I2C Bus Interface An I2C-bus (Inter-IC) interface is supported to enable a low-cost, low pin count serial bus interface to the host. The I2C-bus interface is implemented according to NXP Semiconductors’ I 2C-bus interface specification, rev. 2.1, January 2000. The interface can only act in Slave mode. Therefore the PN512 does not implement clock generation or access arbitration. The PN512 can act either as a slave receiver or slave transmitter in Standard mode, Fast mode and High-speed mode. SDA is a bidirectional line connected to a positive supply voltage using a current source or a pull-up resistor. Both SDA and SCL lines are set HIGH when data is not transmitted. The PN512 has a 3-state output stage to perform the wired-AND function. Data on the I2C-bus can be transferred at data rates of up to 100 kBd in Standard mode, up to 400 kBd in Fast mode or up to 3.4 Mbit/s in High-speed mode. If the I2C-bus interface is selected, spike suppression is activated on lines SCL and SDA as defined in the I2C-bus interface specification. See Table 171 on page 117 for timing requirements. Table 151. Address byte 0 register; address MOSI 7 (MSB) 6 5 4 3 2 1 0 (LSB) 1 = read 0 = write reserved address Fig 17. I2C-bus interface 001aan222 PN512 SDA SCL I2C EA ADR_[5:0] PULL-UP NETWORK CONFIGURATION WIRING PULL-UP NETWORK MICROCONTROLLERPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 76 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 10.4.1 Data validity Data on the SDA line must be stable during the HIGH clock period. The HIGH or LOW state of the data line must only change when the clock signal on SCL is LOW. 10.4.2 START and STOP conditions To manage the data transfer on the I2C-bus, unique START (S) and STOP (P) conditions are defined. • A START condition is defined with a HIGH-to-LOW transition on the SDA line while SCL is HIGH. • A STOP condition is defined with a LOW-to-HIGH transition on the SDA line while SCL is HIGH. The I2C-bus master always generates the START and STOP conditions. The bus is busy after the START condition. The bus is free again a certain time after the STOP condition. The bus stays busy if a repeated START (Sr) is generated instead of a STOP condition. The START (S) and repeated START (Sr) conditions are functionally identical. Therefore, S is used as a generic term to represent both the START (S) and repeated START (Sr) conditions. 10.4.3 Byte format Each byte must be followed by an acknowledge bit. Data is transferred with the MSB first; see Figure 22. The number of transmitted bytes during one data transfer is unrestricted but must meet the read/write cycle format. Fig 18. Bit transfer on the I2C-bus mbc621 data line stable; data valid change of data allowed SDA SCL Fig 19. START and STOP conditions mbc622 SDA SCL P STOP condition SDA SCL S START conditionPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 77 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 10.4.4 Acknowledge An acknowledge must be sent at the end of one data byte. The acknowledge-related clock pulse is generated by the master. The transmitter of data, either master or slave, releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver pulls down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse. The master can then generate either a STOP (P) condition to stop the transfer or a repeated START (Sr) condition to start a new transfer. A master-receiver indicates the end of data to the slave-transmitter by not generating an acknowledge on the last byte that was clocked out by the slave. The slave-transmitter releases the data line to allow the master to generate a STOP (P) or repeated START (Sr) condition. Fig 20. Acknowledge on the I2C-bus mbc602 S START condition 1 2 8 9 clock pulse for acknowledgement not acknowledge acknowledge data output by transmitter data output by receiver SCL from master Fig 21. Data transfer on the I2C-bus msc608 Sr or P SDA Sr P SCL STOP or repeated START condition S or Sr START or repeated START condition 1 2 3 - 8 9 ACK 9 ACK 1 2 7 8 MSB acknowledgement signal from slave byte complete, interrupt within slave clock line held LOW while interrupts are serviced acknowledgement signal from receiverPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 78 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 10.4.5 7-Bit addressing During the I2C-bus address procedure, the first byte after the START condition is used to determine which slave will be selected by the master. Several address numbers are reserved. During device configuration, the designer must ensure that collisions with these reserved addresses cannot occur. Check the I 2C-bus specification for a complete list of reserved addresses. The I2C-bus address specification is dependent on the definition of pin EA. Immediately after releasing pin NRSTPD or after a power-on reset, the device defines the I2C-bus address according to pin EA. If pin EA is set LOW, the upper 4 bits of the device bus address are reserved by NXP Semiconductors and set to 0101b for all PN512 devices. The remaining 3 bits (ADR_0, ADR_1, ADR_2) of the slave address can be freely configured by the customer to prevent collisions with other I2C-bus devices. If pin EA is set HIGH, ADR_0 to ADR_5 can be completely specified at the external pins according to Table 141 on page 69. ADR_6 is always set to logic 0. In both modes, the external address coding is latched immediately after releasing the reset condition. Further changes at the used pins are not taken into consideration. Depending on the external wiring, the I2C-bus address pins can be used for test signal outputs. 10.4.6 Register write access To write data from the host controller using the I2C-bus to a specific register in the PN512 the following frame format must be used. • The first byte of a frame indicates the device address according to the I2C-bus rules. • The second byte indicates the register address followed by up to n-data bytes. In one frame all data bytes are written to the same register address. This enables fast FIFO buffer access. The Read/Write (R/W) bit is set to logic 0. Fig 22. First byte following the START procedure slave address 001aak591 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 R/W MSB LSBPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 79 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 10.4.7 Register read access To read out data from a specific register address in the PN512, the host controller must use the following procedure: • Firstly, a write access to the specific register address must be performed as indicated in the frame that follows • The first byte of a frame indicates the device address according to the I2C-bus rules • The second byte indicates the register address. No data bytes are added • The Read/Write bit is 0 After the write access, read access can start. The host sends the device address of the PN512. In response, the PN512 sends the content of the read access register. In one frame all data bytes can be read from the same register address. This enables fast FIFO buffer access or register polling. The Read/Write (R/W) bit is set to logic 1. Fig 23. Register read and write access 001aak592 S A 0 0 I 2C-BUS SLAVE ADDRESS [A7:A0] JOINER REGISTER ADDRESS [A5:A0] write cycle 0 (W) A DATA [7:0] [0:n] [0:n] [0:n] A P S A 0 0 I 2C-BUS SLAVE ADDRESS [A7:A0] JOINER REGISTER ADDRESS [A5:A0] read cycle optional, if the previous access was on the same register address 0 (W) A P P S S start condition P stop condition A acknowledge A not acknowledge W write cycle R read cycle A I 2C-BUS SLAVE ADDRESS [A7:A0] sent by master sent by slave DATA [7:0] 1 (R) A DATA [7:0] APN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 80 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 10.4.8 High-speed mode In High-speed mode (HS mode), the device can transfer information at data rates of up to 3.4 Mbit/s, while remaining fully downward-compatible with Fast or Standard mode (F/S mode) for bidirectional communication in a mixed-speed bus system. 10.4.9 High-speed transfer To achieve data rates of up to 3.4 Mbit/s the following improvements have been made to I 2C-bus operation. • The inputs of the device in HS mode incorporate spike suppression, a Schmitt trigger on the SDA and SCL inputs and different timing constants when compared to F/S mode • The output buffers of the device in HS mode incorporate slope control of the falling edges of the SDA and SCL signals with different fall times compared to F/S mode 10.4.10 Serial data transfer format in HS mode The HS mode serial data transfer format meets the Standard mode I2C-bus specification. HS mode can only start after all of the following conditions (all of which are in F/S mode): 1. START condition (S) 2. 8-bit master code (00001XXXb) 3. Not-acknowledge bit (A) When HS mode starts, the active master sends a repeated START condition (Sr) followed by a 7-bit slave address with a R/W bit address and receives an acknowledge bit (A) from the selected PN512. Data transfer continues in HS mode after the next repeated START (Sr), only switching back to F/S mode after a STOP condition (P). To reduce the overhead of the master code, a master links a number of HS mode transfers, separated by repeated START conditions (Sr). Fig 24. I2C-bus HS mode protocol switch F/S mode HS mode (current-source for SCL HIGH enabled) F/S mode 001aak749 A A/A A DATA (n-bytes + A) S MASTER CODE Sr SLAVE ADDRESS R/W HS mode continues Sr SLAVE ADDRESS PPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 81 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution Fig 25. I2C-bus HS mode protocol frame msc618 8-bit master code 0000 1xxx A tH t1 S F/S mode HS mode If P then F/S mode If Sr (dotted lines) then HS mode 1 6789 6789 1 1 2 to 5 2 to 5 2 to 5 67 89 SDA high SCL high SDA high SCL high tH tFS Sr Sr P 7-bit SLA R/W A n + (8-bit data + A/A) = Master current source pull-up = Resistor pull-upPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 82 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 10.4.11 Switching between F/S mode and HS mode After reset and initialization, the PN512 is in Fast mode (which is in effect F/S mode as Fast mode is downward-compatible with Standard mode). The connected PN512 recognizes the “S 00001XXX A” sequence and switches its internal circuitry from the Fast mode setting to the HS mode setting. The following actions are taken: 1. Adapt the SDA and SCL input filters according to the spike suppression requirement in HS mode. 2. Adapt the slope control of the SDA output stages. It is possible for system configurations that do not have other I2C-bus devices involved in the communication to switch to HS mode permanently. This is implemented by setting Status2Reg register’s I2CForceHS bit to logic 1. In permanent HS mode, the master code is not required to be sent. This is not defined in the specification and must only be used when no other devices are connected on the bus. In addition, spikes on the I2C-bus lines must be avoided because of the reduced spike suppression. 10.4.12 PN512 at lower speed modes PN512 is fully downward-compatible and can be connected to an F/S mode I2C-bus system. The device stays in F/S mode and communicates at F/S mode speeds because a master code is not transmitted in this configuration. 11. 8-bit parallel interface The PN512 supports two different types of 8-bit parallel interfaces, Intel and Motorola compatible modes. 11.1 Overview of supported host controller interfaces The PN512 supports direct interfacing to various -Controllers. The following table shows the parallel interface types supported by the PN512. Table 152. Supported interface types Supported interface types Bus Separated Address and Data Bus Multiplexed Address and Data Bus Separated Read and Write Strobes (INTEL compatible) control NRD, NWR, NCS NRD, NWR, NCS, ALE address A0 … A3 [..A5*] AD0 … AD7 data D0 … D7 AD0 … AD7 Multiplexed Read and Write Strobe (Motorola compatible) control R/NW, NDS, NCS R/NW, NDS, NCS, AS address A0 … A3 [..A5*] AD0 … AD7 data D0 … D7 AD0 … AD7PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 83 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 11.2 Separated Read/Write strobe For timing requirements refer to Section 26.2 “8-bit parallel interface timing”. 11.3 Common Read/Write strobe For timing requirements refer to Section 26.2 “8-bit parallel interface timing” Fig 26. Connection to host controller with separated Read/Write strobes 001aan223 PN512 NCS A0...A3[A5*] D0...D7 A0 A1 A2 A3 A4* A5* address bus (A0...A3[A5*]) ALE NRD NWR ADDRESS DECODER data bus (D0...D7) high not data strobe (NRD) not write (NWR) address bus remark: *depending on the package type. multiplexed address/data AD0...AD7) PN512 NCS D0...D7 ALE NRD NWR ADDRESS DECODER low low high high high low address latch enable (ALE) not read strobe (NRD) not write (NWR) non multiplexed address Fig 27. Connection to host controller with common Read/Write strobes 001aan224 PN512 NCS A0...A3[A5*] D0...D7 A0 A1 A2 A3 A4* A5* address bus (A0...A3[A5*]) ALE NRD NWR ADDRESS DECODER Data bus (D0...D7) high not data strobe (NDS) read not write (RD/NWR) address bus remark: *depending on the package type. multiplexed address/data AD0...AD7) PN512 NCS D0...D7 ALE NRD NWR ADDRESS DECODER low low high high low low address strobe (AS) not data strobe (NDS) read not write (RD/NWR) non multiplexed addressPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 84 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 12. Analog interface and contactless UART 12.1 General The integrated contactless UART supports the external host online with framing and error checking of the protocol requirements up to 848 kBd. An external circuit can be connected to the communication interface pins MFIN and MFOUT to modulate and demodulate the data. The contactless UART handles the protocol requirements for the communication protocols in cooperation with the host. Protocol handling generates bit and byte-oriented framing. In addition, it handles error detection such as parity and CRC, based on the various supported contactless communication protocols. Remark: The size and tuning of the antenna and the power supply voltage have an important impact on the achievable operating distance. 12.2 TX driver The signal on pins TX1 and TX2 is the 13.56 MHz energy carrier modulated by an envelope signal. It can be used to drive an antenna directly using a few passive components for matching and filtering; see Section 15 on page 96. The signal on pins TX1 and TX2 can be configured using the TxControlReg register; see Section 9.2.2.5 on page 40. The modulation index can be set by adjusting the impedance of the drivers. The impedance of the p-driver can be configured using registers CWGsPReg and ModGsPReg. The impedance of the n-driver can be configured using the GsNReg register. The modulation index also depends on the antenna design and tuning. The TxModeReg and TxSelReg registers control the data rate and framing during transmission and the antenna driver setting to support the different requirements at the different modes and transfer speeds. [1] X = Do not care. Table 153. Register and bit settings controlling the signal on pin TX1 Bit Tx1RFEn Bit Force 100ASK Bit InvTx1RFOn Bit InvTx1RFOff Envelope Pin TX1 GSPMos GSNMos Remarks 0 X[1] X[1] X[1] X[1] X[1] CWGsNOff CWGsNOff not specified if RF is switched off 1 00 X[1] 0 RF pMod nMod 100 % ASK: pin TX1 pulled to logic 0, independent of the InvTx1RFOff bit 1 RF pCW nCW 01 X[1] 0 RF pMod nMod 1 RF pCW nCW 11 X[1] 0 0 pMod nMod 1 RF_n pCW nCWPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 85 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution [1] X = Do not care. The following abbreviations have been used in Table 153 and Table 154: • RF: 13.56 MHz clock derived from 27.12 MHz quartz crystal oscillator divided by 2 • RF_n: inverted 13.56 MHz clock • GSPMos: conductance, configuration of the PMOS array • GSNMos: conductance, configuration of the NMOS array • pCW: PMOS conductance value for continuous wave defined by the CWGsPReg register • pMod: PMOS conductance value for modulation defined by the ModGsPReg register • nCW: NMOS conductance value for continuous wave defined by the GsNReg register’s CWGsN[3:0] bits • nMod: NMOS conductance value for modulation defined by the GsNReg register’s ModGsN[3:0] bits • X = do not care. Remark: If only one driver is switched on, the values for CWGsPReg, ModGsPReg and GsNReg registers are used for both drivers. 12.3 RF level detector The RF level detector is integrated to fulfill NFCIP1 protocol requirements (e.g. RF collision avoidance). Furthermore the RF level detector can be used to wake up the PN512 and to generate an interrupt. Table 154. Register and bit settings controlling the signal on pin TX2 Bit Tx1RFEn Bit Force 100ASK Bit Tx2CW Bit InvTx2RFOn Bit InvTx2RFOff Envelope Pin TX2 GSPMos GSNMos Remarks 0 X[1] X[1] X[1] X[1] X[1] X[1] CWGsNOff CWGsNOff not specified if RF is switched off 1 0 00 X[1] 0 RF pMod nMod - 1 RF pCW nCW 1 X[1] 0 RF_n pMod nMod 1 RF_n pCW nCW 10 X[1] X[1] RF pCW nCW conductance always CW for the Tx2CW bit 1 X[1] X[1] RF_n pCW nCW 1 00 X[1] 0 0 pMod nMod 100 % ASK: pin TX2 pulled to logic 0 (independent of the InvTx2RFOn/In vTx2RFOff bits) 1 RF pCW nCW 1 X[1] 0 0 pMod nMod 1 RF_n pCW nCW 10 X[1] X[1] RF pCW nCW 1 X[1] X[1] RF_n pCW nCWPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 86 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution The sensitivity of the RF level detector is adjustable in a 4-bit range using the bits RFLevel in register RFCfgReg. The sensitivity itself depends on the antenna configuration and tuning. Possible sensitivity levels at the RX pin are listed in the Table 154. To increase the sensitivity of the RF level detector an amplifier can be activated by setting the bit RFLevelAmp in register RFCfgReg to 1. Remark: During soft Power-down mode the RF level detector amplifier is automatically switched off to ensure that the power consumption is less than 10 A at 3 V. Remark: With typical antennas lower sensitivity levels can provoke misleading results because of intrinsic noise in the environment. Note: It is recommended to use the bit RFLevelAmp only with higher RF level settings. 12.4 Data mode detector The Data mode detector gives the possibility to detect received signals according to the ISO/IEC 14443A/MIFARE, FeliCa or NFCIP-1 schemes at the standard transfer speeds for 106 kbit, 212 kbit and 424 kbit in order to prepare the internal receiver in a fast and convenient way for further data processing. The Data mode detector can only be activated by the AutoColl command. The mode detector resets, when no external RF field is detected by the RF level detector. The Data mode detector could be switched off during the AutoColl command by setting bit ModeDetOff in register ModeReg to 1. Table 155. Setting of the bits RFlevel in register RFCfgReg (RFLevel amplifier deactivated) V~Rx [Vpp] RFLevel ~2 1111 ~1.4 1110 ~0.99 1101 ~0.69 1100 ~0.49 1011 ~0.35 1010 ~0.24 1001 ~0.17 1000 ~0.12 0111 ~0.083 0110 ~0.058 0101 ~0.041 0100 ~0.029 0011 ~0.020 0010 ~0.014 0001 ~0.010 0000PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 87 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution Fig 28. Data mode detector 001aan225 HOST INTERFACES RECEIVER I/Q DEMODULATOR REGISTERS REGISTERSETTING FOR THE DETECTED MODE DATA MODE DETECTOR PN512 RX NFC @ 106 kbit/s NFC @ 212 kbit/s NFC @ 424 kbit/sPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 88 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 12.5 Serial data switch Two main blocks are implemented in the PN512. The digital block comprises the state machines, encoder/decoder logic. The analog block comprises the modulator and antenna drivers, the receiver and amplifiers. The interface between these two blocks can be configured in the way, that the interfacing signals may be routed to the pins SIGIN and SIGOUT. SIGIN is capable of processing digital NFC signals on transfer speeds above 424 kbit. The SIGOUT pin can provide a digital signal that can be used with an additional external circuit to generate transfer speeds above 424 kbit (including 106, 212 and 424 kbit). Furthermore SIGOUT and SIGIN can be used to enable the S2C interface in the card SAM mode to emulate a card functionality with the PN512 and a secure IC. A secure IC can be the SmartMX smart card controller IC. This topology allows the analog block of the PN512 to be connected to the digital block of another device. The serial signal switch is controlled by the TxSelReg and RxSelReg registers. Figure 29 shows the serial data switch for TX1 and TX2. 12.6 S2C interface support The S2C provides the possibility to directly connect a secure IC to the PN512 in order act as a contactless smart card IC via the PN512. The interfacing signals can be routed to the pins SIGIN and SIGOUT. SIGIN can receive either a digital FeliCa or digitized ISO/IEC 14443A signal sent by the secure IC. The SIGOUT pin can provide a digital signal and a clock to communicate to the secure IC. A secure IC can be the smart card IC provided by NXP Semiconductors. The PN512 has an extra supply pin (SVDD and PVSS as Ground line) for the SIGIN and SIGOUT pads. Figure 31 outlines possible ways of communications via the PN512 to the secure IC. Fig 29. Serial data switch for TX1 and TX2 001aak593 INTERNAL CODER INVERT IF InvMod = 1 DriverSel[1:0] 00 01 10 11 3-state to driver TX1 and TX2 0 = impedance = modulated 1 = impedance = CW 1 INVERT IF PolMFin = 0 MFIN envelopePN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 89 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution Configured in the Secure Access Mode the host controller can directly communicate to the Secure IC via SIGIN/SIGOUT. In this mode the PN512 generates the RF clock and performs the communication on the SIGOUT line. To enable the Secure Access module mode the clock has to be derived by the internal oscillator of the PN512, see bits SAMClockSel in register TestSel1Reg. Configured in Contactless Card mode the secure IC can act as contactless smart card IC via the PN512. In this mode the signal on the SIGOUT line is provided by the external RF field of the external reader/writer. To enable the Contactless Card mode the clock derived by the external RF field has to be used. The configuration of the S2C interface differs for the FeliCa and MIFARE scheme as outlined in the following chapters. Fig 30. Communication flows using the S2C interface 001aan226 CONTACTLESS UART SERIAL SIGNAL SWITCH FIFO AND STATE MACHINE SPI, I2C, SERIAL UART HOST CONTROLLER PN512 SECURE CORE IC SIGOUT SIGIN 2. contactless card mode 1. secure access module (SAM) mode PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 90 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 12.6.1 Signal shape for Felica S2C interface support The FeliCa secure IC is connected to the PN512 via the pins SIGOUT and SIGIN. The signal at SIGOUT contains the information of the 13.56 MHz clock and the digitized demodulated signal. The clock and the demodulated signal is combined by using the logical function exclusive or. To ensure that this signal is free of spikes, the demodulated signal is digitally filtered first. The time delay for that digital filtering is in the range of one bit length. The demodulated signal changes only at a positive edge of the clock. The register TxSelReg controls the setting at SIGOUT. The answer of the FeliCa SAM is transferred from SIGIN directly to the antenna driver. The modulation is done according to the register settings of the antenna drivers. The clock is switched to AUX1 or AUX2 (see AnalogSelAux). Note: A HIGH signal on AUX1 and AUX2 has the same level as AVDD. A HIGH signal at SIGOUT has the same level as SVDD. Alternatively it is possible to use pin D0 as clock output if a serial interface is used. The HIGH level at D0 is the same as PVDD. Note: The signal on the antenna is shown in principle only. In reality the waveform is sinusoidal. Fig 31. Signal shape for SIGOUT in FeliCa card SAM mode Fig 32. Signal shape for SIGIN in SAM mode 001aan227 clock signal on SIGIN signal on antenna 001aan228 clock demodulated signal signal on SIGOUTPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 91 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 12.6.2 Waveform shape for ISO/IEC 14443A and MIFARE S2C support The secure IC, e.g. the SmartMX is connected to the PN512 via the pins SIGOUT and SIGIN. The waveform shape at SIGOUT is a digital 13.56 MHz Miller coded signal with levels between PVSS and PVDD derived out of the external 13.56 MHz carrier signal in case of the Contactless Card mode or internally generated in terms of Secure Access mode. The register TxSelReg controls the setting at SIGOUT. Note: The clock settings for the Secure Access mode and the Contactless Card mode differ, refer to the description of the bits SAMClockSel in register TestSel1Reg. The signal at SIGIN is a digital Manchester coded signal according to the requirements of the ISO/IEC 14443A with the subcarrier frequency of 847.5 kHz generated by the secure IC. Fig 33. Signal shape for SIGOUT in MIFARE Card SAM mode Fig 34. Signal shape for SIGIN in MIFARE Card SAM mode 001aan229 1 0 bit value RF signal on antenna signal on SIGOUT 01001 001aan230 0 1 0 1 1 0 0 bit value signal on antenna signal on SIGINPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 92 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 12.7 Hardware support for FeliCa and NFC polling 12.7.1 Polling sequence functionality for initiator 1. Timer: The PN512 has a timer, which can be programmed in a way that it generates an interrupt at the end of each timeslot, or if required an interrupt is generated at the end of the last timeslot. 2. The receiver can be configured in a way to receive continuously. In this mode it can receive any number of packets. The receiver is ready to receive the next packet directly after the last packet has been received. This mode is active by setting the bit RxMultiple in register RxModeReg to 1 and has to be stopped by software. 3. The internal UART adds one byte to the end of every received packet, before it is transferred into the FIFO-buffer. This byte indicates if the received byte packet is correct (see register ErrReg). The first byte of each packet contains the length byte of the packet. 4. The length of one packet is 18 or 20 bytes (+ 1 byte Error-Info). The FIFO has a length of 64 bytes. This means three packets can be stored in the FIFO at the same time. If more than three packets are expected, the host controller has to empty the FIFO, before the FIFO is filled completely. In case of a FIFO-overflow data is lost (See bit BufferOvfl in register ErrorReg). 12.7.2 Polling sequence functionality for target 1. The host controller has to configure the PN512 with the correct polling response parameters for the polling command. 2. To activate the automatic polling in Target mode, the AutoColl Command has to be activated. 3. The PN512 receives the polling command send out by an initiator and answers with the polling response. The timeslot is selected automatically (The timeslot itself is randomly generated, but in the range 0 to TSN, which is defined by the Polling command). The PN512 compares the system code, stored in byte 17 and 18 of the Config Command with the system code received by the polling command of an initiator. If the system code is equal, the PN512 answers according to the configured polling response. The system code FF (hex) acts as a wildcard for the system code bytes, i.e. a target of a system code 1234 (hex) answers to the polling command with one of the following system codes 1234 (hex), 12FF (hex), FF34 (hex) or FFFF (hex). If the system code does not match no answer is sent back by the PN512. If a valid command is received by the PN512, which is not a Polling command, no answer is sent back and the command AutoColl is stopped. The received packet is stored in the FIFO.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 93 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 12.7.3 Additional hardware support for FeliCa and NFC Additionally to the polling sequence support for the Felica mode, the PN512 supports the check of the Len-byte. The received Len-byte in accordance to the registers FelNFC1Reg and FelNFC2Reg: DataLenMin in register FelNFC1Reg defines the minimum length of the accepted packet length. This register is six bit long. Each bit represents a length of four bytes. DataLenMax in register FelNFC2Reg defines the maximum length of the accepted package. This register is six bit long. Each bit represents a length of four bytes. If set to logic 1 this limit is ignored. If the length is not in the supposed range, the packet is not transferred to the FIFO and receiving is kept active. Example 1: • DataLenMin = 4 – The length shall be greater or equal 16. • DataLenMax = 5 – The length shall be smaller than 20. Valid area: 16, 17, 18, 19 Example 2: • DataLenMin = 9 – The length shall be greater or equal 36. • DataLenMax = 0 – The length shall be smaller than 256. Valid area: 36 to 255 12.7.4 CRC coprocessor The following CRC coprocessor parameters can be configured: • The CRC preset value can be either 0000h, 6363h, A671h or FFFFh depending on the ModeReg register’s CRCPreset[1:0] bits setting • The CRC polynomial for the 16-bit CRC is fixed to x16 + x12 + x5 + 1 • The CRCResultReg register indicates the result of the CRC calculation. This register is split into two 8-bit registers representing the higher and lower bytes. • The ModeReg register’s MSBFirst bit indicates that data will be loaded with the MSB first. Table 156. CRC coprocessor parameters Parameter Value CRC register length 16-bit CRC CRC algorithm algorithm according to ISO/IEC 14443 A and ITU-T CRC preset value 0000h, 6363h, A671h or FFFFh depending on the setting of the ModeReg register’s CRCPreset[1:0] bitsPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 94 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 13. FIFO buffer An 8 64 bit FIFO buffer is used in the PN512. It buffers the input and output data stream between the host and the PN512’s internal state machine. This makes it possible to manage data streams up to 64 bytes long without the need to take timing constraints into account. 13.1 Accessing the FIFO buffer The FIFO buffer input and output data bus is connected to the FIFODataReg register. Writing to this register stores one byte in the FIFO buffer and increments the internal FIFO buffer write pointer. Reading from this register shows the FIFO buffer contents stored in the FIFO buffer read pointer and decrements the FIFO buffer read pointer. The distance between the write and read pointer can be obtained by reading the FIFOLevelReg register. When the microcontroller starts a command, the PN512 can, while the command is in progress, access the FIFO buffer according to that command. Only one FIFO buffer has been implemented which can be used for input and output. The microcontroller must ensure that there are not any unintentional FIFO buffer accesses. 13.2 Controlling the FIFO buffer The FIFO buffer pointers can be reset by setting FIFOLevelReg register’s FlushBuffer bit to logic 1. Consequently, the FIFOLevel[6:0] bits are all set to logic 0 and the ErrorReg register’s BufferOvfl bit is cleared. The bytes stored in the FIFO buffer are no longer accessible allowing the FIFO buffer to be filled with another 64 bytes. 13.3 FIFO buffer status information The host can get the following FIFO buffer status information: • Number of bytes stored in the FIFO buffer: FIFOLevelReg register’s FIFOLevel[6:0] • FIFO buffer almost full warning: Status1Reg register’s HiAlert bit • FIFO buffer almost empty warning: Status1Reg register’s LoAlert bit • FIFO buffer overflow warning: ErrorReg register’s BufferOvfl bit. The BufferOvfl bit can only be cleared by setting the FIFOLevelReg register’s FlushBuffer bit. The PN512 can generate an interrupt signal when: • ComIEnReg register’s LoAlertIEn bit is set to logic 1. It activates pin IRQ when Status1Reg register’s LoAlert bit changes to logic 1. • ComIEnReg register’s HiAlertIEn bit is set to logic 1. It activates pin IRQ when Status1Reg register’s HiAlert bit changes to logic 1. If the maximum number of WaterLevel bytes (as set in the WaterLevelReg register) or less are stored in the FIFO buffer, the HiAlert bit is set to logic 1. It is generated according to Equation 3: HiAlert 64 FIFOLength = – WaterLevel (3)PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 95 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution If the number of WaterLevel bytes (as set in the WaterLevelReg register) or less are stored in the FIFO buffer, the LoAlert bit is set to logic 1. It is generated according to Equation 4: (4) 14. Interrupt request system The PN512 indicates certain events by setting the Status1Reg register’s IRq bit and, if activated, by pin IRQ. The signal on pin IRQ can be used to interrupt the host using its interrupt handling capabilities. This allows the implementation of efficient host software. 14.1 Interrupt sources overview Table 157 shows the available interrupt bits, the corresponding source and the condition for its activation. The ComIrqReg register’s TimerIRq interrupt bit indicates an interrupt set by the timer unit which is set when the timer decrements from 1 to 0. The ComIrqReg register’s TxIRq bit indicates that the transmitter has finished. If the state changes from sending data to transmitting the end of the frame pattern, the transmitter unit automatically sets the interrupt bit. The CRC coprocessor sets the DivIrqReg register’s CRCIRq bit after processing all the FIFO buffer data which is indicated by CRCReady bit = 1. The ComIrqReg register’s RxIRq bit indicates an interrupt when the end of the received data is detected. The ComIrqReg register’s IdleIRq bit is set if a command finishes and the Command[3:0] value in the CommandReg register changes to idle (see Table 158 on page 101). The ComIrqReg register’s HiAlertIRq bit is set to logic 1 when the Status1Reg register’s HiAlert bit is set to logic 1 which means that the FIFO buffer has reached the level indicated by the WaterLevel[5:0] bits. The ComIrqReg register’s LoAlertIRq bit is set to logic 1 when the Status1Reg register’s LoAlert bit is set to logic 1 which means that the FIFO buffer has reached the level indicated by the WaterLevel[5:0] bits. The ComIrqReg register’s ErrIRq bit indicates an error detected by the contactless UART during send or receive. This is indicated when any bit is set to logic 1 in register ErrorReg. LoAlert FIFOLength WaterLevel = Table 157. Interrupt sources Interrupt flag Interrupt source Trigger action TimerIRq timer unit the timer counts from 1 to 0 TxIRq transmitter a transmitted data stream ends CRCIRq CRC coprocessor all data from the FIFO buffer has been processed RxIRq receiver a received data stream ends IdleIRq ComIrqReg register command execution finishes HiAlertIRq FIFO buffer the FIFO buffer is almost full LoAlertIRq FIFO buffer the FIFO buffer is almost empty ErrIRq contactless UART an error is detectedPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 96 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 15. Timer unit A timer unit is implemented in the PN512. The external host controller may use this timer to manage timing relevant tasks. The timer unit may be used in one of the following configurations: • Time-out counter • Watch-dog counter • Stop watch • Programmable one-shot • Periodical trigger The timer unit can be used to measure the time interval between two events or to indicate that a specific event occurred after a specific time. The timer can be triggered by events which will be explained in the following, but the timer itself does not influence any internal event (e.g. A time-out during data reception does not influence the reception process automatically). Furthermore, several timer related bits are set and these bits can be used to generate an interrupt. Timer The timer has an input clock of 13.56 MHz (derived from the 27.12 MHz quartz). The timer consists of two stages: 1 prescaler and 1 counter. The prescaler is a 12-bit counter. The reload value for TPrescaler can be defined between 0 and 4095 in register TModeReg and TPrescalerReg. The reload value for the counter is defined by 16 bits in a range of 0 to 65535 in the register TReloadReg. The current value of the timer is indicated by the register TCounterValReg. If the counter reaches 0 an interrupt will be generated automatically indicated by setting the TimerIRq bit in the register CommonIRqReg. If enabled, this event can be indicated on the IRQ line. The bit TimerIRq can be set and reset by the host controller. Depending on the configuration the timer will stop at 0 or restart with the value from register TReloadReg. The status of the timer is indicated by bit TRunning in register Status1Reg. The timer can be manually started by TStartNow in register ControlReg or manually stopped by TStopNow in register ControlReg. Furthermore the timer can be activated automatically by setting the bit TAuto in the register TModeReg to fulfill dedicated protocol requirements automatically. The time delay of a timer stage is the reload value +1. The definition of total time is: t = ((TPrescaler*2+1)*TReload+1)/13.56MHz or if TPrescaleEven bit is set: t = ((TPrescaler*2+2)*TReload+1)/13.56MHz Maximum time: TPrescaler = 4095,TReloadVal = 65535 => (2*4095 +2)*65536/13.56 MHz = 39.59 s Example:PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 97 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution To indicate 25 us it is required to count 339 clock cycles. This means the value for TPrescaler has to be set to TPrescaler = 169.The timer has now an input clock of 25 us. The timer can count up to 65535 timeslots of each 25 s. For the behaviour in version 1.0, see Section 21 “Errata sheet” on page 109.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 98 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 16. Power reduction modes 16.1 Hard power-down Hard power-down is enabled when pin NRSTPD is LOW. This turns off all internal current sinks including the oscillator. All digital input buffers are separated from the input pins and clamped internally (except pin NRSTPD). The output pins are frozen at either a HIGH or LOW level. 16.2 Soft power-down mode Soft Power-down mode is entered immediately after the CommandReg register’s PowerDown bit is set to logic 1. All internal current sinks are switched off, including the oscillator buffer. However, the digital input buffers are not separated from the input pins and keep their functionality. The digital output pins do not change their state. During soft power-down, all register values, the FIFO buffer content and the configuration keep their current contents. After setting the PowerDown bit to logic 0, it takes 1024 clocks until the Soft power-down mode is exited indicated by the PowerDown bit. Setting it to logic 0 does not immediately clear it. It is cleared automatically by the PN512 when Soft power-down mode is exited. Remark: If the internal oscillator is used, you must take into account that it is supplied by pin AVDD and it will take a certain time (tosc) until the oscillator is stable and the clock cycles can be detected by the internal logic. It is recommended for the serial UART, to first send the value 55h to the PN512. The oscillator must be stable for further access to the registers. To ensure this, perform a read access to address 0 until the PN512 answers to the last read command with the register content of address 0. This indicates that the PN512 is ready. 16.3 Transmitter power-down mode The Transmitter Power-down mode switches off the internal antenna drivers thereby, turning off the RF field. Transmitter power-down mode is entered by setting either the TxControlReg register’s Tx1RFEn bit or Tx2RFEn bit to logic 0.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 99 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 17. Oscillator circuitry The clock applied to the PN512 provides a time basis for the synchronous system’s encoder and decoder. The stability of the clock frequency, therefore, is an important factor for correct operation. To obtain optimum performance, clock jitter must be reduced as much as possible. This is best achieved using the internal oscillator buffer with the recommended circuitry. If an external clock source is used, the clock signal must be applied to pin OSCIN. In this case, special care must be taken with the clock duty cycle and clock jitter and the clock quality must be verified. 18. Reset and oscillator start-up time 18.1 Reset timing requirements The reset signal is filtered by a hysteresis circuit and a spike filter before it enters the digital circuit. The spike filter rejects signals shorter than 10 ns. In order to perform a reset, the signal must be LOW for at least 100 ns. 18.2 Oscillator start-up time If the PN512 has been set to a Power-down mode or is powered by a VDDX supply, the start-up time for the PN512 depends on the oscillator used and is shown in Figure 36. The time (tstartup) is the start-up time of the crystal oscillator circuit. The crystal oscillator start-up time is defined by the crystal. The time (td) is the internal delay time of the PN512 when the clock signal is stable before the PN512 can be addressed. The delay time is calculated by: (5) The time (tosc) is the sum of td and tstartup. Fig 35. Quartz crystal connection 001aan231 PN512 27.12 MHz OSCOUT OSCIN td 1024 27 s = = -------------- 37.74 sPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 100 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 19. PN512 command set The PN512 operation is determined by a state machine capable of performing a set of commands. A command is executed by writing a command code (see Table 158) to the CommandReg register. Arguments and/or data necessary to process a command are exchanged via the FIFO buffer. 19.1 General description The PN512 operation is determined by a state machine capable of performing a set of commands. A command is executed by writing a command code (see Table 158) to the CommandReg register. Arguments and/or data necessary to process a command are exchanged via the FIFO buffer. 19.2 General behavior • Each command that needs a data bit stream (or data byte stream) as an input immediately processes any data in the FIFO buffer. An exception to this rule is the Transceive command. Using this command, transmission is started with the BitFramingReg register’s StartSend bit. • Each command that needs a certain number of arguments, starts processing only when it has received the correct number of arguments from the FIFO buffer. • The FIFO buffer is not automatically cleared when commands start. This makes it possible to write command arguments and/or the data bytes to the FIFO buffer and then start the command. • Each command can be interrupted by the host writing a new command code to the CommandReg register, for example, the Idle command. Fig 36. Oscillator start-up time 001aak596 tstartup td tosc t device activation oscillator clock stable clock readyPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 101 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 19.3 PN512 command overview 19.3.1 PN512 command descriptions 19.3.1.1 Idle Places the PN512 in Idle mode. The Idle command also terminates itself. 19.3.1.2 Config command To use the automatic MIFARE Anticollision, FeliCa Polling and NFCID3 the data used for these transactions has to be stored internally. All the following data have to be written to the FIFO in this order: SENS_RES (2 bytes); in order byte 0, byte 1 NFCID1 (3 Bytes); in order byte 0, byte 1, byte 2; the first NFCID1 byte is fixed to 08h and the check byte is calculated automatically. SEL_RES (1 Byte) polling response (2 bytes (shall be 01h, FEh) + 6 bytes NFCID2 + 8 bytes Pad + 2 bytes system code) NFCID3 (1 byte) In total 25 bytes are transferred into an internal buffer. The complete NFCID3 is 10 bytes long and consists of the 3 NFCID1 bytes, the 6 NFCID2 bytes and the one NFCID3 byte which are listed above. To read out this configuration the command Config with an empty FIFO-buffer has to be started. In this case the 25 bytes are transferred from the internal buffer to the FIFO. Table 158. Command overview Command Command code Action Idle 0000 no action, cancels current command execution Configure 0001 Configures the PN512 for FeliCa, MIFARE and NFCIP-1 communication Generate RandomID 0010 generates a 10-byte random ID number CalcCRC 0011 activates the CRC coprocessor or performs a self test Transmit 0100 transmits data from the FIFO buffer NoCmdChange 0111 no command change, can be used to modify the CommandReg register bits without affecting the command, for example, the PowerDown bit Receive 1000 activates the receiver circuits Transceive 1100 transmits data from FIFO buffer to antenna and automatically activates the receiver after transmission AutoColl 1101 Handles FeliCa polling (Card Operation mode only) and MIFARE anticollision (Card Operation mode only) MFAuthent 1110 performs the MIFARE standard authentication as a reader SoftReset 1111 resets the PN512PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 102 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution The PN512 has to be configured after each power up, before using the automatic Anticollision/Polling function (AutoColl command). During a hard power down (reset pin) this configuration remains unchanged. This command terminates automatically when finished and the active command is idle. 19.3.1.3 Generate RandomID This command generates a 10-byte random number which is initially stored in the internal buffer. This then overwrites the 10 bytes in the internal 25-byte buffer. This command automatically terminates when finished and the PN512 returns to Idle mode. 19.3.1.4 CalcCRC The FIFO buffer content is transferred to the CRC coprocessor and the CRC calculation is started. The calculation result is stored in the CRCResultReg register. The CRC calculation is not limited to a dedicated number of bytes. The calculation is not stopped when the FIFO buffer is empty during the data stream. The next byte written to the FIFO buffer is added to the calculation. The CRC preset value is controlled by the ModeReg register’s CRCPreset[1:0] bits. The value is loaded in to the CRC coprocessor when the command starts. This command must be terminated by writing a command to the CommandReg register, such as, the Idle command. If the AutoTestReg register’s SelfTest[3:0] bits are set correctly, the PN512 enters Self Test mode. Starting the CalcCRC command initiates a digital self test. The result of the self test is written to the FIFO buffer. 19.3.1.5 Transmit The FIFO buffer content is immediately transmitted after starting this command. Before transmitting the FIFO buffer content, all relevant registers must be set for data transmission. This command automatically terminates when the FIFO buffer is empty. It can be terminated by another command written to the CommandReg register. 19.3.1.6 NoCmdChange This command does not influence any running command in the CommandReg register. It can be used to manipulate any bit except the CommandReg register Command[3:0] bits, for example, the RcvOff bit or the PowerDown bit. 19.3.1.7 Receive The PN512 activates the receiver path and waits for a data stream to be received. The correct settings must be chosen before starting this command. This command automatically terminates when the data stream ends. This is indicated either by the end of frame pattern or by the length byte depending on the selected frame type and speed. Remark: If the RxModeReg register’s RxMultiple bit is set to logic 1, the Receive command will not automatically terminate. It must be terminated by starting another command in the CommandReg register.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 103 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 19.3.1.8 Transceive This command continuously repeats the transmission of data from the FIFO buffer and the reception of data from the RF field. The first action is transmit and after transmission the command is changed to receive a data stream. Each transmit process must be started by setting the BitFramingReg register’s StartSend bit to logic 1. This command must be cleared by writing any command to the CommandReg register. Remark: If the RxModeReg register’s RxMultiple bit is set to logic 1, the Transceive command never leaves the receive state because this state cannot be cancelled automatically. 19.3.1.9 AutoColl This command automatically handles the MIFARE activation and the FeliCa polling in the Card Operation mode. The bit Initiator in the register ControlReg has to be set to logic 0 for correct operation. During this command also the mode detector is active if not deactivated by setting the bit ModeDetOff in the ModeReg register. After the mode detector detects a mode, all the mode dependent registers are set according to the received data. In case of no external RF field the command resets the internal state machine and returns to the initial state but it will not be terminated. When the command terminates the transceive command gets active. During protocol processing the IRQ bits are not supported. Only the last received frame will serve the IRQ’s. The treatment of the TxCRCEn and RxCRCEn bits is different to the protocol. During ISO/IEC 14443A activation the enable bits are defined by the command AutoColl. The changes cannot be observed at the register TXModeReg and RXModeReg. After the Transceive command is active, the value of the register bit is relevant. The FIFO will also receive the two CRC check bytes of the last command even if they already checked and correct, if the state machine (Anticollision and Select routine) has to not been executed and 106 kbit is detected. During Felica activation the register bit is always relevant and is not overruled by the command settings. This command can be cleared by software by writing any other command to the CommandReg register, e.g. the idle command. Writing the same content again to the CommandReg register resets the state machine.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 104 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution NFCIP-1 106 kbps Passive Communication mode: The MIFARE anticollision is finished and the command has automatically changed to Transceive. The FIFO contains the ATR_REQ frame including the start byte F0h. The bit TargetActivated in the Status2Reg register is set to logic 1. NFCIP-1 212/424 kbps Passive Communication mode: The FeliCa polling command is finished and the command has automatically changed to Transceive. The FIFO contains the ATR_REQ. The bit TargetActivated in the Status2Reg register is set to logic 1. NFCIP-1 106/212/424 kbps Active Communication mode: This command is changing the automatically to the command Transceive. The FIFO contains the ATR REQ The bit TargetActivated in the Status2Reg register is set to logic 0. For 106 kbps only, the first byte in the FIFO indicates the start byte F0h and the CRC is added to the FIFO. Fig 37. Autocoll Command NFCIP-1 106 kB aud ISO14443-3 NPCIP-1 > 106 kB aud FELICA IDLE MODEO MODE detection RXF raming MFHalted = 1 HALT AC nAC SELECT nSELECT HLTA AC polling, polling response next frame received next frame received REQA, WUPA READY ACTIVE WUPA SELECT SELECT READY* ACTIVE* TRANSCEIVE wait for transmit next frame received J N HLTA REQA, WUPA, AC, nAC, SELECT, nSELECT, error REQA, AC, nAC, SELECT, nSELECT, HLTA REQA, WUPA, nAC, nSELECT, HLTA, error REQA, WUPA, nAC, nSELECT, HLTA, error REQA, WUPA, AC, SELECT, nSELECT, error 00 10 AC aaa-001826PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 105 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution MIFARE (Card Operation mode): The MIFARE anticollision is finished and the command has automatically changed to transceive. The FIFO contains the first command after the Select. The bit TargetActivated in the Status2Reg register is set to logic 1. Felica (Card Operation mode): The FeliCa polling command is finished and the command has automatically changed to transceive. The FIFO contains the first command followed after the Poling by the FeliCa protocol. The bit TargetActivated in the Status2Reg register is set to logic 1. 19.3.1.10 MFAuthent This command manages MIFARE authentication to enable a secure communication to any MIFARE Mini, MIFARE 1K and MIFARE 4K card. The following data is written to the FIFO buffer before the command can be activated: • Authentication command code (60h, 61h) • Block address • Sector key byte 0 • Sector key byte 1 • Sector key byte 2 • Sector key byte 3 • Sector key byte 4 • Sector key byte 5 • Card serial number byte 0 • Card serial number byte 1 • Card serial number byte 2 • Card serial number byte 3 In total 12 bytes are written to the FIFO. Remark: When the MFAuthent command is active all access to the FIFO buffer is blocked. However, if there is access to the FIFO buffer, the ErrorReg register’s WrErr bit is set. This command automatically terminates when the MIFARE card is authenticated and the Status2Reg register’s MFCrypto1On bit is set to logic 1. This command does not terminate automatically if the card does not answer, so the timer must be initialized to automatic mode. In this case, in addition to the IdleIRq bit, the TimerIRq bit can be used as the termination criteria. During authentication processing, the RxIRq bit and TxIRq bit are blocked. The Crypto1On bit is only valid after termination of the MFAuthent command, either after processing the protocol or writing Idle to the CommandReg register. If an error occurs during authentication, the ErrorReg register’s ProtocolErr bit is set to logic 1 and the Status2Reg register’s Crypto1On bit is set to logic 0.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 106 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 19.3.1.11 SoftReset This command performs a reset of the device. The configuration data of the internal buffer remains unchanged. All registers are set to the reset values. This command automatically terminates when finished. Remark: The SerialSpeedReg register is reset and therefore the serial data rate is set to 9.6 kBd.PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 107 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 20. Testsignals 20.1 Selftest The PN512 has the capability to perform a digital selftest. To start the selftest the following procedure has to be performed: 1. Perform a soft reset. 2. Clear the internal buffer by writing 25 bytes of 00h and perform the Config Command. 3. Enable the Selftest by writing the value 09h to the register AutoTestReg. 4. Write 00h to the FIFO. 5. Start the Selftest with the CalcCRC Command. 6. The Selftest will be performed. 7. When the Selftest is finished, the FIFO contains the following bytes: Version 1.0 has a different Selftest answer, explained in Section 21. Correct answer for VersionReg equal to 82h: 00h, EBh, 66h, BAh, 57h, BFh, 23h, 95h, D0h, E3h, 0Dh, 3Dh, 27h, 89h, 5Ch, DEh, 9Dh, 3Bh, A7h, 00h, 21h, 5Bh, 89h, 82h, 51h, 3Ah, EBh, 02h, 0Ch, A5h, 00h, 49h, 7Ch, 84h, 4Dh, B3h, CCh, D2h, 1Bh, 81h, 5Dh, 48h, 76h, D5h, 71h, 61h, 21h, A9h, 86h, 96h, 83h, 38h, CFh, 9Dh, 5Bh, 6Dh, DCh, 15h, BAh, 3Eh, 7Dh, 95h, 3Bh, 2Fh 20.2 Testbus The testbus is implemented for production test purposes. The following configuration can be used to improve the design of a system using the PN512. The testbus allows to route internal signals to the digital interface. The testbus signals are selected by accessing TestBusSel in register TestSel2Reg. Table 159. Testsignal routing (TestSel2Reg = 07h) Pins D6 D5 D4 D3 D2 D1 D0 Testsignal sdata scoll svalid sover RCV_reset RFon, filtered Envelope Table 160. Description of Testsignals Pins Testsignal Description D6 sdata shows the actual received data stream. D5 scoll shows if in the actual bit a collision has been detected (106 kbit only) D4 svalid shows if sdata and scoll are valid D3 sover shows that the receiver has detected a stop condition (ISO/IEC 14443A/ MIFARE mode only). D2 RCV_reset shows if the receiver is reset D1 RFon, filtered shows the value of the internal RF level detector D0 Envelope shows the output of the internal coderPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 108 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 20.3 Testsignals at pin AUX Table 161. Testsignal routing (TestSel2Reg = 0Dh) Pins D6 D5 D4 D3 D2 D1 D0 Testsignal clkstable clk27/8 clk27rf/8 clkrf13rf/4 clk27 clk27rf clk13rf Table 162. Description of Testsignals Pins Testsignal Description D6 clkstable shows if the oscillator delivers a stable signal. D5 clk27/8 shows the output signal of the oscillator divided by 8 D4 clk27rf/8 shows the clk27rf signal divided by 8 D3 clkrf13/4 shows the clk13rf divided by 4. D2 clk27 shows the output signal of the oscillator D1 clk27rf shows the RF clock multiplied by 2. D0 clk13rf shows the RF clock of 13.56 MHz Table 163. Testsignal routing (TestSel2Reg = 19h) Pins D6 D5 D4 D3 D2 D1 D0 Testsignal - TRunning - - - - - Table 164. Description of Testsignals Pins Testsignal Description D6 - - D5 TRunning TRunning stops 1 clockcycle after TimerIRQ is raised D4 - - D3 - - D2 - - D1 - - D0 - - Table 165. Testsignals description SelAux Description for Aux1 / Aux2 0000 Tristate 0001 DAC: register TestDAC 1/2 0010 DAC: testsignal corr1 0011 DAC: testsignal corr2 0100 DAC: testsignal MinLevel 0101 DAC: ADC_I 0110 DAC: ADC_Q 0111 DAC: testsignal ADC_I combined with ADC_Q 1000 Testsignal for production test 1001 SAM clock 1010 High 1011 low 1100 TxActivePN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 109 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution Each signal can be switched to pin AUX1 or AUX2 by setting SelAux1 or SelAux2 in the register AnalogTestReg. Note: The DAC has a current output, it is recommended to use a 1 k pull-down resistance at pins AUX1/AUX2. 20.4 PRBS Enables the PRBS9 or PRBS15 sequence according to ITU-TO150. To start the transmission of the defined datastream the command send has to be activated. The preamble/Sync byte/start bit/parity bit are generated automatically depending on the selected mode. Note: All relevant register to transmit data have to be configured before entering PRBS mode according ITU-TO150. 21. Errata sheet This data sheet is describing the functionality for version 2.0 and the industrial version. This chapter lists all differences from version 1.0 to version 2.0: The value of the version in Section 9.2.4.8 is set to80h. The behaviour ‘RFU’ for the register is undefined. The answer to the Selftest (see Section 20.1) for version 1.0 (VersionReg equal to 80h): 00h, AAh, E3h, 29h, 0Ch, 10h, 29zhh, 6Bh, 76h, 8Dh, AFh, 4Bh, A2h, DAh, 76h, 99h C7h, 5Eh, 24h, 69h, D2h, BAh, FAh, BCh 3Eh, DAh, 96h, B5h, F5h, 94h, B0h, 3Ah 4Eh, C3h, 9Dh, 94h, 76h, 4Ch, EAh, 5Eh 38h, 10h, 8Fh, 2Dh, 21h, 4Bh, 52h, BFh 4Eh, C3h, 9Dh, 94h, 76h, 4Ch, EAh, 5Eh 38h, 10h, 8Fh, 2Dh, 21h, 4Bh, 52h, BFh FBh, F4h, 19h, 94h, 82h, 5Ah, 72h, 9Dh BAh, 0Dh, 1Fh, 17h, 56h, 22h, B9h, 08h Only the default setting for the prescaler (see Section 15 “Timer unit” on page 96): t = ((TPreScaler*2+1)*TReload+1)/13,56 MHz is supported. As such only the formula fTimer = 13,56 MHz/(2*PreScaler+1) is applicable for the TPrescalerHigh in Table 100 “Description of TModeReg bits” on page 57 and TPrescalerLo in Table 101 “TPrescalerReg register (address 2Bh); reset value: 00h, 00000000b” on page 58. As there is no option for the prescaler available, also the TPrescalEven is not available Section 9.2.2.10 on page 45. This bit is set to ‘RFU’. 1101 RxActive 1110 Subcarrier detected 1111 TstBusBit Table 165. Testsignals description SelAux Description for Aux1 / Aux2PN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 110 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution Especially when using time slot protocols, it is needed that the error flag is copied into the status information of the frame. When using the RxMultiple feature (see Section 9.2.2.4 on page 39) within version 1.0 the protocol error flag is not included in the status information for the frame. In addition the CRCOk is copied instead of the CRCErr. This can be a problem in frames without length information e.g. ISO/IEC 14443-B. The version 1.0 does not accept a Type B EOF if there is no 1 bit after the series of 0 bits, as such the configuration within Section 9.2.2.15 “TypeBReg” on page 50 bit 4 for RxEOFReq does not exist. In addition the IC only has the possibility to select the minimum or maximum timings for SOF/EOF generation defined in ISO/IEC14443B. As such the configuration possible in version 2.0 through the EOFSOFAdjust bit (see Section 9.2.4.7 “AutoTestReg” on page 64) does not exist and the configuration is limited to only setting minimum and maximum length according ISO/IEC 14443-B, see Section 9.2.2.15 “TypeBReg” on page 50, bit 4. 22. Application design-in information The figure below shows a typical circuit diagram, using a complementary antenna connection to the PN512. The antenna tuning and RF part matching is described in the application note “NFC Transmission Module Antenna and RF Design Guide”. Fig 38. Typical circuit diagram AVDD TVDD RX VMID supply TX1 TVSS TX2 DVSS DVDD DVDD PVDD SVDD AVSS IRQ NRSTPD R1 R2 L0 C0 C0 C2 C1 CRX RQ C1 RQ C2 L0 Cvmid 001aan232 27.12 MHz OSCIN OSCOUT HOST CONTROLLER interface PN512 antenna LantPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 111 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution 23. Limiting values 24. Recommended operating conditions Table 166. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter Conditions Min Max Unit VDDA analog supply voltage 0.5 +4.0 V VDDD digital supply voltage 0.5 +4.0 V VDD(PVDD) PVDD supply voltage 0.5 +4.0 V VDD(TVDD) TVDD supply voltage 0.5 +4.0 V VDD(SVDD) SVDD supply voltage 0.5 +4.0 V VI input voltage all input pins except pins SIGIN and RX VSS(PVSS) 0.5 VDD(PVDD) + 0.5 V pin MFIN VSS(PVSS) 0.5 VDD(SVDD) + 0.5 V Ptot total power dissipation per package; and VDDD in shortcut mode - 200 mW Tj junction temperature - 125 C VESD electrostatic discharge voltage HBM; 1500 , 100 pF; JESD22-A114-B - 2000 V MM; 0.75 H, 200 pF; JESD22-A114-A - 200 V Charged device model; JESD22-C101-A on all pins - 200 V on all pins except SVDD in TFBGA64 package - 500 V Industrial version: VESD electrostatic discharge voltage HBM; 1500 , 100 pF; JESD22-A114-B - 2000 V MM; 0.75 H, 200 pF; JESD22-A114-A - 200 V Charged device model; AEC-Q100-011 on all pins - 200 V on all pins except SVDD - 500 V Table 167. Operating conditions Symbol Parameter Conditions Min Typ Max Unit VDDA analog supply voltage VDD(PVDD) VDDA = VDDD = VDD(TVDD); VSSA = VSSD = VSS(PVSS) = VSS(TVSS) =0V [1][2] 2.5 - 3.6 V VDDD digital supply voltage VDD(PVDD) VDDA = VDDD = VDD(TVDD); VSSA = VSSD = VSS(PVSS) = VSS(TVSS) =0V [1][2] 2.5 - 3.6 V VDD(TVDD) TVDD supply voltage VDD(PVDD) VDDA = VDDD = VDD(TVDD); VSSA = VSSD = VSS(PVSS) = VSS(TVSS) =0V [1][2] 2.5 - 3.6 VPN512 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2013. All rights reserved. Product data sheet COMPANY PUBLIC Rev. 4.5 — 17 December 2013 111345 112 of 136 NXP Semiconductors PN512 Full NFC Forum compliant solution [1] Supply voltages below 3 V reduce the performance (the achievable operating distance). [2] VDDA, VDDD and VDD(TVDD) must always be the same voltage. [3] VDD(PVDD) must always be the same or lower voltage than VDDD. 25. Thermal characteristics 26. Characteristics VDD(PVDD) PVDD supply voltage VDD(PVDD) VDDA = VDDD = VDD(TVDD); VSSA = VSSD = VSS(PVSS) = VSS(TVSS) =0V [3] 1.6 - 3.6 V VDD(SVDD) SVDD supply voltage VSSA = VSSD = VSS(PVSS) = VSS(TVSS) =0V 1.6 - 3.6 V Tamb ambient temperature HVQFN32, HVQFN40, TFBGA64 30 - +85 C Industrial version: Tamb ambient temperature HVQFN32 40 - +90 C Table 167. Operating conditions …continued Symbol Parameter Conditions Min Typ Max Unit Table 168. Thermal characteristics Symbol Parameter Conditions Package Typ Unit Rthj-a Thermal resistance from junction to ambient In still air with exposed pad soldered on a 4 layer Jedec PCB In still air HVQFN32 40 K/W HVQFN40 35 K/W TFBGA64