Consent Manager Tag v2.0 (for TCF 2.0) -->
Farnell PDF

RS COMPONENTS Images.png

STM32F030x4-STM32F030x6-STM32F030x8 - STMicroelectronics - Farnell Element 14

STM32F030x4-STM32F030x6-STM32F030x8 - STMicroelectronics - Farnell Element 14 - Revenir à l'accueil

 

 

Branding Farnell element14 (France)

 

Farnell Element 14 :

Miniature

Everything You Need To Know About Arduino

Miniature

Tutorial 01 for Arduino: Getting Acquainted with Arduino

Miniature

The Cube® 3D Printer

Miniature

What's easier- DIY Dentistry or our new our website features?

 

Miniature

Ben Heck's Getting Started with the BeagleBone Black Trailer

Miniature

Ben Heck's Home-Brew Solder Reflow Oven 2.0 Trailer

Miniature

Get Started with Pi Episode 3 - Online with Raspberry Pi

Miniature

Discover Simulink Promo -- Exclusive element14 Webinar

Miniature

Ben Heck's TV Proximity Sensor Trailer

Miniature

Ben Heck's PlayStation 4 Teardown Trailer

See the trailer for the next exciting episode of The Ben Heck show. Check back on Friday to be among the first to see the exclusive full show on element…

Miniature

Get Started with Pi Episode 4 - Your First Raspberry Pi Project

Connect your Raspberry Pi to a breadboard, download some code and create a push-button audio play project.

Miniature

Ben Heck Anti-Pickpocket Wallet Trailer

Miniature

Molex Earphones - The 14 Holiday Products of Newark element14 Promotion

Miniature

Tripp Lite Surge Protector - The 14 Holiday Products of Newark element14 Promotion

Miniature

Microchip ChipKIT Pi - The 14 Holiday Products of Newark element14 Promotion

Miniature

Beagle Bone Black - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M E26, LED Lamps - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M Colored Duct Tape - The 14 Holiday Products of Newark element14 Promotion

Miniature

Tenma Soldering Station - The 14 Holiday Products of Newark element14 Promotion

Miniature

Duratool Screwdriver Kit - The 14 Holiday Products of Newark element14 Promotion

Miniature

Cubify 3D Cube - The 14 Holiday Products of Newark element14 Promotion

Miniature

Bud Boardganizer - The 14 Holiday Products of Newark element14 Promotion

Miniature

Raspberry Pi Starter Kit - The 14 Holiday Products of Newark element14 Promotion

Miniature

Fluke 323 True-rms Clamp Meter - The 14 Holiday Products of Newark element14 Promotion

Miniature

Dymo RHINO 6000 Label Printer - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M LED Advanced Lights A-19 - The 14 Holiday Products of Newark element14 Promotion

Miniature

Innovative LPS Resistor Features Very High Power Dissipation

Miniature

Charge Injection Evaluation Board for DG508B Multiplexer Demo

Miniature

Ben Heck The Great Glue Gun Trailer Part 2

Miniature

Introducing element14 TV

Miniature

Ben Heck Time to Meet Your Maker Trailer

Miniature

Détecteur de composants

Miniature

Recherche intégrée

Miniature

Ben Builds an Accessibility Guitar Trailer Part 1

Miniature

Ben Builds an Accessibility Guitar - Part 2 Trailer

Miniature

PiFace Control and Display Introduction

Miniature

Flashmob Farnell

Miniature

Express Yourself in 3D with Cube 3D Printers from Newark element14

Miniature

Farnell YouTube Channel Move

Miniature

Farnell: Design with the best

Miniature

French Farnell Quest

Miniature

Altera - 3 Ways to Quickly Adapt to Changing Ethernet Protocols

Miniature

Cy-Net3 Network Module

Miniature

MC AT - Professional and Precision Series Thin Film Chip Resistors

Miniature

Solderless LED Connector

Miniature

PSA-T Series Spectrum Analyser: PSA1301T/ PSA2701T

Miniature

3-axis Universal Motion Controller For Stepper Motor Drivers: TMC429

Miniature

Voltage Level Translation

Puce électronique / Microchip :

Miniature

Microchip - 8-bit Wireless Development Kit

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 2 of 3

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 3 of 3

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 1 of 3

Sans fil - Wireless :

Miniature

Microchip - 8-bit Wireless Development Kit

Miniature

Wireless Power Solutions - Wurth Electronics, Texas Instruments, CadSoft and element14

Miniature

Analog Devices - Remote Water Quality Monitoring via a Low Power, Wireless Network

Texas instrument :

Miniature

Texas Instruments - Automotive LED Headlights

Miniature

Texas Instruments - Digital Power Solutions

Miniature

Texas Instruments - Industrial Sensor Solutions

Miniature

Texas Instruments - Wireless Pen Input Demo (Mobile World Congress)

Miniature

Texas Instruments - Industrial Automation System Components

Miniature

Texas Instruments - TMS320C66x - Industry's first 10-GHz fixed/floating point DSP

Miniature

Texas Instruments - TMS320C66x KeyStone Multicore Architecture

Miniature

Texas Instruments - Industrial Interfaces

Miniature

Texas Instruments - Concerto™ MCUs - Connectivity without compromise

Miniature

Texas Instruments - Stellaris Robot Chronos

Miniature

Texas Instruments - DRV8412-C2-KIT, Brushed DC and Stepper Motor Control Kit

Ordinateurs :

Miniature

Ask Ben Heck - Connect Raspberry Pi to Car Computer

Miniature

Ben's Portable Raspberry Pi Computer Trailer

Miniature

Ben's Raspberry Pi Portable Computer Trailer 2

Miniature

Ben Heck's Pocket Computer Trailer

Miniature

Ask Ben Heck - Atari Computer

Miniature

Ask Ben Heck - Using Computer Monitors for External Displays

Miniature

Raspberry Pi Partnership with BBC Computer Literacy Project - Answers from co-founder Eben Upton

Miniature

Installing RaspBMC on your Raspberry Pi with the Farnell element14 Accessory kit

Miniature

Raspberry Pi Served - Joey Hudy

Miniature

Happy Birthday Raspberry Pi

Miniature

Raspberry Pi board B product overview

Logiciels :

Miniature

Ask Ben Heck - Best Opensource or Free CAD Software

Miniature

Tektronix FPGAView™ software makes debugging of FPGAs faster than ever!

Miniature

Ask Ben Heck - Best Open-Source Schematic Capture and PCB Layout Software

Miniature

Introduction to Cadsoft EAGLE PCB Design Software in Chinese

Miniature

Altera - Developing Software for Embedded Systems on FPGAs

Tutoriels :

Miniature

Ben Heck The Great Glue Gun Trailer Part 1

Miniature

the knode tutorial - element14

Miniature

Ben's Autodesk 123D Tutorial Trailer

Miniature

Ben's CadSoft EAGLE Tutorial Trailer

Miniature

Ben Heck's Soldering Tutorial Trailer

Miniature

Ben Heck's AVR Dev Board tutorial

Miniature

Ben Heck's Pinball Tutorial Trailer

Miniature

Ben Heck's Interface Tutorial Trailer

Miniature

First Stage with Python and PiFace Digital

Miniature

Cypress - Getting Started with PSoC® 3 - Part 2

Miniature

Energy Harvesting Challenge

Miniature

New Features of CadSoft EAGLE v6

Autres documentations :

[TXT]

 Analog-Devices-ADC-S..> 09-Sep-2014 08:21  2.4M  

[TXT]

 Analog-Devices-ADMC2..> 09-Sep-2014 08:21  2.4M  

[TXT]

 Analog-Devices-ADMC4..> 09-Sep-2014 08:23  2.3M  

[TXT]

 Analog-Devices-AN300..> 08-Sep-2014 17:42  2.0M  

[TXT]

 Analog-Devices-ANF32..> 09-Sep-2014 08:18  2.6M  

[TXT]

 Analog-Devices-Basic..> 08-Sep-2014 17:49  1.9M  

[TXT]

 Analog-Devices-Compl..> 08-Sep-2014 17:38  2.0M  

[TXT]

 Analog-Devices-Convo..> 09-Sep-2014 08:26  2.1M  

[TXT]

 Analog-Devices-Convo..> 09-Sep-2014 08:25  2.2M  

[TXT]

 Analog-Devices-Convo..> 09-Sep-2014 08:25  2.2M  

[TXT]

 Analog-Devices-Digit..> 08-Sep-2014 18:02  2.1M  

[TXT]

 Analog-Devices-Digit..> 08-Sep-2014 18:03  2.0M  

[TXT]

 Analog-Devices-Gloss..> 08-Sep-2014 17:36  2.0M  

[TXT]

 Analog-Devices-Intro..> 08-Sep-2014 17:39  1.9M  

[TXT]

 Analog-Devices-The-C..> 08-Sep-2014 17:41  1.9M  

[TXT]

 Analog-Devices-Visua..> 09-Sep-2014 08:18  2.5M  

[TXT]

 Analog-Devices-Wi-Fi..> 09-Sep-2014 08:23  2.3M  

[TXT]

 Electronique-Basic-o..> 08-Sep-2014 17:43  1.8M  

[TXT]

 Farnell-0050375063-D..> 18-Jul-2014 17:03  2.5M  

[TXT]

 Farnell-03-iec-runds..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-0430300011-D..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-0433751001-D..> 18-Jul-2014 17:02  2.5M  

[TXT]

 Farnell-06-6544-8-PD..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-1N4148WS-Fai..> 06-Jul-2014 10:04  1.9M  

[TXT]

 Farnell-2-GBPS-Diffe..> 28-Jul-2014 17:42  2.7M  

[TXT]

 Farnell-2N3906-Fairc..> 08-Sep-2014 07:22  2.1M  

[TXT]

 Farnell-2N7002DW-Fai..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-3M-Polyimide..> 21-Mar-2014 08:09  3.9M  

[TXT]

 Farnell-3M-VolitionT..> 25-Mar-2014 08:18  3.3M  

[TXT]

 Farnell-4-Bit-Magnit..> 08-Jul-2014 18:53  2.2M  

[TXT]

 Farnell-10BQ060-PDF.htm 14-Jun-2014 09:50  2.4M  

[TXT]

 Farnell-10TPB47M-End..> 14-Jun-2014 18:16  3.4M  

[TXT]

 Farnell-12mm-Size-In..> 14-Jun-2014 09:50  2.4M  

[TXT]

 Farnell-24AA024-24LC..> 23-Jun-2014 10:26  3.1M  

[TXT]

 Farnell-50A-High-Pow..> 20-Mar-2014 17:31  2.9M  

[TXT]

 Farnell-74AC00-74ACT..> 06-Jul-2014 10:03  911K  

[TXT]

 Farnell-74LCX573-Fai..> 06-Jul-2014 10:05  1.9M  

[TXT]

 Farnell-197.31-KB-Te..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-270-Series-O..> 08-Jul-2014 18:49  2.3M  

[TXT]

 Farnell-760G-French-..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-851-Series-P..> 08-Jul-2014 18:47  3.0M  

[TXT]

 Farnell-900-Series-B..> 08-Jul-2014 18:50  2.3M  

[TXT]

 Farnell-1734-ARALDIT..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-1907-2006-PD..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-2020-Manuel-..> 08-Jul-2014 18:55  2.1M  

[TXT]

 Farnell-3367-ARALDIT..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-5910-PDF.htm    25-Mar-2014 08:15  3.0M  

[TXT]

 Farnell-6517b-Electr..> 29-Mar-2014 11:12  3.3M  

[TXT]

 Farnell-43031-0002-M..> 18-Jul-2014 17:03  2.5M  

[TXT]

 Farnell-A-4-Hardener..> 07-Jul-2014 19:44  1.4M  

[TXT]

 Farnell-A-True-Syste..> 29-Mar-2014 11:13  3.3M  

[TXT]

 Farnell-AC-DC-Power-..> 15-Jul-2014 16:47  845K  

[TXT]

 Farnell-ACC-Silicone..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-AD524-PDF.htm   20-Mar-2014 17:33  2.8M  

[TXT]

 Farnell-AD584-Rev-C-..> 08-Sep-2014 07:20  2.2M  

[TXT]

 Farnell-AD586BRZ-Ana..> 08-Sep-2014 08:09  1.6M  

[TXT]

 Farnell-AD620-Rev-H-..> 09-Sep-2014 08:13  2.6M  

[TXT]

 Farnell-AD736-Rev-I-..> 08-Sep-2014 07:31  1.3M  

[TXT]

 Farnell-AD7171-16-Bi..> 06-Jul-2014 10:06  1.0M  

[TXT]

 Farnell-AD7719-Low-V..> 18-Jul-2014 16:59  1.4M  

[TXT]

 Farnell-AD8300-Data-..> 18-Jul-2014 16:56  1.3M  

[TXT]

 Farnell-AD8307-Data-..> 08-Sep-2014 07:30  1.3M  

[TXT]

 Farnell-AD8310-Analo..> 08-Sep-2014 07:24  2.1M  

[TXT]

 Farnell-AD8313-Analo..> 08-Sep-2014 07:26  2.0M  

[TXT]

 Farnell-AD8361-Rev-D..> 08-Sep-2014 07:23  2.1M  

[TXT]

 Farnell-AD9833-Rev-E..> 08-Sep-2014 17:49  1.8M  

[TXT]

 Farnell-AD9834-Rev-D..> 08-Sep-2014 07:32  1.2M  

[TXT]

 Farnell-ADE7753-Rev-..> 08-Sep-2014 07:20  2.3M  

[TXT]

 Farnell-ADE7758-Rev-..> 08-Sep-2014 07:28  1.7M  

[TXT]

 Farnell-ADL6507-PDF.htm 14-Jun-2014 18:19  3.4M  

[TXT]

 Farnell-ADSP-21362-A..> 20-Mar-2014 17:34  2.8M  

[TXT]

 Farnell-ADuM1200-ADu..> 08-Sep-2014 08:09  1.6M  

[TXT]

 Farnell-ADuM1300-ADu..> 08-Sep-2014 08:11  1.7M  

[TXT]

 Farnell-ALF1210-PDF.htm 06-Jul-2014 10:06  4.0M  

[TXT]

 Farnell-ALF1225-12-V..> 01-Apr-2014 07:40  3.4M  

[TXT]

 Farnell-ALF2412-24-V..> 01-Apr-2014 07:39  3.4M  

[TXT]

 Farnell-AN10361-Phil..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-ARADUR-HY-13..> 26-Mar-2014 17:55  2.8M  

[TXT]

 Farnell-ARALDITE-201..> 21-Mar-2014 08:12  3.7M  

[TXT]

 Farnell-ARALDITE-CW-..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-AT89C5131-Ha..> 29-Jul-2014 10:31  1.2M  

[TXT]

 Farnell-AT90USBKey-H..> 29-Jul-2014 10:31  902K  

[TXT]

 Farnell-ATMEL-8-bit-..> 19-Mar-2014 18:04  2.1M  

[TXT]

 Farnell-ATMEL-8-bit-..> 11-Mar-2014 07:55  2.1M  

[TXT]

 Farnell-ATmega640-VA..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-ATtiny20-PDF..> 25-Mar-2014 08:19  3.6M  

[TXT]

 Farnell-ATtiny26-L-A..> 18-Jul-2014 17:00  2.6M  

[TXT]

 Farnell-ATtiny26-L-A..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-Alimentation..> 07-Jul-2014 19:43  1.8M  

[TXT]

 Farnell-Alimentation..> 14-Jun-2014 18:24  2.5M  

[TXT]

 Farnell-Alimentation..> 01-Apr-2014 07:42  3.4M  

[TXT]

 Farnell-Amplificateu..> 29-Mar-2014 11:11  3.3M  

[TXT]

 Farnell-Amplifier-In..> 06-Jul-2014 10:02  940K  

[TXT]

 Farnell-An-Improved-..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-Araldite-Fus..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-Arithmetic-L..> 08-Jul-2014 18:54  2.1M  

[TXT]

 Farnell-Atmel-ATmega..> 19-Mar-2014 18:03  2.2M  

[TXT]

 Farnell-Avvertenze-e..> 14-Jun-2014 18:20  3.3M  

[TXT]

 Farnell-BA-Series-Oh..> 08-Jul-2014 18:50  2.3M  

[TXT]

 Farnell-BAV99-Fairch..> 06-Jul-2014 10:03  896K  

[TXT]

 Farnell-BC846DS-NXP-..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-BC847DS-NXP-..> 23-Jun-2014 10:24  3.3M  

[TXT]

 Farnell-BD6xxx-PDF.htm  22-Jul-2014 12:33  1.6M  

[TXT]

 Farnell-BF545A-BF545..> 23-Jun-2014 10:28  2.1M  

[TXT]

 Farnell-BGA7124-400-..> 18-Jul-2014 16:59  1.5M  

[TXT]

 Farnell-BK889B-PONT-..> 07-Jul-2014 19:42  1.8M  

[TXT]

 Farnell-BK2650A-BK26..> 29-Mar-2014 11:10  3.3M  

[TXT]

 Farnell-BT151-650R-N..> 13-Jun-2014 18:40  1.7M  

[TXT]

 Farnell-BTA204-800C-..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-BUJD203AX-NX..> 13-Jun-2014 18:41  1.7M  

[TXT]

 Farnell-BYV29F-600-N..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-BYV79E-serie..> 10-Mar-2014 16:19  1.6M  

[TXT]

 Farnell-BZX384-serie..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-Battery-GBA-..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-Both-the-Del..> 06-Jul-2014 10:01  948K  

[TXT]

 Farnell-C.A-6150-C.A..> 14-Jun-2014 18:24  2.5M  

[TXT]

 Farnell-C.A 8332B-C...> 01-Apr-2014 07:40  3.4M  

[TXT]

 Farnell-CC-Debugger-..> 07-Jul-2014 19:44  1.5M  

[TXT]

 Farnell-CC2530ZDK-Us..> 08-Jul-2014 18:55  2.1M  

[TXT]

 Farnell-CC2531-USB-H..> 07-Jul-2014 19:43  1.8M  

[TXT]

 Farnell-CC2560-Bluet..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-CD4536B-Type..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-CIRRUS-LOGIC..> 10-Mar-2014 17:20  2.1M  

[TXT]

 Farnell-CLASS 1-or-2..> 22-Jul-2014 12:30  4.7M  

[TXT]

 Farnell-CRC-HANDCLEA..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-CS5532-34-BS..> 01-Apr-2014 07:39  3.5M  

[TXT]

 Farnell-Cannon-ZD-PD..> 11-Mar-2014 08:13  2.8M  

[TXT]

 Farnell-Ceramic-tran..> 14-Jun-2014 18:19  3.4M  

[TXT]

 Farnell-Circuit-Impr..> 25-Jul-2014 12:22  3.1M  

[TXT]

 Farnell-Circuit-Note..> 26-Mar-2014 18:00  2.8M  

[TXT]

 Farnell-Circuit-Note..> 26-Mar-2014 18:00  2.8M  

[TXT]

 Farnell-Cles-electro..> 21-Mar-2014 08:13  3.9M  

[TXT]

 Farnell-Clipper-Seri..> 08-Jul-2014 18:48  2.8M  

[TXT]

 Farnell-Compensating..> 09-Sep-2014 08:16  2.6M  

[TXT]

 Farnell-Compensating..> 09-Sep-2014 08:16  2.6M  

[TXT]

 Farnell-Conception-d..> 11-Mar-2014 07:49  2.4M  

[TXT]

 Farnell-Connectors-N..> 14-Jun-2014 18:12  2.1M  

[TXT]

 Farnell-Construction..> 14-Jun-2014 18:25  2.5M  

[TXT]

 Farnell-Controle-de-..> 11-Mar-2014 08:16  2.8M  

[TXT]

 Farnell-Cordless-dri..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-Cube-3D-Prin..> 18-Jul-2014 17:02  2.5M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:58  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:58  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:59  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:59  2.7M  

[TXT]

 Farnell-DAC8143-Data..> 18-Jul-2014 16:59  1.5M  

[TXT]

 Farnell-DC-DC-Conver..> 15-Jul-2014 16:48  781K  

[TXT]

 Farnell-DC-Fan-type-..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-DC-Fan-type-..> 14-Jun-2014 09:51  1.8M  

[TXT]

 Farnell-DG411-DG412-..> 07-Jul-2014 19:47  1.0M  

[TXT]

 Farnell-DP83846A-DsP..> 18-Jul-2014 16:55  1.5M  

[TXT]

 Farnell-DS3231-DS-PD..> 18-Jul-2014 16:57  2.5M  

[TXT]

 Farnell-Data-Sheet-K..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-Data-Sheet-M..> 09-Sep-2014 08:05  2.8M  

[TXT]

 Farnell-Data-Sheet-S..> 18-Jul-2014 17:00  1.2M  

[TXT]

 Farnell-Datasheet-FT..> 09-Sep-2014 08:10  2.8M  

[TXT]

 Farnell-Datasheet-Fa..> 06-Jul-2014 10:04  861K  

[TXT]

 Farnell-Datasheet-Fa..> 15-Jul-2014 17:05  1.0M  

[TXT]

 Farnell-Datasheet-NX..> 15-Jul-2014 17:06  1.0M  

[TXT]

 Farnell-Davum-TMC-PD..> 14-Jun-2014 18:27  2.4M  

[TXT]

 Farnell-De-la-puissa..> 29-Mar-2014 11:10  3.3M  

[TXT]

 Farnell-Decapant-KF-..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-Directive-re..> 25-Mar-2014 08:16  3.0M  

[TXT]

 Farnell-Documentatio..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-Download-dat..> 16-Jul-2014 09:02  2.2M  

[TXT]

 Farnell-Download-dat..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-Dremel-Exper..> 22-Jul-2014 12:34  1.6M  

[TXT]

 Farnell-Dual-MOSFET-..> 28-Jul-2014 17:41  2.8M  

[TXT]

 Farnell-ECO-Series-T..> 20-Mar-2014 08:14  2.5M  

[TXT]

 Farnell-EE-SPX303N-4..> 15-Jul-2014 17:06  969K  

[TXT]

 Farnell-ELMA-PDF.htm    29-Mar-2014 11:13  3.3M  

[TXT]

 Farnell-EMC1182-PDF.htm 25-Mar-2014 08:17  3.0M  

[TXT]

 Farnell-EPCOS-173438..> 04-Jul-2014 10:43  3.3M  

[TXT]

 Farnell-EPCOS-Sample..> 11-Mar-2014 07:53  2.2M  

[TXT]

 Farnell-ES1F-ES1J-fi..> 06-Jul-2014 10:04  867K  

[TXT]

 Farnell-ES2333-PDF.htm  11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-ESCON-Featur..> 06-Jul-2014 10:05  938K  

[TXT]

 Farnell-ESCON-Featur..> 06-Jul-2014 10:02  931K  

[TXT]

 Farnell-Ed.081002-DA..> 19-Mar-2014 18:02  2.5M  

[TXT]

 Farnell-Encodeur-USB..> 08-Jul-2014 18:56  2.0M  

[TXT]

 Farnell-Evaluating-t..> 22-Jul-2014 12:28  4.9M  

[TXT]

 Farnell-Everything-Y..> 11-Oct-2014 12:05  1.5M  

[TXT]

 Farnell-Excalibur-Hi..> 28-Jul-2014 17:10  2.4M  

[TXT]

 Farnell-Excalibur-Hi..> 28-Jul-2014 17:10  2.4M  

[TXT]

 Farnell-Explorer-16-..> 29-Jul-2014 10:31  1.3M  

[TXT]

 Farnell-F28069-Picco..> 14-Jun-2014 18:14  2.0M  

[TXT]

 Farnell-F42202-PDF.htm  19-Mar-2014 18:00  2.5M  

[TXT]

 Farnell-FAN6756-Fair..> 06-Jul-2014 10:04  850K  

[TXT]

 Farnell-FDC2512-Fair..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-FDS-ITW-Spra..> 14-Jun-2014 18:22  3.3M  

[TXT]

 Farnell-FDV301N-Digi..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-FICHE-DE-DON..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-Fast-Charge-..> 28-Jul-2014 17:12  6.4M  

[TXT]

 Farnell-Fastrack-Sup..> 23-Jun-2014 10:25  3.3M  

[TXT]

 Farnell-Ferric-Chlor..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-Fiche-de-don..> 14-Jun-2014 09:47  2.5M  

[TXT]

 Farnell-Fiche-de-don..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-Fluke-1730-E..> 14-Jun-2014 18:23  2.5M  

[TXT]

 Farnell-Full-Datashe..> 15-Jul-2014 17:08  951K  

[TXT]

 Farnell-Full-Datashe..> 15-Jul-2014 16:47  803K  

[TXT]

 Farnell-GALVA-A-FROI..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-GALVA-MAT-Re..> 26-Mar-2014 17:57  2.7M  

[TXT]

 Farnell-GN-RELAYS-AG..> 20-Mar-2014 08:11  2.6M  

[TXT]

 Farnell-Gertboard-Us..> 29-Jul-2014 10:30  1.4M  

[TXT]

 Farnell-HC49-4H-Crys..> 14-Jun-2014 18:20  3.3M  

[TXT]

 Farnell-HFE1600-Data..> 14-Jun-2014 18:22  3.3M  

[TXT]

 Farnell-HI-70300-Sol..> 14-Jun-2014 18:27  2.4M  

[TXT]

 Farnell-HIP4081A-Int..> 07-Jul-2014 19:47  1.0M  

[TXT]

 Farnell-HUNTSMAN-Adv..> 10-Mar-2014 16:17  1.7M  

[TXT]

 Farnell-Haute-vitess..> 11-Mar-2014 08:17  2.4M  

[TXT]

 Farnell-Hex-Inverter..> 29-Jul-2014 10:31  875K  

[TXT]

 Farnell-High-precisi..> 08-Jul-2014 18:51  2.3M  

[TXT]

 Farnell-ICM7228-Inte..> 07-Jul-2014 19:46  1.1M  

[TXT]

 Farnell-IP4252CZ16-8..> 13-Jun-2014 18:41  1.7M  

[TXT]

 Farnell-ISL6251-ISL6..> 07-Jul-2014 19:47  1.1M  

[TXT]

 Farnell-Instructions..> 19-Mar-2014 18:01  2.5M  

[TXT]

 Farnell-Jeu-multi-la..> 25-Jul-2014 12:23  3.0M  

[TXT]

 Farnell-KSZ8851SNL-S..> 23-Jun-2014 10:28  2.1M  

[TXT]

 Farnell-Keyboard-Mou..> 22-Jul-2014 12:27  5.9M  

[TXT]

 Farnell-L-efficacite..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-L78S-STMicro..> 22-Jul-2014 12:32  1.6M  

[TXT]

 Farnell-L293d-Texas-..> 08-Jul-2014 18:53  2.2M  

[TXT]

 Farnell-LCW-CQ7P.CC-..> 25-Mar-2014 08:19  3.2M  

[TXT]

 Farnell-LD-WSECO16-P..> 25-Jul-2014 12:22  3.1M  

[TXT]

 Farnell-LM3S6952-Mic..> 22-Jul-2014 12:27  5.9M  

[TXT]

 Farnell-LM19-Texas-I..> 18-Jul-2014 17:00  1.2M  

[TXT]

 Farnell-LM324-Texas-..> 29-Jul-2014 10:32  1.5M  

[TXT]

 Farnell-LM386-Low-Vo..> 29-Jul-2014 10:32  1.5M  

[TXT]

 Farnell-LM555-Timer-..> 08-Jul-2014 18:53  2.2M  

[TXT]

 Farnell-LM7805-Fairc..> 09-Sep-2014 08:13  2.7M  

[TXT]

 Farnell-LME49725-Pow..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-LMH6518-Texa..> 18-Jul-2014 16:59  1.3M  

[TXT]

 Farnell-LMP91051-Use..> 29-Jul-2014 10:30  1.4M  

[TXT]

 Farnell-LMT88-2.4V-1..> 28-Jul-2014 17:42  2.8M  

[TXT]

 Farnell-LOCTITE-542-..> 25-Mar-2014 08:15  3.0M  

[TXT]

 Farnell-LOCTITE-3463..> 25-Mar-2014 08:19  3.0M  

[TXT]

 Farnell-LPC11U3x-32-..> 16-Jul-2014 09:01  2.4M  

[TXT]

 Farnell-LPC81xM-32-b..> 16-Jul-2014 09:02  2.0M  

[TXT]

 Farnell-LPC408x-7x 3..> 16-Jul-2014 09:03  1.6M  

[TXT]

 Farnell-LPC1769-68-6..> 16-Jul-2014 09:02  1.9M  

[TXT]

 Farnell-LPC3220-30-4..> 16-Jul-2014 09:02  2.2M  

[TXT]

 Farnell-LQ-RELAYS-AL..> 06-Jul-2014 10:02  924K  

[TXT]

 Farnell-LT1961-Linea..> 18-Jul-2014 16:58  1.6M  

[TXT]

 Farnell-LT3757-Linea..> 18-Jul-2014 16:58  1.6M  

[TXT]

 Farnell-LT6233-Linea..> 18-Jul-2014 16:56  1.3M  

[TXT]

 Farnell-LUMINARY-MIC..> 22-Jul-2014 12:31  3.6M  

[TXT]

 Farnell-LUXEON-Guide..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-Leaded-Trans..> 23-Jun-2014 10:26  3.2M  

[TXT]

 Farnell-Les-derniers..> 11-Mar-2014 07:50  2.3M  

[TXT]

 Farnell-Loctite3455-..> 25-Mar-2014 08:16  3.0M  

[TXT]

 Farnell-Low-Noise-24..> 06-Jul-2014 10:05  1.0M  

[TXT]

 Farnell-Low-cost-Enc..> 13-Jun-2014 18:42  1.7M  

[TXT]

 Farnell-Lubrifiant-a..> 26-Mar-2014 18:00  2.7M  

[TXT]

 Farnell-MAX232-MAX23..> 08-Jul-2014 18:52  2.3M  

[TXT]

 Farnell-MAX1365-MAX1..> 18-Jul-2014 16:56  1.4M  

[TXT]

 Farnell-MAX3221-Rev-..> 08-Sep-2014 07:28  1.8M  

[TXT]

 Farnell-MAX4661-MAX4..> 09-Sep-2014 08:10  2.8M  

[TXT]

 Farnell-MC3510-PDF.htm  25-Mar-2014 08:17  3.0M  

[TXT]

 Farnell-MC21605-PDF.htm 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-MCF532x-7x-E..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-MCOC1-Farnel..> 16-Jul-2014 09:04  1.0M  

[TXT]

 Farnell-MCP3421-Micr..> 18-Jul-2014 17:00  1.2M  

[TXT]

 Farnell-MICREL-KSZ88..> 11-Mar-2014 07:54  2.2M  

[TXT]

 Farnell-MICROCHIP-PI..> 19-Mar-2014 18:02  2.5M  

[TXT]

 Farnell-MICROCHIP-PI..> 25-Jul-2014 12:34  6.7M  

[TXT]

 Farnell-MIDAS-un-tra..> 15-Jul-2014 17:05  1.0M  

[TXT]

 Farnell-MOLEX-39-00-..> 10-Mar-2014 17:19  1.9M  

[TXT]

 Farnell-MOLEX-43020-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MOLEX-43160-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MOLEX-87439-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MPXV7002-Rev..> 20-Mar-2014 17:33  2.8M  

[TXT]

 Farnell-MSP-EXP430F5..> 29-Jul-2014 10:31  1.2M  

[TXT]

 Farnell-MSP430-Hardw..> 29-Jul-2014 10:36  1.1M  

[TXT]

 Farnell-MSP430F15x-M..> 08-Sep-2014 07:32  1.3M  

[TXT]

 Farnell-MTX-3250-MTX..> 18-Jul-2014 17:01  2.5M  

[TXT]

 Farnell-MTX-Compact-..> 18-Jul-2014 17:01  2.5M  

[TXT]

 Farnell-MULTICOMP-Ra..> 22-Jul-2014 12:57  5.9M  

[TXT]

 Farnell-MX670-MX675-..> 14-Jun-2014 09:46  2.5M  

[TXT]

 Farnell-Microchip-MC..> 13-Jun-2014 18:27  1.8M  

[TXT]

 Farnell-Microship-PI..> 11-Mar-2014 07:53  2.2M  

[TXT]

 Farnell-Midas-Active..> 14-Jun-2014 18:17  3.4M  

[TXT]

 Farnell-Midas-MCCOG4..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-Mini-Fit-Jr-..> 18-Jul-2014 17:03  2.5M  

[TXT]

 Farnell-Miniature-Ci..> 26-Mar-2014 17:55  2.8M  

[TXT]

 Farnell-Mistral-PDF.htm 14-Jun-2014 18:12  2.1M  

[TXT]

 Farnell-Molex-83421-..> 14-Jun-2014 18:17  3.4M  

[TXT]

 Farnell-Molex-COMMER..> 14-Jun-2014 18:16  3.4M  

[TXT]

 Farnell-Molex-Crimp-..> 10-Mar-2014 16:27  1.7M  

[TXT]

 Farnell-Multi-Functi..> 20-Mar-2014 17:38  3.0M  

[TXT]

 Farnell-NA555-NE555-..> 08-Jul-2014 18:53  2.2M  

[TXT]

 Farnell-NA555-NE555-..> 08-Sep-2014 07:51  1.5M  

[TXT]

 Farnell-NE5532-Texas..> 29-Jul-2014 10:32  1.5M  

[TXT]

 Farnell-NTE_SEMICOND..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-NVE-datashee..> 28-Jul-2014 17:12  6.5M  

[TXT]

 Farnell-NXP-74VHC126..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-NXP-BT136-60..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-NXP-PBSS9110..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-NXP-PCA9555 ..> 11-Mar-2014 07:54  2.2M  

[TXT]

 Farnell-NXP-PMBFJ620..> 10-Mar-2014 16:16  1.7M  

[TXT]

 Farnell-NXP-PSMN1R7-..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-NXP-PSMN7R0-..> 10-Mar-2014 17:19  2.1M  

[TXT]

 Farnell-NXP-TEA1703T..> 11-Mar-2014 08:15  2.8M  

[TXT]

 Farnell-NaPiOn-Panas..> 06-Jul-2014 10:02  911K  

[TXT]

 Farnell-Nilfi-sk-E-..> 14-Jun-2014 09:47  2.5M  

[TXT]

 Farnell-Novembre-201..> 20-Mar-2014 17:38  3.3M  

[TXT]

 Farnell-OMRON-INDUST..> 25-Jul-2014 12:31  6.9M  

[TXT]

 Farnell-OMRON-INDUST..> 25-Jul-2014 12:32  6.9M  

[TXT]

 Farnell-OMRON-Master..> 10-Mar-2014 16:26  1.8M  

[TXT]

 Farnell-OPA627-Texas..> 09-Sep-2014 08:08  2.8M  

[TXT]

 Farnell-OSLON-SSL-Ce..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-OXPCIE958-FB..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-Octal-Genera..> 28-Jul-2014 17:42  2.8M  

[TXT]

 Farnell-PADO-semi-au..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-PBSS5160T-60..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-PCF8574-PCF8..> 16-Jul-2014 09:03  1.7M  

[TXT]

 Farnell-PDTA143X-ser..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-PDTB123TT-NX..> 13-Jun-2014 18:43  1.5M  

[TXT]

 Farnell-PESD5V0F1BL-..> 13-Jun-2014 18:43  1.5M  

[TXT]

 Farnell-PESD9X5.0L-P..> 13-Jun-2014 18:43  1.6M  

[TXT]

 Farnell-PIC12F609-61..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-PIC18F2420-2..> 18-Jul-2014 16:57  2.5M  

[TXT]

 Farnell-PIC18F2455-2..> 23-Jun-2014 10:27  3.1M  

[TXT]

 Farnell-PIC24FJ256GB..> 14-Jun-2014 09:51  2.4M  

[TXT]

 Farnell-PMBT3906-PNP..> 13-Jun-2014 18:44  1.5M  

[TXT]

 Farnell-PMBT4403-PNP..> 23-Jun-2014 10:27  3.1M  

[TXT]

 Farnell-PMEG4002EL-N..> 14-Jun-2014 18:18  3.4M  

[TXT]

 Farnell-PMEG4010CEH-..> 13-Jun-2014 18:43  1.6M  

[TXT]

 Farnell-PN512-Full-N..> 16-Jul-2014 09:03  1.4M  

[TXT]

 Farnell-Panasonic-15..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-Panasonic-EC..> 20-Mar-2014 17:36  2.6M  

[TXT]

 Farnell-Panasonic-EZ..> 20-Mar-2014 08:10  2.6M  

[TXT]

 Farnell-Panasonic-Id..> 20-Mar-2014 17:35  2.6M  

[TXT]

 Farnell-Panasonic-Ne..> 20-Mar-2014 17:36  2.6M  

[TXT]

 Farnell-Panasonic-Ra..> 20-Mar-2014 17:37  2.6M  

[TXT]

 Farnell-Panasonic-TS..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-Panasonic-Y3..> 20-Mar-2014 08:11  2.6M  

[TXT]

 Farnell-PiFace-Digit..> 25-Jul-2014 12:25  3.0M  

[TXT]

 Farnell-Pico-Spox-Wi..> 10-Mar-2014 16:16  1.7M  

[TXT]

 Farnell-PicoScope-42..> 25-Jul-2014 12:23  3.0M  

[TXT]

 Farnell-PicoScope-se..> 25-Jul-2014 12:24  3.0M  

[TXT]

 Farnell-Pompes-Charg..> 24-Apr-2014 20:23  3.3M  

[TXT]

 Farnell-Ponts-RLC-po..> 14-Jun-2014 18:23  3.3M  

[TXT]

 Farnell-Portable-Ana..> 29-Mar-2014 11:16  2.8M  

[TXT]

 Farnell-Power-suppli..> 25-Jul-2014 12:29  7.0M  

[TXT]

 Farnell-Premier-Farn..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-Produit-3430..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-Proskit-SS-3..> 10-Mar-2014 16:26  1.8M  

[TXT]

 Farnell-Puissance-ut..> 11-Mar-2014 07:49  2.4M  

[TXT]

 Farnell-Q48-PDF.htm     23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-QRE1113-Fair..> 06-Jul-2014 10:03  879K  

[TXT]

 Farnell-Quadruple-2-..> 08-Sep-2014 07:29  1.5M  

[TXT]

 Farnell-Quick-Start-..> 25-Jul-2014 12:25  3.0M  

[TXT]

 Farnell-RASPBERRY-PI..> 22-Jul-2014 12:35  5.9M  

[TXT]

 Farnell-RDS-80-PDF.htm  18-Jul-2014 16:57  1.3M  

[TXT]

 Farnell-REF19x-Serie..> 09-Sep-2014 08:08  2.8M  

[TXT]

 Farnell-REF102-10V-P..> 28-Jul-2014 17:09  2.4M  

[TXT]

 Farnell-RF-short-tra..> 28-Jul-2014 17:16  6.3M  

[TXT]

 Farnell-Radial-Lead-..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-RaspiCam-Doc..> 22-Jul-2014 12:32  1.6M  

[TXT]

 Farnell-Realiser-un-..> 11-Mar-2014 07:51  2.3M  

[TXT]

 Farnell-Reglement-RE..> 21-Mar-2014 08:08  3.9M  

[TXT]

 Farnell-Repartiteurs..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-S-TRI-SWT860..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-S1A-Fairchil..> 06-Jul-2014 10:03  896K  

[TXT]

 Farnell-SB175-Connec..> 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-SB520-SB5100..> 22-Jul-2014 12:32  1.6M  

[TXT]

 Farnell-SERIAL-TFT-M..> 15-Jul-2014 17:05  1.0M  

[TXT]

 Farnell-SICK-OPTIC-E..> 18-Jul-2014 16:58  1.5M  

[TXT]

 Farnell-SL3ICS1002-1..> 16-Jul-2014 09:05  2.5M  

[TXT]

 Farnell-SL3S1203_121..> 16-Jul-2014 09:04  1.1M  

[TXT]

 Farnell-SL3S4011_402..> 16-Jul-2014 09:03  1.1M  

[TXT]

 Farnell-SL59830-Inte..> 06-Jul-2014 10:11  1.0M  

[TXT]

 Farnell-SMBJ-Transil..> 29-Mar-2014 11:12  3.3M  

[TXT]

 Farnell-SMU-Instrume..> 08-Jul-2014 18:51  2.3M  

[TXT]

 Farnell-SN54HC164-SN..> 08-Sep-2014 07:25  2.0M  

[TXT]

 Farnell-SN54HC244-SN..> 08-Jul-2014 18:52  2.3M  

[TXT]

 Farnell-SN54LV4053A-..> 28-Jul-2014 17:20  5.9M  

[TXT]

 Farnell-SO967460-PDF..> 11-Oct-2014 12:05  2.9M  

[TXT]

 Farnell-SOT-23-Multi..> 11-Mar-2014 07:51  2.3M  

[TXT]

 Farnell-SOURIAU-Cont..> 08-Jul-2014 19:04  3.0M  

[TXT]

 Farnell-SPLC780A1-16..> 14-Jun-2014 18:25  2.5M  

[TXT]

 Farnell-SSC7102-Micr..> 23-Jun-2014 10:25  3.2M  

[TXT]

 Farnell-STM32F103x8-..> 22-Jul-2014 12:33  1.6M  

[TXT]

 Farnell-STM32F405xxS..> 27-Aug-2014 18:27  1.8M  

[TXT]

 Farnell-SVPE-series-..> 14-Jun-2014 18:15  2.0M  

[TXT]

 Farnell-Schroff-A108..> 25-Jul-2014 12:27  2.8M  

[TXT]

 Farnell-Schroff-Main..> 25-Jul-2014 12:26  2.9M  

[TXT]

 Farnell-Schroff-mult..> 25-Jul-2014 12:26  2.9M  

[TXT]

 Farnell-Sensorless-C..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-Septembre-20..> 20-Mar-2014 17:46  3.7M  

[TXT]

 Farnell-Serial-File-..> 06-Jul-2014 10:02  941K  

[TXT]

 Farnell-Serie-PicoSc..> 19-Mar-2014 18:01  2.5M  

[TXT]

 Farnell-Serie-Standa..> 14-Jun-2014 18:23  3.3M  

[TXT]

 Farnell-Series-2600B..> 20-Mar-2014 17:30  3.0M  

[TXT]

 Farnell-Series-TDS10..> 04-Jul-2014 10:39  4.0M  

[TXT]

 Farnell-Signal-PCB-R..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-Silica-Gel-M..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-Single-Chip-..> 08-Sep-2014 07:30  1.5M  

[TXT]

 Farnell-SmartRF06-Ev..> 07-Jul-2014 19:43  1.6M  

[TXT]

 Farnell-Strangkuhlko..> 21-Mar-2014 08:09  3.9M  

[TXT]

 Farnell-Supercapacit..> 26-Mar-2014 17:57  2.7M  

[TXT]

 Farnell-Synchronous-..> 08-Jul-2014 18:54  2.1M  

[TXT]

 Farnell-T672-3000-Se..> 08-Jul-2014 18:59  2.0M  

[TXT]

 Farnell-TAS1020B-USB..> 28-Jul-2014 17:19  6.2M  

[TXT]

 Farnell-TCL-DC-traco..> 15-Jul-2014 16:46  858K  

[TXT]

 Farnell-TDK-Lambda-H..> 14-Jun-2014 18:21  3.3M  

[TXT]

 Farnell-TEKTRONIX-DP..> 10-Mar-2014 17:20  2.0M  

[TXT]

 Farnell-TEL-5-Series..> 15-Jul-2014 16:47  814K  

[TXT]

 Farnell-TEN-8-WI-Ser..> 15-Jul-2014 16:46  939K  

[TXT]

 Farnell-TEP-150WI-Se..> 15-Jul-2014 16:47  837K  

[TXT]

 Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:29  4.8M  

[TXT]

 Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:31  2.4M  

[TXT]

 Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:30  4.6M  

[TXT]

 Farnell-TIS-Instruct..> 15-Jul-2014 16:47  845K  

[TXT]

 Farnell-TIS-series-t..> 15-Jul-2014 16:46  875K  

[TXT]

 Farnell-TKC2-Dusters..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-TL082-Wide-B..> 28-Jul-2014 17:16  6.3M  

[TXT]

 Farnell-TLV320AIC23B..> 08-Sep-2014 07:18  2.4M  

[TXT]

 Farnell-TLV320AIC325..> 28-Jul-2014 17:45  2.9M  

[TXT]

 Farnell-TMLM-Series-..> 15-Jul-2014 16:47  810K  

[TXT]

 Farnell-TMP006EVM-Us..> 29-Jul-2014 10:30  1.3M  

[TXT]

 Farnell-TMR-2-Series..> 15-Jul-2014 16:46  897K  

[TXT]

 Farnell-TMR-2-series..> 15-Jul-2014 16:48  787K  

[TXT]

 Farnell-TMR-3-WI-Ser..> 15-Jul-2014 16:46  939K  

[TXT]

 Farnell-TMS320F28055..> 28-Jul-2014 17:09  2.7M  

[TXT]

 Farnell-TOS-tracopow..> 15-Jul-2014 16:47  852K  

[TXT]

 Farnell-TPS40060-Wid..> 28-Jul-2014 17:19  6.3M  

[TXT]

 Farnell-TSV6390-TSV6..> 28-Jul-2014 17:14  6.4M  

[TXT]

 Farnell-TXL-series-t..> 15-Jul-2014 16:47  829K  

[TXT]

 Farnell-TYCO-ELECTRO..> 25-Jul-2014 12:30  6.9M  

[TXT]

 Farnell-Tektronix-AC..> 13-Jun-2014 18:44  1.5M  

[TXT]

 Farnell-Telemetres-l..> 20-Mar-2014 17:46  3.7M  

[TXT]

 Farnell-Termometros-..> 14-Jun-2014 18:14  2.0M  

[TXT]

 Farnell-The-Discrete..> 08-Sep-2014 17:44  1.8M  

[TXT]

 Farnell-The-essentia..> 10-Mar-2014 16:27  1.7M  

[TXT]

 Farnell-Thermometre-..> 29-Jul-2014 10:30  1.4M  

[TXT]

 Farnell-Tiva-C-Serie..> 08-Jul-2014 18:49  2.6M  

[TXT]

 Farnell-Trust-Digita..> 25-Jul-2014 12:24  3.0M  

[TXT]

 Farnell-U2270B-PDF.htm  14-Jun-2014 18:15  3.4M  

[TXT]

 Farnell-ULINKpro-Deb..> 25-Jul-2014 12:35  5.9M  

[TXT]

 Farnell-ULN2803A-Rev..> 09-Sep-2014 19:26  2.9M  

[TXT]

 Farnell-USB-Buccanee..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-USB-to-Seria..> 08-Sep-2014 07:27  2.0M  

[TXT]

 Farnell-USB1T11A-PDF..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-UTO-Souriau-..> 08-Jul-2014 18:48  2.8M  

[TXT]

 Farnell-UTS-Series-S..> 08-Jul-2014 18:49  2.8M  

[TXT]

 Farnell-UTS-Series-S..> 08-Jul-2014 18:49  2.5M  

[TXT]

 Farnell-User-Guide-M..> 07-Jul-2014 19:41  2.0M  

[TXT]

 Farnell-V4N-PDF.htm     14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-Videk-PDF.htm   06-Jul-2014 10:01  948K  

[TXT]

 Farnell-WIRE-WRAP-50..> 25-Jul-2014 12:34  5.9M  

[TXT]

 Farnell-WetTantalum-..> 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-XPS-AC-Octop..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-XPS-MC16-XPS..> 11-Mar-2014 08:15  2.8M  

[TXT]

 Farnell-XPSAF5130-PD..> 18-Jul-2014 16:56  1.4M  

[TXT]

 Farnell-YAGEO-DATA-S..> 11-Mar-2014 08:13  2.8M  

[TXT]

 Farnell-ZigBee-ou-le..> 11-Mar-2014 07:50  2.4M  

[TXT]

 Farnell-celpac-SUL84..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-china_rohs_o..> 21-Mar-2014 10:04  3.9M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:34  2.8M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:35  2.7M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:31  2.9M  

[TXT]

 Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32  2.9M  

[TXT]

 Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32  2.9M  

[TXT]

 Farnell-ev-relays-ae..> 06-Jul-2014 10:02  926K  

[TXT]

 Farnell-fiche-de-don..> 07-Jul-2014 19:44  1.4M  

[TXT]

 Farnell-fx-3650P-fx-..> 29-Jul-2014 10:42  1.5M  

[TXT]

 Farnell-iServer-Micr..> 22-Jul-2014 12:32  1.6M  

[TXT]

 Farnell-ir1150s_fr.p..> 29-Mar-2014 11:11  3.3M  

[TXT]

 Farnell-manual-bus-p..> 10-Mar-2014 16:29  1.9M  

[TXT]

 Farnell-maxim-integr..> 28-Jul-2014 17:14  6.4M  

[TXT]

 Farnell-pmbta13_pmbt..> 15-Jul-2014 17:06  959K  

[TXT]

 Farnell-propose-plus..> 11-Mar-2014 08:19  2.8M  

[TXT]

 Farnell-safety-data-..> 07-Jul-2014 19:44  1.4M  

[TXT]

 Farnell-techfirst_se..> 21-Mar-2014 08:08  3.9M  

[TXT]

 Farnell-tesa®pack63..> 08-Jul-2014 18:56  2.0M  

[TXT]

 Farnell-testo-205-20..> 20-Mar-2014 17:37  3.0M  

[TXT]

 Farnell-testo-470-Fo..> 20-Mar-2014 17:38  3.0M  

[TXT]

 Farnell-uC-OS-III-Br..> 10-Mar-2014 17:20  2.0M  

[TXT]

 Farnell-user-manuel-..> 29-Jul-2014 10:29  1.5M  

[TXT]

 Sefram-7866HD.pdf-PD..> 29-Mar-2014 11:46  472K  

[TXT]

 Sefram-CAT_ENREGISTR..> 29-Mar-2014 11:46  461K  

[TXT]

 Sefram-CAT_MESUREURS..> 29-Mar-2014 11:46  435K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  481K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  442K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  422K  

[TXT]

 Sefram-SP270.pdf-PDF..> 29-Mar-2014 11:46  464K
STM32F030x4 STM32F030x6 STM32F030x8 Value-line ARM-based 32-bit MCU with 16 to 64-KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation Datasheet target specification Features  Core: ARM® 32-bit Cortex™-M0 CPU, frequency up to 48 MHz  Memories – 16 to 64 Kbytes of Flash memory – 4 to 8 Kbytes of SRAM with HW parity checking  CRC calculation unit  Reset and power management – Voltage range: 2.4 V to 3.6 V – Power-on/Power down reset (POR/PDR) – Low power modes: Sleep, Stop, Standby  Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x6 PLL option – Internal 40 kHz RC oscillator  Up to 55 fast I/Os – All mappable on external interrupt vectors – Up to 36 I/Os with 5 V tolerant capability  5-channel DMA controller  1 x 12-bit, 1.0 μs ADC (up to 16 channels) – Conversion range: 0 to 3.6 V – Separate analog supply from 2.4 up to 3.6 V  Up to 10 timers – One 16-bit 7-channel advanced-control timer for 6 channels PWM output, with deadtime generation and emergency stop – One 16-bit timer, with up to 4 IC/OC, usable for IR control decoding – One 16-bit timer, with 2 IC/OC, 1 OCN, deadtime generation and emergency stop – Two 16-bit timers, each with IC/OC and OCN, deadtime generation, emergency stop and modulator gate for IR control – One 16-bit timer with 1 IC/OC – One 16-bit basic timer – Independent and system watchdog timers – SysTick timer: 24-bit downcounter  Calendar RTC with alarm and periodic wakeup from Stop/Standby  Communication interfaces – Up to two I2C interfaces: one supporting Fast Mode Plus (1 Mbit/s) with 20 mA current sink – Up to two USARTs supporting master synchronous SPI and modem control; one with auto baud rate detection – Up to two SPIs (18 Mbit/s) with 4 to 16 programmable bit frame  Serial wire debug (SWD) Table 1. Device summary Reference Part number STM32F030x4 STM32F030F4 STM32F030x6 STM32F030C6, STM32F030K6 STM32F030x8 STM32F030C8, STM32F030R8 LQFP48 7x7 mm LQFP64 10x10 mm LQFP32 7x7 mm TSSOP20 www.st.com Contents STM32F030x4 STM32F030x6 STM32F030x8 2/88 DocID024849 Rev 1 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 ARM® CortexTM-M0 core with embedded Flash and SRAM . . . . . . . . . 12 3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 13 3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.2 Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.8 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16 3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 16 3.10 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.11 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.11.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.11.2 General-purpose timers (TIM3, TIM14..17) . . . . . . . . . . . . . . . . . . . . . . 19 3.11.3 Basic timer TIM6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.11.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.12 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.13 Inter-integrated circuit interfaces (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14 Universal synchronous/asynchronous receiver transmitters (USART) . . 22 DocID024849 Rev 1 3/88 STM32F030x4 STM32F030x6 STM32F030x8 Contents 4 3.15 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.16 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 41 6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 41 6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3.18 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3.19 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Contents STM32F030x4 STM32F030x6 STM32F030x8 4/88 DocID024849 Rev 1 7 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 83 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 DocID024849 Rev 1 5/88 STM32F030x4 STM32F030x6 STM32F030x8 List of tables 6 List of tables Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 2. STM32F030x device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 3. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 4. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 5. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 6. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 7. STM32F030x I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 8. STM32F030x USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 9. STM32F030x SPI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 10. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 11. Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 12. Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 31 Table 13. Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 32 Table 14. STM32F030x peripheral register boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 15. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 16. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 17. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 18. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 19. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 20. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 21. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 22. Typical and maximum current consumption from VDD supply at VDD = 3.6 . . . . . . . . . . . 43 Table 23. Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 43 Table 24. Typical and maximum VDD consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 44 Table 25. Typical and maximum VDDA consumption in Stop and Standby modes. . . . . . . . . . . . . . . 44 Table 26. Typical current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 27. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 28. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 29. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 30. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Table 31. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 32. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Table 33. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table 34. HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 35. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Table 36. PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 37. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 38. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 39. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 40. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 41. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 42. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Table 43. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 44. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 45. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 46. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Table 47. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 List of tables STM32F030x4 STM32F030x6 STM32F030x8 6/88 DocID024849 Rev 1 Table 48. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Table 49. RAIN max for fADC = 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 50. ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Table 51. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Table 52. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Table 53. IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table 54. WWDG min-max timeout value @48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Table 55. I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Table 56. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Table 57. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Table 58. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . . 75 Table 59. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . 77 Table 60. LQFP32 – 7 x 7mm 32-pin low-profile quad flat package mechanical data . . . . . . . . . . . . 79 Table 61. TSSOP20 – 20-pin thin shrink small outline package mechanical data . . . . . . . . . . . . . . . 81 Table 62. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Table 63. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Table 64. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 DocID024849 Rev 1 7/88 STM32F030x4 STM32F030x6 STM32F030x8 List of figures 7 List of figures Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 2. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 3. LQFP64 64-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 4. LQFP48 48-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 5. LQFP32 32-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 6. TSSOP20 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 7. STM32F030x memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 8. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 9. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 10. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 11. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 12. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Figure 13. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 14. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 15. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 16. TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 17. Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Figure 18. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Figure 19. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Figure 20. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 21. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Figure 22. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Figure 23. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Figure 24. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Figure 25. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Figure 26. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 75 Figure 27. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Figure 28. LQFP48 – 7 x 7 mm, 48 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 77 Figure 29. LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Figure 30. LQFP32 – 7 x 7mm 32-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 79 Figure 31. LQFP32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Figure 32. TSSOP20 - 20-pin thin shrink small outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Figure 33. TSSOP20 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Figure 34. LQFP64 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Introduction STM32F030x4 STM32F030x6 STM32F030x8 8/88 DocID024849 Rev 1 1 Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F030x microcontrollers. This STM32F030x4, STM32F030x6, and STM32F030x8 datasheet should be read in conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is available from the STMicroelectronics website www.st.com. For information on the ARM Cortex™-M0 core, please refer to the Cortex™-M0 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0432c/index.html. DocID024849 Rev 1 9/88 STM32F030x4 STM32F030x6 STM32F030x8 Description 11 2 Description The STM32F030x microcontroller incorporates the high-performance ARM Cortex™-M0 32- bit RISC core operating at a 48 MHz frequency, high-speed embedded memories (up to 64 Kbytes of Flash memory and up to 8 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (up to two I2Cs, up to two SPIs, and up to two USARTs), one 12-bit ADC, up to 6 general-purpose 16-bit timers and an advanced-control PWM timer. The STM32F030x microcontroller operates in the -40 to +85 °C temperature range, from a 2.4 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications. The STM32F030x microcontroller includes devices in four different packages ranging from 20 pins to 64 pins. Depending on the device chosen, different sets of peripherals are included. The description below provides an overview of the complete range of STM32F030x peripherals proposed. These features make the STM32F030x microcontroller suitable for a wide range of applications such as application control and user interfaces, handheld equipment, A/V receivers and digital TV, PC peripherals, gaming platforms, e-bikes, consumer appliances, printers, scanners, alarm systems, video intercoms, and HVACs. Description STM32F030x4 STM32F030x6 STM32F030x8 10/88 DocID024849 Rev 1 Table 2. STM32F030x device features and peripheral counts Peripheral STM32F030F4 STM32F030K6 STM32F030C6/C8 STM32F030R8 Flash (Kbytes) 16 32 32 64 64 SRAM (Kbytes) 4 4 4 8 8 Timers Advanced control 1 (16-bit) General purpose 4 (16-bit)(1) 4 (16-bit)(1) 4 (16-bit)(1) 5 (16-bit) 5 (16-bit) Basic - - - 1 (16-bit) 1 (16-bit) Comm. interfaces SPI 1(2) 1(2) 1(2) 2 2 I2C 1(3) 1(3) 1(3) 2 2 USART 1(4) 1(4) 1(4) 2 2 12-bit synchronized ADC (number of channels) 1 (11 channels) 1 (12 channels) 1 (12 channels) 1 (18 channels) GPIOs 15 26 39 55 Max. CPU frequency 48 MHz Operating voltage 2.4 to 3.6 V Operating temperature Ambient operating temperature: -40 °C to 85 °C Packages TSSOP20 LQFP32 LQFP48 LQFP64 1. TIM15 is not present. 2. SPI2 is not present. 3. I2C2 is not present. 4. USART2 is not present. DocID024849 Rev 1 11/88 STM32F030x4 STM32F030x6 STM32F030x8 Description 11 Figure 1. Block diagram 1. TIMER6, TIMER15, SPI2, USART2 and I2C2 are available on STM32F030x8 devices only. MSv32137V1 4 channels 3 compl. channels BRK, ETR input as AF 4 ch., ETR as AF 1 channel as AF 2 channels 1 compl, BRK as AF 1 channel 1 compl, BRK as AF 1 channel 1 compl, BRK as AF IR_OUT as AF RX, TX,CTS, RTS, CK as AF RX, TX,CTS, RTS, CK as AF SCL, SDA, SMBA (20 mA for FM+) as AF SCL, SDA as AF @ VDD @ VDDA AHBPCLK APBPCLK ADCCLK USARTCLK HCLK PA[15:0] FCLK PB[15:0] PC[15:0] PD2 PF[1:0] PF[7:4] @ VDDA 55 AF MOSI, MISO, SCK, NSS as AF VDDA VSSA GP DMA 5 channels CORTEX-M0 CPU fHCLK = 48 MHz Serial Wire Debug NVIC GPIO port A GPIO port B GPIO port C GPIO port D GPIO port F EXT. IT WKUP SPI1 SPI2 SYSCFG IF TIMER 6 DBGMCU WWDG APB AHB CRC RESET & CLOCK CONTROL TIMER 1 TIMER 3 TIMER 14 TIMER 15 TIMER 16 TIMER 17 USART1 USART2 I2C 1 I2C2 Power Controller XTAL OSC 4-32 MHz IWDG SUPPLY SUPERVISION POR/PDR POWER VOLT.REG 3.3 V TO 1.8 V RC HS 14 MHz RC HS 8 MHz RC LS PLL Flash interface Flash up to 64 KB, 32 bits Obl SRAM 4 / 8 KB Temp. sensor 12-bit IF ADC1 SWCLK SWDIO as AF MOSI/MISO, SCK/NSS, as AF 16 AD inputs Bus matrix @ VDDA @ VDD VDD18 POR Reset Int VDD = 2.4 to 3.6 V VSS NRST VDDA VDD OSC_IN (PF0) OSC_OUT (PF1) OSC32_IN (PC14) OSC32_OUT (PC15) TAMPER-RTC (ALARM OUT) RTC RTC interface XTAL32 kHz @ VDD SRAM controller AHB decoder Functional overview STM32F030x4 STM32F030x6 STM32F030x8 12/88 DocID024849 Rev 1 3 Functional overview 3.1 ARM® CortexTM-M0 core with embedded Flash and SRAM The ARM Cortex™-M0 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM Cortex™-M0 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The STM32F0xx family has an embedded ARM core and is therefore compatible with all ARM tools and software. Figure 1 shows the general block diagram of the device family. 3.2 Memories The device has the following features:  Up to 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for failcritical applications.  The non-volatile memory is divided into two arrays: – 16 to 64 Kbytes of embedded Flash memory for programs and data – Option bytes The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options: – Level 0: no readout protection – Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected – Level 2: chip readout protection, debug features (Cortex-M0 serial wire) and boot in RAM selection disabled 3.3 Boot modes At startup, the boot pin and boot selector option bit are used to select one of three boot options:  Boot from User Flash  Boot from System Memory  Boot from embedded SRAM The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10. DocID024849 Rev 1 13/88 STM32F030x4 STM32F030x6 STM32F030x8 Functional overview 22 3.4 Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a CRC-32 (Ethernet) polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.5 Power management 3.5.1 Power supply schemes  VDD = 2.4 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins.  VDDA = 2.4 to 3.6 V: external analog power supply for ADC, Reset blocks, RCs and PLL. The VDDA voltage level must be always greater or equal to the VDD voltage level and must be provided first. For more details on how to connect power pins, refer to Figure 10: Power supply scheme. 3.5.2 Power supply supervisors The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit.  The POR monitors only the VDD supply voltage. During the startup phase it is required that VDDA should arrive first and be greater than or equal to VDD.  The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that VDDA is higher than or equal to VDD. 3.5.3 Voltage regulator The regulator has three operating modes: main (MR), low power (LPR) and power down.  MR is used in normal operating mode (Run)  LPR can be used in Stop mode where the power demand is reduced  Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost) This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output. Functional overview STM32F030x4 STM32F030x6 STM32F030x8 14/88 DocID024849 Rev 1 3.5.4 Low-power modes The STM32F030x microcontroller supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:  Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.  Stop mode Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines or the RTC alarm.  Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for the Standby circuitry. The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pins, or an RTC alarm occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. 3.6 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz. DocID024849 Rev 1 15/88 STM32F030x4 STM32F030x6 STM32F030x8 Functional overview 22 Figure 2. Clock tree 1. LSI/LSE is not available on STM32F030x8 devices. /32 4-32 MHz HSE OSC OSC_IN OSC_OUT OSC32_IN OSC32_OUT 8 MHz HSI RC to IWDG PLL x2,x3,.. x16 PLLMUL MCO Main clock output AHB /2 PLLCLK HSI HSE APB prescaler /1,2,4,8,16 ADC Prescaler /2,4 HCLK PLLCLK to AHB bus, core, memory and DMA to ADC 14 MHz max LSE LSI HSI HSI HSE to RTC PLLSRC SW MCO /8 SYSCLK RTCCLK RTCSEL[1:0] SYSCLK to TIM1,3,6, 14,15,16,17 If (APB1 prescaler =1) x1 else x2 FLITFCLK to Flash programming interface HSI14 14 MHz HSI14 RC HSI14 /244 LSE to I2C1 to USART1 LSE HSI SYSCLK /2 PCLK SYSCLK HSI PCLK MS32138V1 to cortex System timer FHCLK Cortex free running clock to APB peripherals AHB prescaler /1,2,..512 /1,2, CSS 3,..16 LSE OSC 32.768kHz LSI RC 40kHz LSI LSE (1) (1) Functional overview STM32F030x4 STM32F030x6 STM32F030x8 16/88 DocID024849 Rev 1 3.7 General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 3.8 Direct memory access controller (DMA) The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. DMA can be used with the main peripherals: SPI, I2C, USART, all TIMx timers (except TIM14) and ADC. 3.9 Interrupts and events 3.9.1 Nested vectored interrupt controller (NVIC) The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M0) and 4 priority levels.  Closely coupled NVIC gives low latency interrupt processing  Interrupt entry vector table address passed directly to the core  Closely coupled NVIC core interface  Allows early processing of interrupts  Processing of late arriving higher priority interrupts  Support for tail-chaining  Processor state automatically saved  Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. 3.9.2 Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 55 GPIOs can be connected to the 16 external interrupt lines. DocID024849 Rev 1 17/88 STM32F030x4 STM32F030x6 STM32F030x8 Functional overview 22 3.10 Analog to digital converter (ADC) The 12-bit analog to digital converter has up to 16 external and 2 internal (temperature sensor/voltage reference measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. 3.10.1 Temperature sensor The temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. 3.10.2 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC. VREFINT is internally connected to the ADC_IN17 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. Table 3. Temperature sensor calibration values Calibration value name Description Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FFF F7B8 - 0x1FFF F7B9 TS_CAL2 TS ADC raw data acquired at temperature of 110 °C VDDA= 3.3 V 0x1FFF F7C2 - 0x1FFF F7C3 Table 4. Internal voltage reference calibration values Calibration value name Description Memory address VREFINT_CAL Raw data acquired at temperature of 30 °C VDDA= 3.3 V 0x1FFF F7BA - 0x1FFF F7BB Functional overview STM32F030x4 STM32F030x6 STM32F030x8 18/88 DocID024849 Rev 1 3.11 Timers and watchdogs Devices of the STM32F0xx family include up to six general-purpose timers, one basic timer and an advanced control timer. Table 5 compares the features of the advanced-control, general-purpose and basic timers. 3.11.1 Advanced-control timer (TIM1) The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:  Input capture  Output compare  PWM generation (edge or center-aligned modes)  One-pulse mode output If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%). The counter can be frozen in debug mode. Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining. Table 5. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Capture/ compare channels Complementary outputs Advanced control TIM1 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 Yes General purpose TIM3 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM14 16-bit Up Any integer between 1 and 65536 No 1 No TIM15(1) 16-bit Up Any integer between 1 and 65536 Yes 2 Yes TIM16, TIM17 16-bit Up Any integer between 1 and 65536 Yes 1 Yes Basic TIM6(1) 16-bit Up Any integer between 1 and 65536 Yes 0 No 1. Available on STM32F030x8 devices only. DocID024849 Rev 1 19/88 STM32F030x4 STM32F030x6 STM32F030x8 Functional overview 22 3.11.2 General-purpose timers (TIM3, TIM14..17) There are five synchronizable general-purpose timers embedded in the STM32F030x devices (see Table 5 for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base. TIM3 STM32F030x devices feature a synchronizable 4-channel general-purpose timer based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 features 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages. The TIM3 general-purpose timer can work with the TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining. It provides independent DMA request generation. The TIM3 timer is capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. Its counter can be frozen in debug mode. TIM14 This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output. Its counter can be frozen in debug mode. TIM15, TIM16 and TIM17 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output. The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining. TIM15 can be synchronized with TIM16 and TIM17. TIM15, TIM16, and TIM17 have a complementary output with dead-time generation and independent DMA request generation. Their counters can be frozen in debug mode. 3.11.3 Basic timer TIM6 This timer is mainly used as a generic 16-bit time base. 3.11.4 Independent watchdog (IWDG) The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free Functional overview STM32F030x4 STM32F030x6 STM32F030x8 20/88 DocID024849 Rev 1 running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.11.5 System window watchdog (WWDG) The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.11.6 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:  A 24-bit down counter  Autoreload capability  Maskable system interrupt generation when the counter reaches 0  Programmable clock source (HCLK or HCLK/8) 3.12 Real-time clock (RTC) The RTC is an independent BCD timer/counter. Its main features are the following:  Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format  Automatically correction for 28, 29 (leap year), 30, and 31 day of the month  Programmable alarm with wake up from Stop and Standby mode capability  On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.  Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy  2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.  Timestamp feature which can be used to save the calendar content. This function can triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.  Periodic wakeup from Stop/Standby  Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC clock sources can be:  A 32.768 kHz external crystal  A resonator or oscillator  The internal low-power RC oscillator (typical frequency of 40 kHz)  The high-speed external clock divided by 32 DocID024849 Rev 1 21/88 STM32F030x4 STM32F030x6 STM32F030x8 Functional overview 22 3.13 Inter-integrated circuit interfaces (I2C) Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s) or Fast mode (up to 400 kbit/s). I2C1 also supports Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive. Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters. In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. The I2C interfaces can be served by the DMA controller. Refer to Table 7 for the differences between I2C1 and I2C2. Table 6. Comparison of I2C analog and digital filters Analog filter Digital filter Pulse width of suppressed spikes  50 ns Programmable length from 1 to 15 I2C peripheral clocks Benefits Available in Stop mode 1. Extra filtering capability vs. standard requirements. 2. Stable length Drawbacks Variations depending on temperature, voltage, process Wakeup from Stop on address match is not available when digital filter is enabled. Table 7. STM32F030x I2C implementation I2C features(1) 1. X = supported. I2C1 I2C2 7-bit addressing mode X X 10-bit addressing mode X X Standard mode (up to 100 kbit/s) X X Fast mode (up to 400 kbit/s) X X Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s) X - SMBus X - Functional overview STM32F030x4 STM32F030x6 STM32F030x8 22/88 DocID024849 Rev 1 3.14 Universal synchronous/asynchronous receiver transmitters (USART) The device embeds up to two universal synchronous/asynchronous receiver transmitters (USART1 and USART2), which communicate at speeds of up to 6 Mbit/s. They provide hardware management of the CTS and RTS signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. The USART1 supports also auto baud rate feature. The USART interfaces can be served by the DMA controller. Refer to Table 8 for the differences between USART1 and USART2. 3.15 Serial peripheral interface (SPI) Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in fullduplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. Refer to Table 9 for the differences between SPI1 and SPI2. 3.16 Serial wire debug port (SW-DP) An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU. Table 8. STM32F030x USART implementation USART modes/features(1) 1. X = supported. USART1 USART2 Hardware flow control for modem X X Continuous communication using DMA X X Multiprocessor communication X X Synchronous mode X X Single-wire half-duplex communication X X Receiver timeout interrupt X - Auto baud rate detection X - Table 9. STM32F030x SPI implementation SPI features(1) 1. X = supported. SPI1 SPI2 Hardware CRC calculation X X Rx/Tx FIFO X X NSS pulse mode X X TI mode X X DocID024849 Rev 1 23/88 STM32F030x4 STM32F030x6 STM32F030x8 Pinouts and pin descriptions 32 4 Pinouts and pin descriptions Figure 3. LQFP64 64-pin package pinout 1. The above figure shows the package top view. 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VDD PC14/OSC32_IN PF0/OSC_IN NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0 PA1 PA2 VDD PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 PF7 PF6 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA3 PF4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 LQFP64 PC13 MS32729V1 PF5 VSS VDD VSS PF1/OSC_OUT PC15/OSC32_OUT Pinouts and pin descriptions STM32F030x4 STM32F030x6 STM32F030x8 24/88 DocID024849 Rev 1 Figure 4. LQFP48 48-pin package pinout 1. The above figure shows the package top view. Figure 5. LQFP32 32-pin package pinout 1. The above figure shows the package top view. 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 23 24 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11 48 47 46 45 LQFP48 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 PB11 VSS VDD PF7 PF6 PA13 PA12 PA11 PA10 PA9 PA8 PB15 PB14 PB13 PB12 VDD NRST VSSA VDDA PA0 PA1 PA2 VDD VSS PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 MS32730V1 PC13 PC14/OSC32_IN PF0/OSC_IN PF1/OSC_OUT PC15/OSC32_OUT MS32144V1 32 31 30 29 28 27 26 25 24 23 22 20 19 18 8 17 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 LQFP32 PA3 PA4 PA5 PA6 PA7 PB0 PB1 VSS PA14 PA13 PA12 PA11 PA10 PA9 PA8 VDD NRST VDDA PA0 PA1 PA2 VSS BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PF0/OSC_IN PF1/OSC_OUT VDD 21 DocID024849 Rev 1 25/88 STM32F030x4 STM32F030x6 STM32F030x8 Pinouts and pin descriptions 32 Figure 6. TSSOP20 package pinout 1. The above figure shows the package top view. MS32731V1 1 20 10 11 19 18 17 16 15 12 13 14 2 3 4 5 6 7 8 9 PF0/OSC_IN BOOT0 PF1/OSC_OUT NRST VDDA PA0 PA9 VDD PA14 PA6 PA7 PB1 VSS PA1 PA2 PA3 PA4 PA5 PA13 PA10 Table 10. Legend/abbreviations used in the pinout table Name Abbreviation Definition Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name Pin type S Supply pin I Input only pin I/O Input / output pin I/O structure FT 5 V tolerant I/O FTf 5 V tolerant I/O, FM+ capable TTa 3.3 V tolerant I/O directly connected to ADC TC Standard 3.3V I/O B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset. Pin functions Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers Pinouts and pin descriptions STM32F030x4 STM32F030x6 STM32F030x8 26/88 DocID024849 Rev 1 Table 11. Pin definitions Pin number Pin name (function after reset) Pin type I/O structure Notes Pin functions LQFP64 LQFP48 LQFP32 TSSOP20 Alternate functions Additional functions 1 1 - - VDD S Complementary power supply 2 2 - - PC13 I/O TC (1) - RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2 3 3 - - PC14-OSC32_IN (PC14) I/O TC (1) - OSC32_IN 4 4 - - PC15-OSC32_OUT (PC15) I/O TC (1) - OSC32_OUT 5 5 2 2 PF0-OSC_IN (PF0) I/O FT - OSC_IN 6 6 3 3 PF1-OSC_OUT (PF1) I/O FT - OSC_OUT 7 7 4 4 NRST I/O RST Device reset input / internal reset output (active low) 8 - - - PC0 I/O TTa EVENTOUT ADC_IN10 9 - - - PC1 I/O TTa EVENTOUT ADC_IN11 10 - - - PC2 I/O TTa EVENTOUT ADC_IN12 11 - - - PC3 I/O TTa EVENTOUT ADC_IN13 12 8 - - VSSA S Analog ground 13 9 5 5 VDDA S Analog power supply 14 10 6 6 PA0 I/O TTa USART1_CTS(2), USART2_CTS(3) ADC_IN0, RTC_TAMP2, WKUP1 15 11 7 7 PA1 I/O TTa USART1_RTS(2), USART2_RTS(3), EVENTOUT ADC_IN1 16 12 8 8 PA2 I/O TTa USART1_TX(2), USART2_TX(3), TIM15_CH1(3) ADC_IN2 17 13 9 9 PA3 I/O TTa USART1_RX(2), USART2_RX(3), TIM15_CH2(3) ADC_IN3 18 - - - PF4 I/O FT EVENTOUT - 19 - - - PF5 I/O FT EVENTOUT - DocID024849 Rev 1 27/88 STM32F030x4 STM32F030x6 STM32F030x8 Pinouts and pin descriptions 32 20 14 10 10 PA4 I/O TTa SPI1_NSS, USART1_CK(2) USART2_CK(3), TIM14_CH1 ADC_IN4 21 15 11 11 PA5 I/O TTa SPI1_SCK ADC_IN5 22 16 12 12 PA6 I/O TTa SPI1_MISO, TIM3_CH1, TIM1_BKIN, TIM16_CH1, EVENTOUT ADC_IN6 23 17 13 13 PA7 I/O TTa SPI1_MOSI, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, EVENTOUT ADC_IN7 24 - - - PC4 I/O TTa EVENTOUT ADC_IN14 25 - - - PC5 I/O TTa - ADC_IN15 26 18 14 - PB0 I/O TTa TIM3_CH3, TIM1_CH2N, EVENTOUT ADC_IN8 27 19 15 14 PB1 I/O TTa TIM3_CH4, TIM14_CH1, TIM1_CH3N ADC_IN9 28 20 - - PB2 I/O FT (4) - - 29 21 - - PB10 I/O FT I2C1_SCL(2), I2C2_SCL(3) - 30 22 - - PB11 I/O FT I2C1_SDA(2), I2C2_SDA(3), EVENTOUT - 31 23 16 - VSS S Ground 32 24 17 16 VDD S Digital power supply 33 25 - - PB12 I/O FT SPI1_NSS(2), SPI2_NSS(3), TIM1_BKIN, EVENTOUT - Table 11. Pin definitions (continued) Pin number Pin name (function after reset) Pin type I/O structure Notes Pin functions LQFP64 LQFP48 LQFP32 TSSOP20 Alternate functions Additional functions Pinouts and pin descriptions STM32F030x4 STM32F030x6 STM32F030x8 28/88 DocID024849 Rev 1 34 26 - - PB13 I/O FT SPI1_SCK(2), SPI2_SCK(3), TIM1_CH1N - 35 27 - - PB14 I/O FT SPI1_MISO(2), SPI2_MISO(3), TIM1_CH2N, TIM15_CH1(3) - 36 28 - - PB15 I/O FT SPI1_MOSI(2), SPI2_MOSI(3), TIM1_CH3N, TIM15_CH1N(3), TIM15_CH2(3) RTC_REFIN 37 - - - PC6 I/O FT TIM3_CH1 - 38 - - - PC7 I/O FT TIM3_CH2 - 39 - - - PC8 I/O FT TIM3_CH3 - 40 - - - PC9 I/O FT TIM3_CH4 - 41 29 18 - PA8 I/O FT USART1_CK, TIM1_CH1, EVENTOUT, MCO - 42 30 19 17 PA9 I/O FT USART1_TX, TIM1_CH2, TIM15_BKIN(3) I2C1_SCL(2) - 43 31 20 18 PA10 I/O FT USART1_RX, TIM1_CH3, TIM17_BKIN I2C1_SDA(2) - 44 32 21 - PA11 I/O FT USART1_CTS, TIM1_CH4, EVENTOUT - 45 33 22 - PA12 I/O FT USART1_RTS, TIM1_ETR, EVENTOUT - 46 34 23 19 PA13 (SWDIO) I/O FT (5) IR_OUT, SWDIO - 47 35 - - PF6 I/O FT I2C1_SCL(2), I2C2_SCL(3) - Table 11. Pin definitions (continued) Pin number Pin name (function after reset) Pin type I/O structure Notes Pin functions LQFP64 LQFP48 LQFP32 TSSOP20 Alternate functions Additional functions DocID024849 Rev 1 29/88 STM32F030x4 STM32F030x6 STM32F030x8 Pinouts and pin descriptions 32 48 36 - - PF7 I/O FT I2C1_SDA(2), I2C2_SDA(3) - 49 37 24 20 PA14 (SWCLK) I/O FT (5) USART1_TX(2), USART2_TX(3), SWCLK - 50 38 25 - PA15 I/O FT SPI1_NSS, USART1_RX(2), USART2_RX(3), EVENTOUT - 51 - - - PC10 I/O FT - - 52 - - - PC11 I/O FT - - 53 - - - PC12 I/O FT - - 54 - - - PD2 I/O FT TIM3_ETR - 55 39 26 - PB3 I/O FT SPI1_SCK, EVENTOUT - 56 40 27 - PB4 I/O FT SPI1_MISO, TIM3_CH1, EVENTOUT - 57 41 28 - PB5 I/O FT SPI1_MOSI, I2C1_SMBA, TIM16_BKIN, TIM3_CH2 - 58 42 29 - PB6 I/O FTf I2C1_SCL, USART1_TX, TIM16_CH1N - 59 43 30 - PB7 I/O FTf I2C1_SDA, USART1_RX, TIM17_CH1N - 60 44 31 1 BOOT0 I B Boot memory selection 61 45 - - PB8 I/O FTf (5) I2C1_SCL, TIM16_CH1 - 62 46 - - PB9 I/O FTf I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT - Table 11. Pin definitions (continued) Pin number Pin name (function after reset) Pin type I/O structure Notes Pin functions LQFP64 LQFP48 LQFP32 TSSOP20 Alternate functions Additional functions Pinouts and pin descriptions STM32F030x4 STM32F030x6 STM32F030x8 30/88 DocID024849 Rev 1 63 47 32 15 VSS S Ground 64 48 1 16 VDD S Digital power supply 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF. - These GPIOs must not be used as current sources (e.g. to drive an LED). 2. This feature is available on STM32F030x6 and STM32F030x4 devices only. 3. This feature is available on STM32F030x8 devices only. 4. On LQFP32 package, PB2 and PB8 should be treated as unconnected pins (even when they are not available on the package, they are not forced to a defined level by hardware). 5. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on SWDIO pin and internal pull-down on SWCLK pin are activated. Table 11. Pin definitions (continued) Pin number Pin name (function after reset) Pin type I/O structure Notes Pin functions LQFP64 LQFP48 LQFP32 TSSOP20 Alternate functions Additional functions STM32F030x4 STM32F030x6 STM32F030x8 Pinouts and pin descriptions DocID024849 Rev 1 31/88 Table 12. Alternate functions selected through GPIOA_AFR registers for port A Pin name AF0 AF1 AF2 AF3 AF4 AF5 AF6 PA0 - USART1_CTS(1) 1. This feature is available on STM32F030x6 and STM32F030x4 devices only. - - - - - USART2_CTS(2) 2. This feature is available on STM32F030x8 devices only. PA1 EVENTOUT USART1_RTS(1) - - - - - USART2_RTS(2) PA2 TIM15_CH1(2) USART1_TX(1) - - - - - USART2_TX(2) PA3 TIM15_CH2(2) USART1_RX(1) - - - - - USART2_RX(2) PA4 SPI1_NSS USART1_CK(1) - - TIM14_CH1 - - USART2_CK(2) PA5 SPI1_SCK - - - - - - PA6 SPI1_MISO TIM3_CH1 TIM1_BKIN - - TIM16_CH1 EVENTOUT PA7 SPI1_MOSI TIM3_CH2 TIM1_CH1N - TIM14_CH1 TIM17_CH1 EVENTOUT PA8 MCO USART1_CK TIM1_CH1 EVENTOUT - - - PA9 TIM15_BKIN(2) USART1_TX TIM1_CH2 - I2C1_SCL(1) - - PA10 TIM17_BKIN USART1_RX TIM1_CH3 - I2C1_SDA(1) - - PA11 EVENTOUT USART1_CTS TIM1_CH4 - - - - PA12 EVENTOUT USART1_RTS TIM1_ETR - - - - PA13 SWDIO IR_OUT - - - - - PA14 SWCLK USART1_TX(1) - - - - - USART2_TX(2) PA15 SPI1_NSS USART1_RX(1) - EVENTOUT - - - USART2_RX(2) Pinouts and pin descriptions STM32F030x4 STM32F030x6 STM32F030x8 32/88 DocID024849 Rev 1 Table 13. Alternate functions selected through GPIOB_AFR registers for port B Pin name AF0 AF1 AF2 AF3 PB0 EVENTOUT TIM3_CH3 TIM1_CH2N - PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N - PB2 - - - - PB3 SPI1_SCK EVENTOUT - - PB4 SPI1_MISO TIM3_CH1 EVENTOUT - PB5 SPI1_MOSI TIM3_CH2 TIM16_BKIN I2C1_SMBA PB6 USART1_TX I2C1_SCL TIM16_CH1N - PB7 USART1_RX I2C1_SDA TIM17_CH1N - PB8 - I2C1_SCL TIM16_CH1 - PB9 IR_OUT I2C1_SDA TIM17_CH1 EVENTOUT PB10 - I2C1_SCL(1) 1. This feature is available on STM32F030x6 and STM32F030x4 devices only. - - I2C2_SCL(2) 2. This feature is available on STM32F030x8 devices only. PB11 EVENTOUT I2C1_SDA(1) - - I2C2_SDA(2) PB12 SPI1_NSS(1) EVENTOUT TIM1_BKIN - SPI2_NSS(2) PB13 SPI1_SCK(1) - TIM1_CH1N - SPI2_SCK(2) PB14 SPI1_MISO(1) TIM15_CH1(2) TIM1_CH2N - SPI2_MISO(2) PB15 SPI1_MOSI(1) TIM15_CH2(2) TIM1_CH3N TIM15_CH1N(2) SPI2_MOSI(2) DocID024849 Rev 1 33/88 STM32F030x4 STM32F030x6 STM32F030x8 Memory mapping 35 5 Memory mapping Figure 7. STM32F030x memory map Reserved AHB2 0 1 2 3 4 5 6 7 0xFFFF FFFF Peripherals SRAM Flash memory reserved reserved System memory Option Bytes Cortex-M􀀑 Internal Peripherals 0xE010 0000 MS19840V1 􀀧􀁍􀁂􀁔􀁉􀀍􀀁􀁔􀁚􀁔􀁕􀁆􀁎􀀁􀁎􀁆􀁎􀁐􀁓􀁚 􀁐􀁓􀀁􀀴􀀳􀀢􀀮􀀍􀀁􀁅􀁆􀁑􀁆􀁏􀁅􀁊􀁏􀁈􀀁􀁐􀁏 􀀣􀀰􀀰􀀵􀀁􀁄􀁐􀁏􀁇􀁊􀁈􀁖􀁓􀁂􀁕􀁊􀁐􀁏 0x0000 0000 0xE000 0000 0xC000 0000 0xA000 0000 0x8000 0000 0x6000 0000 0x4000 0000 0x2000 0000 0x0000 0000 􀀑􀁙􀀑􀀙􀀑􀀑􀀁􀀑􀀑􀀑􀀑 0x0801 0000 0x1FFF EC00 0x1FFF F800 0x1FFF FC00 0x1FFF FFFF 0x0001 0000 reserved CODE 􀀢􀀱􀀣 􀀢􀀱􀀣 reserved 0x4000 0000 0x4000 8000 0x4001 0000 0x4001 8000 reserved 0x4002 0000 􀀢􀀩􀀣􀀒 0x4800 0000 reserved 0x4800 17FF 0x4002 43FF Memory mapping STM32F030x4 STM32F030x6 STM32F030x8 34/88 DocID024849 Rev 1 Table 14. STM32F030x peripheral register boundary addresses Bus Boundary address Size Peripheral 0x4800 1800 - 0x5FFF FFFF ~384 MB Reserved AHB2 0x4800 1400 - 0x4800 17FF 1 KB GPIOF 0x4800 1000 - 0x4800 13FF 1 KB Reserved 0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD 0x4800 0800 - 0x4800 0BFF 1 KB GPIOC 0x4800 0400 - 0x4800 07FF 1 KB GPIOB 0x4800 0000 - 0x4800 03FF 1 KB GPIOA 0x4002 4400 - 0x47FF FFFF ~128 MB Reserved AHB1 0x4002 3400 - 0x4002 43FF 4 KB Reserved 0x4002 3000 - 0x4002 33FF 1 KB CRC 0x4002 2400 - 0x4002 2FFF 3 KB Reserved 0x4002 2000 - 0x4002 23FF 1 KB FLASH Interface 0x4002 1400 - 0x4002 1FFF 3 KB Reserved 0x4002 1000 - 0x4002 13FF 1 KB RCC 0x4002 0400 - 0x4002 0FFF 3 KB Reserved 0x4002 0000 - 0x4002 03FF 1 KB DMA 0x4001 8000 - 0x4001 FFFF 32 KB Reserved APB 0x4001 5C00 - 0x4001 7FFF 9 KB Reserved 0x4001 5800 - 0x4001 5BFF 1 KB DBGMCU 0x4001 4C00 - 0x4001 57FF 3 KB Reserved 0x4001 4800 - 0x4001 4BFF 1 KB TIM17 0x4001 4400 - 0x4001 47FF 1 KB TIM16 0x4001 4000 - 0x4001 43FF 1 KB TIM15(1) 0x4001 3C00 - 0x4001 3FFF 1 KB Reserved 0x4001 3800 - 0x4001 3BFF 1 KB USART1 0x4001 3400 - 0x4001 37FF 1 KB Reserved 0x4001 3000 - 0x4001 33FF 1 KB SPI1 0x4001 2C00 - 0x4001 2FFF 1 KB TIM1 0x4001 2800 - 0x4001 2BFF 1 KB Reserved 0x4001 2400 - 0x4001 27FF 1 KB ADC 0x4001 0800 - 0x4001 23FF 7 KB Reserved 0x4001 0400 - 0x4001 07FF 1 KB EXTI 0x4001 0000 - 0x4001 03FF 1 KB SYSCFG 0x4000 8000 - 0x4000 FFFF 32 KB Reserved DocID024849 Rev 1 35/88 STM32F030x4 STM32F030x6 STM32F030x8 Memory mapping 35 APB 0x4000 7400 - 0x4000 7FFF 3 KB Reserved 0x4000 7000 - 0x4000 73FF 1 KB PWR 0x4000 5C00 - 0x4000 6FFF 5 KB Reserved 0x4000 5800 - 0x4000 5BFF 1 KB I2C2(1) 0x4000 5400 - 0x4000 57FF 1 KB I2C1 0x4000 4800 - 0x4000 53FF 3 KB Reserved 0x4000 4400 - 0x4000 47FF 1 KB USART2(1) 0x4000 3C00 - 0x4000 43FF 2 KB Reserved 0x4000 3800 - 0x4000 3BFF 1 KB SPI2(1) 0x4000 3400 - 0x4000 37FF 1 KB Reserved 0x4000 3000 - 0x4000 33FF 1 KB IWDG 0x4000 2C00 - 0x4000 2FFF 1 KB WWDG 0x4000 2800 - 0x4000 2BFF 1 KB RTC 0x4000 2400 - 0x4000 27FF 1 KB Reserved 0x4000 2000 - 0x4000 23FF 1 KB TIM14 0x4000 1400 - 0x4000 1FFF 3 KB Reserved 0x4000 1000 - 0x4000 13FF 1 KB TIM6(1) 0x4000 0800 - 0x4000 0FFF 2 KB Reserved 0x4000 0400 - 0x4000 07FF 1 KB TIM3 0x4000 0000 - 0x4000 03FF 1 KB Reserved 1. This feature is available on STM32F030x8 devices only. For STM32F030x6 and STM32F060x4, the area is Reserved. Table 14. STM32F030x peripheral register boundary addresses (continued) Bus Boundary address Size Peripheral Electrical characteristics STM32F030x4 STM32F030x6 STM32F030x8 36/88 DocID024849 Rev 1 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 8. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 9. Figure 8. Pin loading conditions Figure 9. Pin input voltage MS19210V1 C = 50 pF MCU pin MS19211V1 MCU pin VIN DocID024849 Rev 1 37/88 STM32F030x4 STM32F030x6 STM32F030x8 Electrical characteristics 73 6.1.6 Power supply scheme Figure 10. Power supply scheme Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. MS32141V1 Analog: RCs, PLL, ... GP I/Os OUT IN Kernel logic (CPU, Digital & Memories) LSE, RTC, Wake-up logic 2 × 100 nF + 1 × 4.7 μF Regulator VDDA VSSA ADC Level shifter IO Logic VDD 10 nF + 1 μF VDDA VREF+ VREFVDD VSS 2 × 2 × Electrical characteristics STM32F030x4 STM32F030x6 STM32F030x8 38/88 DocID024849 Rev 1 6.1.7 Current consumption measurement Figure 11. Current consumption measurement scheme 6.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 15: Voltage characteristics, Table 16: Current characteristics, and Table 17: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. MS32142V1 VDD VDDA IDD IDDA Table 15. Voltage characteristics(1) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. Symbol Ratings Min Max Unit VDD–VSS External main supply voltage (including VDDA and VDD) –0.3 4.0 V VDD–VDDA Allowed voltage difference for VDD > VDDA - 0.4 V VIN (2) 2. VIN maximum must always be respected. Refer to Table 16: Current characteristics for the maximum allowed injected current values. Input voltage on FT and FTf pins VSS  0.3 VDD + 4.0 V Input voltage on TTa pins VSS  0.3 4.0 V Input voltage on any other pin VSS 0.3 4.0 V |VDDx| Variations between different VDD power pins - 50 mV |VSSX VSS| Variations between all the different ground pins - 50 mV VESD(HBM) Electrostatic discharge voltage (human body model) see Section 6.3.12: Electrical sensitivity characteristics DocID024849 Rev 1 39/88 STM32F030x4 STM32F030x6 STM32F030x8 Electrical characteristics 73 Table 16. Current characteristics Symbol Ratings Max. Unit IVDD Total current into sum of all VDD_x and VDDSDx power lines (source)(1) 120 mA IVSS Total current out of sum of all VSS_x and VSSSD ground lines (sink)(1) -120 IVDD(PIN) Maximum current into each VDD_x or VDDSDx power pin (source)(1) 100 IVSS(PIN) Maximum current out of each VSS_x or VSSSD ground pin (sink)(1) -100 IIO(PIN) Output current sunk by any I/O and control pin 25 Output current source by any I/O and control pin -25 IIO(PIN) Total output current sunk by sum of all IOs and control pins(2) 80 Total output current sourced by sum of all IOs and control pins(2) -80 IINJ(PIN) Injected current on FT, FTf and B pins(3) -5/+0 Injected current on TC and RST pin(4) ± 5 Injected current on TTa pins(5) ± 5 IINJ(PIN) Total injected current (sum of all I/O and control pins)(6) ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages. 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A positive injection is induced by VIN>VDD while a negative injection is induced by VINVDDA while a negative injection is induced by VINVDD while a negative injection is induced by VIN 8 MHz. 72 MHz 50 50.3 mA 48 MHz 36.1 36.2 36 MHz 28.6 28.7 24 MHz 19.9 20.1 16 MHz 14.7 14.9 8 MHz 8.6 8.9 External clock(2), all peripherals disabled 72 MHz 32.8 32.9 48 MHz 24.4 24.5 36 MHz 19.8 19.9 24 MHz 13.9 14.2 16 MHz 10.7 11 8 MHz 6.8 7.1 Table 14. Maximum current consumption in Run mode, code with data processing running from RAM Symbol Parameter Conditions fHCLK Max(1) 1. Based on characterization, tested in production at VDD max, fHCLK max. Unit TA = 85 °C TA = 105 °C IDD Supply current in Run mode External clock(2), all peripherals enabled 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 72 MHz 48 50 mA 48 MHz 31.5 32 36 MHz 24 25.5 24 MHz 17.5 18 16 MHz 12.5 13 8 MHz 7.5 8 External clock(2), all peripherals disabled 72 MHz 29 29.5 48 MHz 20.5 21 36 MHz 16 16.5 24 MHz 11.5 12 16 MHz 8.5 9 8 MHz 5.5 6 DocID13587 Rev 16 43/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 16. Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled Figure 17. Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals disabled 0 5 10 15 20 25 30 35 40 45 -40 0 25 70 85 105 Temperature (°C) Consumption (mA) 72 MHz 36 MHz 16 MHz 8 MHz 0 5 10 15 20 25 30 -40 0 25 70 85 105 Temperature (°C) Consumption (mA) 72 MHz 36 MHz 16 MHz 8 MHz Electrical characteristics STM32F103x8, STM32F103xB 44/105 DocID13587 Rev 16 Table 15. Maximum current consumption in Sleep mode, code running from Flash or RAM Symbol Parameter Conditions fHCLK Max(1) 1. Based on characterization, tested in production at VDD max, fHCLK max with peripherals enabled. Unit TA = 85 °C TA = 105 °C IDD Supply current in Sleep mode External clock(2), all peripherals enabled 2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 72 MHz 30 32 mA 48 MHz 20 20.5 36 MHz 15.5 16 24 MHz 11.5 12 16 MHz 8.5 9 8 MHz 5.5 6 External clock(2), all peripherals disabled 72 MHz 7.5 8 48 MHz 6 6.5 36 MHz 5 5.5 24 MHz 4.5 5 16 MHz 4 4.5 8 MHz 3 4 DocID13587 Rev 16 45/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 18. Typical current consumption on VBAT with RTC on versus temperature at different VBAT values Table 16. Typical and maximum current consumptions in Stop and Standby modes Symbol Parameter Conditions Typ(1) Max V Unit DD/VBAT = 2.0 V VDD/VBAT = 2.4 V VDD/VBAT = 3.3 V TA = 85 °C TA = 105 °C IDD Supply current in Stop mode Regulator in Run mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) - 23.5 24 200 370 μA Regulator in Low Power mode, lowspeed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) - 13.5 14 180 340 Supply current in Standby mode Low-speed internal RC oscillator and independent watchdog ON - 2.6 3.4 - - Low-speed internal RC oscillator ON, independent watchdog OFF - 2.4 3.2 - - Low-speed internal RC oscillator and independent watchdog OFF, lowspeed oscillator and RTC OFF - 1.7 2 4 5 IDD_VBAT Backup domain supply current Low-speed oscillator and RTC ON 0.9 1.1 1.4 1.9(2) 2.2 1. Typical values are measured at TA = 25 °C. 2. Based on characterization, not tested in production. 0 0.5 1 1.5 2 2.5 –40 °C 25 °C 70 °C 85 °C 105 °C Temperature (°C) Consumption ( μA ) 2 V 2.4 V 3 V 3.6 V ai17351 Electrical characteristics STM32F103x8, STM32F103xB 46/105 DocID13587 Rev 16 Figure 19. Typical current consumption in Stop mode with regulator in Run mode versus temperature at VDD = 3.3 V and 3.6 V Figure 20. Typical current consumption in Stop mode with regulator in Low-power mode versus temperature at VDD = 3.3 V and 3.6 V 0 50 100 150 200 250 300 -45 25 70 90 110 Temperature (°C) Consumption (μA) 3.3 V 3.6 V 0 50 100 150 200 250 300 -40 0 25 70 85 105 Temperature (°C) Consumption (μA) 3.3 V 3.6 V DocID13587 Rev 16 47/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 21. Typical current consumption in Standby mode versus temperature at VDD = 3.3 V and 3.6 V Typical current consumption The MCU is placed under the following conditions:  All I/O pins are in input mode with a static value at VDD or VSS (no load).  All peripherals are disabled except if it is explicitly mentioned.  The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above).  Ambient temperature and VDD supply voltage conditions summarized in Table 9.  Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling)  When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK = fPCLK2/4 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 –45 °C 25 °C 85 °C 105 °C Temperature (°C) Consumption (μA) 3.3 V 3.6 V Electrical characteristics STM32F103x8, STM32F103xB 48/105 DocID13587 Rev 16 Table 17. Typical current consumption in Run mode, code with data processing running from Flash Symbol Parameter Conditions fHCLK Typ(1) 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. All peripherals Unit enabled(2) 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). All peripherals disabled IDD Supply current in Run mode External clock(3) 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 72 MHz 36 27 mA 48 MHz 24.2 18.6 36 MHz 19 14.8 24 MHz 12.9 10.1 16 MHz 9.3 7.4 8 MHz 5.5 4.6 4 MHz 3.3 2.8 2 MHz 2.2 1.9 1 MHz 1.6 1.45 500 kHz 1.3 1.25 125 kHz 1.08 1.06 Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency 64 MHz 31.4 23.9 mA 48 MHz 23.5 17.9 36 MHz 18.3 14.1 24 MHz 12.2 9.5 16 MHz 8.5 6.8 8 MHz 4.9 4 4 MHz 2.7 2.2 2 MHz 1.6 1.4 1 MHz 1.02 0.9 500 kHz 0.73 0.67 125 kHz 0.5 0.48 DocID13587 Rev 16 49/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Table 18. Typical current consumption in Sleep mode, code running from Flash or RAM Symbol Parameter Conditions fHCLK Typ(1) 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. All peripherals Unit enabled(2) 2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). All peripherals disabled IDD Supply current in Sleep mode External clock(3) 3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz. 72 MHz 14.4 5.5 mA 48 MHz 9.9 3.9 36 MHz 7.6 3.1 24 MHz 5.3 2.3 16 MHz 3.8 1.8 8 MHz 2.1 1.2 4 MHz 1.6 1.1 2 MHz 1.3 1 1 MHz 1.11 0.98 500 kHz 1.04 0.96 125 kHz 0.98 0.95 Running on high speed internal RC (HSI), AHB prescaler used to reduce the frequency 64 MHz 12.3 4.4 48 MHz 9.3 3.3 36 MHz 7 2.5 24 MHz 4.8 1.8 16 MHz 3.2 1.2 8 MHz 1.6 0.6 4 MHz 1 0.5 2 MHz 0.72 0.47 1 MHz 0.56 0.44 500 kHz 0.49 0.42 125 kHz 0.43 0.41 Electrical characteristics STM32F103x8, STM32F103xB 50/105 DocID13587 Rev 16 On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 19. The MCU is placed under the following conditions:  all I/O pins are in input mode with a static value at VDD or VSS (no load)  all peripherals are disabled unless otherwise mentioned  the given value is calculated by measuring the current consumption – with all peripherals clocked off – with only one peripheral clocked on  ambient operating temperature and VDD supply voltage conditions summarized in Table 6 Table 19. Peripheral current consumption(1) 1. fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral. Peripheral Typical consumption at 25 °C Unit APB1 TIM2 1.2 mA TIM3 1.2 TIM4 0.9 SPI2 0.2 USART2 0.35 USART3 0.35 I2C1 0.39 I2C2 0.39 USB 0.65 CAN 0.72 APB2 GPIO A 0.47 mA GPIO B 0.47 GPIO C 0.47 GPIO D 0.47 GPIO E 0.47 ADC1(2) 2. Specific conditions for ADC: fHCLK = 56 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/4, ADON bit in the ADC_CR2 register is set to 1. 1.81 ADC2 1.78 TIM1 1.6 SPI1 0.43 USART1 0.85 DocID13587 Rev 16 51/105 STM32F103x8, STM32F103xB Electrical characteristics 104 5.3.6 External clock source characteristics High-speed external user clock generated from an external source The characteristics given in Table 20 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 9. Low-speed external user clock generated from an external source The characteristics given in Table 21 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 9. Table 20. High-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit fHSE_ext User external clock source frequency(1) 1 8 25 MHz VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD V VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD tw(HSE) tw(HSE) OSC_IN high or low time(1) 1. Guaranteed by design, not tested in production. 5 - - ns tr(HSE) tf(HSE) OSC_IN rise or fall time(1) - - 20 Cin(HSE) OSC_IN input capacitance(1) - 5 - pF DuCy(HSE) Duty cycle 45 - 55 % IL OSC_IN Input leakage current VSS  VIN  VDD - - ±1 μA Table 21. Low-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit fLSE_ext User External clock source frequency(1) 1. Guaranteed by design, not tested in production. 32.768 1000 kHz VLSEH OSC32_IN input pin high level voltage 0.7VDD - VDD V VLSEL OSC32_IN input pin low level voltage VSS - 0.3VDD tw(LSE) tw(LSE) OSC32_IN high or low time(1) 450 - - ns tr(LSE) tf(LSE) OSC32_IN rise or fall time(1) - - 50 Cin(LSE) OSC32_IN input capacitance(1) - 5 - pF DuCy(LSE) Duty cycle 30 - 70 % IL OSC32_IN Input leakage current VSS  VIN  VDD - - ±1 μA Electrical characteristics STM32F103x8, STM32F103xB 52/105 DocID13587 Rev 16 Figure 22. High-speed external clock source AC timing diagram Figure 23. Low-speed external clock source AC timing diagram High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 22. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). ai14143 OSC_IN EXTERNAL STM32F103xx CLOCK SOURCE VHSEH tf(HSE) tW(HSE) IL 90% 10% THSE t t r(HSE) tW(HSE) fHSE_ext VHSEL ai14144b OSC32_IN EXTERNAL STM32F103xx CLOCK SOURCE VLSEH tf(LSE) tW(LSE) IL 90% 10% TLSE t t r(LSE) tW(LSE) fLSE_ext VLSEL DocID13587 Rev 16 53/105 STM32F103x8, STM32F103xB Electrical characteristics 104 For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 24). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 24. Typical application with an 8 MHz crystal 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 23. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 22. HSE 4-16 MHz oscillator characteristics(1) (2) 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Based on characterization, not tested in production. Symbol Parameter Conditions Min Typ Max Unit fOSC_IN Oscillator frequency 4 8 16 MHz RF Feedback resistor - 200 - k C Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(3) 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. RS = 30 - 30 - pF i2 HSE driving current VDD = 3.3 V, VIN = VSS with 30 pF load - - 1 mA gm Oscillator transconductance Startup 25 - - mA/V tSU(HSE (4) 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer startup time VDD is stabilized - 2 - ms ai14145 OSC_OUT OSC_IN fHSE CL1 RF STM32F103xx 8 MHz resonator REXT (1) C L2 Resonator with integrated capacitors Bias controlled gain Electrical characteristics STM32F103x8, STM32F103xB 54/105 DocID13587 Rev 16 Note: For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF. Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL  7 pF. Never use a resonator with a load capacitance of 12.5 pF. Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF, then CL1 = CL2 = 8 pF. Table 23. LSE oscillator characteristics (fLSE = 32.768 kHz)(1) (2) Symbol Parameter Conditions Min Typ Max Unit RF Feedback resistor - 5 - M C Recommended load capacitance versus equivalent serial resistance of the crystal (RS) RS = 30 K - - 15 pF I2 LSE driving current VDD = 3.3 V VIN = VSS - - 1.4 μA gm Oscillator transconductance 5 - - μA/V tSU(LSE) (3) Startup time VDD is stabilized TA = 50 °C - 1.5 - s TA = 25 °C - 2.5 - TA = 10 °C - 4 - TA = 0 °C - 6 - TA = -10 °C - 10 - TA = -20 °C - 17 - TA = -30 °C - 32 - TA = -40 °C - 60 - 1. Based on characterization, not tested in production. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer DocID13587 Rev 16 55/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 25. Typical application with a 32.768 kHz crystal 5.3.7 Internal clock source characteristics The parameters given in Table 24 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 9. High-speed internal (HSI) RC oscillator ai14146 OSC32_OUT OSC32_IN fLSE CL1 RF STM32F103xx 32.768 kHz resonator CL2 Resonator with integrated capacitors Bias controlled gain Table 24. HSI oscillator characteristics(1) 1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit fHSI Frequency - 8 - MHz DuCy(HSI) Duty cycle 45 - 55 % ACCHSI Accuracy of the HSI oscillator User-trimmed with the RCC_CR register(2) 2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the ST website www.st.com. - - 1(3) 3. Guaranteed by design, not tested in production. Factorycalibrated (4)(5) 4. Based on characterization, not tested in production. 5. The actual frequency of HSI oscillator may be impacted by a reflow, but does not drift out of the specified range. TA = –40 to 105 °C –2 - 2.5 TA = –10 to 85 °C –1.5 - 2.2 TA = 0 to 70 °C –1.3 - 2 TA = 25 °C –1.1 - 1.8 tsu(HSI) (4) HSI oscillator startup time 1 - 2 μs IDD(HSI) (4) HSI oscillator power consumption - 80 100 μA Electrical characteristics STM32F103x8, STM32F103xB 56/105 DocID13587 Rev 16 Low-speed internal (LSI) RC oscillator Wakeup time from low-power mode The wakeup times given in Table 26 is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:  Stop or Standby mode: the clock source is the RC oscillator  Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 9. Table 25. LSI oscillator characteristics (1) 1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified. Symbol Parameter Min Typ Max Unit fLSI (2) 2. Based on characterization, not tested in production. Frequency 30 40 60 kHz tsu(LSI) (3) 3. Guaranteed by design, not tested in production. LSI oscillator startup time - - 85 μs IDD(LSI) (3) LSI oscillator power consumption - 0.65 1.2 μA DocID13587 Rev 16 57/105 STM32F103x8, STM32F103xB Electrical characteristics 104 5.3.8 PLL characteristics The parameters given in Table 27 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 9. 5.3.9 Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 26. Low-power mode wakeup timings Symbol Parameter Typ Unit tWUSLEEP (1) 1. The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction. Wakeup from Sleep mode 1.8 tWUSTOP μs (1) Wakeup from Stop mode (regulator in run mode) 3.6 Wakeup from Stop mode (regulator in low power mode) 5.4 tWUSTDBY (1) Wakeup from Standby mode 50 Table 27. PLL characteristics Symbol Parameter Value Unit Min(1) 1. Based on characterization, not tested in production. Typ Max(1) fPLL_IN PLL input clock(2) 2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. 1 8.0 25 MHz PLL input clock duty cycle 40 - 60 % fPLL_OUT PLL multiplier output clock 16 - 72 MHz tLOCK PLL lock time - - 200 μs Jitter Cycle-to-cycle jitter - - 300 ps Table 28. Flash memory characteristics Symbol Parameter Conditions Min(1) Typ Max(1) Unit tprog 16-bit programming time TA–40 to +105 °C 40 52.5 70 μs tERASE Page (1 KB) erase time TA –40 to +105 °C 20 - 40 ms tME Mass erase time TA –40 to +105 °C 20 - 40 Electrical characteristics STM32F103x8, STM32F103xB 58/105 DocID13587 Rev 16 Table 29. Flash memory endurance and data retention 5.3.10 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:  Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 30. They are based on the EMS levels and classes defined in application note AN1709. IDD Supply current Read mode fHCLK = 72 MHz with 2 wait states, VDD = 3.3 V - - 20 mA Write / Erase modes fHCLK = 72 MHz, VDD = 3.3 V - - 5 Power-down mode / Halt, VDD = 3.0 to 3.6 V - - 50 μA Vprog Programming voltage 2 - 3.6 V 1. Guaranteed by design, not tested in production. Symbol Parameter Conditions Value Unit Min(1) 1. Based on characterization, not tested in production. Typ Max NEND Endurance TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 - - kcycles tRET Data retention 1 kcycle(2) at TA = 85 °C 2. Cycling performed over the whole temperature range. 30 - - 1 kcycle(2) at TA = 105 °C 10 - - Years 10 kcycles(2) at TA = 55 °C 20 - - Table 28. Flash memory characteristics (continued) Symbol Parameter Conditions Min(1) Typ Max(1) Unit DocID13587 Rev 16 59/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as:  Corrupted program counter  Unexpected reset  Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 30. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD 3.3 V, TA +25 °C, fHCLK 72 MHz conforms to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD3.3 V, TA +25 °C, fHCLK 72 MHz conforms to IEC 61000-4-4 4A Table 31. EMI characteristics Symbol Parameter Conditions Monitored frequency band Max vs. [fHSE/fHCLK] Unit 8/48 MHz 8/72 MHz SEMI Peak level VDD 3.3 V, TA 25 °C, LQFP100 package compliant with IEC 61967-2 0.1 to 30 MHz 12 12 30 to 130 MHz 22 19 dBμV 130 MHz to 1GHz 23 29 SAE EMI Level 4 4 - Electrical characteristics STM32F103x8, STM32F103xB 60/105 DocID13587 Rev 16 5.3.11 Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance:  A supply overvoltage is applied to each power supply pin  A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 32. ESD absolute maximum ratings Symbol Ratings Conditions Class Maximum value(1) 1. Based on characterization results, not tested in production. Unit VESD(HBM) Electrostatic discharge voltage (human body model) TA +25 °C conforming to JESD22-A114 2 2000 V VESD(CDM) Electrostatic discharge voltage (charge device model) TA +25 °C conforming to ANSI/ESD STM5.3.1 II 500 Table 33. Electrical sensitivities Symbol Parameter Conditions Class LU Static latch-up class TA +105 °C conforming to JESD78A II level A DocID13587 Rev 16 61/105 STM32F103x8, STM32F103xB Electrical characteristics 104 5.3.12 I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibilty to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation). The test results are given in Table 34 Table 34. I/O current injection susceptibility Symbol Description Functional susceptibility Negative Unit injection Positive injection IINJ Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13 -0 +0 Injected current on all FT pins -5 +0 mA Injected current on any other pin -5 +5 Electrical characteristics STM32F103x8, STM32F103xB 62/105 DocID13587 Rev 16 5.3.13 I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 35 are derived from tests performed under the conditions summarized in Table 9. All I/Os are CMOS and TTL compliant. Table 35. I/O static characteristics Symbol Parameter Conditions Min Typ Max Unit VIL Low level input voltage Standard IO input low level voltage - - 0.28*(VDD-2 V)+0.8 V(1) V IO FT(3) input low level voltage - - 0.32*(VDD-2V)+0.75 V(1) All I/Os except BOOT0 - - 0.35VDD (2) VIH High level input voltage Standard IO input high level voltage 0.41*(VDD-2 V)+1.3 V(1) - - IO FT(3) input high level voltage 0.42*(VDD-2 V)+1 V(1) - - All I/Os except BOOT0 0.65VDD (2) - - Vhys Standard IO Schmitt trigger voltage hysteresis(4) 200 - - mV IO FT Schmitt trigger voltage hysteresis(4) 5% VDD (5) - - Ilkg Input leakage current (6) VSS  VIN  VDD Standard I/Os - - 1 μA VIN = 5 V I/O FT - - 3 RPU Weak pull-up equivalent resistor(7) VIN VSS 30 40 50 k RPD Weak pull-down equivalent resistor(7) VIN VDD 30 40 50 CIO I/O pin capacitance - 5 - pF 1. Data based on design simulation. 2. Tested in production. 3. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be disabled. 4. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production. 5. With a minimum of 100 mV. 6. Leakage could be higher than max. if negative current is injected on adjacent pins. DocID13587 Rev 16 63/105 STM32F103x8, STM32F103xB Electrical characteristics 104 7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order). Electrical characteristics STM32F103x8, STM32F103xB 64/105 DocID13587 Rev 16 All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 26 and Figure 27 for standard I/Os, and in Figure 28 and Figure 29 for 5 V tolerant I/Os. Figure 26. Standard I/O input characteristics - CMOS port Figure 27. Standard I/O input characteristics - TTL port ai17277c VDD (V) 1.3 0.8 2 2.7 3 3.6 0.7 CMOS standard requirement VIH=0.65VDD 3.3 VIH/VIL (V) 􀀒􀀏􀀓􀀖 􀀒􀀏􀀚􀀗 􀀒􀀏􀀘􀀒 􀀒􀀏􀀘􀀒 􀀒􀀏􀀖􀀚 􀀒 􀀒􀀏􀀑􀀙 􀀒􀀏􀀑􀀙 􀀷ILmax 􀀷IHmin Tested in production V DD -2)+0.8 =0.28(VIL CMOS standard requirement VIL=0.35VDD VIH=0.41(VDD-2)+1.3 Tested in production Based on design simulations Based on design simulations Area not determined ai17278b 2 3.6 VIH/VIL (V) 1.3 2.0 0.8 2.16 TTL requirements VIH=2V VIH=0.41(VDD-2)+1.3 VIL=0.28(VDD-2)+0.8 TTL requirements VIL=0.8V 1.96 1.25 VDD (V) 􀀷ILmax 􀀷IHmin Based on design simulations Based on design simulations Area not determined DocID13587 Rev 16 65/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 28. 5 V tolerant I/O input characteristics - CMOS port Figure 29. 5 V tolerant I/O input characteristics - TTL port VDD 1.3 2 3.6 CMOS standard requirements VIH=0.65V DD CMOS standard requirment V IL =0.35VDD 1.67 1 2.7 0.7 3 3.3 1 0.75 1.295 0.975 1.42 1.07 1.55 1.16 VIH/VIL (V) VDD (V) ai17279c VIH=0.42(VDD-2)+1 VIL=0.32(VDD-2)+0.75 Based on design simulations Based on design simulations Tested in production Tested in production Area not determined 2.0 0.8 2 2.16 3.6 1.67 1 0.75 TTL requirement VIH=2V TTL requirements VIL=0.8V VIH/VIL (V) VDD (V) 􀀷ILmax 􀀷IHmin ai17280b VIH=0.42*(VDD-2)+1 VIL=0.32*(VDD-2)+0.75 Based on design simulations Based on design simulations Area not determined Electrical characteristics STM32F103x8, STM32F103xB 66/105 DocID13587 Rev 16 Output driving current The GPIOs (general-purpose inputs/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can sink or source up to +/-3mA. When using the GPIOs PC13 to PC15 in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2:  The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 7).  The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 7). Output voltage levels Unless otherwise specified, the parameters given in Table 36 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 9. All I/Os are CMOS and TTL compliant. Table 36. Output voltage characteristics Symbol Parameter Conditions Min Max Unit VOL (1) 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 7 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. Output low level voltage for an I/O pin when 8 pins are sunk at same time CMOS port(2), IIO = +8 mA 2.7 V < VDD < 3.6 V 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. - 0.4 V VOH (3) 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 7 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–0.4 - VOL (1) Output low level voltage for an I/O pin when 8 pins are sunk at same time TTL port(2) IIO =+ 8mA 2.7 V < VDD < 3.6 V - 0.4 VOH (3) Output high level voltage for an I/O pin when 8 pins are sourced at same time 2.4 - VOL (1)(4) 4. Based on characterization data, not tested in production. Output low level voltage for an I/O pin when 8 pins are sunk at same time IIO = +20 mA 2.7 V < VDD < 3.6 V - 1.3 VOH (3)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–1.3 - VOL (1)(4) Output low level voltage for an I/O pin when 8 pins are sunk at same time IIO = +6 mA 2 V < VDD < 2.7 V - 0.4 VOH (3)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–0.4 - DocID13587 Rev 16 67/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 30 and Table 37, respectively. Unless otherwise specified, the parameters given in Table 37 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 9. Table 37. I/O AC characteristics(1) 1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register. MODEx[1:0] bit value(1) Symbol Parameter Conditions Min Max Unit 10 fmax(IO)out Maximum frequency(2) 2. The maximum frequency is defined in Figure 30. CL = 50 pF, VDD = 2 V to 3.6 V - 2 MHz tf(IO)out Output high to low level fall time CL = 50 pF, VDD = 2 V to 3.6 V - 125(3) 3. Guaranteed by design, not tested in production. ns tr(IO)out Output low to high level rise time - 125(3) 01 fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V - 10 MHz tf(IO)out Output high to low level fall time CL = 50 pF, VDD = 2 V to 3.6 V - 25(3) ns tr(IO)out Output low to high level rise time - 25(3) 11 Fmax(IO)out Maximum frequency(2) CL = 30 pF, VDD = 2.7 V to 3.6 V - 50 CL = 50 pF, VDD = 2.7 V to 3.6 V - 30 MHz CL = 50 pF, VDD = 2 V to 2.7 V - 20 tf(IO)out Output high to low level fall time CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3) ns CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3) CL = 50 pF, VDD = 2 V to 2.7 V - 12(3) tr(IO)out Output low to high level rise time CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3) CL = 50 pF, VDD = 2 V to 2.7 V - 12(3) - tEXTIpw Pulse width of external signals detected by the EXTI controller 10 - ns Electrical characteristics STM32F103x8, STM32F103xB 68/105 DocID13587 Rev 16 Figure 30. I/O AC characteristics definition 5.3.14 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 35). Unless otherwise specified, the parameters given in Table 38 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 9. ai14131c 10% 90% 50% tr(IO)out OUTPUT EXTERNAL ON 50pF Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%) 10% 50% 90% when loaded by 50pF T tf(IO)out Table 38. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit VIL(NRST) (1) 1. Guaranteed by design, not tested in production. NRST Input low level voltage –0.5 - 0.8 V VIH(NRST) (1) NRST Input high level voltage 2 - VDD+0.5 Vhys(NRST) NRST Schmitt trigger voltage hysteresis - 200 - mV RPU Weak pull-up equivalent resistor(2) 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). VIN VSS 30 40 50 k VF(NRST) (1) NRST Input filtered pulse - - 100 ns VNF(NRST) (1) NRST Input not filtered pulse 300 - - ns DocID13587 Rev 16 69/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 31. Recommended NRST pin protection 2. The reset network protects the device against parasitic resets. 3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 38. Otherwise the reset will not be taken into account by the device. 5.3.15 TIM timer characteristics The parameters given in Table 39 are guaranteed by design. Refer to Section 5.3.12: I/O current injection characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). ai14132d STM32F10x R NRST(2) PU VDD Filter Internal reset 0.1 μF External reset circuit(1) Table 39. TIMx(1) characteristics 1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers. Symbol Parameter Conditions Min Max Unit tres(TIM) Timer resolution time 1 - tTIMxCLK fTIMxCLK = 72 MHz 13.9 - ns fEXT Timer external clock frequency on CH1 to CH4 0 fTIMxCLK/2 MHz fTIMxCLK = 72 MHz 0 36 MHz ResTIM Timer resolution - 16 bit tCOUNTER 16-bit counter clock period when internal clock is selected 1 65536 tTIMxCLK fTIMxCLK = 72 MHz 0.0139 910 μs tMAX_COUNT Maximum possible count - 65536 × 65536 tTIMxCLK fTIMxCLK = 72 MHz - 59.6 s Electrical characteristics STM32F103x8, STM32F103xB 70/105 DocID13587 Rev 16 5.3.16 Communications interfaces I2C interface characteristics The STM32F103xx performance line I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 40. Refer also to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 40. I2C characteristics Symbol Parameter Standard mode I2C(1) 1. Guaranteed by design, not tested in production. Fast mode I2C(1)(2) 2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode I2C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock. Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - μs tw(SCLH) SCL clock high time 4.0 - 0.6 tsu(SDA) SDA setup time 250 - 100 - ns th(SDA) SDA data hold time 0 - 0 900(3) 3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal. tr(SDA) tr(SCL) SDA and SCL rise time - 1000 20 + 0.1Cb 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) Start condition hold time 4.0 - 0.6 - μs tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4.0 - 0.6 - s tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - s Cb Capacitive load for each bus line - 400 - 400 pF DocID13587 Rev 16 71/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 32. I2C bus AC waveforms and measurement circuit 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 2. Rs = Series protection resistors, Rp = Pull-up resistors, VDD_I2C = I2C bus supply. Table 41. SCL frequency (fPCLK1= 36 MHz.,VDD_I2C = 3.3 V)(1)(2) 1. RP = External pull-up resistance, fSCL = I2C speed, 2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the tolerance on the achieved speed 2%. These variations depend on the accuracy of the external components used to design the application. fSCL (kHz) I2C_CCR value RP = 4.7 k 400 0x801E 300 0x8028 200 0x803C 100 0x00B4 50 0x0168 20 0x0384 ai14133e Start SDA I²C bus VDD_I2C VDD_I2C STM32F10x SDA SCL tf(SDA) tr(SDA) SCL th(STA) tw(SCLH) tw(SCLL) tsu(SDA) tr(SCL) tf(SCL) th(SDA) Start repeated Start tsu(STA) tsu(STO) Stop tsu(STO:STA) Rp Rp Rs Rs Electrical characteristics STM32F103x8, STM32F103xB 72/105 DocID13587 Rev 16 SPI interface characteristics Unless otherwise specified, the parameters given in Table 42 are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 9. Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 42. SPI characteristics Symbol Parameter Conditions Min Max Unit fSCK 1/tc(SCK) SPI clock frequency Master mode - 18 MHz Slave mode - 18 tr(SCK) tf(SCK) SPI clock rise and fall time Capacitive load: C = 30 pF - 8 ns DuCy(SCK) SPI slave input clock duty cycle Slave mode 30 70 % tsu(NSS) (1) 1. Based on characterization, not tested in production. NSS setup time Slave mode 4tPCLK - ns th(NSS) (1) NSS hold time Slave mode 2tPCLK - tw(SCKH) (1) tw(SCKL) (1) SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 50 60 tsu(MI) (1) tsu(SI) (1) Data input setup time Master mode 5 - Slave mode 5 - th(MI) (1) Data input hold time Master mode 5 - th(SI) (1) Slave mode 4 - ta(SO) (1)(2) 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. Data output access time Slave mode, fPCLK = 20 MHz 0 3tPCLK tdis(SO) (1)(3) 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z Data output disable time Slave mode 2 10 tv(SO) (1) Data output valid time Slave mode (after enable edge) 25 tv(MO) (1) Data output valid time Master mode (after enable edge) 5 th(SO) (1) Data output hold time Slave mode (after enable edge) 15 - th(MO) (1) Master mode (after enable edge) 2 - DocID13587 Rev 16 73/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 33. SPI timing diagram - slave mode and CPHA = 0 Figure 34. SPI timing diagram - slave mode and CPHA = 1(1) 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. ai14134c SCK Input CPHA=0 MOSI INPUT MISO OUT PUT CPHA=0 MSB OUT MSB IN BIT6 OUT LSB IN LSB OUT CPOL=0 CPOL=1 BIT1 IN NSS input tSU(NSS) tc(SCK) th(NSS) ta(SO) tw(SCKH) tw(SCKL) tv(SO) th(SO) tr(SCK) tf(SCK) tdis(SO) tsu(SI) th(SI) ai14135 SCK Input CPHA=1 MOSI INPUT MISO OUT PUT CPHA=1 MSB OUT MSB IN BIT6 OUT LSB IN LSB OUT CPOL=0 CPOL=1 BIT1 IN tSU(NSS) tc(SCK) th(NSS) ta(SO) tw(SCKH) tw(SCKL) tv(SO) th(SO) tr(SCK) tf(SCK) tdis(SO) tsu(SI) th(SI) NSS input Electrical characteristics STM32F103x8, STM32F103xB 74/105 DocID13587 Rev 16 Figure 35. SPI timing diagram - master mode(1) 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. USB characteristics The USB interface is USB-IF certified (Full Speed). Table 43. USB startup time Symbol Parameter Max Unit tSTARTUP (1) 1. Guaranteed by design, not tested in production. USB transceiver startup time 1 μs ai14136 SCK Input CPHA=0 MOSI OUTUT MISO INPUT CPHA=0 MSBIN MSB OUT BIT6 IN LSB OUT LSB IN CPOL=0 CPOL=1 BIT1 OUT NSS input tc(SCK) tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) th(MI) High SCK Input CPHA=1 CPHA=1 CPOL=0 CPOL=1 tsu(MI) tv(MO) th(MO) DocID13587 Rev 16 75/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 36. USB timings: definition of data signal rise and fall time 5.3.17 CAN (controller area network) interface Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX). Table 44. USB DC electrical characteristics Symbol Parameter Conditions Min.(1) 1. All the voltages are measured from the local ground potential. Max.(1) Unit Input levels VDD USB operating voltage(2) 2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP (D+) pin should be pulled up with a 1.5 k resistor to a 3.0-to-3.6 V voltage range. 3.0(3) 3. The STM32F103xx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range. 3.6 V VDI (4) 4. Guaranteed by design, not tested in production. Differential input sensitivity I(USBDP, USBDM) 0.2 - VCM V (4) Differential common mode range Includes VDI range 0.8 2.5 VSE (4) Single ended receiver threshold 1.3 2.0 Output levels VOL Static output level low RL of 1.5 k to 3.6 V(5) 5. RL is the load connected on the USB drivers - 0.3 V VOH Static output level high RL of 15 k to VSS (5) 2.8 3.6 Table 45. USB: Full-speed electrical characteristics(1) 1. Guaranteed by design, not tested in production. Symbol Parameter Conditions Min Max Unit Driver characteristics tr Rise time(2) 2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0). CL = 50 pF 4 20 ns tf Fall time(2) CL = 50 pF 4 20 ns trfm Rise/ fall time matching tr/tf 90 110 % VCRS Output signal crossover voltage 1.3 2.0 V ai14137 tf Differen tial data lines VSS VCRS tr Crossover points Electrical characteristics STM32F103x8, STM32F103xB 76/105 DocID13587 Rev 16 5.3.18 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 46 are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 9. Note: It is recommended to perform a calibration after each power-up. Table 46. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Power supply 2.4 - 3.6 V VREF+ Positive reference voltage 2.4 - VDDA V IVREF Current on the VREF input pin 160(1) 220(1) μA fADC ADC clock frequency 0.6 - 14 MHz fS (2) Sampling rate 0.05 - 1 MHz fTRIG (2) External trigger frequency fADC = 14 MHz - - 823 kHz - - 17 1/fADC VAIN (3) Conversion voltage range 0 (VSSA or VREFtied to ground) - VREF+ V RAIN (2) External input impedance See Equation 1 and Table 47 for details - - 50 k RADC (2) Sampling switch resistance - - 1 k CADC (2) Internal sample and hold capacitor - - 8 pF tCAL (2) Calibration time fADC = 14 MHz 5.9 μs 83 1/fADC tlat (2) Injection trigger conversion latency fADC = 14 MHz - - 0.214 μs - - 3(4) 1/fADC tlatr (2) Regular trigger conversion latency fADC = 14 MHz - - 0.143 μs - - 2(4) 1/fADC tS (2) Sampling time fADC = 14 MHz 0.107 - 17.1 μs 1.5 - 239.5 1/fADC tSTAB (2) Power-up time 0 0 1 μs tCONV (2) Total conversion time (including sampling time) fADC = 14 MHz 1 - 18 μs 14 to 252 (tS for sampling +12.5 for successive approximation) 1/fADC 1. Based on characterization, not tested in production. 2. Guaranteed by design, not tested in production. 3. In devices delivered in VFQFPN and LQFP packages, VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA. Devices that come in the TFBGA64 package have a VREF+ pin but no VREF- pin (VREF- is internally connected to VSSA), see Table 5 and Figure 7. 4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 46. DocID13587 Rev 16 77/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Equation 1: RAIN max formula: The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 47. RAIN max for fADC = 14 MHz(1) 1. Based on characterization, not tested in production. Ts (cycles) tS (μs) RAIN max (k) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 NA 239.5 17.1 NA Table 48. ADC accuracy - limited test conditions(1) (2) 1. ADC DC accuracy values are measured after internal calibration. 2. ADC Accuracy vs. Negative Injection Current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.12 does not affect the ADC accuracy. Symbol Parameter Test conditions Typ Max(3) 3. Based on characterization, not tested in production. Unit ET Total unadjusted error fPCLK2 = 56 MHz, fADC = 14 MHz, RAIN < 10 k, VDDA = 3 V to 3.6 V TA = 25 °C Measurements made after ADC calibration ±1.3 ±2 LSB EO Offset error ±1 ±1.5 EG Gain error ±0.5 ±1.5 ED Differential linearity error ±0.7 ±1 EL Integral linearity error ±0.8 ±1.5 RAIN TS fADC CADC 2N + 2   ln   ------------------------------------------------------------- – RADC Electrical characteristics STM32F103x8, STM32F103xB 78/105 DocID13587 Rev 16 Figure 37. ADC accuracy characteristics Table 49. ADC accuracy(1) (2) (3) 1. ADC DC accuracy values are measured after internal calibration. 2. Better performance could be achieved in restricted VDD, frequency and temperature ranges. 3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.12 does not affect the ADC accuracy. Symbol Parameter Test conditions Typ Max(4) 4. Based on characterization, not tested in production. Unit ET Total unadjusted error fPCLK2 = 56 MHz, fADC = 14 MHz, RAIN < 10 k, VDDA = 2.4 V to 3.6 V Measurements made after ADC calibration ±2 ±5 LSB EO Offset error ±1.5 ±2.5 EG Gain error ±1.5 ±3 ED Differential linearity error ±1 ±2 EL Integral linearity error ±1.5 ±3 EO EG 1 LSBIDEAL (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. 4095 4094 4093 5 4 3 2 1 0 7 6 1 2 3 4 5 6 7 4093 4094 4095 4096 (1) (2) ET ED EL (3) VSSA VDDA ai14395b VREF+ 4096 (or depending on package)] VDDA 4096 [1LSBIDEAL = DocID13587 Rev 16 79/105 STM32F103x8, STM32F103xB Electrical characteristics 104 Figure 38. Typical connection diagram using the ADC 1. Refer to Table 46 for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 39 or Figure 40, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 39. Power supply and reference decoupling (VREF+ not connected to VDDA) 1. VREF+ and VREF– inputs are available only on 100-pin packages. ai14150c VDD STM32F103xx AINx IL±1 μA 0.6 V VT RAIN (1) Cparasitic VAIN 0.6 V VT RADC (1) 12-bit converter CADC(1) Sample and hold ADC converter VREF+ (see note 1) STM32F103xx VDDA VSSA /VREF– (see note 1) 1 μF // 10 nF 1 μF // 10 nF ai14388b Electrical characteristics STM32F103x8, STM32F103xB 80/105 DocID13587 Rev 16 Figure 40. Power supply and reference decoupling (VREF+ connected to VDDA) 1. VREF+ and VREF– inputs are available only on 100-pin packages. 5.3.19 Temperature sensor characteristics VREF+/VDDA STM32F103xx 1 μF // 10 nF VREF–/VSSA ai14389 (See note 1) (See note 1) Table 50. TS characteristics Symbol Parameter Min Typ Max Unit TL (1) 1. Based on characterization, not tested in production. VSENSE linearity with temperature - 1 2 °C Avg_Slope(1) Average slope 4.0 4.3 4.6 mV/°C V25 (1) Voltage at 25 °C 1.34 1.43 1.52 V tSTART (2) 2. Guaranteed by design, not tested in production. Startup time 4 - 10 μs TS_temp (3)(2) 3. Shortest sampling time can be determined in the application by multiple iterations. ADC sampling time when reading the temperature - - 17.1 μs DocID13587 Rev 16 81/105 STM32F103x8, STM32F103xB Package characteristics 104 6 Package characteristics 6.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Package characteristics STM32F103x8, STM32F103xB 82/105 DocID13587 Rev 16 1. Drawing is not to scale. 2. All leads/pads should also be soldered to the PCB to improve the lead solder joint life. Figure 41. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline(1) Figure 42. VFQFPN36 recommended footprint (dimensions in mm)(1)(2) Seating plane C ddd C A3 A1 A2 A Pin # 1 ID R = 0.20 ZR_ME E2 b 1 9 10 18 27 28 36 19 D2 E D e L 0.30 6.30 0.50 4.30 1.00 4.30 4.80 4.80 4.10 4.10 1 28 9 19 ai14870b 36 27 18 10 0.75 Table 51. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 0.800 0.900 1.000 0.0315 0.0354 0.0394 A1 - 0.020 0.050 - 0.0008 0.0020 A2 - 0.650 1.000 - 0.0256 0.0394 A3 - 0.250 - - 0.0098 - b 0.180 0.230 0.300 0.0071 0.0091 0.0118 D 5.875 6.000 6.125 0.2313 0.2362 0.2411 D2 1.750 3.700 4.250 0.0689 0.1457 0.1673 E 5.875 6.000 6.125 0.2313 0.2362 0.2411 E2 1.750 3.700 4.250 0.0689 0.1457 0.1673 e 0.450 0.500 0.550 0.0177 0.0197 0.0217 L 0.350 0.550 0.750 0.0138 0.0217 0.0295 ddd 0.080 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID13587 Rev 16 83/105 STM32F103x8, STM32F103xB Package characteristics 104 Figure 43. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline 1. Drawing is not to scale. 2. There is an exposed die pad on the underside of the QFPN package, this pad is not internally connected to the VSS or VDD power pads. It is recommended to connect it to VSS. 3. All leads/pads should also be soldered to the PCB to improve the lead solder joint life. A0B9_ME_V3 D Pin 1 indentifier laser marking area E E D Y D2 E2 Exposed pad area Z 1 48 Detail Z R 0.125 typ. 1 48 L C 0.500x45° pin1 corner A Seating plane A1 e b ddd Detail Y T Table 52. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 D 6.900 7.000 7.100 0.2717 0.2756 0.2795 E 6.900 7.000 7.100 0.2717 0.2756 0.2795 D2 5.500 5.600 5.700 0.2165 0.2205 0.2244 E2 5.500 5.600 5.700 0.2165 0.2205 0.2244 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 T - 0.152 - - 0.0060 - Package characteristics STM32F103x8, STM32F103xB 84/105 DocID13587 Rev 16 Figure 44. UFQFPN48 recommended footprint b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - ddd 0.080 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Table 52. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data (continued) Symbol millimeters inches(1) Min Typ Max Min Typ Max 7.30 7.30 0.20 0.30 0.55 0.50 5.80 6.20 6.20 5.60 5.60 5.80 0.75 A0B9_FP_V2 48 1 12 13 24 25 36 37 DocID13587 Rev 16 85/105 STM32F103x8, STM32F103xB Package characteristics 104 Figure 45. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package outline 1. Drawing is not to scale. Table 53. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 1.700 0.0669 A1 0.270 0.0106 A2 0.300 0.0118 A4 0.800 0.0315 b 0.450 0.500 0.550 0.0177 0.0197 0.0217 D 9.850 10.000 10.150 0.3878 0.3937 0.3996 D1 7.200 0.2835 E 9.850 10.000 10.150 0.3878 0.3937 0.3996 E1 7.200 0.2835 e 0.800 0.0315 F 1.400 0.0551 ddd 0.120 0.0047 eee 0.150 0.0059 fff 0.080 0.0031 N (number of balls) 100 H0_ME_V2 Seating plane A4 A1 e F F D K eee Z Y X fff Øb (100 balls) ØØ A MM E BOTTOM VIEW TOP VIEW 10 1 e A2 A Z Y X Z ddd Z D1 E1 A1 ball identifier A1 ball index area Package characteristics STM32F103x8, STM32F103xB 86/105 DocID13587 Rev 16 Figure 46. Recommended PCB design rules (0.80/0.75 mm pitch BGA) 1. Values in inches are converted from mm and rounded to 4 decimal digits. Dpad Dsm Dpad 0.37 mm Dsm 0.52 mm typ. (depends on solder mask registration tolerance Solder paste 0.37 mm aperture diameter – Non solder mask defined pads are recommended – 4 to 6 mils screen print 􀀮􀀴􀀔􀀓􀀗􀀓􀀗􀀷􀀒 DocID13587 Rev 16 87/105 STM32F103x8, STM32F103xB Package characteristics 104 Figure 47. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline(1) Figure 48. LQFP100 recommended footprint(1)(2) 1. Drawing is not to scale. 2. Dimensions are in millimeters. D D1 D3 75 51 76 50 100 26 1 25 E3 E1 E e b Pin 1 identification SEATING PLANE GAGE PLANE C A A2 A1 C ccc 0.25 mm 0.10 inch L L1 k C 1L_ME 75 51 76 50 0.5 0.3 16.7 14.3 100 26 12.3 25 1.2 16.7 1 ai14906 Table 54. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 1.6 0.063 A1 0.05 0.15 0.002 0.0059 A2 1.35 1.4 1.45 0.0531 0.0551 0.0571 b 0.17 0.22 0.27 0.0067 0.0087 0.0106 c 0.09 0.2 0.0035 0.0079 D 15.8 16 16.2 0.622 0.6299 0.6378 D1 13.8 14 14.2 0.5433 0.5512 0.5591 D3 12 0.4724 E 15.8 16 16.2 0.622 0.6299 0.6378 E1 13.8 14 14.2 0.5433 0.5512 0.5591 E3 12 0.4724 e 0.5 0.0197 L 0.45 0.6 0.75 0.0177 0.0236 0.0295 L1 1 0.0394 k 0.0° 3.5° 7.0° 0.0° 3.5° 7.0° ccc 0.08 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Package characteristics STM32F103x8, STM32F103xB 88/105 DocID13587 Rev 16 Figure 49. UFBGA100 - ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package outline 1. Drawing is not to scale. A0C2_ME_V2 Seating plane A1 e F F D M Øb (100 balls) A E BOTTOM VIEW TOP VIEW 12 1 A1 ball identifier e A2 A Y X Z ddd Z D1 E1 eee Z Y X fff ØØ MM Z A4 A3 A1 ball index area Table 55. UFBGA100 - ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A 0.460 0.530 0.600 0.0181 0.0209 0.0236 A1 0.050 0.080 0.110 0.0020 0.0031 0.0043 A2 0.400 0.450 0.500 0.0157 0.0177 0.0197 A3 0.080 0.130 0.180 0.0031 0.0051 0.0071 A4 0.270 0.320 0.370 0.0106 0.0126 0.0146 b 0.200 0.250 0.300 0.0079 0.0098 0.0118 D 6.950 7.000 7.050 0.2736 0.2756 0.2776 D1 5.450 5.500 5.550 0.2146 0.2165 0.2185 E 6.950 7.000 7.050 0.2736 0.2756 0.2776 E1 5.450 5.500 5.550 0.2146 0.2165 0.2185 e 0.500 0.0197 F 0.700 0.750 0.800 0.0276 0.0295 0.0315 ddd 0.100 0.0039 eee 0.150 0.0059 fff 0.050 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID13587 Rev 16 89/105 STM32F103x8, STM32F103xB Package characteristics 104 Figure 50. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline(1) Figure 51. LQFP64 recommended footprint(1)(2) 1. Drawing is not to scale. 2. Dimensions are in millimeters. 5W_ME A1 L K L1 􀁄 􀀢 􀀢􀀓 ccc 􀀤 D D1 D3 E3 E1 E 32 48 33 49 b 64 1 Pin 1 identification 16 17 48 49 32 64 17 1 16 1.2 0.3 33 10.3 12.7 10.3 0.5 7.8 12.7 ai14909 Table 56. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A - - 1.60 - - 0.0630 A1 0.05 - 0.15 0.0020 - 0.0059 A2 1.35 1.40 1.45 0.0531 0.0551 0.0571 b 0.17 0.22 0.27 0.0067 0.0087 0.0106 c 0.09 - 0.20 0.0035 - 0.0079 D - 12.00 - - 0.4724 - D1 - 10.00 - - 0.3937 - E - 12.00 - - 0.4724 - E1 - 10.00 - - 0.3937 - e - 0.50 - - 0.0197 -  0° 3.5° 7° 0° 3.5° 7° L 0.45 0.60 0.75 0.0177 0.0236 0.0295 L1 - 1.00 - - 0.0394 - N Number of pins 64 1. Values in inches are converted from mm and rounded to 4 decimal digits. Package characteristics STM32F103x8, STM32F103xB 90/105 DocID13587 Rev 16 Figure 52. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline 1. Drawing is not to scale. Table 57. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package mechanical data Symbol millimeters inches(1) 1. Values in inches are converted from mm and rounded to 4 decimal digits. Min Typ Max Min Typ Max A - - 1.200 - - 0.0472 A1 0.150 - - 0.0059 - - A2 - 0.200 - - 0.0079 - A4 - - 0.600 - - 0.0236 b 0.250 0.300 0.350 0.0098 0.0118 0.0138 D 4.850 5.000 5.150 0.1909 0.1969 0.2028 D1 - 3.500 - - 0.1378 - E 4.850 5.000 5.150 0.1909 0.1969 0.2028 E1 - 3.500 - - 0.1378 - e - 0.500 - - 0.0197 - F - 0.750 - - 0.0295 - ddd - - 0.080 - - 0.0031 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 R8_ME_V3 Seating plane A1 e F F D H Øb (64 balls) A E BOTTOM VIEW TOP VIEW 8 1 e A Y X Z ddd Z D1 E1 eee Z Y X fff ØØ MM Z A4 A2 A1 ball identifier A1 ball index area DocID13587 Rev 16 91/105 STM32F103x8, STM32F103xB Package characteristics 104 Figure 53. Recommended PCB design rules for pads (0.5 mm pitch BGA) 1. Non solder mask defined (NSMD) pads are recommended 2. 4 to 6 mils solder paste screen printing process Pitch 0.5 mm D pad 0.27 mm Dsm 0.35 mm typ (depends on the soldermask registration tolerance) Solder paste 0.27 mm aperture diameter Dpad Dsm ai15495 Package characteristics STM32F103x8, STM32F103xB 92/105 DocID13587 Rev 16 Figure 54. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline(1) Figure 55. LQFP48 recommended footprint(1)(2) 1. Drawing is not to scale. 2. Dimensions are in millimeters. D D1 D3 A1 L1 L k b c ccc C A1 A A2 C Seating plane 0.25 mm Gage plane E3 E1 E 12 13 24 25 48 1 36 37 Pin 1 identification 5B_ME 9.70 5.80 7.30 12 24 0.20 7.30 1 37 36 1.20 5.80 9.70 25 0.30 1.20 0.50 48 13 Table 58. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data Symbol millimeters inches(1) Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0° 3.5° 7° 0° 3.5° 7° ccc 0.080 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID13587 Rev 16 93/105 STM32F103x8, STM32F103xB Package characteristics 104 6.2 Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 9: General operating conditions on page 38. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max × JA) Where:  TA max is the maximum ambient temperature in C,  JA is the package junction-to-ambient thermal resistance, in C/W,  PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),  PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = (VOL × IOL) + ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. 6.2.1 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. Table 59. Package thermal characteristics Symbol Parameter Value Unit JA Thermal resistance junction-ambient LFBGA100 - 10 × 10 mm / 0.8 mm pitch 44 °C/W Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch 46 Thermal resistance junction-ambient UFBGA100 - 7 × 7 mm /0.5 mm pitch 59 Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch 45 Thermal resistance junction-ambient TFBGA64 - 5 × 5 mm / 0.5 mm pitch 65 Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch 55 Thermal resistance junction-ambient UFQFPN 48 - 7 × 7 mm / 0.5 mm pitch 32 Thermal resistance junction-ambient VFQFPN 36 - 6 × 6 mm / 0.5 mm pitch 18 Package characteristics STM32F103x8, STM32F103xB 94/105 DocID13587 Rev 16 6.2.2 Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Table 60: Ordering information scheme. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. As applications do not commonly use the STM32F103xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application. The following examples show how to calculate the temperature range needed for a given application. Example 1: High-performance application Assuming the following application conditions: Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA × 3.5 V= 175 mW PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW This gives: PINTmax = 175 mW and PIOmax = 272 mW: PDmax = 175 + 272 = 447 mW Thus: PDmax = 447 mW Using the values obtained in Table 59 TJmax is calculated as follows: – For LQFP100, 46 °C/W TJmax = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 6 (see Table 60: Ordering information scheme). Example 2: High-temperature application Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature TJ remains within the specified range. Assuming the following application conditions: Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2), IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V PINTmax = 20 mA × 3.5 V= 70 mW PIOmax = 20 × 8 mA × 0.4 V = 64 mW This gives: PINTmax = 70 mW and PIOmax = 64 mW: PDmax = 70 + 64 = 134 mW Thus: PDmax = 134 mW DocID13587 Rev 16 95/105 STM32F103x8, STM32F103xB Package characteristics 104 Using the values obtained in Table 59 TJmax is calculated as follows: – For LQFP100, 46 °C/W TJmax = 115 °C + (46 °C/W × 134 mW) = 115 °C + 6.2 °C = 121.2 °C This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C). In this case, parts must be ordered at least with the temperature range suffix 7 (see Table 60: Ordering information scheme). Figure 56. LQFP100 PD max vs. TA 0 100 200 300 400 500 600 700 65 75 85 95 105 115 125 135 TA (°C) PD (mW) Suffix 6 Suffix 7 Ordering information scheme STM32F103x8, STM32F103xB 96/105 DocID13587 Rev 16 7 Ordering information scheme For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. Table 60. Ordering information scheme Example: STM32 F 103 C 8 T 7 xxx Device family STM32 = ARM-based 32-bit microcontroller Product type F = general-purpose Device subfamily 103 = performance line Pin count T = 36 pins C = 48 pins R = 64 pins V = 100 pins Flash memory size(1) 1. Although STM32F103x6 devices are not described in this datasheet, orderable part numbers that do not show the A internal code after temperature range code 6 or 7 should be referred to this datasheet for the electrical characteristics. The low-density datasheet only covers STM32F103x6 devices that feature the A code. 8 = 64 Kbytes of Flash memory B = 128 Kbytes of Flash memory Package H = BGA I = UFBGA T = LQFP U = VFQFPN or UFQFPN Temperature range 6 = Industrial temperature range, –40 to 85 °C. 7 = Industrial temperature range, –40 to 105 °C. Options xxx = programmed parts TR = tape and real DocID13587 Rev 16 97/105 STM32F103x8, STM32F103xB Revision history 104 8 Revision history Table 61. Document revision history Date Revision Changes 01-jun-2007 1 Initial release. 20-Jul-2007 2 Flash memory size modified in Note 9, Note 5, Note 7, Note 7 and BGA100 pins added to Table 5: Medium-density STM32F103xx pin definitions. Figure 3: STM32F103xx performance line LFBGA100 ballout added. THSE changed to TLSE in Figure 23: Low-speed external clock source AC timing diagram. VBAT ranged modified in Power supply schemes. tSU(LSE) changed to tSU(HSE) in Table 22: HSE 4-16 MHz oscillator characteristics. IDD(HSI) max value added to Table 24: HSI oscillator characteristics. Sample size modified and machine model removed in Electrostatic discharge (ESD). Number of parts modified and standard reference updated in Static latch-up. 25 °C and 85 °C conditions removed and class name modified in Table 33: Electrical sensitivities. RPU and RPD min and max values added to Table 35: I/O static characteristics. RPU min and max values added to Table 38: NRST pin characteristics. Figure 32: I2C bus AC waveforms and measurement circuit and Figure 31: Recommended NRST pin protection corrected. Notes removed below Table 9, Table 38, Table 44. IDD typical values changed in Table 11: Maximum current consumption in Run and Sleep modes. Table 39: TIMx characteristics modified. tSTAB, VREF+ value, tlat and fTRIG added to Table 46: ADC characteristics. In Table 29: Flash memory endurance and data retention, typical endurance and data retention for TA = 85 °C added, data retention for TA = 25 °C removed. VBG changed to VREFINT in Table 12: Embedded internal reference voltage. Document title changed. Controller area network (CAN) section modified. Figure 14: Power supply scheme modified. Features on page 1 list optimized. Small text changes. Revision history STM32F103x8, STM32F103xB 98/105 DocID13587 Rev 16 18-Oct-2007 3 STM32F103CBT6, STM32F103T6 and STM32F103T8 root part numbers added (see Table 2: STM32F103xx medium-density device features and peripheral counts) VFQFPN36 package added (see Section 6: Package characteristics). All packages are ECOPACK® compliant. Package mechanical data inch values are calculated from mm and rounded to 4 decimal digits (see Section 6: Package characteristics). Table 5: Medium-density STM32F103xx pin definitions updated and clarified. Table 26: Low-power mode wakeup timings updated. TA min corrected in Table 12: Embedded internal reference voltage. Note 2 added below Table 22: HSE 4-16 MHz oscillator characteristics. VESD(CDM) value added to Table 32: ESD absolute maximum ratings. Note 4 added and VOH parameter description modified in Table 36: Output voltage characteristics. Note 1 modified under Table 37: I/O AC characteristics. Equation 1 and Table 47: RAIN max for fADC = 14 MHz added to Section 5.3.18: 12-bit ADC characteristics. VAIN, tS max, tCONV, VREF+ min and tlat max modified, notes modified and tlatr added in Table 46: ADC characteristics. Figure 37: ADC accuracy characteristics updated. Note 1 modified below Figure 38: Typical connection diagram using the ADC. Electrostatic discharge (ESD) on page 60 modified. Number of TIM4 channels modified in Figure 1: STM32F103xx performance line block diagram. Maximum current consumption Table 13, Table 14 and Table 15 updated. Vhysmodified in Table 35: I/O static characteristics. Table 49: ADC accuracy updated. tVDD modified in Table 10: Operating conditions at power-up / power-down. VFESD value added in Table 30: EMS characteristics. Values corrected, note 2 modified and note 3 removed in Table 26: Lowpower mode wakeup timings. Table 16: Typical and maximum current consumptions in Stop and Standby modes: Typical values added for VDD/VBAT = 2.4 V, Note 2 modified, Note 2 added. Table 21: Typical current consumption in Standby mode added. On-chip peripheral current consumption on page 50 added. ACCHSI values updated in Table 24: HSI oscillator characteristics. Vprog added to Table 28: Flash memory characteristics. Upper option byte address modified in Figure 11: Memory map. Typical fLSI value added in Table 25: LSI oscillator characteristics and internal RC value corrected from 32 to 40 kHz in entire document. TS_temp added to Table 50: TS characteristics. NEND modified in Table 29: Flash memory endurance and data retention. TS_vrefint added to Table 12: Embedded internal reference voltage. Handling of unused pins specified in General input/output characteristics on page 62. All I/Os are CMOS and TTL compliant. Figure 39: Power supply and reference decoupling (VREF+ not connected to VDDA) modified. tJITTER and fVCO removed from Table 27: PLL characteristics. Appendix A: Important notes on page 81 added. Added Figure 16, Figure 17, Figure 19 and Figure 21. Table 61. Document revision history (continued) Date Revision Changes DocID13587 Rev 16 99/105 STM32F103x8, STM32F103xB Revision history 104 22-Nov-2007 4 Document status promoted from preliminary data to datasheet. The STM32F103xx is USB certified. Small text changes. Power supply schemes on page 15 modified. Number of communication peripherals corrected for STM32F103Tx and number of GPIOs corrected for LQFP package in Table 2: STM32F103xx medium-density device features and peripheral counts. Main function and default alternate function modified for PC14 and PC15 in, Note 6 added and Remap column added in Table 5: Medium-density STM32F103xx pin definitions. VDD–VSS ratings and Note 1 modified in Table 6: Voltage characteristics, Note 1 modified in Table 7: Current characteristics. Note 1 and Note 2 added in Table 11: Embedded reset and power control block characteristics. IDD value at 72 MHz with peripherals enabled modified in Table 14: Maximum current consumption in Run mode, code with data processing running from RAM. IDD value at 72 MHz with peripherals enabled modified in Table 15: Maximum current consumption in Sleep mode, code running from Flash or RAM on page 44. IDD_VBAT typical value at 2.4 V modified and IDD_VBAT maximum values added in Table 16: Typical and maximum current consumptions in Stop and Standby modes. Note added in Table 17 on page 48 and Table 18 on page 49. ADC1 and ADC2 consumption and notes modified in Table 19: Peripheral current consumption. tSU(HSE) and tSU(LSE) conditions modified in Table 22 and Table 23, respectively. Maximum values removed from Table 26: Low-power mode wakeup timings. tRET conditions modified in Table 29: Flash memory endurance and data retention. Figure 14: Power supply scheme corrected. Figure 20: Typical current consumption in Stop mode with regulator in Low-power mode versus temperature at VDD = 3.3 V and 3.6 V added. Note removed below Figure 33: SPI timing diagram - slave mode and CPHA = 0. Note added below Figure 34: SPI timing diagram - slave mode and CPHA = 1(1). Details on unused pins removed from General input/output characteristics on page 62. Table 42: SPI characteristics updated. Table 43: USB startup time added. VAIN, tlat and tlatr modified, note added and Ilkg removed in Table 46: ADC characteristics. Test conditions modified and note added in Table 49: ADC accuracy. Note added below Table 47 and Table 50. Inch values corrected in Table 54: LQPF100, 14 x 14 mm 100-pin lowprofile quad flat package mechanical data, Table 56: LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data and Table 58: LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data. JAvalue for VFQFPN36 package added in Table 59: Package thermal characteristics Order codes replaced by Section 7: Ordering information scheme. MCU ‘s operating conditions modified in Typical current consumption on page 47. Avg_Slope and V25 modified in Table 50: TS characteristics. I2C interface characteristics on page 70 modified. Impedance size specified in A.4: Voltage glitch on ADC input 0 on page 81. Table 61. Document revision history (continued) Date Revision Changes Revision history STM32F103x8, STM32F103xB 100/105 DocID13587 Rev 16 14-Mar-2008 5 Figure 2: Clock tree on page 12 added. Maximum TJ value given in Table 8: Thermal characteristics on page 38. CRC feature added (see CRC (cyclic redundancy check) calculation unit on page 9 and Figure 11: Memory map on page 34 for address). IDD modified in Table 16: Typical and maximum current consumptions in Stop and Standby modes. ACCHSI modified in Table 24: HSI oscillator characteristics on page 55, note 2 removed. PD, TA and TJ added, tprog values modified and tprog description clarified in Table 28: Flash memory characteristics on page 57. tRET modified in Table 29: Flash memory endurance and data retention. VNF(NRST) unit corrected in Table 38: NRST pin characteristics on page 68. Table 42: SPI characteristics on page 72 modified. IVREF added to Table 46: ADC characteristics on page 76. Table 48: ADC accuracy - limited test conditions added. Table 49: ADC accuracy modified. LQFP100 package specifications updated (see Section 6: Package characteristics on page 81). Recommended LQFP100, LQFP 64, LQFP48 and VFQFPN36 footprints added (see Figure 48, Figure 51, Figure 55 and Figure 42). Section 6.2: Thermal characteristics on page 93 modified, Section 6.2.1 and Section 6.2.2 added. Appendix A: Important notes on page 81 removed. 21-Mar-2008 6 Small text changes. Figure 11: Memory map clarified. In Table 29: Flash memory endurance and data retention: – NEND tested over the whole temperature range – cycling conditions specified for tRET – tRET min modified at TA = 55 °C V25, Avg_Slope and TL modified in Table 50: TS characteristics. CRC feature removed. 22-May-2008 7 CRC feature added back. Small text changes. Section 1: Introduction modified. Section 2.2: Full compatibility throughout the family added. IDD at TA max = 105 °C added to Table 16: Typical and maximum current consumptions in Stop and Standby modes on page 45. IDD_VBAT removed from Table 21: Typical current consumption in Standby mode on page 47. Values added to Table 41: SCL frequency (fPCLK1= 36 MHz.,VDD_I2C = 3.3 V) on page 71. Figure 33: SPI timing diagram - slave mode and CPHA = 0 on page 73 modified. Equation 1 corrected. tRET at TA = 105 °C modified in Table 29: Flash memory endurance and data retention on page 58. VUSB added to Table 44: USB DC electrical characteristics on page 75. Figure 56: LQFP100 PD max vs. TA on page 95 modified. Axx option added to Table 60: Ordering information scheme on page 96. Table 61. Document revision history (continued) Date Revision Changes DocID13587 Rev 16 101/105 STM32F103x8, STM32F103xB Revision history 104 21-Jul-2008 8 Power supply supervisor updated and VDDA added to Table 9: General operating conditions. Capacitance modified in Figure 14: Power supply scheme on page 36. Table notes revised in Section 5: Electrical characteristics. Table 16: Typical and maximum current consumptions in Stop and Standby modes modified. Data added to Table 16: Typical and maximum current consumptions in Stop and Standby modes and Table 21: Typical current consumption in Standby mode removed. fHSE_ext modified in Table 20: High-speed external user clock characteristics on page 51. fPLL_IN modified in Table 27: PLL characteristics on page 57. Minimum SDA and SCL fall time value for Fast mode removed from Table 40: I2C characteristics on page 70, note 1 modified. th(NSS) modified in Table 42: SPI characteristics on page 72 and Figure 33: SPI timing diagram - slave mode and CPHA = 0 on page 73. CADC modified in Table 46: ADC characteristics on page 76 and Figure 38: Typical connection diagram using the ADC modified. Typical TS_temp value removed from Table 50: TS characteristics on page 80. LQFP48 package specifications updated (see Table 58 and Table 55), Section 6: Package characteristics revised. Axx option removed from Table 60: Ordering information scheme on page 96. Small text changes. 22-Sep-2008 9 STM32F103x6 part numbers removed (see Table 60: Ordering information scheme). Small text changes. General-purpose timers (TIMx) and Advanced-control timer (TIM1) on page 18 updated. Notes updated in Table 5: Medium-density STM32F103xx pin definitions on page 28. Note 2 modified below Table 6: Voltage characteristics on page 37, |VDDx| min and |VDDx| min removed. Measurement conditions specified in Section 5.3.5: Supply current characteristics on page 41. IDD in standby mode at 85 °C modified in Table 16: Typical and maximum current consumptions in Stop and Standby modes on page 45. General input/output characteristics on page 62 modified. fHCLK conditions modified in Table 30: EMS characteristics on page 59. JA and pitch value modified for LFBGA100 package in Table 59: Package thermal characteristics. Small text changes. Table 61. Document revision history (continued) Date Revision Changes Revision history STM32F103x8, STM32F103xB 102/105 DocID13587 Rev 16 23-Apr-2009 10 I/O information clarified on page 1. Figure 3: STM32F103xx performance line LFBGA100 ballout modified. Figure 11: Memory map modified. Table 4: Timer feature comparison added. PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default column to Remap column in Table 5: Medium-density STM32F103xx pin definitions. PD for LFBGA100 corrected in Table 9: General operating conditions. Note modified in Table 13: Maximum current consumption in Run mode, code with data processing running from Flash and Table 15: Maximum current consumption in Sleep mode, code running from Flash or RAM. Table 20: High-speed external user clock characteristics and Table 21: Low-speed external user clock characteristics modified. Figure 20 shows a typical curve (title modified). ACCHSI max values modified in Table 24: HSI oscillator characteristics. TFBGA64 package added (see Table 57 and Table 52). Small text changes. 22-Sep-2009 11 Note 5 updated and Note 4 added in Table 5: Medium-density STM32F103xx pin definitions. VRERINT and TCoeff added to Table 12: Embedded internal reference voltage. IDD_VBAT value added to Table 16: Typical and maximum current consumptions in Stop and Standby modes. Figure 18: Typical current consumption on VBAT with RTC on versus temperature at different VBAT values added. fHSE_ext min modified in Table 20: High-speed external user clock characteristics. CL1 and CL2 replaced by C in Table 22: HSE 4-16 MHz oscillator characteristics and Table 23: LSE oscillator characteristics (fLSE = 32.768 kHz), notes modified and moved below the tables. Table 24: HSI oscillator characteristics modified. Conditions removed from Table 26: Low-power mode wakeup timings. Note 1 modified below Figure 24: Typical application with an 8 MHz crystal. IEC 1000 standard updated to IEC 61000 and SAE J1752/3 updated to IEC 61967-2 in Section 5.3.10: EMC characteristics on page 58. Jitter added to Table 27: PLL characteristics. Table 42: SPI characteristics modified. CADC and RAIN parameters modified in Table 46: ADC characteristics. RAIN max values modified in Table 47: RAIN max for fADC = 14 MHz. Figure 45: LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package outline updated. 03-Jun-2010 12 Added STM32F103TB devices. Added VFQFPN48 package. Updated note 2 below Table 40: I2C characteristics Updated Figure 32: I2C bus AC waveforms and measurement circuit Updated Figure 31: Recommended NRST pin protection Updated Section 5.3.12: I/O current injection characteristics Table 61. Document revision history (continued) Date Revision Changes DocID13587 Rev 16 103/105 STM32F103x8, STM32F103xB Revision history 104 19-Apr-2011 13 Updated footnotes below Table 6: Voltage characteristics on page 37 and Table 7: Current characteristics on page 38 Updated tw min in Table 20: High-speed external user clock characteristics on page 51 Updated startup time in Table 23: LSE oscillator characteristics (fLSE = 32.768 kHz) on page 54 Added Section 5.3.12: I/O current injection characteristics Updated Section 5.3.13: I/O port characteristics 07-Dec-2012 14 Added UFBGA100 7 x 7 mm. Updated Figure 50: LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline to add pin 1 identification. Table 61. Document revision history (continued) Date Revision Changes Revision history STM32F103x8, STM32F103xB 104/105 DocID13587 Rev 16 14-May-2013 15 Replaced VQFN48 package with UQFN48 in cover page packages, Table 2: STM32F103xx medium-density device features and peripheral counts, Figure 9: STM32F103xx performance line UFQFPN48 pinout, Table 2: STM32F103xx medium-density device features and peripheral counts, Table 55: UFBGA100 - ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package mechanical data, Table 60: Ordering information scheme and updated Table 59: Package thermal characteristics Added footnote for TFBGA ADC channels in Table 2: STM32F103xx medium-density device features and peripheral counts Updated ‘All GPIOs are high current...’ in Section 2.3.21: GPIOs (general-purpose inputs/outputs) Updated Table 5: Medium-density STM32F103xx pin definitions Corrected Sigma letter in Section 5.1.1: Minimum and maximum values Removed the first sentence in Section 5.3.16: Communications interfaces Added ‘VIN’ in Table 9: General operating conditions Updated first sentence in Output driving current Added note 5. in Table 24: HSI oscillator characteristics Updated ‘VIL’ and ‘VIH’ in Table 35: I/O static characteristics Added notes to Figure 26: Standard I/O input characteristics - CMOS port, Figure 27: Standard I/O input characteristics - TTL port, Figure 28: 5 V tolerant I/O input characteristics - CMOS port and Figure 29: 5 V tolerant I/O input characteristics - TTL port Updated Figure 32: I2C bus AC waveforms and measurement circuit Updated note 2. and 3.,removed note “the device must internally...” in Table 40: I2C characteristics Updated title of Table 41: SCL frequency (fPCLK1= 36 MHz.,VDD_I2C = 3.3 V) Updated note 2. in Table 49: ADC accuracy Updated Figure 49: UFBGA100 - ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package outline and Table 55: UFBGA100 - ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package mechanical data Updated Figure 45: LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package outline and Table 53: LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package mechanical data Updated Figure 52: TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline and Table 57: TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package mechanical data 05-Aug-2013 16 Updated the reference for ‘VESD(CDM)’ in Table 32: ESD absolute maximum ratings Corrected ‘tf(IO)out’ in Figure 30: I/O AC characteristics definition Updated Table 52: UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data Table 61. Document revision history (continued) Date Revision Changes DocID13587 Rev 16 105/105 STM32F103x8, STM32F103xB 105 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com ST3232B ST3232C 3 to 5.5 V, low power, up to 400 kbps RS-232 drivers and receivers Features ■ 300 μA supply current ■ 300 kbps minimum guaranteed data rate ■ 6 V/μs minimum guaranteed slew rate ■ Meet EIA/TIA-232 specifications down to 3 V ■ Available in SO-16, SO-16 large and TSSOP16 Description The ST3232 is a 3 V powered EIA/TIA-232 and V.28/V.24 communication interface with low power requirements, high data-rate capabilities. ST3232 has a proprietary low dropout transmitter output stage providing true RS-232 performance from 3 to 5.5 V supplies. The device requires only four small 0.1 mF standard external capacitors for operations from 3 V supply. The ST3232 has two receivers and two drivers. The device is guaranteed to run at data rates of 250 kbps while maintaining RS-232 output levels. Typical applications are Notebook, Subnotebook and Palmtop Computers, Battery Powered Equipment, Hand-Held Equipment, Peripherals and Printers. SO-16 Large TSSOP16 SO-16 Table 1. Device summary Order codes Temp. range Package Packaging ST3232CDR 0 to 70 °C SO-16 (tape and reel) 2500 parts per reel ST3232BDR -40 to 85 °C SO-16 (tape and reel) 2500 parts per reel ST3232CWR 0 to 70 °C SO-16 Large (tape and reel) 1000 parts per reel ST3232BWR -40 to 85 °C SO-16 Large (tape and reel) 1000 parts per reel ST3232CTR 0 to 70 °C TSSOP16 (tape and reel) 2500 parts per reel ST3232BTR -40 to 85 °C TSSOP16 (tape and reel) 2500 parts per reel www.st.com Contents ST3232B - ST3232C 2/18 Contents 1 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 ST3232B - ST3232C Pin configuration 3/18 1 Pin configuration Figure 1. Pin connection Table 2. Pin description Pin n° Symbol Name and function 1 C1+ Positive terminal for the first charge pump capacitor 2 V+ Doubled voltage terminal 3 C1- Negative terminal for the first charge pump capacitor 4 C2+ Positive terminal for the second charge pump capacitor 5 C2- Negative terminal for the second charge pump capacitor 6 V- Inverted voltage terminal 7 T2OUT Second transmitter output voltage 8 R2IN Second receiver input voltage 9 R2OUT Second receiver output voltage 10 T2IN Second transmitter input voltage 11 T1IN First transmitter input voltage 12 R1OUT First receiver output voltage 13 R1IN First receiver input voltage 14 T1OUT First transmitter output voltage 15 GND Ground 16 VCC Supply voltage Absolute maximum ratings ST3232B - ST3232C 4/18 2 Absolute maximum ratings Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. Externally applied V+ and V- can have a maximum magnitude of +7 V, but their absolute addition can not exceed 13 V. Running on internal charge pump, intrinsic self limitation allows exceeding those values without any damage. Startup voltage sequence (VCC, then V+, then V-) is critical, therefore it is not recommended to use this device using externally applied voltage to V+ and V-. Table 3. Absolute maximum ratings Symbol Parameter Value Unit VCC Supply voltage -0.3 to 6 V V+ Doubled voltage terminal (VCC - 0.3) to 7 V V- Inverted voltage terminal 0.3 to -7 V V+ +|V-| 13 V TIN Transmitter input voltage range -0.3 to 6 V RIN Receiver input voltage range ± 25 V TOUT Transmitter output voltage range ± 13.2 V ROUT Receiver output voltage range -0.3 to (VCC + 0.3) V tSHORT Transmitter output short to gnd time Continuous ST3232B - ST3232C Electrical characteristics 5/18 3 Electrical characteristics Table 4. Electrical characteristics (C1 - C4 = 0.1 μF, VCC = 3 V to 5.5 V, TA = -40 to 85 °C, unless otherwise specified. Typical values are referred to TA = 25 °C) Symbol Parameter Test conditions Min. Typ. Max. Unit ISUPPLY VCC Power supply current No Load, VCC = 3V ± 10%, TA = 25°C 0.3 1 mA No Load, VCC = 5V ± 10%, TA = 25°C 1 2 mA Table 5. Logic input (C1 - C4 = 0.1 μF, VCC = 3 V to 5.5 V, TA = -40 to 85 °C, unless otherwise specified. Typical values are referred to TA = 25 °C) Symbol Parameter Test conditions Min. Typ. Max. Unit VTIL Input logic threshold low T-IN (1) 0.8 V VTIH Input logic threshold high VCC = 3.3V 2 V VCC = 5V 2.4 IIL Input leakage current T-IN ± 0.01 ± 1 μA 1. Transmitter input hysteresis is typically 250mV. Table 6. Transmitter (C1 - C4 = 0.1 μF tested at 3.3 V ± 10 %, VCC = 3 V to 5.5 V, TA = -40 to 85 °C, unless otherwise specified. Typical values are referred to TA = 25 °C) Symbol Parameter Test conditions Min. Typ. Max. Unit VTOUT Output voltage swing All transmitter outputs are loaded with 3kΩ to GND ± 5 ± 5.4 V RTOUT Transmitter output resistance VCC = V+ = V- = 0V, VOUT = ± 2V 300 10M Ω ITSC Output short circuit current VCC = 3V or 5V, VOUT = ± 12 ± 60 mA Table 7. Receiver (C1 - C4 = 0.1 μF tested at 3.3 V ±10 %, VCC = 3 V to 5.5 V, TA = -40 to 85 °C, unless otherwise specified. Typical values are referred to TA = 25 °C) Symbol Parameter Test conditions Min. Typ. Max. Unit VRIN Receiver input voltage operating range -25 25 V VRIL RS-232 Input threshold low TA = 25°C, VCC = 3.3V 0.6 1.1 V TA = 25°C, VCC = 5V 0.8 1.5 VRIH RS-232 Input threshold high TA = 25°C, VCC = 3.3V 1.5 2.4 V TA = 25°C, VCC = 5V 1.8 2.4 VRIHYS Input hysteresis 0.3 V RRIN Input resistance TA = 25°C 3 5 7 kΩ VROL TTL/CMOS Output voltage low IOUT = 1.6mA 0.4 V VROH TTL/CMOS Output voltage high IOUT = -1mA VCC-0.6 VCC-0.1 V Electrical characteristics ST3232B - ST3232C 6/18 Note: 1 Transmitter skew is measured at the transmitter zero cross points. Table 8. Timing characteristics (C1 - C4 = 0.1 μF tested at 3.3 V ± 10 %, VCC = 3 V to 5.5 V, TA = -40 to 85 °C, unless otherwise specified. Typical values are referred to TA = 25 °C) Symbol Parameter Test conditions Min. Typ. Max. Unit DR Data transfer rate RL = 3kΩ, CL2= 1000pF one transmitter switching 300 400 kbps tPHLR tPLHR Propagation delay input to output RXIN = RXOUT, CL = 150pF 0.2 μs |tPHLT - tTHL| Transmitter propagation delay difference (Note 1) 100 ns |tPHLR - tTHR| Receiver propagation delay difference 50 ns SRT Transition slew rate TA = 25°C RL = 3kΩ to 7kΩ VCC = 3.3V measured from +3V to -3V or -3V to +3V CL = 150pF to 1000pF CL = 150pF to 2500pF 6 4 30 30 V/μs V/μs ST3232B - ST3232C Application 7/18 4 Application Figure 2. Application circuits Table 9. Capacitance value (μF) VCC C1 C2 C3 C4 Cbypass 3.0 to 3.6 0.1 0.1 0.1 0.1 0.1 4.5 to 5.5 0.047 0.33 0.33 0.33 0.33 Typical performance characteristics ST3232B - ST3232C 8/18 5 Typical performance characteristics (unless otherwise specified TJ = 25 °C) Figure 3. Driver voltage transfer characteristics for transmitter input Figure 4. Driver voltage transfer characteristics for receiver inputs Figure 5. Output current vs output low voltage Figure 6. Output current vs output low voltage ST3232B - ST3232C Typical performance characteristics 9/18 Figure 7. Output current vs output high voltage Figure 8. Output current vs output high voltage Figure 9. Receiver input resistance Package mechanical data ST3232B - ST3232C 10/18 6 Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. ST3232B - ST3232C Package mechanical data 11/18 Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 1.75 0.068 a1 0.1 0.25 0.004 0.010 a2 1.64 0.063 b 0.35 0.46 0.013 0.018 b1 0.19 0.25 0.007 0.010 C 0.5 0.019 c1 45° (typ.) D 9.8 10 0.385 0.393 E 5.8 6.2 0.228 0.244 e 1.27 0.050 e3 8.89 0.350 F 3.8 4.0 0.149 0.157 G 4.6 5.3 0.181 0.208 L 0.5 1.27 0.019 0.050 M 0.62 0.024 S 8° (max.) SO-16 mechanical data 0016020D Package mechanical data ST3232B - ST3232C 12/18 Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 2.65 0.104 a1 0.1 0.2 0.004 0.008 a2 2.45 0.096 b 0.35 0.49 0.014 0.019 b1 0.23 0.32 0.009 0.012 C 0.5 0.020 c1 45° (typ.) D 10.1 10.5 0.397 0.413 E 10.0 10.65 0.393 0.419 e 1.27 0.050 e3 8.89 0.350 F 7.4 7.6 0.291 0.300 G L 0.5 1.27 0.020 0.050 M 0.75 0.029 S 8° (max.) SO-16L mechanical data PO13I ST3232B - ST3232C Package mechanical data 13/18 Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 1.2 0.047 A1 0.05 0.15 0.002 0.004 0.006 A2 0.8 1 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0079 D 4.9 5 5.1 0.193 0.197 0.201 E 6.2 6.4 6.6 0.244 0.252 0.260 E1 4.3 4.4 4.48 0.169 0.173 0.176 e 0.65 BSC 0.0256 BSC K 0° 8° 0° 8° L 0.45 0.60 0.75 0.018 0.024 0.030 TSSOP16 mechanical data b c E A A2 E1 D 1 PIN 1 IDENTIFICATION A1 K L e 0080338D Package mechanical data ST3232B - ST3232C 14/18 Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 330 12.992 C 12.8 13.2 0.504 0.519 D 20.2 0.795 N 60 2.362 T 22.4 0.882 Ao 6.45 6.65 0.254 0.262 Bo 10.3 10.5 0.406 0.414 Ko 2.1 2.3 0.082 0.090 Po 3.9 4.1 0.153 0.161 P 7.9 8.1 0.311 0.319 Tape & reel SO-16 mechanical data ST3232B - ST3232C Package mechanical data 15/18 Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 330 12.992 C 12.8 13.2 0.504 0.519 D 20.2 0.795 N 60 2.362 T 22.4 0.882 Ao 10.8 11.0 0.425 0.433 Bo 10.7 10.9 0.421 0.429 Ko 2.9 3.1 0.114 0.122 Po 3.9 4.1 0.153 0.161 P 11.9 12.1 0.468 0.476 Tape & reel SO-16L mechanical data Package mechanical data ST3232B - ST3232C 16/18 Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 330 12.992 C 12.8 13.2 0.504 0.519 D 20.2 0.795 N 60 2.362 T 22.4 0.882 Ao 6.7 6.9 0.264 0.272 Bo 5.3 5.5 0.209 0.217 Ko 1.6 1.8 0.063 0.071 Po 3.9 4.1 0.153 0.161 P 7.9 8.1 0.311 0.319 Tape & reel TSSOP16 mechanical data ST3232B - ST3232C Revision history 17/18 7 Revision history Table 10. Document revision history Date Revision Changes 06-Sep-2006 8 Order codes has been updated and new template. 25-Oct-2006 9 Order codes has been updated. 21-Jan-2008 10 Added note on Table 3. 08-Feb-2008 11 Modified: Table 1 on page 1. ST3232B - ST3232C 18/18 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com TIP102 TIP107 COMPLEMENTARY SILICON POWER DARLINGTON TRANSISTORS n STMicroelectronics PREFERRED SALESTYPES n COMPLEMENTARY PNP - NPN DEVICES n INTEGRATED ANTIPARALLEL COLLECTOR-EMITTER DIODE APPLICATIONS n LINEAR AND SWITCHING INDUSTRIAL EQUIPMENT n AUDIO POWER AMPLIFIER n GENERAL POWER SWITCHING n DC-AC CONVERTER n EASY DRIVER FOR LOW VOLTAGE DC MOTOR DESCRIPTION The TIP102 is a silicon Epitaxial-Base NPN power transistor in monolithic Darlington configuration mounted in TO-220 plastic package. It is intented for use in power linear and switching applications. The complementary PNP type is TIP107. ® INTERNAL SCHEMATIC DIAGRAM April 2003 ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit NPN TIP102 PNP TIP107 VCBO Collector-Base Voltage (IE = 0) 100 V VCEO Collector-Emitter Voltage (IB = 0) 100 V VEBO Emitter-Base Voltage (IC = 0) 5 V IC Collector Current 8 A ICM Collector Peak Current 15 A IB Base Current 1 A Ptot Total Dissipation at Tcase £ 25 oC Tamb £ 25 oC 80 2 W W Tstg Storage Temperature -65 to 150 oC Tj Max. Operating Junction Temperature 150 oC * For PNP types voltage and current values are negative. 1 2 3 TO-220 R1 Typ. = 5 KW R2 Typ. = 150 W 1/4 THERMAL DATA Rthj-case Rthj-amb Thermal Resistance Junction-case Max Thermal Resistance Junction-ambient Max 1.56 62.5 oC/W oC/W ELECTRICAL CHARACTERISTICS (Tcase = 25 oC unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit ICEO Collector Cut-off Current (IB = 0) VCE = 50 V 50 mA ICBO Collector Cut-off Current (IE = 0) VCB = 100 V 50 mA IEBO Emitter Cut-off Current (IC = 0) VEB = 5 V 8 mA VCEO(sus)* Collector-Emitter Sustaining Voltage (IB = 0) IC = 30 mA 100 V VCE(sat)* Collector-Emitter Saturation Voltage IC = 3 A IB = 6 mA IC = 8 A IB = 80 mA 2 2.5 V V VBE* Base-Emitter Voltage IC = 8 A VCE = 4 V 2.8 V hFE* DC Current Gain IC = 3 A VCE = 4 V IC = 8 A VCE = 4 V 1000 200 20000 VF* Forward Voltage of Commutation Diode (IB = 0) IF = - IC = 10 A 2.8 V * Pulsed: Pulse duration = 300 ms, duty cycle 1.5 % For PNP types voltage and current values are negative. Safe Operating Area TIP102 / TIP107 2/4 DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A 4.40 4.60 0.173 0.181 C 1.23 1.32 0.048 0.052 D 2.40 2.72 0.094 0.107 E 0.49 0.70 0.019 0.027 F 0.61 0.88 0.024 0.034 F1 1.14 1.70 0.044 0.067 F2 1.14 1.70 0.044 0.067 G 4.95 5.15 0.194 0.202 G1 2.40 2.70 0.094 0.106 H2 10.00 10.40 0.394 0.409 L2 16.40 0.645 L4 13.00 14.00 0.511 0.551 L5 2.65 2.95 0.104 0.116 L6 15.25 15.75 0.600 0.620 L7 6.20 6.60 0.244 0.260 L9 3.50 3.93 0.137 0.154 M 2.60 0.102 DIA. 3.75 3.85 0.147 0.151 P011CI TO-220 MECHANICAL DATA TIP102 / TIP107 3/4 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics © 2003 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com ESM6045DV NPN DARLINGTON POWER MODULE n HIGH CURRENT POWER BIPOLAR MODULE n VERY LOW Rth JUNCTION CASE n SPECIFIED ACCIDENTAL OVERLOAD AREAS n ULTRAFAST FREEWHEELING DIODE n FULLY INSULATED PACKAGE (UL COMPLIANT) n EASY TO MOUNT n LOW INTERNAL PARASITIC INDUCTANCE INDUSTRIAL APPLICATIONS: n MOTOR CONTROL n SMPS & UPS n DC/DC & DC/AC CONVERTERS n WELDING EQUIPMENT INTERNAL SCHEMATIC DIAGRAM September 2003 ISOTOP ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit VCEV Collector-Emitter Voltage (VBE = -5 V) 600 V VCEO(sus) Collector-Emitter Voltage (IB = 0) 450 V VEBO Emitter-Base Voltage (IC = 0) 7 V IC Collector Current 84 A ICM Collector Peak Current (tp = 10 ms) 126 A IB Base Current 8 A IBM Base Peak Current (tp = 10 ms) 16 A Ptot Total Dissipation at Tc = 25 oC 250 W Visol Insulation Withstand Voltage (RMS) from All Four Terminals to Exernal Heatsink 2500 V Tstg Storage Temperature -55 to 150 oC Tj Max. Operating Junction Temperature 150 oC ® 1/8 THERMAL DATA Rthj-case Rthj-case Rthc-h Thermal Resistance Junction-case (transistor) Max Thermal Resistance Junction-case (diode) Max Thermal Resistance Case-heatsink With Conductive Grease Applied Max 0.5 1.2 0.05 oC/W oC/W oC/W ELECTRICAL CHARACTERISTICS (Tcase = 25 oC unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit ICER # Collector Cut-off Current (RBE = 5 W) VCE = VCEV VCE = VCEV Tj = 100 oC 1.5 22 mA mA ICEV # Collector Cut-off Current (VBE = -5) VCE = VCEV VCE = VCEV Tj = 100 oC 1 15 mA mA IEBO # Emitter Cut-off Current (IC = 0) VEB = 5 V 1 mA VCEO(SUS)* Collector-Emitter Sustaining Voltage (IB = 0) IC = 0.2 A L = 25 mH Vclamp = 450 V 450 V hFE* DC Current Gain IC = 70 A VCE = 5 V 120 VCE(sat)* Collector-Emitter Saturation Voltage IC = 50 A IB = 1 A IC = 50 A IB = 1 A Tj = 100 oC IC = 70 A IB = 4 A IC = 70 A IB = 4 A Tj = 100 oC 1.2 1.6 1.35 1.7 2 2 V V V V VBE(sat)* Base-Emitter Saturation Voltage IC = 70 A IB = 4 A IC = 70 A IB = 4 A Tj = 100 oC 2.3 2.4 3 V V diC/dt Rate of Rise of On-state Collector VCC = 300 V RC = 0 tp = 3 ms IB1 = 1.5 A Tj = 100 oC 375 450 A/ms VCE(3 ms)•• Collector-Emitter Dynamic Voltage VCC = 300 V RC = 6 W IB1 = 1.5 A Tj = 100 oC 6 9 V VCE(5 ms)•• Collector-Emitter Dynamic Voltage VCC = 300 V RC = 6 W IB1 = 1.5 A Tj = 100 oC 3 4.5 V ts tf tc Storage Time Fall Time Cross-over Time IC = 50 A VCC = 50 V VBB = -5 V RBB = 0.3 W Vclamp = 450 V IB1 = 1 A L = 0.05 mH Tj = 100 oC 3.5 0.3 0.8 5.5 0.5 1.7 ms ms ms VCEW Maximum Collector Emitter Voltage Without Snubber ICWoff = 84 A IB1 = 4 A VBB = -5 V VCC = 50 V L = 0.03 mH RBB = 0.3 W Tj = 125 oC 450 V VF* Diode Forward Voltage IF = 70 A Tj = 100 oC 1.6 1.9 V IRM Reverse Recovery Current VCC = 200 V IF = 70 A diF/dt = -375 A/ms L < 0.05 mH Tj = 100 oC 38 45 A * Pulsed: Pulse duration = 300 ms, duty cycle 1.5 % # See test circuits in databook introduction To evaluate the conduction losses of the diode use the following equations: VF = 1.5 + 0.0055 IF P = 1.5 IF(AV) + 0.0055 I2 F(RMS) ESM6045DV 2/8 Safe Operating Areas Derating Curve Collector Emitter Saturation Voltage Thermal Impedance Collector-emitter Voltage Versus base-emitter Resistance Base-Emitter Saturation Voltage ESM6045DV 3/8 Reverse Biased SOA Reverse Biased AOA Switching Times Inductive Load Foward Biased SOA Forward Biased AOA Switching Times Inductive Load Versus Temperature ESM6045DV 4/8 Turn-on Switching Waveforms Dc Current Gain Typical VF Versus IF Peak Reverse Current Versus diF/dt Turn-on Switching Test Circuit ESM6045DV 5/8 Turn-on Switching Test Circuit Turn-off Switching Waveforms Turn-off Switching Test Circuit of Diode Turn-off Switching Waveform of Diode ESM6045DV 6/8 DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A 11.8 12.2 0.465 0.480 A1 8.9 9.1 0.350 0.358 B 7.8 8.2 0.307 0.322 C 0.75 0.85 0.029 0.033 C2 1.95 2.05 0.076 0.080 D 37.8 38.2 1.488 1.503 D1 31.5 31.7 1.240 1.248 E 25.15 25.5 0.990 1.003 E1 23.85 24.15 0.938 0.950 E2 24.8 0.976 G 14.9 15.1 0.586 0.594 G1 12.6 12.8 0.496 0.503 G2 3.5 4.3 0.137 1.169 F 4.1 4.3 0.161 0.169 F1 4.6 5 0.181 0.196 P 4 4.3 0.157 0.169 P1 4 4.4 0.157 0.173 S 30.1 30.3 1.185 1.193 P093A ISOTOP MECHANICAL DATA ESM6045DV 7/8 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics. All other names are the property of their respective owners. © 2003 STMicroelectronics – All Rights reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com MC34063AB, MC34063AC, MC34063EB, MC34063EC DC-DC converter control circuits Datasheet - production data Features  Output switch current in excess of 1.5 A  2 % reference accuracy  Low quiescent current: 2.5 mA (typ.)  Operating from 3 V to 40 V  Frequency operation to 100 kHz  Active current limiting Description The MC34063A/E series is a monolithic control circuit which delivers the main functions for DCDC voltage converting. The device contains an internal temperature compensated reference, comparator, duty cycle controlled oscillator with an active current limit circuit, driver and high current output switch. Output voltage is adjustable through two external resistors with a 2% reference accuracy. Employing a minimum number of external components, the MC34063A/E device series is designed for step-down, step-up and voltageinverting applications. DIP-8 SO-8 Table 1. Device summary Order codes DIP-8 SO-8 MC34063ABN MC34063ABD-TR MC34063ACN MC34063ACD-TR MC34063EBN MC34063EBD-TR MC34063ECN MC34063ECD-TR www.st.com Contents MC34063AB, MC34063AC, MC34063EB, MC34063EC 2/23 DocID5257 Rev 11 Contents 1 Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 7 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DocID5257 Rev 11 3/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Diagram 1 Diagram Figure 1. Block diagram Pin configuration MC34063AB, MC34063AC, MC34063EB, MC34063EC 4/23 DocID5257 Rev 11 2 Pin configuration Figure 2. Pin connections Table 2. Pin description Pin n° Symbol Name and function 1 SWC Switch collector 2 SWE Switch emitter 3 TC Timing capacitor 4 GND Ground 5 CII Comparator inverting input 6 VCC Voltage supply 7 IPK IPK sense 8 DRC Voltage driver collector DocID5257 Rev 11 5/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Maximum ratings 3 Maximum ratings Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. Table 3. Absolute maximum ratings Symbol Parameter Value Unit VCC Power supply voltage 50 V VIR Comparator input voltage range -0.3 to 40 V VSWC Switch collector voltage 40 V VSWE Switch emitter voltage (VSWC = 40V) 40 V VCE Switch collector to emitter voltage 40 V VDC Driver collector voltage 40 V IDC Driver collector current 100 mA ISW Switch current 1.5 A PTOT Power dissipation at TA = 25°C for DIP-8 1.25 W for SO-8 0.625 TJ Operating junction temperature 150 °C TSTG Storage temperature range -40 to 150 °C TOP Operating ambient temperature range for AC and EC series 0 to 70 for AB series -40 to 85 °C for EB series -40 to 125 Table 4. Thermal data Symbol Parameter DIP-8 SO-8 Unit RthJA Thermal resistance junction-ambient (1) 1. This value depends from thermal design of PCB on which the device is mounted. 100 160 °C/W RthJC Thermal resistance junction-case 42 20 °C/W Electrical characteristics MC34063AB, MC34063AC, MC34063EB, MC34063EC 6/23 DocID5257 Rev 11 4 Electrical characteristics Refer to the test circuits, VCC = 5 V, TA = TLOW to THIGH, unless otherwise specified. (a) a. TLOW = 0 °C, THIGH = 70 °C (AC and EC series); TLOW = -40 °C, THIGH = 85 °C (AB series); TLOW = -40 °C, THIGH = 125 °C (EB series) Table 5. Oscillator Symbol Parameter Test conditions Min. Typ. Max. Unit fOSC Frequency VPIN5 = 0V, CT = 1 nF, TA = 25°C 24 33 42 kHz ICHG Charge current VCC = 5 to 40V, TA = 25°C 24 33 42 μA IDISCHG Discharge current VCC = 5 to 40V, TA = 25°C 140 200 260 μA IDISCHG/ICHG Discharge to charge current ratio PIN 7 = VCC, TA = 25°C 5.2 6.2 7.5 μA VIPK(sense) Current limit sense voltage ICHG = IDISCHG, TA = 25°C 250 300 350 mV Table 6. Output switch Symbol Parameter Test conditions Min. Typ. Max. Unit VCE(sat) Saturation voltage, Darlington connection ISW = 1 A, PIN 1, 8 connected 1 1.3 V VCE(sat) Saturation voltage ISW = 1 A, RPIN8 = 82  to VCC Forced  ~ 20 0.45 0.7 V hFE DC current gain ISW = 1 A,VCE = 5 V, TA = 25°C 50 120 IC(off) Collector off-state current VCE = 40 V 0.01 100 μA Table 7. Comparator Symbol Parameter Test conditions Min. Typ. Max. Unit VTH Threshold voltage TA = 25°C 1.225 1.25 1.275 V TA = TLOW to THIGH 1.21 1.29 Regline Threshold voltage line regulation VCC = 3 to 40 V 1 5 mV IIB Input bias current VIN = 0 V -5 -400 nA DocID5257 Rev 11 7/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Electrical characteristics Note: Maximum package power dissipation limit must be observed. If Darlington configuration is not used, care must be taken to avoid deep saturation of output switch. The resulting switch-off time may be adversely affected. In a Darlington configuration the following output driver condition is suggested: Forced  of output current switch = ICOUTPUT/(ICDRIVER - 1 mA)  10 Table 8. Total device Symbol Parameter Test conditions Min. Typ. Max. Unit ICC Supply current VCC = 5 to 40 V CT = 1 nF PIN 7 = VCC VPIN5 >VTH PIN 2 = GND Remaining pins open for MC34063A 2.5 4 mA for MC34063E 1.5 4 VSTART-UP Start-up voltage (1) TA = 25°C CT = 1 μF, PIN 5 = 0 for MC34063A 2.1 V for MC34063E 1.5 1. Start-up voltage is the minimum power supply voltage at which the internal oscillator begins to work. Typical performance characteristics MC34063AB, MC34063AC, MC34063EB, MC34063EC 8/23 DocID5257 Rev 11 5 Typical performance characteristics Figure 3. Emitter follower configuration output saturation voltage vs. emitter current Figure 4. Output switch ON-OFF time vs. oscillator timing capacitor Figure 5. Common emitter configuration output switch saturation voltage vs. collector current Figure 6. Darlington configuration collector emitter saturation voltage (VCEsat) vs. temperature DocID5257 Rev 11 9/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Typical performance characteristics Figure 7. Power collector emitter saturation voltage (VCEsat) vs. temperature Figure 8. Current limit sense voltage (VIPK) vs. temperature Figure 9. Reference voltage vs. temperature Figure 10. Bias current vs. temperature Figure 11. Supply current vs. temperature Figure 12. Supply current vs. input voltage Typical application circuit MC34063AB, MC34063AC, MC34063EB, MC34063EC 10/23 DocID5257 Rev 11 6 Typical application circuit Figure 13. Step-up converter Figure 14. Printed evaluation board PIN 1 = VOUT PIN 2 = GND PIN 3 = GND PIN 4 = VIN Table 9. Test condition (VOUT = 28 V) Test Conditions Value (Typ.) Unit Line Regulation VIN = 8 to 16 V, IO = 175 mA 30 mV Load Regulation VIN = 12 V, IO = 75 to 175 mA 10 mV Output Ripple VIN = 12 V, IO = 175 mA 300 mV Efficiency VIN = 12 V, IO = 175 mA 89 % DocID5257 Rev 11 11/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Typical application circuit Figure 15. Step-down converter Figure 16. Printed evaluation board PIN 1 = VOUT PIN 2 = GND PIN 3 = GND PIN 4 = VIN Table 10. Test condition (VOUT = 5 V) Test Conditions Value (typ.) Unit Line regulation VIN = 15 to 25 V, IO = 500 mA 5 mV Load regulation VIN = 25 V, IO = 50 to 500 mA 30 mV Output ripple VIN = 25 V, IO = 500 mA 100 mV Efficiency VIN = 25 V, IO = 500 mA 80 % ISC VIN = 25 V, RLOAD = 0.1  1.2 A Typical application circuit MC34063AB, MC34063AC, MC34063EB, MC34063EC 12/23 DocID5257 Rev 11 Figure 17. Voltage inverting converter Figure 18. Printed evaluation board PIN 1 = VOUT PIN 2 = GND PIN 3 = GND PIN 4 = VIN Table 11. Test condition (VOUT = 12 V) Test Conditions Value (typ.) Unit Line regulation VIN = 4.5 to 6 V, IO = 100 mA 15 mV Load regulation VIN = 5 V, IO = 10 to 100 mA 20 mV Output ripple VIN = 5 V, IO = 100 mA 230 mV Efficiency VIN = 5 V, IO = 100 mA 58 % ISC VIN = 5 V, RLOAD = 0.1  0.9 A DocID5257 Rev 11 13/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Typical application circuit Note: VSAT = Saturation voltage of the output switch VF = Forward voltage drop of the output rectifier The following power supply characteristics must be chosen: VIN = Nominal input voltage VOUT = Desired output voltage, |VOUT| = 1.25 (1 + R2/R1) IOUT = Desired output current fMIN = Minimum desired output switching frequency at the selected values of VIN and IO VRIPPLE = Desired peak to peak output ripple voltage. In practice, the calculated capacitor value will and to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation. Table 12. Calculation Parameter Step-Up (Discontinuous mode) Step-Down (Continuous mode) Voltage Inverting (Discontinuous mode) ton/toff (ton + toff) max 1/fmin 1/fmin 1/fmin CT 4.5x10-5ton 4.5x10-5ton 4.5x10-5ton IPK(switch) 2Iout(max)[(ton/toff)+1] 2Iout(max) 2Iout(max)[(ton/toff)+1] RSC 0.3/IPK(switch) 0.3/IPK(switch) 0.3/IPK(switch) CO L(min) VOUT + VF – VINmin ---------V----I--N------m----i-n------–-----V----s---a---t-------- VOUT + VF -V----I-N------m----i--n------–----V----s---a---t---–----V-----O----U---T-- VOUT + VF ---V----I--N-----–----V----s---a---t-- Ioutton Vripplep – p ------------------------------- IPKswitchton + toff 8Vripplep – p ----------------------------------------------------- Ioutton Vripplep – p ------------------------------- VINmin – Vsat IPKswitch --------------------------------------  tonmin VINmin – Vsat – Vout IPKswitch ------------------------------------------------------  tonmin VINmin – Vsat IPKswitch --------------------------------------  tonmin Typical application circuit MC34063AB, MC34063AC, MC34063EB, MC34063EC 14/23 DocID5257 Rev 11 Figure 19. Step-up with external NPN switch Figure 20. Step-down with external NPN switch DocID5257 Rev 11 15/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Typical application circuit Figure 21. Step-down with external PNP switch Figure 22. Voltage inverting with external NPN switch Typical application circuit MC34063AB, MC34063AC, MC34063EB, MC34063EC 16/23 DocID5257 Rev 11 Figure 23. Voltage inverting with external PNP saturated switch Figure 24. Dual output voltage DocID5257 Rev 11 17/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Typical application circuit Figure 25. Higher output power, higher input voltage Package mechanical data MC34063AB, MC34063AC, MC34063EB, MC34063EC 18/23 DocID5257 Rev 11 7 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. DocID5257 Rev 11 19/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Package mechanical data Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 3.3 0.130 a1 0.7 0.028 B 1.39 1.65 0.055 0.065 B1 0.91 1.04 0.036 0.041 b 0.5 0.020 b1 0.38 0.5 0.015 0.020 D 9.8 0.386 E 8.8 0.346 e 2.54 0.100 e3 7.62 0.300 e4 7.62 0.300 F 7.1 0.280 I 4.8 0.189 L 3.3 0.130 Z 0.44 1.6 0.017 0.063 Plastic DIP-8 mechanical data P001F Package mechanical data MC34063AB, MC34063AC, MC34063EB, MC34063EC 20/23 DocID5257 Rev 11 Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 0.157 e 1.27 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k 8° (max.) ddd 0.1 0.04 SO-8 mechanical data 0016023/C DocID5257 Rev 11 21/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Package mechanical data Dim. mm. inch. Min. Typ. Max. Min. Typ. Max. A 330 12.992 C 12.8 13.2 0.504 0.519 D 20.2 0.795 N 60 2.362 T 22.4 0.882 Ao 8.1 8.5 0.319 0.335 Bo 5.5 5.9 0.216 0.232 Ko 2.1 2.3 0.082 0.090 Po 3.9 4.1 0.153 0.161 P 7.9 8.1 0.311 0.319 Tape & reel SO-8 mechanical data Revision history MC34063AB, MC34063AC, MC34063EB, MC34063EC 22/23 DocID5257 Rev 11 8 Revision history Table 13. Document revision history Date Revision Changes 20-Nov-2007 10 Added Table 1. 24-Apr-2013 11 Removed note Table 1 on page 1. DocID5257 Rev 11 23/23 MC34063AB, MC34063AC, MC34063EB, MC34063EC Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com TIP41C TIP42C Complementary power transistors Features ■ Complementary PNP-NPN devices ■ New enhanced series ■ High switching speed ■ hFE grouping ■ hFE improved linearity Applications ■ General purpose circuits ■ Audio amplifier ■ Power linear and switching Description The TIP41C is a base island technology NPN power transistor in TO-220 plastic package that make this device suitable for audio, power linear and switching applications. The complementary PNP type is TIP42C . Figure 1. Internal schematic diagram TO-220 1 2 3 Table 1. Device summary Order code Marking Package Packaging TIP41C (Note 1 on page 4) TIP41C R TIP41C O TIP41C Y TO-220 Tube TIP42C (Note 1 on page 4) TIP42C R TIP42C O TIP42C Y TO-220 Tube www.st.com Contents TIP41C - TIP42C 2/12 Contents 1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Typical characteristic (curves) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 TIP41C - TIP42C Absolute maximum ratings 3/12 1 Absolute maximum ratings Note: For PNP types voltage and current values are negative Table 2. Absolute maximum ratings Symbol Parameter Value Unit VCBO Collector-base voltage (IE = 0) 100 V VCEO Collector-emitter voltage (IB = 0) 100 V VEBO Emitte-base voltage (IC = 0) 5 V IC Collector current 6 A ICM Collector peak current (tP < 5ms) 10 A IB Base current 3 A PTOT Total dissipation at Tcase = 25°C 65 W Tstg Storage temperature -65 to 150 °C TJ Max. operating junction temperature 150 °C Electrical characteristics TIP41C - TIP42C 4/12 2 Electrical characteristics (Tcase = 25°C; unless otherwise specified) Note: 1 Product is pre-selected in DC current gain (group R, group O and group Y). STMicroelectronics reserves the right to ship either groups according to production availability. Please contact your nearest STMicroelectronics sales office for delivery details. Note: For PNP types voltage e current values are negative. Table 3. Electrical characteristics Symbol Parameter Test conditions Min. Typ. Max. Unit ICEO Collector cut-off current (IB = 0) VCE = 60 V 0.7 mA IEBO Emitter cut-off current (IC = 0) VEB = 5 V 1 mA ICES Collector cut-off current (VBE = 0) VCE = 100 V 0.4 mA VCEO(sus) (1) 1. Pulsed duration = 300 ms, duty cycle ≥1.5%. Collector-emitter sustaining voltage (IB = 0) IC = 30 mA 100 V VCE(sat) (1) Collector-emitter saturation voltage IC = 6 A __ IB = 0.6 A 1.5 V VBE(on) (1) Base-emitter voltage IC = 6 A ___ VCE = 4 V 2 V hFE (1) DC current gain IC = 0.3 A_ _ VCE = 4 V IC = 3 A ____ VCE = 4 V Group R Group O Group Y 30 15 15 24 42 75 28 44 75 TIP41C - TIP42C Electrical characteristics 5/12 2.1 Typical characteristic (curves) Figure 2. DC current gain (NPN) Figure 3. DC current gain (PNP) Figure 4. DC current gain (NPN) Figure 5. DC current gain (PNP) Figure 6. Collector-emitter saturation voltage (NPN) Figure 7. Collector-emitter saturation voltage (PNP) Electrical characteristics TIP41C - TIP42C 6/12 Figure 8. Base-emitter saturation voltage (NPN) Figure 9. Base-emitter saturation voltage (PNP) Figure 10. Base-emitter voltage (NPN) Figure 11. Base-emitter voltage (PNP) Figure 12. Resistive load switching time (NPN) Figure 13. Resistive load switching time (PNP) TIP41C - TIP42C Electrical characteristics 7/12 Figure 14. Resistive load switching time (NPN) Figure 15. Resistive load switching time (PNP) Figure 16. Collector-base and collectoremitter capacitance (NPN) Figure 17. Collector-base and collectoremitter capacitance (PNP) Electrical characteristics TIP41C - TIP42C 8/12 2.2 Test circuit Figure 18. Inductive load switching test circuit Note: For PNP types voltage e current values are negative. Figure 19. Resistive load switching test circuit 1) Fast electronic switch 3) Fast recovery rectifier 2) Non-inductive resistor 1) Fast electronic switch 2) Non-inductive resistor TIP41C - TIP42C Package mechanical data 9/12 3 Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com Package mechanical data TIP41C - TIP42C 10/12 TO-220 mechanical data Dim mm inch Min Typ Max Min Typ Max A 4.40 4.60 0.173 0.181 b 0.61 0.88 0.024 0.034 b1 1.14 1.70 0.044 0.066 c 0.49 0.70 0.019 0.027 D 15.25 15.75 0.6 0.62 D1 1.27 0.050 E 10 10.40 0.393 0.409 e 2.40 2.70 0.094 0.106 e1 4.95 5.15 0.194 0.202 F 1.23 1.32 0.048 0.051 H1 6.20 6.60 0.244 0.256 J1 2.40 2.72 0.094 0.107 L 13 14 0.511 0.551 L1 3.50 3.93 0.137 0.154 L20 16.40 0.645 L30 28.90 1.137 ∅P 3.75 3.85 0.147 0.151 Q 2.65 2.95 0.104 0.116 TIP41C - TIP42C Revision history 11/12 4 Revision history Table 4. Document revision history Date Revision Changes 24-Oct-2006 1 Initial release 19-Nov-2007 2 Content reworked to improve readability, no technical changes TIP41C - TIP42C 12/12 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com ST1S10 3 A, 900 kHz, monolithic synchronous step-down regulator IC Datasheet − production data Features ■ Step-down current mode PWM regulator ■ Output voltage adjustable from 0.8 V ■ Input voltage from 2.5 V up to 18 V ■ 2% DC output voltage tolerance ■ Synchronous rectification ■ Inhibit function ■ Synchronizable switching frequency from 400 kHz up to 1.2 MHz ■ Internal soft start ■ Dynamic short circuit protection ■ Typical efficiency: 90% ■ 3 A output current capability ■ Stand-by supply current: max 6 μA over temperature range ■ Operative junction temp: from - 40 °C to 125 °C Applications ■ Consumer – STB, DVD, DVD recorders, TV, VCR, car audio, LCD monitors ■ Networking – XDSL, modems, DC-DC modules ■ Computer – Optical storage, HD drivers, printers, audio/graphic cards ■ Industrial and security – Battery chargers, DC-DC converters, PLD, PLA, FPGA, LED drivers Description The ST1S10 is a high efficiency step-down PWM current mode switching regulator capable of providing up to 3 A of output current. The device operates with an input supply range from 2.5 V to 18 V and provides an adjustable output voltage from 0.8 V (VFB) to 0.85*VIN_SW [VOUT = VFB*(1+R1/R2)]. It operates either at a 900 kHz fixed frequency or can be synchronized to an external clock (from 400 kHz to 1.2 MHz). The high switching frequency allows the use of tiny SMD external components, while the integrated synchronous rectifier eliminates the need for a Schottky diode. The ST1S10 provides excellent transient response, and is fully protected against thermal overheating, switching over-current and output short circuit. The ST1S10 is the ideal choice for point-of-load regulators or LDO pre-regulation. DFN8 (4 x 4 mm) PowerSO-8 Table 1. Device summary Part number Order codes DFN8 (4 x 4 mm) PowerSO-8 ST1S10 ST1S10PUR ST1S10PHR www.st.com Contents ST1S10 2/29 Doc ID 13844 Rev 5 Contents 1 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.2 External components selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.2.1 Input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.3 Output capacitor (VOUT > 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5.4 Output capacitor (0.8 V < VOUT < 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.5 Output voltage selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.6 Inductor (VOUT > 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.7 Inductor (0.8 V < VOUT < 2.5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.8 Function operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.8.1 Sync operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.8.2 Inhibit function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.8.3 OCP (overcurrent protection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.8.4 SCP (short circuit protection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.8.5 SCP and OCP operation with high capacitive load . . . . . . . . . . . . . . . . 14 6 Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.1 Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7 Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 9 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ST1S10 List of tables Doc ID 13844 Rev 5 3/29 List of tables Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 3. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 4. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 5. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 6. Power SO-8 (exposed pad) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 7. Power SO-8 (exposed pad) tape and reel mechanical data . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 8. DFN8 (4X4) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 9. DFN8 (4x4)tape and reel mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 10. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 List of figures ST1S10 4/29 Doc ID 13844 Rev 5 List of figures Figure 1. Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 2. Pin connections (top view for PowerSO-8, bottom view for DFN8) . . . . . . . . . . . . . . . . . . . 6 Figure 3. Application schematic for heavy capacitive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 4. Application schematic for low output voltage (VOUT < 2.5 V) and 2.5 V < VIN < 8 V . . . . . 15 Figure 5. Application schematic for low output voltage (VOUT < 2.5 V) and 8 V < VIN < 16 V . . . . . . 15 Figure 6. PCB layout suggestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 7. PCB layout suggestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 8. Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 9. Voltage feedback vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 10. Oscillator frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 11. Max duty cycle vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 12. Inhibit threshold vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 13. Reference line regulation vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 14. Reference load regulation vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 15. ON mode quiescent current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 16. Shutdown mode quiescent current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 17. PMOS ON resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 18. NMOS ON resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 19. Efficiency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 20. Efficiency vs. output current@Vout = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 21. Efficiency vs. output current@Vout = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 22. Efficiency vs. output current@Vout = 12 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 23. Power SO-8 (exposed pad) dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 24. Power SO-8 (exposed pad) recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 25. Power SO-8 (exposed pad) tape and reel dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 26. DFN8 (4x4) dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 27. DFN8 (4x4)tape and reel dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ST1S10 Application circuit Doc ID 13844 Rev 5 5/29 1 Application circuit Figure 1. Typical application circuit ST1S10 12V L1 3.3μH C1 4.7μF SW FB C2 22μF VIN_SW SYNC EN 5V – 3A R1 R2 VIN_A AGND PGND C3 0.1μF Pin configuration ST1S10 6/29 Doc ID 13844 Rev 5 2 Pin configuration Figure 2. Pin connections (top view for PowerSO-8, bottom view for DFN8) DFN8 (4x4) PowerSO-8 Table 2. Pin description Pin n° Symbol Name and function 1 VIN_A Analog input supply voltage to be tied to VIN supply source 2 INH (EN) Inhibit pin active low. Connect to VIN_A if not used 3 VFB Feedback voltage for connection to external voltage divider to set the VOUT from 0.8V up to 0.85*VIN_SW. (see output voltage selection paragraph 5.5) 4 AGND Analog ground 5 SYNC Synchronization and frequency select. Connect SYNC to GND for 900 kHz operation, or to an external clock from 400 kHz to 1.2 MHz. (see Sync operation paragraph 5.8.1) 6 VIN_SW Power input supply voltage to be tied to VIN power supply source 7 SW Switching node to be connected to the inductor 8 PGND Power ground epad epad Exposed pad to be connected to ground ST1S10 Maximum ratings Doc ID 13844 Rev 5 7/29 3 Maximum ratings Note: Absolute maximum ratings are the values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Table 3. Absolute maximum ratings Symbol Parameter Value Unit VIN_SW Positive power supply voltage -0.3 to 20 V VIN_A Positive supply voltage -0.3 to 20 V VINH Inhibit voltage -0.3 to VIN_A V VSW Output switch voltage -0.3 to 20 V VFB Feedback voltage -0.3 to 2.5 V IFB FB current -1 to +1 mA Sync Synchronization -0.3 to 6 V TSTG Storage temperature range -40 to 150 °C TOP Operating junction temperature range -40 to 125 °C Table 4. Thermal data Symbol Parameter PowerSO-8 DFN8 Unit RthJA Thermal resistance junction-ambient 40 40 °C/W RthJC Thermal resistance junction-case 12 4 °C/W Electrical characteristics ST1S10 8/29 Doc ID 13844 Rev 5 4 Electrical characteristics VIN = VIN_SW = VIN_A = VINH = 12 V, VSYNC = GND, VOUT = 5 V, IOUT = 10 mA, CIN = 4.7 μF +0.1 μF, COUT = 22 μF, L1 = 3.3 μH, TJ = -40 to 125°C (Unless otherwise specified, refer to the typical application circuit. Typical values assume TJ = 25°C). Table 5. Electrical characteristics Symbol Parameter Test conditions Min. Typ. Max. Unit VFB Feedback voltage TJ = 25°C 784 800 816 mV TJ = -25°C to 125°C 776 800 824 mV IFB VFB pin bias current 600 nA IQ Quiescent current VINH > 1.2 V, not switching 1.5 2.5 mA VINH < 0.4 V 2 6 μA IOUT Output current (1) VIN = 2.5 V to 18 V VOUT = 0.8 V to 13.6 V (2) 3.0 A VINH Inhibit threshold Device ON 1.2 V Device OFF 0.4 V IINH Inhibit pin current 2 μA %VOUT/ΔVIN Reference line regulation 2.5 V < VIN < 18 V 0.4 %VOUT/ ΔVIN %VOUT/ ΔIOUT Reference load regulation 10 mA < IOUT < 3 A 0.5 %VOUT/ ΔIOUT PWM fs PWM switching frequency VFB = 0.7 V, Sync = GND TJ = 25°C 0.7 0.9 1.1 MHz DMAX Maximum duty cycle (2) 85 90 % RDSon-N NMOS switch on resistance ISW = 750 mA 0.10 Ω RDSon-P PMOS switch on resistance ISW = 750 mA 0.12 Ω ISWL Switch current limitation 5.0 A ν Efficiency IOUT = 100 mA to 300 mA 85 % IOUT = 300 mA to 3 A 90 % TSHDN Thermal shut down 150 °C THYS Thermal shut down hysteresis 15 °C VOUT/ΔIOUT Output transient response 100 mA < IOUT < 1 A, tR = tF ≥ 500 ns ±5 %VO VOUT/ΔIOUT @IO=short Short circuit removal response (overshot) 10 mA < IOUT < short ±10 %VO FSYNC SYNC frequency capture range VIN = 2.5 V to 18 V, VSYNC = 0 to 5 V 0.4 1.2 MHz SYNCWD SYNC pulse width VIN = 2.5 V to 18 V 250 ns VIL_SYNC SYNC input threshold low VIN = 2.5 V to 18 V 0.4 V ST1S10 Electrical characteristics Doc ID 13844 Rev 5 9/29 VIH_SYNC SYNC input threshold high VIN = 2.5 V to 18 V 1.6 V IIL, IIH SYNC input current VIN = 2.5 V to 18 V, VSYNC = 0 or 5 V -10 +10 μA UVLO Under voltage lock-out threshold VIN rising 2.3 V Hysteresis 200 mV 1. Guaranteed by design, but not tested in production. 2. See output voltage selection paragraph 5.5 for maximum duty cycle conditions. Table 5. Electrical characteristics (continued) Symbol Parameter Test conditions Min. Typ. Max. Unit Application information ST1S10 10/29 Doc ID 13844 Rev 5 5 Application information 5.1 Description The ST1S10 is a high efficiency synchronous step-down DC-DC converter with inhibit function. It provides up to 3 A over an input voltage range of 2.5 V to 18 V, and the output voltage can be adjusted from 0.8 V up to 85% of the input voltage level. The synchronous rectification removes the need for an external Schottky diode and allows higher efficiency even at very low output voltages. A high internal switching frequency (0.9 MHz) allows the use of tiny surface-mount components, as well as a resistor divider to set the output voltage value. In typical application conditions, only an inductor and 3 capacitors are required for proper operation. The device can operate in PWM mode with a fixed frequency or synchronized to an external frequency through the SYNC pin. The current mode PWM architecture and stable operation with low ESR SMD ceramic capacitors results in low, predictable output ripple. No external compensation is needed. To maximize power conversion efficiency, the ST1S10 works in pulse skipping mode at light load conditions and automatically switches to PWM mode when the output current increases. The ST1S10 is equipped with thermal shut down protection activated at 150 °C (typ.). Cycle-by-cycle short circuit protection provides protection against shorted outputs for the application and the regulator. An internal soft start for start-up current limiting and power ON delay of 275 μs (typ.) helps to reduce inrush current during start-up. 5.2 External components selection 5.2.1 Input capacitor The ST1S10 features two VIN pins: VIN_SW for the power supply input voltage where the switching peak current is drawn, and VIN_A to supply the ST1S10 internal circuitry and drivers. The VIN_SW input capacitor reduces the current peaks drawn from the input power supply and reduces switching noise in the IC. A high power supply source impedance requires larger input capacitance. For the VIN_SW input capacitor the RMS current rating is a critical parameter that must be higher than the RMS input current. The maximum RMS input current can be calculated using the following equation: Equation 1 where η is the expected system efficiency, D is the duty cycle and IO is the output DC current. The duty cycle can be derived using the equation: η D η 2 D I I D - 2 2 RMS O = ⋅ ⋅ + ST1S10 Application information Doc ID 13844 Rev 5 11/29 Equation 2 D = (VOUT + VF) / (VIN-VSW) where VF is the voltage drop across the internal NMOS, and VSW represents the voltage drop across the internal PDMOS. The minimum duty cycle (at VIN_max) and the maximum duty cycle (at VIN_min) should be considered in order to determine the max IRMS flowing through the input capacitor. A minimum value of 4.7 μF for the VIN_SW and a 0.1 μF ceramic capacitor for the VIN_A are suitable in most application conditions. A 10 μF or higher ceramic capacitor for the VIN_SW and a 1 μF or higher for the VIN_A are recommended in cases of higher power supply source impedance or where long wires are needed between the power supply source and the VIN pins. The above higher input capacitor values are also recommended in cases where an output capacitive load is present (47 μF < CLOAD < 100 μF), which could impact the switching peak current drawn from the input capacitor during the start-up transient. In cases of very high output capacitive loads (CLOAD > 100 μF), all input/output capacitor values shall be modified as described in the OCP and SCP operation section 5.8.5 of this document. The input ceramic capacitors should have a voltage rating in the range of 1.5 times the maximum input voltage and be located as close as possible to VIN pins. 5.3 Output capacitor (VOUT > 2.5 V) The most important parameters for the output capacitor are the capacitance, the ESR and the voltage rating. The capacitance and the ESR affect the control loop stability, the output ripple voltage and transient response of the regulator. The ripple due to the capacitance can be calculated with the following equation: Equation 3 VRIPPLE(C) = (0.125 x ΔISW) / (FS x COUT) where FS is the PWM switching frequency and ΔISW is the inductor peak-to-peak switching current, which can be calculated as: Equation 4 ΔISW = [(VIN - VOUT) / (FS x L)] x D where D is the duty cycle. The ripple due to the ESR is given by: Equation 5 VRIPPLE(ESR) = ΔISW x ESR The equations above can be used to define the capacitor selection range, but final values should be verified by testing an evaluation circuit. Lower ESR ceramic capacitors are usually recommended to reduce the output ripple voltage. Capacitors with higher voltage ratings have lower ESR values, resulting in lower output ripple voltage. Application information ST1S10 12/29 Doc ID 13844 Rev 5 Also, the capacitor ESL value impacts the output ripple voltage, but ceramic capacitors usually have very low ESL, making ripple voltages due to the ESL negligible. In order to reduce ripple voltages due to the parasitic inductive effect, the output capacitor connection paths should be kept as short as possible. The ST1S10 has been designed to perform best with ceramic capacitors. Under typical application conditions a minimum ceramic capacitor value of 22 μF is recommended on the output, but higher values are suitable considering that the control loop has been designed to work properly with a natural output LC frequency provided by a 3.3 μH inductor and 22 μF output capacitor. If the high capacitive load application circuit shown in Figure 3 is used, a 47 μF (or 2 x 22 μF capacitors in parallel) could be needed as described in the OCP and SCP operation Section 5.8.5: SCP and OCP operation with high capacitive load. of this document. The use of ceramic capacitors with voltage ratings in the range of 1.5 times the maximum output voltage is recommended. 5.4 Output capacitor (0.8 V < VOUT < 2.5 V) For applications with lower output voltage levels (Vout < 2.5 V) the output capacitance and inductor values should be selected in a way that improves the DC-DC control loop behavior. In this output condition two cases must be considered: VIN > 8 V and VIN < 8 V. For VIN < 8 V the use of 2 x 22 μF capacitors in parallel to the output is recommended, as shown in Figure 4. For VIN > 8 V, a 100 μF electrolytic capacitor with ESR < 0.1 Ω should be added in parallel to the 2 x 22 μF output capacitors as shown in Figure 5. 5.5 Output voltage selection The output voltage can be adjusted from 0.8 V up to 85% of the input voltage level by connecting a resistor divider (see R1 and R2 in the typical application circuit) between the output and the VFB pin. A resistor divider with R2 in the range of 20 kΩ is a suitable compromise in terms of current consumption. Once the R2 value is selected, R1 can be calculated using the following equation: Equation 6 R1 = R2 x (VOUT - VFB) / VFB where VFB = 0.8 V (typ.). Lower values are suitable as well, but will increase current consumption. Be aware that duty cycle must be kept below 85% at all application conditions, so that: Equation 7 D = (VOUT + VF) / (VIN-VSW) < 0.85 where VF is the voltage drop across the internal NMOS, and VSW represents the voltage drop across the internal PDMOS. Note that once the output current is fixed, higher VOUT levels increase the power dissipation of the device leading to an increase in the operating junction temperature. It is ST1S10 Application information Doc ID 13844 Rev 5 13/29 recommended to select a VOUT level which maintains the junction temperature below the thermal shut-down protection threshold (150°C typ.) at the rated output current. The following equation can be used to calculate the junction temperature (TJ): Equation 8 TJ = {[VOUT x IOUT x RthJA x (1-η)] / η} +TAMB where RthJA is the junction-to-ambient thermal resistance, η is the efficiency at the rated IOUT current and TAMB is the ambient temperature. To ensure safe operating conditions the application should be designed to keep TJ < 140°C. 5.6 Inductor (VOUT > 2.5 V) The inductor value fixes the ripple current flowing through output capacitor and switching peak current. The ripple current should be kept in the range of 20-40% of IOUT_MAX (for example it is 0.6 - 1.2 A at IOUT = 3 A). The approximate inductor value can be obtained with the following equation: Equation 9 L = [(VIN - VOUT) / ΔISW] x TON where TON is the ON time of the internal switch, given by: TON = D/FS The inductor should be selected with saturation current (ISAT) equal to or higher than the inductor peak current, which can be calculated with the following equation: Equation 10 IPK = IO + (ΔISW/2), ISAT ≥ IPK The inductor peak current must be designed so that it does not exceed the switching current limit. 5.7 Inductor (0.8 V < VOUT < 2.5 V) For applications with lower output voltage levels (Vout < 2.5 V) the description in the previous section is still valid but it is recommended to keep the inductor values in a range from 1μH to 2.2 μH in order to improve the DC-DC control loop behavior, and increase the output capacitance depending on the VIN level as shown in the Figure 4 and Figure 5. In most application conditions a 2.2 μH inductor is the best compromise between DC-DC control loop behavior and output voltage ripple. 5.8 Function operation 5.8.1 Sync operation The ST1S10 operates at a fixed frequency or can be synchronized to an external frequency with the SYNC pin. The ST1S10 switches at a frequency of 900 kHz when the SYNC pin is connected to ground, and can synchronize the switching frequency between 400 kHz to 1.2 Application information ST1S10 14/29 Doc ID 13844 Rev 5 MHz from an external clock applied to the SYNC pin. When the SYNC feature is not used, this pin must be connected to ground with a path as short as possible to avoid any possible noise injected in the SYNC internal circuitry. 5.8.2 Inhibit function The inhibit pin can be used to turn OFF the regulator when pulled down, thus drastically reducing the current consumption down to less than 6 μA. When the inhibit feature is not used, this pin must be tied to VIN to keep the regulator output ON at all times. To ensure proper operation, the signal source used to drive the inhibit pin must be able to swing above and below the specified thresholds listed in the electrical characteristics section under VINH. Any slew rate can be used to drive the inhibit pin. 5.8.3 OCP (overcurrent protection) The ST1S10 DC-DC converter is equipped with a switch overcurrent protection. In order to provide protection for the application and the internal power switches and bonding wires, the device goes into a shutdown state if the switch current limit is reached and is kept in this condition for the TOFF period (TOFF(OCP) = 135 μs typ.) and turns on again for the TON period (TON(OCP) = 22 μs typ.) under typical application conditions. This operation is repeated cycle by cycle. Normal operation is resumed when no over-current is detected. 5.8.4 SCP (short circuit protection) In order to protect the entire application and reduce the total power dissipation during an overload or an output short circuit condition, the device is equipped with dynamic short circuit protection which works by internally monitoring the VFB (feedback voltage). In the event of an overload or output short circuit, if the VOUT voltage is reduced causing the feedback voltage (VFB) to drop below 0.3 V (typ.), the device goes into shutdown for the TOFF time (TOFF(SCP) = 288 μs typ.) and turns on again for the TON period (TON(SCP) = 130 μs typ.). This operation is repeated cycle by cycle, and normal operation is resumed when no overload is detected (VFB > 0.3 V typ.) for the full TON period. This dynamic operation can greatly reduce the power dissipation in overload conditions, while still ensuring excellent power-on startup in most conditions. 5.8.5 SCP and OCP operation with high capacitive load Thanks to the OCP and SCP circuit, ST1S10 is strongly protected against damage from short circuit and overload. However, a highly capacitive load on the output may cause difficulties during start-up. This can be resolved by using the modified application circuit shown in Figure 3, in which a minimum of 10 μF for C1 and a 4.7 μF ceramic capacitor for C3 are used. Moreover, for CLOAD > 100 μF, it is necessary to add the C4 capacitor in parallel to the upper voltage divider resistor (R1) as shown in Figure 3. The recommended value for C4 is 4.7 nF. Note that C4 may impact the control loop response and should be added only when a capacitive load higher than 100 μF is continuously present. If the high capacitive load is variable or not present at all times, in addition to C4 an increase in the output ceramic capacitor C2 from 22 μF to 47 μF (or 2 x 22 μF capacitors in parallel) is recommended. Also in this case it is suggested to further increase the input capacitors to a minimum of 10 μF for C1 and a 4.7 μF ceramic capacitor for C3 as shown in Figure 3. ST1S10 Application information Doc ID 13844 Rev 5 15/29 (*) see OCP and SCP descriptions for C2 and C4 selection. Figure 3. Application schematic for heavy capacitive load ST1S10 12V L1 3.3μH C1 10μF SW FB VIN_SW SYNC EN R1 R2 VIN_A AGND PGND C3 4.7μF C2(*) 22μF 5V – 3A C4 (*) 4.7nF CLOAD LOAD Output Load Figure 4. Application schematic for low output voltage (VOUT < 2.5 V) and 2.5 V < VIN < 8 V ST1S10 VIN<8V L1 2.2μH C1 10μF SW FB VIN_SW SYNC EN R1 R2 VIN_A AGND PGND C3 0.1μF C2 2x22μF 0.8V 0 due to a load drop, the voltage at pin INV will be kept at 2.5V by the local feedback of the error amplifier, a network connected between pins INV and COMP that introduces a long time constant to achieve high PF (this is why ΔVo can be large). As a result, the current through R2 will remain equal to 2.5/R2 but that through R1 will become: . The difference current ΔIR1=I'R1-IR2=I'R1-IR1=ΔVo/R1 will flow through the compensation network and enter the error amplifier output (pin COMP). This current is monitored inside the L6562 and if it reaches about 37 μA the output voltage of the multiplier is forced to decrease, thus smoothly reducing the energy delivered to the output. As the current exceeds 40 μA, the OVP is triggered (Dynamic OVP): the gate-drive is forced low to switch off the external power transistor and the IC put in an idle state. This condition is maintained until the current falls below approximately 10 μA, which re-enables the internal starter and allows switching to restart. The output ΔVo that is able to trigger the Dynamic OVP function is then: . An important advantage of this technique is that the OV level can be set independently of the regulated output voltage: the latter depends on the ratio of R1 to R2, the former on the individual value of R1. Another advantage is the precision: the tolerance of the detection current is 12%, that is 12% tolerance on ΔVo. Since ΔVo << Vo, the tolerance on the absolute value will be proportionally reduced. Example: Vo = 400 V, ΔVo = 40 V. Then: R1=40V/40μA=1MΩ; R2=1MΩ·2.5/(400-2.5)=6.289kΩ. The tolerance on the OVP level due to the L6562 will be 40·0.12=4.8V, that is 1.2% of the regulated value. IR2 2.5 R2 -------- IR1 Vo – 2.5 R1 = = = --------------------- I'R1 Vo – 2.5 + ΔVo R1 = --------------------------------------- ΔVo R1 40 10 –6 = ⋅ ⋅ 9/16 L6562 When the load of a PFC pre-regulator is very low, the output voltage tends to stay steadily above the nominal value, which cannot be handled by the Dynamic OVP. If this occurs, however, the error amplifier output will saturate low; hence, when this is detected, the external power transistor is switched off and the IC put in an idle state (Static OVP). Normal operation is resumed as the error amplifier goes back into its linear region. As a result, the L6562 will work in burst-mode, with a repetition rate that can be very low. When either OVP is activated the quiescent consumption of the IC is reduced to minimize the discharge of the Vcc capacitor and increase the hold-up capability of the IC supply system. 4.2 THD optimizer circuit The L6562 is equipped with a special circuit that reduces the conduction dead-angle occurring to the AC input current near the zero-crossings of the line voltage (crossover distortion). In this way the THD (Total Harmonic Distortion) of the current is considerably reduced. A major cause of this distortion is the inability of the system to transfer energy effectively when the instantaneous line voltage is very low. This effect is magnified by the high-frequency filter capacitor placed after the bridge rectifier, which retains some residual voltage that causes the diodes of the bridge rectifier to be reverse-biased and the input current flow to temporarily stop. Figure 22. THD optimization: standard TM PFC controller (left side) and L6562 (right side) To overcome this issue the circuit embedded in the L6562 forces the PFC pre-regulator to process more energy near the line voltage zero-crossings as compared to that commanded by the control loop. This will result in both minimizing the time interval where energy transfer is lacking and fully discharging the highfrequency filter capacitor after the bridge. The effect of the circuit is shown in figure 23, where the key waveforms of a standard TM PFC controller are compared to those of the L6562. Essentially, the circuit artificially increases the ON-time of the power switch with a positive offset added to Imains Vdrain Imains Vdrain Input current Input current MOSFET's drain voltage MOSFET's drain voltage Rectified mains voltage Rectified mains voltage Input current Input current L6562 10/16 the output of the multiplier in the proximity of the line voltage zero-crossings. This offset is reduced as the instantaneous line voltage increases, so that it becomes negligible as the line voltage moves toward the top of the sinusoid. To maximally benefit from the THD optimizer circuit, the high-frequency filter capacitor after the bridge rectifier should be minimized, compatibly with EMI filtering needs. A large capacitance, in fact, introduces a conduction dead-angle of the AC input current in itself - even with an ideal energy transfer by the PFC preregulator - thus making the action of the optimizer circuit little effective. Figure 23. Typical application circuit (250W, Wide-range mains) Figure 24. Demo board (EVAL6562-80W, Wide-range mains): Electrical schematic NTC 2.5 Ω 8 3 BRIDGE STBR606 R1 1.5 MΩ C1 1 μF 400V R3 22 kΩ C29 22 μF 25V FUSE 5A/250V R4 180 kΩ D8 1N4150 D2 1N5248B R14 100 Ω C5 12 nF R6 68 kΩ T 5 6 L6562 7 2 1 R7 10 Ω MOS STP12NM50 7 °C/W heat sink 4 R11 750 kΩ C6 100 μF 450V Vo=400V Po=250W - Vac (85V to 265V) R9 0.33Ω 1W R13 9.53 kΩ + - C4 100 nF C2 10nF D1 STTH5L06 R50 10 kΩ C3 2.2 μF R2 1.5 MΩ R5 180 kΩ R10 0.33Ω 1W R12 750 kΩ C23 680 nF Boost Inductor Spec: EB0057-C (COILCRAFT) D3 1N5406 NTC 2.5 Ω 8 3 BRIDGE DF06M R1 750 kΩ C1 0.47 μF 400V R3 10 kΩ C29 22 μF 25V FUSE 4A/250V R4 180 kΩ D8 1N4150 D2 1N5248B R14 100 Ω C5 12 nF R6 68 kΩ T 5 6 L6562 7 2 1 R7 33 Ω MOS STP8NM50 4 R11 750 kΩ C6 47 μF 450V Vo=400V Po=80W - Vac (85V to 265V) R9 0.82Ω 0.6 W R13 9.53 kΩ + - C4 100 nF C2 10nF D1 STTH1L06 R50 12 kΩ C3 680 nF R2 750 kΩ R5 180 kΩ R10 0.82Ω 0.6 W R12 750 kΩ C23 330 nF Boost Inductor Spec (ITACOIL E2543/E) E25x13x7 core, 3C85 ferrite 1.5 mm gap for 0.7 mH primary inductance Primary: 105 turns 20x0.1 mm Secondary: 11 turns 0.1 mm 11/16 L6562 Figure 25. EVAL6562-80W: PCB and component layout (Top view, real size: 57 x 108 mm) Table 6. EVAL6562N: Evaluation results at full load Table 7. EVAL6562N: Evaluation results at half load Vin (VAC) Pin (W) Vo (VDC) ΔVo(Vpk-pk) Po (W) η (%) PF THD (%) 85 86.4 394.79 12.8 80.16 92.8 0.998 3.6 110 84.6 394.86 12.8 80.20 94.8 0.996 4.2 135 83.8 394.86 12.8 80.20 95.7 0.991 4.9 175 83.2 394.87 15.5 80.20 96.4 0.981 6.5 220 82.9 394.87 15.7 80.20 96.7 0.956 7.8 265 82.7 394.87 15.9 80.20 97.0 0.915 9.2 Note: measurements done with the line filter shown in figure 23 Vin (VAC) Pin (W) Vo (VDC) ΔVo(Vpk-pk) Po (W) η (%) PF THD (%) 85 42.8 394.86 6.6 40.20 93.9 0.994 5.5 110 42.5 394.90 6.6 40.20 94.6 0.985 6.2 135 42.5 394.91 6.7 40.20 94.6 0.967 7.1 175 42.5 394.93 8.0 40.19 94.6 0.939 8.3 220 42.6 394.94 8.2 40.19 94.3 0.869 9.8 265 42.6 394.94 8.3 40.19 94.3 0.776 11.4 Note: measurements done with the line filter shown in figure 23 L6562 12/16 Table 8. EVAL6562N: No-load measurements Figure 26. Line filter (not tested for EMI compliance) used for EVAL6562N evaluation Vin (VAC) Pin (W) Vo (VDC) ΔVo(Vpk-pk) Po (W) 85 0.4 396.77 0.45 0 110 0.3 396.82 0.55 0 135 0.3 396.83 0.60 0 175 (*) 0.4 396.90 1.00 0 220 (*) 0.4 396.95 1.40 0 265 (*) 0.5 396.98 1.65 0 (*) Vcc = 12V supplied externally to the AC source B82732 47 mH, 1.3A EPCOS B81133 470 nF, X2 EPCOS to EVAL6562N B81133 680 nF, X2 EPCOS 13/16 L6562 5 Package Information In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Figure 27. DIP-8 Mechanical Data & Package Dimensions OUTLINE AND MECHANICAL DATA DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A 3.32 0.131 a1 0.51 0.020 B 1.15 1.65 0.045 0.065 b 0.356 0.55 0.014 0.022 b1 0.204 0.304 0.008 0.012 D 10.92 0.430 E 7.95 9.75 0.313 0.384 e 2.54 0.100 e3 7.62 0.300 e4 7.62 0.300 F 6.6 0.260 I 5.08 0.200 L 3.18 3.81 0.125 0.150 Z 1.52 0.060 DIP-8 L6562 14/16 Figure 28. SO-8 Mechanical Data & Package Dimensions OUTLINE AND MECHANICAL DATA DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.004 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D (1) 4.80 5.00 0.189 0.197 E 3.80 4.00 0.15 0.157 e 1.27 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k 0° (min.), 8° (max.) ddd 0.10 0.004 Note: (1) Dimensions D does not include mold flash, protrusions or gate burrs. Mold flash, potrusions or gate burrs shall not exceed 0.15mm (.006inch) in total (both side). SO-8 0016023 C 15/16 L6562 6 Revision History Table 9. Revision History Date Revision Description of Changes January 2004 5 First Issue June 2004 6 Modified the Style-look in compliance with the “Corporate Technical Publications Design Guide”. Changed input of the power amplifier connected to Multiplier (Fig. 2). May 2005 7 Modified Table 2: Absolute Maximim Ratings. November 2005 8 Added in Section 5 the ECOPACK® certicate of conformity. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com SMAJ Transil™ Features ■ Peak pulse power: – 400 W (10/1000 μs) – 2.3 kW (8/20 μs) ■ Stand off voltage range: from 5 V to 188 V ■ Unidirectional and bidirectional types ■ Low leakage current: – 0.2 μA at 25 °C – 1 μA at 85 °C ■ Operating Tj max: 150 °C ■ High power capability at Tj max: – 270 W (10/1000 μs) ■ JEDEC registered package outline Complies with the following standards ■ IEC 61000-4-2 level 4 – 15 kV (air discharge) – 8 kV (contact discharge) ■ IEC 61000-4-5 (see Table 3 for surge level) ■ MIL STD 883G, method 3015-7 Class 3B – 25 kV HBM (human body model) ■ Resin meets UL 94, V0 ■ MIL-STD-750, method 2026 solderability ■ EIA STD RS-481 and IEC 60286-3 packing ■ IPC 7531 footprint Description The SMAJ Transil series has been designed to protect sensitive equipment against electrostatic discharges according to IEC 61000-4-2, and MIL STD 883, method 3015, and electrical over stress according to IEC 61000-4-4 and 5. These devices are generally used against surges below 400 W (10/1000 μs). Planar technology makes these devices suitable for high-end equipment and SMPS where low leakage current and high junction temperature are required to provide reliability and stability over time. SMAJ are packaged in SMA (SMA footprint in accordance with IPC 7531 standard). TM: Transil is a trademark of STMicroelectronics K A Unidirectional Bidirectional SMA (JEDEC DO-214AC) www.st.com Characteristics SMAJ 2/10 Doc ID 5544 Rev 12 1 Characteristics Figure 1. Electrical characteristics - definitions Figure 2. Pulse definition for electrical characteristics Table 1. Absolute maximum ratings (Tamb = 25 °C) Symbol Parameter Value Unit PPP Peak pulse power dissipation (1) Tj initial = Tamb 400 W Tstg Storage temperature range -65 to +150 °C Tj Operating junction temperature range -55 to +150 °C TL Maximum lead temperature for soldering during 10 s. 260 °C 1. For a surge greater than the maximum values, the diode will fail in short-circuit. Table 2. Thermal resistances Symbol Parameter Value Unit Rth(j-l) Junction to leads 30 °C/W Rth(j-a) Junction to ambient on printed circuit on recommended pad layout 120 °C/W VCLVBR VRM IRM IR IPP V I IRM IR IPP VRMVBR VCL V CLVBR VRM IRM IR IPP V I IF VF Unidirectional Bidirectional Symbol Parameter V Stand-off voltage V Breakdown voltage V Clamping voltage I Leakage current @ V I Peak pulse current T Voltage temperature coefficient V Forward voltage drop R Dynamic resistance RM BR CL RM RM PP F D α Repetitive pulse current tr = rise time (μs) tp = pulse duration time (μs) tr tp SMAJ Characteristics Doc ID 5544 Rev 12 3/10 Table 3. Electrical characteristics - parameter values (Tamb = 25 °C) Order code IRM max@VRM VBR @IR (1) VCL @IPP 10/1000 μs RD (2) 10/1000 μs VCL @IPP 8/20 μs RD (2) 8/20 μs αT (3) 25 °C 85 °C min typ max max max μA V V mA V A(4) Ω V A(4) Ω 10-4/° C SMAJ5.0A/CA 20 50 5 6.4 6.74 10 9.2 43.5 0.049 13.4 174 0.036 5.7 SMAJ6.0A/CA 20 50 6 6.7 7.05 10 10.3 38.8 0.075 13.7 170 0.037 5.9 SMAJ6.5A/CA 20 50 6.5 7.2 7.58 10 11.2 35.7 0.091 14.5 160 0.041 6.1 SMAJ8.5A/CA 20 50 8.5 9.4 9.9 1 14.4 27.7 0.145 19.5 124 0.073 7.3 SMAJ10A/CA 0.2 1 10 11.1 11.7 1 17 23.5 0.201 21.7 106 0.089 7.8 SMAJ12A/CA 0.2 1 12 13.3 14 1 19.9 20.1 0.259 25.3 91 0.116 8.3 SMAJ13A/CA 0.2 1 13 14.4 15.2 1 21.5 18.6 0.298 27.2 85 0.132 8.4 SMAJ15A/CA 0.2 1 15 16.7 17.6 1 24.4 16.4 0.361 32.5 71 0.197 8.8 SMAJ18A/CA 0.2 1 18 20 21.1 1 29.2 13.7 0.514 39.3 59 0.291 9.2 SMAJ20A/CA 0.2 1 20 22.2 23.4 1 32.4 12.3 0.637 42.8 54 0.338 9.4 SMAJ22A/CA 0.2 1 22 24.4 25.7 1 35.5 11.2 0.760 48.3 48 0.444 9.6 SMAJ24A/CA 0.2 1 24 26.7 28.1 1 38.9 10.3 0.912 50 46 0.446 9.6 SMAJ26A/CA 0.2 1 26 28.9 30.4 1 42.1 9.5 1.07 53.5 43 0.502 9.7 SMAJ28A/CA 0.2 1 28 31.1 32.7 1 45.4 8.8 1.26 59 39 0.632 9.8 SMAJ30A/CA 0.2 1 30 33.3 35.1 1 48.4 8.3 1.39 64.3 36 0.762 9.9 SMAJ33A/CA 0.2 1 33 36.7 38.6 1 53.3 7.5 1.70 69.7 33 0.884 10 SMAJ40A/CA 0.2 1 40 44.4 46.7 1 64.5 6.2 2.49 84 27 1.30 10.1 SMAJ43A/CA 0.2 1 43 47.8 50.3 1 69.4 5.7 2.91 91 25 1.53 10.2 SMAJ48A/CA 0.2 1 48 53.3 56.1 1 77.4 5.2 3.56 100 23 1.79 10.3 SMAJ58A/CA 0.2 1 58 64.4 67.8 1 93.6 4.3 5.21 121 19 2.62 10.4 SMAJ70A/CA 0.2 1 70 77.8 81.9 1 113 3.5 7.72 146 16 3.75 10.5 SMAJ85A/CA 0.2 1 85 94 99 1 137 2.9 11.4 178 13 5.70 10.6 SMAJ100A/CA 0.2 1 100 111 117 1 162 2.5 15.7 212 11 8.10 10.7 SMAJ130A/CA 0.2 1 130 144 152 1 209 1.9 26.0 265 9 11.7 10.8 SMAJ154A/CA 0.2 1 154 171 180 1 246 1.6 35.6 317 7 18.3 10.8 SMAJ170A/CA 0.2 1 170 189 199 1 275 1.4 47.2 353 6.5 22.2 10.8 SMAJ188A/CA 0.2 1 188 209 220 1 328 1.4 69.3 388 6 26.2 10.8 1. Pulse test : tp < 50 ms 2. To calculate maximum clamping voltage at other surge level,use the following formula: VCLmax = VCL - RD x (IPP - IPPappli) where IPPappli is the surge current in the application 3. To calculate VBR or VCL versus junction temperature, use the following formulas: VBR @ TJ = VBR @ 25°C x (1 + αT x (TJ – 25)), VCL @ TJ = VCL @ 25°C x (1 + αT x (TJ – 25)) 4. Surge capability given for both directions for unidirectional and bidirectional types. Characteristics SMAJ 4/10 Doc ID 5544 Rev 12 Figure 5. Clamping voltage versus peak pulse current (exponential waveform, maximum values) Figure 3. Peak pulse power dissipation versus initial junction temperature Figure 4. Peak pulse power versus exponential pulse duration (Tj initial = 25° C) 0 100 200 300 400 500 0 25 50 75 100 125 150 175 Ppp (W) Tj(°C) 0.1 1.0 10.0 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 PPP(kW) Tj initial = 25 °C tP(ms) 0.1 1.0 10.0 100.0 1000.0 1 10 100 1000 10/1000 μs Tj initial=25 °C 8/20 μs 10 ms SMAJ5.0A SMAJ12A SMAJ24A SMAJ40A SMAJ85A SMAJ188A IPP(A) VCL(V) SMAJ Characteristics Doc ID 5544 Rev 12 5/10 Figure 6. Junction capacitance versus reverse applied voltage for unidirectional types (typical values) Figure 7. Junction capacitance versus reverse applied voltage for bidirectional types (typical values) 10 100 1000 10000 1 10 100 1000 C( pF) F=1 MHz VOSC=30 mVRMS Tj=25 °C SMAJ5.0A SMAJ12A SMAJ24A SMAJ40A SMAJ85A SMAJ188A VR(V) 10 100 1000 10000 1 10 100 1000 C(pF) F=1 MHz VOSC=30 mVRMS Tj=25 °C SMAJ5.0CA SMAJ12CA SMAJ24CA SMAJ40CA SMAJ85CA V SMAJ188CA R(V) Figure 8. Peak forward voltage drop versus peak forward current (typical values) Figure 9. Relative variation of thermal impedance, junction to ambient, versus pulse duration Figure 10. Thermal resistance, junction to ambient, versus copper surface under each lead Figure 11. Leakage current versus junction temperature (typical values) IFM(A) 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Tj =25 °C Tj =125 °C VFM(V) 0.01 0.10 1.00 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 Zth(j-a) /Rth(j-a) Recommended pad layout PCB FR4, copper thickness = 35 μm tP(s) R (°C/W) th(j-a) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 SCU(cm²) PCB FR4, copper thickness = 35 μm IR(nA) 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 25 50 75 100 125 150 VR=VRM VRM ≥ 10 V VR=VRM VRM< 10 V Tj(°C) Ordering information scheme SMAJ 6/10 Doc ID 5544 Rev 12 2 Ordering information scheme Figure 12. Ordering information scheme SM A J 85 CA - TR Surface mount Peak pulse power A = 400 WTransil in SMA Stand off voltage 85 = 85 V Type A = Unidirectinal CA = Bidirectional Delivery mode TR = Tape and reel SMAJ Package information Doc ID 5544 Rev 12 7/10 3 Package information ● Case: JEDEC DO-214AC molded plastic over planar junction ● Terminals: solder plated, solderable per MIL-STD-750, Method 2026 ● Polarity: for unidirectional types the band indicates cathode. ● Flammability: epoxy is rated UL94V-0 ● RoHS package In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Table 4. SMA dimensions Ref. Dimensions Millimeters Inches Min. Max. Min. Max. A1 1.90 2.45 0.075 0.094 A2 0.05 0.20 0.002 0.008 b 1.25 1.65 0.049 0.065 c 0.15 0.40 0.006 0.016 D 2.25 2.90 0.089 0.114 E 4.80 5.35 0.189 0.211 E1 3.95 4.60 0.156 0.181 L 0.75 1.50 0.030 0.059 Figure 13. Footprint dimensions in mm (inches) Figure 14. Marking layout(1) 1. Marking layout can vary according to assembly location. E C L E1 D A1 A2 b 2.63 (0.103) 5.43 (0.214) 1.4 1.64 (0.064) 1.4 (0.055) (0.055) y w w e z x x x e: ECOPACK compliance XXX: Marking Z: Manufacturing location Y: Year WW: week Cathode bar ( unidirectional devices only ) Package information SMAJ 8/10 Doc ID 5544 Rev 12 Table 5. Marking Order code Marking Order code Marking SMAJ5.0A-TR AE SMAJ5.0CA-TR AA SMAJ6.0A-TR DUB SMAJ6.0CA-TR DBB SMAJ6.5A-TR DUC SMAJ6.5CA-TR DBC SMAJ8.5A-TR DUH SMAJ8.5CA-TR DBH SMAJ10A-TR AX SMAJ10CA-TR AC SMAJ12A-TR DUK SMAJ12CA-TR DBK SMAJ13A-TR BG SMAJ13CA-TR BH SMAJ15A-TR BM SMAJ15CA-TR AJ SMAJ18A-TR DUQ SMAJ18CA-TR DBQ SMAJ20A-TR DUR SMAJ20CA-TR DBR SMAJ22A-TR DUS SMAJ22CA-TR DBS SMAJ24A-TR DUT SMAJ24CA-TR DBT SMAJ26A-TR DUU SMAJ26CA-TR DBU SMAJ28A-TR CG SMAJ28CA-TR CH SMAJ30A-TR CK SMAJ30CA-TR CL SMAJ33A-TR CM SMAJ33CA-TR CN SMAJ40A-TR DUZ SMAJ40CA-TR DBZ SMAJ43A-TR EUA SMAJ43CA-TR EBA SMAJ48A-TR CX SMAJ48CA-TR CY SMAJ58A-TR EUF SMAJ58CA-TR EBF SMAJ70A-TR EUI SMAJ70CA-TR EBI SMAJ85A-TR EUL SMAJ85CA-TR EBL SMAJ100A-TR EUN SMAJ100CA-TR EBN SMAJ130A-TR EUQ SMAJ130CA-TR EBQ SMAJ154A-TR EUT SMAJ154CA-TR EBT SMAJ170A-TR SR SMAJ170CA-TR SS SMAJ188A-TR EUV SMAJ188CA-TR EBV SMAJ Ordering information Doc ID 5544 Rev 12 9/10 4 Ordering information 5 Revision history Table 6. Ordering information Order code Marking Package Weight Base qty Delivery mode SMAJxxxA/CA-TR(1) 1. Where xxx is nominal value of VBR and A or CA indicates unidirectional or bidirectional version. See Table 3 for list of available devices and their order codes See Table 5 on page 8 SMA 0.071 g 5000 Tape and reel Table 7. Document revision history Date Revision Changes September-1998 5B Previous update. 02-Aug-2004 6 SMA package dimensions update. Reference A1 max. changed from 2.70mm (0.106) to 2.03mm (0.080). 10-Dec-2004 7 Template layout update. No content change. 10-Feb-2006 8 Added unidirectional marking on cover page and Figure 14. Changed Figure 13. Foot print. 14-May-2009 9 Updated ECOPACK statement. Reformatted to current standards. 17-Sep-2009 10 Document updated for low leakage current. 05-Nov-2009 11 Corrected typographical error in Package information. 09-Jul-2010 12 Changed timescale in Figure 9. SMAJ 10/10 Doc ID 5544 Rev 12 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2010 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 1/15 TDA7296 February 2005 1 FEATURES ■ MULTIPOWER BCD TECHNOLOGY ■ VERY HIGH OPERATING VOLTAGE RANGE (±35V) ■ DMOS POWER STAGE ■ HIGH OUTPUT POWER (UP TO 60W MUSIC POWER) ■ MUTING/STAND-BY FUNCTIONS ■ NO SWITCH ON/OFF NOISE ■ NO BOUCHEROT CELLS ■ VERY LOW DISTORTION ■ VERY LOW NOISE ■ SHORT CIRCUIT PROTECTION ■ THERMAL SHUTDOWN 2 DESCRIPTION The TDA7296 is a monolithic integrated circuit in Multiwatt15 package, intended for use as audio class AB amplifier in Hi-Fi field applications (Home Stereo, self powered loudspeakers, Topclass TV). Thanks to the wide voltage range and to the high out current capability it is able to supply the highest power into both 4Ω and 8Ω loads even in presence of poor supply regulation, with high Supply Voltage Rejection. The built in muting function with turn on delay simplifies the remote operation avoiding switching onoff noises. 70V - 60W DMOS AUDIO AMPLIFIER WITH MUTE/ST-BY Figure 2. Typical Application and Test Circuit IN- 2 R2 680Ω C2 22μF C1 470nF IN+ R1 22K R6 2.7Ω C10 100nF 3 R3 22K - + MUTE STBY 4 VM VSTBY 10 9 IN+MUTE MUTE STBY R4 22K THERMAL SHUTDOWN S/C PROTECTION R5 10K C3 10μF C4 10μF 1 STBY-GND C5 22μF 7 13 14 6 8 15 -Vs -PWVs BOOTSTRAP OUT +Vs +PWVs C9 100nF C8 1000μF -Vs D93AU011 C7 100nF +Vs C6 1000μF Note: The Boucherot cell R6, C10, normally not necessary for a stable operation it could be needed in presence of particular load impedances at VS <±25V. Rev. 10 Figure 1. Package Table 1. Order Codes Part Number Package TDA7296 Multiwatt15V TDA7296HS Multiwatt15H (Short Leads) Multiwatt15V Multiwatt15H (Short Leads) TDA7296 2/15 Figure 3. Pin Connection Table 2. Absolute Maximum Ratings Table 3. Thermal Data Figure 4. Block Diagram Symbol Parameter Value Unit VS Supply Voltage (No Signal) ±35 V IO Output Peak Current 5 A Ptot Power Dissipation Tcase = 70°C 50 W Top Operating Ambient Temperature Range 0 to 70 °C Tstg, Tj Storage and Junction Temperature 150 °C Symbol Parameter Typ. Max Unit Rth j-case Thermal Resistance Junction-case 1 1.5 °C/W 3/15 TDA7296 Table 4. Electrical Characteristcs (Refer to the Test Circuit VS = ±24V, RL = 8Ω, GV = 30dB; Rg = 50Ω; Tamb = 25°C, f = 1 kHz; unless otherwise specified). Note (*): MUSIC POWER is the maximal power which the amplifier is capable of producing across the rated load resistance (regardless of non linearity) 1 sec after the application of a sinusoidal input signal of frequency 1KHz. Note (**): Tested with optimized Application Board (see fig.5) Symbol Parameter Test Condition Min. Typ. Max. Unit VS Supply Range ±10 ±35 V Iq Quiescent Current 20 30 65 mA Ib Input Bias Current 500 nA VOS Input Offset Voltage -10 10 mV IOS Input Offset Current -100 100 nA PO RMS Continuous Output Power d = 05% VS = ± 24V, RL = 8Ω; VS = ± 21V, RL = 6Ω; VS = ± 18V, RL = 4Ω; 27 27 27 30 30 30 WWW Music Power (RMS) Δt = 1s (*) d = 10% VS = ± 29V, RL = 8Ω; VS = ± 24V, RL = 6Ω; VS = ± 22V, RL = 4Ω; 60 60 60 WWW d Total Harmonic Distortion (**) PO = 5W; f = 1kHz PO = 0.1 to 20W; f = 20Hz to 20kHz 0.005 0.1 % VS = ± 18V, RL = 4Ω; PO = 5W; f = 1kHz PO = 0.1 to 20W; f = 20Hz to 20kHz 0.01 0.1 %% SR Slew Rate 7 10 V/μs GV Open Loop Voltage Gain 80 dB GV Closed Loop Voltage Gain (1) 24 30 40 dB eN Total Input Noise A = curve 1 μV f = 20Hz to 20kHz 2 5 μV fL ,fH frequency response (-3dB) PO =1W 20Hz to 20kHz Ri Input Resistance 100 kΩ SVR Supply Voltage Rejection f = 100Hz; Vripple = 0.5Vrms 60 75 dB TS Thermal Shutdown 145 °C STAND-BY FUNCTION (Ref: -Vs or GND) VST on Stand-by on Threshold 1.5 V VST off Stand-by off Threshold 3.5 V ATTst-by Stand-by Attenuation 70 90 dB Iq st-by Quiescent Current @ Stand-by 1 3 mA MUTE FUNCTION (Ref: -Vs ro GND) VMon Mute on Threshold 1.5 V VMoff Mute off Threshold 3.5 V ATTmute Mute AttenuatIon 60 80 dB TDA7296 4/15 Figure 5. P.C.B. and Components Layout of the Circuit of figure 2. Note: The Stand-by and Mute functions can be referred either to GND or -VS. On the P.C.B. is possible to set both the configuration through the jumper J1. 5/15 TDA7296 3 APPLICATION SUGGESTIONS (see Test and Application Circuits of the Fig. 2) The recommended values of the external components are those shown on the application circuit of Figure 2. Different values can be used; the following table can help the designer. (*) R1 = R3 for pop optimization (**) Closed Loop Gain has to be ≥ 24dB COMPONENTS SUGGESTED VALUE PURPOSE LARGER THAN SUGGESTED SMALLER THAN SUGGESTED R1 (*) 22k Input Resistance Increase Input Impedance Decrease Input Impedance R2 680Ω Closed Loop Gain Set to 30db (**) Decrease of Gain Increase of Gain R3 (*) 22k Increase of Gain Decrease of Gain R4 22k St-by Time Constant Larger St-by ON/OFF Time Smaller St-by ON/OFF Time; Pop Noise R5 10k Mute Time Constant Larger Mute ON/OFF Time Smaller Mute ON/OFF Time C1 0.47μF Input DC Decoupling Higher Low Frequency Cutoff C2 22μF Feedback DC Decoupling Higher Low Frequency Cutoff C3 10μF Mute Time Constant Larger Mute ON/OFF Time Smaller Mute ON/OFF Time C4 10μF St-by Time Constant Larger St-by ON/OFF Time Smaller St-by ON/OFF Time; Pop Noise C5 22μF Bootstrapping Signal Degradation at Low Frequency C6, C8 1000μF Supply Voltage Bypass Danger of Oscillation C7, C9 0.1μF Supply Voltage Bypass Danger of Oscillation TDA7296 6/15 4 TYPICAL CHARACTERISTICS (Application Circuit of fig 2 unless otherwise specified) Figure 6. : Output Power vs. Supply Voltage. Figure 7. Distortion vs. Output Power Figure 8. Output Power vs. Supply Voltage Figure 9. Distortion vs. Output Power Figure 10. Distortion vs. Frequency Figure 11. Distortion vs. Frequency 7/15 TDA7296 Figure 12. Quiescent Current vs. Supply Voltage Figure 13. Supply Voltage Rejection vs. Frequency Figure 14. Mute Attenuation vs. Vpin10 Figure 15. St-by Attenuation vs. Vpin9 Figure 16. Power Dissipation vs. Output Power Figure 17. Power Dissipation vs. Output Power TDA7296 8/15 5 INTRODUCTION In consumer electronics, an increasing demand has arisen for very high power monolithic audio amplifiers able to match, with a low cost the performance obtained from the best discrete designs. The task of realizing this linear integrated circuit in conventional bipolar technology is made extremely difficult by the occurence of 2nd breakdown phenomenon. It limits the safe operating area (SOA) of the power devices, and as a consequence, the maximum attainable output power, especially in presence of highly reactive loads. Moreover, full exploitation of the SOA translates into a substantial increase in circuit and layout complexity due to the need for sophisticated protection circuits. To overcome these substantial drawbacks, the use of power MOS devices, which are immune from secondary breakdown is highly desirable. The device described has therefore been developed in a mixed bipolar- MOS high voltage technology called BCD 80. 5.1 Output Stage The main design task one is confronted with while developing an integrated circuit as a power operational amplifier, independently of the technology used, is that of realising the output stage. The solution shown as a principle schematic by Fig 18 represents the DMOS unity-gain output buffer of the TDA7296. This large-signal, high-power buffer must be capable of handling extremely high current and voltage levels while maintaining acceptably low harmonic distortion and good behaviour over frequency response; moreover, an accurate control of quiescent current is required. A local linearizing feedback, provided by differential amplifier A, is used to fullfil the above requirements, allowing a simple and effective quiescent current setting. Proper biasing of the power output transistors alone is however not enough to guarantee the absence of crossover distortion. While a linearization of the DC transfer characteristic of the stage is obtained, the dynamic behaviour of the system must be taken into account. A significant aid in keeping the distortion contributed by the final stage as low as possible is provided by the compensation scheme, which exploits the direct connection of the Miller capacitor at the amplifier’s output to introduce a local AC feedback path enclosing the output stage itself. 5.2 Protections In designing a power IC, particular attention must be reserved to the circuits devoted to protection of the device from short circuit or overload conditions. Due to the absence of the 2nd breakdown phenomenon, the SOA of the power DMOS transistors is delimited only by a maximum dissipation curve dependent on the duration of the applied stimulus. In order to fully exploit the capabilities of the power transistors, the protection scheme implemented in this device combines a conventional SOA protection circuit with a novel local temperature sensing technique which " dynamically" controls the maximum dissipation. Figure 18. Principle Schematic of a DMOS Unity-gain Buffer. 9/15 TDA7296 Figure 19. Turn ON/OFF Suggested Sequence In addition to the overload protection described above, the device features a thermal shutdown circuit which initially puts the device into a muting state (@ Tj = 145°C) and then into stand-by (@ Tj = 150°C). Full protection against electrostatic discharges on every pin is included. 5.3 Other Features The device is provided with both stand-by and mute functions, independently driven by two CMOS logic compatible input pins. The circuits dedicated to the switching on and off of the amplifier have been carefully optimized to avoid any kind of uncontrolled audible transient at the output. The sequence that we recommend during the ON/OFF transients is shown by Figure 19. The application of figure 20 shows the possibility of using only one command for both st-by and mute functions. On both the pins, the maximum applicable range corresponds to the operating supply voltage. PLAY OFF ST-BY MUTE MUTE ST-BY OFF D93AU013 5V 5V +Vs (V) +35 -35 VMUTE PIN #10 (V) VST-BY PIN #9 (V) -Vs VIN (mV) IP (mA) VOUT (V) TDA7296 10/15 Figure 20. Single Signal ST-BY/MUTE Control Circuit 6 BRIDGE APPLICATION Another application suggestion is the BRIDGE configuration, where two TDA7296 are used, as shown by the schematic diagram. In this application, the value of the load must not be lower than 8 Ohm for dissipation and current capability reasons. A suitable field of application includes HI-FI/TV subwoofers realizations. The main advantages offered by this solution are: – High power performances with limited supply voltage level. – Considerably high output power even with high load values (i.e. 16 Ohm). The characteristics shown by figures 23 and 24, measured with loads respectively 8 Ohm and 16 Ohm. With Rl= 8 Ohm, Vs = ±18V the maximum output power obtainable is 60W, while with Rl=16 Ohm, Vs = ±24V the maximum Pout is 60W. Figure 21. Bridge Application Circuit 1N4148 10K 30K 20K 10μF 10μF MUTE STBY D93AU014 MUTE/ ST-BY 0.56μF 22K 0.22μF 2200μF + - 22μF 22K 680 22K 3 1 4 7 13 +Vs Vi 15 8 2 14 6 10 9 + - 3 0.56μF 22K 1 4 2 14 6 22μF 22K 680 10 9 22μF 15 8 -Vs 2200μF 0.22μF 22μF 20K 10K 30K 1N4148 ST-BY/MUTE 7 13 D93AU015A 11/15 TDA7296 Figure 22. Frequency Response of the Bridge Application Figure 23. Distortion vs. Output Power Figure 24. Distortion vs. Output Power TDA7296 12/15 Figure 25. Multiwatt15V Mechanical Data & Package Dimensions OUTLINE AND MECHANICAL DATA 0016036 J DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A5 0.197 B 2.65 0.104 C 1.6 0.063 D 1 0.039 E 0.49 0.55 0.019 0.022 F 0.66 0.75 0.026 0.030 G 1.02 1.27 1.52 0.040 0.050 0.060 G1 17.53 17.78 18.03 0.690 0.700 0.710 H1 19.6 0.772 H2 20.2 0.795 L 21.9 22.2 22.5 0.862 0.874 0.886 L1 21.7 22.1 22.5 0.854 0.87 0.886 L2 17.65 18.1 0.695 0.713 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L7 2.65 2.9 0.104 0.114 M 4.25 4.55 4.85 0.167 0.179 0.191 M1 4.73 5.08 5.43 0.186 0.200 0.214 S 1.9 2.6 0.075 0.102 S1 1.9 2.6 0.075 0.102 Dia1 3.65 3.85 0.144 0.152 Multiwatt15 (Vertical) 13/15 TDA7296 Figure 26. Multiwatt15 Horizontal (Short leads) Mechanical Data & Package Dimensions OUTLINE AND MECHANICAL DATA A C B E L5 L7 L2 L1 F G1 G H2 L4 L3 S1 S H1 Diam 1 MW15HME V V V V V H2 N R1 P R R 0067558 E DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. A 5 0.197 B 2.65 0.104 C 1.6 0.063 E 0.49 0.55 0.019 0.022 F 0.66 0.75 0.026 0.030 G 1.02 1.27 1.52 0.040 0.050 0.060 G1 17.53 17.78 18.03 0.690 0.700 0.709 H1 19.6 20.2 0.772 0.795 H2 19.6 20.2 0.772 0.795 L1 17.80 18.00 18.20 0.701 0.709 0.717 L2 2.54 0.100 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L5 2.70 3.00 3.30 0.106 0.118 0.130 L7 2.65 2.9 0.104 0.114 R 1.5 0.059 S 1.9 2.6 0.075 0.102 S1 1.9 2.6 0.075 0.102 Dia1 3.65 3.85 0.144 0.152 Multiwatt15 H (Short leads) TDA7296 14/15 Table 5. Revision History Date Revision Description of Changes January 2004 8 First Issue in EDOCS DMS September 2004 9 Added Package Multiwatt15 Horizontal (Short leads) February 2005 10 Corrected mistyping error in Table 2. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 15/15 TDA7296 TL084, TL084A, TL084B General purpose JFET quad operational amplifiers Datasheet — production data Features ■ Wide common-mode (up to VCC +) and differential voltage range ■ Low input bias and offset current ■ Output short-circuit protection ■ High input impedance JFET input stage ■ Internal frequency compensation ■ Latch up free operation ■ High slew rate: 16 V/μs (typical) Description The TL084, TL084A, and TL084B are high-speed, JFET input, quad operational amplifiers incorporating well matched, high voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. D TSSOP14(Thin shrink small outline package)NDIP14(Plastic package)DSO-14(Plastic micropackage)Pin connections(Top view)Inverting Input 2Non-inverting Input 2Non-inverting Input 1CCV -CCV1234856791011121314+Output 3Output 4Non-inverting Input 4Inverting Input 4Non-inverting Input 3Inverting Input 3-+-+-+-+Output 1Inverting Input 1Output 2 www.st.com Contents TL084, TL084A, TL084B 2/19 Doc ID 2301 Rev 5 Contents 1 Schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Parameter measurement information . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.1 DIP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.2 TSSOP14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.3 SO-14 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 TL084, TL084A, TL084B Schematic diagram Doc ID 2301 Rev 5 3/19 1 Schematic diagram Figure 1. Circuit schematics (for each amplifier) Output Non- inver ting input I nverting input VC C VC C 2 0 0 1 0 0Ω Ω 1 0 0Ω 1.3k 30k 1.3k 35k 35k 1 0 0Ω 8.2k Absolute maximum ratings and operating conditions TL084, TL084A, TL084B 4/19 Doc ID 2301 Rev 5 2 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol Parameter Value Unit VCC Supply voltage(1) 1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between VCC + and VCC -. ±18 Vin Input voltage(2) V 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less. ±15 Vid Differential input voltage(3) 3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. ±30 Rthja Thermal resistance junction to ambient(4)(5) DIP14 TSSOP14 SO-14 4. Short-circuits can cause excessive heating and destructive dissipation. 5. Rth are typical values. 80 100 105 °C/W Rthjc Thermal resistance junction to case(4)(5) DIP14 TSSOP14 SO-14 33 32 31 Ptot Power dissipation 680 mW Output short-circuit duration(6) 6. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded. Infinite Toper Operating free-air temperature range: for TL084I/TL084AI/TL084BI -40 to +105 Operating free-air temperature range: °C for TL084C/TL084AC/TL084BC 0 to +70 Tstg Storage temperature range -65 to +150 ESD HBM: human body model(7) 7. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 1000 MM: machine model(8) V 8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating. 150 CDM: charged device model(9) 9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground. 1500 TL084, TL084A, TL084B Absolute maximum ratings and operating conditions Doc ID 2301 Rev 5 5/19 Table 2. Operating conditions Symbol Parameter TL084I/AI/BI TL084C/AC/BC Unit VCC Supply voltage range 6 to 36 V Toper Operating free-air temperature range -40 to +105 0 to +70 °C Electrical characteristics TL084, TL084A, TL084B 6/19 Doc ID 2301 Rev 5 3 Electrical characteristics Table 3. VCC = ±15 V, Tamb = +25 °C (unless otherwise specified) Symbol Parameter TL084I/AI/AC/BI/BC TL084C Unit Min. Typ. Max. Min. Typ. Max. Vio Input offset voltage (Rs = 50 Ω) Tamb = +25 °C TL084 Tamb = +25 °C TL084A Tamb = +25 °C TL084B Tmin ≤ Tamb ≤ Tmax TL084 Tmin ≤ Tamb ≤ Tmax TL084A Tmin ≤ Tamb ≤ Tmax TL084B 331 10 63 13 75 3 10 13 mV ΔVio/ΔT Input offset voltage drift 10 10 μV/°C Iio Input offset current Tamb = +25 °C Tmin ≤ Tamb ≤ Tmax 5 100 4 5 100 4 pA nA Iib Input bias current(1) Tamb = +25 °C Tmin ≤ Tamb ≤ Tmax 20 200 20 30 200 20 pA nA Avd Large signal voltage gain (RL = 2 kΩ, Vo = ±10 V) Tamb = +25 °C Tmin ≤ Tamb ≤ Tmax 50 25 200 25 15 200 V/mV SVR Supply voltage rejection ratio (RS = 50 Ω) Tamb = +25 °C Tmin ≤ Tamb ≤ Tmax 80 80 86 70 70 86 dB ICC Supply current, no load Tamb = +25 °C Tmin ≤ Tamb ≤ Tmax 1.4 2.5 2.5 1.4 2.5 2.5 mA Vicm Input common mode voltage range ±11 +15 -12 ±11 +15 -12 V CMR Common mode rejection ratio (RS = 50 Ω) Tamb = +25 °C Tmin ≤ Tamb ≤ Tmax 80 80 86 70 70 86 dB Ios Output short-circuit current Tamb = +25 °C Tmin ≤ Tamb ≤ Tmax 10 10 40 60 60 10 10 40 60 60 mA ±Vopp Output voltage swing Tamb = +25 °C RL = 2 kΩ RL = 10 kΩ Tmin ≤ Tamb ≤ Tmax RL = 2 kΩ RL = 10 kΩ 10 12 10 12 12 13.5 10 12 10 12 12 13.5 V SR Slew rate Vin = 10 V, RL = 2 kΩ, CL = 100 pF, unity gain 8 16 8 16 V/μs TL084, TL084A, TL084B Electrical characteristics Doc ID 2301 Rev 5 7/19 tr Rise time Vin = 20 mV, RL = 2 kΩ, CL = 100 pF, unity gain 0.1 0.1 μs Kov Overshoot Vin = 20 mV, RL = 2 kΩ, CL = 100 pF, unity gain 10 10 % GBP Gain bandwidth product Vin = 10 mV, RL = 2 kΩ, CL = 100 pF, F= 100 kHz 2.5 4 2.5 4 MHz Ri Input resistance 1012 1012 Ω THD Total harmonic distortion F= 1 kHz, RL = 2 kΩ,CL = 100 pF, Av = 20 dB, Vo = 2 Vpp) 0.01 0.01 % en Equivalent input noise voltage RS = 100 Ω, F= 1 kHz 15 15 ∅m Phase margin 45 45 degree s Vo1/Vo2 Channel separation Av = 100 120 120 dB 1. The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature. Table 3. VCC = ±15 V, Tamb = +25 °C (unless otherwise specified) (continued) Symbol Parameter TL084I/AI/AC/BI/BC TL084C Unit Min. Typ. Max. Min. Typ. Max. nV Hz ----------- Electrical characteristics TL084, TL084A, TL084B 8/19 Doc ID 2301 Rev 5 Figure 2. Maximum peak-to-peak output voltage vs. frequency (RL = 2 kΩ) Figure 3. Maximum peak-to-peak output voltage vs. frequency (RL = 10 kΩ) Figure 4. Maximum peak-to-peak output voltage vs. frequency and temp. Figure 5. Maximum peak-to-peak output voltage vs. free air temp. Figure 6. Maximum peak-to-peak output voltage vs. load resistance Figure 7. Maximum peak-to-peak output voltage vs. supply voltage 30 25 20 15 10 5 0 2 4 6 8 10 12 14 16 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE (V) R L = 10 kΩ Tamb = +25°C SUPPLY VOLTAGE ( V ) TL084, TL084A, TL084B Electrical characteristics Doc ID 2301 Rev 5 9/19 Figure 8. Input bias current vs. free air temp. Figure 9. Large signal differential voltage amplification vs. free air temp. 100 10 1 0.1 0.01 INPUT BIAS CUR R ENT (nA) -50 -25 0 25 50 75 100 125 TEMPERATURE (°C ) V C C = 15V 1000 400 200 100 20 40 10 4 2 1 DIFFERENTIAL VOLTAGE AMPLIFICATION (V/mV) -75 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C) R L = 2k Ω VO = 10V VCC = 15V Figure 10. Large signal differential voltage amplification and phase shift vs. frequency Figure 11. Total power dissipation vs. free air temp. (V/mV) 250 225 200 175 150 125 100 75 50 25 0 TOTAL POWE R DIS S IPATION (mW) -75 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C ) VC C = 15V No signal No load Figure 12. Supply current per amplifier vs. free air temp. Figure 13. Supply current per amplifier vs. supply voltage 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 SUPPLY CUR R ENT (mA) -75 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C ) VC C = 15V No signal No load 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 SUPPLY CURRENT (mA) 2 4 6 8 10 12 14 16 No signal No load Tamb = +25°C SUPPLY VOLTAGE ( V ) Electrical characteristics TL084, TL084A, TL084B 10/19 Doc ID 2301 Rev 5 Figure 14. Common mode rejection ratio vs. free air temp. Figure 15. Voltage follower large signal pulse response 89 88 87 86 85 84 -50 -25 0 25 50 75 100 125 COMMON MODE MODE R E JE CTION RATIO (dB) TEMPERATURE (°C ) 83 -75 R L = 1 0 kΩ V = 15V C C Figure 16. Output voltage vs. elapsed time Figure 17. Equivalent input noise voltage vs. frequency Figure 18. Total harmonic distortion vs. frequency t r 28 24 20 16 12 8 4 0 -4 OUTPUT VOLTAGE (mV) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 TIME ( μs ) 10% 90% OVERSHOOT R L = 2k Ω Tamb = +25°C V C C = 15V 70 60 50 40 30 20 10 0 EQUIVALENT INPUT NOIS E VOLTAGE (nV/VHz) 10 40 100 400 1k 4k 10k 40k 100k FREQUENCY (Hz) A V = 10 R S = 100 Ω T amb = +25°C VC C = 15V 1 0.4 0.1 0.04 0.01 0.004 0.001 TOTAL HARMONIC DISTOR TION (%) 100 400 1k 4k 10k 40k 100k FREQUENCY (Hz) A V = 1 T amb = +25°C V C C = 15V V O (rms) = 6V A V = 1 T amb = +25°C V O (rms) = 6V V C C = 15V TL084, TL084A, TL084B Parameter measurement information Doc ID 2301 Rev 5 11/19 4 Parameter measurement information Figure 19. Voltage follower Figure 20. Gain-of-10 inverting amplifier eI - TL084 R L 1/4 CL= 100pF 1k Ω 10k Ω eo Typical applications TL084, TL084A, TL084B 12/19 Doc ID 2301 Rev 5 5 Typical applications Figure 21. Audio distribution amplifier Figure 22. Positive feeback bandpass filter - T L084 1 /4 - - - T L084 1 /4 TL084 1/4 T L084 1 /4 1M Ω 1μF Output A Output B Output C Input 100k Ω 100k Ω 100k Ω 100k Ω 1OO μF V C C+ fO = 1 00 kH z - T L 0 8 4 - 2 2 0pF 1/4 43k Ω Input 1 .5 k Ω 43k Ω 22 0pF 43 k Ω 16k Ω T L 08 4 1/4 30k Ω Output A - T L 08 4 1/4 1 .5 k Ω 22 0pF 43k Ω 220 pF 43 k Ω - T L 08 4 1/4 43k Ω 16k Ω 30k Ω Output B Ground TL084, TL084A, TL084B Typical applications Doc ID 2301 Rev 5 13/19 Figure 23. Output A Figure 24. Output B Second order bandpass filter fo = 100 kHz; Q = 30; Gain = 4 Cascaded bandpass filter fo = 100 kHz; Q = 69; Gain = 16 Package information TL084, TL084A, TL084B 14/19 Doc ID 2301 Rev 5 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 6.1 DIP14 package information Figure 25. DIP14 package mechanical drawing Table 4. DIP14 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. a1 0.51 0.020 B 1.39 1.65 0.055 0.065 b 0.5 0.020 b1 0.25 0.010 D 20 0.787 E 8.5 0.335 e 2.54 0.100 e3 15.24 0.600 F 7.1 0.280 I 5.1 0.201 L 3.3 0.130 Z 1.27 2.54 0.050 0.100 TL084, TL084A, TL084B Package information Doc ID 2301 Rev 5 15/19 6.2 TSSOP14 package information Figure 26. TSSOP14 package mechanical drawing Figure 27. TSSOP14 package mechanical data Ref. Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.2 0.047 A1 0.05 0.15 0.002 0.004 0.006 A2 0.8 1 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0089 D 4.9 5 5.1 0.193 0.197 0.201 E 6.2 6.4 6.6 0.244 0.252 0.260 E1 4.3 4.4 4.48 0.169 0.173 0.176 e 0.65 BSC 0.0256 BSC K 0° 8° 0° 8° L1 0.45 0.60 0.75 0.018 0.024 0.030 b c E A A2 E1 D 1 PIN 1 IDENTIFICATION A1 K L e Package information TL084, TL084A, TL084B 16/19 Doc ID 2301 Rev 5 6.3 SO-14 package information Figure 28. SO-14 package mechanical drawing Table 5. SO-14 package mechanical data Dimensions Ref. Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.35 1.75 0.05 0.068 A1 0.10 0.25 0.004 0.009 A2 1.10 1.65 0.04 0.06 B 0.33 0.51 0.01 0.02 C 0.19 0.25 0.007 0.009 D 8.55 8.75 0.33 0.34 E 3.80 4.0 0.15 0.15 e 1.27 0.05 H 5.80 6.20 0.22 0.24 h 0.25 0.50 0.009 0.02 L 0.40 1.27 0.015 0.05 k 8° (max.) ddd 0.10 0.004 TL084, TL084A, TL084B Ordering information Doc ID 2301 Rev 5 17/19 7 Ordering information Table 6. Order codes Order code Temperature range Package Packing Marking TL084IN TL084AIN TL084BIN -40°C, +105°C DIP14 Tube TL084IN TL084AIN TL084BIN TL084ID/IDT TL084AID/AIDT TL084BID/BIDT SO-14 Tube or tape & reel 084I 084AI 084BI TL084IYDT(1) TL084AIYDT(1) TL084BIYDT(1) 1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent. SO-14 (Automotive grade) Tube or tape & reel 084IY 084AIY 084BIY TL084IP/IPT TL084AIP/AIPT TL084BIP/BIPT TSSOP14 Tube or tape & reel 084I 084AI 084BI TL084CN TL084ACN TL084BCN 0°C, +70°C DIP14 Tube TL084CN TL084ACN TL084BCN TL084CD/CDT TL084ACD/ACDT TL084BCD/BCDT SO-14 Tube or tape & reel 084C 084AC 084BC TL084CP/CPT TL084ACP/ACPT TL084BCP/BCPT TSSOP14 Tube or tape & reel 084C 084AC 084BC Revision history TL084, TL084A, TL084B 18/19 Doc ID 2301 Rev 5 8 Revision history Table 7. Document revision history Date Revision Changes 28-Mar-2001 1 Initial release. 30-Jul-2007 2 Added values for Rthja, Rthjc and ESD in Table 1: Absolute maximum ratings. Added Table 2: Operating conditions. Expanded Table 6: Order codes. Template update. 15-Jul-2008 3 Removed information concerning military temperature ranges (TL084Mx, TL084AMx, TL084BMx). Added automotive grade order codes in Table 6: Order codes. 05-Jul-2012 4 Removed commercial types TL084IYD, TL084AIYD and TL084BIYD. Updated Table 6: Order codes. 29-Jan-2013 5 Added part numbers TL084A and TL084B. Added SO-14 package silhouette. Updated layout of Table 1: Absolute maximum ratings. Updated of Table 3: VCC = ±15 V, Tamb = +25 °C (unless otherwise specified). Replaced SO-14 package mechanical drawing (Figure 28: SO-14 package mechanical drawing). Replaced SO-14 package mechanical data (Table 5: SO-14 package mechanical data). TL084, TL084A, TL084B Doc ID 2301 Rev 5 19/19 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com January 2009 Rev 2 1/16 16 NE556 SA556 - SE556 General-purpose dual bipolar timers Features ■ Low turn-off time ■ Maximum operating frequency greater than 500 kHz ■ Timing from microseconds to hours ■ Operates in both astable and monostable modes ■ Output can source or sink up to 200 mA ■ Adjustable duty cycle ■ TTL compatible ■ Temperature stability of 0.005% per °C Description The NE556, SA556 and SE556 dual monolithic timing circuits are highly stable controllers capable of producing accurate time delays or oscillation. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For a stable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuits may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA. N DIP14 (Plastic package) D SO14 (Plastic micropackage) Pin connections (top view)                        !     "#          !  www.st.com Schematic diagrams NE556 - SA556 - SE556 2/16 1 Schematic diagrams Figure 1. Block diagram Figure 2. Schematic diagram $!%&$' () * * * !+""%! ! ,'+)-,') & . +& $/!"% 0 +#$+1+2 !%&% !%&% () & 3 #!''/"%  2#% 0)0 #!' '/"% $!%&$' ()/!/!  ! 4* !  . . . . . ! 4* ! * ! * . . . . . . . . $!%&$' !+""%! !%&% +& $/!"% "#     . . ! * ! * ! * ! * . . . ! *  !  ! 4* !  . . ! 4*  .   . . . ! 4*  !+""%! ()/!/! ,'+),') ! * 4* NE556 - SA556 - SE556 Absolute maximum ratings and operating conditions 3/16 2 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol Parameter Value Unit VCC Supply voltage 18 V IOUT Output current (sink and source) ±225 mA Rthja Thermal resistance junction to ambient(1) DIP14 SO-14 1. Short-circuits can cause excessive heating. These values are typical and valid only for a single layer PCB. 80 105 °C/W Rthjc Thermal resistance junction to case (1) DIP14 SO-14 33 31 °C/W ESD Human body model (HBM)(2) 2. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 1000 Machine model (MM)(3) V 3. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. 150 Charged device model (CDM)(4) 4. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. 1500 Latch-up immunity 200 mA TLEAD Lead temperature (soldering 10 seconds) 260 °C Tj Junction temperature 150 °C Tstg Storage temperature range -65 to 150 °C Table 2. Operating conditions Symbol Parameter Value Unit VCC Supply voltage NE556 SA556 SE556 4.5 to 16 4.5 to 16 4.5 to 18 V Vth, Vtrig, Vcl, Vreset Maximum input voltage VCC V IOUT Output current (sink and source) ±200 mA Toper Operating free air temperature range NE556 SA556 SE556 0 to 70 -40 to 105 -55 to 125 °C Electrical characteristics NE556 - SA556 - SE556 4/16 3 Electrical characteristics Table 3. Tamb = +25° C, VCC = +5 V to +15 V (unless otherwise specified) Symbol Parameter SE556 NE556 - SA556 Unit Min. Typ. Max. Min. Typ. Max. ICC Supply current (RL ∝) (2 timers) Low state VCC = +5V VCC = +15V High State VCC = +5V 6 20 4 10 24 6 20 4 12 30 mA Timing error (monostable) (RA = 2kΩ to 100kΩ, C = 0.1μF) Initial accuracy (1) Drift with temperature Drift with supply voltage 0.5 30 0.05 2 100 0.2 1 50 0.1 3 0.5 % ppm/°C %/V Timing error (astable) (RA, RB = 1kΩ to 100kΩ, C = 0.1μF, VCC= +15V) Initial accuracy (1) Drift with temperature Drift with supply voltage 1.5 90 0.15 2.25 150 0.3 % ppm/°C %/V VCL Control voltage level VCC = +15V VCC = +5V 9.6 2.9 10 3.33 10.4 3.8 9 2.6 10 3.33 11 4 V Vth Threshold voltage VCC = +15V VCC = +5V 9.4 2.7 10 3.33 10.6 4 8.8 2.4 10 3.33 11.2 4.2 V Ith Threshold current (2) 0.1 0.25 0.1 0.25 μA Vtrig Trigger voltage VCC = +15V VCC = +5V 4.8 1.45 5 1.67 5.2 1.9 4.5 1.1 5 1.67 5.6 2.2 V Itrig Trigger current (Vtrig = 0V) 0.5 0.9 0.5 2.0 μA Vreset Reset voltage (3) 0.4 0.7 1 0.4 0.7 1 V Ireset Reset current Vreset = +0.4V Vreset = 0V 0.1 0.4 0.4 1 0.1 0.4 0.4 1.5 mA VOL Low level output voltage VCC = +15V IO(sink) = 10mA IO(sink) = 50mA IO(sink) = 100mA IO(sink) = 200mA VCC = +5V IO(sink) = 8mA IO(sink) = 5mA 0.1 0.4 2 2.5 0.1 0.05 0.15 0.5 2.2 0.25 0.2 0.1 0.4 2 2.5 0.3 0.25 0.25 0.75 2.5 0.4 0.35 V VOH High level output voltage VCC = +15V IO(sink) = 200mA IO(sink) = 100mA VCC = +5V IO(sink) = 100mA 13 3 12.5 13.3 3.3 12.75 2.75 12.5 13.3 3.3 V NE556 - SA556 - SE556 Electrical characteristics 5/16 Idis(off) Discharge pin leakage current (output high) (Vdis = 10V) 20 100 20 100 nA Vdis(sat) Discharge pin saturation voltage (output low) (4) VCC = +15V, Idis = 15mA VCC = +5V, Idis = 4.5mA 180 80 480 200 180 80 480 200 mV tr tf Output rise time Output fall time 100 100 200 200 100 100 300 300 ns toff Turn-off time (5) (Vreset = VCC) 0.5 0.5 μs 1. Tested at VCC = +5 V and VCC = +15 V 2. This will determine the maximum value of RA + RB for +15V operation the max total is R = 20 MΩ and for +5 V operation the max total R = 3.5 MΩ 3. Specified with trigger input high 4. No protection against excessive pin 7 current is necessary, providing the package dissipation rating will not be exceeded 5. Time measured from a positive going input pulse from 0 to 0.8 x VCC into the threshold to the drop from high to low of the output trigger is tied to threshold. Table 3. Tamb = +25° C, VCC = +5 V to +15 V (unless otherwise specified) (continued) Symbol Parameter SE556 NE556 - SA556 Unit Min. Typ. Max. Min. Typ. Max. Electrical characteristics NE556 - SA556 - SE556 6/16 Figure 3. Minimum pulse width required for triggering Figure 4. Supply current versus supply voltage Figure 5. Delay time versus temperature Figure 6. Low output voltage versus output sink current Figure 7. Low output voltage versus output sink current Figure 8. Low output voltage versus output sink current NE556 - SA556 - SE556 Electrical characteristics 7/16 Figure 9. High output voltage drop versus output Figure 10. Delay time versus supply voltage Figure 11. Propagation delay versus voltage level of trigger value Application information NE556 - SA556 - SE556 8/16 4 Application information 4.1 Typical application Figure 12. 50% duty cycle oscillator t1 = 0.693 RA.C Figure 13. Pulse width modulator  !            / 56 56 56 56 56  * 56 * ! 4, t2 = [(RARB)/(RA+RB)]CLn RB – 2RA 2RB – RA --------------------------- f = t1 t1 + t2 ----------------- RB < 1 2 --- RA ti  !            / 56 56 56 56 56   56 (0'/+# +#0   NE556 - SA556 - SE556 Application information 9/16 Figure 14. Tone burst generator For a tone burst generator the first timer is used as a monostable and determines the tone duration when triggered by a positive pulse at pin 6. The second timer is enabled by the high output or the monostable. It is connected as an astable and determines the frequency of the tone. Figure 15. Monostable operation !/ !1  !    78 4 !/3!16 "  "  4,       2 #% &% 3            "  4, 2 #% &%        !       !  84!4    !    / 56 56 56 56  56 !' !'        ,  56  84!4 / Application information NE556 - SA556 - SE556 10/16 Figure 16. Astable operation t1 = 0.693 (RA + RB) C output high t2 = 0.693 RBC output low   !    / 56 56 56 56  56 !' !'         56 !1  9 : 4, 8 4 !/3!16   NE556 - SA556 - SE556 Package information 11/16 5 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Package information NE556 - SA556 - SE556 12/16 5.1 DIP14 package information Figure 17. DIP14 package mechanical drawing Note: D and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm. Table 4. DIP14 package mechanical data Dimensions Ref. Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 5.33 0.21 A1 0.38 0.015 A2 2.92 3.30 4.95 0.11 0.13 0.19 b 0.36 0.46 0.56 0.014 0.018 0.022 b2 1.14 1.52 1.78 0.04 0.06 0.07 c 0.20 0.25 0.36 0.007 0.009 0.01 D 18.67 19.05 19.69 0.73 0.75 0.77 E 7.62 7.87 8.26 0.30 0.31 0.32 E1 6.10 6.35 7.11 0.24 0.25 0.28 e 2.54 0.10 e1 15.24 0.60 eA 7.62 0.30 eB 10.92 0.43 L 2.92 3.30 3.81 0.11 0.13 0.15 NE556 - SA556 - SE556 Package information 13/16 5.2 SO-14 package information Figure 18. SO-14 package mechanical drawing Note: D and F dimensions do not include mold flash or protrusions. Mold flash or protrusions must not exceed 0.15 mm. Table 5. SO-14 package mechanical data Dimensions Ref. Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.35 1.75 0.05 0.068 A1 0.10 0.25 0.004 0.009 A2 1.10 1.65 0.04 0.06 B 0.33 0.51 0.01 0.02 C 0.19 0.25 0.007 0.009 D 8.55 8.75 0.33 0.34 E 3.80 4.0 0.15 0.15 e 1.27 0.05 H 5.80 6.20 0.22 0.24 h 0.25 0.50 0.009 0.02 L 0.40 1.27 0.015 0.05 k 8° (max.) ddd 0.10 0.004 Ordering information NE556 - SA556 - SE556 14/16 6 Ordering information Table 6. Order codes Part number Temperature range Package Packing Marking NE556N 0°C, +70°C DIP14 Tube NE556N NE556D/DT SO-14 Tube or tape & reel NE556 SA556N -40°C, +105°C DIP14 Tube SA556N SA556D/DT SO-14 Tube or tape & reel SA556 SE556N -55°C, + 125°C DIP14 Tube SE556N SE556D/DT SO-14 Tube or tape & reel SE556 NE556 - SA556 - SE556 Revision history 15/16 7 Revision history Table 7. Document revision history Date Revision Changes 01-Jun-2003 1 Initial release. 27-Jan-2009 2 Document reformatted. Added IOUT value in Table 1: Absolute maximum ratings and Table 2: Operating conditions. Added ESD tolerance, latch-up tolerance, Rthja and Rthjcin Table 1: Absolute maximum ratings. Updated Section 5.1: DIP14 package information and Section 5.2: SO-14 package information. NE556 - SA556 - SE556 16/16 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com L293B L293E July 2003 n OUTPUT CURRENT 1A PER CHANNEL n PEAK OUTPUT CURRENT 2A PER CHANNEL (non repetitive) n INHIBIT FACILITY n HIGH NOISE IMMUNITY n SEPARATE LOGIC SUPPLY n OVERTEMPERATURE PROTECTION DESCRIPTION The L293B and L293E are quad push-pull drivers capable of delivering output currents to 1A per channel. Each channel is controlled by a TTLcompatible logic input and each pair of drivers (a full bridge) is equipped with an inhibit input which turns off all four transistors. A separate supply input is provided for the logic so that it may be run off a lower voltage to reduce dissipation. Additionally, the L293E has external connection of sensing resistors, for switchmode control. The L293B and L293E are package in 16 and 20- pin plastic DIPs respectively ; both use the four center pins to conduct heat to the printed circuit board. DIP16 POWERDIP(16+2+2) ORDERING NUMBERS: L293B L293E PUSH-PULL FOUR CHANNEL DRIVERS PIN CONNECTION (Top view) DIP16 - L293B POWERDIP (16+2+2) - L293E L293E L293B 2/12 BLOCK DIAGRAMS DIP16 - L293B POWERDIP (16+2+2) - L293E 3/12 L293E L293B SCHEMATIC DIAGRAM (*) In the L293 these points are not externally available. They are internally connected to the ground (substrate). O Pins of L293 () Pins of L293E. ABSOLUTE MAXIMUM RATINGS Symbol Parameter Value Unit Vs Supply Voltage 36 V Vss Logic Supply Voltage 36 V Vi Input Voltage 7 V Vinh Inhibit Voltage 7 V Iout Peak Output Current (non repetitive t = 5ms) 2 A Ptot Total Power Dissipation at Tground-pins = 80°C 5 W Tstg, Tj Storage and Junction Temperature –40 to +150 oC L293E L293B 4/12 THERMAL DATA ELECTRICAL CHARACTERISTCS * See figure 1 ** Referred to L293E TRUTH TABLE (*) High output impedance (**) Relative to the considerate channel Symbol Parameter Value Unit Rth j-case Thermal Resistance Junction-case Max. 14 oC/W Rth j-amb Thermal Resistance Junction-ambient Max. 80 oC/W Symbol Parameter Test Condition Min. Typ. Max. Unit Vs Supply Voltage Vss 36 V Vss Logic Supply Voltage 4.5 36 V Is Total Quiescent Supply Current Vi = L; Io = 0; Vinh = H 2 6 mA Vi = h; Io = 0; Vinh = H 16 24 mA Vinh = L 4 mA Iss Total Quiescent Logic Supply Current Vi = L; Io = 0; Vinh = H 44 60 mA Vi = h; Io = 0; Vinh = H 16 22 mA Vinh = L 16 24 mA ViL Input Low Voltage -0.3 1.5 V ViH Input High Voltage VSS £ 7V 2.3 Vss V VSS > 7V 2.3 7 V IiL Low Voltage Input Current Vil = 1.5V -10 mA IiH High Voltage Input Current 2.3V £ VIH £ VSS - 0.6V 30 100 mA VinhL Inhibit Low Voltage -0.3 1.5 V VinhH Inhibit High Voltage VSS £7V 2.3 Vss V VSS > 7V 2.3 7 V IinhL Low Voltage Inhibit Current VinhL = 1.5V -30 -100 mA IinhH High Voltage Inhibit Current 2.3V £VinhH£ Vss- 0.6V ±10 mA VCEsatH Source Output Saturation Voltage Io = -1A 1.4 1.8 V VCEsatL Sink Output Saturation Voltage Io = 1A 1.2 1.8 V VSENS Sensing Voltage (pins 4, 7, 14, 17) (**) 2 V tr Rise Time 0.1 to 0.9 Vo (*) 250 ns tf Fall Time 0.9 to 0.1 Vo (*) 250 ns ton Turn-on Delay 0.5 Vi to 0.5 Vo (*) 750 ns toff Turn-off Delay 0.5 Vi to 0.5 Vo (*) 200 ns Vi (each channel) Vo Vinh (**) H H H L L H H X (*) L L X (*) L 5/12 L293E L293B Figure 1. Switching Timers Figure 2. Saturation voltage versus Output Current Figure 3. Source Saturation Voltage versus Ambient Temperature Figure 4. Sink Saturation Voltage versus Ambient Temperature Figure 5. Quiescent Logic Supply Current versus Logic Supply Voltage L293E L293B 6/12 Figure 6. Output Voltage versus Input Voltage Figure 7. Output Voltage versus Inhibit Voltage APPLICATION INFORMATION Figure 8. DC Motor Controls (with connection to ground and to the supply voltage) L = Low H = High X = Don’t Care Figure 9. Bidirectional DC Motor Control L = Low H = High X = Don’t Care Vinh A M1 B M2 H H Fast Motor Stop H Run H L Run L Fast Motor Stop L X Free Running X Free Running Motor Stop Motor Stop Inputs Function Vinh = H C = H ; D = L Turn Right C = L ; D = H Turn Left C = D Fast Motor Stop Vinh = L C = X ; D = X Free Running Motor Stop 7/12 L293E L293B Figure 10. Bipolar Stepping Motor Control L293E L293B 8/12 Figure 11. Stepping Motor Driver with Phase Current Control and Short Circuit Protection 9/12 L293E L293B MOUNTING INSTRUCTIONS The Rth j-amb of the L293B and the L293E can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board as shown in figure 12 or to an external heatsink (figure 13). During soldering the pins temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds. The external heatsink or printed circuit copper area must be connected to electrical ground. Figure 12. Example of P.C. Board Copper Area which is Used as Heatsink Figure 13. External Heatsink Mounting Example (Rth = 30°C/W) L293E L293B 10/12 DIP16 DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. a1 0.51 0.020 B 0.77 1.65 0.030 0.065 b 0.5 0.020 b1 0.25 0.010 D 20 0.787 E 8.5 0.335 e 2.54 0.100 e3 17.78 0.700 F 7.1 0.280 I 5.1 0.201 L 3.3 0.130 Z 1.27 0.050 OUTLINE AND MECHANICAL DATA 11/12 L293E L293B DIM. mm inch MIN. TYP. MAX. MIN. TYP. MAX. a1 0.51 0.020 B 0.85 1.40 0.033 0.055 b 0.50 0.020 b1 0.38 0.50 0.015 0.020 D 24.80 0.976 E 8.80 0.346 e 2.54 0.100 e3 22.86 0.900 F 7.10 0.280 I 5.10 0.201 L 3.30 0.130 Z 1.27 0.050 Powerdip 20 OUTLINE AND MECHANICAL DATA Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. STMicroelectronics acknowledges the trademarks of all companies referred to in this document. The ST logo is a registered trademark of STMicroelectronics © 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United LF351 Wide bandwidth single JFET operational amplifiers Features ■ Internally adjustable input offset voltage ■ Low power consumption ■ Wide common-mode (up to VCC +) and differential voltage range ■ Low input bias and offset current ■ Output short-circuit protection ■ High input impedance JFET input stage ■ Internal frequency compensation ■ Latch up free operation ■ High slew rate 16 V/μs (typical) Description These circuits are high speed JFET input single operational amplifiers incorporating well matched, high voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. N DIP8 (Plastic package) D SO-8 (Plastic micro package)        1 - Offset null 1 2 - Inverting input 3 - Non-inverting input 4 - VCC- 5 - Offset null 2 6 - Output 7 - VCC+ 8 - N.C. Pin connections (top view) www.st.com Schematics LF351 2/14 1 Schematics Figure 1. Schematic diagram Figure 2. Input offset voltage null circuit Output Non-inverting input Inverting input VCC VCC 100W 1.3k 30k 35k 35k 100W 1.3k 8.2k Offset Null1 Offset Null2 100W 200W LF351 Absolute maximum ratings and operating conditions 3/14 2 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings Symbol Parameter Value Unit VCC Supply voltage(1) ±18 V Vi Input voltage(2) ±15 V Vid Differential input voltage(3) ±30 V Rthja Thermal resistance junction to ambient(4) SO-8 DIP8 125 85 °C/W Rthjc Thermal resistance junction to case(4) SO-8 DIP8 40 41 °C/W Output short-circuit duration(5) Infinite Tstg Storage temperature range -65 to +150 °C ESD HBM: human body model(6) 500 V MM: machine model(7) 200 V CDM: charged device model(8) 1.5 kV 1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between VCC + and VCC -. 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less. 3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 4. Short-circuits can cause excessive heating and destructive dissipation. Values are typical. 5. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded 6. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 7. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating. 8. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. Table 2. Operating conditions Symbol Parameter LF151 LF251 LF351 Unit VCC Supply voltage 6 to 32 V Toper Operating free-air temperature range -55 to +125 -40 to +105 0 to +70 °C Electrical characteristics LF351 4/14 3 Electrical characteristics Table 3. Electrical characteristics at VCC = ±15 V, Tamb = +25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Vio Input offset voltage (Rs = 10kΩ) Tmin ≤ Tamb ≤ Tmax 3 10 13 mV DVio Input offset voltage drift 10 μV/°C Iio Input offset current (1) Tmin ≤ Tamb ≤ Tmax 5 100 4 pA nA Iib Input bias current (1) Tmin ≤ Tamb ≤ Tmax 20 200 20 pA nA Avd Large signal voltage gain (RL = 2kΩ, Vo = ±10V) Tmin ≤ Tamb ≤ Tmax 50 25 200 V/mV SVR Supply voltage rejection ratio (RS = 10kΩ) Tmin ≤ Tamb ≤ Tmax 80 80 86 dB ICC Supply current, no load Tmin ≤ Tamb ≤ Tmax 1.4 3.4 3.4 mA Vicm Input common mode voltage range ±11 +15 -12 V CMR Common mode rejection ratio (RS = 10kΩ) Tmin ≤ Tamb ≤ Tmax 70 70 86 dB IOS Output short-circuit current Tmin ≤ Tamb ≤ Tmax 10 10 40 60 60 mA ±Vopp Output voltage swing RL = 2kΩ RL = 10kΩ Tmin ≤ Tamb ≤ Tmax RL = 2kΩ RL = 10kΩ 10 12 10 12 12 13.5 V SR Slew rate, Vi = 10V, RL = 2kΩ, CL = 100pF, unity gain 12 16 V/μs tr Rise time, Vi = 20mV, RL = 2kΩ, CL = 100pF, unity gain 0.1 μs Kov Overshoot, Vi = 20mV, RL = 2kΩ, CL = 100pF, unity gain 10 % GBP Gain bandwidth product, f = 100kHz, Vin = 10mV, RL = 2kΩ, CL = 100pF 2.5 4 MHz Ri Input resistance 1012 Ω THD Total harmonic distortion f= 1kHz, Av= 20dB, RL= 2kΩ, CL=100pF, Vo= 2Vpp 0.01 % en Equivalent input noise voltage RS = 100Ω, f = 1KHz 15 ∅m Phase margin 45 Degrees 1. The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature. nV Hz ----------- LF351 Electrical characteristics 5/14 Figure 3. Maximum peak-to-peak output voltage versus frequency Figure 4. Maximum peak-to-peak output voltage versus frequency Figure 5. Maximum peak-to-peak output voltage versus frequency Figure 6. Maximum peak-to-peak output voltage versus free air temp. Figure 7. Maximum peak-to-peak output voltage versus load resistance Figure 8. Maximum peak-to-peak output voltage versus supply voltage Electrical characteristics LF351 6/14 Figure 9. Input bias current versus free air temperature Figure 10. Large signal differential voltage amplification versus free air temp. Figure 11. Large signal differential voltage amplification and phase shift versus frequency Figure 12. Total power dissipation versus free air temperature Figure 13. Supply current per amplifier versus free air temperature Figure 14. Supply current per amplifier versus supply voltage LF351 Electrical characteristics 7/14 Figure 15. Common mode rejection ratio versus free air temperature Figure 16. Voltage follower large signal pulse response Figure 17. Output voltage versus elapsed time Figure 18. Equivalent input noise voltage versus frequency Figure 19. Total harmonic distortion versus frequency Parameter measurement information LF351 8/14 4 Parameter measurement information Figure 20. Voltage follower Figure 21. Gain-of-10 inverting amplifier LF351 Typical application 9/14 5 Typical application Figure 22. Square wave oscillator (0.5 Hz) Figure 23. High Q notch filter Package information LF351 10/14 6 Package information In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com. LF351 Package information 11/14 6.1 DIP8 package information Figure 24. DIP8 package mechanical drawing Table 4. DIP8 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 5.33 0.210 A1 0.38 0.015 A2 2.92 3.30 4.95 0.115 0.130 0.195 b 0.36 0.46 0.56 0.014 0.018 0.022 b2 1.14 1.52 1.78 0.045 0.060 0.070 c 0.20 0.25 0.36 0.008 0.010 0.014 D 9.02 9.27 10.16 0.355 0.365 0.400 E 7.62 7.87 8.26 0.300 0.310 0.325 E1 6.10 6.35 7.11 0.240 0.250 0.280 e 2.54 0.100 eA 7.62 0.300 eB 10.92 0.430 L 2.92 3.30 3.81 0.115 0.130 0.150 Package information LF351 12/14 6.2 SO-8 package information Figure 25. SO-8 package mechanical drawing Table 5. SO-8 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.75 0.069 A1 0.10 0.25 0.004 0.010 A2 1.25 0.049 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k 1° 8° 1° 8° ccc 0.10 0.004 LF351 Ordering information 13/14 7 Ordering information 8 Revision history Table 6. Order codes Order code Temperature range Package Packing Marking LF151N -55°C, +125°C DIP8 Tape LF151N LF151D LF151DT SO-8 Tape or Tape & reel 151 LF251N -40°C, +105°C DIP8 Tape LF251N LF251D LF251DT SO-8 Tape or Tape & reel 251 LF351N 0°C, +70°C DIP8 Tape LF351N LF351D LF351DT SO-8 Tape or Tape & reel 351 Table 7. Document revision history Date Revision Changes 17-May-2001 1 Initial release. 28-April-2008 2 Updated document format. LF351 14/14 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com LM158, LM258, LM358 Low-power dual operational amplifiers Datasheet - production data Features • Internally frequency-compensated • Large DC voltage gain: 100 dB • Wide bandwidth (unity gain): 1.1 MHz (temperature compensated) • Very low supply current per operator essentially independent of supply voltage • Low input bias current: 20 nA (temperature compensated) • Low input offset voltage: 2 mV • Low input offset current: 2 nA • Input common-mode voltage range includes negative rails • Differential input voltage range equal to the power supply voltage • Large output voltage swing 0 V to (VCC + -1.5 V) Description These circuits consist of two independent, high-gain, internally frequency-compensated op-amps, specifically designed to operate from a single power supply over a wide range of voltages. The low-power supply drain is independent of the magnitude of the power supply voltage. Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits, which can now be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5 V, which is used in logic systems and will easily provide the required interface electronics with no additional power supply. In linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage. DIP8 (Plastic package) SO8 and MiniSO8 (Plastic micropackage) TSSOP8 (Thin shrink small outline package) Pin connections (Top view) 1 2 3 Out1 In1- In1+ Vcc- 4 8 7 6 Vcc+ Out2 In2- 5 In2+ DFN8 2 x 2 mm (Plastic micropackage) www.st.com Contents LM158, LM258, LM358 2/22 DocID2163 Rev 11 Contents 1 Schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6.1 DIP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.2 SO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.3 MiniSO-8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.4 TSSOP8 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.5 DFN8 2 x 2 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DocID2163 Rev 11 3/22 LM158, LM258, LM358 Schematic diagram 22 1 Schematic diagram Figure 1. Schematic diagram (1/2 LM158) 6μA 4μA 100μA Q2 Q3 Q1 Q4 Inverting input Non-inverting input Q8 Q9 Q10 Q11 Q12 50μA Q13 Output Q7 Q6 Q5 R SC VCC CC GND Absolute maximum ratings LM158, LM258, LM358 4/22 DocID2163 Rev 11 2 Absolute maximum ratings Table 1. Absolute maximum ratings Symbol Parameter LM158,A LM258,A LM358,A Unit VCC Supply voltage +/-16 or 32 V Vi Input voltage 32 V Vid Differential input voltage 32 V Output short-circuit duration (1) 1. Short-circuits from the output to VCC can cause excessive heating if VCC > 15 V. The maximum output current is approximately 40 mA independent of the magnitude of VCC. Destructive dissipation can result from simultaneous short circuits on all amplifiers. Infinite Iin Input current (2) 2. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward-biased and thereby acting as input diode clamp. In addition to this diode action, there is NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output is restored for input voltages above -0.3 V. 5 mA in DC or 50 mA in AC (duty cycle = 10%, T=1s) mA Toper Operating free-air temperature range -55 to +125 -40 to +105 0 to +70 °C Tstg Storage temperature range -65 to +150 °C Tj Maximum junction temperature 150 °C Rthja Thermal resistance junction to ambient(3) SO8 MiniSO8 TSSOP8 DIP8 DFN8 2x2 3. Short-circuits can cause excessive heating and destructive dissipation. Rth are typical values. 125 190 120 85 57 °C/W Rthjc Thermal resistance junction to case (3) SO8 MiniSO8 TSSOP8 DIP8 40 39 37 41 °C/W ESD HBM: human body model(4) 4. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kW resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 300 V MM: machine model(5) 5. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 W). This is done for all couples of connected pin combinations while the other pins are floating. 200 V CDM: charged device model(6) 6. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. 1.5 kV DocID2163 Rev 11 5/22 LM158, LM258, LM358 Operating conditions 22 3 Operating conditions Table 2. Operating conditions Symbol Parameter Value Unit VCC Supply voltage 3 to 30 V Vicm Common mode input voltage range(1) 1. When used in comparator, the functionality is guaranteed as long as at least one input remains within the operating common mode voltage range. VCC - -0.3 to VCC + -1.5 V Toper Operating free air temperature range LM158 LM258 LM358 -55 to +125 -40 to +105 0 to +70 °C Electrical characteristics LM158, LM258, LM358 6/22 DocID2163 Rev 11 4 Electrical characteristics Table 3. Electrical characteristics for VCC + = +5 V, VCC - = Ground, Vo = 1.4 V, Tamb = +25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Vio Input offset voltage (1) LM158A LM258A, LM358A LM158, LM258 LM358 1 2 2357 mV Tmin £ Tamb £ Tmax LM158A, LM258A, LM358A LM158, LM258 LM358 479 DVio Input offset voltage drift LM158A, LM258A, LM358A LM158, LM258, LM358 77 15 30 μV/°C Iio Input offset current LM158A, LM258A, LM358A LM158, LM258, LM358 Tmin £ Tamb £ Tmax LM158A, LM258A, LM358A LM158, LM258, LM358 22 10 30 30 40 nA DIio Input offset current drift LM158A, LM258A, LM358A LM158, LM258, LM358 10 10 200 300 pA/°C Iib Input bias current (2) LM158A, LM258A, LM358A LM158, LM258, LM358 Tmin £ Tamb £ Tmax LM158A, LM258A, LM358A LM158, LM258, LM358 20 20 50 150 100 200 nA Avd Large signal voltage gain VCC += +15 V, RL = 2 kW, Vo = 1.4 V to 11.4 V Tmin £ Tamb £ Tmax 50 25 100 V/mV SVR Supply voltage rejection ratio VCC + = 5 V to 30 V, Rs £ 10 kW Tmin £ Tamb £ Tmax 65 65 100 dB ICC Supply current, all amp, no load Tmin £ Tamb £ Tmax VCC + = +5 V Tmin £ Tamb £ Tmax VCC + = +30 V 0.7 1.2 2 mA Vicm Input common mode voltage range VCC += +30 V (3) Tmin £ Tamb £ Tmax 0 0 VCC + -1.5 VCC + -2 V DocID2163 Rev 11 7/22 LM158, LM258, LM358 Electrical characteristics 22 CMR Common mode rejection ratio Rs £ 10 kW Tmin £ Tamb £ Tmax 70 60 85 dB Isource Output current source VCC + = +15 V, Vo = +2 V, Vid = +1 V 20 40 60 mA Isink Output sink current VCC + = +15 V, Vo = +2 V, Vid = -1 V VCC + = +15 V, Vo = +0.2 V, Vid = -1 V 10 12 20 50 mA μA VOH High level output voltage RL = 2 kW, VCC + = 30 V Tmin £ Tamb £ Tmax RL = 10 kW, VCC + = 30 V Tmin £ Tamb £ Tmax 26 26 27 27 27 28 V VOL Low level output voltage RL = 10 kW Tmin £ Tamb £ Tmax 5 20 20 mV SR Slew rate VCC + = 15 V, Vi = 0.5 to 3 V, RL = 2 kW, CL = 100 pF, unity gain 0.3 0.6 V/μs GBP Gain bandwidth product VCC + = 30 V, f = 100 kHz, Vin = 10 mV, RL = 2 kW, CL = 100 pF 0.7 1.1 MHz THD Total harmonic distortion f = 1 kHz, Av = 20 dB, RL = 2 kW, Vo = 2 Vpp, CL = 100 pF, VO = 2 Vpp 0.02 % en Equivalent input noise voltage f = 1 kHz, Rs = 100 W, VCC + = 30 V 55 Vo1/Vo2 Channel separation(4) 1 kHz £ f £ 20 kHz 120 dB 1. Vo = 1.4 V, Rs = 0 W, 5 V < VCC + < 30 V, 0 < Vic < VCC + - 1.5 V 2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so there is no change in the load on the input lines. 3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is VCC + - 1.5 V, but either or both inputs can go to +32 V without damage. 4. Due to the proximity of external components, ensure that stray capacitance between these external parts does not cause coupling. Typically, this can be detected because this type of capacitance increases at higher frequencies. Table 3. Electrical characteristics for VCC + = +5 V, VCC - = Ground, Vo = 1.4 V, Tamb = +25°C (unless otherwise specified) (continued) Symbol Parameter Min. Typ. Max. Unit nV Hz ----------- Electrical characteristics LM158, LM258, LM358 8/22 DocID2163 Rev 11 Figure 2. Open-loop frequency response Figure 3. Large signal frequency response VOLTAGE GAIN (dB) 1.0 10 100 1k 10k 100k 1M 10M VCC = +10 to +15 V & FREQUENCY (Hz) 10 M􀀷 VI VCC/2 VCC = 30 V & -55°C 0.1 􀁍F VCC VO - + -55°C Tamb +125°C 140 120 100 80 60 40 20 0 Tamb +125°C - + OUTPUT SWING (Vpp) 1k 10k 100k 1M FREQUENCY (Hz) 100 k􀀷 VI 1 k􀀷 VO 20 15 10 5 0 2 k􀀷 +15 V +7 V Figure 4. Voltage follower pulse response with VCC = 15 V Figure 5. Voltage follower pulse response with VCC = 30 V INPUT VOLTAGE (V) TIME (􀁍s) RL 2 k􀀷 OUTPUT VOLTAGE (V) 4 3 2 1 0 3 2 1 VCC = +15 V 0 10 20 30 40 Input Output 50 pF + - OUTPUT VOLTAGE (mV) 0 1 2 3 4 5 6 7 8 TIME (􀁍s) eI Tamb = +25°C VCC = 30 V 500 450 400 350 300 250 eO Figure 6. Input current Figure 7. Output voltage vs sink current INPUT CURRENT (mA) TEMPERATURE (°C) -55 -35 -15 5 25 45 65 85 105 125 90 80 70 60 50 40 30 20 10 0 VCC = +30 V VCC = +15 V VCC = +5 V VI = 0 V - + OUTPUT VOLTAGE (v) 0.001 0.01 0.1 1 10 100 OUTPUT SINK CURRENT (mA) VO VCC/2 VCC = +5 V VCC = +15 V VCC = +30 V VCC IO 10 1 0.1 0.01 Tamb = + 25°C DocID2163 Rev 11 9/22 LM158, LM258, LM358 Electrical characteristics 22 Figure 8. Output voltage vs source current Figure 9. Current limiting + - OUTPUT VOLTAGE REFERENCED TO VCC+ (V) 0.001 0.01 0.1 1 10 100 OUTPUT SOURCE CURRENT (mA) VO Independent of VCC VCC/2 IO 8 5 2 1 Tamb = + 25°C VCC 7 6 4 3 - + OUTPUT CURRENT (mA) -55 -35 -15 5 25 45 65 85 105 125 TEMPERATURE °C IO 90 80 50 40 30 20 10 0 70 60 Figure 10. Input voltage range Figure 11. Open-loop gain Figure 12. Supply current Figure 13. Input current Negative Positive INPUT VOLTAGE (V) 0 5 10 15 POWER SUPPLY VOLTAGE (±V) 10 5 15 VOLTAGE GAIN (dB) POSITIVE SUPPLY VOLTAGE (V) 0 10 20 30 40 120 40 160 80 RL = 20 k􀀷 RL = 2 k􀀷 - + SUPPLY CURRENT (mA) 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) mA VCC ID Tamb = 0°C to +125°C 4 3 2 1 Tamb = -55°C INPUT CURRENT (nA) 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) 100 75 50 25 Tamb = +25°C Electrical characteristics LM158, LM258, LM358 10/22 DocID2163 Rev 11 Figure 14. Gain bandwidth product Figure 15. Power supply rejection ratio GAIN BANDWIDTH PRODUCT (MHz) -55 -35 -15 5 25 45 65 85 105 125 TEMPERATURE (°C) 1.05 0.45 0.3 0.15 VCC = ± 15 V 1.2 0.9 0.75 0.6 1.35 1.5 0 POWER SUPPLY REJECTION RATIO (dB) SVR -55 -35 -15 5 25 45 65 85 105 125 100 80 75 70 105 95 90 85 110 115 65 TEMPERATURE (°C) 60 Figure 16. Common-mode rejection ratio Figure 17. Phase margin vs. capacitive load COMMON MODE REJECTION RATIO (dB) -55 -35 -15 5 25 45 65 85 105 125 100 80 75 70 105 95 90 85 110 115 65 TEMPERATURE (°C) 60 Phase Margin at Vcc=15V and Vicm=7.5V Vs. Iout and Capacitive load value DocID2163 Rev 11 11/22 LM158, LM258, LM358 Typical applications 22 5 Typical applications Single supply voltage VCC = +5 VDC. Figure 18. AC-coupled inverting amplifier Figure 19. Non-inverting DC amplifier 1/2 LM158 ~ 0 2VPP R 10k L Co eo R 6.2k B R 100k f R1 CI 10k eI VCC R2 100k C1 10F R3 100k A =- R V R1 f (as shown AV = -10) R1 10k R2 1M 1/2 LM158 10k eI eO +5V e O (V) (mV) 0 AV= 1 + R2 R1 (As shown AV = 101) Figure 20. AC-coupled non-inverting amplifier Figure 21. DC summing amplifier 1/2 LM158 ~ 0 2VPP R 10k L Co eo R 6.2k B C1 0.1F eI VCC (as shown AV = 11) A = 1 +R2 V R1 R1 100k R2 1M CI R3 1M R4 100k R5 100k C2 10F 1/2 LM158 eO e 4 e 3 e 2 e 1 100k 100k 100k 100k 100k 100k eo = e1 + e2 - e3 - e4 where (e1 + e2) ≥ (e3 + e4) to keep eo ≥ 0V Figure 22. High input Z, DC differential amplifier Figure 23. High input Z adjustable gain DC instrumentation amplifier R1 100k R2 100k R4 100k R3 100k +V2 +V1 Vo 1/2 LM158 1/2 LM158 if R1 = R5 and R3 = R4 = R6 = R7 eo = [1 + ] ( (e2 + e1) As shown eo = 101 (e2 + e1) 2R1 R2 ----------- R3 100k eO 1/2 LM158 R1 100k e 1 R7 100k R6 100k R5 100k e 2 R2 2k Gain adjust R4 100k 1/2 LM158 1/2 LM158 if R1 = R5 and R3 = R4 = R6 = R7 eo = [ 1 + ] ( (e2 + e1) As shown eo = 101 (e2 + e1) 2R1 R2 ----------- Typical applications LM158, LM258, LM358 12/22 DocID2163 Rev 11 Figure 24. Using symmetrical amplifiers to reduce input current Figure 25. Low drift peak detector Figure 26. Active band-pass filter 1/2 LM158 IB 2N 929 0.001F IB 3M IB I eo I e I IB IB Input current compensation 1.5M 1/2 LM158 IB 2N 929 0.001F IB 3R 3M IB Input current compensation eo IB e I 1/2 LM158 Zo ZI C 1F 2IB R 1M 2IB 1/2 LM158 1/2 LM158 1/2 LM158 R8 100k C3 10F R7 100k R5 470k C1 330pF Vo VCC R6 470k C2 330pF R4 10M R1 100k R2 100k +V1 R3 100k 1/2 LM158 1/2 LM158 DocID2163 Rev 11 13/22 LM158, LM258, LM358 Package information 22 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Package information LM158, LM258, LM358 14/22 DocID2163 Rev 11 6.1 DIP8 package information Figure 27. DIP8 package mechanical drawing Table 4. DIP8 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 5.33 0.210 A1 0.38 0.015 A2 2.92 3.30 4.95 0.115 0.130 0.195 b 0.36 0.46 0.56 0.014 0.018 0.022 b2 1.14 1.52 1.78 0.045 0.060 0.070 c 0.20 0.25 0.36 0.008 0.010 0.014 D 9.02 9.27 10.16 0.355 0.365 0.400 E 7.62 7.87 8.26 0.300 0.310 0.325 E1 6.10 6.35 7.11 0.240 0.250 0.280 e 2.54 0.100 eA 7.62 0.300 eB 10.92 0.430 L 2.92 3.30 3.81 0.115 0.130 0.150 DocID2163 Rev 11 15/22 LM158, LM258, LM358 Package information 22 6.2 SO8 package information Figure 28. SO8 package mechanical drawing Table 5. SO8 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.75 0.069 A1 0.10 0.25 0.004 0.010 A2 1.25 0.049 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 L1 1.04 0.040 k 1° 8° 1° 8° ccc 0.10 0.004 Package information LM158, LM258, LM358 16/22 DocID2163 Rev 11 6.3 MiniSO8 package information Figure 29. MiniSO8 package mechanical drawing Table 6. MiniSO8 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.1 0.043 A1 0 0.15 0 0.006 A2 0.75 0.85 0.95 0.030 0.033 0.037 b 0.22 0.40 0.009 0.016 c 0.08 0.23 0.003 0.009 D 2.80 3.00 3.20 0.11 0.118 0.126 E 4.65 4.90 5.15 0.183 0.193 0.203 E1 2.80 3.00 3.10 0.11 0.118 0.122 e 0.65 0.026 L 0.40 0.60 0.80 0.016 0.024 0.031 L1 0.95 0.037 L2 0.25 0.010 k 0° 8° 0° 8° ccc 0.10 0.004 DocID2163 Rev 11 17/22 LM158, LM258, LM358 Package information 22 6.4 TSSOP8 package information Figure 30. TSSOP8 package mechanical drawing Table 7. TSSOP8 package mechanical data Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 1.2 0.047 A1 0.05 0.15 0.002 0.006 A2 0.80 1.00 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 2.90 3.00 3.10 0.114 0.118 0.122 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 0.65 0.0256 k 0° 8° 0° 8° L 0.45 0.60 0.75 0.018 0.024 0.030 L1 1 0.039 aaa 0.1 0.004 Package information LM158, LM258, LM358 18/22 DocID2163 Rev 11 6.5 DFN8 2 x 2 package mechanical data Figure 31. DFN8 2 x 2 package mechanical drawing Table 8. DFN8 2 x 2 x 0.6 mm package mechanical data (pitch 0.5 mm) Ref. Dimensions Millimeters Inches Min. Typ. Max. Min. Typ. Max. A 0.51 0.55 0.60 0.020 0.022 0.024 A1 0.05 0.002 A3 0.15 0.006 b 0.18 0.25 0.30 0.007 0.010 0.012 D 1.85 2.00 2.15 0.073 0.079 0.085 D2 1.45 1.60 1.70 0.057 0.063 0.067 E 1.85 2.00 2.15 0.073 0.079 0.085 E2 0.75 0.90 1.00 0.030 0.035 0.039 e 0.50 0.020 L 0.50 0.020 ddd 0.08 0.003 DocID2163 Rev 11 19/22 LM158, LM258, LM358 Package information 22 Figure 32. DFN8 2 x 2 footprint recommendation Ordering information LM158, LM258, LM358 20/22 DocID2163 Rev 11 7 Ordering information Table 9. Order codes Order code Temperature range Package Packaging Marking LM158N -55°C, +125°C DIP8 Tube LM158N LM158QT DFN8 2x2 Tape and reel K4A LM158DT SO8 158 LM258AN LM258N -40°C, +105°C DIP8 Tube LM258A LM258N LM258ADT SO8 Tape and reel 258A LM258AYDT(1) SO8 Automotive grade 258AY LM258D LM258DT SO8 Tube or tape and reel 258 Tape and reel LM258PT LM258APT TSSOP8 258 258A LM258YPT(2) LM258AYPT(2) TSSOP8 Automotive grade 258Y 258AY LM258AST LM258ST MiniSO8 K408 K416 LM258QT DFN8 2x2 K4C LM358N LM358AN 0°C, +70°C DIP8 Tube LM358N LM358AN LM358D LM358DT SO8 Tube or tape and reel 358 LM358YDT(1) SO8 Automotive grade Tape and reel 358Y LM358AD LM358ADT SO8 Tube or tape and reel 358A LM358PT LM358APT TSSOP8 Tape and reel 358 358A LM358YPT(2) LM358AYPT(2) TSSOP8 Automotive grade 358Y 358AY LM358ST LM358AST MiniSO8 K405 K404 LM358QT DFN8 2x2 K4E 1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are qualified. 2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going. DocID2163 Rev 11 21/22 LM158, LM258, LM358 Revision history 22 8 Revision history Table 10. Document revision history Date Revision Changes 01-Jul- 2003 1 First release. 02-Jan-2005 2 Rthja and Tj parameters added in AMR Table 1 on page 4. 01-Jul-2005 3 ESD protection inserted in Table 1 on page 4. 05-Oct-2006 4 Added Figure 17: Phase margin vs. capacitive load. 30-Nov-2006 5 Added missing ordering information. 25-Apr-2007 6 Removed LM158A, LM258A and LM358A from document title. Corrected error in MiniSO-8 package data. L1 is 0.004 inch. Added automotive grade order codes in Section 7 on page 20. 12-Feb-2008 7 Corrected VCC max (30 V instead of 32 V) in operating conditions. Changed presentation of electrical characteristics table. Deleted Vopp parameter in electrical characteristics table. Corrected miniSO-8 package information. Corrected temperature range for automotive grade order codes. Updated automotive grade footnotes in order codes table. 26-Aug-2008 8 Added limitations on input current in Table 1: Absolute maximum ratings. Corrected title for Figure 11. Added E and L1 parameters in Table 5: SO8 package mechanical data. Changed Figure 30. 02-Sep-2011 9 In Chapter 6: Package information, added: – DFN8 2 x 2 mm package mechanical drawing – DFN8 2 x 2 mm recommended footprint – DFN8 2 x 2 mm order codes. 06-Apr-2012 10 Removed order codes LM158YD, LM258AYD, LM258YD and LM358YD from Table 9: Order codes. 11-Jun-2013 11 Table 9: Order codes: removed order codes LM158D, LM158YDT, LM258YDT, and LM258AD; added automotive grade qualification to order codes LM258ATDT and LM358YDT; updated marking for order codes LM158DT and LM258D/LM258DT; updated temperature range, packages, and packaging for several order codes. LM158, LM258, LM358 22/22 DocID2163 Rev 11 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com L78 Positive voltage regulator ICs Datasheet - production data Features • Output current up to 1.5 A • Output voltages of 5; 6; 8; 8.5; 9; 12; 15; 18; 24 V • Thermal overload protection • Short circuit protection • Output transition SOA protection • 2 % output voltage tolerance (A version) • Guaranteed in extended temperature range (A version) Description The L78 series of three-terminal positive regulators is available in TO-220, TO-220FP, D²PAK and DPAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type embeds internal current limiting, thermal shutdown and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents. TO-220 TO-220FP DPAK D²PAK www.st.com Contents Positive voltage regulator ICs 2/58 DocID2143 Rev 32 Contents 1 Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 Test circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.1 Design consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7 Typical performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9 Packaging mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 10 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 DocID2143 Rev 32 3/58 Positive voltage regulator ICs List of tables 58 List of tables Table 1. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 2. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 3. Electrical characteristics of L7805A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 4. Electrical characteristics of L7806A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 5. Electrical characteristics of L7808A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 6. Electrical characteristics of L7809A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 7. Electrical characteristics of L7812A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 8. Electrical characteristics of L7815A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 9. Electrical characteristics of L7824A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 10. Electrical characteristics of L7805C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 11. Electrical characteristics of L7806C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 12. Electrical characteristics of L7808C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 13. Electrical characteristics of L7885C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 14. Electrical characteristics of L7809C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 15. Electrical characteristics of L7812C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 16. Electrical characteristics of L7815C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 17. Electrical characteristics of L7818C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 18. Electrical characteristics of L7824C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 19. TO-220 (dual gauge) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 20. TO-220 SG (single gauge) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 21. TO-220FP mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 22. DPAK mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 23. D²PAK (SMD 2L STD-ST) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 24. D²PAK (SMD 2L Wooseok-subcon.) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 25. DPAK and D²PAK tape and reel mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Table 26. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table 27. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 List of figures Positive voltage regulator ICs 4/58 DocID2143 Rev 32 List of figures Figure 1. Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 2. Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 3. Schematic diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 4. Application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 5. DC parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 6. Load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 7. Ripple rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 8. Fixed output regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 9. Current regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 10. Circuit for increasing output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 11. Adjustable output regulator (7 to 30 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 12. 0.5 to 10 V regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 13. High current voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 14. High output current with short circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 15. Tracking voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 16. Split power supply (± 15 V - 1 A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 17. Negative output voltage circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 18. Switching regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 19. High input voltage circuit (configuration 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 20. High input voltage circuit (configuration 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 21. High input and output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 22. Reducing power dissipation with dropping resistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 23. Remote shutdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 24. Power AM modulator (unity voltage gain, IO £ 0.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 25. Adjustable output voltage with temperature compensation . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 26. Light controllers (VO(min) = VXX + VBE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 27. Protection against input short-circuit with high capacitance loads . . . . . . . . . . . . . . . . . . . 34 Figure 28. Dropout voltage vs. junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 29. Peak output current vs. input/output differential voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 30. Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 31. Output voltage vs. junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 32. Output impedance vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 33. Quiescent current vs. junction temp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 34. Load transient response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 35. Line transient response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 36. Quiescent current vs. input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 37. TO-220 (dual gauge) drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure 38. TO-220 SG (single gauge) drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 39. TO-220FP drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 40. DPAK drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 41. DPAK footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 42. D²PAK (SMD 2L STD-ST) type A drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 43. D²PAK (SMD 2L Wooseok-subcon.) drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Figure 44. D²PAK (SMD 2L Wooseok-subcon.) footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Figure 45. Tube for TO-220 (dual gauge) (mm.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 46. Tube for TO-220 (single gauge) (mm.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Figure 47. Tape for DPAK and D2PAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Figure 48. Reel for DPAK and D2PAK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 DocID2143 Rev 32 5/58 Positive voltage regulator ICs Diagram 58 1 Diagram Figure 1. Block diagram Pin configuration Positive voltage regulator ICs 6/58 DocID2143 Rev 32 2 Pin configuration Figure 2. Pin connections (top view) Figure 3. Schematic diagram DocID2143 Rev 32 7/58 Positive voltage regulator ICs Maximum ratings 58 3 Maximum ratings Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. Table 1. Absolute maximum ratings Symbol Parameter Value Unit VI DC input voltage for VO= 5 to 18 V 35 V for VO= 20, 24 V 40 IO Output current Internally limited PD Power dissipation Internally limited TSTG Storage temperature range -65 to 150 °C TOP Operating junction temperature range for L78xxC, L78xxAC 0 to 125 °C for L78xxAB -40 to 125 Table 2. Thermal data Symbol Parameter D²PAK DPAK TO-220 TO-220FP Unit RthJC Thermal resistance junction-case 3 8 5 5 °C/W RthJA Thermal resistance junction-ambient 62.5 100 50 60 °C/W Figure 4. Application circuits Test circuits Positive voltage regulator ICs 8/58 DocID2143 Rev 32 4 Test circuits Figure 5. DC parameter Figure 6. Load regulation Figure 7. Ripple rejection DocID2143 Rev 32 9/58 Positive voltage regulator ICs Electrical characteristics 58 5 Electrical characteristics VI = 10 V, IO = 1 A, TJ = 0 to 125 °C (L7805AC), TJ = -40 to 125 °C (L7805AB), unless otherwise specified(a). a. Minimum load current for regulation is 5 mA. Table 3. Electrical characteristics of L7805A Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 4.9 5 5.1 V VO Output voltage IO = 5 mA to 1 A, VI = 7.5 to 18 V 4.8 5 5.2 V VO Output voltage IO = 1 A, VI = 18 to 20 V, TJ = 25°C 4.8 5 5.2 V ΔVO (1) Line regulation VI = 7.5 to 25 V, IO = 500 mA, TJ = 25°C 7 50 mV VI = 8 to 12 V 10 50 mV VI = 8 to 12 V, TJ = 25°C 2 25 mV VI = 7.3 to 20 V, TJ = 25°C 7 50 mV ΔVO (1) Load regulation IO = 5 mA to 1 A 25 100 IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV IO = 250 to 750 mA 8 50 Iq Quiescent current TJ = 25°C 4.3 6 mA 6 mA ΔIq Quiescent current change VI = 8 to 23 V, IO = 500 mA 0.8 mA VI = 7.5 to 20 V, TJ = 25°C 0.8 mA IO = 5 mA to 1 A 0.5 mA SVR Supply voltage rejection VI = 8 to 18 V, f = 120 Hz, IO = 500 mA 68 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V eN Output noise voltage TA = 25°C, B =10 Hz to 100 kHz 10 μV/VO RO Output resistance f = 1 kHz 17 mΩ Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A Iscp Short circuit peak current TJ = 25°C 2.2 A ΔVO/ΔT Output voltage drift -1.1 mV/°C 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. Electrical characteristics Positive voltage regulator ICs 10/58 DocID2143 Rev 32 VI = 11 V, IO = 1 A, TJ = 0 to 125 °C (L7806AC), TJ = -40 to 125 °C (L7806AB), unless otherwise specified(b). b. Minimum load current for regulation is 5 mA. Table 4. Electrical characteristics of L7806A Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 5.88 6 6.12 V VO Output voltage IO = 5 mA to 1 A, VI = 8.6 to 19 V 5.76 6 6.24 V VO Output voltage IO = 1 A, VI = 19 to 21 V, TJ = 25°C 5.76 6 6.24 V ΔVO (1) Line regulation VI = 8.6 to 25 V, IO = 500 mA, TJ = 25°C 9 60 mV VI = 9 to 13 V 11 60 mV VI = 9 to 13 V, TJ = 25°C 3 30 mV VI = 8.3 to 21 V, TJ = 25°C 9 60 mV ΔVO (1) Load regulation IO = 5 mA to 1 A 25 100 IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV IO = 250 to 750 mA 10 50 Iq Quiescent current TJ = 25°C 4.3 6 mA 6 mA ΔIq Quiescent current change VI = 9 to 24 V, IO = 500 mA 0.8 mA VI = 8.6 to 21 V, TJ = 25°C 0.8 mA IO = 5 mA to 1 A 0.5 mA SVR Supply voltage rejection VI = 9 to 19 V, f = 120 Hz, IO = 500 mA 65 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V eN Output noise voltage TA = 25°C, B =10 Hz to 100 kHz 10 μV/VO RO Output resistance f = 1 kHz 17 mΩ Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A Iscp Short circuit peak current TJ = 25°C 2.2 A ΔVO/ΔT Output voltage drift -0.8 mV/°C 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. DocID2143 Rev 32 11/58 Positive voltage regulator ICs Electrical characteristics 58 VI = 14 V, IO = 1 A, TJ = 0 to 125 °C (L7808AC), TJ = -40 to 125 °C (L7808AB), unless otherwise specified(c). c. Minimum load current for regulation is 5 mA. Table 5. Electrical characteristics of L7808A Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 7.84 8 8.16 V VO Output voltage IO = 5 mA to 1 A, VI = 10.6 to 21 V 7.7 8 8.3 V VO Output voltage IO = 1 A, VI = 21 to 23 V, TJ = 25°C 7.7 8 8.3 V ΔVO (1) Line regulation VI = 10.6 to 25 V, IO = 500 mA, TJ = 25°C 12 80 mV VI = 11 to 17 V 15 80 mV VI = 11 to 17 V, TJ = 25°C 5 40 mV VI = 10.4 to 23 V, TJ = 25°C 12 80 mV ΔVO (1) Load regulation IO = 5 mA to 1 A 25 100 IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV IO = 250 to 750 mA 10 50 Iq Quiescent current TJ = 25°C 4.3 6 mA 6 mA ΔIq Quiescent current change VI = 11 to 23 V, IO = 500 mA 0.8 mA VI = 10.6 to 23 V, TJ = 25°C 0.8 mA IO = 5 mA to 1 A 0.5 mA SVR Supply voltage rejection VI = 11.5 to 21.5 V, f = 120 Hz, IO = 500 mA 62 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V eN Output noise voltage TA = 25°C, B =10 Hz to 100 kHz 10 μV/VO RO Output resistance f = 1 kHz 18 mΩ Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A Iscp Short circuit peak current TJ = 25°C 2.2 A ΔVO/ΔT Output voltage drift -0.8 mV/°C 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. Electrical characteristics Positive voltage regulator ICs 12/58 DocID2143 Rev 32 VI = 15 V, IO = 1 A, TJ = 0 to 125 °C (L7809AC), TJ = -40 to 125 °C (L7809AB), unless otherwise specified(d). d. Minimum load current for regulation is 5 mA. Table 6. Electrical characteristics of L7809A Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 8.82 9 9.18 V VO Output voltage IO = 5 mA to 1 A, VI = 10.6 to 22 V 8.65 9 9.35 V VO Output voltage IO = 1 A, VI = 22 to 24 V, TJ = 25°C 8.65 9 9.35 V ΔVO (1) Line regulation VI = 10.6 to 25 V, IO = 500 mA, TJ = 25°C 12 90 mV VI = 11 to 17 V 15 90 mV VI = 11 to 17 V, TJ = 25°C 5 45 mV VI = 11.4 to 23 V, TJ = 25°C 12 90 mV ΔVO (1) Load regulation IO = 5 mA to 1 A 25 100 IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV IO = 250 to 750 mA 10 50 Iq Quiescent current TJ = 25°C 4.3 6 mA 6 mA ΔIq Quiescent current change VI = 11 to 25 V, IO = 500 mA 0.8 mA VI = 10.6 to 23 V, TJ = 25°C 0.8 mA IO = 5 mA to 1 A 0.5 mA SVR Supply voltage rejection VI = 11.5 to 21.5 V, f = 120 Hz, IO = 500 mA 61 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V eN Output noise voltage TA = 25°C, B =10 Hz to 100 kHz 10 μV/VO RO Output resistance f = 1 kHz 18 mΩ Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A Iscp Short circuit peak current TJ = 25°C 2.2 A ΔVO/ΔT Output voltage drift -0.8 mV/°C 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. DocID2143 Rev 32 13/58 Positive voltage regulator ICs Electrical characteristics 58 VI = 19 V, IO = 1 A, TJ = 0 to 125 °C (L7812AC), TJ = -40 to 125 °C (L7812AB), unless otherwise specified(e). e. Minimum load current for regulation is 5 mA. Table 7. Electrical characteristics of L7812A Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 11.75 12 12.25 V VO Output voltage IO = 5 mA to 1 A, VI = 14.8 to 25 V 11.5 12 12.5 V VO Output voltage IO = 1 A, VI = 25 to 27 V, TJ = 25°C 11.5 12 12.5 V ΔVO (1) Line regulation VI = 14.8 to 30 V, IO = 500 mA, TJ = 25°C 13 120 mV VI = 16 to 12 V 16 120 mV VI = 16 to 12 V, TJ = 25°C 6 60 mV VI = 14.5 to 27 V, TJ = 25°C 13 120 mV ΔVO (1) Load regulation IO = 5 mA to 1 A 25 100 IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV IO = 250 to 750 mA 10 50 Iq Quiescent current TJ = 25°C 4.4 6 mA 6 mA ΔIq Quiescent current change VI = 15 to 30 V, IO = 500 mA 0.8 mA VI = 14.8 to 27 V, TJ = 25°C 0.8 mA IO = 5 mA to 1 A 0.5 mA SVR Supply voltage rejection VI = 15 to 25 V, f = 120 Hz, IO = 500 mA 60 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V eN Output noise voltage TA = 25°C, B = 10 Hz to 100 kHz 10 μV/VO RO Output resistance f = 1 kHz 18 mΩ Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A Iscp Short circuit peak current TJ = 25°C 2.2 A ΔVO/ΔT Output voltage drift -1 mV/°C 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. Electrical characteristics Positive voltage regulator ICs 14/58 DocID2143 Rev 32 VI = 23 V, IO = 1 A, TJ = 0 to 125 °C (L7815AC), TJ = -40 to 125 °C (L7815AB), unless otherwise specified(f). f. Minimum load current for regulation is 5 mA. Table 8. Electrical characteristics of L7815A Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 14.7 15 15.3 V VO Output voltage IO = 5 mA to 1 A, VI = 17.9 to 28 V 14.4 15 15.6 V VO Output voltage IO = 1 A, VI = 28 to 30 V, TJ = 25°C 14.4 15 15.6 V ΔVO (1) Line regulation VI = 17.9 to 30 V, IO = 500 mA, TJ = 25°C 13 150 mV VI = 20 to 26 V 16 150 mV VI = 20 to 26 V, TJ = 25°C 6 75 mV VI = 17.5 to 30 V, TJ = 25°C 13 150 mV ΔVO (1) Load regulation IO = 5 mA to 1 A 25 100 IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV IO = 250 to 750 mA 10 50 Iq Quiescent current TJ = 25°C 4.4 6 mA 6 mA ΔIq Quiescent current change VI = 17.5 to 30 V, IO = 500 mA 0.8 mA VI = 17.5 to 30 V, TJ = 25°C 0.8 mA IO = 5 mA to 1 A 0.5 mA SVR Supply voltage rejection VI = 18.5 to 28.5 V, f = 120 Hz, IO = 500 mA 58 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V eN Output noise voltage TA = 25°C, B = 10Hz to 100 kHz 10 μV/VO RO Output resistance f = 1 kHz 19 mΩ Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A Iscp Short circuit peak current TJ = 25°C 2.2 A ΔVO/ΔT Output voltage drift -1 mV/°C 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. DocID2143 Rev 32 15/58 Positive voltage regulator ICs Electrical characteristics 58 VI = 33 V, IO = 1 A, TJ = 0 to 125 °C (L7824AC), TJ = -40 to 125 °C (L7824AB), unless otherwise specified(g). g. Minimum load current for regulation is 5 mA. Table 9. Electrical characteristics of L7824A Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 23.5 24 24.5 V VO Output voltage IO = 5 mA to 1 A, VI = 27.3 to 37 V 23 24 25 V VO Output voltage IO = 1 A, VI = 37 to 38 V, TJ = 25°C 23 24 25 V ΔVO (1) Line regulation VI = 27 to 38 V, IO = 500 mA, TJ = 25°C 31 240 mV VI = 30 to 36 V 35 200 mV VI = 30 to 36 V, TJ = 25°C 14 120 mV VI = 26.7 to 38 V, TJ = 25°C 31 240 mV ΔVO (1) Load regulation IO = 5 mA to 1 A 25 100 IO = 5 mA to 1.5 A, TJ = 25°C 30 100 mV IO = 250 to 750 mA 10 50 Iq Quiescent current TJ = 25°C 4.6 6 mA 6 mA ΔIq Quiescent current change VI = 27.3 to 38 V, IO = 500 mA 0.8 mA VI = 27.3 to 38 V, TJ = 25°C 0.8 mA IO = 5 mA to 1 A 0.5 mA SVR Supply voltage rejection VI = 28 to 38 V, f = 120 Hz, IO = 500 mA 54 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V eN Output noise voltage TA = 25°C, B = 10 Hz to 100 kHz 10 μV/VO RO Output resistance f = 1 kHz 20 mΩ Isc Short circuit current VI = 35 V, TA = 25°C 0.2 A Iscp Short circuit peak current TJ = 25°C 2.2 A ΔVO/ΔT Output voltage drift -1.5 mV/°C 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. Electrical characteristics Positive voltage regulator ICs 16/58 DocID2143 Rev 32 Refer to the test circuits, TJ = 0 to 125 °C, VI = 10 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(h). h. Minimum load current for regulation is 5 mA. Table 10. Electrical characteristics of L7805C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 4.8 5 5.2 V VO Output voltage IO = 5 mA to 1 A, VI = 7 to 18 V 4.75 5 5.25 V VO Output voltage IO = 1 A, VI = 18 to 20V, TJ = 25°C 4.75 5 5.25 V ΔVO (1) Line regulation VI = 7 to 25 V, TJ = 25°C 3 100 mV VI = 8 to 12 V, TJ = 25°C 1 50 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 100 mV IO = 250 to 750 mA, TJ = 25°C 50 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1 A 0.5 mA VI = 7 to 23 V 0.8 ΔVO/ΔT Output voltage drift IO = 5 mA -1.1 mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 40 μV/VO SVR Supply voltage rejection VI = 8 to 18 V, f = 120 Hz 62 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 17 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.75 A Iscp Short circuit peak current TJ = 25°C 2.2 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. DocID2143 Rev 32 17/58 Positive voltage regulator ICs Electrical characteristics 58 Refer to the test circuits, TJ = 0 to 125 °C, VI = 11 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(i). i. Minimum load current for regulation is 5 mA. Table 11. Electrical characteristics of L7806C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 5.75 6 6.25 V VO Output voltage IO = 5 mA to 1 A, VI = 8 to 19 V 5.7 6 6.3 V VO Output voltage IO = 1 A, VI = 19 to 21 V, TJ = 25°C 5.7 6 6.3 V ΔVO (1) Line regulation VI = 8 to 25 V, TJ = 25°C 120 mV VI = 9 to 13 V, TJ = 25°C 60 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 120 mV IO = 250 to 750 mA, TJ = 25°C 60 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1 A 0.5 mA VI = 8 to 24 V 1.3 ΔVO/ΔT Output voltage drift IO = 5 mA -0.8 mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 45 μV/VO SVR Supply voltage rejection VI = 9 to 19 V, f = 120 Hz 59 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 19 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.55 A Iscp Short circuit peak current TJ = 25°C 2.2 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. Electrical characteristics Positive voltage regulator ICs 18/58 DocID2143 Rev 32 Refer to the test circuits, TJ = 0 to 125 °C, VI = 14 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(j). j. Minimum load current for regulation is 5 mA. Table 12. Electrical characteristics of L7808C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 7.7 8 8.3 V VO Output voltage IO = 5 mA to 1 A, VI = 10.5 to 21 V 7.6 8 8.4 V VO Output voltage IO = 1 A, VI = 21 to 25 V, TJ = 25°C 7.6 8 8.4 V ΔVO (1) Line regulation VI = 10.5 to 25 V, TJ = 25°C 160 mV VI = 11 to 17 V, TJ = 25°C 80 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 160 mV IO = 250 to 750 mA, TJ = 25°C 80 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1 A 0.5 mA VI = 10.5 to 25 V 1 ΔVO/ΔT Output voltage drift IO = 5 mA -0.8 mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 52 μV/VO SVR Supply voltage rejection VI = 11.5 to 21.5 V, f = 120 Hz 56 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 16 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.45 A Iscp Short circuit peak current TJ = 25°C 2.2 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. DocID2143 Rev 32 19/58 Positive voltage regulator ICs Electrical characteristics 58 Refer to the test circuits, TJ = 0 to 125 °C, VI = 14.5 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(k). k. Minimum load current for regulation is 5 mA. Table 13. Electrical characteristics of L7885C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 8.2 8.5 8.8 V VO Output voltage IO = 5 mA to 1 A, VI = 11 to 21.5 V 8.1 8.5 8.9 V VO Output voltage IO = 1 A, VI = 21.5 to 26 V, TJ = 25°C 8.1 8.5 8.9 V ΔVO (1) Line regulation VI = 11 to 27 V, TJ = 25°C 160 mV VI = 11.5 to 17.5 V, TJ = 25°C 80 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 160 mV IO = 250 to 750 mA, TJ = 25°C 80 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1 A 0.5 mA VI = 11 to 26 V 1 ΔVO/ΔT Output voltage drift IO = 5 mA -0.8 mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 55 μV/VO SVR Supply voltage rejection VI = 12 to 22 V, f = 120 Hz 56 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 16 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.45 A Iscp Short circuit peak current TJ = 25°C 2.2 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. Electrical characteristics Positive voltage regulator ICs 20/58 DocID2143 Rev 32 Refer to the test circuits, TJ = 0 to 125 °C, VI = 15 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(l). l. Minimum load current for regulation is 5 mA. Table 14. Electrical characteristics of L7809C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 8.64 9 9.36 V VO Output voltage IO = 5 mA to 1 A, VI = 11.5 to 22 V 8.55 9 9.45 V VO Output voltage IO = 1 A, VI = 22 to 26 V, TJ = 25°C 8.55 9 9.45 V ΔVO (1) Line regulation VI = 11.5 to 26 V, TJ = 25°C 180 mV VI = 12 to 18 V, TJ = 25°C 90 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 180 mV IO = 250 to 750 mA, TJ = 25°C 90 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1 A 0.5 mA VI = 11.5 to 26 V 1 ΔVO/ΔT Output voltage drift IO = 5 mA -1 mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 70 μV/VO SVR Supply voltage rejection VI = 12 to 23 V, f = 120 Hz 55 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 17 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.40 A Iscp Short circuit peak current TJ = 25°C 2.2 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. DocID2143 Rev 32 21/58 Positive voltage regulator ICs Electrical characteristics 58 Refer to the test circuits, TJ = 0 to 125 °C, VI = 19 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(m). m. Minimum load current for regulation is 5 mA. Table 15. Electrical characteristics of L7812C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 11.5 12 12.5 V VO Output voltage IO = 5 mA to 1 A, VI = 14.5 to 25 V 11.4 12 12.6 V VO Output voltage IO = 1 A, VI = 25 to 27 V, TJ = 25°C 11.4 12 12.6 V ΔVO (1) Line regulation VI = 14.5 to 30 V, TJ = 25°C 240 mV VI = 16 to 22 V, TJ = 25°C 120 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 240 mV IO = 250 to 750 mA, TJ = 25°C 120 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1 A 0.5 mA VI = 14.5 to 30 V 1 ΔVO/ΔT Output voltage drift IO = 5 mA -1 mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 75 μV/VO SVR Supply voltage rejection VI = 15 to 25 V, f = 120 Hz 55 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 18 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.35 A Iscp Short circuit peak current TJ = 25°C 2.2 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. Electrical characteristics Positive voltage regulator ICs 22/58 DocID2143 Rev 32 Refer to the test circuits, TJ = 0 to 125 °C, VI = 23 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(n). n. Minimum load current for regulation is 5 mA. Table 16. Electrical characteristics of L7815C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 14.4 15 15.6 V VO Output voltage IO = 5 mA to 1 A, VI = 17.5 to 28 V 14.25 15 15.75 V VO Output voltage IO = 1 A, VI = 28 to 30 V, TJ = 25°C 14.25 15 15.75 V ΔVO (1) Line regulation VI = 17.5 to 30 V, TJ = 25°C 300 mV VI = 20 to 26 V, TJ = 25°C 150 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 300 mV IO = 250 to 750 mA, TJ = 25°C 150 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1A 0.5 mA VI = 17.5 to 30 V 1 ΔVO/ΔT Output voltage drift IO = 5 mA -1 mV/°C eN Output noise voltage B = 10 Hz to 100kHz, TJ = 25°C 90 μV/VO SVR Supply voltage rejection VI = 18.5 to 28.5 V, f = 120 Hz 54 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 19 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.23 A Iscp Short circuit peak current TJ = 25°C 2.2 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. DocID2143 Rev 32 23/58 Positive voltage regulator ICs Electrical characteristics 58 Refer to the test circuits, TJ = 0 to 125 °C, VI = 26 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(o). o. Minimum load current for regulation is 5 mA. Table 17. Electrical characteristics of L7818C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 17.3 18 18.7 V VO Output voltage IO = 5 mA to 1 A, VI = 21 to 31 V 17.1 18 18.9 V VO Output voltage IO = 1 A, VI = 31 to 33 V, TJ = 25°C 17.1 18 18.9 V ΔVO (1) Line regulation VI = 21 to 33 V, TJ = 25°C 360 mV VI = 24 to 30 V, TJ = 25°C 180 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 360 mV IO = 250 to 750 mA, TJ = 25°C 180 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1 A 0.5 mA VI = 21 to 33 V 1 ΔVO/ΔT Output voltage drift IO = 5 mA -1 mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 110 μV/VO SVR Supply voltage rejection VI = 22 to 32 V, f = 120 Hz 53 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 22 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.20 A Iscp Short circuit peak current TJ = 25°C 2.1 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. Electrical characteristics Positive voltage regulator ICs 24/58 DocID2143 Rev 32 Refer to the test circuits, TJ = 0 to 125 °C, VI = 33 V, IO = 500 mA, CI = 0.33 μF, CO = 0.1 μF unless otherwise specified(p). p. Minimum load current for regulation is 5 mA. Table 18. Electrical characteristics of L7824C Symbol Parameter Test conditions Min. Typ. Max. Unit VO Output voltage TJ = 25°C 23 24 25 V VO Output voltage IO = 5 mA to 1 A, VI = 27 to 37 V 22.8 24 25.2 V VO Output voltage IO = 1 A, VI = 37 to 38 V, TJ = 25°C 22.8 24 25.2 V ΔVO (1) Line regulation VI = 27 to 38 V, TJ = 25°C 480 mV VI = 30 to 36 V, TJ = 25°C 240 ΔVO (1) Load regulation IO = 5 mA to 1.5 A, TJ = 25°C 480 mV IO = 250 to 750 mA, TJ = 25°C 240 Id Quiescent current TJ = 25°C 8 mA ΔId Quiescent current change IO = 5 mA to 1 A 0.5 mA VI = 27 to 38 V 1 ΔVO/ΔT Output voltage drift IO = 5 mA -1.5 mV/°C eN Output noise voltage B = 10 Hz to 100 kHz, TJ = 25°C 170 μV/VO SVR Supply voltage rejection VI = 28 to 38 V, f = 120 Hz 50 dB Vd Dropout voltage IO = 1 A, TJ = 25°C 2 V RO Output resistance f = 1 kHz 28 mΩ Isc Short circuit current VI = 35 V, TJ = 25°C 0.15 A Iscp Short circuit peak current TJ = 25°C 2.1 A 1. Load and line regulation are specified at constant junction temperature. Changes in VO due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used. DocID2143 Rev 32 25/58 Positive voltage regulator ICs Application information 58 6 Application information 6.1 Design consideration The L78 Series of fixed voltage regulators are designed with thermal overload protection that shuts down the circuit when subjected to an excessive power overload condition, internal short-circuit protection that limits the maximum current the circuit will pass, and output transistor safe-area compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with capacitor if the regulator is connected to the power supply filter with long lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A 0.33 μF or larger tantalum, mylar or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtained with the arrangement is 2 V greater than the regulator voltage. The circuit of Figure 13 can be modified to provide supply protection against short circuit by adding a short circuit sense resistor, RSC, and an additional PNP transistor. The current sensing PNP must be able to handle the short circuit current of the three terminal regulator Therefore a four ampere plastic power transistor is specified. Figure 8. Fixed output regulator 1. Although no output capacitor is need for stability, it does improve transient response. 2. Required if regulator is located an appreciable distance from power supply filter. Application information Positive voltage regulator ICs 26/58 DocID2143 Rev 32 Figure 9. Current regulator 􀀬􀀲 􀀠􀀠􀀃􀀃􀀹􀀻􀀻􀀻􀀻􀀒􀀵􀀔􀀎􀀬􀁇 Figure 10. Circuit for increasing output voltage 􀀬􀀵􀀔 􀀃􀀘􀀃􀀬􀁇 􀀹􀀲􀀃􀀃􀀠􀀠􀀃􀀹􀀻􀀻􀀻􀀻􀀋􀀋􀀔􀀔􀀎􀀎􀀵􀀵􀀕􀀒􀀵􀀔􀀌􀀌􀀎􀀎􀀬􀁇􀀵􀀕 􀅻 DocID2143 Rev 32 27/58 Positive voltage regulator ICs Application information 58 Figure 11. Adjustable output regulator (7 to 30 V) Figure 12. 0.5 to 10 V regulator VO=VXXR4/R1 Application information Positive voltage regulator ICs 28/58 DocID2143 Rev 32 Figure 13. High current voltage regulator 􀀵􀀔 􀀬􀀲􀀃􀀠􀀃􀀬􀀵􀀨􀀪􀀃􀀎􀀃􀀴􀀔􀀃􀀋􀀬􀀵􀀨􀀪􀀃􀁂􀀹􀁂􀀥􀁂􀀨􀁂􀀴􀁂􀀔􀁂􀀌 􀀹􀀥􀀨􀀴􀀔 􀀵􀀔􀀃􀀠􀀃􀁂􀁂􀁂􀁂􀁂􀁂􀁂􀁂􀁂􀁂􀁂􀁂􀁂􀁂 􀀬􀀵􀀨􀀴􀀐􀀋􀀬􀀴􀀔􀀒􀁅􀀴􀀔􀀌 Figure 14. High output current with short circuit protection 􀀵􀀶􀀶􀀦􀀦􀀠􀀹􀀥􀀥􀀨􀀨􀀴􀀴􀀕􀀕􀀒􀀬􀀶􀀶􀀦􀀦 DocID2143 Rev 32 29/58 Positive voltage regulator ICs Application information 58 * Against potential latch-up problems. Figure 15. Tracking voltage regulator Figure 16. Split power supply (± 15 V - 1 A) Application information Positive voltage regulator ICs 30/58 DocID2143 Rev 32 Figure 17. Negative output voltage circuit Figure 18. Switching regulator Figure 19. High input voltage circuit (configuration 1) 􀀹􀀬􀀱􀀃􀀠􀀃􀀹􀀬􀀃􀀐􀀃􀀋􀀋􀀹􀀹􀀽􀀃􀀎􀀃􀀹􀀥􀀥􀀨􀀨􀀌 DocID2143 Rev 32 31/58 Positive voltage regulator ICs Application information 58 Figure 20. High input voltage circuit (configuration 2) Figure 21. High input and output voltage 􀀹􀀲􀀃􀀠􀀃􀀹􀀻􀀻􀀻􀀻􀀃􀀎􀀃􀀹􀀽􀀔 Figure 22. Reducing power dissipation with dropping resistor 􀀹􀀹 􀀐􀀐􀀹􀀹 􀀐􀀹 􀀵􀀃􀀠􀀃􀁂􀁂􀀬􀀬􀁂􀁂􀀋􀀋􀁐􀁐􀁂􀁂􀁂􀁌􀁌􀁑􀁑􀁂􀁂􀀌􀀌 􀁂􀁂􀁂􀁂􀀻􀀻􀁂􀀻􀀻􀁂􀁂􀁂􀁂􀁂􀀧􀁂􀁂􀀵􀁂􀁂􀀲􀁂􀁂􀀳􀁂􀀋􀀋􀁐􀁐􀁂􀁂􀁄􀁄􀁂􀁂􀁛􀁛􀁂􀀌􀀌􀁂 􀀬􀀲􀀋􀁐􀁄􀁛􀁛􀀌􀀌􀀎􀀬􀁇􀀋􀀋􀁐􀁐􀁄􀁄􀁛􀁛􀀌􀀌 Application information Positive voltage regulator ICs 32/58 DocID2143 Rev 32 Note: The circuit performs well up to 100 kHz. Figure 23. Remote shutdown Figure 24. Power AM modulator (unity voltage gain, IO ≤ 0.5) DocID2143 Rev 32 33/58 Positive voltage regulator ICs Application information 58 Note: Q2 is connected as a diode in order to compensate the variation of the Q1 VBE with the temperature. C allows a slow rise time of the VO. Figure 25. Adjustable output voltage with temperature compensation 􀀹􀀲􀀃􀀠􀀃􀀹􀀻􀀻􀀃􀀋􀀔􀀎􀀵􀀕􀀒􀀵􀀔􀀌􀀃􀀎􀀃􀀹􀀥􀀨 Figure 26. Light controllers (VO(min) = VXX + VBE) 􀀹􀀲􀀃􀁉􀁄􀁏􀁏􀁖􀀃􀁚􀁋􀁈􀁑􀀃􀁗􀁋􀁈􀀃􀁏􀁌􀁊􀁋􀁗􀀃􀁊􀁒􀁈􀁖􀀃􀁘􀁓 􀀹􀀲􀀃􀁕􀁌􀁖􀁈􀁖􀀃􀁚􀁋􀁈􀁑􀀃􀁗􀁋􀁈􀀃􀁏􀁌􀁊􀁋􀁗􀀃􀁊􀁒􀁈􀁖􀀃􀁘􀁓 Application information Positive voltage regulator ICs 34/58 DocID2143 Rev 32 Note: Application with high capacitance loads and an output voltage greater than 6 volts need an external diode (see Figure 22 on page 31) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decrease slowly. The capacitance discharges by means of the base-emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to ground. Figure 27. Protection against input short-circuit with high capacitance loads DocID2143 Rev 32 35/58 Positive voltage regulator ICs Typical performance 58 7 Typical performance Figure 28. Dropout voltage vs. junction temperature Figure 29. Peak output current vs. input/output differential voltage Figure 30. Supply voltage rejection vs. frequency Figure 31. Output voltage vs. junction temperature Typical performance Positive voltage regulator ICs 36/58 DocID2143 Rev 32 Figure 32. Output impedance vs. frequency Figure 33. Quiescent current vs. junction temp. Figure 34. Load transient response Figure 35. Line transient response Figure 36. Quiescent current vs. input voltage DocID2143 Rev 32 37/58 Positive voltage regulator ICs Package mechanical data 58 8 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Package mechanical data Positive voltage regulator ICs 38/58 DocID2143 Rev 32 Figure 37. TO-220 (dual gauge) drawing 􀀓􀀓􀀔􀀘􀀜􀀛􀀛􀁂􀁗􀁜􀁓􀁈􀀤􀁂􀀵􀁈􀁙􀁂􀀷 DocID2143 Rev 32 39/58 Positive voltage regulator ICs Package mechanical data 58 Table 19. TO-220 (dual gauge) mechanical data Dim. mm Min. Typ. Max. A 4.40 4.60 b 0.61 0.88 b1 1.14 1.70 c 0.48 0.70 D 15.25 15.75 D1 1.27 E 10 10.40 e 2.40 2.70 e1 4.95 5.15 F 1.23 1.32 H1 6.20 6.60 J1 2.40 2.72 L 13 14 L1 3.50 3.93 L20 16.40 L30 28.90 ∅P 3.75 3.85 Q 2.65 2.95 Package mechanical data Positive voltage regulator ICs 40/58 DocID2143 Rev 32 Figure 38. TO-220 SG (single gauge) drawing 􀀛􀀔􀀚􀀗􀀙􀀕􀀚􀁂􀁕􀁈􀁙􀀧 DocID2143 Rev 32 41/58 Positive voltage regulator ICs Package mechanical data 58 Table 20. TO-220 SG (single gauge) mechanical data Dim. mm Min. Typ. Max. A 4.40 4.60 b 0.61 0.88 b1 1.14 1.70 c 0.48 0.70 D 15.25 15.75 E 10 10.40 e 2.40 2.70 e1 4.95 5.15 F 0.51 0.60 H1 6.20 6.60 J1 2.40 2.72 L 13 14 L1 3.50 3.93 L20 16.40 L30 28.90 ∅P 3.75 3.85 Q 2.65 2.95 Package mechanical data Positive voltage regulator ICs 42/58 DocID2143 Rev 32 Figure 39. TO-220FP drawing 7012510A-H DocID2143 Rev 32 43/58 Positive voltage regulator ICs Package mechanical data 58 Table 21. TO-220FP mechanical data Dim. mm. Min. Typ. Max. A 4.40 4.60 B 2.5 2.7 D 2.5 2.75 E 0.45 0.70 F 0.75 1 F1 1.15 1.50 F2 1.15 1.50 G 4.95 5.2 G1 2.4 2.7 H 10.0 10.40 L2 16 L3 28.6 30.6 L4 9.8 10.6 L5 2.9 3.6 L6 15.9 16.4 L7 9 9.3 DIA. 3 3.2 Package mechanical data Positive voltage regulator ICs 44/58 DocID2143 Rev 32 Figure 40. DPAK drawing 0068772_K DocID2143 Rev 32 45/58 Positive voltage regulator ICs Package mechanical data 58 Table 22. DPAK mechanical data Dim. mm Min. Typ. Max. A 2.20 2.40 A1 0.90 1.10 A2 0.03 0.23 b 0.64 0.90 b4 5.20 5.40 c 0.45 0.60 c2 0.48 0.60 D 6.00 6.20 D1 5.10 E 6.40 6.60 E1 4.70 e 2.28 e1 4.40 4.60 H 9.35 10.10 L 1.00 1.50 (L1) 2.80 L2 0.80 L4 0.60 1.00 R 0.20 V2 0° 8° Package mechanical data Positive voltage regulator ICs 46/58 DocID2143 Rev 32 Figure 41. DPAK footprint (q) q. All dimensions are in millimeters Footprint_REV_K DocID2143 Rev 32 47/58 Positive voltage regulator ICs Package mechanical data 58 Figure 42. D²PAK (SMD 2L STD-ST) type A drawing 0079457_T Package mechanical data Positive voltage regulator ICs 48/58 DocID2143 Rev 32 Table 23. D²PAK (SMD 2L STD-ST) mechanical data Dim. mm Min. Typ. Max. A 4.40 4.60 A1 0.03 0.23 b 0.70 0.93 b2 1.14 1.70 c 0.45 0.60 c2 1.23 1.36 D 8.95 9.35 D1 7.50 E 10 10.40 E1 8.50 e 2.54 e1 4.88 5.28 H 15 15.85 J1 2.49 2.69 L 2.29 2.79 L1 1.27 1.40 L2 1.30 1.75 R 0.4 V2 0° 8° DocID2143 Rev 32 49/58 Positive voltage regulator ICs Package mechanical data 58 Figure 43. D²PAK (SMD 2L Wooseok-subcon.) drawing 0079457_T Package mechanical data Positive voltage regulator ICs 50/58 DocID2143 Rev 32 Table 24. D²PAK (SMD 2L Wooseok-subcon.) mechanical data Dim. mm Min. Typ. Max. A 4.30 4.70 A1 0 0.20 b 0.70 0.90 b2 1.17 1.37 c 0.45 0.50 0.60 c2 1.25 1.30 1.40 D 9 9.20 9.40 D1 7.50 E 10 10.40 E1 8.50 e 2.54 e1 4.88 5.08 H 15 15.30 J1 2.20 2.60 L 1.79 2.79 L1 1 1.40 L2 1.20 1.60 R 0.30 V2 0° 3° DocID2143 Rev 32 51/58 Positive voltage regulator ICs Package mechanical data 58 Figure 44. D²PAK (SMD 2L Wooseok-subcon.) footprint Packaging mechanical data Positive voltage regulator ICs 52/58 DocID2143 Rev 32 9 Packaging mechanical data Figure 45. Tube for TO-220 (dual gauge) (mm.) Figure 46. Tube for TO-220 (single gauge) (mm.) DocID2143 Rev 32 53/58 Positive voltage regulator ICs Packaging mechanical data 58 Figure 47. Tape for DPAK and D2PAK Figure 48. Reel for DPAK and D2PAK A0 P1 D1 P0 F W E D B0 K0 T User direction of feed P2 10 pitches cumulative tolerance on tape +/- 0.2 mm User direction of feed R Bending radius B1 For machine ref. only including draft and radii concentric around B0 AM08852v1 Top cover tape A D B Full radius G measured at hub C N REEL DIMENSIONS 40mm min. Access hole At sl ot location T Tape slot in core for tape start 25 mm min. width AM08851v2 Packaging mechanical data Positive voltage regulator ICs 54/58 DocID2143 Rev 32 Table 25. DPAK and D²PAK tape and reel mechanical data Tape Reel Dim. mm Dim. mm Min. Max. Min. Max. A0 6.8 7 A 330 B0 10.4 10.6 B 1.5 B1 12.1 C 12.8 13.2 D 1.5 1.6 D 20.2 D1 1.5 G 16.4 18.4 E 1.65 1.85 N 50 F 7.4 7.6 T 22.4 K0 2.55 2.75 P0 3.9 4.1 Base qty. 2500 P1 7.9 8.1 Bulk qty. 2500 P2 1.9 2.1 R 40 T 0.25 0.35 W 15.7 16.3 DocID2143 Rev 32 55/58 Positive voltage regulator ICs Order codes 58 10 Order codes Table 26. Order codes Part numbers Order codes TO-220 (single gauge) TO-220 (dual gauge) DPAK D²PAK TO-220FP Output voltages L7805C L7805CV L7805CDT-TR L7805CD2T-TR L7805CP 5 V L7805CV-DG 5 V L7805AB L7805ABV L7805ABD2T-TR L7805ABP 5 V L7805ABV-DG 5 V L7805AC L7805ACV L7805ACD2T-TR L7805ACP 5 V L7805ACV-DG 5 V L7806C L7806CV L7806CD2T-TR 6 V L7806CV-DG 6 V L7806AB L7806ABV L7806ABD2T-TR 6 V L7806ABV-DG 6 V L7806AC L7806ACV 6 V L7806ACV-DG 6 V L7808C L7808CV L7808CD2T-TR 8 V L7808CV-DG 8 V L7808AB L7808ABV L7808ABD2T-TR 8 V L7808ABV-DG 8 V L7808AC L7808ACV 8 V L7808ACV-DG 8 V L7885C L7885CV 8.5 V L7809C L7809CV L7809CD2T-TR L7809CP 9 V L7809CV-DG 9 V L7809AB L7809ABV L7809ABD2T-TR 9 V L7809ABV-DG 9 V L7809AC L7809ACV 9 V L7812C L7812CV L7812CD2T-TR L7812CP 12 V L7812CV-DG 12 V L7812AB L7812ABV L7812ABD2T-TR 12 V L7812ABV-DG 12 V L7812AC L7812ACV L7812ACD2T-TR 12 V L7812ACV-DG 12 V Order codes Positive voltage regulator ICs 56/58 DocID2143 Rev 32 L7815C L7815CV L7815CD2T-TR L7815CP 15 V L7815CV-DG 15 V L7815AB L7815ABV L7815ABD2T-TR 15 V L7815ABV-DG 15 V L7815AC L7815ACV L7815ACD2T-TR 15 V L7815ACV-DG 15 V L7818C L7818CV 18 V L7818CV-DG 18 V L7824C L7824CV L7824CD2T-TR L7824CP 24 V L7824CV-DG 24 V L7824AB L7824ABV 24 V L7824ABV-DG 24 V L7824AC L7824ACV 24 V L7824ACV-DG 24 V Table 26. Order codes (continued) Part numbers Order codes TO-220 (single gauge) TO-220 (dual gauge) DPAK D²PAK TO-220FP Output voltages DocID2143 Rev 32 57/58 Positive voltage regulator ICs Revision history 58 11 Revision history Table 27. Document revision history Date Revision Changes 21-Jun-2004 12 Document updating. 03-Aug-2006 13 Order codes has been updated and new template. 19-Jan-2007 14 D²PAK mechanical data has been updated and add footprint data. 31-May-2007 15 Order codes has been updated. 29-Aug-2007 16 Added Table 1 in cover page. 11-Dec-2007 17 Modified: Table 26. 06-Feb-2008 18 Added: TO-220 mechanical data Figure 38 on page 38 , Figure 39 on page 39, and Table 23 on page 37. Modified: Table 26 on page 55. 18-Mar-2008 19 Added: Table 29: DPAK mechanical data on page 50, Table 30: Tape and reel DPAK mechanical data on page 52. Modified: Table 26 on page 55. 26-Jan-2010 20 Modified Table 1 on page 1 and Table 23 on page 37, added: Figure 38 on page 38 and Figure 39 on page 39, Figure 45 on page 52 and Figure 46 on page 52. 04-Mar-2010 21 Added notes Figure 38 on page 38. 08-Sep-2010 22 Modified Table 26 on page 55. 23-Nov-2010 23 Added: TJ = 25 °C test condition in ΔVO on Table 3, 4, 5, 6, 7, 8 and Table 9. 16-Sep-2011 24 Modified title on page 1. 30-Nov-2011 25 Added: order codes L7805CV-DG, L7806CV-DG, L7808ABV-DG, L7812CV-DG and L7815CV-DG Table 26 on page 55. 08-Feb-2012 26 Added: order codes L7805ACV-DG, L7805ABV-DG, L7806ABV-DG, L7808CVDG, L7809CV-DG, L7812ACV-DG, L7818CV-DG, L7824CV-DG Table 26 on page 55. 27-Mar-2012 27 Added: order codes L7812ABV-DG, L7815ABV-DG Table 26 on page 55. 27-Apr-2012 28 Modified: VI = 10.4 to 23 V ==> VI = 11.4 to 23 V test conditon value Line regulation Table 6 on page 12. 10-May-2012 29 Added: order codes L7806ACV-DG, L7808ACV-DG, L7815ACV-DG, L7824ABV-DG and L7824ACV-DG Table 26 on page 55. 19-Sep-2012 30 Modified load regulation units from V to mV in Table 3 to Table 9. 12-Mar-2013 31 Modified: VO output voltage at 25 °C min. value 14.4 V Table 16 on page 22. 04-Mar-2014 32 Part numbers L78xx, L78xxC, L78xxAB, L78xxAC changed to L78. Removed TO-3 package. Updated the description in cover page, Section 2: Pin configuration, Section 3: Maximum ratings, Section 4: Test circuits, Section 5: Electrical characteristics, Section 6: Application information, Section 8: Package mechanical data and Table 26: Order codes. Added Section 9: Packaging mechanical data. Minor text changes. Positive voltage regulator ICs 58/58 DocID2143 Rev 32 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com STM32F405xx STM32F407xx ARM Cortex-M4 32b MCU+FPU, 210DMIPS, up to 1MB Flash/192+4KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera Datasheet - production data Features • Core: ARM 32-bit Cortex™-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait state execution from Flash memory, frequency up to 168 MHz, memory protection unit, 210 DMIPS/ 1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions • Memories – Up to 1 Mbyte of Flash memory – Up to 192+4 Kbytes of SRAM including 64- Kbyte of CCM (core coupled memory) data RAM – Flexible static memory controller supporting Compact Flash, SRAM, PSRAM, NOR and NAND memories • LCD parallel interface, 8080/6800 modes • Clock, reset and supply management – 1.8 V to 3.6 V application supply and I/Os – POR, PDR, PVD and BOR – 4-to-26 MHz crystal oscillator – Internal 16 MHz factory-trimmed RC (1% accuracy) – 32 kHz oscillator for RTC with calibration – Internal 32 kHz RC with calibration • Low power – Sleep, Stop and Standby modes – VBAT supply for RTC, 20×32 bit backup registers + optional 4 KB backup SRAM • 3×12-bit, 2.4 MSPS A/D converters: up to 24 channels and 7.2 MSPS in triple interleaved mode • 2×12-bit D/A converters • General-purpose DMA: 16-stream DMA controller with FIFOs and burst support • Up to 17 timers: up to twelve 16-bit and two 32- bit timers up to 168 MHz, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input • Debug mode – Serial wire debug (SWD) & JTAG interfaces – Cortex-M4 Embedded Trace Macrocell™ • Up to 140 I/O ports with interrupt capability – Up to 136 fast I/Os up to 84 MHz – Up to 138 5 V-tolerant I/Os • Up to 15 communication interfaces – Up to 3 × I2C interfaces (SMBus/PMBus) – Up to 4 USARTs/2 UARTs (10.5 Mbit/s, ISO 7816 interface, LIN, IrDA, modem control) – Up to 3 SPIs (42 Mbits/s), 2 with muxed full-duplex I2S to achieve audio class accuracy via internal audio PLL or external clock – 2 × CAN interfaces (2.0B Active) – SDIO interface • Advanced connectivity – USB 2.0 full-speed device/host/OTG controller with on-chip PHY – USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI – 10/100 Ethernet MAC with dedicated DMA: supports IEEE 1588v2 hardware, MII/RMII • 8- to 14-bit parallel camera interface up to 54 Mbytes/s • True random number generator • CRC calculation unit • 96-bit unique ID • RTC: subsecond accuracy, hardware calendar LQFP64 (10 × 10 mm) LQFP100 (14 × 14 mm) LQFP144 (20 × 20 mm) FBGA UFBGA176 (10 × 10 mm) LQFP176 (24 × 24 mm) WLCSP90 Table 1. Device summary Reference Part number STM32F405xx STM32F405RG, STM32F405VG, STM32F405ZG, STM32F405OG, STM32F405OE STM32F407xx STM32F407VG, STM32F407IG, STM32F407ZG, STM32F407VE, STM32F407ZE, STM32F407IE www.st.com Contents STM32F405xx, STM32F407xx 2/185 DocID022152 Rev 4 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 ARM® Cortex™-M4F core with embedded Flash and SRAM . . . . . . . . 19 2.2.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . 19 2.2.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 20 2.2.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.9 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.10 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 22 2.2.11 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.12 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.13 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.15 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.16 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.17 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 28 2.2.18 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . 28 2.2.19 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.20 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.21 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.22 Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.23 Universal synchronous/asynchronous receiver transmitters (USART) . 33 2.2.24 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.25 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.26 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.27 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . 35 2.2.28 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 35 2.2.29 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 DocID022152 Rev 4 3/185 STM32F405xx, STM32F407xx Contents 2.2.30 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . 36 2.2.31 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . 36 2.2.32 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.33 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.34 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.35 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.36 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2.37 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.38 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.39 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.2 VCAP_1/VCAP_2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 80 5.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 80 5.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 80 5.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.3.7 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 102 Contents STM32F405xx, STM32F407xx 4/185 DocID022152 Rev 4 5.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 108 5.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.3.22 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.3.24 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.3.25 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.3.26 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 155 5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 156 5.3.28 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 A.1 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 171 A.2 USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 173 A.3 Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 DocID022152 Rev 4 5/185 STM32F405xx, STM32F407xx List of tables List of tables Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 2. STM32F405xx and STM32F407xx: features and peripheral counts. . . . . . . . . . . . . . . . . . 13 Table 3. Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 4. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 5. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Table 6. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 7. STM32F40x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Table 8. FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Table 9. Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Table 10. STM32F40x register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Table 11. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Table 12. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 13. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 14. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Table 15. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 79 Table 16. VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Table 17. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 80 Table 18. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 80 Table 19. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 81 Table 20. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . 83 Table 21. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Table 22. Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 87 Table 23. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 88 Table 24. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 88 Table 25. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 89 Table 26. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Table 27. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Table 28. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Table 29. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Table 30. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Table 31. HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Table 32. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 33. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Table 34. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Table 35. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Table 36. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Table 37. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Table 38. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table 39. Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Table 40. Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Table 41. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Table 42. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Table 43. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Table 44. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Table 45. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Table 46. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 List of tables STM32F405xx, STM32F407xx 6/185 DocID022152 Rev 4 Table 47. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Table 48. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Table 49. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Table 50. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Table 51. Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 115 Table 52. Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 116 Table 53. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Table 54. SCL frequency (fPCLK1= 42 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Table 55. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Table 56. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Table 57. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Table 58. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Table 59. USB OTG FS electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Table 60. USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Table 61. USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Table 62. ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Table 63. Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Table 64. Dynamic characteristics: Ehternet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . . 127 Table 65. Dynamic characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . . 128 Table 66. Dynamic characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Table 67. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Table 68. ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Table 69. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Table 70. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Table 71. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Table 72. Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Table 73. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Table 74. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 138 Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 139 Table 77. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Table 78. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Table 79. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Table 80. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Table 81. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 145 Table 82. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Table 83. Switching characteristics for PC Card/CF read and write cycles in attribute/common space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Table 84. Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Table 85. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Table 86. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Table 87. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Table 88. Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Table 89. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Table 90. WLCSP90 - 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . . . 159 Table 91. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . 160 Table 92. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 162 Table 93. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 164 Table 94. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Table 95. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data . . . . . . . 167 DocID022152 Rev 4 7/185 STM32F405xx, STM32F407xx List of tables Table 96. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Table 97. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Table 98. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 List of figures STM32F405xx, STM32F407xx 8/185 DocID022152 Rev 4 List of figures Figure 1. Compatible board design between STM32F10xx/STM32F4xx for LQFP64. . . . . . . . . . . . 15 Figure 2. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 3. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 4. Compatible board design between STM32F2xx and STM32F4xx for LQFP176 and BGA176 packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 5. STM32F40x block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 6. Multi-AHB matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 7. Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 24 Figure 8. PDR_ON and NRST control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 9. Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 10. Startup in regulator OFF mode: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 11. Startup in regulator OFF mode: fast VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 28 Figure 12. STM32F40x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 13. STM32F40x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Figure 14. STM32F40x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 15. STM32F40x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 16. STM32F40x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 17. STM32F40x WLCSP90 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 18. STM32F40x memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Figure 19. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Figure 20. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Figure 21. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Figure 22. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Figure 23. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Figure 24. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF . . . . 85 Figure 25. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals ON . . . . . 85 Figure 26. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF . . . 86 Figure 27. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON . . . . 86 Figure 28. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF) . . . . . . . . . . . . 89 Figure 29. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON) . . . . . . . . . . . . . 90 Figure 30. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Figure 31. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Figure 32. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Figure 33. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Figure 34. ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Figure 35. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Figure 36. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Figure 37. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Figure 38. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Figure 39. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 DocID022152 Rev 4 9/185 STM32F405xx, STM32F407xx List of figures Figure 40. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Figure 41. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Figure 42. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Figure 43. I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Figure 44. I2S master timing diagram (Philips protocol)(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Figure 45. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 124 Figure 46. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Figure 47. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Figure 48. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Figure 49. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Figure 50. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Figure 51. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Figure 52. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 133 Figure 53. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 133 Figure 54. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 138 Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 139 Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 140 Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 141 Figure 59. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Figure 60. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 145 Figure 62. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Figure 63. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 148 Figure 64. PC Card/CompactFlash controller waveforms for common memory write access . . . . . . 148 Figure 65. PC Card/CompactFlash controller waveforms for attribute memory read access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Figure 66. PC Card/CompactFlash controller waveforms for attribute memory write access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 150 Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 151 Figure 69. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Figure 70. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Figure 71. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 154 Figure 72. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 154 Figure 73. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Figure 74. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Figure 75. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Figure 76. WLCSP90 - 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . . . 159 Figure 77. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 160 Figure 78. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Figure 79. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 162 Figure 80. LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Figure 81. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 164 Figure 82. LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Figure 83. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Figure 84. LQFP176 24 x 24 mm, 176-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 167 Figure 85. LQFP176 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Figure 86. USB controller configured as peripheral-only and used in Full speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Figure 87. USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 171 List of figures STM32F405xx, STM32F407xx 10/185 DocID022152 Rev 4 Figure 88. USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 172 Figure 89. USB controller configured as peripheral, host, or dual-mode and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Figure 90. MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Figure 91. RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Figure 92. RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 DocID022152 Rev 4 11/185 STM32F405xx, STM32F407xx Introduction 1 Introduction This datasheet provides the description of the STM32F405xx and STM32F407xx lines of microcontrollers. For more details on the whole STMicroelectronics STM32™ family, please refer to Section 2.1: Full compatibility throughout the family. The STM32F405xx and STM32F407xx datasheet should be read in conjunction with the STM32F4xx reference manual. The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com. For information on the Cortex™-M4 core, please refer to the Cortex™-M4 programming manual (PM0214) available from www.st.com. Description STM32F405xx, STM32F407xx 12/185 DocID022152 Rev 4 2 Description The STM32F405xx and STM32F407xx family is based on the high-performance ARM® Cortex™-M4 32-bit RISC core operating at a frequency of up to 168 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM singleprecision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security. The Cortex-M4 core with FPU will be referred to as Cortex-M4F throughout this document. The STM32F405xx and STM32F407xx family incorporates high-speed embedded memories (Flash memory up to 1 Mbyte, up to 192 Kbytes of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix. All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. a true random number generator (RNG). They also feature standard and advanced communication interfaces. • Up to three I2Cs • Three SPIs, two I2Ss full duplex. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization. • Four USARTs plus two UARTs • An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the ULPI), • Two CANs • An SDIO/MMC interface • Ethernet and the camera interface available on STM32F407xx devices only. New advanced peripherals include an SDIO, an enhanced flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins and more), a camera interface for CMOS sensors. Refer to Table 2: STM32F405xx and STM32F407xx: features and peripheral counts for the list of peripherals available on each part number. The STM32F405xx and STM32F407xx family operates in the –40 to +105 °C temperature range from a 1.8 to 3.6 V power supply. The supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range using an external power supply supervisor: refer to Section : Internal reset OFF. A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F405xx and STM32F407xx family offers devices in various packages ranging from 64 pins to 176 pins. The set of included peripherals changes with the device chosen. These features make the STM32F405xx and STM32F407xx microcontroller family suitable for a wide range of applications: • Motor drive and application control • Medical equipment • Industrial applications: PLC, inverters, circuit breakers • Printers, and scanners • Alarm systems, video intercom, and HVAC • Home audio appliances STM32F405xx, STM32F407xx Description DocID022152 Rev 4 13/185 Figure 5 shows the general block diagram of the device family. Table 2. STM32F405xx and STM32F407xx: features and peripheral counts Peripherals STM32F405RG STM32F405OG STM32F405VG STM32F405ZG STM32F405OE STM32F407Vx STM32F407Zx STM32F407Ix Flash memory in Kbytes 1024 512 512 1024 512 1024 512 1024 SRAM in Kbytes System 192(112+16+64) Backup 4 FSMC memory controller No Yes(1) Ethernet No Yes Timers Generalpurpose 10 Advanced -control 2 Basic 2 IWDG Yes WWDG Yes RTC Yes Random number generator Yes Description STM32F405xx, STM32F407xx 14/185 DocID022152 Rev 4 Communi cation interfaces SPI / I2S 3/2 (full duplex)(2) I2C 3 USART/ UART 4/2 USB OTG FS Yes USB OTG HS Yes CAN 2 SDIO Yes Camera interface No Yes GPIOs 51 72 82 114 72 82 114 140 12-bit ADC Number of channels 3 16 13 16 24 13 16 24 24 12-bit DAC Number of channels Yes 2 Maximum CPU frequency 168 MHz Operating voltage 1.8 to 3.6 V(3) Operating temperatures Ambient temperatures: –40 to +85 °C /–40 to +105 °C Junction temperature: –40 to + 125 °C Package LQFP64 WLCSP90 LQFP100 LQFP144 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 1. For the LQFP100 and WLCSP90 packages, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. 2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. 3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section : Internal reset OFF). Table 2. STM32F405xx and STM32F407xx: features and peripheral counts Peripherals STM32F405RG STM32F405OG STM32F405VG STM32F405ZG STM32F405OE STM32F407Vx STM32F407Zx STM32F407Ix DocID022152 Rev 4 15/185 STM32F405xx, STM32F407xx Description 2.1 Full compatibility throughout the family The STM32F405xx and STM32F407xx are part of the STM32F4 family. They are fully pinto- pin, software and feature compatible with the STM32F2xx devices, allowing the user to try different memory densities, peripherals, and performances (FPU, higher frequency) for a greater degree of freedom during the development cycle. The STM32F405xx and STM32F407xx devices maintain a close compatibility with the whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The STM32F405xx and STM32F407xx, however, are not drop-in replacements for the STM32F10xxx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F40x family remains simple as only a few pins are impacted. Figure 4, Figure 3, Figure 2, and Figure 1 give compatible board designs between the STM32F40x, STM32F2xxx, and STM32F10xxx families. Figure 1. Compatible board design between STM32F10xx/STM32F4xx for LQFP64 31 1 16 17 32 48 33 64 49 47 VSS VSS VSS VSS 0 Ω resistor or soldering bridge present for the STM32F10xx configuration, not present in the STM32F4xx configuration ai18489 Description STM32F405xx, STM32F407xx 16/185 DocID022152 Rev 4 Figure 2. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package Figure 3. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package 20 49 1 25 26 50 75 51 100 76 73 19 VSS VSS VDD VSS VSS VSS 0 ΩΩ resistor or soldering bridge present for the STM32F10xxx configuration, not present in the STM32F4xx configuration ai18488c 99 (VSS) VDD VSS Two 0 Ω resistors connected to: - VSS for the STM32F10xx - VSS for the STM32F4xx VSS for STM32F10xx VDD for STM32F4xx - VSS, VDD or NC for the STM32F2xx ai18487d 31 71 1 36 37 72 108 73 144 109 VSS 0 Ω resistor or soldering bridge present for the STM32F10xx configuration, not present in the STM32F4xx configuration 106 VSS 30 Two 0 Ω resistors connected to: - VSS for the STM32F10xx - VDD or signal from external power supply supervisor for the STM32F4xx VDD VSS VSS VSS 143 (PDR_ON) VDD VSS VSS for STM32F10xx VDD for STM32F4xx - VSS, VDD or NC for the STM32F2xx Signal from external power supply supervisor DocID022152 Rev 4 17/185 STM32F405xx, STM32F407xx Description Figure 4. Compatible board design between STM32F2xx and STM32F4xx for LQFP176 and BGA176 packages MS19919V3 1 44 45 88 132 89 176 133 Two 0 Ω resistors connected to: - VSS, VDD or NC for the STM32F2xx - VDD or signal from external power supply supervisor for the STM32F4xx 171 (PDR_ON) VDDVSS Signal from external power supply supervisor Description STM32F405xx, STM32F407xx 18/185 DocID022152 Rev 4 2.2 Device overview Figure 5. STM32F40x block diagram 1. The timers connected to APB2 are clocked from TIMxCLK up to 168 MHz, while the timers connected to APB1 are clocked from TIMxCLK either up to 84 MHz or 168 MHz, depending on TIMPRE bit configuration in the RCC_DCKCFGR register. 2. The camera interface and ethernet are available only on STM32F407xx devices. MS19920V3 GPIO PORT A AHB/APB2 140 AF PA[15:0] TIM1 / PWM 4 compl. channels (TIM1_CH1[1:4]N, 4 channels (TIM1_CH1[1:4]ETR, BKIN as AF RX, TX, CK, CTS, RTS as AF MOSI, MISO, SCK, NSS as AF APB 1 30M Hz 8 analog inputs common to the 3 ADCs VDDREF_ADC MOSI/SD, MISO/SD_ext, SCK/CK NSS/WS, MCK as AF TX, RX DAC1_OUT as AF ITF WWDG 4 KB BKPSRAM RTC_AF1 OSC32_IN OSC32_OUT VDDA, VSSA NRST 16b SDIO / MMC D[7:0] CMD, CK as AF VBAT = 1.65 to 3.6 V DMA2 SCL, SDA, SMBA as AF JTAG & SW ARM Cortex-M4 168 MHz ETM NVIC MPU TRACECLK TRACED[3:0] Ethernet MAC 10/100 DMA/ FIFO MII or RMII as AF MDIO as AF USB OTG HS DP, DM ULPI:CK, D[7:0], DIR, STP, NXT ID, VBUS, SOF DMA2 8 Streams FIFO ART ACCEL/ CACHE SRAM 112 KB CLK, NE [3:0], A[23:0], D[31:0], OEN, WEN, NBL[3:0], NL, NREG, NWAIT/IORDY, CD INTN, NIIS16 as AF RNG Camera interface HSYNC, VSYNC PUIXCLK, D[13:0] PHY USB OTG FS DP DM ID, VBUS, SOF FIFO AHB1 168 MHz PHY FIFO @VDDA @VDDA POR/PDR BOR Supply supervision @VDDA PVD Int POR reset XTAL 32 kHz MAN AGT RTC RC HS FCLK RC LS PWR interface IWDG @VBAT AWU Reset & clock control P L L1&2 PCLKx VDD = 1.8 to 3.6 V VSS VCAP1, VCPA2 Voltage regulator 3.3 to 1.2 V VDD Power managmt Backup register RTC_AF1 AHB bus-matrix 8S7M LS 2 channels as AF DAC1 DAC2 Flash up to 1 MB SRAM, PSRAM, NOR Flash, PC Card (ATA), NAND Flash External memory controller (FSMC) TIM6 TIM7 TIM2 TIM3 TIM4 TIM5 TIM12 TIM13 TIM14 USART2 USART3 UART4 UART5 SP3/I2S3 I2C1/SMBUS I2C2/SMBUS I2C3/SMBUS bxCAN1 bxCAN2 SPI1 EXT IT. WKUP D-BUS FIFO FPU APB142 MHz (max) SRAM 16 KB CCM data RAM 64 KB AHB3 AHB2 168 MHz NJTRST, JTDI, JTCK/SWCLK JTDO/SWD, JTDO I-BUS S-BUS DMA/ FIFO DMA1 8 Streams FIFO PB[15:0] PC[15:0] PD[15:0] PE[15:0] PF[15:0] PG[15:0] PH[15:0] PI[11:0] GPIO PORT B GPIO PORT C GPIO PORT D GPIO PORT E GPIO PORT F GPIO PORT G GPIO PORT H GPIO PORT I TIM8 / PWM 16b 4 compl. channels (TIM1_CH1[1:4]N, 4 channels (TIM1_CH1[1:4]ETR, BKIN as AF 1 channel as AF 1 channel as AF RX, TX, CK, CTS, RTS as AF 8 analog inputs common to the ADC1 & 2 8 analog inputs for ADC3 DAC2_OUT as AF 16b 16b SCL, SDA, SMBA as AF SCL, SDA, SMBA as AF MOSI/SD, MISO/SD_ext, SCK/CK NSS/WS, MCK as AF TX, RX RX, TX as AF RX, TX as AF RX, TX as AF CTS, RTS as AF RX, TX as AF CTS, RTS as AF 1 channel as AF smcard irDA smcard irDA 16b 16b 16b 1 channel as AF 2 channels as AF 32b 16b 16b 32b 4 channels 4 channels, ETR as AF 4 channels, ETR as AF 4 channels, ETR as AF DMA1 AHB/APB1 LS OSC_IN OSC_OUT HCLKx XTAL OSC 4- 16MHz FIFO SP2/I2S2 NIORD, IOWR, INT[2:3] ADC3 ADC2 ADC1 Temperature sensor IF TIM9 16b TIM10 16b TIM11 16b smcard irDA USART1 irDA smcard USART6 APB2 84 MHz @VDD @VDD @VDDA DocID022152 Rev 4 19/185 STM32F405xx, STM32F407xx Description 2.2.1 ARM® Cortex™-M4F core with embedded Flash and SRAM The ARM Cortex-M4F processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The ARM Cortex-M4F 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation. The STM32F405xx and STM32F407xx family is compatible with all ARM tools and software. Figure 5 shows the general block diagram of the STM32F40x family. Note: Cortex-M4F is binary compatible with Cortex-M3. 2.2.2 Adaptive real-time memory accelerator (ART Accelerator™) The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard ARM® Cortex™-M4F processors. It balances the inherent performance advantage of the ARM Cortex-M4F over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies. To release the processor full 210 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 168 MHz. 2.2.3 Memory protection unit The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 2.2.4 Embedded Flash memory The STM32F40x devices embed a Flash memory of 512 Kbytes or 1 Mbytes available for storing programs and data. Description STM32F405xx, STM32F407xx 20/185 DocID022152 Rev 4 2.2.5 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location. 2.2.6 Embedded SRAM All STM32F40x products embed: • Up to 192 Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory) data RAM RAM memory is accessed (read/write) at CPU clock speed with 0 wait states. • 4 Kbytes of backup SRAM This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode. 2.2.7 Multi-AHB bus matrix The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously. DocID022152 Rev 4 21/185 STM32F405xx, STM32F407xx Description Figure 6. Multi-AHB matrix 2.2.8 DMA controller (DMA) The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB). The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code. Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: • SPI and I2S • I2C • USART • General-purpose, basic and advanced-control timers TIMx • DAC • SDIO • Camera interface (DCMI) • ADC. ARM Cortex-M4 GP DMA1 GP DMA2 MAC Ethernet USB OTG HS Bus matrix-S S0 S1 S2 S3 S4 S5 S6 S7 ICODE DCODE ACCEL Flash memory SRAM1 112 Kbyte SRAM2 16 Kbyte AHB1 peripherals AHB2 FSMC Static MemCtl M0 M1 M2 M3 M4 M5 M6 I-bus D-bus S-bus DMA_PI DMA_MEM1 DMA_MEM2 DMA_P2 ETHERNET_M USB_HS_M ai18490c CCM data RAM 64-Kbyte APB1 APB2 peripherals Description STM32F405xx, STM32F407xx 22/185 DocID022152 Rev 4 2.2.9 Flexible static memory controller (FSMC) The FSMC is embedded in the STM32F405xx and STM32F407xx family. It has four Chip Select outputs supporting the following modes: PCCard/Compact Flash, SRAM, PSRAM, NOR Flash and NAND Flash. Functionality overview: • Write FIFO • Maximum FSMC_CLK frequency for synchronous accesses is 60 MHz. LCD parallel interface The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration. 2.2.10 Nested vectored interrupt controller (NVIC) The STM32F405xx and STM32F407xx embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 82 maskable interrupt channels plus the 16 interrupt lines of the Cortex™-M4F. • Closely coupled NVIC gives low-latency interrupt processing • Interrupt entry vector table address passed directly to the core • Allows early processing of interrupts • Processing of late arriving, higher-priority interrupts • Support tail chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimum interrupt latency. 2.2.11 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected to the 16 external interrupt lines. 2.2.12 Clocks and startup On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full temperature range. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 168 MHz. Similarly, full interrupt management of the PLL DocID022152 Rev 4 23/185 STM32F405xx, STM32F407xx Description clock entry is available when necessary (for example if an indirectly used external oscillator fails). Several prescalers allow the configuration of the three AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB buses is 168 MHz while the maximum frequency of the high-speed APB domains is 84 MHz. The maximum allowed frequency of the low-speed APB domain is 42 MHz. The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class performance. In this case, the I2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz. 2.2.13 Boot modes At startup, boot pins are used to select one out of three boot options: • Boot from user Flash • Boot from system memory • Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade). 2.2.14 Power supply schemes • VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through VDD pins. • VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively. • VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. Refer to Figure 21: Power supply scheme for more details. Note: VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section : Internal reset OFF). Refer to Table 2 in order to identify the packages supporting this option. 2.2.15 Power supply supervisor Internal reset ON On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On all other packages, the power supply supervisor is always enabled. The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR threshold levels, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for an external reset circuit. Description STM32F405xx, STM32F407xx 24/185 DocID022152 Rev 4 The device also features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Internal reset OFF This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled with the PDR_ON pin. An external power supply supervisor should monitor VDD and should maintain the device in reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to this external power supply supervisor. Refer to Figure 7: Power supply supervisor interconnection with internal reset OFF. Figure 7. Power supply supervisor interconnection with internal reset OFF 1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range. The VDD specified threshold, below which the device must be maintained under reset, is 1.8 V (see Figure 7). This supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range. A comprehensive set of power-saving mode allows to design low-power applications. When the internal reset is OFF, the following integrated features are no more supported: • The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled • The brownout reset (BOR) circuitry is disabled • The embedded programmable voltage detector (PVD) is disabled • VBAT functionality is no more available and VBAT pin should be connected to VDD All packages, except for the LQFP64 and LQFP100, allow to disable the internal reset through the PDR_ON signal. MS31383V3 NRST VDD PDR_ON External VDD power supply supervisor Ext. reset controller active when VDD < 1.7 V or 1.8 V (1) VDD Application reset signal (optional) DocID022152 Rev 4 25/185 STM32F405xx, STM32F407xx Description Figure 8. PDR_ON and NRST control with internal reset OFF 1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range. 2.2.16 Voltage regulator The regulator has four operating modes: • Regulator ON – Main regulator mode (MR) – Low power regulator (LPR) – Power-down • Regulator OFF Regulator ON On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled. There are three power modes configured by software when regulator is ON: • MR is used in the nominal regulation mode (With different voltage scaling in Run) In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. Refer to Table 14: General operating conditions. • LPR is used in the Stop modes The LP regulator mode is configured by software when entering Stop mode. • Power-down is used in Standby mode. The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost) MS19009V6 VDD time PDR = 1.7 V or 1.8 V (1) time NRST PDR_ON PDR_ON Reset by other source than power supply supervisor Description STM32F405xx, STM32F407xx 26/185 DocID022152 Rev 4 Two external ceramic capacitors should be connected on VCAP_1 & VCAP_2 pin. Refer to Figure 21: Power supply scheme and Figure 16: VCAP_1/VCAP_2 operating conditions. All packages have regulator ON feature. Regulator OFF This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V12 voltage source through VCAP_1 and VCAP_2 pins. Since the internal voltage scaling is not manage internally, the external voltage value must be aligned with the targetted maximum frequency. Refer to Table 14: General operating conditions. The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to Figure 21: Power supply scheme When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain. In regulator OFF mode the following features are no more supported: • PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power domain which is not reset by the NRST pin. • As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required. Figure 9. Regulator OFF ai18498V4 External VCAP_1/2 power supply supervisor Ext. reset controller active when VCAP_1/2 < Min V12 V12 VCAP_1 VCAP_2 BYPASS_REG VDD PA0 NRST Application reset signal (optional) VDD V12 DocID022152 Rev 4 27/185 STM32F405xx, STM32F407xx Description The following conditions must be respected: • VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains. • If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for VDD to reach 1.8 V, then PA0 should be kept low to cover both conditions: until VCAP_1 and VCAP_2 reach V12 minimum value and until VDD reaches 1.8 V (see Figure 10). • Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower than the time for VDD to reach 1.8 V, then PA0 could be asserted low externally (see Figure 11). • If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.8 V, then a reset must be asserted on PA0 pin. Note: The minimum value of V12 depends on the maximum frequency targeted in the application (see Table 14: General operating conditions). Figure 10. Startup in regulator OFF mode: slow VDD slope - power-down reset risen after VCAP_1/VCAP_2 stabilization 1. This figure is valid both whatever the internal reset mode (onON or OFFoff). 2. PDR = 1.7 V for reduced temperature range; PDR = 1.8 V for all temperature ranges. ai18491e VDD time Min V12 PDR = 1.7 V or 1.8 V (2) VCAP_1/VCAP_2 V12 NRST time Description STM32F405xx, STM32F407xx 28/185 DocID022152 Rev 4 Figure 11. Startup in regulator OFF mode: fast VDD slope - power-down reset risen before VCAP_1/VCAP_2 stabilization 1. This figure is valid both whatever the internal reset mode (onON or offOFF). 2. PDR = 1.7 V for a reduced temperature range; PDR = 1.8 V for all temperature ranges. 2.2.17 Regulator ON/OFF and internal reset ON/OFF availability 2.2.18 Real-time clock (RTC), backup SRAM and backup registers The backup domain of the STM32F405xx and STM32F407xx includes: • The real-time clock (RTC) • 4 Kbytes of backup SRAM • 20 backup registers The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binarycoded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is also available in binary format. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC VDD time Min V12 VCAP_1/VCAP_2 V12 PA0 asserted externally NRST time ai18492d PDR = 1.7 V or 1.8 V (2) Table 3. Regulator ON/OFF and internal reset ON/OFF availability Regulator ON Regulator OFF Internal reset ON Internal reset OFF LQFP64 LQFP100 Yes No Yes No LQFP144 LQFP176 Yes PDR_ON set to VDD Yes PDR_ON connected to an external power supply supervisor WLCSP90 UFBGA176 Yes BYPASS_REG set to VSS Yes BYPASS_REG set to VDD DocID022152 Rev 4 29/185 STM32F405xx, STM32F407xx Description has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 μs to every 36 hours. A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data which need to be retained in VBAT and standby mode. This memory area is disabled by default to minimize power consumption (see Section 2.2.19: Low-power modes). It can be enabled by software. The backup registers are 32-bit registers used to store 80 bytes of user application data when VDD power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 2.2.19: Low-power modes). Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date. Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the VDD supply when present or from the VBAT pin. 2.2.19 Low-power modes The STM32F405xx and STM32F407xx support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Stop mode The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the V12 domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode. The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup). • Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire V12 domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Description STM32F405xx, STM32F407xx 30/185 DocID022152 Rev 4 Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected. The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs. The standby mode is not supported when the embedded voltage regulator is bypassed and the V12 domain is controlled by an external power. 2.2.20 VBAT operation The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from VDD when no external battery and an external supercapacitor are present. VBAT operation is activated when VDD is not present. The VBAT pin supplies the RTC, the backup registers and the backup SRAM. Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation. When PDR_ON pin is not connected to VDD (internal reset OFF), the VBAT functionality is no more available and VBAT pin should be connected to VDD. 2.2.21 Timers and watchdogs The STM32F405xx and STM32F407xx devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers. All timer counters can be frozen in debug mode. Table 4 compares the features of the advanced-control, general-purpose and basic timers. Table 4. Timer feature comparison Timer type Timer Counter resolutio n Counter type Prescaler factor DMA request generatio n Capture/ compare channels Complementar y output Max interface clock (MHz) Max timer clock (MHz) Advanced -control TIM1, TIM8 16-bit Up, Down, Up/dow n Any integer between 1 and 65536 Yes 4 Yes 84 168 DocID022152 Rev 4 31/185 STM32F405xx, STM32F407xx Description Advanced-control timers (TIM1, TIM8) The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for: • Input capture • Output compare • PWM generation (edge- or center-aligned modes) • One-pulse mode output If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0- 100%). The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. TIM1 and TIM8 support independent DMA request generation. General purpose TIM2, TIM5 32-bit Up, Down, Up/dow n Any integer between 1 and 65536 Yes 4 No 42 84 TIM3, TIM4 16-bit Up, Down, Up/dow n Any integer between 1 and 65536 Yes 4 No 42 84 TIM9 16-bit Up Any integer between 1 and 65536 No 2 No 84 168 TIM10 , TIM11 16-bit Up Any integer between 1 and 65536 No 1 No 84 168 TIM12 16-bit Up Any integer between 1 and 65536 No 2 No 42 84 TIM13 , TIM14 16-bit Up Any integer between 1 and 65536 No 1 No 42 84 Basic TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No 42 84 Table 4. Timer feature comparison (continued) Timer type Timer Counter resolutio n Counter type Prescaler factor DMA request generatio n Capture/ compare channels Complementar y output Max interface clock (MHz) Max timer clock (MHz) Description STM32F405xx, STM32F407xx 32/185 DocID022152 Rev 4 General-purpose timers (TIMx) There are ten synchronizable general-purpose timers embedded in the STM32F40x devices (see Table 4 for differences). • TIM2, TIM3, TIM4, TIM5 The STM32F40x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16- bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages. The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining. Any of these general-purpose timers can be used to generate PWM outputs. TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors. • TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases. Basic timers TIM6 and TIM7 These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base. TIM6 and TIM7 support independent DMA request generation. Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. DocID022152 Rev 4 33/185 STM32F405xx, STM32F407xx Description SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features: • A 24-bit downcounter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0 • Programmable clock source. 2.2.22 Inter-integrated circuit interface (I²C) Up to three I²C bus interfaces can operate in multimaster and slave modes. They can support the Standard-mode (up to 100 kHz) and Fast-mode (up to 400 kHz) . They support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded. They can be served by DMA and they support SMBus 2.0/PMBus. 2.2.23 Universal synchronous/asynchronous receiver transmitters (USART) The STM32F405xx and STM32F407xx embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and two universal asynchronous receiver transmitters (UART4 and UART5). These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 10.5 Mbit/s. The other available interfaces communicate at up to 5.25 Mbit/s. USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller. Description STM32F405xx, STM32F407xx 34/185 DocID022152 Rev 4 2.2.24 Serial peripheral interface (SPI) The STM32F40x feature up to three SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1 can communicate at up to 42 Mbits/s, SPI2 and SPI3 can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller. The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode. 2.2.25 Inter-integrated sound (I2S) Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, in full duplex and half-duplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I2Sx can be served by the DMA controller. 2.2.26 Audio PLL (PLLI2S) The devices feature an additional dedicated PLL for audio I2S application. It allows to achieve error-free I2S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals. Table 5. USART feature comparison USART name Standard features Modem (RTS/ CTS) LIN SPI master irDA Smartcard (ISO 7816) Max. baud rate in Mbit/s (oversampling by 16) Max. baud rate in Mbit/s (oversampling by 8) APB mapping USART1 X X X X X X 5.25 10.5 APB2 (max. 84 MHz) USART2 X X X X X X 2.62 5.25 APB1 (max. 42 MHz) USART3 X X X X X X 2.62 5.25 APB1 (max. 42 MHz) UART4 X - X - X - 2.62 5.25 APB1 (max. 42 MHz) UART5 X - X - X - 2.62 5.25 APB1 (max. 42 MHz) USART6 X X X X X X 5.25 10.5 APB2 (max. 84 MHz) DocID022152 Rev 4 35/185 STM32F405xx, STM32F407xx Description The PLLI2S configuration can be modified to manage an I2S sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces. The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz. In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S flow with an external PLL (or Codec output). 2.2.27 Secure digital input/output interface (SDIO) An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory Card Specification Version 2.0. The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit. The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous. In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1. 2.2.28 Ethernet MAC interface with dedicated DMA and IEEE 1588 support Peripheral available only on the STM32F407xx devices. The STM32F407xx devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for ethernet LAN communications through an industry-standard mediumindependent interface (MII) or a reduced medium-independent interface (RMII). The STM32F407xx requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F407xx MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the STM32F407xx. The STM32F407xx includes the following features: • Supports 10 and 100 Mbit/s rates • Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors (see the STM32F40x reference manual for details) • Tagged MAC frame support (VLAN support) • Half-duplex (CSMA/CD) and full-duplex operation • MAC control sublayer (control frames) support • 32-bit CRC generation and removal • Several address filtering modes for physical and multicast address (multicast and group addresses) • 32-bit status code for each transmitted or received frame • Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 2 Kbytes. • Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input • Triggers interrupt when system time becomes greater than target time Description STM32F405xx, STM32F407xx 36/185 DocID022152 Rev 4 2.2.29 Controller area network (bxCAN) The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN. 2.2.30 Universal serial bus on-the-go full-speed (OTG_FS) The STM32F405xx and STM32F407xx embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are: • Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing • Supports the session request protocol (SRP) and host negotiation protocol (HNP) • 4 bidirectional endpoints • 8 host channels with periodic OUT support • HNP/SNP/IP inside (no need for any external resistor) • For OTG/Host modes, a power switch is needed in case bus-powered devices are connected 2.2.31 Universal serial bus on-the-go high-speed (OTG_HS) The STM32F405xx and STM32F407xx devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required. The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The major features are: • Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing • Supports the session request protocol (SRP) and host negotiation protocol (HNP) • 6 bidirectional endpoints • 12 host channels with periodic OUT support • Internal FS OTG PHY support • External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output. • Internal USB DMA • HNP/SNP/IP inside (no need for any external resistor) • for OTG/Host modes, a power switch is needed in case bus-powered devices are connected DocID022152 Rev 4 37/185 STM32F405xx, STM32F407xx Description 2.2.32 Digital camera interface (DCMI) The camera interface is not available in STM32F405xx devices. STM32F407xx products embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features: • Programmable polarity for the input pixel clock and synchronization signals • Parallel data communication can be 8-, 10-, 12- or 14-bit • Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG) • Supports continuous mode or snapshot (a single frame) mode • Capability to automatically crop the image 2.2.33 Random number generator (RNG) All STM32F405xx and STM32F407xx products embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit. 2.2.34 General-purpose input/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission. The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers. Fast I/O handling allowing maximum I/O toggling up to 84 MHz. 2.2.35 Analog-to-digital converters (ADCs) Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs. Additional logic functions embedded in the ADC interface allow: • Simultaneous sample and hold • Interleaved sample and hold The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer. 2.2.36 Temperature sensor The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.8 V and 3.6 V. The temperature sensor is internally Description STM32F405xx, STM32F407xx 38/185 DocID022152 Rev 4 connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value. As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used. 2.2.37 Digital-to-analog converter (DAC) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. This dual digital Interface supports the following features: • two DAC converters: one for each output channel • 8-bit or 12-bit monotonic output • left or right data alignment in 12-bit mode • synchronized update capability • noise-wave generation • triangular-wave generation • dual DAC channel independent or simultaneous conversions • DMA capability for each channel • external triggers for conversion • input voltage reference VREF+ Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams. 2.2.38 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 2.2.39 Embedded Trace Macrocell™ The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F40x through a small number of ETM pins to an external hardware trace port analyser (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors. The Embedded Trace Macrocell operates with third party debugger software tools. DocID022152 Rev 4 39/185 STM32F405xx, STM32F407xx Pinouts and pin description 3 Pinouts and pin description Figure 12. STM32F40x LQFP64 pinout 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VBAT PC14 PC15 NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0_WKUP PA1 PA2 VDD PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 VDD VCAP_2 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VCAP_1 VDD LQFP64 ai18493b PC13 PH0 PH1 VSS Pinouts and pin description STM32F405xx, STM32F407xx 40/185 DocID022152 Rev 4 Figure 13. STM32F40x LQFP100 pinout 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 PE2 PE3 PE4 PE5 PE6 VBAT PC14 PC15 VSS VDD PH0 NRST PC0 PC1 PC2 PC3 VDD VSSA VREF+ VDDA PA0 PA1 PA2 VDD VSS VCAP_2 PA13 PA12 PA 11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VCAP_1 VDD VDD VSS PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 ai18495c LQFP100 PC13 PH1 DocID022152 Rev 4 41/185 STM32F405xx, STM32F407xx Pinouts and pin description Figure 14. STM32F40x LQFP144 pinout VDD PDR_ON PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDD VSS PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 VDD VSS PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 PE2 VDD PE3 VSS PE4 PE5 PA13 PE6 PA12 VBAT PA11 PC13 PA10 PC14 PA9 PC15 PA8 PF0 PC9 PF1 PC8 PF2 PC7 PF3 PC6 PF4 VDD PF5 VSS VSS PG8 VDD PG7 PF6 PG6 PF7 PG5 PF8 PG4 PF9 PG3 PF10 PG2 PH0 PD15 PH1 PD14 NRST VDD PC0 VSS PC1 PD13 PC2 PD12 PC3 PD11 VSSA VDD PD10 PD9 VREF+ PD8 VDDA PB15 PA0 PB14 PA1 PB13 PA2 PB12 PA3 VSS VDD PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 VDD PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS VDD PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VCAP_1 VDD 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 109 123456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 72 LQFP144 120 119 118 117 116 115 114 113 112 111 110 61 62 63 64 65 66 67 68 69 70 71 26 27 28 29 30 31 32 33 34 35 36 83 82 81 80 79 78 77 76 75 74 73 ai18496b VCAP_2 VSS Pinouts and pin description STM32F405xx, STM32F407xx 42/185 DocID022152 Rev 4 Figure 15. STM32F40x LQFP176 pinout MS19916V3 PDR_ON PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PI7 PI6 PE2 PE3 PE4 PE5 PA13 PE6 PA12 VBAT PA11 PI8 PA10 PC14 PA9 PC15 PA8 PF0 PC9 PF1 PC8 PF2 PC7 PF3 PC6 PF4 PF5 PG8 PG7 PF6 PG6 PF7 PG5 PF8 PG4 PF9 PG3 PF10 PG2 PH0 PD15 PH1 PD14 NRST V PC0 V PC1 PD13 PC2 PD12 PC3 PD11 PD10 PD9 VREF+ PD8 PB15 PA0 PB14 PA1 PB13 PA2 PB12 PA3 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 VSS PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 141 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 80 LQFP176 152 151 150 149 148 147 146 145 144 143 142 69 70 71 72 73 74 75 76 77 78 79 26 27 28 29 30 31 32 33 34 35 36 107 106 105 104 103 102 101 100 99 98 89 PI4 PA15 PA14 PI3 PI2 PI5 140 139 138 137 136 135 134 133 PH4 PH5 PH6 PH7 PH8 PH9 PH10 PH11 88 81 82 83 84 85 86 87 PI1 PI0 PH15 PH14 PH13 PH12 96 95 94 93 92 91 90 97 37 38 39 40 41 42 43 44 PC13 PI9 PI10 PI11 VSS PH2 PH3 VDD VSS VDD VDDA VSSA VDDA BYPASS_REG VDD VDD VSS VDD VCAP_1 VDD VSS VDD VCAP_2 VSS VDD VSS VDD VSS VDD VSS VDD VDD VSS VDD VSS VDD DocID022152 Rev 4 43/185 STM32F405xx, STM32F407xx Pinouts and pin description Figure 16. STM32F40x UFBGA176 ballout 1. This figure shows the package top view. ai18497b 1 2 3 9 10 11 12 13 14 15 A PE3 PE2 PE1 PE0 PB8 PB5 PG14 PG13 PB4 PB3 PD7 PC12 PA15 PA14 PA13 B PE4 PE5 PE6 PB9 PB7 PB6 PG15 PG12 PG11 PG10 PD6 PD0 PC11 PC10 PA12 C VBAT PI7 PI6 PI5 VDD PDR_ON VDD VDD VDD PG9 PD5 PD1 PI3 PI2 PA11 D PC13 PI8 PI9 PI4 BOOT0 VSS VSS VSS PD4 PD3 PD2 PH15 PI1 PA10 E PC14 PF0 PI10 PI11 PH13 PH14 PI0 PA9 F PC15 VSS VDD PH2 VSS VSS VSS VSS VSS VSS VCAP_2 PC9 PA8 G PH0 VSS VDD PH3 VSS VSS VSS VSS VSS VSS VDD PC8 PC7 H PH1 PF2 PF1 PH4 VSS VSS VSS VSS VSS VSS VDD PG8 PC6 J NRST PF3 PF4 PH5 VSS VSS VSS VSS VSS VDD VDD PG7 PG6 K PF7 PF6 PF5 VDD VSS VSS VSS VSS VSS PH12 PG5 PG4 PG3 L PF10 PF9 PF8 BYPASS_ REG PH11 PH10 PD15 PG2 M VSSA PC0 PC1 PC2 PC3 PB2 PG1 VSS VSS VCAP_1 PH6 PH8 PH9 PD14 PD13 N VREF- PA1 PA0 PA4 PC4 PF13 PG0 VDD VDD VDD PE13 PH7 PD12 PD11 PD10 P VREF+ PA2 PA6 PA5 PC5 PF12 PF15 PE8 PE9 PE11 PE14 PB12 PB13 PD9 PD8 R VDDA PA3 PA7 PB1 PB0 PF11 PF14 PE7 PE10 PE12 PE15 PB10 PB11 PB14 PB15 VSS 4 5 6 7 8 Pinouts and pin description STM32F405xx, STM32F407xx 44/185 DocID022152 Rev 4 Figure 17. STM32F40x WLCSP90 ballout 1. This figure shows the package bump view. A VBAT PC13 PDR_ON PB4 PD7 PD4 PC12 B PC15 VDD PB7 PB3 PD6 PD2 PA15 C PA0 VSS PB6 PD5 PD1 PC11 PI0 D PC2 PB8 PA13 E PC3 VSS F PH1 PA1 G NRST H VSSA J PA2 PA 4 PA7 PB2 PE11 PB11 PB12 MS30402V1 1 PA14 PI1 PA12 PA10 PA9 PC0 PC9 PC8 PH0 PB13 PC6 PD14 PD12 PE8 PE12 BYPASS_ REG PD9 PD8 PE9 PB14 10 9 8 7 6 5 4 3 2 VDD PC14 VCAP_2 PA11 PB5 PD0 PC10 PA8 VSS VDD VSS VDD PC7 VDD PE10 PE14 VCAP_1 PD15 PE13 PE15 PD10 PD11 PA3 PA6 PB1 PB10 PB15 PB9 BOOT0 VDDA PA5 PB0 PE7 Table 6. Legend/abbreviations used in the pinout table Name Abbreviation Definition Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name Pin type S Supply pin I Input only pin I/O Input / output pin I/O structure FT 5 V tolerant I/O TTa 3.3 V tolerant I/O directly connected to ADC B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers DocID022152 Rev 4 45/185 STM32F405xx, STM32F407xx Pinouts and pin description Table 7. STM32F40x pin and ball definitions Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 - - 1 1 A2 1 PE2 I/O FT TRACECLK/ FSMC_A23 / ETH_MII_TXD3 / EVENTOUT - - 2 2 A1 2 PE3 I/O FT TRACED0/FSMC_A19 / EVENTOUT - - 3 3 B1 3 PE4 I/O FT TRACED1/FSMC_A20 / DCMI_D4/ EVENTOUT - - 4 4 B2 4 PE5 I/O FT TRACED2 / FSMC_A21 / TIM9_CH1 / DCMI_D6 / EVENTOUT - - 5 5 B3 5 PE6 I/O FT TRACED3 / FSMC_A22 / TIM9_CH2 / DCMI_D7 / EVENTOUT 1 A10 6 6 C1 6 VBAT S - - - - D2 7 PI8 I/O FT (2)( 3) EVENTOUT RTC_TAMP1, RTC_TAMP2, RTC_TS 2 A9 7 7 D1 8 PC13 I/O FT (2) (3) EVENTOUT RTC_OUT, RTC_TAMP1, RTC_TS 3 B10 8 8 E1 9 PC14/OSC32_IN (PC14) I/O FT (2)( 3) EVENTOUT OSC32_IN(4) 4 B9 9 9 F1 10 PC15/ OSC32_OUT (PC15) I/O FT (2)( 3) EVENTOUT OSC32_OUT(4) - - - - D3 11 PI9 I/O FT CAN1_RX / EVENTOUT - - - - E3 12 PI10 I/O FT ETH_MII_RX_ER / EVENTOUT - - - - E4 13 PI11 I/O FT OTG_HS_ULPI_DIR / EVENTOUT - - - - F2 14 VSS S - - - - F3 15 VDD S - - - 10 E2 16 PF0 I/O FT FSMC_A0 / I2C2_SDA / EVENTOUT Pinouts and pin description STM32F405xx, STM32F407xx 46/185 DocID022152 Rev 4 - - - 11 H3 17 PF1 I/O FT FSMC_A1 / I2C2_SCL / EVENTOUT - - - 12 H2 18 PF2 I/O FT FSMC_A2 / I2C2_SMBA / EVENTOUT - - - 13 J2 19 PF3 I/O FT (4) FSMC_A3/EVENTOUT ADC3_IN9 - - - 14 J3 20 PF4 I/O FT (4) FSMC_A4/EVENTOUT ADC3_IN14 - - - 15 K3 21 PF5 I/O FT (4) FSMC_A5/EVENTOUT ADC3_IN15 - C9 10 16 G2 22 VSS S - B8 11 17 G3 23 VDD S - - - 18 K2 24 PF6 I/O FT (4) TIM10_CH1 / FSMC_NIORD/ EVENTOUT ADC3_IN4 - - - 19 K1 25 PF7 I/O FT (4) TIM11_CH1/FSMC_NREG / EVENTOUT ADC3_IN5 - - - 20 L3 26 PF8 I/O FT (4) TIM13_CH1 / FSMC_NIOWR/ EVENTOUT ADC3_IN6 - - - 21 L2 27 PF9 I/O FT (4) TIM14_CH1 / FSMC_CD/ EVENTOUT ADC3_IN7 - - - 22 L1 28 PF10 I/O FT (4) FSMC_INTR/ EVENTOUT ADC3_IN8 5 F10 12 23 G1 29 PH0/OSC_IN (PH0) I/O FT EVENTOUT OSC_IN(4) 6 F9 13 24 H1 30 PH1/OSC_OUT (PH1) I/O FT EVENTOUT OSC_OUT(4) 7 G10 14 25 J1 31 NRST I/O RS T 8 E10 15 26 M2 32 PC0 I/O FT (4) OTG_HS_ULPI_STP/ EVENTOUT ADC123_IN10 9 - 16 27 M3 33 PC1 I/O FT (4) ETH_MDC/ EVENTOUT ADC123_IN11 10 D10 17 28 M4 34 PC2 I/O FT (4) SPI2_MISO / OTG_HS_ULPI_DIR / ETH_MII_TXD2 /I2S2ext_SD/ EVENTOUT ADC123_IN12 Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 47/185 STM32F405xx, STM32F407xx Pinouts and pin description 11 E9 18 29 M5 35 PC3 I/O FT (4) SPI2_MOSI / I2S2_SD / OTG_HS_ULPI_NXT / ETH_MII_TX_CLK/ EVENTOUT ADC123_IN13 - - 19 30 G3 36 VDD S 12 H10 20 31 M1 37 VSSA S - - - - N1 - VREF– S - - 21 32 P1 38 VREF+ S 13 G9 22 33 R1 39 VDDA S 14 C10 23 34 N3 40 PA0/WKUP (PA0) I/O FT (5) USART2_CTS/ UART4_TX/ ETH_MII_CRS / TIM2_CH1_ETR/ TIM5_CH1 / TIM8_ETR/ EVENTOUT ADC123_IN0/WKUP(4 ) 15 F8 24 35 N2 41 PA1 I/O FT (4) USART2_RTS / UART4_RX/ ETH_RMII_REF_CLK / ETH_MII_RX_CLK / TIM5_CH2 / TIM2_CH2/ EVENTOUT ADC123_IN1 16 J10 25 36 P2 42 PA2 I/O FT (4) USART2_TX/TIM5_CH3 / TIM9_CH1 / TIM2_CH3 / ETH_MDIO/ EVENTOUT ADC123_IN2 - - - - F4 43 PH2 I/O FT ETH_MII_CRS/EVENTOU T - - - - G4 44 PH3 I/O FT ETH_MII_COL/EVENTOU T - - - - H4 45 PH4 I/O FT I2C2_SCL / OTG_HS_ULPI_NXT/ EVENTOUT - - - - J4 46 PH5 I/O FT I2C2_SDA/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Pinouts and pin description STM32F405xx, STM32F407xx 48/185 DocID022152 Rev 4 17 H9 26 37 R2 47 PA3 I/O FT (4) USART2_RX/TIM5_CH4 / TIM9_CH2 / TIM2_CH4 / OTG_HS_ULPI_D0 / ETH_MII_COL/ EVENTOUT ADC123_IN3 18 E5 27 38 - - VSS S D9 L4 48 BYPASS_REG I FT 19 E4 28 39 K4 49 VDD S 20 J9 29 40 N4 50 PA4 I/O TTa (4) SPI1_NSS / SPI3_NSS / USART2_CK / DCMI_HSYNC / OTG_HS_SOF/ I2S3_WS/ EVENTOUT ADC12_IN4 /DAC_OUT1 21 G8 30 41 P4 51 PA5 I/O TTa (4) SPI1_SCK/ OTG_HS_ULPI_CK / TIM2_CH1_ETR/ TIM8_CH1N/ EVENTOUT ADC12_IN5/DAC_OU T2 22 H8 31 42 P3 52 PA6 I/O FT (4) SPI1_MISO / TIM8_BKIN/TIM13_CH1 / DCMI_PIXCLK / TIM3_CH1 / TIM1_BKIN/ EVENTOUT ADC12_IN6 23 J8 32 43 R3 53 PA7 I/O FT (4) SPI1_MOSI/ TIM8_CH1N / TIM14_CH1/TIM3_CH2/ ETH_MII_RX_DV / TIM1_CH1N / ETH_RMII_CRS_DV/ EVENTOUT ADC12_IN7 24 - 33 44 N5 54 PC4 I/O FT (4) ETH_RMII_RX_D0 / ETH_MII_RX_D0/ EVENTOUT ADC12_IN14 25 - 34 45 P5 55 PC5 I/O FT (4) ETH_RMII_RX_D1 / ETH_MII_RX_D1/ EVENTOUT ADC12_IN15 26 G7 35 46 R5 56 PB0 I/O FT (4) TIM3_CH3 / TIM8_CH2N/ OTG_HS_ULPI_D1/ ETH_MII_RXD2 / TIM1_CH2N/ EVENTOUT ADC12_IN8 Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 49/185 STM32F405xx, STM32F407xx Pinouts and pin description 27 H7 36 47 R4 57 PB1 I/O FT (4) TIM3_CH4 / TIM8_CH3N/ OTG_HS_ULPI_D2/ ETH_MII_RXD3 / TIM1_CH3N/ EVENTOUT ADC12_IN9 28 J7 37 48 M6 58 PB2/BOOT1 (PB2) I/O FT EVENTOUT - - - 49 R6 59 PF11 I/O FT DCMI_D12/ EVENTOUT - - - 50 P6 60 PF12 I/O FT FSMC_A6/ EVENTOUT - - - 51 M8 61 VSS S - - - 52 N8 62 VDD S - - - 53 N6 63 PF13 I/O FT FSMC_A7/ EVENTOUT - - - 54 R7 64 PF14 I/O FT FSMC_A8/ EVENTOUT - - - 55 P7 65 PF15 I/O FT FSMC_A9/ EVENTOUT - - - 56 N7 66 PG0 I/O FT FSMC_A10/ EVENTOUT - - - 57 M7 67 PG1 I/O FT FSMC_A11/ EVENTOUT - G6 38 58 R8 68 PE7 I/O FT FSMC_D4/TIM1_ETR/ EVENTOUT - H6 39 59 P8 69 PE8 I/O FT FSMC_D5/ TIM1_CH1N/ EVENTOUT - J6 40 60 P9 70 PE9 I/O FT FSMC_D6/TIM1_CH1/ EVENTOUT - - - 61 M9 71 VSS S - - - 62 N9 72 VDD S - F6 41 63 R9 73 PE10 I/O FT FSMC_D7/TIM1_CH2N/ EVENTOUT - J5 42 64 P10 74 PE11 I/O FT FSMC_D8/TIM1_CH2/ EVENTOUT - H5 43 65 R10 75 PE12 I/O FT FSMC_D9/TIM1_CH3N/ EVENTOUT - G5 44 66 N11 76 PE13 I/O FT FSMC_D10/TIM1_CH3/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Pinouts and pin description STM32F405xx, STM32F407xx 50/185 DocID022152 Rev 4 - F5 45 67 P11 77 PE14 I/O FT FSMC_D11/TIM1_CH4/ EVENTOUT - G4 46 68 R11 78 PE15 I/O FT FSMC_D12/TIM1_BKIN/ EVENTOUT 29 H4 47 69 R12 79 PB10 I/O FT SPI2_SCK / I2S2_CK / I2C2_SCL/ USART3_TX / OTG_HS_ULPI_D3 / ETH_MII_RX_ER / TIM2_CH3/ EVENTOUT 30 J4 48 70 R13 80 PB11 I/O FT I2C2_SDA/USART3_RX/ OTG_HS_ULPI_D4 / ETH_RMII_TX_EN/ ETH_MII_TX_EN / TIM2_CH4/ EVENTOUT 31 F4 49 71 M10 81 VCAP_1 S 32 - 50 72 N10 82 VDD S - - - - M11 83 PH6 I/O FT I2C2_SMBA / TIM12_CH1 / ETH_MII_RXD2/ EVENTOUT - - - - N12 84 PH7 I/O FT I2C3_SCL / ETH_MII_RXD3/ EVENTOUT - - - - M12 85 PH8 I/O FT I2C3_SDA / DCMI_HSYNC/ EVENTOUT - - - - M13 86 PH9 I/O FT I2C3_SMBA / TIM12_CH2/ DCMI_D0/ EVENTOUT - - - - L13 87 PH10 I/O FT TIM5_CH1 / DCMI_D1/ EVENTOUT - - - - L12 88 PH11 I/O FT TIM5_CH2 / DCMI_D2/ EVENTOUT - - - - K12 89 PH12 I/O FT TIM5_CH3 / DCMI_D3/ EVENTOUT - - - - H12 90 VSS S - - - - J12 91 VDD S Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 51/185 STM32F405xx, STM32F407xx Pinouts and pin description 33 J3 51 73 P12 92 PB12 I/O FT SPI2_NSS / I2S2_WS / I2C2_SMBA/ USART3_CK/ TIM1_BKIN / CAN2_RX / OTG_HS_ULPI_D5/ ETH_RMII_TXD0 / ETH_MII_TXD0/ OTG_HS_ID/ EVENTOUT 34 J1 52 74 P13 93 PB13 I/O FT SPI2_SCK / I2S2_CK / USART3_CTS/ TIM1_CH1N /CAN2_TX / OTG_HS_ULPI_D6 / ETH_RMII_TXD1 / ETH_MII_TXD1/ EVENTOUT OTG_HS_VBUS 35 J2 53 75 R14 94 PB14 I/O FT SPI2_MISO/ TIM1_CH2N / TIM12_CH1 / OTG_HS_DM/ USART3_RTS / TIM8_CH2N/I2S2ext_SD/ EVENTOUT 36 H1 54 76 R15 95 PB15 I/O FT SPI2_MOSI / I2S2_SD/ TIM1_CH3N / TIM8_CH3N / TIM12_CH2 / OTG_HS_DP/ EVENTOUT RTC_REFIN - H2 55 77 P15 96 PD8 I/O FT FSMC_D13 / USART3_TX/ EVENTOUT - H3 56 78 P14 97 PD9 I/O FT FSMC_D14 / USART3_RX/ EVENTOUT - G3 57 79 N15 98 PD10 I/O FT FSMC_D15 / USART3_CK/ EVENTOUT - G1 58 80 N14 99 PD11 I/O FT FSMC_CLE / FSMC_A16/USART3_CT S/ EVENTOUT - G2 59 81 N13 100 PD12 I/O FT FSMC_ALE/ FSMC_A17/TIM4_CH1 / USART3_RTS/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Pinouts and pin description STM32F405xx, STM32F407xx 52/185 DocID022152 Rev 4 - - 60 82 M15 101 PD13 I/O FT FSMC_A18/TIM4_CH2/ EVENTOUT - - - 83 - 102 VSS S - - - 84 J13 103 VDD S - F2 61 85 M14 104 PD14 I/O FT FSMC_D0/TIM4_CH3/ EVENTOUT/ EVENTOUT - F1 62 86 L14 105 PD15 I/O FT FSMC_D1/TIM4_CH4/ EVENTOUT - - - 87 L15 106 PG2 I/O FT FSMC_A12/ EVENTOUT - - - 88 K15 107 PG3 I/O FT FSMC_A13/ EVENTOUT - - - 89 K14 108 PG4 I/O FT FSMC_A14/ EVENTOUT - - - 90 K13 109 PG5 I/O FT FSMC_A15/ EVENTOUT - - - 91 J15 110 PG6 I/O FT FSMC_INT2/ EVENTOUT - - - 92 J14 111 PG7 I/O FT FSMC_INT3 /USART6_CK/ EVENTOUT - - - 93 H14 112 PG8 I/O FT USART6_RTS / ETH_PPS_OUT/ EVENTOUT - - - 94 G12 113 VSS S - - - 95 H13 114 VDD S 37 F3 63 96 H15 115 PC6 I/O FT I2S2_MCK / TIM8_CH1/SDIO_D6 / USART6_TX / DCMI_D0/TIM3_CH1/ EVENTOUT 38 E1 64 97 G15 116 PC7 I/O FT I2S3_MCK / TIM8_CH2/SDIO_D7 / USART6_RX / DCMI_D1/TIM3_CH2/ EVENTOUT 39 E2 65 98 G14 117 PC8 I/O FT TIM8_CH3/SDIO_D0 /TIM3_CH3/ USART6_CK / DCMI_D2/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 53/185 STM32F405xx, STM32F407xx Pinouts and pin description 40 E3 66 99 F14 118 PC9 I/O FT I2S_CKIN/ MCO2 / TIM8_CH4/SDIO_D1 / /I2C3_SDA / DCMI_D3 / TIM3_CH4/ EVENTOUT 41 D1 67 100 F15 119 PA8 I/O FT MCO1 / USART1_CK/ TIM1_CH1/ I2C3_SCL/ OTG_FS_SOF/ EVENTOUT 42 D2 68 101 E15 120 PA9 I/O FT USART1_TX/ TIM1_CH2 / I2C3_SMBA / DCMI_D0/ EVENTOUT OTG_FS_VBUS 43 D3 69 102 D15 121 PA10 I/O FT USART1_RX/ TIM1_CH3/ OTG_FS_ID/DCMI_D1/ EVENTOUT 44 C1 70 103 C15 122 PA11 I/O FT USART1_CTS / CAN1_RX / TIM1_CH4 / OTG_FS_DM/ EVENTOUT 45 C2 71 104 B15 123 PA12 I/O FT USART1_RTS / CAN1_TX/ TIM1_ETR/ OTG_FS_DP/ EVENTOUT 46 D4 72 105 A15 124 PA13 (JTMS-SWDIO) I/O FT JTMS-SWDIO/ EVENTOUT 47 B1 73 106 F13 125 VCAP_2 S - E7 74 107 F12 126 VSS S 48 E6 75 108 G13 127 VDD S - - - - E12 128 PH13 I/O FT TIM8_CH1N / CAN1_TX/ EVENTOUT - - - - E13 129 PH14 I/O FT TIM8_CH2N / DCMI_D4/ EVENTOUT - - - - D13 130 PH15 I/O FT TIM8_CH3N / DCMI_D11/ EVENTOUT - C3 - - E14 131 PI0 I/O FT TIM5_CH4 / SPI2_NSS / I2S2_WS / DCMI_D13/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Pinouts and pin description STM32F405xx, STM32F407xx 54/185 DocID022152 Rev 4 - B2 - - D14 132 PI1 I/O FT SPI2_SCK / I2S2_CK / DCMI_D8/ EVENTOUT - - - - C14 133 PI2 I/O FT TIM8_CH4 /SPI2_MISO / DCMI_D9 / I2S2ext_SD/ EVENTOUT - - - - C13 134 PI3 I/O FT TIM8_ETR / SPI2_MOSI / I2S2_SD / DCMI_D10/ EVENTOUT - - - - D9 135 VSS S - - - - C9 136 VDD S 49 A2 76 109 A14 137 PA14 (JTCK/SWCLK) I/O FT JTCK-SWCLK/ EVENTOUT 50 B3 77 110 A13 138 PA15 (JTDI) I/O FT JTDI/ SPI3_NSS/ I2S3_WS/TIM2_CH1_ET R / SPI1_NSS / EVENTOUT 51 D5 78 111 B14 139 PC10 I/O FT SPI3_SCK / I2S3_CK/ UART4_TX/SDIO_D2 / DCMI_D8 / USART3_TX/ EVENTOUT 52 C4 79 112 B13 140 PC11 I/O FT UART4_RX/ SPI3_MISO / SDIO_D3 / DCMI_D4/USART3_RX / I2S3ext_SD/ EVENTOUT 53 A3 80 113 A12 141 PC12 I/O FT UART5_TX/SDIO_CK / DCMI_D9 / SPI3_MOSI /I2S3_SD / USART3_CK/ EVENTOUT - D6 81 114 B12 142 PD0 I/O FT FSMC_D2/CAN1_RX/ EVENTOUT - C5 82 115 C12 143 PD1 I/O FT FSMC_D3 / CAN1_TX/ EVENTOUT 54 B4 83 116 D12 144 PD2 I/O FT TIM3_ETR/UART5_RX/ SDIO_CMD / DCMI_D11/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 55/185 STM32F405xx, STM32F407xx Pinouts and pin description - - 84 117 D11 145 PD3 I/O FT FSMC_CLK/ USART2_CTS/ EVENTOUT - A4 85 118 D10 146 PD4 I/O FT FSMC_NOE/ USART2_RTS/ EVENTOUT - C6 86 119 C11 147 PD5 I/O FT FSMC_NWE/USART2_TX / EVENTOUT - - - 120 D8 148 VSS S - - - 121 C8 149 VDD S - B5 87 122 B11 150 PD6 I/O FT FSMC_NWAIT/ USART2_RX/ EVENTOUT - A5 88 123 A11 151 PD7 I/O FT USART2_CK/FSMC_NE1/ FSMC_NCE2/ EVENTOUT - - - 124 C10 152 PG9 I/O FT USART6_RX / FSMC_NE2/FSMC_NCE3 / EVENTOUT - - - 125 B10 153 PG10 I/O FT FSMC_NCE4_1/ FSMC_NE3/ EVENTOUT - - - 126 B9 154 PG11 I/O FT FSMC_NCE4_2 / ETH_MII_TX_EN/ ETH _RMII_TX_EN/ EVENTOUT - - - 127 B8 155 PG12 I/O FT FSMC_NE4 / USART6_RTS/ EVENTOUT - - - 128 A8 156 PG13 I/O FT FSMC_A24 / USART6_CTS /ETH_MII_TXD0/ ETH_RMII_TXD0/ EVENTOUT - - - 129 A7 157 PG14 I/O FT FSMC_A25 / USART6_TX /ETH_MII_TXD1/ ETH_RMII_TXD1/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Pinouts and pin description STM32F405xx, STM32F407xx 56/185 DocID022152 Rev 4 - E8 - 130 D7 158 VSS S - F7 - 131 C7 159 VDD S - - - 132 B7 160 PG15 I/O FT USART6_CTS / DCMI_D13/ EVENTOUT 55 B6 89 133 A10 161 PB3 (JTDO/ TRACESWO) I/O FT JTDO/ TRACESWO/ SPI3_SCK / I2S3_CK / TIM2_CH2 / SPI1_SCK/ EVENTOUT 56 A6 90 134 A9 162 PB4 (NJTRST) I/O FT NJTRST/ SPI3_MISO / TIM3_CH1 / SPI1_MISO / I2S3ext_SD/ EVENTOUT 57 D7 91 135 A6 163 PB5 I/O FT I2C1_SMBA/ CAN2_RX / OTG_HS_ULPI_D7 / ETH_PPS_OUT/TIM3_CH 2 / SPI1_MOSI/ SPI3_MOSI / DCMI_D10 / I2S3_SD/ EVENTOUT 58 C7 92 136 B6 164 PB6 I/O FT I2C1_SCL/ TIM4_CH1 / CAN2_TX / DCMI_D5/USART1_TX/ EVENTOUT 59 B7 93 137 B5 165 PB7 I/O FT I2C1_SDA / FSMC_NL / DCMI_VSYNC / USART1_RX/ TIM4_CH2/ EVENTOUT 60 A7 94 138 D6 166 BOOT0 I B VPP 61 D8 95 139 A5 167 PB8 I/O FT TIM4_CH3/SDIO_D4/ TIM10_CH1 / DCMI_D6 / ETH_MII_TXD3 / I2C1_SCL/ CAN1_RX/ EVENTOUT 62 C8 96 140 B4 168 PB9 I/O FT SPI2_NSS/ I2S2_WS / TIM4_CH4/ TIM11_CH1/ SDIO_D5 / DCMI_D7 / I2C1_SDA / CAN1_TX/ EVENTOUT Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 DocID022152 Rev 4 57/185 STM32F405xx, STM32F407xx Pinouts and pin description - - 97 141 A4 169 PE0 I/O FT TIM4_ETR / FSMC_NBL0 / DCMI_D2/ EVENTOUT - - 98 142 A3 170 PE1 I/O FT FSMC_NBL1 / DCMI_D3/ EVENTOUT 63 - 99 - D5 - VSS S - A8 - 143 C6 171 PDR_ON I FT 64 A1 10 0 144 C5 172 VDD S - - - - D4 173 PI4 I/O FT TIM8_BKIN / DCMI_D5/ EVENTOUT - - - - C4 174 PI5 I/O FT TIM8_CH1 / DCMI_VSYNC/ EVENTOUT - - - - C3 175 PI6 I/O FT TIM8_CH2 / DCMI_D6/ EVENTOUT - - - - C2 176 PI7 I/O FT TIM8_CH3 / DCMI_D7/ EVENTOUT 1. Function availability depends on the chosen device. 2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF. - These I/Os must not be used as a current source (e.g. to drive an LED). 3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website: www.st.com. 4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1). 5. If the device is delivered in an UFBGA176 or WLCSP90 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset ON mode), then PA0 is used as an internal Reset (active low). Table 7. STM32F40x pin and ball definitions (continued) Pin number Pin name (function after reset)(1) Pin type I / O structure Notes Alternate functions Additional functions LQFP64 WLCSP90 LQFP100 LQFP144 UFBGA176 LQFP176 Table 8. FSMC pin definition Pins(1) FSMC LQFP100(2) WLCSP90 (2) CF NOR/PSRAM/ SRAM NOR/PSRAM Mux NAND 16 bit PE2 A23 A23 Yes PE3 A19 A19 Yes Pinouts and pin description STM32F405xx, STM32F407xx 58/185 DocID022152 Rev 4 PE4 A20 A20 Yes PE5 A21 A21 Yes PE6 A22 A22 Yes PF0 A0 A0 - - PF1 A1 A1 - - PF2 A2 A2 - - PF3 A3 A3 - - PF4 A4 A4 - - PF5 A5 A5 - - PF6 NIORD - - PF7 NREG - - PF8 NIOWR - - PF9 CD - - PF10 INTR - - PF12 A6 A6 - - PF13 A7 A7 - - PF14 A8 A8 - - PF15 A9 A9 - - PG0 A10 A10 - - PG1 A11 - - PE7 D4 D4 DA4 D4 Yes Yes PE8 D5 D5 DA5 D5 Yes Yes PE9 D6 D6 DA6 D6 Yes Yes PE10 D7 D7 DA7 D7 Yes Yes PE11 D8 D8 DA8 D8 Yes Yes PE12 D9 D9 DA9 D9 Yes Yes PE13 D10 D10 DA10 D10 Yes Yes PE14 D11 D11 DA11 D11 Yes Yes PE15 D12 D12 DA12 D12 Yes Yes PD8 D13 D13 DA13 D13 Yes Yes PD9 D14 D14 DA14 D14 Yes Yes PD10 D15 D15 DA15 D15 Yes Yes PD11 A16 A16 CLE Yes Yes Table 8. FSMC pin definition (continued) Pins(1) FSMC LQFP100(2) WLCSP90 (2) CF NOR/PSRAM/ SRAM NOR/PSRAM Mux NAND 16 bit DocID022152 Rev 4 59/185 STM32F405xx, STM32F407xx Pinouts and pin description PD12 A17 A17 ALE Yes Yes PD13 A18 A18 Yes PD14 D0 D0 DA0 D0 Yes Yes PD15 D1 D1 DA1 D1 Yes Yes PG2 A12 - - PG3 A13 - - PG4 A14 - - PG5 A15 - - PG6 INT2 - - PG7 INT3 - - PD0 D2 D2 DA2 D2 Yes Yes PD1 D3 D3 DA3 D3 Yes Yes PD3 CLK CLK Yes PD4 NOE NOE NOE NOE Yes Yes PD5 NWE NWE NWE NWE Yes Yes PD6 NWAIT NWAIT NWAIT NWAIT Yes Yes PD7 NE1 NE1 NCE2 Yes Yes PG9 NE2 NE2 NCE3 - - PG10 NCE4_1 NE3 NE3 - - PG11 NCE4_2 - - PG12 NE4 NE4 - - PG13 A24 A24 - - PG14 A25 A25 - - PB7 NADV NADV Yes Yes PE0 NBL0 NBL0 Yes PE1 NBL1 NBL1 Yes 1. Full FSMC features are available on LQFP144, LQFP176, and UFBGA176. The features available on smaller packages are given in the dedicated package column. 2. Ports F and G are not available in devices delivered in 100-pin packages. Table 8. FSMC pin definition (continued) Pins(1) FSMC LQFP100(2) WLCSP90 (2) CF NOR/PSRAM/ SRAM NOR/PSRAM Mux NAND 16 bit Pinouts and pin description STM32F405xx, STM32F407xx 60/185 DocID022152 Rev 4 Table 9. Alternate function mapping Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI Port A PA0 TIM2_CH1_E TR TIM 5_CH1 TIM8_ETR USART2_CTS UART4_TX ETH_MII_CRS EVENTOUT PA1 TIM2_CH2 TIM5_CH2 USART2_RTS UART4_RX ETH_MII _RX_CLK ETH_RMII__REF _CLK EVENTOUT PA2 TIM2_CH3 TIM5_CH3 TIM9_CH1 USART2_TX ETH_MDIO EVENTOUT PA3 TIM2_CH4 TIM5_CH4 TIM9_CH2 USART2_RX OTG_HS_ULPI_ D0 ETH _MII_COL EVENTOUT PA4 SPI1_NSS SPI3_NSS I2S3_WS USART2_CK OTG_HS_SO F DCMI_HSYN C EVENTOUT PA5 TIM2_CH1_E TR TIM8_CH1N SPI1_SCK OTG_HS_ULPI_ CK EVENTOUT PA6 TIM1_BKIN TIM3_CH1 TIM8_BKIN SPI1_MISO TIM13_CH1 DCMI_PIXCK EVENTOUT PA7 TIM1_CH1N TIM3_CH2 TIM8_CH1N SPI1_MOSI TIM14_CH1 ETH_MII _RX_DV ETH_RMII _CRS_DV EVENTOUT PA8 MCO1 TIM1_CH1 I2C3_SCL USART1_CK OTG_FS_SOF EVENTOUT PA9 TIM1_CH2 I2C3_SMB A USART1_TX DCMI_D0 EVENTOUT PA10 TIM1_CH3 USART1_RX OTG_FS_ID DCMI_D1 EVENTOUT PA11 TIM1_CH4 USART1_CTS CAN1_RX OTG_FS_DM EVENTOUT PA12 TIM1_ETR USART1_RTS CAN1_TX OTG_FS_DP EVENTOUT PA13 JTMSSWDIO EVENTOUT PA14 JTCKSWCLK EVENTOUT PA15 JTDI TIM 2_CH1 TIM 2_ETR SPI1_NSS SPI3_NSS/ I2S3_WS EVENTOUT STM32F405xx, STM32F407xx Pinouts and pin description DocID022152 Rev 4 61/185 Port B PB0 TIM1_CH2N TIM3_CH3 TIM8_CH2N OTG_HS_ULPI_ D1 ETH _MII_RXD2 EVENTOUT PB1 TIM1_CH3N TIM3_CH4 TIM8_CH3N OTG_HS_ULPI_ D2 ETH _MII_RXD3 EVENTOUT PB2 EVENTOUT PB3 JTDO/ TRACES WO TIM2_CH2 SPI1_SCK SPI3_SCK I2S3_CK EVENTOUT PB4 NJTRST TIM3_CH1 SPI1_MISO SPI3_MISO I2S3ext_SD EVENTOUT PB5 TIM3_CH2 I2C1_SMB A SPI1_MOSI SPI3_MOSI I2S3_SD CAN2_RX OTG_HS_ULPI_ D7 ETH _PPS_OUT DCMI_D10 EVENTOUT PB6 TIM4_CH1 I2C1_SCL USART1_TX CAN2_TX DCMI_D5 EVENTOUT PB7 TIM4_CH2 I2C1_SDA USART1_RX FSMC_NL DCMI_VSYN C EVENTOUT PB8 TIM4_CH3 TIM10_CH1 I2C1_SCL CAN1_RX ETH _MII_TXD3 SDIO_D4 DCMI_D6 EVENTOUT PB9 TIM4_CH4 TIM11_CH1 I2C1_SDA SPI2_NSS I2S2_WS CAN1_TX SDIO_D5 DCMI_D7 EVENTOUT PB10 TIM2_CH3 I2C2_SCL SPI2_SCK I2S2_CK USART3_TX OTG_HS_ULPI_ D3 ETH_ MII_RX_ER EVENTOUT PB11 TIM2_CH4 I2C2_SDA USART3_RX OTG_HS_ULPI_ D4 ETH _MII_TX_EN ETH _RMII_TX_EN EVENTOUT PB12 TIM1_BKIN I2C2_SMB A SPI2_NSS I2S2_WS USART3_CK CAN2_RX OTG_HS_ULPI_ D5 ETH _MII_TXD0 ETH _RMII_TXD0 OTG_HS_ID EVENTOUT PB13 TIM1_CH1N SPI2_SCK I2S2_CK USART3_CTS CAN2_TX OTG_HS_ULPI_ D6 ETH _MII_TXD1 ETH _RMII_TXD1 EVENTOUT PB14 TIM1_CH2N TIM8_CH2N SPI2_MISO I2S2ext_SD USART3_RTS TIM12_CH1 OTG_HS_DM EVENTOUT PB15 RTC_ REFIN TIM1_CH3N TIM8_CH3N SPI2_MOSI I2S2_SD TIM12_CH2 OTG_HS_DP EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI Pinouts and pin description STM32F405xx, STM32F407xx 62/185 DocID022152 Rev 4 Port C PC0 OTG_HS_ULPI_ STP EVENTOUT PC1 ETH_MDC EVENTOUT PC2 SPI2_MISO I2S2ext_SD OTG_HS_ULPI_ DIR ETH _MII_TXD2 EVENTOUT PC3 SPI2_MOSI I2S2_SD OTG_HS_ULPI_ NXT ETH _MII_TX_CLK EVENTOUT PC4 ETH_MII_RXD0 ETH_RMII_RXD0 EVENTOUT PC5 ETH _MII_RXD1 ETH _RMII_RXD1 EVENTOUT PC6 TIM3_CH1 TIM8_CH1 I2S2_MCK USART6_TX SDIO_D6 DCMI_D0 EVENTOUT PC7 TIM3_CH2 TIM8_CH2 I2S3_MCK USART6_RX SDIO_D7 DCMI_D1 EVENTOUT PC8 TIM3_CH3 TIM8_CH3 USART6_CK SDIO_D0 DCMI_D2 EVENTOUT PC9 MCO2 TIM3_CH4 TIM8_CH4 I2C3_SDA I2S_CKIN SDIO_D1 DCMI_D3 EVENTOUT PC10 SPI3_SCK/ I2S3_CK USART3_TX/ UART4_TX SDIO_D2 DCMI_D8 EVENTOUT PC11 I2S3ext_SD SPI3_MISO/ USART3_RX UART4_RX SDIO_D3 DCMI_D4 EVENTOUT PC12 SPI3_MOSI I2S3_SD USART3_CK UART5_TX SDIO_CK DCMI_D9 EVENTOUT PC13 EVENTOUT PC14 EVENTOUT PC15 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI STM32F405xx, STM32F407xx Pinouts and pin description DocID022152 Rev 4 63/185 Port D PD0 CAN1_RX FSMC_D2 EVENTOUT PD1 CAN1_TX FSMC_D3 EVENTOUT PD2 TIM3_ETR UART5_RX SDIO_CMD DCMI_D11 EVENTOUT PD3 USART2_CTS FSMC_CLK EVENTOUT PD4 USART2_RTS FSMC_NOE EVENTOUT PD5 USART2_TX FSMC_NWE EVENTOUT PD6 USART2_RX FSMC_NWAIT EVENTOUT PD7 USART2_CK FSMC_NE1/ FSMC_NCE2 EVENTOUT PD8 USART3_TX FSMC_D13 EVENTOUT PD9 USART3_RX FSMC_D14 EVENTOUT PD10 USART3_CK FSMC_D15 EVENTOUT PD11 USART3_CTS FSMC_A16 EVENTOUT PD12 TIM4_CH1 USART3_RTS FSMC_A17 EVENTOUT PD13 TIM4_CH2 FSMC_A18 EVENTOUT PD14 TIM4_CH3 FSMC_D0 EVENTOUT PD15 TIM4_CH4 FSMC_D1 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI Pinouts and pin description STM32F405xx, STM32F407xx 64/185 DocID022152 Rev 4 Port E PE0 TIM4_ETR FSMC_NBL0 DCMI_D2 EVENTOUT PE1 FSMC_NBL1 DCMI_D3 EVENTOUT PE2 TRACECL K ETH _MII_TXD3 FSMC_A23 EVENTOUT PE3 TRACED0 FSMC_A19 EVENTOUT PE4 TRACED1 FSMC_A20 DCMI_D4 EVENTOUT PE5 TRACED2 TIM9_CH1 FSMC_A21 DCMI_D6 EVENTOUT PE6 TRACED3 TIM9_CH2 FSMC_A22 DCMI_D7 EVENTOUT PE7 TIM1_ETR FSMC_D4 EVENTOUT PE8 TIM1_CH1N FSMC_D5 EVENTOUT PE9 TIM1_CH1 FSMC_D6 EVENTOUT PE10 TIM1_CH2N FSMC_D7 EVENTOUT PE11 TIM1_CH2 FSMC_D8 EVENTOUT PE12 TIM1_CH3N FSMC_D9 EVENTOUT PE13 TIM1_CH3 FSMC_D10 EVENTOUT PE14 TIM1_CH4 FSMC_D11 EVENTOUT PE15 TIM1_BKIN FSMC_D12 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI STM32F405xx, STM32F407xx Pinouts and pin description DocID022152 Rev 4 65/185 Port F PF0 I2C2_SDA FSMC_A0 EVENTOUT PF1 I2C2_SCL FSMC_A1 EVENTOUT PF2 I2C2_ SMBA FSMC_A2 EVENTOUT PF3 FSMC_A3 EVENTOUT PF4 FSMC_A4 EVENTOUT PF5 FSMC_A5 EVENTOUT PF6 TIM10_CH1 FSMC_NIORD EVENTOUT PF7 TIM11_CH1 FSMC_NREG EVENTOUT PF8 TIM13_CH1 FSMC_ NIOWR EVENTOUT PF9 TIM14_CH1 FSMC_CD EVENTOUT PF10 FSMC_INTR EVENTOUT PF11 DCMI_D12 EVENTOUT PF12 FSMC_A6 EVENTOUT PF13 FSMC_A7 EVENTOUT PF14 FSMC_A8 EVENTOUT PF15 FSMC_A9 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI Pinouts and pin description STM32F405xx, STM32F407xx 66/185 DocID022152 Rev 4 Port G PG0 FSMC_A10 EVENTOUT PG1 FSMC_A11 EVENTOUT PG2 FSMC_A12 EVENTOUT PG3 FSMC_A13 EVENTOUT PG4 FSMC_A14 EVENTOUT PG5 FSMC_A15 EVENTOUT PG6 FSMC_INT2 EVENTOUT PG7 USART6_CK FSMC_INT3 EVENTOUT PG8 USART6_ RTS ETH _PPS_OUT EVENTOUT PG9 USART6_RX FSMC_NE2/ FSMC_NCE3 EVENTOUT PG10 FSMC_ NCE4_1/ FSMC_NE3 EVENTOUT PG11 ETH _MII_TX_EN ETH _RMII_ TX_EN FSMC_NCE4_ 2 EVENTOUT PG12 USART6_ RTS FSMC_NE4 EVENTOUT PG13 UART6_CTS ETH _MII_TXD0 ETH _RMII_TXD0 FSMC_A24 EVENTOUT PG14 USART6_TX ETH _MII_TXD1 ETH _RMII_TXD1 FSMC_A25 EVENTOUT PG15 USART6_ CTS DCMI_D13 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI STM32F405xx, STM32F407xx Pinouts and pin description DocID022152 Rev 4 67/185 Port H PH0 EVENTOUT PH1 EVENTOUT PH2 ETH _MII_CRS EVENTOUT PH3 ETH _MII_COL EVENTOUT PH4 I2C2_SCL OTG_HS_ULPI_ NXT EVENTOUT PH5 I2C2_SDA EVENTOUT PH6 I2C2_SMB A TIM12_CH1 ETH _MII_RXD2 EVENTOUT PH7 I2C3_SCL ETH _MII_RXD3 EVENTOUT PH8 I2C3_SDA DCMI_HSYN C EVENTOUT PH9 I2C3_SMB A TIM12_CH2 DCMI_D0 EVENTOUT PH10 TIM5_CH1 DCMI_D1 EVENTOUT PH11 TIM5_CH2 DCMI_D2 EVENTOUT PH12 TIM5_CH3 DCMI_D3 EVENTOUT PH13 TIM8_CH1N CAN1_TX EVENTOUT PH14 TIM8_CH2N DCMI_D4 EVENTOUT PH15 TIM8_CH3N DCMI_D11 EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI Pinouts and pin description STM32F405xx, STM32F407xx 68/185 DocID022152 Rev 4 Port I PI0 TIM5_CH4 SPI2_NSS I2S2_WS DCMI_D13 EVENTOUT PI1 SPI2_SCK I2S2_CK DCMI_D8 EVENTOUT PI2 TIM8_CH4 SPI2_MISO I2S2ext_SD DCMI_D9 EVENTOUT PI3 TIM8_ETR SPI2_MOSI I2S2_SD DCMI_D10 EVENTOUT PI4 TIM8_BKIN DCMI_D5 EVENTOUT PI5 TIM8_CH1 DCMI_ VSYNC EVENTOUT PI6 TIM8_CH2 DCMI_D6 EVENTOUT PI7 TIM8_CH3 DCMI_D7 EVENTOUT PI8 EVENTOUT PI9 CAN1_RX EVENTOUT PI10 ETH _MII_RX_ER EVENTOUT PI11 OTG_HS_ULPI_ DIR EVENTOUT Table 9. Alternate function mapping (continued) Port AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 SYS TIM1/2 TIM3/4/5 TIM8/9/10/1 1 I2C1/2/3 SPI1/SPI2/ I2S2/I2S2ext SPI3/I2Sext/ I2S3 USART1/2/3/ I2S3ext UART4/5/ USART6 CAN1/ CAN2/ TIM12/13/14 OTG_FS/ OTG_HS ETH FSMC/SDIO/ OTG_FS DCMI DocID022152 Rev 4 69/185 STM32F405xx, STM32F407xx Memory mapping 4 Memory mapping The memory map is shown in Figure 18. Figure 18. STM32F40x memory map 512-Mbyte block 7 Cortex-M4's internal peripherals 512-Mbyte block 6 Not used 512-Mbyte block 5 FSMC registers 512-Mbyte block 4 FSMC bank 3 & bank4 512-Mbyte block 3 FSMC bank1 & bank2 512-Mbyte block 2 Peripherals 512-Mbyte block 1 SRAM 0x0000 0000 0x1FFF FFFF 0x2000 0000 0x3FFF FFFF 0x4000 0000 0x5FFF FFFF 0x6000 0000 0x7FFF FFFF 0x8000 0000 0x9FFF FFFF 0xA000 0000 0xBFFF FFFF 0xC000 0000 0xDFFF FFFF 0xE000 0000 0xFFFF FFFF 512-Mbyte block 0 Code Flash 0x0810 0000 - 0x0FFF FFFF 0x1FFF 0000 - 0x1FFF 7A0F 0x1FFF C000 - 0x1FFF C007 0x0800 0000 - 0x080F FFFF 0x0010 0000 - 0x07FF FFFF 0x0000 0000 - 0x000F FFFF System memory + OTP Reserved Reserved Aliased to Flash, system memory or SRAM depending on the BOOT pins SRAM (16 KB aliased by bit-banding) Reserved 0x2000 0000 - 0x2001 BFFF 0x2001 C000 - 0x2001 FFFF 0x2002 0000 - 0x3FFF FFFF 0x4000 0000 Reserved 0x4000 7FFF 0x4000 7800 - 0x4000 FFFF 0x4001 0000 0x4001 57FF 0x4002 000 Reserved 0x5006 0C00 - 0x5FFF FFFF 0x6000 0000 AHB3 0xA000 0FFF 0xA000 1000 - 0xDFFF FFFF ai18513f Option Bytes Reserved 0x4001 5800 - 0x4001 FFFF 0x5006 0BFF AHB2 0x5000 0000 Reserved 0x4008 0000 - 0x4FFF FFFF AHB1 SRAM (112 KB aliased by bit-banding) Reserved 0x1FFF C008 - 0x1FFF FFFF Reserved 0x1FFF 7A10 - 0x1FFF 7FFF CCM data RAM (64 KB data SRAM) 0x1000 0000 - 0x1000 FFFF Reserved 0x1001 0000 - 0x1FFE FFFF Reserved APB2 0x4007 FFFF APB1 CORTEX-M4 internal peripherals 0xE000 0000 - 0xE00F FFFF Reserved 0xE010 0000 - 0xFFFF FFFF Memory mapping STM32F405xx, STM32F407xx 70/185 DocID022152 Rev 4 Table 10. STM32F40x register boundary addresses Bus Boundary address Peripheral 0xE00F FFFF - 0xFFFF FFFF Reserved Cortex-M4 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals 0xA000 1000 - 0xDFFF FFFF Reserved AHB3 0xA000 0000 - 0xA000 0FFF FSMC control register 0x9000 0000 - 0x9FFF FFFF FSMC bank 4 0x8000 0000 - 0x8FFF FFFF FSMC bank 3 0x7000 0000 - 0x7FFF FFFF FSMC bank 2 0x6000 0000 - 0x6FFF FFFF FSMC bank 1 0x5006 0C00- 0x5FFF FFFF Reserved AHB2 0x5006 0800 - 0x5006 0BFF RNG 0x5005 0400 - 0x5006 07FF Reserved 0x5005 0000 - 0x5005 03FF DCMI 0x5004 0000- 0x5004 FFFF Reserved 0x5000 0000 - 0x5003 FFFF USB OTG FS 0x4008 0000- 0x4FFF FFFF Reserved DocID022152 Rev 4 71/185 STM32F405xx, STM32F407xx Memory mapping AHB1 0x4004 0000 - 0x4007 FFFF USB OTG HS 0x4002 9400 - 0x4003 FFFF Reserved 0x4002 9000 - 0x4002 93FF ETHERNET MAC 0x4002 8C00 - 0x4002 8FFF 0x4002 8800 - 0x4002 8BFF 0x4002 8400 - 0x4002 87FF 0x4002 8000 - 0x4002 83FF 0x4002 6800 - 0x4002 7FFF Reserved 0x4002 6400 - 0x4002 67FF DMA2 0x4002 6000 - 0x4002 63FF DMA1 0x4002 5000 - 0x4002 5FFF Reserved 0x4002 4000 - 0x4002 4FFF BKPSRAM 0x4002 3C00 - 0x4002 3FFF Flash interface register 0x4002 3800 - 0x4002 3BFF RCC 0x4002 3400 - 0x4002 37FF Reserved 0x4002 3000 - 0x4002 33FF CRC 0x4002 2400 - 0x4002 2FFF Reserved 0x4002 2000 - 0x4002 23FF GPIOI 0x4002 1C00 - 0x4002 1FFF GPIOH 0x4002 1800 - 0x4002 1BFF GPIOG 0x4002 1400 - 0x4002 17FF GPIOF 0x4002 1000 - 0x4002 13FF GPIOE 0x4002 0C00 - 0x4002 0FFF GPIOD 0x4002 0800 - 0x4002 0BFF GPIOC 0x4002 0400 - 0x4002 07FF GPIOB 0x4002 0000 - 0x4002 03FF GPIOA 0x4001 5800- 0x4001 FFFF Reserved Table 10. STM32F40x register boundary addresses (continued) Bus Boundary address Peripheral Memory mapping STM32F405xx, STM32F407xx 72/185 DocID022152 Rev 4 APB2 0x4001 4C00 - 0x4001 57FF Reserved 0x4001 4800 - 0x4001 4BFF TIM11 0x4001 4400 - 0x4001 47FF TIM10 0x4001 4000 - 0x4001 43FF TIM9 0x4001 3C00 - 0x4001 3FFF EXTI 0x4001 3800 - 0x4001 3BFF SYSCFG 0x4001 3400 - 0x4001 37FF Reserved 0x4001 3000 - 0x4001 33FF SPI1 0x4001 2C00 - 0x4001 2FFF SDIO 0x4001 2400 - 0x4001 2BFF Reserved 0x4001 2000 - 0x4001 23FF ADC1 - ADC2 - ADC3 0x4001 1800 - 0x4001 1FFF Reserved 0x4001 1400 - 0x4001 17FF USART6 0x4001 1000 - 0x4001 13FF USART1 0x4001 0800 - 0x4001 0FFF Reserved 0x4001 0400 - 0x4001 07FF TIM8 0x4001 0000 - 0x4001 03FF TIM1 0x4000 7800- 0x4000 FFFF Reserved Table 10. STM32F40x register boundary addresses (continued) Bus Boundary address Peripheral DocID022152 Rev 4 73/185 STM32F405xx, STM32F407xx Memory mapping APB1 0x4000 7800 - 0x4000 7FFF Reserved 0x4000 7400 - 0x4000 77FF DAC 0x4000 7000 - 0x4000 73FF PWR 0x4000 6C00 - 0x4000 6FFF Reserved 0x4000 6800 - 0x4000 6BFF CAN2 0x4000 6400 - 0x4000 67FF CAN1 0x4000 6000 - 0x4000 63FF Reserved 0x4000 5C00 - 0x4000 5FFF I2C3 0x4000 5800 - 0x4000 5BFF I2C2 0x4000 5400 - 0x4000 57FF I2C1 0x4000 5000 - 0x4000 53FF UART5 0x4000 4C00 - 0x4000 4FFF UART4 0x4000 4800 - 0x4000 4BFF USART3 0x4000 4400 - 0x4000 47FF USART2 0x4000 4000 - 0x4000 43FF I2S3ext 0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3 0x4000 3800 - 0x4000 3BFF SPI2 / I2S2 0x4000 3400 - 0x4000 37FF I2S2ext 0x4000 3000 - 0x4000 33FF IWDG 0x4000 2C00 - 0x4000 2FFF WWDG 0x4000 2800 - 0x4000 2BFF RTC & BKP Registers 0x4000 2400 - 0x4000 27FF Reserved 0x4000 2000 - 0x4000 23FF TIM14 0x4000 1C00 - 0x4000 1FFF TIM13 0x4000 1800 - 0x4000 1BFF TIM12 0x4000 1400 - 0x4000 17FF TIM7 0x4000 1000 - 0x4000 13FF TIM6 0x4000 0C00 - 0x4000 0FFF TIM5 0x4000 0800 - 0x4000 0BFF TIM4 0x4000 0400 - 0x4000 07FF TIM3 0x4000 0000 - 0x4000 03FF TIM2 Table 10. STM32F40x register boundary addresses (continued) Bus Boundary address Peripheral Electrical characteristics STM32F405xx, STM32F407xx 74/185 DocID022152 Rev 4 5 Electrical characteristics 5.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the 1.8 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2Σ). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 19. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 20. Figure 19. Pin loading conditions Figure 20. Pin input voltage MS19011V1 C = 50 pF STM32F pin OSC_OUT (Hi-Z when using HSE or LSE) MS19010V1 STM32F pin VIN OSC_OUT (Hi-Z when using HSE or LSE) DocID022152 Rev 4 75/185 STM32F405xx, STM32F407xx Electrical characteristics 5.1.6 Power supply scheme Figure 21. Power supply scheme 1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. 2. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.2.16: Voltage regulator and Table 2.2.15: Power supply supervisor. 3. The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF. 4. The 4.7 μF ceramic capacitor must be connected to one of the VDD pin. 5. VDDA=VDD and VSSA=VSS. MS19911V2 Backup circuitry (OSC32K,RTC, Wakeup logic Backup registers, backup RAM) Kernel logic (CPU, digital & RAM) Analog: RCs, PLL,.. Power switch VBAT GPIOs OUT IN 15 × 100 nF + 1 × 4.7 μF VBAT = 1.65 to 3.6V Voltage regulator VDDA ADC Level shifter IO Logic VDD 100 nF + 1 μF Flash memory VCAP_1 2 × 2.2 μF VCAP_2 BYPASS_REG PDR_ON Reset controller VDD 1/2/...14/15 VSS 1/2/...14/15 VDD VREF+ VREFVSSA VREF 100 nF + 1 μF Electrical characteristics STM32F405xx, STM32F407xx 76/185 DocID022152 Rev 4 5.1.7 Current consumption measurement Figure 22. Current consumption measurement scheme 5.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics, Table 12: Current characteristics, and Table 13: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. ai14126 VBAT VDD VDDA IDD_VBAT IDD Table 11. Voltage characteristics Symbol Ratings Min Max Unit VDD–VSS External main supply voltage (including VDDA, VDD)(1) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. –0.3 4.0 V VIN Input voltage on five-volt tolerant pin(2) 2. VIN maximum value must always be respected. Refer to Table 12 for the values of the maximum allowed injected current. VSS–0.3 VDD+4 Input voltage on any other pin VSS–0.3 4.0 |ΔVDDx| Variations between different VDD power pins - 50 mV |VSSX − VSS| Variations between all the different ground pins - 50 VESD(HBM) Electrostatic discharge voltage (human body model) see Section 5.3.14: Absolute maximum ratings (electrical sensitivity) DocID022152 Rev 4 77/185 STM32F405xx, STM32F407xx Electrical characteristics 5.3 Operating conditions 5.3.1 General operating conditions Table 12. Current characteristics Symbol Ratings Max. Unit IVDD Total current into VDD power lines (source)(1) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 150 mA IVSS Total current out of VSS ground lines (sink)(1) 150 IIO Output current sunk by any I/O and control pin 25 Output current source by any I/Os and control pin 25 IINJ(PIN) (2) 2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.20: 12-bit ADC characteristics. Injected current on five-volt tolerant I/O(3) 3. Positive injection is not possible on these I/Os. A negative injection is induced by VINVDD while a negative injection is induced by VIN 25 MHz. 4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part. 5. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered. 6. In this case HCLK = system clock/2. Electrical characteristics STM32F405xx, STM32F407xx 84/185 DocID022152 Rev 4 Table 21. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) Symbol Parameter Conditions fHCLK Typ Max(1) Unit TA = 25 °C TA = 85 °C TA = 105 °C IDD Supply current in Run mode External clock(2), all peripherals enabled(3)(4) 168 MHz 93 109 117 mA 144 MHz 76 89 96 120 MHz 67 79 86 90 MHz 53 65 73 60 MHz 37 49 56 30 MHz 20 32 39 25 MHz 16 27 35 16 MHz 11 23 30 8 MHz 6 18 25 4 MHz 4 16 23 2 MHz 3 15 22 External clock(2), all peripherals disabled(3)(4) 168 MHz 46 61 69 144 MHz 40 52 60 120 MHz 37 48 56 90 MHz 30 42 50 60 MHz 22 33 41 30 MHz 12 24 31 25 MHz 10 21 29 16 MHz 7 19 26 8 MHz 4 16 23 4 MHz 3 15 22 2 MHz 2 14 21 1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled. 2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz. 3. When analog peripheral blocks such as (ADCs, DACs, HSE, LSE, HSI,LSI) are on, an additional power consumption should be considered. 4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part. DocID022152 Rev 4 85/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 24. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF Figure 25. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator ON) or RAM, and peripherals ON MS19974V1 0 5 10 15 20 25 30 35 40 45 50 0 20 40 60 80 100 120 140 160 180 IDD RUN( mA) CPU Frequency (MHz -45 °C 0 °C 25 °C 55 °C 85 °C 105 °C MS19975V1 0 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80 100 120 140 160 180 IDD RUN( mA) CPU Frequency (MHz -45°C 0°C 25°C 55°C 85°C 105°C Electrical characteristics STM32F405xx, STM32F407xx 86/185 DocID022152 Rev 4 Figure 26. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF Figure 27. Typical current consumption versus temperature, Run mode, code with data processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON MS19976V1 0 10 20 30 40 50 60 0 20 40 60 80 100 120 140 160 180 IDD RUN( mA) CPU Frequency (MHz -45°C 0°C 25°C 55°C 85°C 105°C MS19977V1 0 20 40 60 80 100 120 0 20 40 60 80 100 120 140 160 180 IDD RUN( mA) CPU Frequency (MHz -45°C 0°C 25°C 55°C 85°C 105°C DocID022152 Rev 4 87/185 STM32F405xx, STM32F407xx Electrical characteristics Table 22. Typical and maximum current consumption in Sleep mode Symbol Parameter Conditions fHCLK Typ Max(1) T Unit A = 25 °C TA = 85 °C TA = 105 °C IDD Supply current in Sleep mode External clock(2), all peripherals enabled(3) 168 MHz 59 77 84 mA 144 MHz 46 61 67 120 MHz 38 53 60 90 MHz 30 44 51 60 MHz 20 34 41 30 MHz 11 24 31 25 MHz 8 21 28 16 MHz 6 18 25 8 MHz 3 16 23 4 MHz 2 15 22 2 MHz 2 14 21 External clock(2), all peripherals disabled 168 MHz 12 27 35 144 MHz 9 22 29 120 MHz 8 20 28 90 MHz 7 19 26 60 MHz 5 17 24 30 MHz 3 16 23 25 MHz 2 15 22 16 MHz 2 14 21 8 MHz 1 14 21 4 MHz 1 13 21 2 MHz 1 13 21 1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled. 2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz. 3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register). Electrical characteristics STM32F405xx, STM32F407xx 88/185 DocID022152 Rev 4 Table 23. Typical and maximum current consumptions in Stop mode Symbol Parameter Conditions Typ Max T Unit A = 25 °C TA = 25 °C TA = 85 °C TA = 105 °C IDD_STOP Supply current in Stop mode with main regulator in Run mode Flash in Stop mode, low-speed and highspeed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.45 1.5 11.00 20.00 mA Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.40 1.5 11.00 20.00 Supply current in Stop mode with main regulator in Low Power mode Flash in Stop mode, low-speed and highspeed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.31 1.1 8.00 15.00 Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) 0.28 1.1 8.00 15.00 Table 24. Typical and maximum current consumptions in Standby mode Symbol Parameter Conditions Typ Max(1) TA = 25 °C Unit TA = 85 °C TA = 105 °C VDD = 1.8 V VDD= 2.4 V VDD = 3.3 V VDD = 3.6 V IDD_STBY Supply current in Standby mode Backup SRAM ON, lowspeed oscillator and RTC ON 3.0 3.4 4.0 20 36 μA Backup SRAM OFF, lowspeed oscillator and RTC ON 2.4 2.7 3.3 16 32 Backup SRAM ON, RTC OFF 2.4 2.6 3.0 12.5 24.8 Backup SRAM OFF, RTC OFF 1.7 1.9 2.2 9.8 19.2 1. Based on characterization, not tested in production. DocID022152 Rev 4 89/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 28. Typical VBAT current consumption (LSE and RTC ON/backup RAM OFF) Table 25. Typical and maximum current consumptions in VBAT mode Symbol Parameter Conditions Typ Max(1) Unit TA = 25 °C TA = 85 °C TA = 105 °C VBAT = 1.8 V VBAT= 2.4 V VBAT = 3.3 V VBAT = 3.6 V IDD_VBA T Backup domain supply current Backup SRAM ON, low-speed oscillator and RTC ON 1.29 1.42 1.68 6 11 μA Backup SRAM OFF, low-speed oscillator and RTC ON 0.62 0.73 0.96 3 5 Backup SRAM ON, RTC OFF 0.79 0.81 0.86 5 10 Backup SRAM OFF, RTC OFF 0.10 0.10 0.10 2 4 1. Based on characterization, not tested in production. MS19990V1 0 0.5 1 1.5 2 2.5 3 3.5 0 10 20 30 40 50 60 70 80 90 100 IVBAT in (μA) Temperature in (°C) 1.65V 1.8V 2V 2.4V 2.7V 3V 3.3V 3.6V Electrical characteristics STM32F405xx, STM32F407xx 90/185 DocID022152 Rev 4 Figure 29. Typical VBAT current consumption (LSE and RTC ON/backup RAM ON) I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 47: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption measured previously (see Table 27: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU MS19991V1 0 1 2 3 4 5 6 0 10 20 30 40 50 60 70 80 90 100 IVBAT in (μA) Temperature in (°C) 1.65V 1.8V 2V 2.4V 2.7V 3V 3.3V 3.6V DocID022152 Rev 4 91/185 STM32F405xx, STM32F407xx Electrical characteristics supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDD is the MCU supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT+ CEXT The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. ISW = VDD × fSW × C Electrical characteristics STM32F405xx, STM32F407xx 92/185 DocID022152 Rev 4 Table 26. Switching output I/O current consumption Symbol Parameter Conditions(1) I/O toggling frequency (fSW) Typ Unit IDDIO I/O switching current VDD = 3.3 V(2) C = CINT 2 MHz 0.02 mA 8 MHz 0.14 25 MHz 0.51 50 MHz 0.86 60 MHz 1.30 VDD = 3.3 V CEXT = 0 pF C = CINT + CEXT+ CS 2 MHz 0.10 8 MHz 0.38 25 MHz 1.18 50 MHz 2.47 60 MHz 2.86 VDD = 3.3 V CEXT = 10 pF C = CINT + CEXT+ CS 2 MHz 0.17 8 MHz 0.66 25 MHz 1.70 50 MHz 2.65 60 MHz 3.48 VDD = 3.3 V CEXT = 22 pF C = CINT + CEXT+ CS 2 MHz 0.23 8 MHz 0.95 25 MHz 3.20 50 MHz 4.69 60 MHz 8.06 VDD = 3.3 V CEXT = 33 pF C = CINT + CEXT+ CS 2 MHz 0.30 8 MHz 1.22 25 MHz 3.90 50 MHz 8.82 60 MHz -(3) 1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value). 2. This test is performed by cutting the LQFP package pin (pad removal). 3. At 60 MHz, C maximum load is specified 30 pF. DocID022152 Rev 4 93/185 STM32F405xx, STM32F407xx Electrical characteristics On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 27. The MCU is placed under the following conditions: • At startup, all I/O pins are configured as analog pins by firmware. • All peripherals are disabled unless otherwise mentioned • The code is running from Flash memory and the Flash memory access time is equal to 5 wait states at 168 MHz. • The code is running from Flash memory and the Flash memory access time is equal to 4 wait states at 144 MHz, and the power scale mode is set to 2. • ART accelerator and Cache off. • The given value is calculated by measuring the difference of current consumption – with all peripherals clocked off – with one peripheral clocked on (with only the clock applied) • When the peripherals are enabled: HCLK is the system clock, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2. • The typical values are obtained for VDD = 3.3 V and TA= 25 °C, unless otherwise specified. Table 27. Peripheral current consumption Peripheral(1) 168 MHz 144 MHz Unit AHB1 GPIO A 0.49 0.36 mA GPIO B 0.45 0.33 GPIO C 0.45 0.34 GPIO D 0.45 0.34 GPIO E 0.47 0.35 GPIO F 0.45 0.33 GPIO G 0.44 0.33 GPIO H 0.45 0.34 GPIO I 0.44 0.33 OTG_HS + ULPI 4.57 3.55 CRC 0.07 0.06 BKPSRAM 0.11 0.08 DMA1 6.15 4.75 DMA2 6.24 4.8 ETH_MAC + ETH_MAC_TX ETH_MAC_RX ETH_MAC_PTP 3.28 2.54 AHB2 OTG_FS 4.59 3.69 mA DCMI 1.04 0.80 Electrical characteristics STM32F405xx, STM32F407xx 94/185 DocID022152 Rev 4 AHB3 FSMC 2.18 1.67 mA APB1 TIM2 0.80 0.61 TIM3 0.58 0.44 TIM4 0.62 0.48 TIM5 0.79 0.61 TIM6 0.15 0.11 TIM7 0.16 0.12 TIM12 0.33 0.26 TIM13 0.27 0.21 TIM14 0.27 0.21 PWR 0.04 0.03 USART2 0.17 0.13 USART3 0.17 0.13 UART4 0.17 0.13 UART5 0.17 0.13 I2C1 0.17 0.13 I2C2 0.18 0.13 I2C3 0.18 0.13 SPI2/I2S2(2) 0.17/0.16 0.13/0.12 SPI3/I2S3(2) 0.16/0.14 0.12/0.12 CAN1 0.27 0.21 CAN2 0.26 0.20 DAC 0.14 0.10 DAC channel 1(3) 0.91 0.89 DAC channel 2(4) 0.91 0.89 DAC channel 1 and 2(3)(4) 1.69 1.68 WWDG 0.04 0.04 Table 27. Peripheral current consumption (continued) Peripheral(1) 168 MHz 144 MHz Unit DocID022152 Rev 4 95/185 STM32F405xx, STM32F407xx Electrical characteristics 5.3.7 Wakeup time from low-power mode The wakeup times given in Table 28 is measured on a wakeup phase with a 16 MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode: • Stop or Standby mode: the clock source is the RC oscillator • Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. APB2 SDIO 0.64 0.54 mA TIM1 1.47 1.14 TIM8 1.58 1.22 TIM9 0.68 0.54 TIM10 0.45 0.36 TIM11 0.47 0.38 ADC1(5) 2.20 2.10 ADC2(5) 2.04 1.93 ADC3(5) 2.10 2.00 SPI1 0.14 0.12 USART1 0.34 0.27 USART6 0.34 0.28 1. HSE oscillator with 4 MHz crystal and PLL are ON. 2. I2SMOD bit set in SPI_I2SCFGR register, and then the I2SE bit set to enable I2S peripheral. 3. EN1 bit is set in DAC_CR register. 4. EN2 bit is set in DAC_CR register. 5. ADON bit set in ADC_CR2 register. Table 27. Peripheral current consumption (continued) Peripheral(1) 168 MHz 144 MHz Unit Table 28. Low-power mode wakeup timings Symbol Parameter Min(1) Typ(1) Max(1) Unit tWUSLEEP (2) Wakeup from Sleep mode - 1 - μs tWUSTOP (2) Wakeup from Stop mode (regulator in Run mode) - 13 - Wakeup from Stop mode (regulator in low power mode) - 17 40 μs Wakeup from Stop mode (regulator in low power mode and Flash memory in Deep power down mode) - 110 - tWUSTDBY (2)(3) Wakeup from Standby mode 260 375 480 μs 1. Based on characterization, not tested in production. 2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction. 3. tWUSTDBY minimum and maximum values are given at 105 °C and –45 °C, respectively. Electrical characteristics STM32F405xx, STM32F407xx 96/185 DocID022152 Rev 4 5.3.8 External clock source characteristics High-speed external user clock generated from an external source The characteristics given in Table 29 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 14. Low-speed external user clock generated from an external source The characteristics given in Table 30 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 14. Table 29. High-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit fHSE_ext External user clock source frequency(1) 1 - 50 MHz VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD V VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD tw(HSE) tw(HSE) OSC_IN high or low time(1) 1. Guaranteed by design, not tested in production. 5 - - ns tr(HSE) tf(HSE) OSC_IN rise or fall time(1) - - 10 Cin(HSE) OSC_IN input capacitance(1) - 5 - pF DuCy(HSE) Duty cycle 45 - 55 % IL OSC_IN Input leakage current VSS ≤ VIN ≤ VDD - - ±1 μA Table 30. Low-speed external user clock characteristics Symbol Parameter Conditions Min Typ Max Unit fLSE_ext User External clock source frequency(1) - 32.768 1000 kHz VLSEH OSC32_IN input pin high level voltage 0.7VDD - VDD V VLSEL OSC32_IN input pin low level voltage VSS - 0.3VDD tw(LSE) tf(LSE) OSC32_IN high or low time(1) 450 - - ns tr(LSE) tf(LSE) OSC32_IN rise or fall time(1) - - 50 Cin(LSE) OSC32_IN input capacitance(1) - 5 - pF DuCy(LSE) Duty cycle 30 - 70 % IL OSC32_IN Input leakage current VSS ≤ VIN ≤ VDD - - ±1 μA 1. Guaranteed by design, not tested in production. DocID022152 Rev 4 97/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 30. High-speed external clock source AC timing diagram Figure 31. Low-speed external clock source AC timing diagram High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 31. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). ai17528 OSC_IN External STM32F clock source VHSEH tf(HSE) tW(HSE) IL 90% 10% THSE tr(HSE) tW(HSE) t fHSE_ext VHSEL ai17529 External OSC32_IN STM32F clock source VLSEH tf(LSE) tW(LSE) IL 90% 10% TLSE tr(LSE) tW(LSE) t fLSE_ext VLSEL Electrical characteristics STM32F405xx, STM32F407xx 98/185 DocID022152 Rev 4 For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 32). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 32. Typical application with an 8 MHz crystal 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 32. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 31. HSE 4-26 MHz oscillator characteristics(1) (2) 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Based on characterization, not tested in production. Symbol Parameter Conditions Min Typ Max Unit fOSC_IN Oscillator frequency 4 - 26 MHz RF Feedback resistor - 200 - kΩ IDD HSE current consumption VDD=3.3 V, ESR= 30 Ω, CL=5 pF@25 MHz - 449 - μA VDD=3.3 V, ESR= 30 Ω, CL=10 pF@25 MHz - 532 - gm Oscillator transconductance Startup 5 - - mA/V tSU(HSE (3) 3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer Startup time VDD is stabilized - 2 - ms ai17530 OSC_OUT OSC_IN fHSE CL1 RF STM32F 8 MHz resonator Resonator with integrated capacitors Bias controlled gain CL2 REXT(1) DocID022152 Rev 4 99/185 STM32F405xx, STM32F407xx Electrical characteristics Note: For information on electing the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Figure 33. Typical application with a 32.768 kHz crystal 5.3.9 Internal clock source characteristics The parameters given in Table 33 and Table 34 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. High-speed internal (HSI) RC oscillator Table 32. LSE oscillator characteristics (fLSE = 32.768 kHz) (1) 1. Guaranteed by design, not tested in production. Symbol Parameter Conditions Min Typ Max Unit RF Feedback resistor - 18.4 - MΩ IDD LSE current consumption - - 1 μA gm Oscillator Transconductance 2.8 - - μA/V tSU(LSE) (2) 2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer startup time VDD is stabilized - 2 - s ai17531 OSC32_OUT OSC32_IN fLSE CL1 RF STM32F 32.768 kHz resonator Resonator with integrated capacitors Bias controlled gain CL2 Table 33. HSI oscillator characteristics (1) Symbol Parameter Conditions Min Typ Max Unit fHSI Frequency - 16 - MHz ACCHSI Accuracy of the HSI oscillator User-trimmed with the RCC_CR register - - 1 % Factorycalibrated TA = –40 to 105 °C(2) –8 - 4.5 % TA = –10 to 85 °C(2) –4 - 4 % TA = 25 °C –1 - 1 % tsu(HSI) (3) HSI oscillator startup time - 2.2 4 μs IDD(HSI) HSI oscillator power consumption - 60 80 μA Electrical characteristics STM32F405xx, STM32F407xx 100/185 DocID022152 Rev 4 Low-speed internal (LSI) RC oscillator Figure 34. ACCLSI versus temperature 5.3.10 PLL characteristics The parameters given in Table 35 and Table 36 are derived from tests performed under temperature and VDD supply voltage conditions summarized in Table 14. 1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Based on characterization, not tested in production. 3. Guaranteed by design, not tested in production. Table 34. LSI oscillator characteristics (1) 1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified. Symbol Parameter Min Typ Max Unit fLSI (2) 2. Based on characterization, not tested in production. Frequency 17 32 47 kHz tsu(LSI) (3) 3. Guaranteed by design, not tested in production. LSI oscillator startup time - 15 40 μs IDD(LSI) (3) LSI oscillator power consumption - 0.4 0.6 μA MS19013V1 -40 -30 -20 -10 0 10 20 30 40 50 -45 -35 -25 -15 -5 5 15 25 35 45 55 65 75 85 95 105 Normalized deviati on (%) Temperature (°C) max avg min DocID022152 Rev 4 101/185 STM32F405xx, STM32F407xx Electrical characteristics Table 35. Main PLL characteristics Symbol Parameter Conditions Min Typ Max Unit fPLL_IN PLL input clock(1) 0.95(2) 1 2.10 MHz fPLL_OUT PLL multiplier output clock 24 - 168 MHz fPLL48_OUT 48 MHz PLL multiplier output clock - 48 75 MHz fVCO_OUT PLL VCO output 192 - 432 MHz tLOCK PLL lock time VCO freq = 192 MHz 75 - 200 μs VCO freq = 432 MHz 100 - 300 Jitter(3) Cycle-to-cycle jitter System clock 120 MHz RMS - 25 - ps peak to peak - ±150 - Period Jitter RMS - 15 - peak to peak - ±200 - Main clock output (MCO) for RMII Ethernet Cycle to cycle at 50 MHz on 1000 samples - 32 - Main clock output (MCO) for MII Ethernet Cycle to cycle at 25 MHz on 1000 samples - 40 - Bit Time CAN jitter Cycle to cycle at 1 MHz on 1000 samples - 330 - IDD(PLL) (4) PLL power consumption on VDD VCO freq = 192 MHz VCO freq = 432 MHz 0.15 0.45 - 0.40 0.75 mA IDDA(PLL) (4) PLL power consumption on VDDA VCO freq = 192 MHz VCO freq = 432 MHz 0.30 0.55 - 0.40 0.85 mA 1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S. 2. Guaranteed by design, not tested in production. 3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%. 4. Based on characterization, not tested in production. Table 36. PLLI2S (audio PLL) characteristics Symbol Parameter Conditions Min Typ Max Unit fPLLI2S_IN PLLI2S input clock(1) 0.95(2) 1 2.10 MHz fPLLI2S_OUT PLLI2S multiplier output clock - - 216 MHz fVCO_OUT PLLI2S VCO output 192 - 432 MHz tLOCK PLLI2S lock time VCO freq = 192 MHz 75 - 200 μs VCO freq = 432 MHz 100 - 300 Electrical characteristics STM32F405xx, STM32F407xx 102/185 DocID022152 Rev 4 5.3.11 PLL spread spectrum clock generation (SSCG) characteristics The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see Table 43: EMI characteristics). It is available only on the main PLL. Equation 1 The frequency modulation period (MODEPER) is given by the equation below: fPLL_IN and fMod must be expressed in Hz. As an example: If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by equation 1: Jitter(3) Master I2S clock jitter Cycle to cycle at 12.288 MHz on 48KHz period, N=432, R=5 RMS - 90 - peak to peak - ±280 - ps Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples - 90 - ps WS I2S clock jitter Cycle to cycle at 48 KHz on 1000 samples - 400 - ps IDD(PLLI2S) (4) PLLI2S power consumption on VDD VCO freq = 192 MHz VCO freq = 432 MHz 0.15 0.45 - 0.40 0.75 mA IDDA(PLLI2S) (4) PLLI2S power consumption on VDDA VCO freq = 192 MHz VCO freq = 432 MHz 0.30 0.55 - 0.40 0.85 mA 1. Take care of using the appropriate division factor M to have the specified PLL input clock values. 2. Guaranteed by design, not tested in production. 3. Value given with main PLL running. 4. Based on characterization, not tested in production. Table 36. PLLI2S (audio PLL) characteristics (continued) Symbol Parameter Conditions Min Typ Max Unit Table 37. SSCG parameters constraint Symbol Parameter Min Typ Max(1) Unit fMod Modulation frequency - - 10 KHz md Peak modulation depth 0.25 - 2 % MODEPER * INCSTEP - - 215−1 - 1. Guaranteed by design, not tested in production. MODEPER = round[fPLL_IN ⁄ (4 × fMod)] MODEPER round 106 4 10 3 = [ ⁄ ( × )] = 250 DocID022152 Rev 4 103/185 STM32F405xx, STM32F407xx Electrical characteristics Equation 2 Equation 2 allows to calculate the increment step (INCSTEP): fVCO_OUT must be expressed in MHz. With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz): An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula: As a result: Figure 35 and Figure 36 show the main PLL output clock waveforms in center spread and down spread modes, where: F0 is fPLL_OUT nominal. Tmode is the modulation period. md is the modulation depth. Figure 35. PLL output clock waveforms in center spread mode INCSTEP = round[((215 – 1) × md × PLLN) ⁄ (100 × 5 × MODEPER)] INCSTEP = round[((215 – 1) × 2 × 240) ⁄ (100 × 5 × 250)] = 126md(quantitazed)% mdquantized% = (MODEPER × INCSTEP × 100 × 5) ⁄ ((215 – 1) × PLLN) mdquantized% = (250 × 126 × 100 × 5) ⁄ ((215 – 1) × 240) = 2.002%(peak) Frequency (PLL_OUT) Time F0 tmode md ai17291 md 2 x tmode Electrical characteristics STM32F405xx, STM32F407xx 104/185 DocID022152 Rev 4 Figure 36. PLL output clock waveforms in down spread mode 5.3.12 Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. The devices are shipped to customers with the Flash memory erased. Time ai17292 Frequency (PLL_OUT) F0 2 x md tmode 2 x tmode Table 38. Flash memory characteristics Symbol Parameter Conditions Min Typ Max Unit IDD Supply current Write / Erase 8-bit mode, VDD = 1.8 V - 5 - Write / Erase 16-bit mode, VDD = 2.1 V - 8 - mA Write / Erase 32-bit mode, VDD = 3.3 V - 12 - Table 39. Flash memory programming Symbol Parameter Conditions Min(1) Typ Max(1) Unit tprog Word programming time Program/erase parallelism (PSIZE) = x 8/16/32 - 16 100(2) μs tERASE16KB Sector (16 KB) erase time Program/erase parallelism (PSIZE) = x 8 - 400 800 Program/erase parallelism ms (PSIZE) = x 16 - 300 600 Program/erase parallelism (PSIZE) = x 32 - 250 500 DocID022152 Rev 4 105/185 STM32F405xx, STM32F407xx Electrical characteristics tERASE64KB Sector (64 KB) erase time Program/erase parallelism (PSIZE) = x 8 - 1200 2400 Program/erase parallelism ms (PSIZE) = x 16 - 700 1400 Program/erase parallelism (PSIZE) = x 32 - 550 1100 tERASE128KB Sector (128 KB) erase time Program/erase parallelism (PSIZE) = x 8 - 2 4 Program/erase parallelism s (PSIZE) = x 16 - 1.3 2.6 Program/erase parallelism (PSIZE) = x 32 - 1 2 tME Mass erase time Program/erase parallelism (PSIZE) = x 8 - 16 32 Program/erase parallelism s (PSIZE) = x 16 - 11 22 Program/erase parallelism (PSIZE) = x 32 - 8 16 Vprog Programming voltage 32-bit program operation 2.7 - 3.6 V 16-bit program operation 2.1 - 3.6 V 8-bit program operation 1.8 - 3.6 V 1. Based on characterization, not tested in production. 2. The maximum programming time is measured after 100K erase operations. Table 39. Flash memory programming (continued) Symbol Parameter Conditions Min(1) Typ Max(1) Unit Electrical characteristics STM32F405xx, STM32F407xx 106/185 DocID022152 Rev 4 5.3.13 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. Table 40. Flash memory programming with VPP Symbol Parameter Conditions Min(1) Typ Max(1) 1. Guaranteed by design, not tested in production. Unit tprog Double word programming TA = 0 to +40 °C VDD = 3.3 V VPP = 8.5 V - 16 100(2) 2. The maximum programming time is measured after 100K erase operations. μs tERASE16KB Sector (16 KB) erase time - 230 - tERASE64KB Sector (64 KB) erase time - 490 - ms tERASE128KB Sector (128 KB) erase time - 875 - tME Mass erase time - 6.9 - s Vprog Programming voltage 2.7 - 3.6 V VPP VPP voltage range 7 - 9 V IPP Minimum current sunk on the VPP pin 10 - - mA tVPP (3) 3. VPP should only be connected during programming/erasing. Cumulative time during which VPP is applied - - 1 hour Table 41. Flash memory endurance and data retention Symbol Parameter Conditions Value Unit Min(1) 1. Based on characterization, not tested in production. NEND Endurance TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 kcycles tRET Data retention 1 kcycle(2) at TA = 85 °C 2. Cycling performed over the whole temperature range. 30 1 kcycle(2) at TA = 105 °C 10 Years 10 kcycles(2) at TA = 55 °C 20 DocID022152 Rev 4 107/185 STM32F405xx, STM32F407xx Electrical characteristics A device reset allows normal operations to be resumed. The test results are given in Table 42. They are based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC? code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading. Table 42. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD = 3.3 V, LQFP176, TA = +25 °C, fHCLK = 168 MHz, conforms to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP176, TA = +25 °C, fHCLK = 168 MHz, conforms to IEC 61000-4-2 4A Electrical characteristics STM32F405xx, STM32F407xx 108/185 DocID022152 Rev 4 5.3.14 Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Static latchup Two complementary static tests are required on six parts to assess the latchup performance: • A supply overvoltage is applied to each power supply pin • A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latchup standard. Table 43. EMI characteristics Symbol Parameter Conditions Monitored frequency band Max vs. [fHSE/fCPU] Unit 25/168 MHz SEMI Peak level VDD = 3.3 V, TA = 25 °C, LQFP176 package, conforming to SAE J1752/3 EEMBC, code running from Flash with ART accelerator enabled 0.1 to 30 MHz 32 30 to 130 MHz 25 dBμV 130 MHz to 1GHz 29 SAE EMI Level 4 - VDD = 3.3 V, TA = 25 °C, LQFP176 package, conforming to SAE J1752/3 EEMBC, code running from Flash with ART accelerator and PLL spread spectrum enabled 0.1 to 30 MHz 19 30 to 130 MHz 16 dBμV 130 MHz to 1GHz 18 SAE EMI level 3.5 - Table 44. ESD absolute maximum ratings Symbol Ratings Conditions Class Maximum value(1) Unit VESD(HBM) Electrostatic discharge voltage (human body model) TA = +25 °C conforming to JESD22-A114 2 2000(2) V VESD(CDM) Electrostatic discharge voltage (charge device model) TA = +25 °C conforming to JESD22-C101 II 500 1. Based on characterization results, not tested in production. 2. On VBAT pin, VESD(HBM) is limited to 1000 V. DocID022152 Rev 4 109/185 STM32F405xx, STM32F407xx Electrical characteristics 5.3.15 I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibilty to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of 5 uA/+0 uA range), or other functional failure (for example reset, oscillator frequency deviation). Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection. The test results are given in Table 46. 5.3.16 I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 47 are derived from tests performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL compliant. Table 45. Electrical sensitivities Symbol Parameter Conditions Class LU Static latch-up class TA = +105 °C conforming to JESD78A II level A Table 46. I/O current injection susceptibility Symbol Description Functional susceptibility Negative Unit injection Positive injection IINJ (1) 1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Injected current on all FT pins –5 +0 mA Injected current on any other pin –5 +5 Electrical characteristics STM32F405xx, STM32F407xx 110/185 DocID022152 Rev 4 All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. Output driving current The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. Table 47. I/O static characteristics Symbol Parameter Conditions Min Typ Max Unit VIL Input low level voltage TTL ports 2.7 V ≤ VDD ≤ 3.6 V - - 0.8 V VIH (1) Input high level voltage 2.0 - - VIL Input low level voltage CMOS ports 1.8 V ≤ VDD ≤ 3.6 V - - 0.3VDD VIH (1) Input high level voltage 0.7VDD - - - - Vhys I/O Schmitt trigger voltage hysteresis(2) - 200 - IO FT Schmitt trigger voltage mV hysteresis(2) 5% VDD (3) - - Ilkg I/O input leakage current (4) VSS ≤ VIN ≤ VDD - - ±1 μA I/O FT input leakage current (4) VIN = 5 V - - 3 RPU Weak pull-up equivalent resistor(5) All pins except for PA10 and PB12 VIN = VSS 30 40 50 kΩ PA10 and PB12 8 11 15 RPD Weak pull-down equivalent resistor All pins except for PA10 and PB12 VIN = VDD 30 40 50 PA10 and PB12 8 11 15 CIO (6) I/O pin capacitance 5 pF 1. Tested in production. 2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production. 3. With a minimum of 100 mV. 4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). 6. Guaranteed by design, not tested in production. DocID022152 Rev 4 111/185 STM32F405xx, STM32F407xx Electrical characteristics In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2. In particular: • The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 12). • The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 12). Output voltage levels Unless otherwise specified, the parameters given in Table 48 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 14. All I/Os are CMOS and TTL compliant. Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 37 and Table 49, respectively. Table 48. Output voltage characteristics(1) 1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED). Symbol Parameter Conditions Min Max Unit VOL (2) 2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. Output low level voltage for an I/O pin when 8 pins are sunk at same time CMOS port IIO = +8 mA 2.7 V < VDD < 3.6 V - 0.4 V VOH (3) 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–0.4 - VOL (2) Output low level voltage for an I/O pin when 8 pins are sunk at same time TTL port IIO =+ 8mA 2.7 V < VDD < 3.6 V - 0.4 V VOH (3) Output high level voltage for an I/O pin when 8 pins are sourced at same time 2.4 - VOL (2)(4) 4. Based on characterization data, not tested in production. Output low level voltage for an I/O pin when 8 pins are sunk at same time IIO = +20 mA 2.7 V < VDD < 3.6 V - 1.3 V VOH (3)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–1.3 - VOL (2)(4) Output low level voltage for an I/O pin when 8 pins are sunk at same time IIO = +6 mA 2 V < VDD < 2.7 V - 0.4 V VOH (3)(4) Output high level voltage for an I/O pin when 8 pins are sourced at same time VDD–0.4 - Electrical characteristics STM32F405xx, STM32F407xx 112/185 DocID022152 Rev 4 Unless otherwise specified, the parameters given in Table 49 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 14. Table 49. I/O AC characteristics(1)(2)(3) OSPEEDRy [1:0] bit value(1) Symbol Parameter Conditions Min Typ Max Unit 00 fmax(IO)out Maximum frequency(4) CL = 50 pF, VDD > 2.70 V - - 2 MHz CL = 50 pF, VDD > 1.8 V - - 2 CL = 10 pF, VDD > 2.70 V - - TBD CL = 10 pF, VDD > 1.8 V - - TBD tf(IO)out Output high to low level fall time CL = 50 pF, VDD = 1.8 V to 3.6 V - - TBD ns tr(IO)out Output low to high level rise time - - TBD 01 fmax(IO)out Maximum frequency(4) CL = 50 pF, VDD > 2.70 V - - 25 MHz CL = 50 pF, VDD > 1.8 V - - 12.5(5) CL = 10 pF, VDD > 2.70 V - - 50(5) CL = 10 pF, VDD > 1.8 V - - TBD tf(IO)out Output high to low level fall time CL = 50 pF, VDD < 2.7 V - - TBD ns CL = 10 pF, VDD > 2.7 V - - TBD tr(IO)out Output low to high level rise time CL = 50 pF, VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD 10 fmax(IO)out Maximum frequency(4) CL = 40 pF, VDD > 2.70 V - - 50(5) MHz CL = 40 pF, VDD > 1.8 V - - 25 CL = 10 pF, VDD > 2.70 V - - 100(5) CL = 10 pF, VDD > 1.8 V - - TBD tf(IO)out Output high to low level fall time CL = 50 pF, 2.4 < VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD ns tr(IO)out Output low to high level rise time CL = 50 pF, 2.4 < VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD DocID022152 Rev 4 113/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 37. I/O AC characteristics definition 5.3.17 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 47). Unless otherwise specified, the parameters given in Table 50 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 14. 11 Fmax(IO)ou t Maximum frequency(4) CL = 30 pF, VDD > 2.70 V - - 100(5) MHz CL = 30 pF, VDD > 1.8 V - - 50(5) CL = 10 pF, VDD > 2.70 V - - 200(5) CL = 10 pF, VDD > 1.8 V - - TBD tf(IO)out Output high to low level fall time CL = 20 pF, 2.4 < VDD < 2.7 V - - TBD ns CL = 10 pF, VDD > 2.7 V - - TBD tr(IO)out Output low to high level rise time CL = 20 pF, 2.4 < VDD < 2.7 V - - TBD CL = 10 pF, VDD > 2.7 V - - TBD - tEXTIpw Pulse width of external signals detected by the EXTI controller 10 - - ns 1. Based on characterization data, not tested in production. 2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register. 3. TBD stands for “to be defined”. 4. The maximum frequency is defined in Figure 37. 5. For maximum frequencies above 50 MHz, the compensation cell should be used. Table 49. I/O AC characteristics(1)(2)(3) (continued) OSPEEDRy [1:0] bit value(1) Symbol Parameter Conditions Min Typ Max Unit ai14131 10% 90% 50% tr(IO)out OUTPUT EXTERNAL ON 50pF Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%) 10% 50% 90% when loaded by 50pF T tr(IO)out Electrical characteristics STM32F405xx, STM32F407xx 114/185 DocID022152 Rev 4 Figure 38. Recommended NRST pin protection 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 50. Otherwise the reset is not taken into account by the device. 5.3.18 TIM timer characteristics The parameters given in Table 51 and Table 52 are guaranteed by design. Refer to Section 5.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 50. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit VIL(NRST) (1) 1. Guaranteed by design, not tested in production. NRST Input low level voltage TTL ports 2.7 V ≤ VDD ≤ 3.6 V - - 0.8 V VIH(NRST) (1) NRST Input high level voltage 2 - - VIL(NRST) (1) NRST Input low level voltage CMOS ports 1.8 V ≤ VDD ≤ 3.6 V - 0.3VDD VIH(NRST) (1) NRST Input high level voltage 0.7VDD - Vhys(NRST) NRST Schmitt trigger voltage hysteresis - 200 - mV RPU Weak pull-up equivalent resistor(2) 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). VIN = VSS 30 40 50 kΩ VF(NRST) (1) NRST Input filtered pulse - - 100 ns VNF(NRST) (1) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns TNRST_OUT Generated reset pulse duration Internal Reset source 20 - - μs ai14132c STM32Fxxx NRST(2) RPU VDD Filter Internal Reset 0.1 μF External reset circuit(1) DocID022152 Rev 4 115/185 STM32F405xx, STM32F407xx Electrical characteristics Table 51. Characteristics of TIMx connected to the APB1 domain(1) 1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers. Symbol Parameter Conditions Min Max Unit tres(TIM) Timer resolution time AHB/APB1 prescaler distinct from 1, fTIMxCLK = 84 MHz 1 - tTIMxCLK 11.9 - ns AHB/APB1 prescaler = 1, fTIMxCLK = 42 MHz 1 - tTIMxCLK 23.8 - ns fEXT Timer external clock frequency on CH1 to CH4 fTIMxCLK = 84 MHz APB1= 42 MHz 0 fTIMxCLK/2 MHz 0 42 MHz ResTIM Timer resolution - 16/32 bit tCOUNTER 16-bit counter clock period when internal clock is selected 1 65536 tTIMxCLK 0.0119 780 μs 32-bit counter clock period when internal clock is selected 1 - tTIMxCLK 0.0119 51130563 μs tMAX_COUNT Maximum possible count - 65536 × 65536 tTIMxCLK - 51.1 s Electrical characteristics STM32F405xx, STM32F407xx 116/185 DocID022152 Rev 4 5.3.19 Communications interfaces I2C interface characteristics The STM32F405xx and STM32F407xx I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 53. Refer also to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 52. Characteristics of TIMx connected to the APB2 domain(1) 1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers. Symbol Parameter Conditions Min Max Unit tres(TIM) Timer resolution time AHB/APB2 prescaler distinct from 1, fTIMxCLK = 168 MHz 1 - tTIMxCLK 5.95 - ns AHB/APB2 prescaler = 1, fTIMxCLK = 84 MHz 1 - tTIMxCLK 11.9 - ns fEXT Timer external clock frequency on CH1 to CH4 fTIMxCLK = 168 MHz APB2 = 84 MHz 0 fTIMxCLK/2 MHz 0 84 MHz ResTIM Timer resolution - 16 bit tCOUNTER 16-bit counter clock period when internal clock is selected 1 65536 tTIMxCLK tMAX_COUNT Maximum possible count - 32768 tTIMxCLK Table 53. I2C characteristics Symbol Parameter Standard mode I2C(1) Fast mode I2C(1)(2) Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - μs tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - ns th(SDA) SDA data hold time 0(3) - 0 900(4) tr(SDA) tr(SCL) SDA and SCL rise time - 1000 20 + 0.1Cb 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 DocID022152 Rev 4 117/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 39. I2C bus AC waveforms and measurement circuit 1. Rs= series protection resistor. 2. Rp = external pull-up resistor. 3. VDD_I2C is the I2C bus power supply. th(STA) Start condition hold time 4.0 - 0.6 - μs tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4.0 - 0.6 - μs tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - μs Cb Capacitive load for each bus line - 400 - 400 pF 1. Guaranteed by design, not tested in production. 2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock. 3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. 4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal. Table 53. I2C characteristics (continued) Symbol Parameter Standard mode I2C(1) Fast mode I2C(1)(2) Unit Min Max Min Max ai14979c S TAR T SD A RP I²C bus VDD_I2C STM32Fxx SDA SCL tf(SDA) tr(SDA) SCL th(STA) tw(SCLH) tw(SCLL) tsu(SDA) tr(SCL) tf(SCL) th(SDA) S TAR T REPEATED t S TAR T su(STA) tsu(STO) S TOP tw(STO:STA) VDD_I2C RP RS RS Electrical characteristics STM32F405xx, STM32F407xx 118/185 DocID022152 Rev 4 SPI interface characteristics Unless otherwise specified, the parameters given in Table 55 for SPI are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 14 with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5 VDD Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 54. SCL frequency (fPCLK1= 42 MHz.,VDD = 3.3 V)(1)(2) 1. RP = External pull-up resistance, fSCL = I2C speed, 2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application. fSCL (kHz) I2C_CCR value RP = 4.7 kΩ 400 0x8019 300 0x8021 200 0x8032 100 0x0096 50 0x012C 20 0x02EE Table 55. SPI dynamic characteristics(1) Symbol Parameter Conditions Min Typ Max Unit fSCK SPI clock frequency Master mode, SPI1, 2.7V < VDD < 3.6V - - 42 MHz Slave mode, SPI1, 2.7V < VDD < 3.6V 42 1/tc(SCK) Master mode, SPI1/2/3, 1.7V < VDD < 3.6V - - 21 Slave mode, SPI1/2/3, 1.7V < VDD < 3.6V 21 Duty(SCK) Duty cycle of SPI clock frequency Slave mode 30 50 70 % DocID022152 Rev 4 119/185 STM32F405xx, STM32F407xx Electrical characteristics tw(SCKH) SCK high and low time Master mode, SPI presc = 2, 2.7V < VDD < 3.6V TPCLK-0.5 TPCLK TPCLK+0.5 ns tw(SCKL) Master mode, SPI presc = 2, 1.7V < VDD < 3.6V TPCLK-2 TPCLK TPCLK+2 tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4 x TPCLK - - th(NSS) NSS hold time Slave mode, SPI presc = 2 2 x TPCLK tsu(MI) Data input setup time Master mode 6.5 - - tsu(SI) Slave mode 2.5 - - th(MI) Data input hold time Master mode 2.5 - - th(SI) Slave mode 4 - - ta(SO) (2) Data output access time Slave mode, SPI presc = 2 0 - 4 x TPCLK tdis(SO) (3) Data output disable time Slave mode, SPI1, 2.7V < VDD < 3.6V 0 - 7.5 Slave mode, SPI1/2/3 1.7V < VDD < 3.6V 0 - 16.5 tv(SO) th(SO) Data output valid/hold time Slave mode (after enable edge), SPI1, 2.7V < VDD < 3.6V - 11 13 Slave mode (after enable edge), SPI2/3, 2.7V < VDD < 3.6V - 12 16.5 Slave mode (after enable edge), SPI1, 1.7V < VDD < 3.6V - 15.5 19 Slave mode (after enable edge), SPI2/3, 1.7V < VDD < 3.6V - 18 20.5 tv(MO) Data output valid time Master mode (after enable edge), SPI1 , 2.7V < VDD < 3.6V - - 2.5 Master mode (after enable edge), SPI1/2/3 , 1.7V < VDD < 3.6V - - 4.5 th(MO) Data output hold time Master mode (after enable edge) 0 - - 1. Data based on characterization results, not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z. Table 55. SPI dynamic characteristics(1) (continued) Symbol Parameter Conditions Min Typ Max Unit Electrical characteristics STM32F405xx, STM32F407xx 120/185 DocID022152 Rev 4 Figure 40. SPI timing diagram - slave mode and CPHA = 0 Figure 41. SPI timing diagram - slave mode and CPHA = 1 ai14134c SCK Input CPHA=0 MOSI INPUT MISO OUT PUT CPHA=0 MSB O UT MSB IN BIT6 OUT LSB IN LSB OUT CPOL=0 CPOL=1 BIT1 IN NSS input tSU(NSS) tc(SCK) th(NSS) ta(SO) tw(SCKH) tw(SCKL) tv(SO) th(SO) tr(SCK) tf(SCK) tdis(SO) tsu(SI) th(SI) ai14135 SCK Input CPHA=1 MOSI INPUT MISO OUT PUT CPHA=1 MSB O UT MSB IN BIT6 OUT LSB IN LSB OUT CPOL=0 CPOL=1 BIT1 IN tSU(NSS) tc(SCK) th(NSS) ta(SO) tw(SCKH) tw(SCKL) tv(SO) th(SO) tr(SCK) tf(SCK) tdis(SO) tsu(SI) th(SI) NSS input DocID022152 Rev 4 121/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 42. SPI timing diagram - master mode ai14136 SCK Input CPHA=0 MOSI OUTUT MISO INPUT CPHA=0 MSBIN MSB OUT BIT6 IN LSB OUT LSB IN CPOL=0 CPOL=1 BIT1 OUT NSS input tc(SCK) tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) th(MI) High SCK Input CPHA=1 CPHA=1 CPOL=0 CPOL=1 tsu(MI) tv(MO) th(MO) Electrical characteristics STM32F405xx, STM32F407xx 122/185 DocID022152 Rev 4 I2S interface characteristics Unless otherwise specified, the parameters given in Table 56 for the i2S interface are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 14, with the following configuration: • Output speed is set to OSPEEDRy[1:0] = 10 • Capacitive load C = 30 pF • Measurement points are done at CMOS levels: 0.5 VDD Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS). Note: Refer to the I2S section of RM0090 reference manual for more details on the sampling frequency (FS). fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The value of these parameters might be slightly impacted by the source clock accuracy. DCK depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of I2SDIV / (2 x I2SDIV + ODD) and a maximum value of (I2SDIV + ODD) / (2 x I2SDIV + ODD). FS maximum value is supported for each mode/condition. Table 56. I2S dynamic characteristics(1) Symbol Parameter Conditions Min Max Unit fMCK I2S main clock output - 256 x 8K 256 x FS (2) MHz fCK I2S clock frequency Master data: 32 bits - 64 x FS MHz Slave data: 32 bits - 64 x FS DCK I2S clock frequency duty cycle Slave receiver 30 70 % tv(WS) WS valid time Master mode 0 6 ns th(WS) WS hold time Master mode 0 - tsu(WS) WS setup time Slave mode 1 - th(WS) WS hold time Slave mode 0 - tsu(SD_MR) Data input setup time Master receiver 7.5 - tsu(SD_SR) Slave receiver 2 - th(SD_MR) Data input hold time Master receiver 0 - th(SD_SR) Slave receiver 0 - tv(SD_ST) th(SD_ST) Data output valid time Slave transmitter (after enable edge) - 27 tv(SD_MT) Master transmitter (after enable edge) - 20 th(SD_MT) Data output hold time Master transmitter (after enable edge) 2.5 - 1. Data based on characterization results, not tested in production. 2. The maximum value of 256 x FS is 42 MHz (APB1 maximum frequency). DocID022152 Rev 4 123/185 STM32F405xx, STM32F407xx Electrical characteristics Figure 43. I2S slave timing diagram (Philips protocol) 1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 44. I2S master timing diagram (Philips protocol)(1) 1. Based on characterization, not tested in production. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. USB OTG FS characteristics This interface is present in both the USB OTG HS and USB OTG FS controllers. CK Input CPOL = 0 CPOL = 1 tc(CK) WS input SDtransmit SDreceive tw(CKH) tw(CKL) tsu(WS) tv(SD_ST) th(SD_ST) th(WS) tsu(SD_SR) th(SD_SR) MSB receive Bitn receive LSB receive MSB transmit Bitn transmit LSB transmit ai14881b LSB receive(2) LSB transmit(2) CK output CPOL = 0 CPOL = 1 tc(CK) WS output SDreceive SDtransmit tw(CKH) tw(CKL) tsu(SD_MR) tv(SD_MT) th(SD_MT) th(WS) th(SD_MR) MSB receive Bitn receive LSB receive MSB transmit Bitn transmit LSB transmit ai14884b tf(CK) tr(CK) tv(WS) LSB receive(2) LSB transmit(2) Electrical characteristics STM32F405xx, STM32F407xx 124/185 DocID022152 Rev 4 Figure 45. USB OTG FS timings: definition of data signal rise and fall time Table 57. USB OTG FS startup time Symbol Parameter Max Unit tSTARTUP (1) 1.