ATTINY4,5,9,10 Datasheet - Atmel - Farnell Element 14 - Revenir à l'accueil

 

 

Branding Farnell element14 (France)

 

Farnell Element 14 :

Miniature

Everything You Need To Know About Arduino

Miniature

Tutorial 01 for Arduino: Getting Acquainted with Arduino

Miniature

The Cube® 3D Printer

Miniature

What's easier- DIY Dentistry or our new our website features?

 

Miniature

Ben Heck's Getting Started with the BeagleBone Black Trailer

Miniature

Ben Heck's Home-Brew Solder Reflow Oven 2.0 Trailer

Miniature

Get Started with Pi Episode 3 - Online with Raspberry Pi

Miniature

Discover Simulink Promo -- Exclusive element14 Webinar

Miniature

Ben Heck's TV Proximity Sensor Trailer

Miniature

Ben Heck's PlayStation 4 Teardown Trailer

See the trailer for the next exciting episode of The Ben Heck show. Check back on Friday to be among the first to see the exclusive full show on element…

Miniature

Get Started with Pi Episode 4 - Your First Raspberry Pi Project

Connect your Raspberry Pi to a breadboard, download some code and create a push-button audio play project.

Miniature

Ben Heck Anti-Pickpocket Wallet Trailer

Miniature

Molex Earphones - The 14 Holiday Products of Newark element14 Promotion

Miniature

Tripp Lite Surge Protector - The 14 Holiday Products of Newark element14 Promotion

Miniature

Microchip ChipKIT Pi - The 14 Holiday Products of Newark element14 Promotion

Miniature

Beagle Bone Black - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M E26, LED Lamps - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M Colored Duct Tape - The 14 Holiday Products of Newark element14 Promotion

Miniature

Tenma Soldering Station - The 14 Holiday Products of Newark element14 Promotion

Miniature

Duratool Screwdriver Kit - The 14 Holiday Products of Newark element14 Promotion

Miniature

Cubify 3D Cube - The 14 Holiday Products of Newark element14 Promotion

Miniature

Bud Boardganizer - The 14 Holiday Products of Newark element14 Promotion

Miniature

Raspberry Pi Starter Kit - The 14 Holiday Products of Newark element14 Promotion

Miniature

Fluke 323 True-rms Clamp Meter - The 14 Holiday Products of Newark element14 Promotion

Miniature

Dymo RHINO 6000 Label Printer - The 14 Holiday Products of Newark element14 Promotion

Miniature

3M LED Advanced Lights A-19 - The 14 Holiday Products of Newark element14 Promotion

Miniature

Innovative LPS Resistor Features Very High Power Dissipation

Miniature

Charge Injection Evaluation Board for DG508B Multiplexer Demo

Miniature

Ben Heck The Great Glue Gun Trailer Part 2

Miniature

Introducing element14 TV

Miniature

Ben Heck Time to Meet Your Maker Trailer

Miniature

Détecteur de composants

Miniature

Recherche intégrée

Miniature

Ben Builds an Accessibility Guitar Trailer Part 1

Miniature

Ben Builds an Accessibility Guitar - Part 2 Trailer

Miniature

PiFace Control and Display Introduction

Miniature

Flashmob Farnell

Miniature

Express Yourself in 3D with Cube 3D Printers from Newark element14

Miniature

Farnell YouTube Channel Move

Miniature

Farnell: Design with the best

Miniature

French Farnell Quest

Miniature

Altera - 3 Ways to Quickly Adapt to Changing Ethernet Protocols

Miniature

Cy-Net3 Network Module

Miniature

MC AT - Professional and Precision Series Thin Film Chip Resistors

Miniature

Solderless LED Connector

Miniature

PSA-T Series Spectrum Analyser: PSA1301T/ PSA2701T

Miniature

3-axis Universal Motion Controller For Stepper Motor Drivers: TMC429

Miniature

Voltage Level Translation

Puce électronique / Microchip :

Miniature

Microchip - 8-bit Wireless Development Kit

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 2 of 3

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 3 of 3

Miniature

Microchip - Introduction to mTouch Capacitive Touch Sensing Part 1 of 3

Sans fil - Wireless :

Miniature

Microchip - 8-bit Wireless Development Kit

Miniature

Wireless Power Solutions - Wurth Electronics, Texas Instruments, CadSoft and element14

Miniature

Analog Devices - Remote Water Quality Monitoring via a Low Power, Wireless Network

Texas instrument :

Miniature

Texas Instruments - Automotive LED Headlights

Miniature

Texas Instruments - Digital Power Solutions

Miniature

Texas Instruments - Industrial Sensor Solutions

Miniature

Texas Instruments - Wireless Pen Input Demo (Mobile World Congress)

Miniature

Texas Instruments - Industrial Automation System Components

Miniature

Texas Instruments - TMS320C66x - Industry's first 10-GHz fixed/floating point DSP

Miniature

Texas Instruments - TMS320C66x KeyStone Multicore Architecture

Miniature

Texas Instruments - Industrial Interfaces

Miniature

Texas Instruments - Concerto™ MCUs - Connectivity without compromise

Miniature

Texas Instruments - Stellaris Robot Chronos

Miniature

Texas Instruments - DRV8412-C2-KIT, Brushed DC and Stepper Motor Control Kit

Ordinateurs :

Miniature

Ask Ben Heck - Connect Raspberry Pi to Car Computer

Miniature

Ben's Portable Raspberry Pi Computer Trailer

Miniature

Ben's Raspberry Pi Portable Computer Trailer 2

Miniature

Ben Heck's Pocket Computer Trailer

Miniature

Ask Ben Heck - Atari Computer

Miniature

Ask Ben Heck - Using Computer Monitors for External Displays

Miniature

Raspberry Pi Partnership with BBC Computer Literacy Project - Answers from co-founder Eben Upton

Miniature

Installing RaspBMC on your Raspberry Pi with the Farnell element14 Accessory kit

Miniature

Raspberry Pi Served - Joey Hudy

Miniature

Happy Birthday Raspberry Pi

Miniature

Raspberry Pi board B product overview

Logiciels :

Miniature

Ask Ben Heck - Best Opensource or Free CAD Software

Miniature

Tektronix FPGAView™ software makes debugging of FPGAs faster than ever!

Miniature

Ask Ben Heck - Best Open-Source Schematic Capture and PCB Layout Software

Miniature

Introduction to Cadsoft EAGLE PCB Design Software in Chinese

Miniature

Altera - Developing Software for Embedded Systems on FPGAs

Tutoriels :

Miniature

Ben Heck The Great Glue Gun Trailer Part 1

Miniature

the knode tutorial - element14

Miniature

Ben's Autodesk 123D Tutorial Trailer

Miniature

Ben's CadSoft EAGLE Tutorial Trailer

Miniature

Ben Heck's Soldering Tutorial Trailer

Miniature

Ben Heck's AVR Dev Board tutorial

Miniature

Ben Heck's Pinball Tutorial Trailer

Miniature

Ben Heck's Interface Tutorial Trailer

Miniature

First Stage with Python and PiFace Digital

Miniature

Cypress - Getting Started with PSoC® 3 - Part 2

Miniature

Energy Harvesting Challenge

Miniature

New Features of CadSoft EAGLE v6

Autres documentations :

[TXT]

 Farnell-CLRC632-NXP-..> 20-Dec-2014 10:22  2.6M  

[TXT]

 Farnell-7491181012-O..> 20-Dec-2014 10:22  2.6M  

[TXT]

 Farnell-LPC4350-30-2..> 20-Dec-2014 10:21  1.4M  

[TXT]

 Farnell-LPC178x-7x-N..> 20-Dec-2014 10:21  1.6M  

[TXT]

 Farnell-Data-Sheet-J..> 20-Dec-2014 10:21  1.0M  

[TXT]

 Farnell-LPC81xM-NXP-..> 20-Dec-2014 10:20  1.2M  

[TXT]

 Farnell-Data-Sheet-J..> 20-Dec-2014 10:20  1.2M  

[TXT]

 Farnell-SL3S1003_101..> 20-Dec-2014 10:06  2.0M  

[TXT]

 Farnell-NT3H1101-NT3..> 20-Dec-2014 10:06  2.3M  

[TXT]

 Farnell-LPC1769-68-6..> 20-Dec-2014 10:06  2.2M  

[TXT]

 Farnell-SL3S1203_121..> 20-Dec-2014 10:01  2.0M  

[TXT]

 Farnell-PN512-NXP-Se..> 20-Dec-2014 10:01  1.9M  

[TXT]

 Farnell-MMBZxVCL-MMB..> 20-Dec-2014 09:53  1.6M  

[TXT]

 Farnell-Datasheet-NX..> 20-Dec-2014 09:52  1.6M  

[TXT]

 Farnell-IP4251_52_53..> 20-Dec-2014 09:51  1.6M  

[TXT]

 Farnell-BC846DS2-NXP..> 20-Dec-2014 09:48  1.2M  

[TXT]

 Farnell-BAT54J-Schot..> 20-Dec-2014 09:47  1.1M  

[TXT]

 Farnell-PMEG3010EP-N..> 20-Dec-2014 09:47  1.1M  

[TXT]

 Farnell-AVR172-Senso..> 20-Dec-2014 09:47  1.2M  

[TXT]

 Farnell-PBSS5320X-NX..> 20-Dec-2014 09:47  1.6M  

[TXT]

 Farnell-ATtiny2313-A..> 20-Dec-2014 09:47  1.6M  

[TXT]

 Farnell-SG2525A-SG35..> 20-Dec-2014 09:39  1.0M  

[TXT]

 Farnell-PMBT3906-PNP..> 20-Dec-2014 09:39  1.0M  

[TXT]

 Farnell-PDTB123TT-NX..> 20-Dec-2014 09:39  1.0M  

[TXT]

 Farnell-PIC12F529T39..> 20-Dec-2014 09:39  1.0M  

[TXT]

 Farnell-PSMN011-80YS..> 20-Dec-2014 09:39  1.1M  

[TXT]

 Farnell-PESD5V0F1BL-..> 20-Dec-2014 09:39  1.1M  

[TXT]

 Farnell-MB85RS128B-F..> 20-Dec-2014 09:38  1.1M  

[TXT]

 Farnell-SMAJ-STMicro..> 13-Oct-2014 07:07  734K  

[TXT]

 Farnell-L6562-STMicr..> 13-Oct-2014 07:07  754K  

[TXT]

 Farnell-LM139-LM239-..> 13-Oct-2014 07:07  771K  

[TXT]

 Farnell-L4978-STMicr..> 13-Oct-2014 07:07  783K  

[TXT]

 Farnell-ST1S10PHR-ST..> 13-Oct-2014 07:06  820K  

[TXT]

 Farnell-TIP41C-TIP42..> 13-Oct-2014 07:06  829K  

[TXT]

 Farnell-MC34063ABD-T..> 13-Oct-2014 07:06  844K  

[TXT]

 Farnell-ESM6045DV-ST..> 13-Oct-2014 07:06  850K  

[TXT]

 Farnell-TIP102-TIP10..> 13-Oct-2014 07:06  853K  

[TXT]

 Farnell-ST3232B-ST32..> 13-Oct-2014 07:06  867K  

[TXT]

 Farnell-STM32F030x4-..> 13-Oct-2014 07:06  1.1M  

[TXT]

 Farnell-STM32F103x8-..> 13-Oct-2014 07:06  1.0M  

[TXT]

 Farnell-STM32F405xx-..> 13-Oct-2014 07:05  1.4M  

[TXT]

 Farnell-STM32F205xx-..> 13-Oct-2014 07:05  1.7M  

[TXT]

 Farnell-STP16NF06L-n..> 13-Oct-2014 07:05  1.7M  

[TXT]

 Farnell-STP80NF55L-0..> 13-Oct-2014 07:05  1.7M  

[TXT]

 Farnell-LM217-LM317-..> 13-Oct-2014 07:04  1.7M  

[TXT]

 Farnell-LM2904-LM290..> 13-Oct-2014 07:04  1.7M  

[TXT]

 Farnell-L78-Positive..> 13-Oct-2014 07:04  1.8M  

[TXT]

 Farnell-VND920P-E-ST..> 13-Oct-2014 07:04  1.8M  

[TXT]

 Farnell-LM350-STMicr..> 13-Oct-2014 07:03  1.8M  

[   ]

 Smart_street_lightin..> 13-Oct-2014 07:03  1.6M  

[TXT]

 Farnell-Smart-street..> 13-Oct-2014 07:02  1.8M  

[TXT]

 Farnell-ULN2001-ULN2..> 13-Oct-2014 07:02  1.9M  

[TXT]

 Farnell-ULQ2001-ULQ2..> 13-Oct-2014 07:02  1.9M  

[TXT]

 Farnell-L6384E-STMic..> 13-Oct-2014 07:02  1.9M  

[TXT]

 Farnell-AN2794-Appli..> 13-Oct-2014 07:01  1.0M  

[TXT]

 Farnell-STEVAL-TDR02..> 13-Oct-2014 07:01  960K  

[TXT]

 Farnell-TL084-TL084A..> 11-Oct-2014 15:54  1.7M  

[TXT]

 Farnell-TDA7296-STMi..> 11-Oct-2014 15:54  1.7M  

[TXT]

 Farnell-L78-STMicroe..> 11-Oct-2014 15:49  1.6M  

[TXT]

 Farnell-LM158-LM258-..> 11-Oct-2014 15:49  1.6M  

[TXT]

 Farnell-LF351-STMicr..> 11-Oct-2014 15:49  1.7M  

[TXT]

 Farnell-L293B-STMicr..> 11-Oct-2014 15:49  1.7M  

[TXT]

 Farnell-NE556-SA556-..> 11-Oct-2014 15:48  1.7M  

[TXT]

 Farnell-SO967460-PDF..> 11-Oct-2014 12:05  2.9M  

[TXT]

 Farnell-Everything-Y..> 11-Oct-2014 12:05  1.5M  

[   ]

 cookiechoices.js        27-Sep-2014 12:40  6.0K  

[TXT]

 Farnell-ULN2803A-Rev..> 09-Sep-2014 19:26  2.9M  

[TXT]

 Analog-Devices-Convo..> 09-Sep-2014 08:26  2.1M  

[TXT]

 Analog-Devices-Convo..> 09-Sep-2014 08:25  2.2M  

[TXT]

 Analog-Devices-Convo..> 09-Sep-2014 08:25  2.2M  

[TXT]

 Analog-Devices-ADMC4..> 09-Sep-2014 08:23  2.3M  

[TXT]

 Analog-Devices-Wi-Fi..> 09-Sep-2014 08:23  2.3M  

[TXT]

 Analog-Devices-ADMC2..> 09-Sep-2014 08:21  2.4M  

[TXT]

 Analog-Devices-ADC-S..> 09-Sep-2014 08:21  2.4M  

[TXT]

 Analog-Devices-Visua..> 09-Sep-2014 08:18  2.5M  

[TXT]

 Analog-Devices-ANF32..> 09-Sep-2014 08:18  2.6M  

[TXT]

 Farnell-Compensating..> 09-Sep-2014 08:16  2.6M  

[TXT]

 Farnell-Compensating..> 09-Sep-2014 08:16  2.6M  

[TXT]

 Farnell-LM7805-Fairc..> 09-Sep-2014 08:13  2.7M  

[TXT]

 Farnell-AD620-Rev-H-..> 09-Sep-2014 08:13  2.6M  

[TXT]

 Farnell-Datasheet-FT..> 09-Sep-2014 08:10  2.8M  

[TXT]

 Farnell-MAX4661-MAX4..> 09-Sep-2014 08:10  2.8M  

[TXT]

 Farnell-OPA627-Texas..> 09-Sep-2014 08:08  2.8M  

[TXT]

 Farnell-REF19x-Serie..> 09-Sep-2014 08:08  2.8M  

[TXT]

 Farnell-Data-Sheet-M..> 09-Sep-2014 08:05  2.8M  

[TXT]

 Analog-Devices-Digit..> 08-Sep-2014 18:03  2.0M  

[TXT]

 Analog-Devices-Digit..> 08-Sep-2014 18:02  2.1M  

[TXT]

 Analog-Devices-Basic..> 08-Sep-2014 17:49  1.9M  

[TXT]

 Farnell-AD9833-Rev-E..> 08-Sep-2014 17:49  1.8M  

[TXT]

 Farnell-The-Discrete..> 08-Sep-2014 17:44  1.8M  

[TXT]

 Electronique-Basic-o..> 08-Sep-2014 17:43  1.8M  

[TXT]

 Analog-Devices-AN300..> 08-Sep-2014 17:42  2.0M  

[TXT]

 Analog-Devices-The-C..> 08-Sep-2014 17:41  1.9M  

[TXT]

 Analog-Devices-Intro..> 08-Sep-2014 17:39  1.9M  

[TXT]

 Analog-Devices-Compl..> 08-Sep-2014 17:38  2.0M  

[TXT]

 Analog-Devices-Gloss..> 08-Sep-2014 17:36  2.0M  

[TXT]

 Farnell-ADuM1300-ADu..> 08-Sep-2014 08:11  1.7M  

[TXT]

 Farnell-AD586BRZ-Ana..> 08-Sep-2014 08:09  1.6M  

[TXT]

 Farnell-ADuM1200-ADu..> 08-Sep-2014 08:09  1.6M  

[TXT]

 Farnell-NA555-NE555-..> 08-Sep-2014 07:51  1.5M  

[TXT]

 Farnell-AD9834-Rev-D..> 08-Sep-2014 07:32  1.2M  

[TXT]

 Farnell-MSP430F15x-M..> 08-Sep-2014 07:32  1.3M  

[TXT]

 Farnell-AD736-Rev-I-..> 08-Sep-2014 07:31  1.3M  

[TXT]

 Farnell-AD8307-Data-..> 08-Sep-2014 07:30  1.3M  

[TXT]

 Farnell-Single-Chip-..> 08-Sep-2014 07:30  1.5M  

[TXT]

 Farnell-Quadruple-2-..> 08-Sep-2014 07:29  1.5M  

[TXT]

 Farnell-ADE7758-Rev-..> 08-Sep-2014 07:28  1.7M  

[TXT]

 Farnell-MAX3221-Rev-..> 08-Sep-2014 07:28  1.8M  

[TXT]

 Farnell-USB-to-Seria..> 08-Sep-2014 07:27  2.0M  

[TXT]

 Farnell-AD8313-Analo..> 08-Sep-2014 07:26  2.0M  

[TXT]

 Farnell-SN54HC164-SN..> 08-Sep-2014 07:25  2.0M  

[TXT]

 Farnell-AD8310-Analo..> 08-Sep-2014 07:24  2.1M  

[TXT]

 Farnell-AD8361-Rev-D..> 08-Sep-2014 07:23  2.1M  

[TXT]

 Farnell-2N3906-Fairc..> 08-Sep-2014 07:22  2.1M  

[TXT]

 Farnell-AD584-Rev-C-..> 08-Sep-2014 07:20  2.2M  

[TXT]

 Farnell-ADE7753-Rev-..> 08-Sep-2014 07:20  2.3M  

[TXT]

 Farnell-TLV320AIC23B..> 08-Sep-2014 07:18  2.4M  

[TXT]

 Farnell-STM32F405xxS..> 27-Aug-2014 18:27  1.8M  

[TXT]

 Farnell-fx-3650P-fx-..> 29-Jul-2014 10:42  1.5M  

[TXT]

 Farnell-MSP430-Hardw..> 29-Jul-2014 10:36  1.1M  

[TXT]

 Farnell-LM324-Texas-..> 29-Jul-2014 10:32  1.5M  

[TXT]

 Farnell-LM386-Low-Vo..> 29-Jul-2014 10:32  1.5M  

[TXT]

 Farnell-NE5532-Texas..> 29-Jul-2014 10:32  1.5M  

[TXT]

 Farnell-Hex-Inverter..> 29-Jul-2014 10:31  875K  

[TXT]

 Farnell-AT90USBKey-H..> 29-Jul-2014 10:31  902K  

[TXT]

 Farnell-AT89C5131-Ha..> 29-Jul-2014 10:31  1.2M  

[TXT]

 Farnell-MSP-EXP430F5..> 29-Jul-2014 10:31  1.2M  

[TXT]

 Farnell-Explorer-16-..> 29-Jul-2014 10:31  1.3M  

[TXT]

 Farnell-TMP006EVM-Us..> 29-Jul-2014 10:30  1.3M  

[TXT]

 Farnell-Gertboard-Us..> 29-Jul-2014 10:30  1.4M  

[TXT]

 Farnell-LMP91051-Use..> 29-Jul-2014 10:30  1.4M  

[TXT]

 Farnell-Thermometre-..> 29-Jul-2014 10:30  1.4M  

[TXT]

 Farnell-user-manuel-..> 29-Jul-2014 10:29  1.5M  

[TXT]

 Farnell-TLV320AIC325..> 28-Jul-2014 17:45  2.9M  

[TXT]

 Farnell-2-GBPS-Diffe..> 28-Jul-2014 17:42  2.7M  

[TXT]

 Farnell-LMT88-2.4V-1..> 28-Jul-2014 17:42  2.8M  

[TXT]

 Farnell-Octal-Genera..> 28-Jul-2014 17:42  2.8M  

[TXT]

 Farnell-Dual-MOSFET-..> 28-Jul-2014 17:41  2.8M  

[TXT]

 Farnell-SN54LV4053A-..> 28-Jul-2014 17:20  5.9M  

[TXT]

 Farnell-TAS1020B-USB..> 28-Jul-2014 17:19  6.2M  

[TXT]

 Farnell-TPS40060-Wid..> 28-Jul-2014 17:19  6.3M  

[TXT]

 Farnell-TL082-Wide-B..> 28-Jul-2014 17:16  6.3M  

[TXT]

 Farnell-RF-short-tra..> 28-Jul-2014 17:16  6.3M  

[TXT]

 Farnell-maxim-integr..> 28-Jul-2014 17:14  6.4M  

[TXT]

 Farnell-TSV6390-TSV6..> 28-Jul-2014 17:14  6.4M  

[TXT]

 Farnell-Fast-Charge-..> 28-Jul-2014 17:12  6.4M  

[TXT]

 Farnell-NVE-datashee..> 28-Jul-2014 17:12  6.5M  

[TXT]

 Farnell-Excalibur-Hi..> 28-Jul-2014 17:10  2.4M  

[TXT]

 Farnell-Excalibur-Hi..> 28-Jul-2014 17:10  2.4M  

[TXT]

 Farnell-REF102-10V-P..> 28-Jul-2014 17:09  2.4M  

[TXT]

 Farnell-TMS320F28055..> 28-Jul-2014 17:09  2.7M  

[TXT]

 Farnell-ULINKpro-Deb..> 25-Jul-2014 12:35  5.9M  

[TXT]

 Farnell-WIRE-WRAP-50..> 25-Jul-2014 12:34  5.9M  

[TXT]

 Farnell-MICROCHIP-PI..> 25-Jul-2014 12:34  6.7M  

[TXT]

 Farnell-OMRON-INDUST..> 25-Jul-2014 12:32  6.9M  

[TXT]

 Farnell-OMRON-INDUST..> 25-Jul-2014 12:31  6.9M  

[TXT]

 Farnell-TYCO-ELECTRO..> 25-Jul-2014 12:30  6.9M  

[TXT]

 Farnell-Power-suppli..> 25-Jul-2014 12:29  7.0M  

[TXT]

 Farnell-Schroff-A108..> 25-Jul-2014 12:27  2.8M  

[TXT]

 Farnell-Schroff-Main..> 25-Jul-2014 12:26  2.9M  

[TXT]

 Farnell-Schroff-mult..> 25-Jul-2014 12:26  2.9M  

[TXT]

 Farnell-Quick-Start-..> 25-Jul-2014 12:25  3.0M  

[TXT]

 Farnell-PiFace-Digit..> 25-Jul-2014 12:25  3.0M  

[TXT]

 Farnell-PicoScope-se..> 25-Jul-2014 12:24  3.0M  

[TXT]

 Farnell-Trust-Digita..> 25-Jul-2014 12:24  3.0M  

[TXT]

 Farnell-Jeu-multi-la..> 25-Jul-2014 12:23  3.0M  

[TXT]

 Farnell-PicoScope-42..> 25-Jul-2014 12:23  3.0M  

[TXT]

 Farnell-LD-WSECO16-P..> 25-Jul-2014 12:22  3.1M  

[TXT]

 Farnell-Circuit-Impr..> 25-Jul-2014 12:22  3.1M  

[TXT]

 Farnell-MULTICOMP-Ra..> 22-Jul-2014 12:57  5.9M  

[TXT]

 Farnell-RASPBERRY-PI..> 22-Jul-2014 12:35  5.9M  

[TXT]

 Farnell-Dremel-Exper..> 22-Jul-2014 12:34  1.6M  

[TXT]

 Farnell-STM32F103x8-..> 22-Jul-2014 12:33  1.6M  

[TXT]

 Farnell-BD6xxx-PDF.htm  22-Jul-2014 12:33  1.6M  

[TXT]

 Farnell-L78S-STMicro..> 22-Jul-2014 12:32  1.6M  

[TXT]

 Farnell-RaspiCam-Doc..> 22-Jul-2014 12:32  1.6M  

[TXT]

 Farnell-SB520-SB5100..> 22-Jul-2014 12:32  1.6M  

[TXT]

 Farnell-iServer-Micr..> 22-Jul-2014 12:32  1.6M  

[TXT]

 Farnell-LUMINARY-MIC..> 22-Jul-2014 12:31  3.6M  

[TXT]

 Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:31  2.4M  

[TXT]

 Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:30  4.6M  

[TXT]

 Farnell-CLASS 1-or-2..> 22-Jul-2014 12:30  4.7M  

[TXT]

 Farnell-TEXAS-INSTRU..> 22-Jul-2014 12:29  4.8M  

[TXT]

 Farnell-Evaluating-t..> 22-Jul-2014 12:28  4.9M  

[TXT]

 Farnell-LM3S6952-Mic..> 22-Jul-2014 12:27  5.9M  

[TXT]

 Farnell-Keyboard-Mou..> 22-Jul-2014 12:27  5.9M  

[TXT]

 Farnell-0050375063-D..> 18-Jul-2014 17:03  2.5M  

[TXT]

 Farnell-Mini-Fit-Jr-..> 18-Jul-2014 17:03  2.5M  

[TXT]

 Farnell-43031-0002-M..> 18-Jul-2014 17:03  2.5M  

[TXT]

 Farnell-0433751001-D..> 18-Jul-2014 17:02  2.5M  

[TXT]

 Farnell-Cube-3D-Prin..> 18-Jul-2014 17:02  2.5M  

[TXT]

 Farnell-MTX-Compact-..> 18-Jul-2014 17:01  2.5M  

[TXT]

 Farnell-MTX-3250-MTX..> 18-Jul-2014 17:01  2.5M  

[TXT]

 Farnell-ATtiny26-L-A..> 18-Jul-2014 17:00  2.6M  

[TXT]

 Farnell-MCP3421-Micr..> 18-Jul-2014 17:00  1.2M  

[TXT]

 Farnell-LM19-Texas-I..> 18-Jul-2014 17:00  1.2M  

[TXT]

 Farnell-Data-Sheet-S..> 18-Jul-2014 17:00  1.2M  

[TXT]

 Farnell-LMH6518-Texa..> 18-Jul-2014 16:59  1.3M  

[TXT]

 Farnell-AD7719-Low-V..> 18-Jul-2014 16:59  1.4M  

[TXT]

 Farnell-DAC8143-Data..> 18-Jul-2014 16:59  1.5M  

[TXT]

 Farnell-BGA7124-400-..> 18-Jul-2014 16:59  1.5M  

[TXT]

 Farnell-SICK-OPTIC-E..> 18-Jul-2014 16:58  1.5M  

[TXT]

 Farnell-LT3757-Linea..> 18-Jul-2014 16:58  1.6M  

[TXT]

 Farnell-LT1961-Linea..> 18-Jul-2014 16:58  1.6M  

[TXT]

 Farnell-PIC18F2420-2..> 18-Jul-2014 16:57  2.5M  

[TXT]

 Farnell-DS3231-DS-PD..> 18-Jul-2014 16:57  2.5M  

[TXT]

 Farnell-RDS-80-PDF.htm  18-Jul-2014 16:57  1.3M  

[TXT]

 Farnell-AD8300-Data-..> 18-Jul-2014 16:56  1.3M  

[TXT]

 Farnell-LT6233-Linea..> 18-Jul-2014 16:56  1.3M  

[TXT]

 Farnell-MAX1365-MAX1..> 18-Jul-2014 16:56  1.4M  

[TXT]

 Farnell-XPSAF5130-PD..> 18-Jul-2014 16:56  1.4M  

[TXT]

 Farnell-DP83846A-DsP..> 18-Jul-2014 16:55  1.5M  

[TXT]

 Farnell-SL3ICS1002-1..> 16-Jul-2014 09:05  2.5M  

[TXT]

 Farnell-MCOC1-Farnel..> 16-Jul-2014 09:04  1.0M  

[TXT]

 Farnell-SL3S1203_121..> 16-Jul-2014 09:04  1.1M  

[TXT]

 Farnell-PN512-Full-N..> 16-Jul-2014 09:03  1.4M  

[TXT]

 Farnell-SL3S4011_402..> 16-Jul-2014 09:03  1.1M  

[TXT]

 Farnell-LPC408x-7x 3..> 16-Jul-2014 09:03  1.6M  

[TXT]

 Farnell-PCF8574-PCF8..> 16-Jul-2014 09:03  1.7M  

[TXT]

 Farnell-LPC81xM-32-b..> 16-Jul-2014 09:02  2.0M  

[TXT]

 Farnell-LPC1769-68-6..> 16-Jul-2014 09:02  1.9M  

[TXT]

 Farnell-Download-dat..> 16-Jul-2014 09:02  2.2M  

[TXT]

 Farnell-LPC3220-30-4..> 16-Jul-2014 09:02  2.2M  

[TXT]

 Farnell-LPC11U3x-32-..> 16-Jul-2014 09:01  2.4M  

[TXT]

 Farnell-Full-Datashe..> 15-Jul-2014 17:08  951K  

[TXT]

 Farnell-pmbta13_pmbt..> 15-Jul-2014 17:06  959K  

[TXT]

 Farnell-EE-SPX303N-4..> 15-Jul-2014 17:06  969K  

[TXT]

 Farnell-Datasheet-NX..> 15-Jul-2014 17:06  1.0M  

[TXT]

 Farnell-Datasheet-Fa..> 15-Jul-2014 17:05  1.0M  

[TXT]

 Farnell-MIDAS-un-tra..> 15-Jul-2014 17:05  1.0M  

[TXT]

 Farnell-SERIAL-TFT-M..> 15-Jul-2014 17:05  1.0M  

[TXT]

 Farnell-TMR-2-series..> 15-Jul-2014 16:48  787K  

[TXT]

 Farnell-DC-DC-Conver..> 15-Jul-2014 16:48  781K  

[TXT]

 Farnell-Full-Datashe..> 15-Jul-2014 16:47  803K  

[TXT]

 Farnell-TMLM-Series-..> 15-Jul-2014 16:47  810K  

[TXT]

 Farnell-TEL-5-Series..> 15-Jul-2014 16:47  814K  

[TXT]

 Farnell-TXL-series-t..> 15-Jul-2014 16:47  829K  

[TXT]

 Farnell-TEP-150WI-Se..> 15-Jul-2014 16:47  837K  

[TXT]

 Farnell-AC-DC-Power-..> 15-Jul-2014 16:47  845K  

[TXT]

 Farnell-TIS-Instruct..> 15-Jul-2014 16:47  845K  

[TXT]

 Farnell-TOS-tracopow..> 15-Jul-2014 16:47  852K  

[TXT]

 Farnell-TCL-DC-traco..> 15-Jul-2014 16:46  858K  

[TXT]

 Farnell-TIS-series-t..> 15-Jul-2014 16:46  875K  

[TXT]

 Farnell-TMR-2-Series..> 15-Jul-2014 16:46  897K  

[TXT]

 Farnell-TMR-3-WI-Ser..> 15-Jul-2014 16:46  939K  

[TXT]

 Farnell-TEN-8-WI-Ser..> 15-Jul-2014 16:46  939K  

[TXT]

 Farnell-SOURIAU-Cont..> 08-Jul-2014 19:04  3.0M  

[TXT]

 Farnell-T672-3000-Se..> 08-Jul-2014 18:59  2.0M  

[TXT]

 Farnell-tesa®pack63..> 08-Jul-2014 18:56  2.0M  

[TXT]

 Farnell-Encodeur-USB..> 08-Jul-2014 18:56  2.0M  

[TXT]

 Farnell-CC2530ZDK-Us..> 08-Jul-2014 18:55  2.1M  

[TXT]

 Farnell-2020-Manuel-..> 08-Jul-2014 18:55  2.1M  

[TXT]

 Farnell-Synchronous-..> 08-Jul-2014 18:54  2.1M  

[TXT]

 Farnell-Arithmetic-L..> 08-Jul-2014 18:54  2.1M  

[TXT]

 Farnell-NA555-NE555-..> 08-Jul-2014 18:53  2.2M  

[TXT]

 Farnell-4-Bit-Magnit..> 08-Jul-2014 18:53  2.2M  

[TXT]

 Farnell-LM555-Timer-..> 08-Jul-2014 18:53  2.2M  

[TXT]

 Farnell-L293d-Texas-..> 08-Jul-2014 18:53  2.2M  

[TXT]

 Farnell-SN54HC244-SN..> 08-Jul-2014 18:52  2.3M  

[TXT]

 Farnell-MAX232-MAX23..> 08-Jul-2014 18:52  2.3M  

[TXT]

 Farnell-High-precisi..> 08-Jul-2014 18:51  2.3M  

[TXT]

 Farnell-SMU-Instrume..> 08-Jul-2014 18:51  2.3M  

[TXT]

 Farnell-900-Series-B..> 08-Jul-2014 18:50  2.3M  

[TXT]

 Farnell-BA-Series-Oh..> 08-Jul-2014 18:50  2.3M  

[TXT]

 Farnell-UTS-Series-S..> 08-Jul-2014 18:49  2.5M  

[TXT]

 Farnell-270-Series-O..> 08-Jul-2014 18:49  2.3M  

[TXT]

 Farnell-UTS-Series-S..> 08-Jul-2014 18:49  2.8M  

[TXT]

 Farnell-Tiva-C-Serie..> 08-Jul-2014 18:49  2.6M  

[TXT]

 Farnell-UTO-Souriau-..> 08-Jul-2014 18:48  2.8M  

[TXT]

 Farnell-Clipper-Seri..> 08-Jul-2014 18:48  2.8M  

[TXT]

 Farnell-851-Series-P..> 08-Jul-2014 18:47  3.0M  

[TXT]

 Farnell-HIP4081A-Int..> 07-Jul-2014 19:47  1.0M  

[TXT]

 Farnell-ISL6251-ISL6..> 07-Jul-2014 19:47  1.1M  

[TXT]

 Farnell-DG411-DG412-..> 07-Jul-2014 19:47  1.0M  

[TXT]

 Farnell-3367-ARALDIT..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-ICM7228-Inte..> 07-Jul-2014 19:46  1.1M  

[TXT]

 Farnell-Data-Sheet-K..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-Silica-Gel-M..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-TKC2-Dusters..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-CRC-HANDCLEA..> 07-Jul-2014 19:46  1.2M  

[TXT]

 Farnell-760G-French-..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-Decapant-KF-..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-1734-ARALDIT..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-Araldite-Fus..> 07-Jul-2014 19:45  1.2M  

[TXT]

 Farnell-fiche-de-don..> 07-Jul-2014 19:44  1.4M  

[TXT]

 Farnell-safety-data-..> 07-Jul-2014 19:44  1.4M  

[TXT]

 Farnell-A-4-Hardener..> 07-Jul-2014 19:44  1.4M  

[TXT]

 Farnell-CC-Debugger-..> 07-Jul-2014 19:44  1.5M  

[TXT]

 Farnell-SmartRF06-Ev..> 07-Jul-2014 19:43  1.6M  

[TXT]

 Farnell-CC2531-USB-H..> 07-Jul-2014 19:43  1.8M  

[TXT]

 Farnell-Alimentation..> 07-Jul-2014 19:43  1.8M  

[TXT]

 Farnell-BK889B-PONT-..> 07-Jul-2014 19:42  1.8M  

[TXT]

 Farnell-User-Guide-M..> 07-Jul-2014 19:41  2.0M  

[TXT]

 Farnell-SL59830-Inte..> 06-Jul-2014 10:11  1.0M  

[TXT]

 Farnell-ALF1210-PDF.htm 06-Jul-2014 10:06  4.0M  

[TXT]

 Farnell-AD7171-16-Bi..> 06-Jul-2014 10:06  1.0M  

[TXT]

 Farnell-Low-Noise-24..> 06-Jul-2014 10:05  1.0M  

[TXT]

 Farnell-ESCON-Featur..> 06-Jul-2014 10:05  938K  

[TXT]

 Farnell-74LCX573-Fai..> 06-Jul-2014 10:05  1.9M  

[TXT]

 Farnell-1N4148WS-Fai..> 06-Jul-2014 10:04  1.9M  

[TXT]

 Farnell-FAN6756-Fair..> 06-Jul-2014 10:04  850K  

[TXT]

 Farnell-Datasheet-Fa..> 06-Jul-2014 10:04  861K  

[TXT]

 Farnell-ES1F-ES1J-fi..> 06-Jul-2014 10:04  867K  

[TXT]

 Farnell-QRE1113-Fair..> 06-Jul-2014 10:03  879K  

[TXT]

 Farnell-2N7002DW-Fai..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-FDC2512-Fair..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-FDV301N-Digi..> 06-Jul-2014 10:03  886K  

[TXT]

 Farnell-S1A-Fairchil..> 06-Jul-2014 10:03  896K  

[TXT]

 Farnell-BAV99-Fairch..> 06-Jul-2014 10:03  896K  

[TXT]

 Farnell-74AC00-74ACT..> 06-Jul-2014 10:03  911K  

[TXT]

 Farnell-NaPiOn-Panas..> 06-Jul-2014 10:02  911K  

[TXT]

 Farnell-LQ-RELAYS-AL..> 06-Jul-2014 10:02  924K  

[TXT]

 Farnell-ev-relays-ae..> 06-Jul-2014 10:02  926K  

[TXT]

 Farnell-ESCON-Featur..> 06-Jul-2014 10:02  931K  

[TXT]

 Farnell-Amplifier-In..> 06-Jul-2014 10:02  940K  

[TXT]

 Farnell-Serial-File-..> 06-Jul-2014 10:02  941K  

[TXT]

 Farnell-Both-the-Del..> 06-Jul-2014 10:01  948K  

[TXT]

 Farnell-Videk-PDF.htm   06-Jul-2014 10:01  948K  

[TXT]

 Farnell-EPCOS-173438..> 04-Jul-2014 10:43  3.3M  

[TXT]

 Farnell-Sensorless-C..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-197.31-KB-Te..> 04-Jul-2014 10:42  3.3M  

[TXT]

 Farnell-PIC12F609-61..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-PADO-semi-au..> 04-Jul-2014 10:41  3.7M  

[TXT]

 Farnell-03-iec-runds..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-ACC-Silicone..> 04-Jul-2014 10:40  3.7M  

[TXT]

 Farnell-Series-TDS10..> 04-Jul-2014 10:39  4.0M  

[TXT]

 Farnell-Q48-PDF.htm     23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-Panasonic-15..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-BZX384-serie..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-AN10361-Phil..> 23-Jun-2014 10:29  2.1M  

[TXT]

 Farnell-KSZ8851SNL-S..> 23-Jun-2014 10:28  2.1M  

[TXT]

 Farnell-BF545A-BF545..> 23-Jun-2014 10:28  2.1M  

[TXT]

 Farnell-PIC18F2455-2..> 23-Jun-2014 10:27  3.1M  

[TXT]

 Farnell-PMBT4403-PNP..> 23-Jun-2014 10:27  3.1M  

[TXT]

 Farnell-24AA024-24LC..> 23-Jun-2014 10:26  3.1M  

[TXT]

 Farnell-Leaded-Trans..> 23-Jun-2014 10:26  3.2M  

[TXT]

 Farnell-SSC7102-Micr..> 23-Jun-2014 10:25  3.2M  

[TXT]

 Farnell-Fastrack-Sup..> 23-Jun-2014 10:25  3.3M  

[TXT]

 Farnell-BC847DS-NXP-..> 23-Jun-2014 10:24  3.3M  

[TXT]

 Farnell-HI-70300-Sol..> 14-Jun-2014 18:27  2.4M  

[TXT]

 Farnell-Davum-TMC-PD..> 14-Jun-2014 18:27  2.4M  

[TXT]

 Farnell-Repartiteurs..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-Documentatio..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-Fiche-de-don..> 14-Jun-2014 18:26  2.5M  

[TXT]

 Farnell-SPLC780A1-16..> 14-Jun-2014 18:25  2.5M  

[TXT]

 Farnell-Construction..> 14-Jun-2014 18:25  2.5M  

[TXT]

 Farnell-Alimentation..> 14-Jun-2014 18:24  2.5M  

[TXT]

 Farnell-C.A-6150-C.A..> 14-Jun-2014 18:24  2.5M  

[TXT]

 Farnell-Fluke-1730-E..> 14-Jun-2014 18:23  2.5M  

[TXT]

 Farnell-Ponts-RLC-po..> 14-Jun-2014 18:23  3.3M  

[TXT]

 Farnell-Serie-Standa..> 14-Jun-2014 18:23  3.3M  

[TXT]

 Farnell-FDS-ITW-Spra..> 14-Jun-2014 18:22  3.3M  

[TXT]

 Farnell-HFE1600-Data..> 14-Jun-2014 18:22  3.3M  

[TXT]

 Farnell-TDK-Lambda-H..> 14-Jun-2014 18:21  3.3M  

[TXT]

 Farnell-HC49-4H-Crys..> 14-Jun-2014 18:20  3.3M  

[TXT]

 Farnell-Avvertenze-e..> 14-Jun-2014 18:20  3.3M  

[TXT]

 Farnell-Ceramic-tran..> 14-Jun-2014 18:19  3.4M  

[TXT]

 Farnell-ADL6507-PDF.htm 14-Jun-2014 18:19  3.4M  

[TXT]

 Farnell-PMEG4002EL-N..> 14-Jun-2014 18:18  3.4M  

[TXT]

 Farnell-Midas-Active..> 14-Jun-2014 18:17  3.4M  

[TXT]

 Farnell-Molex-83421-..> 14-Jun-2014 18:17  3.4M  

[TXT]

 Farnell-Molex-COMMER..> 14-Jun-2014 18:16  3.4M  

[TXT]

 Farnell-10TPB47M-End..> 14-Jun-2014 18:16  3.4M  

[TXT]

 Farnell-U2270B-PDF.htm  14-Jun-2014 18:15  3.4M  

[TXT]

 Farnell-SVPE-series-..> 14-Jun-2014 18:15  2.0M  

[TXT]

 Farnell-F28069-Picco..> 14-Jun-2014 18:14  2.0M  

[TXT]

 Farnell-Termometros-..> 14-Jun-2014 18:14  2.0M  

[TXT]

 Farnell-Cordless-dri..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-Battery-GBA-..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-CD4536B-Type..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-0430300011-D..> 14-Jun-2014 18:13  2.0M  

[TXT]

 Farnell-Mistral-PDF.htm 14-Jun-2014 18:12  2.1M  

[TXT]

 Farnell-Connectors-N..> 14-Jun-2014 18:12  2.1M  

[TXT]

 Farnell-XPS-AC-Octop..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-Midas-MCCOG4..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-V4N-PDF.htm     14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-Signal-PCB-R..> 14-Jun-2014 18:11  2.1M  

[TXT]

 Farnell-PIC24FJ256GB..> 14-Jun-2014 09:51  2.4M  

[TXT]

 Farnell-DC-Fan-type-..> 14-Jun-2014 09:51  1.8M  

[TXT]

 Farnell-12mm-Size-In..> 14-Jun-2014 09:50  2.4M  

[TXT]

 Farnell-10BQ060-PDF.htm 14-Jun-2014 09:50  2.4M  

[TXT]

 Farnell-An-Improved-..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-ATmega640-VA..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-LME49725-Pow..> 14-Jun-2014 09:49  2.5M  

[TXT]

 Farnell-Produit-3430..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-USB-Buccanee..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-DC-Fan-type-..> 14-Jun-2014 09:48  2.5M  

[TXT]

 Farnell-Fiche-de-don..> 14-Jun-2014 09:47  2.5M  

[TXT]

 Farnell-Nilfi-sk-E-..> 14-Jun-2014 09:47  2.5M  

[TXT]

 Farnell-MX670-MX675-..> 14-Jun-2014 09:46  2.5M  

[TXT]

 Farnell-Tektronix-AC..> 13-Jun-2014 18:44  1.5M  

[TXT]

 Farnell-PMBT3906-PNP..> 13-Jun-2014 18:44  1.5M  

[TXT]

 Farnell-PESD5V0F1BL-..> 13-Jun-2014 18:43  1.5M  

[TXT]

 Farnell-PMEG4010CEH-..> 13-Jun-2014 18:43  1.6M  

[TXT]

 Farnell-PESD9X5.0L-P..> 13-Jun-2014 18:43  1.6M  

[TXT]

 Farnell-BTA204-800C-..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-BYV29F-600-N..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-Low-cost-Enc..> 13-Jun-2014 18:42  1.7M  

[TXT]

 Farnell-BC846DS-NXP-..> 13-Jun-2014 18:42  1.6M  

[TXT]

 Farnell-IP4252CZ16-8..> 13-Jun-2014 18:41  1.7M  

[TXT]

 Farnell-BUJD203AX-NX..> 13-Jun-2014 18:41  1.7M  

[TXT]

 Farnell-Download-dat..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-BT151-650R-N..> 13-Jun-2014 18:40  1.7M  

[TXT]

 Farnell-OXPCIE958-FB..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-ATtiny26-L-A..> 13-Jun-2014 18:40  1.8M  

[TXT]

 Farnell-Microchip-MC..> 13-Jun-2014 18:27  1.8M  

[TXT]

 Farnell-Pompes-Charg..> 24-Apr-2014 20:23  3.3M  

[TXT]

 Farnell-Alimentation..> 01-Apr-2014 07:42  3.4M  

[TXT]

 Farnell-C.A 8332B-C...> 01-Apr-2014 07:40  3.4M  

[TXT]

 Farnell-ALF1225-12-V..> 01-Apr-2014 07:40  3.4M  

[TXT]

 Farnell-CS5532-34-BS..> 01-Apr-2014 07:39  3.5M  

[TXT]

 Farnell-ALF2412-24-V..> 01-Apr-2014 07:39  3.4M  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  422K  

[TXT]

 Sefram-CAT_ENREGISTR..> 29-Mar-2014 11:46  461K  

[TXT]

 Sefram-SP270.pdf-PDF..> 29-Mar-2014 11:46  464K  

[TXT]

 Sefram-7866HD.pdf-PD..> 29-Mar-2014 11:46  472K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  481K  

[TXT]

 Sefram-CAT_MESUREURS..> 29-Mar-2014 11:46  435K  

[TXT]

 Sefram-GUIDE_SIMPLIF..> 29-Mar-2014 11:46  442K  

[TXT]

 Farnell-Portable-Ana..> 29-Mar-2014 11:16  2.8M  

[TXT]

 Farnell-CC2560-Bluet..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-Ferric-Chlor..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-MCF532x-7x-E..> 29-Mar-2014 11:14  2.8M  

[TXT]

 Farnell-A-True-Syste..> 29-Mar-2014 11:13  3.3M  

[TXT]

 Farnell-ELMA-PDF.htm    29-Mar-2014 11:13  3.3M  

[TXT]

 Farnell-SMBJ-Transil..> 29-Mar-2014 11:12  3.3M  

[TXT]

 Farnell-6517b-Electr..> 29-Mar-2014 11:12  3.3M  

[TXT]

 Farnell-Amplificateu..> 29-Mar-2014 11:11  3.3M  

[TXT]

 Farnell-ir1150s_fr.p..> 29-Mar-2014 11:11  3.3M  

[TXT]

 Farnell-De-la-puissa..> 29-Mar-2014 11:10  3.3M  

[TXT]

 Farnell-BK2650A-BK26..> 29-Mar-2014 11:10  3.3M  

[TXT]

 Farnell-Lubrifiant-a..> 26-Mar-2014 18:00  2.7M  

[TXT]

 Farnell-Circuit-Note..> 26-Mar-2014 18:00  2.8M  

[TXT]

 Farnell-Circuit-Note..> 26-Mar-2014 18:00  2.8M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:59  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:59  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:58  2.7M  

[TXT]

 Farnell-Current-Tran..> 26-Mar-2014 17:58  2.7M  

[TXT]

 Farnell-Supercapacit..> 26-Mar-2014 17:57  2.7M  

[TXT]

 Farnell-GALVA-MAT-Re..> 26-Mar-2014 17:57  2.7M  

[TXT]

 Farnell-GALVA-A-FROI..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-1907-2006-PD..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-ARALDITE-CW-..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-06-6544-8-PD..> 26-Mar-2014 17:56  2.7M  

[TXT]

 Farnell-Miniature-Ci..> 26-Mar-2014 17:55  2.8M  

[TXT]

 Farnell-ARADUR-HY-13..> 26-Mar-2014 17:55  2.8M  

[TXT]

 Farnell-LOCTITE-3463..> 25-Mar-2014 08:19  3.0M  

[TXT]

 Farnell-LCW-CQ7P.CC-..> 25-Mar-2014 08:19  3.2M  

[TXT]

 Farnell-ATtiny20-PDF..> 25-Mar-2014 08:19  3.6M  

[TXT]

 Farnell-3M-VolitionT..> 25-Mar-2014 08:18  3.3M  

[TXT]

 Farnell-EMC1182-PDF.htm 25-Mar-2014 08:17  3.0M  

[TXT]

 Farnell-MC3510-PDF.htm  25-Mar-2014 08:17  3.0M  

[TXT]

 Farnell-Directive-re..> 25-Mar-2014 08:16  3.0M  

[TXT]

 Farnell-Loctite3455-..> 25-Mar-2014 08:16  3.0M  

[TXT]

 Farnell-LOCTITE-542-..> 25-Mar-2014 08:15  3.0M  

[TXT]

 Farnell-5910-PDF.htm    25-Mar-2014 08:15  3.0M  

[TXT]

 Farnell-china_rohs_o..> 21-Mar-2014 10:04  3.9M  

[TXT]

 Farnell-Cles-electro..> 21-Mar-2014 08:13  3.9M  

[TXT]

 Farnell-ARALDITE-201..> 21-Mar-2014 08:12  3.7M  

[TXT]

 Farnell-Premier-Farn..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-celpac-SUL84..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-S-TRI-SWT860..> 21-Mar-2014 08:11  3.8M  

[TXT]

 Farnell-3M-Polyimide..> 21-Mar-2014 08:09  3.9M  

[TXT]

 Farnell-Strangkuhlko..> 21-Mar-2014 08:09  3.9M  

[TXT]

 Farnell-Reglement-RE..> 21-Mar-2014 08:08  3.9M  

[TXT]

 Farnell-techfirst_se..> 21-Mar-2014 08:08  3.9M  

[TXT]

 Farnell-Septembre-20..> 20-Mar-2014 17:46  3.7M  

[TXT]

 Farnell-Telemetres-l..> 20-Mar-2014 17:46  3.7M  

[TXT]

 Farnell-Multi-Functi..> 20-Mar-2014 17:38  3.0M  

[TXT]

 Farnell-testo-470-Fo..> 20-Mar-2014 17:38  3.0M  

[TXT]

 Farnell-Novembre-201..> 20-Mar-2014 17:38  3.3M  

[TXT]

 Farnell-testo-205-20..> 20-Mar-2014 17:37  3.0M  

[TXT]

 Farnell-Panasonic-Ra..> 20-Mar-2014 17:37  2.6M  

[TXT]

 Farnell-Panasonic-Ne..> 20-Mar-2014 17:36  2.6M  

[TXT]

 Farnell-Panasonic-EC..> 20-Mar-2014 17:36  2.6M  

[TXT]

 Farnell-Panasonic-Id..> 20-Mar-2014 17:35  2.6M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:35  2.7M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:34  2.8M  

[TXT]

 Farnell-ADSP-21362-A..> 20-Mar-2014 17:34  2.8M  

[TXT]

 Farnell-AD524-PDF.htm   20-Mar-2014 17:33  2.8M  

[TXT]

 Farnell-MPXV7002-Rev..> 20-Mar-2014 17:33  2.8M  

[TXT]

 Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32  2.9M  

[TXT]

 Farnell-cree-Xlamp-m..> 20-Mar-2014 17:32  2.9M  

[TXT]

 Farnell-50A-High-Pow..> 20-Mar-2014 17:31  2.9M  

[TXT]

 Farnell-cree-Xlamp-X..> 20-Mar-2014 17:31  2.9M  

[TXT]

 Farnell-Series-2600B..> 20-Mar-2014 17:30  3.0M  

[TXT]

 Farnell-ECO-Series-T..> 20-Mar-2014 08:14  2.5M  

[TXT]

 Farnell-PDTA143X-ser..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-Panasonic-TS..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-Radial-Lead-..> 20-Mar-2014 08:12  2.6M  

[TXT]

 Farnell-GN-RELAYS-AG..> 20-Mar-2014 08:11  2.6M  

[TXT]

 Farnell-Panasonic-Y3..> 20-Mar-2014 08:11  2.6M  

[TXT]

 Farnell-Panasonic-EZ..> 20-Mar-2014 08:10  2.6M  

[TXT]

 Farnell-ATMEL-8-bit-..> 19-Mar-2014 18:04  2.1M  

[TXT]

 Farnell-USB1T11A-PDF..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-OSLON-SSL-Ce..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-Atmel-ATmega..> 19-Mar-2014 18:03  2.2M  

[TXT]

 Farnell-PBSS5160T-60..> 19-Mar-2014 18:03  2.1M  

[TXT]

 Farnell-MICROCHIP-PI..> 19-Mar-2014 18:02  2.5M  

[TXT]

 Farnell-Ed.081002-DA..> 19-Mar-2014 18:02  2.5M  

[TXT]

 Farnell-Instructions..> 19-Mar-2014 18:01  2.5M  

[TXT]

 Farnell-Serie-PicoSc..> 19-Mar-2014 18:01  2.5M  

[TXT]

 Farnell-F42202-PDF.htm  19-Mar-2014 18:00  2.5M  

[TXT]

 Farnell-propose-plus..> 11-Mar-2014 08:19  2.8M  

[TXT]

 Farnell-Haute-vitess..> 11-Mar-2014 08:17  2.4M  

[TXT]

 Farnell-Controle-de-..> 11-Mar-2014 08:16  2.8M  

[TXT]

 Farnell-NXP-TEA1703T..> 11-Mar-2014 08:15  2.8M  

[TXT]

 Farnell-XPS-MC16-XPS..> 11-Mar-2014 08:15  2.8M  

[TXT]

 Farnell-MC21605-PDF.htm 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-WetTantalum-..> 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-ES2333-PDF.htm  11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-SB175-Connec..> 11-Mar-2014 08:14  2.8M  

[TXT]

 Farnell-Cannon-ZD-PD..> 11-Mar-2014 08:13  2.8M  

[TXT]

 Farnell-YAGEO-DATA-S..> 11-Mar-2014 08:13  2.8M  

[TXT]

 Farnell-ATMEL-8-bit-..> 11-Mar-2014 07:55  2.1M  

[TXT]

 Farnell-NXP-PCA9555 ..> 11-Mar-2014 07:54  2.2M  

[TXT]

 Farnell-MICREL-KSZ88..> 11-Mar-2014 07:54  2.2M  

[TXT]

 Farnell-Microship-PI..> 11-Mar-2014 07:53  2.2M  

[TXT]

 Farnell-EPCOS-Sample..> 11-Mar-2014 07:53  2.2M  

[TXT]

 Farnell-NXP-BT136-60..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-NTE_SEMICOND..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-L-efficacite..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-LUXEON-Guide..> 11-Mar-2014 07:52  2.3M  

[TXT]

 Farnell-Realiser-un-..> 11-Mar-2014 07:51  2.3M  

[TXT]

 Farnell-SOT-23-Multi..> 11-Mar-2014 07:51  2.3M  

[TXT]

 Farnell-ZigBee-ou-le..> 11-Mar-2014 07:50  2.4M  

[TXT]

 Farnell-Les-derniers..> 11-Mar-2014 07:50  2.3M  

[TXT]

 Farnell-Conception-d..> 11-Mar-2014 07:49  2.4M  

[TXT]

 Farnell-Puissance-ut..> 11-Mar-2014 07:49  2.4M  

[TXT]

 Farnell-MOLEX-43160-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MOLEX-87439-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-MOLEX-43020-..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-NXP-PBSS9110..> 10-Mar-2014 17:21  1.9M  

[TXT]

 Farnell-TEKTRONIX-DP..> 10-Mar-2014 17:20  2.0M  

[TXT]

 Farnell-uC-OS-III-Br..> 10-Mar-2014 17:20  2.0M  

[TXT]

 Farnell-CIRRUS-LOGIC..> 10-Mar-2014 17:20  2.1M  

[TXT]

 Farnell-NXP-PSMN7R0-..> 10-Mar-2014 17:19  2.1M  

[TXT]

 Farnell-MOLEX-39-00-..> 10-Mar-2014 17:19  1.9M  

[TXT]

 Farnell-manual-bus-p..> 10-Mar-2014 16:29  1.9M  

[TXT]

 Farnell-Molex-Crimp-..> 10-Mar-2014 16:27  1.7M  

[TXT]

 Farnell-The-essentia..> 10-Mar-2014 16:27  1.7M  

[TXT]

 Farnell-OMRON-Master..> 10-Mar-2014 16:26  1.8M  

[TXT]

 Farnell-Proskit-SS-3..> 10-Mar-2014 16:26  1.8M  

[TXT]

 Farnell-BYV79E-serie..> 10-Mar-2014 16:19  1.6M  

[TXT]

 Farnell-NXP-74VHC126..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-NXP-PSMN1R7-..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-FICHE-DE-DON..> 10-Mar-2014 16:17  1.6M  

[TXT]

 Farnell-HUNTSMAN-Adv..> 10-Mar-2014 16:17  1.7M  

[TXT]

 Farnell-NXP-PMBFJ620..> 10-Mar-2014 16:16  1.7M  

[TXT]

 Farnell-Pico-Spox-Wi..> 10-Mar-2014 16:16  1.7M
8127F–AVR–02/2013 Features • High Performance, Low Power AVR® 8-Bit Microcontroller • Advanced RISC Architecture – 54 Powerful Instructions – Most Single Clock Cycle Execution – 16 x 8 General Purpose Working Registers – Fully Static Operation – Up to 12 MIPS Throughput at 12 MHz • Non-volatile Program and Data Memories – 512/1024 Bytes of In-System Programmable Flash Program Memory – 32 Bytes Internal SRAM – Flash Write/Erase Cycles: 10,000 – Data Retention: 20 Years at 85oC / 100 Years at 25oC • Peripheral Features – QTouch® Library Support for Capacitive Touch Sensing (1 Channel) – One 16-bit Timer/Counter with Prescaler and Two PWM Channels – Programmable Watchdog Timer with Separate On-chip Oscillator – 4-channel, 8-bit Analog to Digital Converter (ATtiny5/10, only) – On-chip Analog Comparator • Special Microcontroller Features – In-System Programmable (at 5V, only) – External and Internal Interrupt Sources – Low Power Idle, ADC Noise Reduction, and Power-down Modes – Enhanced Power-on Reset Circuit – Programmable Supply Voltage Level Monitor with Interrupt and Reset – Internal Calibrated Oscillator • I/O and Packages – Four Programmable I/O Lines – 6-pin SOT and 8-pad UDFN • Operating Voltage: – 1.8 – 5.5V • Programming Voltage: – 5V • Speed Grade – 0 – 4 MHz @ 1.8 – 5.5V – 0 – 8 MHz @ 2.7 – 5.5V – 0 – 12 MHz @ 4.5 – 5.5V • Industrial and Extended Temperature Ranges • Low Power Consumption – Active Mode: • 200µA at 1MHz and 1.8V – Idle Mode: • 25µA at 1MHz and 1.8V – Power-down Mode: • < 0.1µA at 1.8V Atmel 8-bit AVR Microcontroller with 512/1024 Bytes In-System Programmable Flash ATtiny4 / ATtiny5 / ATtiny9 / ATtiny10 Rev. 8127F–AVR–02/2013ATtiny4/5/9/10 [DATASHEET] 2 8127F–AVR–02/2013 1. Pin Configurations Figure 1-1. Pinout of ATtiny4/5/9/10 1.1 Pin Description 1.1.1 VCC Supply voltage. 1.1.2 GND Ground. 1.1.3 Port B (PB3..PB0) This is a 4-bit, bi-directional I/O port with internal pull-up resistors, individually selectable for each bit. The output buffers have symmetrical drive characteristics, with both high sink and source capability. As inputs, the port pins that are externally pulled low will source current if pull-up resistors are activated. Port pins are tri-stated when a reset condition becomes active, even if the clock is not running. The port also serves the functions of various special features of the ATtiny4/5/9/10, as listed on page 36. 1.1.4 RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running and provided the reset pin has not been disabled. The minimum pulse length is given in Table 16-4 on page 118. Shorter pulses are not guaranteed to generate a reset. The reset pin can also be used as a (weak) I/O pin. 1 2 3 6 5 4 (PCINT0/TPIDATA/OC0A/ADC0/AIN0) PB0 GND (PCINT1/TPICLK/CLKI/ICP0/OC0B/ADC1/AIN1) PB1 PB3 (RESET/PCINT3/ADC3) VCC PB2 (T0/CLKO/PCINT2/INT0/ADC2) SOT-23 1 2 3 4 8 7 6 5 (PCINT1/TPICLK/CLKI/ICP0/OC0B/ADC1/AIN1) PB1 NC NC GND PB2 (T0/CLKO/PCINT2/INT0/ADC2) VCC PB3 (RESET/PCINT3/ADC3) PB0 (AIN0/ADC0/OC0A/TPIDATA/PCINT0) UDFNATtiny4/5/9/10 [DATASHEET] 3 8127F–AVR–02/2013 2. Overview ATtiny4/5/9/10 are low-power CMOS 8-bit microcontrollers based on the compact AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny4/5/9/10 achieve throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed. Figure 2-1. Block Diagram The AVR core combines a rich instruction set with 16 general purpose working registers and system registers. All registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is compact and code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The ATtiny4/5/9/10 provide the following features: 512/1024 byte of In-System Programmable Flash, 32 bytes of SRAM, four general purpose I/O lines, 16 general purpose working registers, a 16-bit timer/counter with two PWM STACK POINTER SRAM PROGRAM COUNTER PROGRAMMING LOGIC ISP INTERFACE INTERNAL OSCILLATOR WATCHDOG TIMER RESET FLAG REGISTER MCU STATUS REGISTER TIMER/ COUNTER0 CALIBRATED OSCILLATOR TIMING AND CONTROL INTERRUPT UNIT ANALOG COMPARATOR ADC GENERAL PURPOSE REGISTERS X Y Z ALU STATUS REGISTER PROGRAM FLASH INSTRUCTION REGISTER INSTRUCTION DECODER CONTROL LINES VCC RESET DATA REGISTER PORT B DIRECTION REG. PORT B DRIVERS PORT B GND PB3:0 8-BIT DATA BUSATtiny4/5/9/10 [DATASHEET] 4 8127F–AVR–02/2013 channels, internal and external interrupts, a programmable watchdog timer with internal oscillator, an internal calibrated oscillator, and four software selectable power saving modes. ATtiny5/10 are also equipped with a fourchannel, 8-bit Analog to Digital Converter (ADC). Idle mode stops the CPU while allowing the SRAM, timer/counter, ADC (ATtiny5/10, only), analog comparator, and interrupt system to continue functioning. ADC Noise Reduction mode minimizes switching noise during ADC conversions by stopping the CPU and all I/O modules except the ADC. In Power-down mode registers keep their contents and all chip functions are disabled until the next interrupt or hardware reset. In Standby mode, the oscillator is running while the rest of the device is sleeping, allowing very fast start-up combined with low power consumption. The device is manufactured using Atmel’s high density non-volatile memory technology. The on-chip, in-system programmable Flash allows program memory to be re-programmed in-system by a conventional, non-volatile memory programmer. The ATtiny4/5/9/10 AVR are supported by a suite of program and system development tools, including macro assemblers and evaluation kits. 2.1 Comparison of ATtiny4, ATtiny5, ATtiny9 and ATtiny10 A comparison of the devices is shown in Table 2-1. Table 2-1. Differences between ATtiny4, ATtiny5, ATtiny9 and ATtiny10 Device Flash ADC Signature ATtiny4 512 bytes No 0x1E 0x8F 0x0A ATtiny5 512 bytes Yes 0x1E 0x8F 0x09 ATtiny9 1024 bytes No 0x1E 0x90 0x08 ATtiny10 1024 bytes Yes 0x1E 0x90 0x03ATtiny4/5/9/10 [DATASHEET] 5 8127F–AVR–02/2013 3. General Information 3.1 Resources A comprehensive set of drivers, application notes, data sheets and descriptions on development tools are available for download at http://www.atmel.com/microcontroller/avr. 3.2 Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details. 3.3 Capacitive Touch Sensing Atmel QTouch Library provides a simple to use solution for touch sensitive interfaces on Atmel AVR microcontrollers. The QTouch Library includes support for QTouch® and QMatrix® acquisition methods. Touch sensing is easily added to any application by linking the QTouch Library and using the Application Programming Interface (API) of the library to define the touch channels and sensors. The application then calls the API to retrieve channel information and determine the state of the touch sensor. The QTouch Library is free and can be downloaded from the Atmel website. For more information and details of implementation, refer to the QTouch Library User Guide – also available from the Atmel website. 3.4 Data Retention Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.ATtiny4/5/9/10 [DATASHEET] 6 8127F–AVR–02/2013 4. CPU Core This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and handle interrupts. 4.1 Architectural Overview Figure 4-1. Block Diagram of the AVR Architecture In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories and buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-System reprogrammable Flash memory. The fast-access Register File contains 16 x 8-bit general purpose working registers with a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the Register File, the operation is executed, and the result is stored back in the Register File – in one clock cycle. Flash Program Memory Instruction Register Instruction Decoder Program Counter Control Lines 16 x 8 General Purpose Registrers ALU Status and Control I/O Lines Data Bus 8-bit Data SRAM Direct Addressing Indirect Addressing Interrupt Unit Watchdog Timer Analog Comparator Timer/Counter 0 ADCATtiny4/5/9/10 [DATASHEET] 7 8127F–AVR–02/2013 Six of the 16 registers can be used as three 16-bit indirect address register pointers for data space addressing – enabling efficient address calculations. One of the these address pointers can also be used as an address pointer for look up tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section. The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect information about the result of the operation. Program flow is provided by conditional and unconditional jump and call instructions, capable of directly addressing the whole address space. Most AVR instructions have a single 16-bit word format but 32-bit wide instructions also exist. The actual instruction set varies, as some devices only implement a part of the instruction set. During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through the four different addressing modes supported in the AVR architecture. The memory spaces in the AVR architecture are all linear and regular memory maps. A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority. The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other I/O functions. The I/O memory can be accessed as the data space locations, 0x0000 - 0x003F. 4.2 ALU – Arithmetic Logic Unit The high-performance AVR ALU operates in direct connection with all the 16 general purpose working registers. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. The ALU operations are divided into three main categories – arithmetic, logical, and bitfunctions. Some implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 150 for a detailed description. 4.3 Status Register The Status Register contains information about the result of the most recently executed arithmetic instruction. This information can be used for altering program flow in order to perform conditional operations. Note that the Status Register is updated after all ALU operations, as specified in document “AVR Instruction Set” and section “Instruction Set Summary” on page 150. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code. The Status Register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt. This must be handled by software. 4.4 General Purpose Register File The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required performance and flexibility, the following input/output schemes are supported by the Register File: • One 8-bit output operand and one 8-bit result input • Two 8-bit output operands and one 8-bit result input • One 16-bit output operand and one 16-bit result inputATtiny4/5/9/10 [DATASHEET] 8 8127F–AVR–02/2013 Figure 4-2 below shows the structure of the 16 general purpose working registers in the CPU. Figure 4-2. AVR CPU General Purpose Working Registers Note: A typical implementation of the AVR register file includes 32 general prupose registers but ATtiny4/5/9/10 implement only 16 registers. For reasons of compatibility the registers are numbered R16...R31, not R0...R15. Most of the instructions operating on the Register File have direct access to all registers, and most of them are single cycle instructions. 4.4.1 The X-register, Y-register, and Z-register Registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described in Figure 4-3. Figure 4-3. The X-, Y-, and Z-registers 7 0 R16 R17 General R18 Purpose … Working R26 X-register Low Byte Registers R27 X-register High Byte R28 Y-register Low Byte R29 Y-register High Byte R30 Z-register Low Byte R31 Z-register High Byte 15 XH XL 0 X-register 7 07 0 R27 R26 15 YH YL 0 Y-register 7 07 0 R29 R28 15 ZH ZL 0 Z-register 7 07 0 R31 R30ATtiny4/5/9/10 [DATASHEET] 9 8127F–AVR–02/2013 In different addressing modes these address registers function as automatic increment and automatic decrement (see document “AVR Instruction Set” and section “Instruction Set Summary” on page 150 for details). 4.5 Stack Pointer The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after interrupts and subroutine calls. The Stack Pointer Register always points to the top of the Stack. Note that the Stack is implemented as growing from higher memory locations to lower memory locations. This implies that a Stack PUSH command decreases the Stack Pointer. The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. This Stack space in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to point above 0x40. The Stack Pointer is decremented by one when data is pushed onto the Stack with the PUSH instruction, and it is decremented by two when the return address is pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is popped from the Stack with the POP instruction, and it is incremented by two when data is popped from the Stack with return from subroutine RET or return from interrupt RETI. The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register will not be present. 4.6 Instruction Execution Timing This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used. Figure 4-4. The Parallel Instruction Fetches and Instruction Executions Figure 4-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit. Figure 4-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register operands is executed, and the result is stored back to the destination register. clk 1st Instruction Fetch 1st Instruction Execute 2nd Instruction Fetch 2nd Instruction Execute 3rd Instruction Fetch 3rd Instruction Execute 4th Instruction Fetch T1 T2 T3 T4 CPUATtiny4/5/9/10 [DATASHEET] 10 8127F–AVR–02/2013 Figure 4-5. Single Cycle ALU Operation 4.7 Reset and Interrupt Handling The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each have a separate Program Vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt. The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 35. The list also determines the priority levels of the different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request 0. When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction – RETI – is executed. There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the Global Interrupt Enable bit is set, and will then be executed by order of priority. The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served. Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when returning from an interrupt routine. This must be handled by software. When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. Total Execution Time Register Operands Fetch ALU Operation Execute Result Write Back T1 T2 T3 T4 clkCPUATtiny4/5/9/10 [DATASHEET] 11 8127F–AVR–02/2013 When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pending interrupts, as shown in the following example. Note: See “Code Examples” on page 5. 4.7.1 Interrupt Response Time The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. After four clock cycles the Program Vector address for the actual interrupt handling routine is executed. During this four clock cycle period, the Program Counter is pushed onto the Stack. The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt execution response time is increased by four clock cycles. This increase comes in addition to the start-up time from the selected sleep mode. A return from an interrupt handling routine takes four clock cycles. During these four clock cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is incremented by two, and the I-bit in SREG is set. 4.8 Register Description 4.8.1 CCP – Configuration Change Protection Register • Bits 7:0 – CCP[7:0] – Configuration Change Protection In order to change the contents of a protected I/O register the CCP register must first be written with the correct signature. After CCP is written the protected I/O registers may be written to during the next four CPU instruction cycles. All interrupts are ignored during these cycles. After these cycles interrupts are automatically handled again by the CPU, and any pending interrupts will be executed according to their priority. When the protected I/O register signature is written, CCP[0] will read as one as long as the protected feature is enabled, while CCP[7:1] will always read as zero. Table 4-1 shows the signatures that are in recognised. Assembly Code Example sei ; set Global Interrupt Enable sleep ; enter sleep, waiting for interrupt ; note: will enter sleep before any pending interrupt(s) Bit 7 6 5 4 3 2 1 0 0x3C CCP[7:0] CCP Read/Write W W W W W W W R/W Initial Value 0 0 0 0 0 0 0 0 Table 4-1. Signatures Recognised by the Configuration Change Protection Register Signature Group Description 0xD8 IOREG: CLKMSR, CLKPSR, WDTCSR Protected I/O registerATtiny4/5/9/10 [DATASHEET] 12 8127F–AVR–02/2013 4.8.2 SPH and SPL — Stack Pointer Register 4.8.3 SREG – Status Register • Bit 7 – I: Global Interrupt Enable The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the document “AVR Instruction Set” and “Instruction Set Summary” on page 150. • Bit 6 – T: Bit Copy Storage The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the BLD instruction. • Bit 5 – H: Half Carry Flag The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is useful in BCD arithmetic. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 150 for detailed information. • Bit 4 – S: Sign Bit, S = N V The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 150 for detailed information. • Bit 3 – V: Two’s Complement Overflow Flag The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 150 for detailed information. • Bit 2 – N: Negative Flag The Negative Flag N indicates a negative result in an arithmetic or logic operation. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 150 for detailed information. • Bit 1 – Z: Zero Flag The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 150 for detailed information. Bit 15 14 13 12 11 10 9 8 0x3E SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH 0x3D SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL 76543210 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND Bit 7 6 5 4 3 2 1 0 0x3F I T H S V N Z C SREG Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0ATtiny4/5/9/10 [DATASHEET] 13 8127F–AVR–02/2013 • Bit 0 – C: Carry Flag The Carry Flag C indicates a carry in an arithmetic or logic operation. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 150 for detailed information.ATtiny4/5/9/10 [DATASHEET] 14 8127F–AVR–02/2013 5. Memories This section describes the different memories in the ATtiny4/5/9/10. Devices have two main memory areas, the program memory space and the data memory space. 5.1 In-System Re-programmable Flash Program Memory The ATtiny4/5/9/10 contain 512/1024 bytes of on-chip, in-system reprogrammable Flash memory for program storage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as 256/512 x 16. The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATtiny4/5/9/10 Program Counter (PC) is 9 bits wide, thus capable of addressing the 256/512 program memory locations, starting at 0x000. “Memory Programming” on page 106 contains a detailed description on Flash data serial downloading. Constant tables can be allocated within the entire address space of program memory. Since program memory can not be accessed directly, it has been mapped to the data memory. The mapped program memory begins at byte address 0x4000 in data memory (see Figure 5-1 on page 15). Although programs are executed starting from address 0x000 in program memory it must be addressed starting from 0x4000 when accessed via the data memory. Internal write operations to Flash program memory have been disabled and program memory therefore appears to firmware as read-only. Flash memory can still be written to externally but internal write operations to the program memory area will not be succesful. Timing diagrams of instruction fetch and execution are presented in “Instruction Execution Timing” on page 9. 5.2 Data Memory Data memory locations include the I/O memory, the internal SRAM memory, the non-volatile memory lock bits, and the Flash memory. See Figure 5-1 on page 15 for an illustration on how the ATtiny4/5/9/10 memory space is organized. The first 64 locations are reserved for I/O memory, while the following 32 data memory locations address the internal data SRAM. The non-volatile memory lock bits and all the Flash memory sections are mapped to the data memory space. These locations appear as read-only for device firmware. The four different addressing modes for data memory are direct, indirect, indirect with pre-decrement, and indirect with post-increment. In the register file, registers R26 to R31 function as pointer registers for indirect addressing. The IN and OUT instructions can access all 64 locations of I/O memory. Direct addressing using the LDS and STS instructions reaches the 128 locations between 0x0040 and 0x00BF. The indirect addressing reaches the entire data memory space. When using indirect addressing modes with automatic pre-decrement and post-increment, the address registers X, Y, and Z are decremented or incremented.ATtiny4/5/9/10 [DATASHEET] 15 8127F–AVR–02/2013 Figure 5-1. Data Memory Map (Byte Addressing) 5.2.1 Data Memory Access Times This section describes the general access timing concepts for internal memory access. The internal data SRAM access is performed in two clkCPU cycles as described in Figure 5-2. Figure 5-2. On-chip Data SRAM Access Cycles 0x0000 ... 0x003F 0x0040 ... 0x005F 0x0060 ... 0x3EFF 0x3F00 ... 0x3F01 0x3F02 ... 0x3F3F 0x3F40 ... 0x3F41 0x3F42 ... 0x3F7F 0x3F80 ... 0x3F81 0x3F82 ... 0x3FBF 0x3FC0 ... 0x3FC3 0x3FC4 ... 0x3FFF 0x4000 ... 0x41FF/0x43FF 0x4400 ... 0xFFFF I/O SPACE SRAM DATA MEMORY (reserved) NVM LOCK BITS (reserved) CONFIGURATION BITS (reserved) CALIBRATION BITS (reserved) DEVICE ID BITS (reserved) FLASH PROGRAM MEMORY (reserved) clk WR RD Data Data Address Address valid T1 T2 T3 Compute Address Read Write CPU Memory Access Instruction Next InstructionATtiny4/5/9/10 [DATASHEET] 16 8127F–AVR–02/2013 5.3 I/O Memory The I/O space definition of the ATtiny4/5/9/10 is shown in “Register Summary” on page 148. All ATtiny4/5/9/10 I/Os and peripherals are placed in the I/O space. All I/O locations may be accessed using the LD and ST instructions, enabling data transfer between the 16 general purpose working registers and the I/O space. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. See document “AVR Instruction Set” and section “Instruction Set Summary” on page 150 for more details. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. Some of the status flags are cleared by writing a logical one to them. Note that CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The CBI and SBI instructions work on registers in the address range 0x00 to 0x1F, only. The I/O and Peripherals Control Registers are explained in later sections.ATtiny4/5/9/10 [DATASHEET] 17 8127F–AVR–02/2013 6. Clock System Figure 6-1 presents the principal clock systems and their distribution in ATtiny4/5/9/10. All of the clocks need not be active at a given time. In order to reduce power consumption, the clocks to modules not being used can be halted by using different sleep modes and power reduction register bits, as described in “Power Management and Sleep Modes” on page 23. The clock systems is detailed below. Figure 6-1. Clock Distribution 6.1 Clock Subsystems The clock subsystems are detailed in the sections below. 6.1.1 CPU Clock – clkCPU The CPU clock is routed to parts of the system concerned with operation of the AVR Core. Examples of such modules are the General Purpose Register File, the System Registers and the SRAM data memory. Halting the CPU clock inhibits the core from performing general operations and calculations. 6.1.2 I/O Clock – clkI/O The I/O clock is used by the majority of the I/O modules, like Timer/Counter. The I/O clock is also used by the External Interrupt module, but note that some external interrupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O clock is halted. 6.1.3 NVM clock - clkNVM The NVM clock controls operation of the Non-Volatile Memory Controller. The NVM clock is usually active simultaneously with the CPU clock. CLOCK CONTROL UNIT GENERAL I/O MODULES ANALOG-TO-DIGITAL CONVERTER CPU CORE WATCHDOG TIMER RESET LOGIC CLOCK PRESCALER RAM CLOCK SWITCH NVM CALIBRATED OSCILLATOR clk ADC SOURCE CLOCK clk I/O clk CPU clk NVM WATCHDOG CLOCK WATCHDOG OSCILLATOR EXTERNAL CLOCKATtiny4/5/9/10 [DATASHEET] 18 8127F–AVR–02/2013 6.1.4 ADC Clock – clkADC The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O clocks in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion results. The ADC is available in ATtiny5/10, only. 6.2 Clock Sources All synchronous clock signals are derived from the main clock. The device has three alternative sources for the main clock, as follows: • Calibrated Internal 8 MHz Oscillator (see page 18) • External Clock (see page 18) • Internal 128 kHz Oscillator (see page 19) See Table 6-3 on page 21 on how to select and change the active clock source. 6.2.1 Calibrated Internal 8 MHz Oscillator The calibrated internal oscillator provides an approximately 8 MHz clock signal. Though voltage and temperature dependent, this clock can be very accurately calibrated by the user. See Table 16-2 on page 117, Figure 17-39 on page 141 and Figure 17-40 on page 141 for more details. This clock may be selected as the main clock by setting the Clock Main Select bits CLKMS[1:0] in CLKMSR to 0b00. Once enabled, the oscillator will operate with no external components. During reset, hardware loads the calibration byte into the OSCCAL register and thereby automatically calibrates the oscillator. The accuracy of this calibration is shown as Factory calibration in Table 16-2 on page 117. When this oscillator is used as the main clock, the watchdog oscillator will still be used for the watchdog timer and reset time-out. For more information on the pre-programmed calibration value, see section “Calibration Section” on page 109. 6.2.2 External Clock To use the device with an external clock source, CLKI should be driven as shown in Figure 6-2. The external clock is selected as the main clock by setting CLKMS[1:0] bits in CLKMSR to 0b10. Figure 6-2. External Clock Drive Configuration When applying an external clock, it is required to avoid sudden changes in the applied clock frequency to ensure stable operation of the MCU. A variation in frequency of more than 2% from one clock cycle to the next can lead to unpredictable behavior. It is required to ensure that the MCU is kept in reset during such changes in the clock frequency. EXTERNAL CLOCK SIGNAL CLKI GNDATtiny4/5/9/10 [DATASHEET] 19 8127F–AVR–02/2013 6.2.3 Internal 128 kHz Oscillator The internal 128 kHz oscillator is a low power oscillator providing a clock of 128 kHz. The frequency depends on supply voltage, temperature and batch variations. This clock may be select as the main clock by setting the CLKMS[1:0] bits in CLKMSR to 0b01. 6.2.4 Switching Clock Source The main clock source can be switched at run-time using the “CLKMSR – Clock Main Settings Register” on page 21. When switching between any clock sources, the clock system ensures that no glitch occurs in the main clock. 6.2.5 Default Clock Source The calibrated internal 8 MHz oscillator is always selected as main clock when the device is powered up or has been reset. The synchronous system clock is the main clock divided by 8, controlled by the System Clock Prescaler. The Clock Prescaler Select Bits can be written later to change the system clock frequency. See “System Clock Prescaler”. 6.3 System Clock Prescaler The system clock is derived from the main clock via the System Clock Prescaler. The system clock can be divided by setting the “CLKPSR – Clock Prescale Register” on page 22. The system clock prescaler can be used to decrease power consumption at times when requirements for processing power is low or to bring the system clock within limits of maximum frequency. The prescaler can be used with all main clock source options, and it will affect the clock frequency of the CPU and all synchronous peripherals. The System Clock Prescaler can be used to implement run-time changes of the internal clock frequency while still ensuring stable operation. 6.3.1 Switching Prescaler Setting When switching between prescaler settings, the system clock prescaler ensures that no glitch occurs in the system clock and that no intermediate frequency is higher than neither the clock frequency corresponding the previous setting, nor the clock frequency corresponding to the new setting. The ripple counter that implements the prescaler runs at the frequency of the main clock, which may be faster than the CPU's clock frequency. Hence, it is not possible to determine the state of the prescaler - even if it were readable, and the exact time it takes to switch from one clock division to another cannot be exactly predicted. From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2*T2 before the new clock frequency is active. In this interval, two active clock edges are produced. Here, T1 is the previous clock period, and T2 is the period corresponding to the new prescaler setting.ATtiny4/5/9/10 [DATASHEET] 20 8127F–AVR–02/2013 6.4 Starting 6.4.1 Starting from Reset The internal reset is immediately asserted when a reset source goes active. The internal reset is kept asserted until the reset source is released and the start-up sequence is completed. The start-up sequence includes three steps, as follows. 1. The first step after the reset source has been released consists of the device counting the reset start-up time. The purpose of this reset start-up time is to ensure that supply voltage has reached sufficient levels. The reset start-up time is counted using the internal 128 kHz oscillator. See Table 6-1 for details of reset start-up time. Note that the actual supply voltage is not monitored by the start-up logic. The device will count until the reset start-up time has elapsed even if the device has reached sufficient supply voltage levels earlier. 2. The second step is to count the oscillator start-up time, which ensures that the calibrated internal oscillator has reached a stable state before it is used by the other parts of the system. The calibrated internal oscillator needs to oscillate for a minimum number of cycles before it can be considered stable. See Table 6-1 for details of the oscillator start-up time. 3. The last step before releasing the internal reset is to load the calibration and the configuration values from the Non-Volatile Memory to configure the device properly. The configuration time is listed in Table 6-1. Notes: 1. After powering up the device or after a reset the system clock is automatically set to calibrated internal 8 MHz oscillator, divided by 8 6.4.2 Starting from Power-Down Mode When waking up from Power-Down sleep mode, the supply voltage is assumed to be at a sufficient level and only the oscillator start-up time is counted to ensure the stable operation of the oscillator. The oscillator start-up time is counted on the selected main clock, and the start-up time depends on the clock selected. See Table 6-2 for details. Notes: 1. The start-up time is measured in main clock oscillator cycles. 6.4.3 Starting from Idle / ADC Noise Reduction / Standby Mode When waking up from Idle, ADC Noise Reduction or Standby Mode, the oscillator is already running and no oscillator start-up time is introduced. The ADC is available in ATtiny5/10, only. Table 6-1. Start-up Times when Using the Internal Calibrated Oscillator Reset Oscillator Configuration Total start-up time 64 ms 6 cycles 21 cycles 64 ms + 6 oscillator cycles + 21 system clock cycles (1) Table 6-2. Start-up Time from Power-Down Sleep Mode. Oscillator start-up time Total start-up time 6 cycles 6 oscillator cycles (1)ATtiny4/5/9/10 [DATASHEET] 21 8127F–AVR–02/2013 6.5 Register Description 6.5.1 CLKMSR – Clock Main Settings Register • Bit 7:2 – Res: Reserved Bits These bits are reserved and always read zero. • Bit 1:0 – CLKMS[1:0]: Clock Main Select Bits These bits select the main clock source of the system. The bits can be written at run-time to switch the source of the main clock. The clock system ensures glitch free switching of the main clock source. The main clock alternatives are shown in Table 6-3. To avoid unintentional switching of main clock source, a protected change sequence must be followed to change the CLKMS bits, as follows: 1. Write the signature for change enable of protected I/O register to register CCP 2. Within four instruction cycles, write the CLKMS bits with the desired value 6.5.2 OSCCAL – Oscillator Calibration Register . • Bits 7:0 – CAL[7:0]: Oscillator Calibration Value The oscillator calibration register is used to trim the calibrated internal oscillator and remove process variations from the oscillator frequency. A pre-programmed calibration value is automatically written to this register during chip reset, giving the factory calibrated frequency as specified in Table 16-2, “Calibration Accuracy of Internal RC Oscillator,” on page 117. The application software can write this register to change the oscillator frequency. The oscillator can be calibrated to frequencies as specified in Table 16-2, “Calibration Accuracy of Internal RC Oscillator,” on page 117. Calibration outside the range given is not guaranteed. The CAL[7:0] bits are used to tune the frequency of the oscillator. A setting of 0x00 gives the lowest frequency, and a setting of 0xFF gives the highest frequency. Bit 7 6 5 4 3 2 1 0 0x37 – – – – – – CLKMS1 CLKMS0 CLKMSR Read/Write R R R R R R R/W R/W Initial Value 0 0 0 0 0 0 0 0 Table 6-3. Selection of Main Clock CLKM1 CLKM0 Main Clock Source 0 0 Calibrated Internal 8 MHzOscillator 0 1 Internal 128 kHz Oscillator (WDT Oscillator) 1 0 External clock 1 1 Reserved Bit 7 6 5 4 3 2 1 0 0x39 CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value X X X X X X X XATtiny4/5/9/10 [DATASHEET] 22 8127F–AVR–02/2013 6.5.3 CLKPSR – Clock Prescale Register • Bits 7:4 – Res: Reserved Bits These bits are reserved and will always read as zero. • Bits 3:0 – CLKPS[3:0]: Clock Prescaler Select Bits 3 - 0 These bits define the division factor between the selected clock source and the internal system clock. These bits can be written at run-time to vary the clock frequency and suit the application requirements. As the prescaler divides the master clock input to the MCU, the speed of all synchronous peripherals is reduced accordingly. The division factors are given in Table 6-4. To avoid unintentional changes of clock frequency, a protected change sequence must be followed to change the CLKPS bits: 1. Write the signature for change enable of protected I/O register to register CCP 2. Within four instruction cycles, write the desired value to CLKPS bits At start-up, CLKPS bits are reset to 0b0011 to select the clock division factor of 8. If the selected clock source has a frequency higher than the maximum allowed the application software must make sure a sufficient division factor is used. To make sure the write procedure is not interrupted, interrupts must be disabled when changing prescaler settings. Bit 7 6 5 4 3 2 1 0 0x36 – – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPSR Read/Write R R R R R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 1 1 Table 6-4. Clock Prescaler Select CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor 0000 1 0001 2 0010 4 0 0 1 1 8 (default) 0 1 0 0 16 0 1 0 1 32 0 1 1 0 64 0 1 1 1 128 1 0 0 0 256 1 0 0 1 Reserved 1 0 1 0 Reserved 1 0 1 1 Reserved 1 1 0 0 Reserved 1 1 0 1 Reserved 1 1 1 0 Reserved 1 1 1 1 ReservedATtiny4/5/9/10 [DATASHEET] 23 8127F–AVR–02/2013 7. Power Management and Sleep Modes The high performance and industry leading code efficiency makes the AVR microcontrollers an ideal choise for low power applications. In addition, sleep modes enable the application to shut down unused modules in the MCU, thereby saving power. The AVR provides various sleep modes allowing the user to tailor the power consumption to the application’s requirements. 7.1 Sleep Modes Figure 6-1 on page 17 presents the different clock systems and their distribution in ATtiny4/5/9/10. The figure is helpful in selecting an appropriate sleep mode. Table 7-1 shows the different sleep modes and their wake up sources. Note: 1. The ADC is available in ATtiny5/10, only 2. For INT0, only level interrupt. To enter any of the four sleep modes, the SE bits in SMCR must be written to logic one and a SLEEP instruction must be executed. The SM2:0 bits in the SMCR register select which sleep mode (Idle, ADC Noise Reduction, Standby or Power-down) will be activated by the SLEEP instruction. See Table 7-2 for a summary. If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and resumes execution from the instruction following SLEEP. The contents of the Register File and SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode, the MCU wakes up and executes from the Reset Vector. Note that if a level triggered interrupt is used for wake-up the changed level must be held for some time to wake up the MCU (and for the MCU to enter the interrupt service routine). See “External Interrupts” on page 36 for details. 7.1.1 Idle Mode When bits SM2:0 are written to 000, the SLEEP instruction makes the MCU enter Idle mode, stopping the CPU but allowing the analog comparator, timer/counter, watchdog, and the interrupt system to continue operating. This sleep mode basically halts clkCPU and clkNVM, while allowing the other clocks to run. Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the timer overflow. If wake-up from the analog comparator interrupt is not required, the analog comparator can be powered down by setting the ACD bit in “ACSR – Analog Comparator Control and Status Register” on page 80. This will reduce power consumption in idle mode. If the ADC is enabled (ATtiny5/10, only), a conversion starts automatically when this mode is entered. Table 7-1. Active Clock Domains and Wake-up Sources in Different Sleep Modes Sleep Mode Active Clock Domains Oscillators Wake-up Sources clkCPU clkNVM clkIO clkADC (1) Main Clock Source Enabled INT0 and Pin Change ADC (1) Other I/O Watchdog Interrupt VLM Interrupt Idle X X X X X X X X ADC Noise Reduction X X X (2) X XX Standby X X (2) X Power-down X (2) XATtiny4/5/9/10 [DATASHEET] 24 8127F–AVR–02/2013 7.1.2 ADC Noise Reduction Mode When bits SM2:0 are written to 001, the SLEEP instruction makes the MCU enter ADC Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, and the watchdog to continue operating (if enabled). This sleep mode halts clkI/O, clkCPU, and clkNVM, while allowing the other clocks to run. This mode improves the noise environment for the ADC, enabling higher resolution measurements. If the ADC is enabled, a conversion starts automatically when this mode is entered. This mode is available in all devices, although only ATtiny5/10 are equipped with an ADC. 7.1.3 Power-down Mode When bits SM2:0 are written to 010, the SLEEP instruction makes the MCU enter Power-down mode. In this mode, the oscillator is stopped, while the external interrupts, and the watchdog continue operating (if enabled). Only a watchdog reset, an external level interrupt on INT0, or a pin change interrupt can wake up the MCU. This sleep mode halts all generated clocks, allowing operation of asynchronous modules only. 7.1.4 Standby Mode When bits SM2:0 are written to 100, the SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down with the exception that the oscillator is kept running. This reduces wake-up time, because the oscillator is already running and doesn't need to be started up. 7.2 Power Reduction Register The Power Reduction Register (PRR), see “PRR – Power Reduction Register” on page 26, provides a method to reduce power consumption by stopping the clock to individual peripherals. When the clock for a peripheral is stopped then: • The current state of the peripheral is frozen. • The associated registers can not be read or written. • Resources used by the peripheral will remain occupied. The peripheral should in most cases be disabled before stopping the clock. Clearing the PRR bit wakes up the peripheral and puts it in the same state as before shutdown. Peripheral shutdown can be used in Idle mode and Active mode to significantly reduce the overall power consumption. See “Supply Current of I/O Modules” on page 121 for examples. In all other sleep modes, the clock is already stopped. 7.3 Minimizing Power Consumption There are several issues to consider when trying to minimize the power consumption in an AVR Core controlled system. In general, sleep modes should be used as much as possible, and the sleep mode should be selected so that as few as possible of the device’s functions are operating. All functions not needed should be disabled. In particular, the following modules may need special consideration when trying to achieve the lowest possible power consumption. 7.3.1 Analog Comparator When entering Idle mode, the analog comparator should be disabled if not used. In the power-down mode, the analog comparator is automatically disabled. See “Analog Comparator” on page 80 for further details.ATtiny4/5/9/10 [DATASHEET] 25 8127F–AVR–02/2013 7.3.2 Analog to Digital Converter If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be disabled before entering any sleep mode. When the ADC is turned off and on again, the next conversion will be an extended conversion. See “Analog to Digital Converter” on page 82 for details on ADC operation. The ADC is available in ATtiny5/10, only. 7.3.3 Watchdog Timer If the Watchdog Timer is not needed in the application, this module should be turned off. If the Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume power. In the deeper sleep modes, this will contribute significantly to the total current consumption. Refer to “Watchdog Timer” on page 30 for details on how to configure the Watchdog Timer. 7.3.4 Port Pins When entering a sleep mode, all port pins should be configured to use minimum power. The most important thing is then to ensure that no pins drive resistive loads. In sleep modes where the I/O clock (clkI/O) is stopped, the input buffers of the device will be disabled. This ensures that no power is consumed by the input logic when not needed. In some cases, the input logic is needed for detecting wake-up conditions, and it will then be enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 44 for details on which pins are enabled. If the input buffer is enabled and the input signal is left floating or has an analog signal level close to VCC/2, the input buffer will use excessive power. For analog input pins, the digital input buffer should be disabled at all times. An analog signal level close to VCC/2 on an input pin can cause significant current even in active mode. Digital input buffers can be disabled by writing to the Digital Input Disable Register (DIDR0). Refer to “DIDR0 – Digital Input Disable Register 0” on page 81 for details. 7.4 Register Description 7.4.1 SMCR – Sleep Mode Control Register The SMCR Control Register contains control bits for power management. • Bits 7:4 – Res: Reserved Bits These bits are reserved and will always read zero. • Bits 3:1 – SM2..SM0: Sleep Mode Select Bits 2..0 These bits select between available sleep modes, as shown in Table 7-2. Bit 7 6 5 4 3 2 1 0 0x3A – – – – SM2 SM1 SM0 SE SMCR Read/Write R R R R R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 Table 7-2. Sleep Mode Select SM2 SM1 SM0 Sleep Mode 0 0 0 Idle 0 0 1 ADC noise reduction (1) 0 1 0 Power-down 0 1 1 Reserved 1 0 0 StandbyATtiny4/5/9/10 [DATASHEET] 26 8127F–AVR–02/2013 Note: 1. This mode is available in all devices, although only ATtiny5/10 are equipped with an ADC • Bit 0 – SE: Sleep Enable The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of the SLEEP instruction and to clear it immediately after waking up. 7.4.2 PRR – Power Reduction Register • Bits 7:2 – Res: Reserved Bits These bits are reserved and will always read zero. • Bit 1 – PRADC: Power Reduction ADC Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down. The analog comparator cannot use the ADC input MUX when the ADC is shut down. The ADC is available in ATtiny5/10, only. • Bit 0 – PRTIM0: Power Reduction Timer/Counter0 Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0 is enabled, operation will continue like before the shutdown. 1 0 1 Reserved 1 1 0 Reserved 1 1 1 Reserved Table 7-2. Sleep Mode Select SM2 SM1 SM0 Sleep Mode Bit 7 6 5 4 3 2 1 0 0x35 – – – – – – PRADC PRTIM0 PRR Read/Write R R R R R R R/W R/W Initial Value 0 0 0 0 0 0 0 0ATtiny4/5/9/10 [DATASHEET] 27 8127F–AVR–02/2013 8. System Control and Reset 8.1 Resetting the AVR During reset, all I/O registers are set to their initial values, and the program starts execution from the Reset Vector. The instruction placed at the Reset Vector must be a RJMP – Relative Jump – instruction to the reset handling routine. If the program never enables an interrupt source, the interrupt vectors are not used, and regular program code can be placed at these locations. The circuit diagram in Figure 8-1 shows the reset logic. Electrical parameters of the reset circuitry are defined in section “System and Reset Characteristics” on page 118. Figure 8-1. Reset Logic The I/O ports of the AVR are immediately reset to their initial state when a reset source goes active. This does not require any clock source to be running. After all reset sources have gone inactive, a delay counter is invoked, stretching the internal reset. This allows the power to reach a stable level before normal operation starts. The start up sequence is described in “Starting from Reset” on page 20. 8.2 Reset Sources The ATtiny4/5/9/10 have three sources of reset: • Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset threshold (VPOT) • External Reset. The MCU is reset when a low level is present on the RESET pin for longer than the minimum pulse length • Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the Watchdog is enabled 8.2.1 Power-on Reset A Power-on Reset (POR) pulse is generated by an on-chip detection circuit. The detection level is defined in section “System and Reset Characteristics” on page 118. The POR is activated whenever VCC is below the detection level. The POR circuit can be used to trigger the Start-up Reset, as well as to detect a failure in supply voltage. Reset Flag Register (RSTFLR) CK Delay Counters TIMEOUT WDRF EXTRF PORF DATA BUS Clock Generator SPIKE FILTER Pull-up Resistor Watchdog Oscillator Power-on Reset Circuit VLMATtiny4/5/9/10 [DATASHEET] 28 8127F–AVR–02/2013 A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the Power-on Reset threshold voltage invokes the delay counter, which determines how long the device is kept in reset after VCC rise. The reset signal is activated again, without any delay, when VCC decreases below the detection level. Figure 8-2. MCU Start-up, RESET Tied to VCC Figure 8-3. MCU Start-up, RESET Extended Externally 8.2.2 VCC Level Monitoring ATtiny4/5/9/10 have a VCC Level Monitoring (VLM) circuit that compares the voltage level at the VCC pin against fixed trigger levels. The trigger levels are set with VLM2:0 bits, see “VLMCSR – VCC Level Monitoring Control and Status register” on page 33. The VLM circuit provides a status flag, VLMF, that indicates if voltage on the VCC pin is below the selected trigger level. The flag can be read from VLMCSR, but it is also possible to have an interrupt generated when the VLMF status flag is set. This interrupt is enabled by the VLMIE bit in the VLMCSR register. The flag can be cleared by changing the trigger level or by writing it to zero. The flag is automatically cleared when the voltage at VCC rises back above the selected trigger level. The VLM can also be used to improve reset characteristics at falling supply. Without VLM, the Power-On Reset (POR) does not activate before supply voltage has dropped to a level where the MCU is not necessarily functional any more. With VLM, it is possible to generate a reset earlier. When active, the VLM circuit consumes some power, as illustrated in Figure 17-48 on page 145. To save power the VLM circuit can be turned off completely, or it can be switched on and off at regular intervals. However, detection takes some time and it is therefore recommended to leave the circuitry on long enough for signals to settle. See “VCC Level Monitor” on page 118. V TIME-OUT RESET RESET TOUT INTERNAL t VPOT VRST CC V TIME-OUT TOUT TOUT INTERNAL CC t VPOT VRST > t RESET RESETATtiny4/5/9/10 [DATASHEET] 29 8127F–AVR–02/2013 When VLM is active and voltage at VCC is above the selected trigger level operation will be as normal and the VLM can be shut down for a short period of time. If voltage at VCC drops below the selected threshold the VLM will either flag an interrupt or generate a reset, depending on the configuration. When the VLM has been configured to generate a reset at low supply voltage it will keep the device in reset as long as VCC is below the reset level. See Table 8-4 on page 34 for reset level details. If supply voltage rises above the reset level the condition is removed and the MCU will come out of reset, and initiate the power-up start-up sequence. If supply voltage drops enough to trigger the POR then PORF is set after supply voltage has been restored. 8.2.3 External Reset An External Reset is generated by a low level on the RESET pin if enabled. Reset pulses longer than the minimum pulse width (see section “System and Reset Characteristics” on page 118) will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the Reset Threshold Voltage – VRST – on its positive edge, the delay counter starts the MCU after the time-out period – tTOUT – has expired. External reset is ignored during Power-on start-up count. After Power-on reset the internal reset is extended only if RESET pin is low when the initial Power-on delay count is complete. See Figure 8-2 and Figure 8- 3 on page 28. Figure 8-4. External Reset During Operation 8.2.4 Watchdog Reset When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On the falling edge of this pulse, the delay timer starts counting the time-out period tTOUT. See page 30 for details on operation of the Watchdog Timer and Table 16-4 on page 118 for details on reset time-out. CCATtiny4/5/9/10 [DATASHEET] 30 8127F–AVR–02/2013 Figure 8-5. Watchdog Reset During Operation 8.3 Watchdog Timer The Watchdog Timer is clocked from an on-chip oscillator, which runs at 128 kHz. See Figure 8-6. By controlling the Watchdog Timer prescaler, the Watchdog Reset interval can be adjusted as shown in Table 8-2 on page 32. The WDR – Watchdog Reset – instruction resets the Watchdog Timer. The Watchdog Timer is also reset when it is disabled and when a device reset occurs. Ten different clock cycle periods can be selected to determine the reset period. If the reset period expires without another Watchdog Reset, the ATtiny4/5/9/10 resets and executes from the Reset Vector. For timing details on the Watchdog Reset, refer to Table 8-3 on page 33. Figure 8-6. Watchdog Timer The Wathdog Timer can also be configured to generate an interrupt instead of a reset. This can be very helpful when using the Watchdog to wake-up from Power-down. To prevent unintentional disabling of the Watchdog or unintentional change of time-out period, two different safety levels are selected by the fuse WDTON as shown in Table 8-1 on page 31. See “Procedure for Changing the Watchdog Timer Configuration” on page 31 for details. CK CC OSC/2K OSC/4K OSC/8K OSC/16K OSC/32K OSC/64K OSC/128K OSC/256K OSC/512K OSC/1024K MCU RESET WATCHDOG PRESCALER 128 kHz OSCILLATOR WATCHDOG RESET WDP0 WDP1 WDP2 WDP3 WDE MUXATtiny4/5/9/10 [DATASHEET] 31 8127F–AVR–02/2013 8.3.1 Procedure for Changing the Watchdog Timer Configuration The sequence for changing configuration differs between the two safety levels, as follows: 8.3.1.1 Safety Level 1 In this mode, the Watchdog Timer is initially disabled, but can be enabled by writing the WDE bit to one without any restriction. A special sequence is needed when disabling an enabled Watchdog Timer. To disable an enabled Watchdog Timer, the following procedure must be followed: 1. Write the signature for change enable of protected I/O registers to register CCP 2. Within four instruction cycles, in the same operation, write WDE and WDP bits 8.3.1.2 Safety Level 2 In this mode, the Watchdog Timer is always enabled, and the WDE bit will always read as one. A protected change is needed when changing the Watchdog Time-out period. To change the Watchdog Time-out, the following procedure must be followed: 1. Write the signature for change enable of protected I/O registers to register CCP 2. Within four instruction cycles, write the WDP bit. The value written to WDE is irrelevant 8.3.2 Code Examples The following code example shows how to turn off the WDT. The example assumes that interrupts are controlled (e.g., by disabling interrupts globally) so that no interrupts will occur during execution of these functions. Note: See “Code Examples” on page 5. Table 8-1. WDT Configuration as a Function of the Fuse Settings of WDTON WDTON Safety Level WDT Initial State How to Disable the WDT How to Change Time-out Unprogrammed 1 Disabled Protected change sequence No limitations Programmed 2 Enabled Always enabled Protected change sequence Assembly Code Example WDT_off: wdr ; Clear WDRF in RSTFLR in r16, RSTFLR andi r16, ~(1< Table 9-1. Reset and Interrupt Vectors Vector No. Program Address Label Interrupt Source 1 0x0000 RESET External Pin, Power-on Reset, VLM Reset, Watchdog Reset 2 0x0001 INT0 External Interrupt Request 0 3 0x0002 PCINT0 Pin Change Interrupt Request 0 4 0x0003 TIM0_CAPT Timer/Counter0 Input Capture 5 0x0004 TIM0_OVF Timer/Counter0 Overflow 6 0x0005 TIM0_COMPA Timer/Counter0 Compare Match A 7 0x0006 TIM0_COMPB Timer/Counter0 Compare Match B 8 0x0007 ANA_COMP Analog Comparator 9 0x0008 WDT Watchdog Time-out 10 0x0009 VLM VCC Voltage Level Monitor 11 0x000A ADC ADC Conversion Complete (1)ATtiny4/5/9/10 [DATASHEET] 36 8127F–AVR–02/2013 0x000B RESET: ldi r16, high(RAMEND); Main program start 0x000C out SPH,r16 ; Set Stack Pointer 0x000D ldi r16, low(RAMEND) ; to top of RAM 0x000E out SPL,r16 0x000F sei ; Enable interrupts 0x0010 ... ... 9.2 External Interrupts External Interrupts are triggered by the INT0 pin or any of the PCINT3..0 pins. Observe that, if enabled, the interrupts will trigger even if the INT0 or PCINT3..0 pins are configured as outputs. This feature provides a way of generating a software interrupt. Pin change 0 interrupts PCI0 will trigger if any enabled PCINT3..0 pin toggles. The PCMSK Register controls which pins contribute to the pin change interrupts. Pin change interrupts on PCINT3..0 are detected asynchronously, which means that these interrupts can be used for waking the part also from sleep modes other than Idle mode. The INT0 interrupt can be triggered by a falling or rising edge or a low level. This is set up as shown in “EICRA – External Interrupt Control Register A” on page 37. When the INT0 interrupt is enabled and configured as level triggered, the interrupt will trigger as long as the pin is held low. Note that recognition of falling or rising edge interrupts on INT0 requires the presence of an I/O clock, as described in “Clock System” on page 17. 9.2.1 Low Level Interrupt A low level interrupt on INT0 is detected asynchronously. This means that the interrupt source can be used for waking the part also from sleep modes other than Idle (the I/O clock is halted in all sleep modes except Idle). Note that if a level triggered interrupt is used for wake-up from Power-down, the required level must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If the level disappears before the end of the Start-up Time, the MCU will still wake up, but no interrupt will be generated. The start-up time is defined as described in “Clock System” on page 17. If the low level on the interrupt pin is removed before the device has woken up then program execution will not be diverted to the interrupt service routine but continue from the instruction following the SLEEP command. 9.2.2 Pin Change Interrupt Timing A timing example of a pin change interrupt is shown in Figure 9-1.ATtiny4/5/9/10 [DATASHEET] 37 8127F–AVR–02/2013 Figure 9-1. Timing of pin change interrupts 9.3 Register Description 9.3.1 EICRA – External Interrupt Control Register A The External Interrupt Control Register A contains control bits for interrupt sense control. • Bits 7:2 – Res: Reserved Bits These bits are reserved and will always read zero. • Bits 1:0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0 The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corresponding interrupt mask are set. The level and edges on the external INT0 pin that activate the interrupt are defined in Table 9-2. The value on the INT0 pin is sampled before detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If clk PCINT(0) pin_lat pin_sync pcint_in_(0) pcint_syn pcint_setflag PCIF PCINT(0) pin_sync pcint_syn pin_lat D Q LE pcint_setflag PCIF clk clk PCINT(0) in PCMSK(x) pcint_in_(0) 0 x Bit 7 6 5 4 3 2 1 0 0x15 – – – – – – ISC01 ISC00 EICRA Read/Write R R R R R R R/W R/W Initial Value 0 0 0 0 0 0 0 0ATtiny4/5/9/10 [DATASHEET] 38 8127F–AVR–02/2013 low level interrupt is selected, the low level must be held until the completion of the currently executing instruction to generate an interrupt. 9.3.2 EIMSK – External Interrupt Mask Register • Bits 7:1 – Res: Reserved Bits These bits are reserved and will always read zero. • Bit 0 – INT0: External Interrupt Request 0 Enable When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is enabled. The Interrupt Sense Control bits (ISC01 and ISC00) in the External Interrupt Control Register A (EICRA) define whether the external interrupt is activated on rising and/or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an interrupt request even if INT0 is configured as an output. The corresponding interrupt of External Interrupt Request 0 is executed from the INT0 Interrupt Vector. 9.3.3 EIFR – External Interrupt Flag Register • Bits 7:1 – Res: Reserved Bits These bits are reserved and will always read zero. • Bit 0 – INTF0: External Interrupt Flag 0 When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes set (one). If the I-bit in SREG and the INT0 bit in EIMSK are set (one), the MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. This flag is constantly zero when INT0 is configured as a level interrupt. Table 9-2. Interrupt 0 Sense Control ISC01 ISC00 Description 0 0 The low level of INT0 generates an interrupt request. 0 1 Any logical change on INT0 generates an interrupt request. 1 0 The falling edge of INT0 generates an interrupt request. 1 1 The rising edge of INT0 generates an interrupt request. Bit 7 6 5 4 3 2 1 0 0x13 – – – – – – – INTO EIMSK Read/Write R R R R R R R R/W Initial Value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 0x14 – – – – – – – INTF0 EIFR Read/Write R R R R R R R R/W Initial Value 0 0 0 0 0 0 0 0ATtiny4/5/9/10 [DATASHEET] 39 8127F–AVR–02/2013 9.3.4 PCICR – Pin Change Interrupt Control Register • Bits 7:1 – Res: Reserved Bits These bits are reserved and will always read zero. • Bit 0 – PCIE0: Pin Change Interrupt Enable 0 When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin change interrupt 0 is enabled. Any change on any enabled PCINT3..0 pin will cause an interrupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI0 Interrupt Vector. PCINT3..0 pins are enabled individually by the PCMSK Register. 9.3.5 PCIFR – Pin Change Interrupt Flag Register • Bits 7:1 – Res: Reserved Bits These bits are reserved and will always read zero. • Bit 0 – PCIF0: Pin Change Interrupt Flag 0 When a logic change on any PCINT3..0 pin triggers an interrupt request, PCIF0 becomes set (one). If the I-bit in SREG and the PCIE0 bit in PCICR are set (one), the MCU will jump to the corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag can be cleared by writing a logical one to it. 9.3.6 PCMSK – Pin Change Mask Register • Bits 7:4 – Res: Reserved Bits These bits are reserved and will always read zero. • Bits 3:0 – PCINT3..0: Pin Change Enable Mask 3..0 Each PCINT3..0 bit selects whether pin change interrupt is enabled on the corresponding I/O pin. If PCINT3..0 is set and the PCIE0 bit in PCICR is set, pin change interrupt is enabled on the corresponding I/O pin. If PCINT3..0 is cleared, pin change interrupt on the corresponding I/O pin is disabled. Bit 7 6 5 4 3 2 1 0 0x12 – – – – – – – PCIE0 PCICR Read/Write R R R R R R R R/W Initial Value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 0x11 – – – – – – – PCIF0 PCIFR Read/Write R R R R R R R R/W Initial Value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 0x10 – – – – PCINT3 PCINT2 PCINT1 PCINT0 PCMSK Read/Write R R R R R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0ATtiny4/5/9/10 [DATASHEET] 40 8127F–AVR–02/2013 10. I/O Ports 10.1 Overview All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports. This means that the direction of one port pin can be changed without unintentionally changing the direction of any other pin with the SBI and CBI instructions. The same applies when changing drive value (if configured as output) or enabling/disabling of pull-up resistors. Each output buffer has symmetrical drive characteristics with both high sink and source capability. The pin driver is strong enough to drive LED displays directly. All port pins have individually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have protection diodes to both VCC and Ground as indicated in Figure 10-1 on page 40. See “Electrical Characteristics” on page 115 for a complete list of parameters. Figure 10-1. I/O Pin Equivalent Schematic All registers and bit references in this section are written in general form. A lower case “x” represents the numbering letter for the port, and a lower case “n” represents the bit number. However, when using the register or bit defines in a program, the precise form must be used. For example, PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Registers and bit locations are listed in “Register Description” on page 50. Four I/O memory address locations are allocated for each port, one each for the Data Register – PORTx, Data Direction Register – DDRx, Pull-up Enable Register – PUEx, and the Port Input Pins – PINx. The Port Input Pins I/O location is read only, while the Data Register, the Data Direction Register, and the Pull-up Enable Register are read/write. However, writing a logic one to a bit in the PINx Register, will result in a toggle in the corresponding bit in the Data Register. Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O” on page 41. Most port pins are multiplexed with alternate functions for the peripheral features on the device. How each alternate function interferes with the port pin is described in “Alternate Port Functions” on page 45. Refer to the individual module sections for a full description of the alternate functions. Note that enabling the alternate function of some of the port pins does not affect the use of the other pins in the port as general digital I/O. Cpin Logic Rpu See Figure "General Digital I/O" for Details PxnATtiny4/5/9/10 [DATASHEET] 41 8127F–AVR–02/2013 10.2 Ports as General Digital I/O The ports are bi-directional I/O ports with optional internal pull-ups. Figure 10-2 shows a functional description of one I/O-port pin, here generically called Pxn. Figure 10-2. General Digital I/O(1) Note: 1. WEx, WRx, WPx, WDx, REx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, and SLEEP are common to all ports. 10.2.1 Configuring the Pin Each port pin consists of four register bits: DDxn, PORTxn, PUExn, and PINxn. As shown in “Register Description” on page 50, the DDxn bits are accessed at the DDRx I/O address, the PORTxn bits at the PORTx I/O address, the PUExn bits at the PUEx I/O address, and the PINxn bits at the PINx I/O address. The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one, Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input pin. clk RPx RRx RDx WDx WEx SYNCHRONIZER WDx: WRITE DDRx WRx: WRITE PORTx RRx: READ PORTx REGISTER RPx: READ PORTx PIN clkI/O: I/O CLOCK RDx: READ DDRx WEx: WRITE PUEx REx: READ PUEx D L Q Q REx RESET RESET Q D Q Q Q D CLR PORTxn Q Q D CLR DDxn PINxn DATA BUS SLEEP SLEEP: SLEEP CONTROL Pxn I/O WPx RESET Q Q D CLR PUExn 0 1 WRx WPx: WRITE PINx REGISTERATtiny4/5/9/10 [DATASHEET] 42 8127F–AVR–02/2013 If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port pin is driven low (zero). The pull-up resistor is activated, if the PUExn is written logic one. To switch the pull-up resistor off, PUExn has to be written logic zero. Table 10-1 summarizes the control signals for the pin value. Port pins are tri-stated when a reset condition becomes active, even when no clocks are running. 10.2.2 Toggling the Pin Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn. Note that the SBI instruction can be used to toggle one single bit in a port. 10.2.3 Break-Before-Make Switching In Break-Before-Make mode, switching the DDRxn bit from input to output introduces an immediate tri-state period lasting one system clock cycle, as indicated in Figure 10-3. For example, if the system clock is 4 MHz and the DDRxn is written to make an output, an immediate tri-state period of 250 ns is introduced before the value of PORTxn is seen on the port pin. To avoid glitches it is recommended that the maximum DDRxn toggle frequency is two system clock cycles. The Break-Before-Make mode applies to the entire port and it is activated by the BBMx bit. For more details, see “PORTCR – Port Control Register” on page 50. When switching the DDRxn bit from output to input no immediate tri-state period is introduced. Table 10-1. Port Pin Configurations DDxn PORTxn PUExn I/O Pull-up Comment 0 X 0 Input No Tri-state (hi-Z) 0 X 1 Input Yes Sources current if pulled low externally 1 0 0 Output No Output low (sink) 1 0 1 Output Yes NOT RECOMMENDED. Output low (sink) and internal pull-up active. Sources current through the internal pull-up resistor and consumes power constantly 1 1 0 Output No Output high (source) 1 1 1 Output Yes Output high (source) and internal pull-up activeATtiny4/5/9/10 [DATASHEET] 43 8127F–AVR–02/2013 Figure 10-3. Switching Between Input and Output in Break-Before-Make-Mode 10.2.4 Reading the Pin Value Independent of the setting of Data Direction bit DDxn, the port pin can be read through the PINxn Register bit. As shown in Figure 10-2 on page 41, the PINxn Register bit and the preceding latch constitute a synchronizer. This is needed to avoid metastability if the physical pin changes value near the edge of the internal clock, but it also introduces a delay. Figure 10-4 shows a timing diagram of the synchronization when reading an externally applied pin value. The maximum and minimum propagation delays are denoted tpd,max and tpd,min respectively. Figure 10-4. Synchronization when Reading an Externally Applied Pin value Consider the clock period starting shortly after the first falling edge of the system clock. The latch is closed when the clock is low, and goes transparent when the clock is high, as indicated by the shaded region of the “SYNC LATCH” signal. The signal value is latched when the system clock goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indicated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed between ½ and 1½ system clock period depending upon the time of assertion. When reading back a software assigned pin value, a nop instruction must be inserted as indicated in Figure 10-5 on page 44. The out instruction sets the “SYNC LATCH” signal at the positive edge of the clock. In this case, the delay tpd through the synchronizer is one system clock period. out DDRx, r16 nop 0x02 0x01 SYSTEM CLK INSTRUCTIONS DDRx intermediate tri-state cycle out DDRx, r17 PORTx 0x55 0x01 intermediate tri-state cycle Px0 Px1 tri-state tri-state tri-state r17 0x01 r16 0x02 XXX in r17, PINx 0x00 0xFF INSTRUCTIONS SYNC LATCH PINxn r17 XXX SYSTEM CLK tpd, max tpd, minATtiny4/5/9/10 [DATASHEET] 44 8127F–AVR–02/2013 Figure 10-5. Synchronization when Reading a Software Assigned Pin Value 10.2.5 Digital Input Enable and Sleep Modes As shown in Figure 10-2 on page 41, the digital input signal can be clamped to ground at the input of the schmitttrigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in Power-down and Standby modes to avoid high power consumption if some input signals are left floating, or have an analog signal level close to VCC/2. SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various other alternate functions as described in “Alternate Port Functions” on page 45. If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as “Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt is not enabled, the corresponding External Interrupt Flag will be set when resuming from the above mentioned Sleep mode, as the clamping in these sleep mode produces the requested logic change. 10.2.6 Unconnected Pins If some pins are unused, it is recommended to ensure that these pins have a defined level. Even though most of the digital inputs are disabled in the deep sleep modes as described above, floating inputs should be avoided to reduce current consumption in all other modes where the digital inputs are enabled (Reset, Active mode and Idle mode). The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up. In this case, the pull-up will be disabled during reset. If low power consumption during reset is important, it is recommended to use an external pull-up or pulldown. Connecting unused pins directly to VCC or GND is not recommended, since this may cause excessive currents if the pin is accidentally configured as an output. out PORTx, r16 nop in r17, PINx 0xFF 0x00 0xFF SYSTEM CLK r16 INSTRUCTIONS SYNC LATCH PINxn r17 t pdATtiny4/5/9/10 [DATASHEET] 45 8127F–AVR–02/2013 10.2.7 Program Example The following code example shows how to set port B pin 0 high, pin 1 low, and define the port pins from 2 to 3 as input with a pull-up assigned to port pin 2. The resulting pin values are read back again, but as previously discussed, a nop instruction is included to be able to read back the value recently assigned to some of the pins. Note: See “Code Examples” on page 5. 10.3 Alternate Port Functions Most port pins have alternate functions in addition to being general digital I/Os. In Figure 10-6 below is shown how the port pin control signals from the simplified Figure 10-2 on page 41 can be overridden by alternate functions. Assembly Code Example ... ; Define pull-ups and set outputs high ; Define directions for port pins ldi r16,(1<> Cx must be observed for proper operation; a typical load capacitance (Cx) ranges from 5 – 20 pF while Cs is usually about 2 – 50 nF. Increasing amounts of Cx destroy gain, therefore it is important to limit the amount of stray capacitance on both SNS terminals. This can be done, for example, by minimizing trace lengths and widths and keeping these traces away from power or ground traces or copper pours. The traces and any components associated with SNS and SNSK will become touch sensitive and should be treated with caution to limit the touch area to the desired location. A series resistor, Rs, should be placed in line with SNSK to the electrode to suppress ESD and EMC effects. 2.4 Sensitivity 2.4.1 Introduction The sensitivity on the QT1010 is a function of things like the value of Cs, electrode size and capacitance, electrode shape and orientation, the composition and aspect of the object to be sensed, the thickness and composition of any overlaying panel material, and the degree of ground coupling of both sensor and object. 2.4.2 Increasing Sensitivity In some cases it may be desirable to increase sensitivity; for example, when using the sensor with very thick panels having a low dielectric constant, or when the device is used as a proximity sensor. Sensitivity can often be increased by using a larger electrode or reducing panel thickness. Increasing electrode size can have diminishing returns, as high values of Cx will reduce sensor gain. AT42QT1010 [DATASHEET] 6 9541I–AT42–05/2013 The value of Cs also has a dramatic effect on sensitivity, and this can be increased in value with the trade-off of slower response time and more power. Increasing the electrode's surface area will not substantially increase touch sensitivity if its diameter is already much larger in surface area than the object being detected. Panel material can also be changed to one having a higher dielectric constant, which will better help to propagate the field. In the case of proximity detection, usually the object being detected is on an approaching hand, so a larger surface area can be effective. Ground planes around and under the electrode and its SNSK trace will cause high Cx loading and destroy gain. The possible signal-to-noise ratio benefits of ground area are more than negated by the decreased gain from the circuit, and so ground areas around electrodes are discouraged. Metal areas near the electrode will reduce the field strength and increase Cx loading and should be avoided, if possible. Keep ground away from the electrodes and traces. 2.4.3 Decreasing Sensitivity In some cases the QT1010 may be too sensitive. In this case gain can be easily lowered further by decreasing Cs. 2.4.4 Proximity Sensing By increasing the sensitivity, the QT1010 can be used as a very effective proximity sensor, allowing the presence of a nearby object (typically a hand) to be detected. In this scenario, as the object being sensed is typically a hand, very large electrode sizes can be used, which is extremely effective in increasing the sensitivity of the detector. In this case, the value of Cs will also need to be increased to ensure improved sensitivity, as mentioned in Section 2.4.2. Note that, although this affects the responsiveness of the sensor, it is less of an issue in proximity sensing applications; in such applications it is necessary to detect simply the presence of a large object, rather than a small, precise touch.AT42QT1010 [DATASHEET] 7 9541I–AT42–05/2013 3. Operation Specifics 3.1 Run Modes 3.1.1 Introduction The QT1010 has three running modes which depend on the state of the SYNC pin (high or low). 3.1.2 Fast Mode The QT1010 runs in Fast mode if the SYNC pin is permanently high. In this mode the QT1010 runs at maximum speed at the expense of increased current consumption. Fast mode is useful when speed of response is the prime design requirement. The delay between bursts in Fast mode is approximately 1 ms, as shown in Figure 3-1. Figure 3-1. Fast Mode Bursts (SYNC Held High) 3.1.3 Low Power Mode The QT1010 runs in Low Power (LP) mode if the SYNC pin is held low. In this mode it sleeps for approximately 80 ms at the end of each burst, saving power but slowing response. On detecting a possible key touch, it temporarily switches to Fast mode until either the key touch is confirmed or found to be spurious (via the detect integration process). It then returns to LP mode after the key touch is resolved, as shown in Figure 3-2. Figure 3-2. Low Power Mode (SYNC Held Low) SNSK SYNC ~1 ms sleep sleep SYNC SNSK sleep fast detect integrator OUT Key ~80 ms touchAT42QT1010 [DATASHEET] 8 9541I–AT42–05/2013 3.1.4 SYNC Mode It is possible to synchronize the device to an external clock source by placing an appropriate waveform on the SYNC pin. SYNC mode can synchronize multiple QT1010 devices to each other to prevent cross-interference, or it can be used to enhance noise immunity from low frequency sources such as 50Hz or 60Hz mains signals. The SYNC pin is sampled at the end of each burst. If the device is in Fast mode and the SYNC pin is sampled high, then the device continues to operate in Fast mode (Figure 3-1 on page 7). If SYNC is sampled low, then the device goes to sleep. From then on, it will operate in SYNC mode (Figure 3-2). Therefore, to guarantee entry into SYNC mode the low period of the SYNC signal should be longer than the burst length (Figure 3-3). Figure 3-3. SYNC Mode (Triggered by SYNC Edges) However, once SYNC mode has been entered, if the SYNC signal consists of a series of short pulses (>10 µs) then a burst will only occur on the falling edge of each pulse (Figure 3-4) instead of on each change of SYNC signal, as normal (Figure 3-3). In SYNC mode, the device will sleep after each measurement burst (just as in LP mode) but will be awakened by a change in the SYNC signal in either direction, resulting in a new measurement burst. If SYNC remains unchanged for a period longer than the LP mode sleep period (about 80 ms), the device will resume operation in either Fast or LP mode depending on the level of the SYNC pin (Figure 3-3). There is no detect integrator (DI) in SYNC mode (each touch is a detection) but the Max On-duration will depend on the time between SYNC pulses; see Section 3.3 and Section 3.4 on page 9. Recalibration timeout is a fixed number of measurements so will vary with the SYNC period. Figure 3-4. SYNC Mode (Short Pulses) SYNC SYNC SNSK SNSK slow mode sleep period sleep sleep sleep sleep sleep sleep Revert to Fast Mode Revert to Slow Mode slow mode sleep period SNSK SYNC >10 sμ >10 sμ >10 sμAT42QT1010 [DATASHEET] 9 9541I–AT42–05/2013 3.2 Threshold The internal signal threshold level is fixed at 10 counts of change with respect to the internal reference level, which in turn adjusts itself slowly in accordance with the drift compensation mechanism. The QT1010 employs a hysteresis dropout of two counts of the delta between the reference and threshold levels. 3.3 Max On-duration If an object or material obstructs the sense pad the signal may rise enough to create a detection, preventing further operation. To prevent this, the sensor includes a timer which monitors detections. If a detection exceeds the timer setting the sensor performs a full recalibration. This is known as the Max On-duration feature and is set to ~60s (at 3V in LP mode). This will vary slightly with Cs and if SYNC mode is used. As the internal timebase for Max Onduration is determined by the burst rate, the use of SYNC can cause dramatic changes in this parameter depending on the SYNC pulse spacing. For example, at 60Hz SYNC mode the Max On-duration will be ~6s at 3V. 3.4 Detect Integrator It is desirable to suppress detections generated by electrical noise or from quick brushes with an object. To accomplish this, the QT1010 incorporates a detect integration (DI) counter that increments with each detection until a limit is reached, after which the output is activated. If no detection is sensed prior to the final count, the counter is reset immediately to zero. In the QT1010, the required count is four. In LP mode the device will switch to Fast mode temporarily in order to resolve the detection more quickly; after a touch is either confirmed or denied the device will revert back to normal LP mode operation automatically. The DI can also be viewed as a “consensus filter” that requires four successive detections to create an output. 3.5 Forced Sensor Recalibration The QT1010 has no recalibration pin; a forced recalibration is accomplished when the device is powered up or after the recalibration timeout. However, supply drain is low so it is a simple matter to treat the entire IC as a controllable load; driving the QT1010's Vdd pin directly from another logic gate or a microcontroller port will serve as both power and “forced recalibration”. The source resistance of most CMOS gates and microcontrollers is low enough to provide direct power without problem. 3.6 Drift Compensation Signal drift can occur because of changes in Cx and Cs over time. It is crucial that drift be compensated for, otherwise false detections, non-detections, and sensitivity shifts will follow. Drift compensation (Figure 3-5) is performed by making the reference level track the raw signal at a slow rate, but only while there is no detection in effect. The rate of adjustment must be performed slowly, otherwise legitimate detections could be ignored. The QT1010 drift compensates using a slew-rate limited change to the reference level; the threshold and hysteresis values are slaved to this reference. Once an object is sensed, the drift compensation mechanism ceases since the signal is legitimately high, and therefore should not cause the reference level to change.AT42QT1010 [DATASHEET] 10 9541I–AT42–05/2013 Figure 3-5. Drift Compensation The QT1010 drift compensation is asymmetric; the reference level drift-compensates in one direction faster than it does in the other. Specifically, it compensates faster for decreasing signals than for increasing signals. Increasing signals should not be compensated for quickly, since an approaching finger could be compensated for partially or entirely before even approaching the sense electrode. However, an obstruction over the sense pad, for which the sensor has already made full allowance, could suddenly be removed leaving the sensor with an artificially elevated reference level and thus become insensitive to touch. In this latter case, the sensor will compensate for the object's removal very quickly, usually in only a few seconds. With large values of Cs and small values of Cx, drift compensation will appear to operate more slowly than with the converse. Note that the positive and negative drift compensation rates are different. 3.7 Response Time The QT1010's response time is highly dependent on run mode and burst length, which in turn is dependent on Cs and Cx. With increasing Cs, response time slows, while increasing levels of Cx reduce response time. The response time will also be a lot slower in LP or SYNC mode due to a longer time between burst measurements. 3.8 Spread Spectrum The QT1010 modulates its internal oscillator by ±7.5% during the measurement burst. This spreads the generated noise over a wider band, reducing emission levels. This also reduces susceptibility since there is no longer a single fundamental burst frequency. 3.9 Output Features 3.9.1 Output The output of the QT1010 is active-high upon detection. The output will remain active-high for the duration of the detection, or until the Max On-duration expires, whichever occurs first. If a Max On-duration timeout occurs first, the sensor performs a full recalibration and the output becomes inactive (low) until the next detection. 3.9.2 HeartBeat Output The QT1010 output has a HeartBeat “health” indicator superimposed on it in all modes. This operates by taking the output pin into a three-state mode for 15 µs, once before every QT burst. This output state can be used to determine that the sensor is operating properly, using one of several simple methods, or it can be ignored. The HeartBeat indicator can be sampled by using a pull-up resistor on the OUT pin (Figure 3-6), and feeding the resulting positive-going pulse into a counter, flip flop, one-shot, or other circuit. The pulses will only be visible when the chip is not detecting a touch. Threshold Signal Hysteresis Reference OutputAT42QT1010 [DATASHEET] 11 9541I–AT42–05/2013 Figure 3-6. Obtaining HeartBeat Pulses with a Pull-up Resistor (SOT23-6) If the sensor is wired to a microcontroller as shown in Figure 3-7 on page 11, the microcontroller can reconfigure the load resistor to either Vss or Vdd depending on the output state of the QT1010, so that the pulses are evident in either state. Figure 3-7. Using a Microcontroller to Obtain HeartBeat Pulses in Either Output State (SOT23-6) Electromechanical devices like relays will usually ignore the short HeartBeat pulse. The pulse also has too low a duty cycle to visibly affect LEDs. It can be filtered completely if desired, by adding an RC filter to the output, or if interfacing directly and only to a high-impedance CMOS input, by doing nothing or at most adding a small noncritical capacitor from OUT to Vss. 3.9.3 Output Drive The OUT pin is active high and can sink or source up to 2 mA. When a large value of Cs (>20 nF) is used the OUT current should be limited to <1 mA to prevent gain-shifting side effects, which happen when the load current creates voltage drops on the die and bonding wires; these small shifts can materially influence the signal level to cause detection instability. OUT VDD SNSK SNS SYNC/MODE VSS 2 6 4 1 3 5 VDD HeartBeat" Pulse Ro OUT SNSK SNS SYNC/MODE 6 4 1 3 Ro Microcontroller Port_M.x Port_M.yAT42QT1010 [DATASHEET] 12 9541I–AT42–05/2013 4. Circuit Guidelines 4.1 More Information Refer to Application Note QTAN0002, Secrets of a Successful QTouch Design and the Touch Sensors Design Guide (both downloadable from the Atmel website), for more information on construction and design methods. 4.2 Sample Capacitor Cs is the charge sensing sample capacitor. The required Cs value depends on the thickness of the panel and its dielectric constant. Thicker panels require larger values of Cs. Typical values are 2 nF to 50 nF depending on the sensitivity required; larger values of Cs demand higher stability and better dielectric to ensure reliable sensing. The Cs capacitor should be a stable type, such as X7R ceramic or PPS film. For more consistent sensing from unit to unit, 5% tolerance capacitors are recommended. X7R ceramic types can be obtained in 5% tolerance at little or no extra cost. In applications where high sensitivity (long burst length) is required the use of PPS capacitors is recommended. For battery powered operation a higher value sample capacitor is recommended (typical value 8.2 nF). 4.3 UDFN/USON Package Restrictions The central pad on the underside of the UDFN/USON chip is connected to ground. Do not run any tracks underneath the body of the chip, only ground. 4.4 Power Supply and PCB Layout See Section 5.2 on page 14 for the power supply range. At 3 V current drain averages less than 500 µA in Fast mode. If the power supply is shared with another electronic system, care should be taken to ensure that the supply is free of digital spikes, sags, and surges which can adversely affect the QT1010. The QT1010 will track slow changes in Vdd, but it can be badly affected by rapid voltage fluctuations. It is highly recommended that a separate voltage regulator be used just for the QT1010 to isolate it from power supply shifts caused by other components. If desired, the supply can be regulated using a Low Dropout (LDO) regulator, although such regulators often have poor transient line and load stability. See Application Note QTAN0002, Secrets of a Successful QTouch™ Design for further information. Parts placement: The chip should be placed to minimize the SNSK trace length to reduce low frequency pickup, and to reduce stray Cx which degrades gain. The Cs and Rs resistors (see Figure 1-1 on page 4) should be placed as close to the body of the chip as possible so that the trace between Rs and the SNSK pin is very short, thereby reducing the antenna-like ability of this trace to pick up high frequency signals and feed them directly into the chip. A ground plane can be used under the chip and the associated discrete components, but the trace from the Rs resistor and the electrode should not run near ground, to reduce loading. For best EMC performance the circuit should be made entirely with SMT components. Electrode trace routing: Keep the electrode trace (and the electrode itself) away from other signal, power, and ground traces including over or next to ground planes. Adjacent switching signals can induce noise onto the sensing signal; any adjacent trace or ground plane next to, or under, the electrode trace will cause an increase in Cx load and desensitize the device. Note: For proper operation a 100 nF (0.1 µF) ceramic bypass capacitor must be used directly between Vdd and Vss, to prevent latch-up if there are substantial Vdd transients; for example, during an ESD event. The bypass capacitor should be placed very close to the Vss and Vdd pins.AT42QT1010 [DATASHEET] 13 9541I–AT42–05/2013 4.5 Power On On initial power up, the QT1010 requires approximately 100 ms to power on to allow power supplies to stabilize. During this time the OUT pin state is not valid and should be ignored.AT42QT1010 [DATASHEET] 14 9541I–AT42–05/2013 5. Specifications 5.1 Absolute Maximum Specifications 5.2 Recommended Operating Conditions 5.3 AC Specifications Operating temperature –40°C to +85°C Storage temperature –55°C to +125°C VDD 0 to +6.5 V Max continuous pin current, any control or drive pin ±20 mA Short circuit duration to Vss, any pin Infinite Short circuit duration to Vdd, any pin Infinite Voltage forced onto any pin –0.6V to (Vdd + 0.6) V CAUTION: Stresses beyond those listed under Absolute Maximum Specifications may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum specification conditions for extended periods may affect device reliability VDD +1.8 to 5.5 V Short-term supply ripple + noise ±20 mV Long-term supply stability ±100 mV Cs value 2 to 50 nF Cx value 5 to 50 pF Vdd = 3.0 V, Cs = 4.7 nF, Cx = 5 pF, Ta = recommended range, unless otherwise noted Parameter Description Min Typ Max Units Notes TRC Recalibration time – 200 – ms Cs, Cx dependent TPC Charge duration – 3.05 – µs ±7.5% spread spectrum variation TPT Transfer duration – 9.0 – µs ±7.5% spread spectrum variation TG1 Time between end of burst and start of the next (Fast mode) – 1.2 – ms TG2 Time between end of burst and start of the next (LP mode) – 80 – ms Increases with decreasing VDD See Figure 5-1 on page 15AT42QT1010 [DATASHEET] 15 9541I–AT42–05/2013 Figure 5-1. TG2 – Time Between Bursts (LP Mode) Figure 5-2. TBL – Burst Length TBL Burst length – 2.45 – ms VDD, Cs and Cx dependent. See Section 4.2 for capacitor selection. TR Response time – – 100 ms THB HeartBeat pulse width – 15 – µs Vdd = 3.0 V, Cs = 4.7 nF, Cx = 5 pF, Ta = recommended range, unless otherwise noted Parameter Description Min Typ Max Units NotesAT42QT1010 [DATASHEET] 16 9541I–AT42–05/2013 5.4 Signal Processing 5.5 DC Specifications Vdd = 3.0V, Cs = 4.7 nF, Cx = 5 pF, Ta = recommended range, unless otherwise noted Description Min Typ Max Units Notes Threshold differential 10 counts Hysteresis 2 counts Consensus filter length 4 samples Max on-duration 60 seconds (At 3 V in LP mode) Will vary in SYNC mode and with Vdd Vdd = 3.0V, Cs = 4.7 nF, Cx = 5 pF, Ta = recommended range, unless otherwise noted Parameter Description Min Typ Max Units Notes VDD Supply voltage 1.8 5.5 V IDD Supply current, Fast mode – 203.0 246.0 378.5 542.5 729.0 – µA 1.8 V 2.0 V 3.0 V 4.0 V 5.0 V IDDI Supply current, LP mode – 16.5 19.5 34.0 51.5 73.5 – µA 1.8 V 2.0 V 3.0 V 4.0 V 5.0 V VDDS Supply turn-on slope 10 – – V/s Required for proper start-up VIL Low input logic level – – 0.2 × Vdd 0.3 × Vdd V Vdd = 1.8 V – 2.4 V Vdd = 2.4 V – 5.5 V VHL High input logic level 0.7 × Vdd 0.6 × Vdd – – V Vdd = 1.8 V – 2.4 V Vdd = 2.4 V – 5.5 V VOL Low output voltage – – 0.5 V OUT, 4 mA sink VOH High output voltage 2.3 – – V OUT, 1 mA source IIL Input leakage current – <0.05 1 µA CX Load capacitance range 2 – 50 pF AR Acquisition resolution – 9 14 bitsAT42QT1010 [DATASHEET] 17 9541I–AT42–05/2013 5.6 Mechanical Dimensions 5.6.1 6-pin SOT23-6 9524D–AT42–05/2013 Features  Number of QTouch® Keys:  Up to four  Discrete Outputs:  Four discrete outputs indicating individual key touch  Technology:  Patented spread-spectrum charge-transfer (direct mode)  Electrode Design:  Simple self-capacitance style (refer to the Touch Sensors Design Guide)  Electrode Materials:  Etched copper, silver, carbon, Indium Tin Oxide (ITO)  Electrode Substrates:  PCB, FPCB, plastic films, glass  Panel Materials:  Plastic, glass, composites, painted surfaces (low particle density metallic paints possible)  Panel Thickness:  Up to 10 mm glass, 5 mm plastic (electrode size dependent)  Key Sensitivity:  Fixed key threshold, sensitivity adjusted via sample capacitor value  Adjacent Key Suppression  Patented Adjacent Key Suppression® (AKS®) technology to enable accurate key detection  Interface:  Pin-per-key outputs, plus debug mode to observe sensor signals  Moisture Tolerance:  Increased moisture tolerance based on hardware design and firmware tuning  Signal Processing:  Self-calibration, auto drift compensation, noise filtering  Applications:  Mobile, consumer, white goods, toys, kiosks, POS, and so on  Power:  1.8 V – 5.5 V  Package:  20-pin 3 x 3 mm VQFN RoHS compliant Atmel AT42QT1040 Four-key QTouch® Touch Sensor IC DATASHEETAT42QT1040 [DATASHEET] 2 9524D–AT42–05/2013 1. Pinout and Schematic 1.1 Pinout Configuration NC NC VSS VDD NC SNS2 SNSK1 SNS1 SNSK0 SNS0 OUT0 OUT1 1 2 3 4 5 11 12 13 14 15 20 19 18 17 16 6 7 8 9 10 QT1040 OUT3 OUT2 SNSK3 SNSK2 NC NC NC SNS3AT42QT1040 [DATASHEET] 3 9524D–AT42–05/2013 1.2 Pin Descriptions I/O CMOS input and output OD CMOS open drain output P Ground or power Table 1-1. Pin Listing Pin Name Type Function Notes If Unused... 1 SNS2 I/O Sense pin To Cs2 Leave open 2 SNSK1 I/O Sense pin and option detect To Cs1 and option resistor + key Connect to option resistor* 3 SNS1 I/O Sense pin To Cs1 Leave open 4 SNSK0 I/O Sense pin and option detect To Cs0 and option resistor + key Connect to option resistor* 5 SNS0 I/O Sense pin To Cs0 Leave open 6 N/C – – – 7 N/C – – – 8 Vss P Supply ground – 9 Vdd P Power – 10 N/C – – – 11 OUT0 OD Out 0 Alternative function: Debug CLK Leave open 12 OUT1 OD Out 1 Alternative function: Debug DATA Leave open 13 OUT3 OD Out 3 Leave open 14 OUT2 OD Out 2 Leave open 15 SNSK3 I/O Sense pin To Cs3 + key Leave open 16 SNS3 I/O Sense pin To Cs3 Leave open 17 N/C – – – 18 N/C – – – 19 N/C – – – 20 SNSK2 I/O Sense pin To Cs2 + key Leave open * Option resistor should always be fitted even if channel is unused and Cs capacitor is not fixed.AT42QT1040 [DATASHEET] 4 9524D–AT42–05/2013 1.3 Schematic Figure 1-1. Typical Circuit Suggested regulator manufacturers:  Torex (XC6215 series)  Seiko (S817 series)  BCDSemi (AP2121 series) For component values in Figure 1-1 check the following sections:  Section 3.1 on page 7: Cs capacitors (Cs0 – Cs3)  Section 3.5 on page 7: Voltage levels  Section 3.3 on page 7: LED traces SLOW FAST OFF LED3 LED2 LED1 LED0 VDD VDD 2 1 3 J2 VDD 2 1 3 J1 ON 2 2 5 5 4 4 3 3 1 1 J3 VDD 9 VSS 8 N/C 19 N/C 10 OUT2 14 SNSK3 15 SNSK2 20 SNSK1 2 SNSK0 4 N/C 18 N/C 7 N/C 17 OUT1 12 OUT0 11 SNS3 16 SNS1 3 N/C 6 OUT3 13 SNS0 5 SNS2 1 SPEED SELECT AKS SELECT NOTES: 1) The central pad on the underside of the VQFN chip is a Vss pin and should be connected to ground. Do not put any other tracks underneath the body of the chip. 2) It is important to place all Cs and Rs components physically near to the chip. Add a 100 nF capacitor close to pin 9. QT1040 Creg Creg VREG Follow regulator manufacturer's recommended values for input and output bypass capacitors (Creg). Key0 Key1 Key2 Key3 VUNREG GND Cs0 Cs1 Cs2 Cs3 RL0 RL1 RL2 RL3 RAKS RFS Rs0 Rs1 Rs2 Rs3 Example use of output pinsAT42QT1040 [DATASHEET] 5 9524D–AT42–05/2013 2. Overview of the AT42QT1040 2.1 Introduction The AT42QT1040 (QT1040) is a digital burst mode charge-transfer (QT™) capacitive sensor driver designed for touch-key applications. The device can sense from one to four keys; one to three keys can be disabled by not installing their respective sense capacitors. Any of the four channels can be disabled in this way. The device includes all signal processing functions necessary to provide stable sensing under a wide variety of changing conditions, and the outputs are fully de-bounced. Only a few external parts are required for operation. The QT1040 modulates its bursts in a spread-spectrum fashion in order to heavily suppress the effects of external noise, and to suppress RF emissions. 2.2 Signal Processing 2.2.1 Detect Threshold The internal signal threshold level is fixed at 10 counts of change with respect to the internal reference level. This in turn adjusts itself slowly in accordance with the drift compensation mechanism. See Section 3.1 on page 7 for details on how to adjust the sensitivity of each key. When going out of detect there is a hysteresis element to the detection. The signal threshold must drop below 8 counts of change with respect to the internal reference level to register as un-touched. 2.2.2 Detection Integrator The device features a detection integration mechanism, which acts to confirm a detection in a robust fashion. A perkey counter is incremented each time the key has exceeded its threshold, and a key is only finally declared to be touched when this counter reaches a fixed limit of 5. In other words, the device has to exceed its threshold, and stay there for 5 acquisitions in succession without going below the threshold level, before the key is declared to be touched. 2.2.3 Burst Length Limitations Burst length is the number of times the charge transfer process is performed on a given channel; that is, the number of pulses it takes to measure the key capacitance. The maximum burst length is 2048 pulses. The recommended design is to use a capacitor that gives a signal of <1000 pulses. Longer bursts take more time and use more power. Note that the keys are independent of each other. It is therefore possible, for example, to have a signal of 100 on one key and a signal of 1000 on another. Refer to Application Note QTAN0002, Secrets of a Successful QTouch Design (downloadable from the Atmel website), for more information on using a scope to measure the pulses and hence determine the burst length. Refer also to the Touch Sensors Design Guide. 2.2.4 Adjacent Key Suppression Technology The device includes the Atmel-patented Adjacent Key Suppression (AKS) technology, to allow the use of tightly spaced keys on a keypad with no loss of selectability by the user. There is one global AKS group, implemented so that only one key in the group may be reported as being touched at any one time. The use of AKS is selected by connecting a 1 M resistor between Vdd and the SNSK0 pin (see Section 4.1 on page 9 for more information). When AKS is disabled, any combinations of keys can enter detect.AT42QT1040 [DATASHEET] 6 9524D–AT42–05/2013 2.2.5 Auto Drift Compensation Signal drift can occur because of changes in Cx and Cs over time. It is crucial that drift be compensated for, otherwise false detections, non-detections, and sensitivity shifts will follow. Drift compensation is performed by making the reference level track the raw signal at a slow rate, but only while there is no detection in effect. The rate of adjustment must be performed slowly otherwise legitimate detections could be ignored. Once an object is sensed and a key is in detect, the drift compensation mechanism ceases, since the signal is legitimately high and should not therefore cause the reference level to change. The QT1040 drift compensation is asymmetric, that is, the reference level drift-compensates in one direction faster than it does in the other. Specifically, it compensates faster for decreasing (towards touch) signals than for increasing (away from touch) signals. The reason for this difference in compensation rates is that increasing signals should not be compensated for quickly, since a nearby finger could be compensated for partially or entirely before even approaching the sense electrode. However, decreasing signals need to be compensated for more quickly. For example, an obstruction over the sense pad (for which the sensor has already made full allowance) could suddenly be removed, leaving the sensor with an artificially elevated reference level and thus become insensitive to touch. In this latter case, the sensor will compensate for the object's removal very quickly, usually in only a few seconds. Negative drift (that is, towards touch) occurs at a rate of ~3 seconds, while positive drift occurs at a rate of ~1 second. Drifting only occurs when no keys are in detect state. 2.2.6 Response Time The QT1040 response time is highly dependent on run mode and burst length, which in turn is dependent on Cs and Cx. With increasing Cs, response time slows, while increasing levels of Cx reduce response time. The response time will also be slower in slow mode due to a longer time between burst measurements. This mode offers an increased detection latency in favor of reduced average current consumption. 2.2.7 Spread Spectrum The QT1040 modulates its internal oscillator by ±7.5% during the measurement burst. This spreads the generated noise over a wider band reducing emission levels. This also reduces susceptibility since there is no longer a single fundamental burst frequency. 2.2.8 Max On-duration If an object or material obstructs the sense pad, the signal may rise enough to create a detection, preventing further operation. To prevent this, the sensor includes a timer known as the Max On-duration feature which monitors detections. If a detection exceeds the timer setting, the sensor performs an automatic recalibration. Max On-duration is set to ~30s.AT42QT1040 [DATASHEET] 7 9524D–AT42–05/2013 3. Wiring and Parts 3.1 Cs Sample Capacitors Cs0 – Cs3 are the charge sensing sample capacitors; normally they are identical in nominal value. The optimal Cs values depend on the corresponding keys electrode design, the thickness of the panel and its dielectric constant. Thicker panels require larger values of Cs. Values can be in the range 2.2 nF (for faster operation) to 22 nF (for best sensitivity); typical values are 4.7 nF to 10 nF. The value of Cs should be chosen such that a light touch on a key mounted in a production unit or a prototype panel causes a reliable detection. The chosen Cs value should never be so large that the key signals exceed ~1000, as reported by the chip in the debug data. The Cs capacitors must be X7R or PPS film type, for stability. For consistent sensitivity, they should have a 10% tolerance. Twenty percent tolerance may cause small differences in sensitivity from key to key and unit to unit. If a key is not used, the Cs capacitor may be omitted. 3.2 Rs Resistors The series resistors Rs0 – Rs3 are in line with the electrode connections (close to the QT1040 chip) and are used to limit electrostatic discharge (ESD) currents and to suppress radio frequency (RF) interference. A typical value is 4.7 k, but up to 20 k can be used if it is found to be of benefit. Although these resistors may be omitted, the device may become susceptible to external noise or radio frequency interference (RFI). For details on how to select these resistors refer to Application Note QTAN0002, Secrets of a Successful QTouch Design, and the Touch Sensors Design Guide, both downloadable from the Touch Technology area of the Atmel website, www.atmel.com. 3.3 LED Traces and Other Switching Signals For advice on LEDs and nearby traces, refer to Application Note QTAN0002, Secrets of a Successful QTouch Design, and the Touch Sensors Design Guide, both downloadable from the Touch Technology area of Atmel’s website, www.atmel.com. 3.4 PCB Cleanliness Modern no-clean flux is generally compatible with capacitive sensing circuits. 3.5 Power Supply See Section 5.2 on page 15 for the power supply range. If the power supply fluctuates slowly with temperature, the device tracks and compensates for these changes automatically with only minor changes in sensitivity. If the supply voltage drifts or shifts quickly, the drift compensation mechanism is not able to keep up, causing sensitivity anomalies or false detections. The usual power supply considerations with QT parts apply to the device. The power should be clean and come from a separate regulator if possible. However, this device is designed to minimize the effects of unstable power, and except in extreme conditions should not require a separate Low Dropout (LDO) regulator. CAUTION: If a PCB is reworked to correct soldering faults relating to the device, or to any associated traces or components, be sure that you fully understand the nature of the flux used during the rework process. Leakage currents from hygroscopic ionic residues can stop capacitive sensors from functioning. If you have any doubts, a thorough cleaning after rework may be the only safe option.AT42QT1040 [DATASHEET] 8 9524D–AT42–05/2013 See under Figure 1.3 on page 4 for suggested regulator manufacturers. It is assumed that a larger bypass capacitor (for example, 1 µF) is somewhere else in the power circuit; for example, near the regulator. To assist with transient regulator stability problems, the QT1040 waits 500 µs any time it wakes up from a sleep state (that is, in Sleep mode) before acquiring, to allow Vdd to fully stabilize. 3.6 VQFN Package Restrictions The central pad on the underside of the VQFN chip should be connected to ground. Do not run any tracks underneath the body of the chip, only ground. Figure 3-1 shows an example of good/bad tracking. Figure 3-1. Examples of Good and Bad Tracking Caution: A regulator IC shared with other logic can result in erratic operation and is not advised. A single ceramic 0.1 µF bypass capacitor, with short traces, should be placed very close to the power pins of the IC. Failure to do so can result in device oscillation, high current consumption, erratic operation, and so on. Example of GOOD tracking Example of BAD trackingAT42QT1040 [DATASHEET] 9 9524D–AT42–05/2013 4. Detailed Operations 4.1 Adjacent Key Suppression The use of AKS is selected by the connection of a 1 M resistor (RAKS resistor) between the SNSK0 pin and either Vdd (AKS mode on) or Vss (AKS mode off). Note: Changing the RAKS option will affect the sensitivity of the particular key. Always check that the sensitivity is suitable after a change. Retune Cs0 if necessary. 4.2 Discrete Outputs There are four discrete outputs (channels 0 to 3), located on pins OUT0 to OUT3. An output pin goes active when the corresponding key is touched. The outputs are open-drain type and are active-low. On the OUT2 pin there is a ~500 ns low pulse occurring approximately 20 ms after a power-up/reset (see Figure 4-1 for an example oscilloscope trace of this pulse at two zoom levels). This pulse may need to be considered from the system design perspective. The discrete outputs have sufficient current sinking capability to directly drive LEDs. Try to limit the sink current to less than 5 mA per output and be cautious if connecting LEDs to a power supply other than Vdd; if the LED supply is higher than Vdd it may cause erratic behavior of the QT1040 and back-power the QT1040 through its I/O pins. Table 4-1. RAKS Resistor RAKS Connected To... Mode Vdd AKS on Vss AKS off The RAKS resistor should always be connected to either Vdd or Vss and should not be changed during operation of the device.AT42QT1040 [DATASHEET] 10 9524D–AT42–05/2013 Figure 4-1. ~500 ns Pulse On OUT2 Pin 4.3 Speed Selection Speed selection is determined by a 1 M resistor (RFS resistor) connected between SNSK1 and either Vdd (Fast Mode) or Vss (Slow Mode). In Fast Mode, the device sleeps for 16 ms between burst acquisitions. In Slow Mode, the device sleeps for 64 ms between acquisitions. Hence, Slow Mode conserves more power but results in slightly less responsiveness. Note: The RFS resistor should always be connected to either Vdd or Vss and not changed during operation of the device. Changing the RFS option will affect the sensitivity of the particular key. Always check that the sensitivity is suitable after a change. Retune Cs1 if necessary. 4.4 Moisture Tolerance The presence of water (condensation, sweat, spilt water, and so on) on a sensor can alter the signal values measured and thereby affect the performance of any capacitive device. The moisture tolerance of QTouch devices can be improved by designing the hardware and fine-tuning the firmware following the recommendations in the application note Atmel AVR3002: Moisture Tolerant QTouch Design (www.atmel.com/Images/doc42017.pdf). Pulse on OUT2 SNS0K OUT2 SNS0K OUT2 Power-on/ ~20 ms Reset Table 4-2. RFS Resistor RFS Connected To Mode Vdd Fast mode Vss Slow modeAT42QT1040 [DATASHEET] 11 9524D–AT42–05/2013 4.5 Calibration Calibration is the process by which the sensor chip assesses the background capacitance on each channel. During calibration, a number of samples are taken in quick succession to get a baseline for the channel reference value. Calibration takes place ~50 ms after power is applied to the device. Calibration also occurs if the Max On-duration is exceeded or a positive re-calibration occurs. 4.6 Debug Mode An added feature to this device is a debug option whereby internal parameters from the IC can be clocked out and monitored externally. Debug mode is entered by shorting the CS3 capacitor (SNSK3 and SNS3 pins) on power-up and removing the short within 5 seconds. Note: If the short is not removed within 5 seconds, debug mode is still entered, but with Channel 3 unusable until a re-calibration occurs. Note that as Channel 3 will show as being in detect, a recalibration will occur after Max On-duration (~30 seconds). Debug CLK pin (OUT0) and Debug Data pin (OUT1) float while debug data is not being output and are driven outputs once debug output starts (that is, not open drain). The serial data is clocked out at a rate of ~200 kHz, MSB first, as in Table 4-3. Table 4-3. Serial Data Output Byte Purpose Notes 0 Frame Number Framing index number 0-255 1 Chip Version Upper nibble: major revision Lower nibble: minor revision 2 Reference 0 Low Byte Unsigned 16-bit integer 3 Reference 0 High Byte 4 Reference 1 Low Byte Unsigned 16-bit integer 5 Reference 1 High Byte 6 Reference 2 Low Byte Unsigned 16-bit integer 7 Reference 2 High Byte 8 Reference 3 Low Byte Unsigned 16-bit integer 9 Reference 3 High Byte 10 Signal 0 Low Byte Unsigned 16-bit integer 11 Signal 0 High Byte 12 Signal 1 Low Byte Unsigned 16-bit integer 13 Signal 1 High Byte 14 Signal 2 Low Byte Unsigned 16-bit integer 15 Signal 2 High Byte 16 Signal 3 Low Byte Unsigned 16-bit integer 17 Signal 3 High ByteAT42QT1040 [DATASHEET] 12 9524D–AT42–05/2013 Bit 7: This bit is set during calibration Bits 4 – 6: Contains the number of keys active Bits 0 – 3: Show the touch status of the corresponding keys Figure 4-2 to Figure 4-5 show the usefulness of the debug data out feature. Channels can be monitored and tweaked to the specific application with great accuracy. 18 Delta 0 Low Byte Signed 16-bit integer 19 Delta 0 High Byte 20 Delta 1 Low Byte Signed 16-bit integer 21 Delta 1 High Byte 22 Delta 2 Low Byte Signed 16-bit integer 23 Delta 2 High Byte 24 Delta 3 Low Byte Signed 16-bit integer 25 Delta 3 High Byte 26 Flags Various operational flags 27 Flags2 Unsigned bytes 28 Status Byte Unsigned byte. See Table 4-4 29 Frame Number Repeat of framing index number in byte 0 Table 4-4. Status Byte (Byte 28) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 CAL Number of Keys (2 – 4) Key 3 Key 2 Key 1 Key 0 Table 4-3. Serial Data Output (Continued) Byte Purpose NotesAT42QT1040 [DATASHEET] 13 9524D–AT42–05/2013 Figure 4-2. Byte Clocked Out (~5 µs Period) Figure 4-3. Byte Following Byte (~ 30 µs Period) Figure 4-4. Full Debug Send (30 Bytes)AT42QT1040 [DATASHEET] 14 9524D–AT42–05/2013 Figure 4-5. Debug Lines Floating Between Debug Data Sends (30 Bytes, ~2 ms to Send)AT42QT1040 [DATASHEET] 15 9524D–AT42–05/2013 5. Specifications 5.1 Absolute Maximum Specifications 5.2 Recommended Operating Conditions 5.3 DC Specifications Vdd –0.5 to +6.0 V Max continuous pin current, any control or drive pin ±10 mA Voltage forced onto any pin –0.5 V to (Vdd + 0.5) V Operating temperature –40°C to +85°C Storage temperature –55°C to +125°C Vdd 1.8 V to 5.5 V Supply ripple + noise ±20 mV maximum Cx capacitance per key 2 to 20 pF Vdd = 5.0 V, Cs = 4.7 nF, Ta = recommended range, unless otherwise noted Parameter Description Min Typ Max Units Notes Vil Low input logic level –0.5 – 0.3 V Vih High input logic level 0.6 × Vdd Vdd Vdd + 0.5 V Vol Low output voltage 0 – 0.7 V 10 mA sink current Voh High output voltage 0.8 × Vdd – Vdd V 10 mA source current Iil Input leakage current – <0.05 1 µA Rrst Internal RST pull-up resistor 20 – 50 k CAUTION: Stresses beyond those listed under Absolute Maximum Specifications may cause permanent damage the device. This is a stress rating only and functional operation of the device at these or other conditions beyo those indicated in the operational sections of this specification is not implied. Exposure to absolute maximu specification conditions for extended periods may affect device reliabilityAT42QT1040 [DATASHEET] 16 9524D–AT42–05/2013 5.4 Timing Specifications 5.5 Power Consumption Parameter Description Min Typ Max Units Notes TBS Burst duration – 3.5 – ms Cx = 5 pF, Cs = 18 nF Fc Burst center frequency – 119 – kHz Fm Burst modulation, percentage –7.5 – +7.5 % TPW Burst pulse width – 2 – µs Vdd (V) AKS Mode (RAKS) Speed (RFS) Power Consumption (µA) 1.8 Off Slow 31 Off Fast 104 On Slow 36 On Fast 114 3.3 Off Slow 100 Off Fast 340 On Slow 117 On Fast 380 5.0 Off Slow 215 Off Fast 710 On Slow 245 On Fast 800AT42QT1040 [DATASHEET] 17 9524D–AT42–05/2013 5.6 Mechanical Dimensions Features • High performance, low power AVR® 8-bit Microcontroller • Advanced RISC architecture – 135 powerful instructions – most single clock cycle execution – 32 × 8 general purpose working registers – Fully static operation – Up to 16MIPS throughput at 16MHz – On-chip 2-cycle multiplier • Non-volatile program and data memories – 64/128Kbytes of in-system self-programmable flash • Endurance: 100,000 write/erase cycles – Optional Boot Code section with independent lock bits • USB boot loader programmed by default in the factory • In-system programming by on-chip boot program hardware activated after reset • True read-while-write operation • All supplied parts are pre-programed with a default USB bootloader – 2K/4K (64K/128K flash version) bytes EEPROM • Endurance: 100,000 write/erase cycles – 4K/8K (64K/128K flash version) bytes internal SRAM – Up to 64Kbytes optional external memory space – Programming lock for software security • JTAG (IEEE std. 1149.1 compliant) interface – Boundary-scan capabilities according to the JTAG standard – Extensive on-chip debug support – Programming of flash, EEPROM, fuses, and lock bits through the JTAG interface • USB 2.0 full-speed/low-speed device and on-the-go module – Complies fully with: – Universal serial bus specification REV 2.0 – On-the-go supplement to the USB 2.0 specification rev 1.0 – Supports data transfer rates up to 12Mbit/s and 1.5Mbit/s • USB full-speed/low speed device module with interrupt on transfer completion – Endpoint 0 for control transfers: up to 64-bytes – Six programmable endpoints with in or out directions and with bulk, interrupt or isochronous transfers – Configurable endpoints size up to 256bytes in double bank mode – Fully independent 832bytes USB DPRAM for endpoint memory allocation – Suspend/resume interrupts – Power-on reset and USB bus reset – 48MHz PLL for full-speed bus operation – USB bus disconnection on microcontroller request • USB OTG reduced host: – Supports host negotiation protocol (HNP) and session request protocol (SRP) for OTG dual-role devices – Provide status and control signals for software implementation of HNP and SRP – Provides programmable times required for HNP and SRP • Peripheral features – Two 8-bit timer/counters with separate prescaler and compare mode – Two16-bit timer/counter with separate prescaler, compare- and capture mode 8-bit Atmel Microcontroller with 64/128Kbytes of ISP Flash and USB Controller AT90USB646 AT90USB647 AT90USB1286 AT90USB1287 7593L–AVR–09/122 7593L–AVR–09/12 AT90USB64/128 – Real time counter with separate oscillator – Four 8-bit PWM channels – Six PWM channels with programmable resolution from 2 to 16 bits – Output compare modulator – 8-channels, 10-bit ADC – Programmable serial USART – Master/slave SPI serial interface – Byte oriented 2-wire serial interface – Programmable watchdog timer with separate on-chip oscillator – On-chip analog comparator – Interrupt and wake-up on pin change • Special microcontroller features – Power-on reset and programmable brown-out detection – Internal calibrated oscillator – External and internal interrupt sources – Six sleep modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby • I/O and packages – 48 programmable I/O lines – 64-lead TQFP and 64-lead QFN • Operating voltages – 2.7 - 5.5V • Operating temperature – Industrial (-40°C to +85°C) • Maximum frequency – 8MHz at 2.7V - industrial range – 16MHz at 4.5V - industrial range3 7593L–AVR–09/12 AT90USB64/128 1. Pin configurations Figure 1-1. Pinout Atmel AT90USB64/128-TQFP. AT90USB90128/64 TQFP64 (INT.7/AIN.1/UVcon) PE7 UVcc D- D+ UGnd UCap VBus (IUID) PE3 (SS/PCINT0) PB0 (INT.6/AIN.0) PE6 (PCINT1/SCLK) PB1 (PDI/PCINT2/MOSI) PB2 (PDO/PCINT3/MISO) PB3 (PCINT4/OC.2A) PB4 (PCINT5/OC.1A) PB5 (PCINT6/OC.1B) PB6 (PCINT7/OC.0A/OC.1C) PB7 (INT4/TOSC1) PE4 (INT.5/TOSC2) PE5 RESET VCC GND XTAL2 XTAL1 (OC0B/SCL/INT0) PD0 (OC2B/SDA/INT1) PD1 (RXD1/INT2) PD2 (TXD1/INT3) PD3 (ICP1) PD4 (XCK1) PD5 PA3 (AD3) PA4 (AD4) PA5 (AD5) PA6 (AD6) PA7 (AD7) PE2 (ALE/HWB) PC7 (A15/IC.3/CLKO) PC6 (A14/OC.3A) PC5 (A13/OC.3B) PC4 (A12/OC.3C) PC3 (A11/T.3) PC2 (A10) PC1 (A9) PC0 (A8) PE1 (RD) PE0 (WR) AVCC GND AREF PF0 (ADC0) PF1 (ADC1) PF2 (ADC2) PF3 (ADC3) PF4 (ADC4/TCK) PF5 (ADC5/TMS) PF6 (ADC6/TDO) PF7 (ADC7/TDI) GND VCC PA0 (AD0) PA1 (AD1) PA2 (AD2) (T1) PD6 (T0) PD7 INDEX CORNER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 324 7593L–AVR–09/12 AT90USB64/128 Figure 1-2. Pinout Atmel AT90USB64/128-QFN. Note: The large center pad underneath the MLF packages is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board. 2 3 1 4 5 6 7 8 9 10 11 12 13 14 16 33 15 47 46 48 45 44 43 42 41 40 39 38 37 36 35 34 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 AT90USB128/64 (64-lead QFN top view) INDEX CORNER AVCC G N D AREF PF0 (ADC0) PF1 (ADC1) PF2 (ADC2) PF3 (ADC3) PF4 (ADC4/TCK) PF5 (ADC5/TMS) PF6 (ADC6/TDO) PF7 (ADC7/TDI) G N D VCC PA0 (AD0) PA1 (AD1) PA2 (AD2) (INT.7/AIN.1/UVcon) PE7 UVcc D- D+ UGnd UCap VBus (IUID) PE3 (SS/PCINT0) PB0 (INT.6/AIN.0) PE6 (PCINT1/SCLK) PB1 (PDI/PCINT2/MOSI) PB2 (PDO/PCINT3/MISO) PB3 (PCINT4/OC.2A) PB4 (PCINT5/OC.1A) PB5 (PCINT6/OC.1B) PB6 (PCI NT7/OC.0A/OC.1C) PB7 (INT4/TOSC1) PE4 (INT.5/TOSC2) PE5 VCC G N D XTAL2 XTAL1 (OC0B/SCL/I NT0) PD0 (OC2B/SDA/I NT1) PD1 (RXD1/I NT2) PD2 (TXD1/I NT3) PD3 (ICP1) PD4 (XCK1) PD5 (T1) PD6 (T0) PD7 RESET PA3 (AD3) PA4 (AD4) PA5 (AD5) PA6 (AD6) PA7 (AD7) PE2 (ALE/HWB) PC7 (A15/IC.3/CLKO) PC6 (A14/OC.3A) PC5 (A13/OC.3B) PC4 (A12/OC.3C) PC3 (A11/T.3) PC2 (A10) PC1 (A9) PC0 (A8) PE1 (RD) PE0 (WR)5 7593L–AVR–09/12 AT90USB64/128 2. Overview The Atmel® AVR® AT90USB64/128 is a low-power CMOS 8-bit microcontroller based on the Atmel® AVR® enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the AT90USB64/128 achieves throughputs approaching 1MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.6 7593L–AVR–09/12 AT90USB64/128 2.1 Block diagram Figure 2-1. Block diagram. The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting PROGRAM COUNTER ST ACK POINTER PROGRAM FLASH MCU CONTROL REGISTER SRAM GENERAL PURPOSE REGISTERS INSTRUCTION REGISTER TIMER/ COUNTERS INSTRUCTION DECODER DATA DIR. REG. PORTB DATA DIR. REG. PORTE DATA DIR. REG. PORT A DATA DIR. REG. PORTD DATA REGISTER PORTB DATA REGISTER PORTE DATA REGISTER PORT A DATA REGISTER PORTD INTERRUPT UNIT EEPROM USART1 SPI ST ATUS REGISTER Z Y X ALU POR TE DRIVERS POR TB DRIVERS POR TF DRIVERS POR TA DRIVERS POR TD DRIVERS POR TC DRIVERS PE7 - PE0 PB7 - PB0 PF7 - PF0 PA7 - P A0 RESET VCC AGND GND AREF XT AL1 XT AL2 CONTROL LINES + - ANALOG COMP ARATOR PC7 - PC0 INTERNAL OSCILLA TOR WATCHDOG TIMER 8-BIT DA TA BUS AVCC USB TIMING AND CONTROL OSCILLA TOR CALIB. OSC DATA DIR. REG. PORT C DATA REGISTER PORT C ON-CHIP DEBUG JTAG TAP PROGRAMMING LOGIC BOUNDARYSCAN DATA DIR. REG. PORT F DATA REGISTER PORT F ADC POR - BOD RESET PD7 - PD0 TWO-WIRE SERIAL INTERFACE PLL7 7593L–AVR–09/12 AT90USB64/128 architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The Atmel AT90USB64/128 provides the following features: 64/128Kbytes of In-System Programmable Flash with Read-While-Write capabilities, 2K/4Kbytes EEPROM, 4K/8K bytes SRAM, 48 general purpose I/O lines, 32 general purpose working registers, Real Time Counter (RTC), four flexible Timer/Counters with compare modes and PWM, one USART, a byte oriented 2-wire Serial Interface, a 8-channels, 10-bit ADC with optional differential input stage with programmable gain, programmable Watchdog Timer with Internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug system and programming and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run. The device is manufactured using the Atmel high-density nonvolatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the AT90USB64/128 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The AT90USB64/128 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.8 7593L–AVR–09/12 AT90USB64/128 2.2 Pin descriptions 2.2.1 VCC Digital supply voltage. 2.2.2 GND Ground. 2.2.3 AVCC Analog supply voltage. 2.2.4 Port A (PA7..PA0) Port A is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port A also serves the functions of various special features of the Atmel AT90USB64/128 as listed on page 78. 2.2.5 Port B (PB7..PB0) Port B is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B has better driving capabilities than the other ports. Port B also serves the functions of various special features of the AT90USB64/128 as listed on page 79. 2.2.6 Port C (PC7..PC0) Port C is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port C also serves the functions of special features of the AT90USB64/128 as listed on page 82. 2.2.7 Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port D also serves the functions of various special features of the AT90USB64/128 as listed on page 83. 9 7593L–AVR–09/12 AT90USB64/128 2.2.8 Port E (PE7..PE0) Port E is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port E also serves the functions of various special features of the AT90USB64/128 as listed on page 86. 2.2.9 Port F (PF7..PF0) Port F serves as analog inputs to the A/D Converter. Port F also serves as an 8-bit bidirectional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs. Port F also serves the functions of the JTAG interface. 2.2.10 DUSB Full speed / Low Speed Negative Data Upstream Port. Should be connected to the USB Dconnector pin with a serial 22Ω resistor. 2.2.11 D+ USB Full speed / Low Speed Positive Data Upstream Port. Should be connected to the USB D+ connector pin with a serial 22Ω resistor. 2.2.12 UGND USB Pads Ground. 2.2.13 UVCC USB Pads Internal Regulator Input supply voltage. 2.2.14 UCAP USB Pads Internal Regulator Output supply voltage. Should be connected to an external capacitor (1µF). 2.2.15 VBUS USB VBUS monitor and OTG negociations. 2.2.16 RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 9-1 on page 58. Shorter pulses are not guaranteed to generate a reset. 2.2.17 XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.10 7593L–AVR–09/12 AT90USB64/128 2.2.18 XTAL2 Output from the inverting oscillator amplifier. 2.2.19 AVCC AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. 2.2.20 AREF This is the analog reference pin for the A/D Converter. 3. Resources A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr. 4. About code examples This documentation contains simple code examples that briefly show how to use various parts of the device. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details. These code examples assume that the part specific header file is included before compilation. For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".11 7593L–AVR–09/12 AT90USB64/128 5. AVR CPU core 5.1 Introduction This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and handle interrupts. 5.2 Architectural overview Figure 5-1. Block diagram of the AVR architecture. In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories and buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-System Re-programmable Flash memory. Flash program memory Instruction register Instruction decoder Program counter Control lines 32 x 8 general purpose registrers ALU Status and control I/O lines EEPROM Data bus 8-bit Data SRAM Direct addressing Indirect addressing Interrupt unit SPI unit Watchdog timer Analog comparator I/O Module 2 I/O Module1 I/O Module n12 7593L–AVR–09/12 AT90USB64/128 The fast-access Register File contains 32 × 8-bit general purpose working registers with a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the Register File, the operation is executed, and the result is stored back in the Register File – in one clock cycle. Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing – enabling efficient address calculations. One of the these address pointers can also be used as an address pointer for look up tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section. The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect information about the result of the operation. Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or 32-bit instruction. Program Flash memory space is divided in two sections, the Boot Program section and the Application Program section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes into the Application Flash memory section must reside in the Boot Program section. During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture. The memory spaces in the AVR architecture are all linear and regular memory maps. A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority. The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the Register File, 0x20 - 0x5F. In addition, the Atmel AT90USB64/128 has Extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used. 5.3 ALU – Arithmetic Logic Unit The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. The ALU operations are divided into three main categories – arithmetic, logical, and bit-functions. Some implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See the “Instruction set summary” on page 423 for a detailed description.13 7593L–AVR–09/12 AT90USB64/128 5.4 Status register The status register contains information about the result of the most recently executed arithmetic instruction. This information can be used for altering program flow in order to perform conditional operations. Note that the status register is updated after all ALU operations, as specified in the Instruction Set Reference. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code. The status register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt. This must be handled by software. The AVR status register – SREG – is defined as: • Bit 7 – I: Global Interrupt Enable The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the instruction set reference. • Bit 6 – T: Bit Copy Storage The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the BLD instruction. • Bit 5 – H: Half Carry Flag The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful in BCD arithmetic. See the “Instruction set summary” on page 423 for detailed information. • Bit 4 – S: Sign Bit, S = N ⊕ V The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V. See the “Instruction set summary” on page 423 for detailed information. • Bit 3 – V: Two’s Complement Overflow Flag The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the “Instruction set summary” on page 423 for detailed information. • Bit 2 – N: Negative Flag The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction set summary” on page 423 for detailed information. • Bit 1 – Z: Zero Flag The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction set summary” on page 423 for detailed information. Bit 7 6 5 4 3 2 1 0 I T H S V N Z C SREG Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 014 7593L–AVR–09/12 AT90USB64/128 • Bit 0 – C: Carry Flag The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction set summary” on page 423 for detailed information. 5.5 General purpose register file The register file is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required performance and flexibility, the following input/output schemes are supported by the register file: • One 8-bit output operand and one 8-bit result input • Two 8-bit output operands and one 8-bit result input • Two 8-bit output operands and one 16-bit result input • One 16-bit output operand and one 16-bit result input Figure 5-2 shows the structure of the 32 general purpose working registers in the CPU. Figure 5-2. AVR CPU general purpose working registers. Most of the instructions operating on the Register File have direct access to all registers, and most of them are single cycle instructions. As shown in Figure 5-2, each register is also assigned a data memory address, mapping them directly into the first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory organization provides great flexibility in access of the registers, as the X-, Y-, and Z-pointer registers can be set to index any register in the file. 5.5.1 The X-register, Y-register, and Z-register The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described in Figure 5-3. 7 0 Addr. R0 0x00 R1 0x01 R2 0x02 … R13 0x0D General R14 0x0E purpose R15 0x0F working R16 0x10 registers R17 0x11 … R26 0x1A X-register Low byte R27 0x1B X-register High byte R28 0x1C Y-register Low byte R29 0x1D Y-register High byte R30 0x1E Z-register Low byte R31 0x1F Z-register High byte15 7593L–AVR–09/12 AT90USB64/128 Figure 5-3. The X-, Y-, and Z-registers. In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and automatic decrement (see the instruction set reference for details). 5.6 Stack pointer The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after interrupts and subroutine calls. The Stack Pointer Register always points to the top of the Stack. Note that the Stack is implemented as growing from higher memory locations to lower memory locations. This implies that a Stack PUSH command decreases the Stack Pointer. The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. This Stack space in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to point above 0x0100. The initial value of the stack pointer is the last address of the internal SRAM. The Stack Pointer is decremented by one when data is pushed onto the Stack with the PUSH instruction, and it is decremented by three when the return address is pushed onto the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is popped from the Stack with the POP instruction, and it is incremented by three when data is popped from the Stack with return from subroutine RET or return from interrupt RETI. The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register will not be present. 15 XH XL 0 X-register 7 07 0 R27 (0x1B) R26 (0x1A) 15 YH YL 0 Y-register 7 07 0 R29 (0x1D) R28 (0x1C) 15 ZH ZL 0 Z-register 70 7 0 R31 (0x1F) R30 (0x1E) Bit 15 14 13 12 11 10 9 8 SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL 76543210 Read/write R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 1 0 0 0 0 0 1111111116 7593L–AVR–09/12 AT90USB64/128 5.6.1 RAMPZ - Extended Z-pointer register for ELPM/SPM For ELPM/SPM instructions, the Z-pointer is a concatenation of RAMPZ, ZH, and ZL, as shown in Figure 5-4. Note that LPM is not affected by the RAMPZ setting. Figure 5-4. The Z-pointer used by ELPM and SPM. The actual number of bits is implementation dependent. Unused bits in an implementation will always read as zero. For compatibility with future devices, be sure to write these bits to zero. 5.7 Instruction execution timing This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used. Figure 5-5 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit. Figure 5-5. The parallel instruction fetches and instruction executions. Figure 5-6 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register operands is executed, and the result is stored back to the destination register. Bit 7 6 5 4 3 2 1 0 RAMPZ7 RAMPZ6 RAMPZ5 RAMPZ4 RAMPZ3 RAMPZ2 RAMPZ1 RAMPZ0 RAMPZ Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit (individually) 7 0 7 0 7 0 RAMPZ ZH ZL Bit (Z-pointer) 23 16 15 8 7 0 clk 1st instruction fetch 1st instruction execute 2nd instruction fetch 2nd instruction execute 3rd instruction fetch 3rd instruction execute 4th instruction fetch T1 T2 T3 T4 CPU17 7593L–AVR–09/12 AT90USB64/128 Figure 5-6. Single cycle ALU operation. 5.8 Reset and interrupt handling The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each have a separate program vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software security. See the section “Memory programming” on page 359 for details. The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 68. The list also determines the priority levels of the different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 68 for more information. The Reset Vector can also be moved to the start of the Boot Flash section by programming the BOOTRST Fuse, see “Memory programming” on page 359. When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction – RETI – is executed. There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the Global Interrupt Enable bit is set, and will then be executed by order of priority. The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served. Total execution time Register operands fetch ALU operation execute Result write back T1 T2 T3 T4 clkCPU18 7593L–AVR–09/12 AT90USB64/128 Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when returning from an interrupt routine. This must be handled by software. When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can be used to avoid interrupts during the timed EEPROM write sequence. When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pending interrupts, as shown in this example. Assembly code example in r16, SREG ; store SREG value cli ; disable interrupts during timed sequence sbi EECR, EEMPE ; start EEPROM write sbi EECR, EEPE out SREG, r16 ; restore SREG value (I-bit) C code example char cSREG; cSREG = SREG; /* store SREG value */ /* disable interrupts during timed sequence */ __disable_interrupt(); EECR |= (1< CSn2:0 > 1). The number of system clock cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024). It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execution. However, care must be taken if the other Timer/Counter that shares the same prescaler also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is connected to. 13.3 External clock source An external clock source applied to the Tn pin can be used as Timer/Counter clock (clkTn). The Tn pin is sampled once every system clock cycle by the pin synchronization logic. The synchronized (sampled) signal is then passed through the edge detector. Figure 13-1 shows a functional equivalent block diagram of the Tn synchronization and edge detector logic. The registers are clocked at the positive edge of the internal system clock (clkI/O). The latch is transparent in the high period of the internal system clock. The edge detector generates one clkTn pulse for each positive (CSn2:0 = 7) or negative (CSn2:0 = 6) edge it detects. Figure 13-1. Tn/T0 pin sampling. The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles from an edge has been applied to the Tn pin to the counter is updated. Enabling and disabling of the clock input must be done when Tn has been stable for at least one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated. Tn_sync (To clock select logic) Synchronization Edge detector D Q D Q LE Tn D Q clkI/O97 7593L–AVR–09/12 AT90USB64/128 Each half period of the external clock applied must be longer than one system clock cycle to ensure correct sampling. The external clock must be guaranteed to have less than half the system clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since the edge detector uses sampling, the maximum frequency of an external clock it can detect is half the sampling frequency (Nyquist sampling theorem). However, due to variation of the system clock frequency and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5. An external clock source can not be prescaled. Figure 13-2. Prescaler for synchronous Timer/Counters 13.4 GTCCR – General Timer/Counter Control Register • Bit 7 – TSM: Timer/Counter Synchronization Mode Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the value that is written to the PSRASY and PSRSYNC bits is kept, hence keeping the corresponding prescaler reset signals asserted. This ensures that the corresponding Timer/Counters are halted and can be configured to the same value without the risk of one of them advancing during configuration. When the TSM bit is written to zero, the PSRASY and PSRSYNC bits are cleared by hardware, and the Timer/Counters start counting simultaneously. • Bit 0 – PSRSYNC: Prescaler Reset for Synchronous Timer/Counters When this bit is one, Timer/Counter0 and Timer/Counter1 and Timer/Counter3 prescaler will be Reset. This bit is normally cleared immediately by hardware, except if the TSM bit is set. Note that Timer/Counter0, Timer/Counter1 and Timer/Counter3 share the same prescaler and a reset of this prescaler will affect all timers. PSR10 Clear Tn Tn clkI/O Synchronization Synchronization TIMER/COUNTERn CLOCK SOURCE clkTn TIMER/COUNTERn CLOCK SOURCE clkTn CSn0 CSn1 CSn2 CSn0 CSn1 CSn2 Bit 7 6 5 4 3 2 1 0 TSM – – – – – PSRASY PSRSYNC GTCCR Read/write R/W R R R R R R/W R/W Initial value 0 0 0 0 0 0 0 098 7593L–AVR–09/12 AT90USB64/128 14. 8-bit Timer/Counter0 with PWM Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output Compare Units, and with PWM support. It allows accurate program execution timing (event management) and wave generation. The main features are: • Two independent output compare units • Double buffered output compare registers • Clear timer on compare match (auto reload) • Glitch free, phase correct pulse width modulator (PWM) • Variable PWM period • Frequency generator • Three independent interrupt sources (TOV0, OCF0A, and OCF0B) 14.1 Overview A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 14-1. For the actual placement of I/O pins, refer to “Pinout Atmel AT90USB64/128-TQFP.” on page 3. CPU accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are listed in the “8-bit Timer/Counter register description” on page 108. Figure 14-1. 8-bit Timer/Counter block diagram. 14.1.1 Registers The Timer/Counter (TCNT0) and Output Compare Registers (OCR0A and OCR0B) are 8-bit registers. Interrupt request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag Register (TIFR0). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure. The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the T0 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source is selected. The output from the Clock Select logic is referred to as the timer clock (clkT0). Clock select Timer/Counter DATA BUS OCRnA OCRnB = = TCNTn Waveform generation Waveform generation OCnA OCnB = Fixed TOP value Control logic = 0 TOP BOTTOM Count Clear Direction TOVn (int.req.) OCnA (int.req.) OCnB (Int.Req.) TCCRnA TCCRnB Tn Edge detector (From prescaler) clkTn99 7593L–AVR–09/12 AT90USB64/128 The double buffered Output Compare Registers (OCR0A and OCR0B) are compared with the Timer/Counter value at all times. The result of the compare can be used by the Waveform Generator to generate a PWM or variable frequency output on the Output Compare pins (OC0A and OC0B). See “Output compare unit” on page 100. for details. The Compare Match event will also set the Compare Flag (OCF0A or OCF0B) which can be used to generate an Output Compare interrupt request. 14.1.2 Definitions Many register and bit references in this section are written in general form. A lower case “n” replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output Compare Unit, in this case Compare Unit A or Compare Unit B. However, when using the register or bit defines in a program, the precise form must be used, that is, TCNT0 for accessing Timer/Counter0 counter value and so on. The definitions in the table below are also used extensively throughout the document. 14.2 Timer/Counter clock sources The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits located in the Timer/Counter Control Register (TCCR0B). For details on clock sources and prescaler, see “Timer/Counter0, Timer/Counter1, and Timer/Counter3 prescalers” on page 96. 14.3 Counter unit The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 14-2 shows a block diagram of the counter and its surroundings. Figure 14-2. Counter unit block diagram. BOTTOM The counter reaches the BOTTOM when it becomes 0x00. MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255). TOP The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX) or the value stored in the OCR0A Register. The assignment is dependent on the mode of operation. DATA BUS TCNTn Control logic count TOVn (int.req.) Clock select top Tn Edge detector (From prescaler) clkTn bottom direction clear100 7593L–AVR–09/12 AT90USB64/128 Signal description (internal signals): count Increment or decrement TCNT0 by 1. direction Select between increment and decrement. clear Clear TCNT0 (set all bits to zero). clkTn Timer/Counter clock, referred to as clkT0 in the following. top Signalize that TCNT0 has reached maximum value. bottom Signalize that TCNT0 has reached minimum value (zero). Depending of the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock (clkT0). clkT0 can be generated from an external or internal clock source, selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the timer is stopped. However, the TCNT0 value can be accessed by the CPU, regardless of whether clkT0 is present or not. A CPU write overrides (has priority over) all counter clear or count operations. The counting sequence is determined by the setting of the WGM01 and WGM00 bits located in the Timer/Counter Control Register (TCCR0A) and the WGM02 bit located in the Timer/Counter Control Register B (TCCR0B). There are close connections between how the counter behaves (counts) and how waveforms are generated on the Output Compare outputs OC0A and OC0B. For more details about advanced counting sequences and waveform generation, see “Modes of operation” on page 103. The Timer/Counter Overflow Flag (TOV0) is set according to the mode of operation selected by the WGM02:0 bits. TOV0 can be used for generating a CPU interrupt. 14.4 Output compare unit The 8-bit comparator continuously compares TCNT0 with the Output Compare Registers (OCR0A and OCR0B). Whenever TCNT0 equals OCR0A or OCR0B, the comparator signals a match. A match will set the Output Compare Flag (OCF0A or OCF0B) at the next timer clock cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is executed. Alternatively, the flag can be cleared by software by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to generate an output according to operating mode set by the WGM02:0 bits and Compare Output mode (COM0x1:0) bits. The maximum and bottom signals are used by the Waveform Generator for handling the special cases of the extreme values in some modes of operation (“Modes of operation” on page 103). Figure 14-3 on page 101 shows a block diagram of the Output Compare unit. 101 7593L–AVR–09/12 AT90USB64/128 Figure 14-3. Output Compare Unit, block diagram. The OCR0x Registers are double buffered when using any of the Pulse Width Modulation (PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the update of the OCR0x Compare Registers to either top or bottom of the counting sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free. The OCR0x Register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has access to the OCR0x Buffer Register, and if double buffering is disabled the CPU will access the OCR0x directly. 14.4.1 Force output compare In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the Force Output Compare (FOC0x) bit. Forcing Compare Match will not set the OCF0x Flag or reload/clear the timer, but the OC0x pin will be updated as if a real Compare Match had occurred (the COM0x1:0 bits settings define whether the OC0x pin is set, cleared or toggled). 14.4.2 Compare match blocking by TCNT0 write All CPU write operations to the TCNT0 Register will block any Compare Match that occur in the next timer clock cycle, even when the timer is stopped. This feature allows OCR0x to be initialized to the same value as TCNT0 without triggering an interrupt when the Timer/Counter clock is enabled. 14.4.3 Using the output compare unit Since writing TCNT0 in any mode of operation will block all Compare Matches for one timer clock cycle, there are risks involved when changing TCNT0 when using the Output Compare Unit, independently of whether the Timer/Counter is running or not. If the value written to TCNT0 equals the OCR0x value, the Compare Match will be missed, resulting in incorrect waveform generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is down-counting. OCFnx (int.req.) = (8-bit comparator) OCRnx OCnx DATA BUS TCNTn WGMn1:0 Waveform generator top FOCn COMnX1:0 bottom102 7593L–AVR–09/12 AT90USB64/128 The setup of the OC0x should be performed before setting the Data Direction Register for the port pin to output. The easiest way of setting the OC0x value is to use the Force Output Compare (FOC0x) strobe bits in Normal mode. The OC0x Registers keep their values even when changing between Waveform Generation modes. Be aware that the COM0x1:0 bits are not double buffered together with the compare value. Changing the COM0x1:0 bits will take effect immediately. 14.5 Compare Match Output Unit The Compare Output mode (COM0x1:0) bits have two functions. The Waveform Generator uses the COM0x1:0 bits for defining the Output Compare (OC0x) state at the next Compare Match. Also, the COM0x1:0 bits control the OC0x pin output source. Figure 14-4 shows a simplified schematic of the logic affected by the COM0x1:0 bit setting. The I/O Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers (DDR and PORT) that are affected by the COM0x1:0 bits are shown. When referring to the OC0x state, the reference is for the internal OC0x Register, not the OC0x pin. If a system reset occur, the OC0x Register is reset to “0”. Figure 14-4. Compare Match Output Unit, schematic. The general I/O port function is overridden by the Output Compare (OC0x) from the Waveform Generator if either of the COM0x1:0 bits are set. However, the OC0x pin direction (input or output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OC0x pin (DDR_OC0x) must be set as output before the OC0x value is visible on the pin. The port override function is independent of the Waveform Generation mode. The design of the Output Compare pin logic allows initialization of the OC0x state before the output is enabled. Note that some COM0x1:0 bit settings are reserved for certain modes of operation. See “8-bit Timer/Counter register description” on page 108. 14.5.1 Compare output mode and waveform generation The Waveform Generator uses the COM0x1:0 bits differently in Normal, CTC, and PWM modes. For all modes, setting the COM0x1:0 = 0 tells the Waveform Generator that no action on the OC0x Register is to be performed on the next Compare Match. For compare output actions in PORT DDR D Q D Q OCnx OCnx Pin D Q Waveform generator COMnx1 COMnx0 0 1 DATA BUS FOCn clkI/O103 7593L–AVR–09/12 AT90USB64/128 the non-PWM modes refer to Table 14-1 on page 109. For fast PWM mode, refer to Table 14-2 on page 109, and for phase correct PWM refer to Table 14-3 on page 109. A change of the COM0x1:0 bits state will have effect at the first Compare Match after the bits are written. For non-PWM modes, the action can be forced to have immediate effect by using the FOC0x strobe bits. 14.6 Modes of operation The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins, is defined by the combination of the Waveform Generation mode (WGM02:0) and Compare Output mode (COM0x1:0) bits. The Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do. The COM0x1:0 bits control whether the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COM0x1:0 bits control whether the output should be set, cleared, or toggled at a Compare Match (See “Compare Match Output Unit” on page 102.). For detailed timing information see “Timer/Counter timing diagrams” on page 107. 14.6.1 Normal mode The simplest mode of operation is the Normal mode (WGM02:0 = 0). In this mode the counting direction is always up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the same timer clock cycle as the TCNT0 becomes zero. The TOV0 Flag in this case behaves like a ninth bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOV0 Flag, the timer resolution can be increased by software. There are no special cases to consider in the Normal mode, a new counter value can be written anytime. The Output Compare Unit can be used to generate interrupts at some given time. Using the Output Compare to generate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time. 14.6.2 Clear Timer on Compare Match (CTC) mode In Clear Timer on Compare or CTC mode (WGM02:0 = 2), the OCR0A Register is used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT0) matches the OCR0A. The OCR0A defines the top value for the counter, hence also its resolution. This mode allows greater control of the Compare Match output frequency. It also simplifies the operation of counting external events. The timing diagram for the CTC mode is shown in Figure 14-5 on page 104. The counter value (TCNT0) increases until a Compare Match occurs between TCNT0 and OCR0A, and then counter (TCNT0) is cleared.104 7593L–AVR–09/12 AT90USB64/128 Figure 14-5. CTC mode, timing diagram. An interrupt can be generated each time the counter value reaches the TOP value by using the OCF0A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing TOP to a value close to BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC mode does not have the double buffering feature. If the new value written to OCR0A is lower than the current value of TCNT0, the counter will miss the Compare Match. The counter will then have to count to its maximum value (0xFF) and wrap around starting at 0x00 before the Compare Match can occur. For generating a waveform output in CTC mode, the OC0A output can be set to toggle its logical level on each Compare Match by setting the Compare Output mode bits to toggle mode (COM0A1:0 = 1). The OC0A value will not be visible on the port pin unless the data direction for the pin is set to output. The waveform generated will have a maximum frequency of fOC0 = fclk_I/O/2 when OCR0A is set to zero (0x00). The waveform frequency is defined by the following equation: The N variable represents the prescale factor (1, 8, 64, 256, or 1024). As for the Normal mode of operation, the TOV0 Flag is set in the same timer clock cycle that the counter counts from MAX to 0x00. 14.6.3 Fast PWM mode The fast Pulse Width Modulation or fast PWM mode (WGM02:0 = 3 or 7) provides a high frequency PWM waveform generation option. The fast PWM differs from the other PWM option by its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOTTOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR0A when WGM2:0 = 7. In noninverting Compare Output mode, the Output Compare (OC0x) is cleared on the Compare Match between TCNT0 and OCR0x, and set at BOTTOM. In inverting Compare Output mode, the output is set on Compare Match and cleared at BOTTOM. Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC applications. High frequency allows physically small sized external components (coils, capacitors), and therefore reduces total system cost. In fast PWM mode, the counter is incremented until the counter value matches the TOP value. The counter is then cleared at the following timer clock cycle. The timing diagram for the fast TCNTn OCn (Toggle) OCnx Interrupt Flag Set Period 1 2 3 4 (COMnx1:0 = 1) f OCnx f clk_I/O 2 ⋅ ⋅ N ( ) 1 + OCRnx = -------------------------------------------------105 7593L–AVR–09/12 AT90USB64/128 PWM mode is shown in Figure 14-6. The TCNT0 value is in the timing diagram shown as a histogram for illustrating the single-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes represent Compare Matches between OCR0x and TCNT0. Figure 14-6. Fast PWM mode, timing diagram. The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches TOP. If the interrupt is enabled, the interrupt handler routine can be used for updating the compare value. In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0x pins. Setting the COM0x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COM0x1:0 to three: Setting the COM0A1:0 bits to one allows the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is not available for the OC0B pin (see Table 14-2 on page 109). The actual OC0x value will only be visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OC0x Register at the Compare Match between OCR0x and TCNT0, and clearing (or setting) the OC0x Register at the timer clock cycle the counter is cleared (changes from TOP to BOTTOM). The PWM frequency for the output can be calculated by the following equation: The N variable represents the prescale factor (1, 8, 64, 256, or 1024). The extreme values for the OCR0A Register represents special cases when generating a PWM waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM, the output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A equal to MAX will result in a constantly high or low output (depending on the polarity of the output set by the COM0A1:0 bits.) A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC0x to toggle its logical level on each Compare Match (COM0x1:0 = 1). The waveform generated will have a maximum frequency of fOC0 = fclk_I/O/2 when OCR0A is set to zero. This TCNTn OCRnx update and TOVn Interrupt Flag Set Period 1 2 3 OCnx OCnx (COMnx1:0 = 2) (COMnx1:0 = 3) OCRnx Interrupt Flag Set 4 5 6 7 f OCnxPWM f clk_I/O N ⋅ 256 = ------------------106 7593L–AVR–09/12 AT90USB64/128 feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the Output Compare unit is enabled in the fast PWM mode. 14.6.4 Phase correct PWM mode The phase correct PWM mode (WGM02:0 = 1 or 5) provides a high resolution phase correct PWM waveform generation option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOTTOM. TOP is defined as 0xFF when WGM2:0 = 1, and OCR0A when WGM2:0 = 5. In noninverting Compare Output mode, the Output Compare (OC0x) is cleared on the Compare Match between TCNT0 and OCR0x while up-counting, and set on the Compare Match while downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has lower maximum operation frequency than single slope operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control applications. In phase correct PWM mode the counter is incremented until the counter value matches TOP. When the counter reaches TOP, it changes the count direction. The TCNT0 value will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 14-7. The TCNT0 value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes represent Compare Matches between OCR0x and TCNT0. Figure 14-7. Phase correct PWM mode, timing diagram. The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOTTOM. The Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM value. In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OC0x pins. Setting the COM0x1:0 bits to two will produce a non-inverted PWM. An inverted PWM output can be generated by setting the COM0x1:0 to three: Setting the COM0A0 bits to TOVn Interrupt Flag Set OCnx Interrupt Flag Set 1 2 3 TCNTn Period OCnx OCnx (COMnx1:0 = 2) (COMnx1:0 = 3) OCRnx update107 7593L–AVR–09/12 AT90USB64/128 one allows the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is not available for the OC0B pin (see Table 14-3 on page 109). The actual OC0x value will only be visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is generated by clearing (or setting) the OC0x Register at the Compare Match between OCR0x and TCNT0 when the counter increments, and setting (or clearing) the OC0x Register at Compare Match between OCR0x and TCNT0 when the counter decrements. The PWM frequency for the output when using phase correct PWM can be calculated by the following equation: The N variable represents the prescale factor (1, 8, 64, 256, or 1024). The extreme values for the OCR0A Register represent special cases when generating a PWM waveform output in the phase correct PWM mode. If the OCR0A is set equal to BOTTOM, the output will be continuously low and if set equal to MAX the output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. At the very start of period 2 in Figure 14-7 on page 106 OCnx has a transition from high to low even though there is no Compare Match. The point of this transition is to guarantee symmetry around BOTTOM. There are two cases that give a transition without Compare Match. • OCR0A changes its value from MAX, like in Figure 14-7 on page 106. When the OCR0A value is MAX the OCn pin value is the same as the result of a down-counting Compare Match. To ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-counting Compare Match • The timer starts counting from a value higher than the one in OCR0A, and for that reason misses the Compare Match and hence the OCn change that would have happened on the way up 14.7 Timer/Counter timing diagrams The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a clock enable signal in the following figures. The figures include information on when Interrupt Flags are set. Figure 14-8 contains timing data for basic Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes other than phase correct PWM mode. Figure 14-8. Timer/Counter timing diagram, no prescaling. Figure 14-9 on page 108 shows the same timing data, but with the prescaler enabled. f OCnxPCPWM f clk_I/O N ⋅ 510 = ------------------ clkTn (clkI/O/1) TOVn clkI/O TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1108 7593L–AVR–09/12 AT90USB64/128 Figure 14-9. Timer/Counter timing diagram, with prescaler (fclk_I/O/8). Figure 14-10 shows the setting of OCF0B in all modes and OCF0A in all modes except CTC mode and PWM mode, where OCR0A is TOP. Figure 14-10. Timer/Counter timing diagram, setting of OCF0x, with prescaler (fclk_I/O/8). Figure 14-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode and fast PWM mode where OCR0A is TOP. Figure 14-11. Timer/Counter timing diagram, clear timer on Compare Match mode, with prescaler (fclk_I/O/8) 14.8 8-bit Timer/Counter register description 14.8.1 TCCR0A – Timer/Counter Control Register A TOVn TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1 clkI/O clkTn (clkI/O/8) OCFnx OCRnx TCNTn OCRnx Value OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2 clkI/O clkTn (clkI/O/8) OCFnx OCRnx TCNTn (CTC) TOP TOP - 1 TOP BOTTOM BOTTOM + 1 clkI/O clkTn (clkI/O/8) Bit 7 6 5 4 3 2 1 0 COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00 TCCR0A Read/write R/W R/W R/W R/W R R R/W R/W Initial value 0 0 0 0 0 0 0 0109 7593L–AVR–09/12 AT90USB64/128 • Bits 7:6 – COM01A:0: Compare Match Output A Mode These bits control the Output Compare pin (OC0A) behavior. If one or both of the COM0A1:0 bits are set, the OC0A output overrides the normal port functionality of the I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0A pin must be set in order to enable the output driver. When OC0A is connected to the pin, the function of the COM0A1:0 bits depends on the WGM02:0 bit setting. Table 14-1 shows the COM0A1:0 bit functionality when the WGM02:0 bits are set to a normal or CTC mode (non-PWM). Table 14-2 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to fast PWM mode. Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the Compare Match is ignored, but the set or clear is done at TOP. See “Fast PWM mode” on page 104 for more details. Table 14-3 shows the COM0A1:0 bit functionality when the WGM02:0 bits are set to phase correct PWM mode. Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the Compare Match is ignored, but the set or clear is done at TOP. See “Phase correct PWM mode” on page 106 for more details. Table 14-1. Compare Output mode, non-PWM mode. COM0A1 COM0A0 Description 0 0 Normal port operation, OC0A disconnected. 0 1 Toggle OC0A on Compare Match 1 0 Clear OC0A on Compare Match 1 1 Set OC0A on Compare Match Table 14-2. Compare Output mode, Fast PWM mode (1). COM0A1 COM0A0 Description 0 0 Normal port operation, OC0A disconnected. 0 1 WGM02 = 0: Normal Port Operation, OC0A Disconnected. WGM02 = 1: Toggle OC0A on Compare Match. 1 0 Clear OC0A on Compare Match, set OC0A at TOP 1 1 Set OC0A on Compare Match, clear OC0A at TOP Table 14-3. Compare Output mode, phase correct PWM mode (1). COM0A1 COM0A0 Description 0 0 Normal port operation, OC0A disconnected. 0 1 WGM02 = 0: Normal Port Operation, OC0A Disconnected. WGM02 = 1: Toggle OC0A on Compare Match. 1 0 Clear OC0A on Compare Match when up-counting. Set OC0A on Compare Match when down-counting. 1 1 Set OC0A on Compare Match when up-counting. Clear OC0A on Compare Match when down-counting.110 7593L–AVR–09/12 AT90USB64/128 • Bits 5:4 – COM0B1:0: Compare Match Output B mode These bits control the Output Compare pin (OC0B) behavior. If one or both of the COM0B1:0 bits are set, the OC0B output overrides the normal port functionality of the I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0B pin must be set in order to enable the output driver. When OC0B is connected to the pin, the function of the COM0B1:0 bits depends on the WGM02:0 bit setting. Table 14-1 shows the COM0A1:0 bit functionality when the WGM02:0 bits are set to a normal or CTC mode (non-PWM). Table 14-2 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to fast PWM mode. Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Compare Match is ignored, but the set or clear is done at TOP. See “Fast PWM mode” on page 104 for more details. Table 14-3 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to phase correct PWM mode. Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the Compare Match is ignored, but the set or clear is done at TOP. See “Phase correct PWM mode” on page 106 for more details. • Bits 3, 2 – Res: Reserved bits These bits are reserved bits in the Atmel AT90USB64/128 and will always read as zero. Table 14-4. Compare Output mode, non-PWM mode. COM01 COM00 Description 0 0 Normal port operation, OC0B disconnected. 0 1 Toggle OC0B on Compare Match 1 0 Clear OC0B on Compare Match 1 1 Set OC0B on Compare Match Table 14-5. Compare Output mode, fast PWM mode (1). COM01 COM00 Description 0 0 Normal port operation, OC0B disconnected. 0 1 Reserved. 1 0 Clear OC0B on Compare Match, set OC0B at TOP. 1 1 Set OC0B on Compare Match, clear OC0B at TOP. Table 14-6. Compare Output mode, phase correct PWM mode (1). COM0A1 COM0A0 Description 0 0 Normal port operation, OC0B disconnected. 0 1 Reserved. 1 0 Clear OC0B on Compare Match when up-counting. Set OC0B on Compare Match when down-counting. 1 1 Set OC0B on Compare Match when up-counting. Clear OC0B on Compare Match when down-counting.111 7593L–AVR–09/12 AT90USB64/128 • Bits 1:0 – WGM01:0: Waveform Generation Mode Combined with the WGM02 bit found in the TCCR0B Register, these bits control the counting sequence of the counter, the source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 14-7. Modes of operation supported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes (see “Modes of operation” on page 103). Notes: 1. MAX = 0xFF 2. BOTTOM = 0x00 14.8.2 TCCR0B – Timer/Counter Control Register B • Bit 7 – FOC0A: Force Output Compare A The FOC0A bit is only active when the WGM bits specify a non-PWM mode. However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0A bit, an immediate Compare Match is forced on the Waveform Generation unit. The OC0A output is changed according to its COM0A1:0 bits setting. Note that the FOC0A bit is implemented as a strobe. Therefore it is the value present in the COM0A1:0 bits that determines the effect of the forced compare. A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR0A as TOP. The FOC0A bit is always read as zero. • Bit 6 – FOC0B: Force Output Compare B The FOC0B bit is only active when the WGM bits specify a non-PWM mode. However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0B bit, an immediate Compare Match is forced on the Waveform Generation unit. The OC0B output is changed according to its COM0B1:0 bits setting. Note that the FOC0B bit is implemented as a Table 14-7. Waveform Generation Mode bit description. Mode WGM2 WGM1 WGM0 Timer/Counter mode of operation TOP Update of OCRx at TOV flag set on (1)(2) 0 0 0 0 Normal 0xFF Immediate MAX 1 0 0 1 PWM, phase correct 0xFF TOP BOTTOM 2 0 1 0 CTC OCRA Immediate MAX 3 0 1 1 Fast PWM 0xFF TOP MAX 4 1 0 0 Reserved – – – 5 1 0 1 PWM, phase correct OCRA TOP BOTTOM 6 1 1 0 Reserved – – – 7 1 1 1 Fast PWM OCRA TOP TOP Bit 7 6 5 4 3 2 1 0 FOC0A FOC0B – – WGM02 CS02 CS01 CS00 TCCR0B Read/write W W R R R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0112 7593L–AVR–09/12 AT90USB64/128 strobe. Therefore it is the value present in the COM0B1:0 bits that determines the effect of the forced compare. A FOC0B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR0B as TOP. The FOC0B bit is always read as zero. • Bits 5:4 – Res: Reserved bits These bits are reserved bits and will always read as zero. • Bit 3 – WGM02: Waveform Generation Mode See the description in the “TCCR0A – Timer/Counter Control Register A” on page 108. • Bits 2:0 – CS02:0: Clock Select The three Clock Select bits select the clock source to be used by the Timer/Counter. If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the counter even if the pin is configured as an output. This feature allows software control of the counting. 14.8.3 TCNT0 – Timer/Counter Register The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the Compare Match on the following timer clock. Modifying the counter (TCNT0) while the counter is running, introduces a risk of missing a Compare Match between TCNT0 and the OCR0x Registers. 14.8.4 OCR0A – Output Compare Register A Table 14-8. Clock Select bit description. CS02 CS01 CS00 Description 0 0 0 No clock source (Timer/Counter stopped) 0 0 1 clkI/O/(No prescaling) 0 1 0 clkI/O/8 (From prescaler) 0 1 1 clkI/O/64 (From prescaler) 1 0 0 clkI/O/256 (From prescaler) 1 0 1 clkI/O/1024 (From prescaler) 1 1 0 External clock source on T0 pin. Clock on falling edge. 1 1 1 External clock source on T0 pin. Clock on rising edge. Bit 7 6 5 4 3 2 1 0 TCNT0[7:0] TCNT0 Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 OCR0A[7:0] OCR0A Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0113 7593L–AVR–09/12 AT90USB64/128 The Output Compare Register A contains an 8-bit value that is continuously compared with the counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on the OC0A pin. 14.8.5 OCR0B – Output Compare Register B The Output Compare Register B contains an 8-bit value that is continuously compared with the counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on the OC0B pin. 14.8.6 TIMSK0 – Timer/Counter Interrupt Mask Register • Bits 7..3, 0 – Res: Reserved bits These bits are reserved bits and will always read as zero. • Bit 2 – OCIE0B: Timer/Counter Output Compare Match B Interrupt Enable When the OCIE0B bit is written to one, and the I-bit in the Status Register is set, the Timer/Counter Compare Match B interrupt is enabled. The corresponding interrupt is executed if a Compare Match in Timer/Counter occurs, that is, when the OCF0B bit is set in the Timer/Counter Interrupt Flag Register – TIFR0. • Bit 1 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable When the OCIE0A bit is written to one, and the I-bit in the Status Register is set, the Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is executed if a Compare Match in Timer/Counter0 occurs, that is, when the OCF0A bit is set in the Timer/Counter 0 Interrupt Flag Register – TIFR0. • Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable When the TOIE0 bit is written to one, and the I-bit in the Status Register is set, the Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter0 occurs, that is, when the TOV0 bit is set in the Timer/Counter 0 Interrupt Flag Register – TIFR0. 14.8.7 TIFR0 – Timer/Counter 0 Interrupt Flag Register • Bits 7..3, 0 – Res: Reserved bits These bits are reserved bits in the Atmel AT90USB64/128 and will always read as zero. Bit 7 6 5 4 3 2 1 0 OCR0B[7:0] OCR0B Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 – – – – – OCIE0B OCIE0A TOIE0 TIMSK0 Read/write R R R R R R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 – – – – – OCF0B OCF0A TOV0 TIFR0 Read/write R R R R R R/W R/W R/W Initial value 0 0 0 0 0 0 0 0114 7593L–AVR–09/12 AT90USB64/128 • Bit 2 – OCF0B: Timer/Counter 0 Output Compare B Match Flag The OCF0B bit is set when a Compare Match occurs between the Timer/Counter and the data in OCR0B – Output Compare Register0 B. OCF0B is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF0B is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE0B (Timer/Counter Compare B Match Interrupt Enable), and OCF0B are set, the Timer/Counter Compare Match Interrupt is executed. • Bit 1 – OCF0A: Timer/Counter 0 Output Compare A Match Flag The OCF0A bit is set when a Compare Match occurs between the Timer/Counter0 and the data in OCR0A – Output Compare Register0. OCF0A is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF0A is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE0A (Timer/Counter0 Compare Match Interrupt Enable), and OCF0A are set, the Timer/Counter0 Compare Match Interrupt is executed. • Bit 0 – TOV0: Timer/Counter0 Overflow Flag The bit TOV0 is set when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by writing a logic one to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Interrupt Enable), and TOV0 are set, the Timer/Counter0 Overflow interrupt is executed. The setting of this flag is dependent of the WGM02:0 bit setting. Refer to Table 14-7, “Waveform Generation Mode bit description.” on page 111.115 7593L–AVR–09/12 AT90USB64/128 15. 16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3) The 16-bit Timer/Counter unit allows accurate program execution timing (event management), wave generation, and signal timing measurement. The main features are: • True 16-bit design (that is, allows 16-bit PWM) • Three independent output compare units • Double buffered output compare registers • One input capture unit • Input capture noise canceler • Clear timer on compare match (auto reload) • Glitch-free, phase correct pulse width modulator (PWM) • Variable PWM period • Frequency generator • External event counter • Ten independent interrupt sources (TOV1, OCF1A, OCF1B, OCF1C, ICF1, TOV3, OCF3A, OCF3B, OCF3C, and ICF3) 15.1 Overview Most register and bit references in this section are written in general form. A lower case “n” replaces the Timer/Counter number, and a lower case “x” replaces the Output Compare unit channel. However, when using the register or bit defines in a program, the precise form must be used, that is, TCNT1 for accessing Timer/Counter1 counter value and so on. A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 15-1 on page 116. For the actual placement of I/O pins, see “Pinout Atmel AT90USB64/128-TQFP.” on page 3. CPU accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are listed in the “16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3)” on page 115. The Power Reduction Timer/Counter1 bit, PRTIM1, in “PRR0 – Power Reduction Register 0” on page 54 must be written to zero to enable Timer/Counter1 module. The Power Reduction Timer/Counter3 bit, PRTIM3, in “PRR1 – Power Reduction Register 1” on page 55 must be written to zero to enable Timer/Counter3 module.116 7593L–AVR–09/12 AT90USB64/128 Figure 15-1. 16-bit Timer/Counter block diagram (1). Note: 1. Refer to Figure 1-1 on page 3, Table 11-6 on page 79, and Table 11-9 on page 82 for Timer/Counter1 and 3 and 3 pin placement and description. 15.1.1 Registers The Timer/Counter (TCNTn), Output Compare Registers (OCRnA/B/C), and Input Capture Register (ICRn) are all 16-bit registers. Special procedures must be followed when accessing the 16- bit registers. These procedures are described in the section “Accessing 16-bit registers” on page 117. The Timer/Counter Control Registers (TCCRnA/B/C) are 8-bit registers and have no CPU access restrictions. Interrupt requests (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFRn). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSKn). TIFRn and TIMSKn are not shown in the figure since these registers are shared by other timer units. The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the Tn pin. The Clock Select logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source is selected. The output from the clock select logic is referred to as the timer clock (clkTn). The double buffered Output Compare Registers (OCRnA/B/C) are compared with the Timer/Counter value at all time. The result of the compare can be used by the Waveform Generator to generate a PWM or variable frequency output on the Output Compare pin (OCnA/B/C). ICFn (Int.Req.) TOVn (int.req.) Clock select Timer/Counter DATABUS ICRn = = = TCNTn Waveform generation Waveform generation Waveform generation OCnA OCnB OCnC Noise canceler ICPn = Fixed TOP values Edge detector Control logic = 0 TOP BOTTOM Count Clear Direction OCFnA (Int.Req.) OCFnB (Int.Req.) OCFnC (Int.Req.) TCCRnA TCCRnB TCCRnC ( From Analog Comparator Ouput ) Tn Edge detector (From prescaler) TCLK OCRnC OCRnB OCRnA117 7593L–AVR–09/12 AT90USB64/128 See “Output Compare units” on page 124.. The compare match event will also set the Compare Match Flag (OCFnA/B/C) which can be used to generate an Output Compare interrupt request. The Input Capture Register can capture the Timer/Counter value at a given external (edge triggered) event on either the Input Capture pin (ICPn) or on the Analog Comparator pins (see “Analog Comparator” on page 304) The Input Capture unit includes a digital filtering unit (Noise Canceler) for reducing the chance of capturing noise spikes. The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined by either the OCRnA Register, the ICRn Register, or by a set of fixed values. When using OCRnA as TOP value in a PWM mode, the OCRnA Register can not be used for generating a PWM output. However, the TOP value will in this case be double buffered allowing the TOP value to be changed in run time. If a fixed TOP value is required, the ICRn Register can be used as an alternative, freeing the OCRnA to be used as PWM output. 15.1.2 Definitions The following definitions are used extensively throughout the document: 15.2 Accessing 16-bit registers The TCNTn, OCRnA/B/C, and ICRn are 16-bit registers that can be accessed by the AVR CPU via the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations. Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16- bit access. The same Temporary Register is shared between all 16-bit registers within each 16- bit timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a 16-bit register is written by the CPU, the high byte stored in the Temporary Register, and the low byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the Temporary Register in the same clock cycle as the low byte is read. Not all 16-bit accesses uses the Temporary Register for the high byte. Reading the OCRnA/B/C 16-bit registers does not involve using the Temporary Register. To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low byte must be read before the high byte. The following code examples show how to access the 16-bit timer registers assuming that no interrupts updates the temporary register. The same principle can be used directly for accessing the OCRnA/B/C and ICRn Registers. Note that when using “C”, the compiler handles the 16-bit access. BOTTOM The counter reaches the BOTTOM when it becomes 0x0000. MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535). TOP The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The TOP value can be assigned to be one of the fixed values: 0x00FF, 0x01FF, or 0x03FF, or to the value stored in the OCRnA or ICRn Register. The assignment is dependent of the mode of operation.118 7593L–AVR–09/12 AT90USB64/128 Note: 1. See “About code examples” on page 10. The assembly code example returns the TCNTn value in the r17:r16 register pair. It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs between the two instructions accessing the 16-bit register, and the interrupt code updates the temporary register by accessing the same or any other of the 16-bit Timer Registers, then the result of the access outside the interrupt will be corrupted. Therefore, when both the main code and the interrupt code update the temporary register, the main code must disable the interrupts during the 16-bit access. Assembly code examples (1) ... ; Set TCNTn to 0x01FF ldi r17,0x01 ldi r16,0xFF out TCNTnH,r17 out TCNTnL,r16 ; Read TCNTn into r17:r16 in r16,TCNTnL in r17,TCNTnH ... C code examples (1) unsigned int i; ... /* Set TCNTn to 0x01FF */ TCNTn = 0x1FF; /* Read TCNTn into i */ i = TCNTn; ...119 7593L–AVR–09/12 AT90USB64/128 The following code examples show how to do an atomic read of the TCNTn Register contents. Reading any of the OCRnA/B/C or ICRn Registers can be done by using the same principle. Note: 1. See “About code examples” on page 10. The assembly code example returns the TCNTn value in the r17:r16 register pair. Assembly code example (1) TIM16_ReadTCNTn: ; Save global interrupt flag in r18,SREG ; Disable interrupts cli ; Read TCNTn into r17:r16 in r16,TCNTnL in r17,TCNTnH ; Restore global interrupt flag out SREG,r18 ret C code example (1) unsigned int TIM16_ReadTCNTn( void ) { unsigned char sreg; unsigned int i; /* Save global interrupt flag */ sreg = SREG; /* Disable interrupts */ __disable_interrupt(); /* Read TCNTn into i */ i = TCNTn; /* Restore global interrupt flag */ SREG = sreg; return i; }120 7593L–AVR–09/12 AT90USB64/128 The following code examples show how to do an atomic write of the TCNTn Register contents. Writing any of the OCRnA/B/C or ICRn Registers can be done by using the same principle. Note: 1. See “About code examples” on page 10. The assembly code example requires that the r17:r16 register pair contains the value to be written to TCNTn. 15.2.1 Reusing the Temporary High Byte register If writing to more than one 16-bit register where the high byte is the same for all registers written, then the high byte only needs to be written once. However, note that the same rule of atomic operation described previously also applies in this case. 15.3 Timer/Counter clock sources The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the Clock Select logic which is controlled by the Clock Select (CSn2:0) bits located in the Timer/Counter control Register B (TCCRnB). For details on clock sources and prescaler, see Section “Timer/Counter0, Timer/Counter1, and Timer/Counter3 prescalers” on page 96. Assembly code example (1) TIM16_WriteTCNTn: ; Save global interrupt flag in r18,SREG ; Disable interrupts cli ; Set TCNTn to r17:r16 out TCNTnH,r17 out TCNTnL,r16 ; Restore global interrupt flag out SREG,r18 ret C code example (1) void TIM16_WriteTCNTn( unsigned int i ) { unsigned char sreg; unsigned int i; /* Save global interrupt flag */ sreg = SREG; /* Disable interrupts */ __disable_interrupt(); /* Set TCNTn to i */ TCNTn = i; /* Restore global interrupt flag */ SREG = sreg; }121 7593L–AVR–09/12 AT90USB64/128 15.4 Counter unit The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit. Figure 15-2 shows a block diagram of the counter and its surroundings. Figure 15-2. Counter unit block diagram. Signal description (internal signals): Count Increment or decrement TCNTn by 1. Direction Select between increment and decrement. Clear Clear TCNTn (set all bits to zero). clkTn Timer/Counter clock. TOP Signalize that TCNTn has reached maximum value. BOTTOM Signalize that TCNTn has reached minimum value (zero). The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNTnH) containing the upper eight bits of the counter, and Counter Low (TCNTnL) containing the lower eight bits. The TCNTnH Register can only be indirectly accessed by the CPU. When the CPU does an access to the TCNTnH I/O location, the CPU accesses the high byte temporary register (TEMP). The temporary register is updated with the TCNTnH value when the TCNTnL is read, and TCNTnH is updated with the temporary register value when TCNTnL is written. This allows the CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus. It is important to notice that there are special cases of writing to the TCNTn Register when the counter is counting that will give unpredictable results. The special cases are described in the sections where they are of importance. Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock (clkTn). The clkTn can be generated from an external or internal clock source, selected by the Clock Select bits (CSn2:0). When no clock source is selected (CSn2:0 = 0) the timer is stopped. However, the TCNTn value can be accessed by the CPU, independent of whether clkTn is present or not. A CPU write overrides (has priority over) all counter clear or count operations. The counting sequence is determined by the setting of the Waveform Generation mode bits (WGMn3:0) located in the Timer/Counter Control Registers A and B (TCCRnA and TCCRnB). There are close connections between how the counter behaves (counts) and how waveforms are generated on the Output Compare outputs OCnx. For more details about advanced counting sequences and waveform generation, see Section “Modes of operation” on page 127. TEMP (8-bit) DATA BUS (8-bit) TCNTn (16-bit counter) TCNTnH (8-bit) TCNTnL (8-bit) Control logic Count Clear Direction TOVn (Int.Req.) Clock select TOP BOTTOM Tn Edge detector (From prescaler) clkTn122 7593L–AVR–09/12 AT90USB64/128 The Timer/Counter Overflow Flag (TOVn) is set according to the mode of operation selected by the WGMn3:0 bits. TOVn can be used for generating a CPU interrupt. 15.5 Input Capture unit The Timer/Counter incorporates an Input Capture unit that can capture external events and give them a time-stamp indicating time of occurrence. The external signal indicating an event, or multiple events, can be applied via the ICPn pin or alternatively, for the Timer/Counter1 only, via the Analog Comparator unit. The time-stamps can then be used to calculate frequency, duty-cycle, and other features of the signal applied. Alternatively the time-stamps can be used for creating a log of the events. The Input Capture unit is illustrated by the block diagram shown in Figure 15-3. The elements of the block diagram that are not directly a part of the input capture unit are gray shaded. The small “n” in register and bit names indicates the Timer/Counter number. Figure 15-3. Input Capture Unit block diagram. Note: The Analog Comparator Output (ACO) can only trigger the Timer/Counter1 ICP – not Timer/Counter3, 4, or 5. When a change of the logic level (an event) occurs on the Input Capture Pin (ICPn), alternatively on the analog Comparator output (ACO), and this change confirms to the setting of the edge detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter (TCNTn) is written to the Input Capture Register (ICRn). The Input Capture Flag (ICFn) is set at the same system clock as the TCNTn value is copied into ICRn Register. If enabled (TICIEn = 1), the input capture flag generates an input capture interrupt. The ICFn flag is automatically cleared when the interrupt is executed. Alternatively the ICFn flag can be cleared by software by writing a logical one to its I/O bit location. ICFn (int.req.) Analog comparator WRITE ICRn (16-bit register) ICRnH (8-bit) Noise canceler ICPn Edge detector TEMP (8-bit) DATA BUS (8-bit) ICRnL (8-bit) TCNTn (16-bit counter) TCNTnH (8-bit) TCNTnL (8-bit) ACO* ACIC* ICNC ICES123 7593L–AVR–09/12 AT90USB64/128 Reading the 16-bit value in the Input Capture Register (ICRn) is done by first reading the low byte (ICRnL) and then the high byte (ICRnH). When the low byte is read the high byte is copied into the high byte Temporary Register (TEMP). When the CPU reads the ICRnH I/O location it will access the TEMP Register. The ICRn Register can only be written when using a Waveform Generation mode that utilizes the ICRn Register for defining the counter’s TOP value. In these cases the Waveform Generation mode (WGMn3:0) bits must be set before the TOP value can be written to the ICRn Register. When writing the ICRn Register the high byte must be written to the ICRnH I/O location before the low byte is written to ICRnL. For more information on how to access the 16-bit registers refer to Section “Accessing 16-bit registers” on page 117. 15.5.1 Input Capture Trigger Source The main trigger source for the input capture unit is the Input Capture Pin (ICPn). Timer/Counter1 can alternatively use the analog comparator output as trigger source for the input capture unit. The Analog Comparator is selected as trigger source by setting the analog Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register (ACSR). Be aware that changing trigger source can trigger a capture. The input capture flag must therefore be cleared after the change. Both the Input Capture Pin (ICPn) and the Analog Comparator output (ACO) inputs are sampled using the same technique as for the Tn pin (Figure 13-1 on page 96). The edge detector is also identical. However, when the noise canceler is enabled, additional logic is inserted before the edge detector, which increases the delay by four system clock cycles. Note that the input of the noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Waveform Generation mode that uses ICRn to define TOP. An input capture can be triggered by software by controlling the port of the ICPn pin. 15.5.2 Noise Canceler The Noise Canceler improves noise immunity by using a simple digital filtering scheme. The noise canceler input is monitored over four samples, and all four must be equal for changing the output that in turn is used by the edge detector. The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in Timer/Counter Control Register B (TCCRnB). When enabled the noise canceler introduces additional four system clock cycles of delay from a change applied to the input, to the update of the ICRn Register. The noise canceler uses the system clock and is therefore not affected by the prescaler. 15.5.3 Using the Input Capture unit The main challenge when using the Input Capture unit is to assign enough processor capacity for handling the incoming events. The time between two events is critical. If the processor has not read the captured value in the ICRn Register before the next event occurs, the ICRn will be overwritten with a new value. In this case the result of the capture will be incorrect. When using the Input Capture interrupt, the ICRn Register should be read as early in the interrupt handler routine as possible. Even though the Input Capture interrupt has relatively high priority, the maximum interrupt response time is dependent on the maximum number of clock cycles it takes to handle any of the other interrupt requests.124 7593L–AVR–09/12 AT90USB64/128 Using the Input Capture unit in any mode of operation when the TOP value (resolution) is actively changed during operation, is not recommended. Measurement of an external signal’s duty cycle requires that the trigger edge is changed after each capture. Changing the edge sensing must be done as early as possible after the ICRn Register has been read. After a change of the edge, the Input Capture Flag (ICFn) must be cleared by software (writing a logical one to the I/O bit location). For measuring frequency only, the clearing of the ICFn Flag is not required (if an interrupt handler is used). 15.6 Output Compare units The 16-bit comparator continuously compares TCNTn with the Output Compare Register (OCRnx). If TCNT equals OCRnx the comparator signals a match. A match will set the Output Compare Flag (OCFnx) at the next timer clock cycle. If enabled (OCIEnx = 1), the Output Compare Flag generates an Output Compare interrupt. The OCFnx Flag is automatically cleared when the interrupt is executed. Alternatively the OCFnx Flag can be cleared by software by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to generate an output according to operating mode set by the Waveform Generation mode (WGMn3:0) bits and Compare Output mode (COMnx1:0) bits. The TOP and BOTTOM signals are used by the Waveform Generator for handling the special cases of the extreme values in some modes of operation (see “Modes of operation” on page 127) A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (that is, counter resolution). In addition to the counter resolution, the TOP value defines the period time for waveforms generated by the Waveform Generator. Figure 15-4 shows a block diagram of the Output Compare unit. The small “n” in the register and bit names indicates the device number (n = n for Timer/Counter n), and the “x” indicates Output Compare unit (A/B/C). The elements of the block diagram that are not directly a part of the Output Compare unit are gray shaded. Figure 15-4. Output Compare Unit, block diagram. OCFnx (int.req.) = (16-bit comparator ) OCRnx buffer (16-bit register) OCRnxH buf. (8-bit) OCnx TEMP (8-bit) DATA BUS (8-bit) OCRnxL buf. (8-bit) TCNTn (16-bit counter) TCNTnH (8-bit) TCNTnL (8-bit) WGMn3:0 COMnx1:0 OCRnx (16-bit register) OCRnxH (8-bit) OCRnxL (8-bit) Waveform generator TOP BOTTOM125 7593L–AVR–09/12 AT90USB64/128 The OCRnx Register is double buffered when using any of the twelve Pulse Width Modulation (PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the update of the OCRnx Compare Register to either TOP or BOTTOM of the counting sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free. The OCRnx Register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has access to the OCRnx Buffer Register, and if double buffering is disabled the CPU will access the OCRnx directly. The content of the OCR1x (Buffer or Compare) Register is only changed by a write operation (the Timer/Counter does not update this register automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte temporary register (TEMP). However, it is a good practice to read the low byte first as when accessing other 16-bit registers. Writing the OCRnx Registers must be done via the TEMP Register since the compare of all 16 bits is done continuously. The high byte (OCRnxH) has to be written first. When the high byte I/O location is written by the CPU, the TEMP Register will be updated by the value written. Then when the low byte (OCRnxL) is written to the lower eight bits, the high byte will be copied into the upper 8-bits of either the OCRnx buffer or OCRnx Compare Register in the same system clock cycle. For more information of how to access the 16-bit registers refer to Section “Accessing 16-bit registers” on page 117. 15.6.1 Force Output Compare In non-PWM Waveform Generation modes, the match output of the comparator can be forced by writing a one to the Force Output Compare (FOCnx) bit. Forcing compare match will not set the OCFnx Flag or reload/clear the timer, but the OCnx pin will be updated as if a real compare match had occurred (the COMn1:0 bits settings define whether the OCnx pin is set, cleared or toggled). 15.6.2 Compare Match Blocking by TCNTn write All CPU writes to the TCNTn Register will block any compare match that occurs in the next timer clock cycle, even when the timer is stopped. This feature allows OCRnx to be initialized to the same value as TCNTn without triggering an interrupt when the Timer/Counter clock is enabled. 15.6.3 Using the Output Compare unit Since writing TCNTn in any mode of operation will block all compare matches for one timer clock cycle, there are risks involved when changing TCNTn when using any of the Output Compare channels, independent of whether the Timer/Counter is running or not. If the value written to TCNTn equals the OCRnx value, the compare match will be missed, resulting in incorrect waveform generation. Do not write the TCNTn equal to TOP in PWM modes with variable TOP values. The compare match for the TOP will be ignored and the counter will continue to 0xFFFF. Similarly, do not write the TCNTn value equal to BOTTOM when the counter is counting down. The setup of the OCnx should be performed before setting the Data Direction Register for the port pin to output. The easiest way of setting the OCnx value is to use the Force Output Compare (FOCnx) strobe bits in Normal mode. The OCnx Register keeps its value even when changing between Waveform Generation modes. Be aware that the COMnx1:0 bits are not double buffered together with the compare value. Changing the COMnx1:0 bits will take effect immediately.126 7593L–AVR–09/12 AT90USB64/128 15.7 Compare Match Output unit The Compare Output mode (COMnx1:0) bits have two functions. The Waveform Generator uses the COMnx1:0 bits for defining the Output Compare (OCnx) state at the next compare match. Secondly the COMnx1:0 bits control the OCnx pin output source. Figure 15-5 shows a simplified schematic of the logic affected by the COMnx1:0 bit setting. The I/O Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers (DDR and PORT) that are affected by the COMnx1:0 bits are shown. When referring to the OCnx state, the reference is for the internal OCnx Register, not the OCnx pin. If a system reset occur, the OCnx Register is reset to “0”. Figure 15-5. Compare Match Output unit, schematic. The general I/O port function is overridden by the Output Compare (OCnx) from the Waveform Generator if either of the COMnx1:0 bits are set. However, the OCnx pin direction (input or output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OCnx pin (DDR_OCnx) must be set as output before the OCnx value is visible on the pin. The port override function is generally independent of the Waveform Generation mode, but there are some exceptions. Refer to Table 15-1 on page 137, Table 15-2 on page 137, and Table 15-3 on page 138 for details. The design of the Output Compare pin logic allows initialization of the OCnx state before the output is enabled. Note that some COMnx1:0 bit settings are reserved for certain modes of operation. See “16-bit Timer/Counter (Timer/Counter1 and Timer/Counter3)” on page 115. The COMnx1:0 bits have no effect on the Input Capture unit. 15.7.1 Compare Output mode and Waveform generation The Waveform Generator uses the COMnx1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the COMnx1:0 = 0 tells the Waveform Generator that no action on the OCnx Register is to be performed on the next compare match. For compare output actions in the PORT DDR D Q D Q OCnx OCnx pin D Q Waveform generator COMnx1 COMnx0 0 1 DATA BUS FOCnx clkI/O127 7593L–AVR–09/12 AT90USB64/128 non-PWM modes refer to Table 15-1 on page 137. For fast PWM mode refer to Table 15-2 on page 137, and for phase correct and phase and frequency correct PWM refer to Table 15-3 on page 138. A change of the COMnx1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM modes, the action can be forced to have immediate effect by using the FOCnx strobe bits. 15.8 Modes of operation The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins, is defined by the combination of the Waveform Generation mode (WGMn3:0) and Compare Output mode (COMnx1:0) bits. The Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do. The COMnx1:0 bits control whether the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COMnx1:0 bits control whether the output should be set, cleared or toggle at a compare match (see “Compare Match Output unit” on page 126). For detailed timing information refer to “Timer/Counter timing diagrams” on page 134. 15.8.1 Normal mode The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the counting direction is always up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOVn) will be set in the same timer clock cycle as the TCNTn becomes zero. The TOVn Flag in this case behaves like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOVn Flag, the timer resolution can be increased by software. There are no special cases to consider in the Normal mode, a new counter value can be written anytime. The Input Capture unit is easy to use in Normal mode. However, observe that the maximum interval between the external events must not exceed the resolution of the counter. If the interval between events are too long, the timer overflow interrupt or the prescaler must be used to extend the resolution for the capture unit. The Output Compare units can be used to generate interrupts at some given time. Using the Output Compare to generate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time. 15.8.2 Clear Timer on Compare Match (CTC) mode In Clear Timer on Compare or CTC mode (WGMn3:0 = 4 or 12), the OCRnA or ICRn Register are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNTn) matches either the OCRnA (WGMn3:0 = 4) or the ICRn (WGMn3:0 = 12). The OCRnA or ICRn define the top value for the counter, hence also its resolution. This mode allows greater control of the compare match output frequency. It also simplifies the operation of counting external events. The timing diagram for the CTC mode is shown in Figure 15-6 on page 128. The counter value (TCNTn) increases until a compare match occurs with either OCRnA or ICRn, and then counter (TCNTn) is cleared.128 7593L–AVR–09/12 AT90USB64/128 Figure 15-6. CTC mode, timing diagram. An interrupt can be generated at each time the counter value reaches the TOP value by either using the OCFnA or ICFn Flag according to the register used to define the TOP value. If the interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing the TOP to a value close to BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC mode does not have the double buffering feature. If the new value written to OCRnA or ICRn is lower than the current value of TCNTn, the counter will miss the compare match. The counter will then have to count to its maximum value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur. In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode using OCRnA for defining TOP (WGMn3:0 = 15) since the OCRnA then will be double buffered. For generating a waveform output in CTC mode, the OCnA output can be set to toggle its logical level on each compare match by setting the Compare Output mode bits to toggle mode (COMnA1:0 = 1). The OCnA value will not be visible on the port pin unless the data direction for the pin is set to output (DDR_OCnA = 1). The waveform generated will have a maximum frequency of fOCnA = fclk_I/O/2 when OCRnA is set to zero (0x0000). The waveform frequency is defined by the following equation: The N variable represents the prescaler factor (1, 8, 64, 256, or 1024). As for the Normal mode of operation, the TOVn Flag is set in the same timer clock cycle that the counter counts from MAX to 0x0000. 15.8.3 Fast PWM mode The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 = 5, 6, 7, 14, or 15) provides a high frequency PWM waveform generation option. The fast PWM differs from the other PWM options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is set on the compare match between TCNTn and OCRnx, and cleared at TOP. In inverting Compare Output mode output is cleared on compare match and set at TOP. Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice as high as the phase correct and phase and frequency correct PWM modes that use dual-slope operation. This high frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC applications. High frequency allows physically small sized external components (coils, capacitors), hence reduces total system cost. TCNTn OCnA (Toggle) OCnA Interrupt Flag Set or ICFn Interrupt Flag Set (interrupt on TOP) Period 1 2 3 4 (COMnA1:0 = 1) f OCnA f clk_I/O 2 ⋅ ⋅ N ( ) 1 + OCRnA = --------------------------------------------------129 7593L–AVR–09/12 AT90USB64/128 The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolution in bits can be calculated by using the following equation: In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15). The counter is then cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure 15-7. The figure shows fast PWM mode when OCRnA or ICRn is used to define TOP. The TCNTn value is in the timing diagram shown as a histogram for illustrating the single-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes represent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a compare match occurs. Figure 15-7. Fast PWM mode, timing diagram. The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches TOP. In addition the OCnA or ICFn Flag is set at the same timer clock cycle as TOVn is set when either OCRnA or ICRn is used for defining the TOP value. If one of the interrupts are enabled, the interrupt handler routine can be used for updating the TOP and compare values. When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match will never occur between the TCNTn and the OCRnx. Note that when using fixed TOP values the unused bits are masked to zero when any of the OCRnx Registers are written. The procedure for updating ICRn differs from updating OCRnA when used for defining the TOP value. The ICRn Register is not double buffered. This means that if ICRn is changed to a low value when the counter is running with none or a low prescaler value, there is a risk that the new ICRn value written is lower than the current value of TCNTn. The result will then be that the counter will miss the compare match at the TOP value. The counter will then have to count to the MAX value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur. The OCRnA Register however, is double buffered. This feature allows the OCRnA I/O location RFPWM log( ) TOP + 1 log( ) 2 = ----------------------------------- TCNTn OCRnx / TOP Update and TOVn Interrupt Flag Set and OCnA Interrupt Flag Set or ICFn Interrupt Flag Set (Interrupt on TOP) Period 1 2 3 4 5 6 7 8 OCnx OCnx (COMnx1:0 = 2) (COMnx1:0 = 3)130 7593L–AVR–09/12 AT90USB64/128 to be written anytime. When the OCRnA I/O location is written the value written will be put into the OCRnA Buffer Register. The OCRnA Compare Register will then be updated with the value in the Buffer Register at the next timer clock cycle the TCNTn matches TOP. The update is done at the same timer clock cycle as the TCNTn is cleared and the TOVn Flag is set. Using the ICRn Register for defining TOP works well when using fixed TOP values. By using ICRn, the OCRnA Register is free to be used for generating a PWM output on OCnA. However, if the base PWM frequency is actively changed (by changing the TOP value), using the OCRnA as TOP is clearly a better choice due to its double buffer feature. In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COMnx1:0 to three (see Table on page 137). The actual OCnx value will only be visible on the port pin if the data direction for the port pin is set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Register at the compare match between OCRnx and TCNTn, and clearing (or setting) the OCnx Register at the timer clock cycle the counter is cleared (changes from TOP to BOTTOM). The PWM frequency for the output can be calculated by the following equation: The N variable represents the prescaler divider (1, 8, 64, 256, or 1024). The extreme values for the OCRnx Register represents special cases when generating a PWM waveform output in the fast PWM mode. If the OCRnx is set equal to BOTTOM (0x0000) the output will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCRnx equal to TOP will result in a constant high or low output (depending on the polarity of the output set by the COMnx1:0 bits.) A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OCnA to toggle its logical level on each compare match (COMnA1:0 = 1). This applies only if OCR1A is used to define the TOP value (WGM13:0 = 15). The waveform generated will have a maximum frequency of fOCnA = fclk_I/O/2 when OCRnA is set to zero (0x0000). This feature is similar to the OCnA toggle in CTC mode, except the double buffer feature of the Output Compare unit is enabled in the fast PWM mode. 15.8.4 Phase correct PWM mode The phase correct Pulse Width Modulation or phase correct PWM mode (WGMn3:0 = 1, 2, 3, 10, or 11) provides a high resolution phase correct PWM waveform generation option. The phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dualslope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is cleared on the compare match between TCNTn and OCRnx while upcounting, and set on the compare match while downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has lower maximum operation frequency than single slope operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control applications. The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined by either ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to f OCnxPWM f clk_I/O N ⋅ ( ) 1 + TOP = -----------------------------------131 7593L–AVR–09/12 AT90USB64/128 0x0003), and the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolution in bits can be calculated by using the following equation: In phase correct PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 1, 2, or 3), the value in ICRn (WGMn3:0 = 10), or the value in OCRnA (WGMn3:0 = 11). The counter has then reached the TOP and changes the count direction. The TCNTn value will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 15-8. The figure shows phase correct PWM mode when OCRnA or ICRn is used to define TOP. The TCNTn value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes represent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a compare match occurs. Figure 15-8. Phase correct PWM mode, timing diagram. The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches BOTTOM. When either OCRnA or ICRn is used for defining the TOP value, the OCnA or ICFn Flag is set accordingly at the same timer clock cycle as the OCRnx Registers are updated with the double buffer value (at TOP). The Interrupt Flags can be used to generate an interrupt each time the counter reaches the TOP or BOTTOM value. When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match will never occur between the TCNTn and the OCRnx. Note that when using fixed TOP values, the unused bits are masked to zero when any of the OCRnx Registers are written. As the third period shown in Figure 15-8 illustrates, changing the TOP actively while the Timer/Counter is running in the phase correct mode can result in an unsymmetrical output. The reason for this can be found in the time of update of the OCRnx RegRPCPWM log( ) TOP + 1 log( ) 2 = ----------------------------------- OCRnx/TOP Update and OCnA Interrupt Flag Set or ICFn Interrupt Flag Set (interrupt on TOP) 1 2 3 4 TOVn Interrupt Flag Set (interrupt on Bottom) TCNTn Period OCnx OCnx (COMnx1:0 = 2) (COMnx1:0 = 3)132 7593L–AVR–09/12 AT90USB64/128 ister. Since the OCRnx update occurs at TOP, the PWM period starts and ends at TOP. This implies that the length of the falling slope is determined by the previous TOP value, while the length of the rising slope is determined by the new TOP value. When these two values differ the two slopes of the period will differ in length. The difference in length gives the unsymmetrical result on the output. It is recommended to use the phase and frequency correct mode instead of the phase correct mode when changing the TOP value while the Timer/Counter is running. When using a static TOP value there are practically no differences between the two modes of operation. In phase correct PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COMnx1:0 to three (see Table 15-3 on page 138). The actual OCnx value will only be visible on the port pin if the data direction for the port pin is set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Register at the compare match between OCRnx and TCNTn when the counter increments, and clearing (or setting) the OCnx Register at compare match between OCRnx and TCNTn when the counter decrements. The PWM frequency for the output when using phase correct PWM can be calculated by the following equation: The N variable represents the prescaler divider (1, 8, 64, 256, or 1024). The extreme values for the OCRnx Register represent special cases when generating a PWM waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the output will be continuously low and if set equal to TOP the output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output will toggle with a 50% duty cycle. 15.8.5 Phase and frequency correct PWM mode The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM mode (WGMn3:0 = 8 or 9) provides a high resolution phase and frequency correct PWM waveform generation option. The phase and frequency correct PWM mode is, like the phase correct PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is cleared on the compare match between TCNTn and OCRnx while upcounting, and set on the compare match while downcounting. In inverting Compare Output mode, the operation is inverted. The dual-slope operation gives a lower maximum operation frequency compared to the single-slope operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control applications. The main difference between the phase correct, and the phase and frequency correct PWM mode is the time the OCRnx Register is updated by the OCRnx Buffer Register, (see Figure 15- 8 on page 131 and Figure 15-9 on page 133). The PWM resolution for the phase and frequency correct PWM mode can be defined by either ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRnA set to 0x0003), and f OCnxPCPWM f clk_I/O 2 ⋅ ⋅ N TOP = ----------------------------133 7593L–AVR–09/12 AT90USB64/128 the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM resolution in bits can be calculated using the following equation: In phase and frequency correct PWM mode the counter is incremented until the counter value matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA (WGMn3:0 = 9). The counter has then reached the TOP and changes the count direction. The TCNTn value will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency correct PWM mode is shown on Figure 15-9. The figure shows phase and frequency correct PWM mode when OCRnA or ICRn is used to define TOP. The TCNTn value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes noninverted and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes represent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a compare match occurs. Figure 15-9. Phase and frequency correct PWM mode, timing diagram. The Timer/Counter Overflow Flag (TOVn) is set at the same timer clock cycle as the OCRnx Registers are updated with the double buffer value (at BOTTOM). When either OCRnA or ICRn is used for defining the TOP value, the OCnA or ICFn Flag set when TCNTn has reached TOP. The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the TOP or BOTTOM value. When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match will never occur between the TCNTn and the OCRnx. As Figure 15-9 shows the output generated is, in contrast to the phase correct mode, symmetrical in all periods. Since the OCRnx Registers are updated at BOTTOM, the length of the rising and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore frequency correct. RPFCPWM log( ) TOP + 1 log( ) 2 = ----------------------------------- OCRnx/TOP Updateand TOVn Interrupt Flag Set (interrupt on Bottom) OCnA Interrupt Flag Set or ICFn Interrupt Flag Set (interrupt on TOP) 1 2 3 4 TCNTn Period OCnx OCnx (COMnx1:0 = 2) (COMnx1:0 = 3)134 7593L–AVR–09/12 AT90USB64/128 Using the ICRn Register for defining TOP works well when using fixed TOP values. By using ICRn, the OCRnA Register is free to be used for generating a PWM output on OCnA. However, if the base PWM frequency is actively changed by changing the TOP value, using the OCRnA as TOP is clearly a better choice due to its double buffer feature. In phase and frequency correct PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COMnx1:0 to three (see Table 15-3 on page 138). The actual OCnx value will only be visible on the port pin if the data direction for the port pin is set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Register at the compare match between OCRnx and TCNTn when the counter increments, and clearing (or setting) the OCnx Register at compare match between OCRnx and TCNTn when the counter decrements. The PWM frequency for the output when using phase and frequency correct PWM can be calculated by the following equation: The N variable represents the prescaler divider (1, 8, 64, 256, or 1024). The extreme values for the OCRnx Register represents special cases when generating a PWM waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the output will be continuously low and if set equal to TOP the output will be set to high for noninverted PWM mode. For inverted PWM the output will have the opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A output will toggle with a 50% duty cycle. 15.9 Timer/Counter timing diagrams The Timer/Counter is a synchronous design and the timer clock (clkTn) is therefore shown as a clock enable signal in the following figures. The figures include information on when Interrupt Flags are set, and when the OCRnx Register is updated with the OCRnx buffer value (only for modes utilizing double buffering). Figure 15-10 shows a timing diagram for the setting of OCFnx. Figure 15-10. Timer/Counter timing diagram, setting of OCFnx, no prescaling. Figure 15-11 on page 135 shows the same timing data, but with the prescaler enabled. f OCnxPFCPWM f clk_I/O 2 ⋅ ⋅ N TOP = ---------------------------- clkTn (clkI/O/1) OCFnx clkI/O OCRnx TCNTn OCRnx value OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2135 7593L–AVR–09/12 AT90USB64/128 Figure 15-11. Timer/Counter timing diagram, setting of OCFnx, with prescaler (fclk_I/O/8). Figure 15-12 shows the count sequence close to TOP in various modes. When using phase and frequency correct PWM mode the OCRnx Register is updated at BOTTOM. The timing diagrams will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on. The same renaming applies for modes that set the TOVn Flag at BOTTOM. Figure 15-12. Timer/Counter timing diagram, no prescaling. Figure 15-13 on page 136 shows the same timing data, but with the prescaler enabled. OCFnx OCRnx TCNTn OCRnx value OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2 clkI/O clkTn (clkI/O/8) TOVn (FPWM) and ICFn (if used as TOP) OCRnx (update at TOP) TCNTn (CTC and FPWM) TCNTn (PC and PFC PWM) TOP - 1 TOP TOP - 1 TOP - 2 Old OCRnx value New OCRnx value TOP - 1 TOP BOTTOM BOTTOM + 1 clkTn (clkI/O/1) clkI/O136 7593L–AVR–09/12 AT90USB64/128 Figure 15-13. Timer/Counter timing diagram, with prescaler (fclk_I/O/8). 15.10 16-bit Timer/Counter register description 15.10.1 TCCR1A – Timer/Counter1 Control Register A 15.10.2 TCCR3A – Timer/Counter3 Control Register A • Bit 7:6 – COMnA1:0: Compare Output Mode for Channel A • Bit 5:4 – COMnB1:0: Compare Output Mode for Channel B • Bit 3:2 – COMnC1:0: Compare Output Mode for Channel C The COMnA1:0, COMnB1:0, and COMnC1:0 control the output compare pins (OCnA, OCnB, and OCnC respectively) behavior. If one or both of the COMnA1:0 bits are written to one, the OCnA output overrides the normal port functionality of the I/O pin it is connected to. If one or both of the COMnB1:0 bits are written to one, the OCnB output overrides the normal port functionality of the I/O pin it is connected to. If one or both of the COMnC1:0 bits are written to one, the OCnC output overrides the normal port functionality of the I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit corresponding to the OCnA, OCnB or OCnC pin must be set in order to enable the output driver. TOVn (FPWM) and ICFn (if used as TOP) OCRnx (update at TOP) TCNTn (CTC and FPWM) TCNTn (PC and PFC PWM) TOP - 1 TOP TOP - 1 TOP - 2 Old OCRnx value New OCRnx value TOP - 1 TOP BOTTOM BOTTOM + 1 clkI/O clk Tn (clkI/O /8) Bit 7 6 5 4 3 2 1 0 COM1A1 COM1A0 COM1B1 COM1B0 COM1C1 COM1C0 WGM11 WGM10 TCCR1A Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 COM3A1 COM3A0 COM3B1 COM3B0 COM3C1 COM3C0 WGM31 WGM30 TCCR3A Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0137 7593L–AVR–09/12 AT90USB64/128 When the OCnA, OCnB or OCnC is connected to the pin, the function of the COMnx1:0 bits is dependent of the WGMn3:0 bits setting. Table 15-1 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to a normal or a CTC mode (non-PWM). Table 15-2 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the fast PWM mode. Note: A special case occurs when OCRnA/OCRnB/OCRnC equals TOP and COMnA1/COMnB1/COMnC1 is set. In this case the compare match is ignored, but the set or clear is done at TOP. See “Fast PWM mode” on page 104. for more details. Table 15-3 on page 138 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to the phase correct and frequency correct PWM mode. Table 15-1. Compare Output mode, non-PWM. COMnA1/COMnB1/ COMnC1 COMnA0/COMnB0/ COMnC0 Description 0 0 Normal port operation, OCnA/OCnB/OCnC disconnected. 0 1 Toggle OCnA/OCnB/OCnC on compare match. 1 0 Clear OCnA/OCnB/OCnC on compare match (set output to low level). 1 1 Set OCnA/OCnB/OCnC on compare match (set output to high level). Table 15-2. Compare Output mode, fast PWM. COMnA1/COMnB1/ COMnC0 COMnA0/COMnB0/ COMnC0 Description 0 0 Normal port operation, OCnA/OCnB/OCnC disconnected. 0 1 WGM13:0 = 14 or 15: Toggle OC1A on Compare Match, OC1B and OC1C disconnected (normal port operation). For all other WGM1 settings, normal port operation, OC1A/OC1B/OC1C disconnected. 1 0 Clear OCnA/OCnB/OCnC on compare match, set OCnA/OCnB/OCnC at TOP 1 1 Set OCnA/OCnB/OCnC on compare match, clear OCnA/OCnB/OCnC at TOP138 7593L–AVR–09/12 AT90USB64/128 Note: A special case occurs when OCRnA/OCRnB/OCRnC equals TOP and COMnA1/COMnB1//COMnC1 is set. See “Phase correct PWM mode” on page 106. for more details. • Bit 1:0 – WGMn1:0: Waveform Generation mode Combined with the WGMn3:2 bits found in the TCCRnB Register, these bits control the counting sequence of the counter, the source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 15-4 on page 138. Modes of operation supported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC) mode, and three types of Pulse Width Modulation (PWM) modes. (See “Modes of operation” on page 103.). Table 15-3. Compare Output mode, phase correct and phase and frequency correct PWM. COMnA1/COMnB/ COMnC1 COMnA0/COMnB0/ COMnC0 Description 0 0 Normal port operation, OCnA/OCnB/OCnC disconnected. 0 1 WGM13:0 = 8, 9 10 or 11: Toggle OC1A on Compare Match, OC1B and OC1C disconnected (normal port operation). For all other WGM1 settings, normal port operation, OC1A/OC1B/OC1C disconnected. 1 0 Clear OCnA/OCnB/OCnC on compare match when up-counting. Set OCnA/OCnB/OCnC on compare match when counting down. 1 1 Set OCnA/OCnB/OCnC on compare match when up-counting. Clear OCnA/OCnB/OCnC on compare match when counting down. Table 15-4. Waveform Generation mode bit description (1). Mode WGMn3 WGMn2 (CTCn) WGMn1 (PWMn1) WGMn0 (PWMn0) Timer/Counter mode of operation TOP Update of OCRnx at TOVn flag set on 0 0 0 0 0 Normal 0xFFFF Immediate MAX 1 0 0 0 1 PWM, phase correct, 8-bit 0x00FF TOP BOTTOM 2 0 0 1 0 PWM, phase correct, 9-bit 0x01FF TOP BOTTOM 3 0 0 1 1 PWM, phase correct, 10-bit 0x03FF TOP BOTTOM 4 0 1 0 0 CTC OCRnA Immediate MAX 5 0 1 0 1 Fast PWM, 8-bit 0x00FF TOP TOP 6 0 1 1 0 Fast PWM, 9-bit 0x01FF TOP TOP 7 0 1 1 1 Fast PWM, 10-bit 0x03FF TOP TOP 81 0 0 0 PWM, phase and frequency Correct ICRn BOTTOM BOTTOM 91 0 0 1 PWM, phase and frequency Correct OCRnA BOTTOM BOTTOM 10 1 0 1 0 PWM, phase correct ICRn TOP BOTTOM139 7593L–AVR–09/12 AT90USB64/128 Note: 1. The CTCn and PWMn1:0 bit definition names are obsolete. Use the WGMn2:0 definitions. However, the functionality and location of these bits are compatible with previous versions of the timer. 15.10.3 TCCR1B – Timer/Counter1 Control Register B 15.10.4 TCCR3B – Timer/Counter3 Control Register B • Bit 7 – ICNCn: Input Capture Noise Canceler Setting this bit (to one) activates the Input Capture Noise Canceler. When the Noise Canceler is activated, the input from the Input Capture Pin (ICPn) is filtered. The filter function requires four successive equal valued samples of the ICPn pin for changing its output. The input capture is therefore delayed by four Oscillator cycles when the noise canceler is enabled. • Bit 6 – ICESn: Input Capture Edge Select This bit selects which edge on the Input Capture Pin (ICPn) that is used to trigger a capture event. When the ICESn bit is written to zero, a falling (negative) edge is used as trigger, and when the ICESn bit is written to one, a rising (positive) edge will trigger the capture. When a capture is triggered according to the ICESn setting, the counter value is copied into the Input Capture Register (ICRn). The event will also set the Input Capture Flag (ICFn), and this can be used to cause an Input Capture Interrupt, if this interrupt is enabled. When the ICRn is used as TOP value (see description of the WGMn3:0 bits located in the TCCRnA and the TCCRnB Register), the ICPn is disconnected and consequently the input capture function is disabled. • Bit 5 – Reserved bit This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be written to zero when TCCRnB is written. • Bit 4:3 – WGMn3:2: Waveform Generation mode See TCCRnA Register description. 11 1 0 1 1 PWM, phase correct OCRnA TOP BOTTOM 12 1 1 0 0 CTC ICRn Immediate MAX 13 1 1 0 1 (Reserved) – – – 14 1 1 1 0 Fast PWM ICRn TOP TOP 15 1 1 1 1 Fast PWM OCRnA TOP TOP Table 15-4. Waveform Generation mode bit description (1). (Continued) Mode WGMn3 WGMn2 (CTCn) WGMn1 (PWMn1) WGMn0 (PWMn0) Timer/Counter mode of operation TOP Update of OCRnx at TOVn flag set on Bit 7 6 5 4 3 2 1 0 ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B Read/write R/W R/W R R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 ICNC3 ICES3 – WGM33 WGM32 CS32 CS31 CS30 TCCR3B Read/write R/W R/W R R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0140 7593L–AVR–09/12 AT90USB64/128 • Bit 2:0 – CSn2:0: Clock Select The three clock select bits select the clock source to be used by the Timer/Counter, see Figure 14-8 on page 107 and Figure 14-9 on page 108. If external pin modes are used for the Timer/Countern, transitions on the Tn pin will clock the counter even if the pin is configured as an output. This feature allows software control of the counting. 15.10.5 TCCR1C – Timer/Counter1 Control Register C 15.10.6 TCCR3C – Timer/Counter3 Control Register C • Bit 7 – FOCnA: Force Output Compare for Channel A • Bit 6 – FOCnB: Force Output Compare for Channel B • Bit 5 – FOCnC: Force Output Compare for Channel C The FOCnA/FOCnB/FOCnC bits are only active when the WGMn3:0 bits specifies a non-PWM mode. When writing a logical one to the FOCnA/FOCnB/FOCnC bit, an immediate compare match is forced on the waveform generation unit. The OCnA/OCnB/OCnC output is changed according to its COMnx1:0 bits setting. Note that the FOCnA/FOCnB/FOCnC bits are implemented as strobes. Therefore it is the value present in the COMnx1:0 bits that determine the effect of the forced compare. A FOCnA/FOCnB/FOCnC strobe will not generate any interrupt nor will it clear the timer in Clear Timer on Compare Match (CTC) mode using OCRnA as TOP. The FOCnA/FOCnB/FOCnB bits are always read as zero. • Bit 4:0 – Reserved bits These bits are reserved for future use. For ensuring compatibility with future devices, these bits must be written to zero when TCCRnC is written. Table 15-5. Clock Select bit description. CSn2 CSn1 CSn0 Description 0 0 0 No clock source. (Timer/Counter stopped) 0 0 1 clkI/O/1 (no prescaling 0 1 0 clkI/O/8 (from prescaler) 0 1 1 clkI/O/64 (from prescaler) 1 0 0 clkI/O/256 (from prescaler) 1 0 1 clkI/O/1024 (from prescaler) 1 1 0 External clock source on Tn pin. Clock on falling edge 1 1 1 External clock source on Tn pin. Clock on rising edge Bit 7 6 5 4 3 2 1 0 FOC1A FOC1B FOC1C – – – – – TCCR1C Read/write W W W R R R R R Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 FOC3A FOC3B FOC3C – – – – – TCCR3C Read/write W W W R R R R R Initial value 0 0 0 0 0 0 0 0141 7593L–AVR–09/12 AT90USB64/128 15.10.7 TCNT1H and TCNT1L – Timer/Counter1 15.10.8 TCNT3H and TCNT3L – Timer/Counter3 The two Timer/Counter I/O locations (TCNTnH and TCNTnL, combined TCNTn) give direct access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To ensure that both the high and low bytes are read and written simultaneously when the CPU accesses these registers, the access is performed using an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit registers” on page 117. Modifying the counter (TCNTn) while the counter is running introduces a risk of missing a compare match between TCNTn and one of the OCRnx Registers. Writing to the TCNTn Register blocks (removes) the compare match on the following timer clock for all compare units. 15.10.9 OCR1AH and OCR1AL – Output Compare Register 1 A 15.10.10 OCR1BH and OCR1BL – Output Compare Register 1 B 15.10.11 OCR1CH and OCR1CL – Output Compare Register 1 C Bit 7 6 5 4 3 2 1 0 TCNT1[15:8] TCNT1H TCNT1[7:0] TCNT1L Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 TCNT3[15:8] TCNT3H TCNT3[7:0] TCNT3L Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 OCR1A[15:8] OCR1AH OCR1A[7:0] OCR1AL Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 OCR1B[15:8] OCR1BH OCR1B[7:0] OCR1BL Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 OCR1C[15:8] OCR1CH OCR1C[7:0] OCR1CL Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0142 7593L–AVR–09/12 AT90USB64/128 15.10.12 OCR3AH and OCR3AL – Output Compare Register 3 A 15.10.13 OCR3BH and OCR3BL – Output Compare Register 3 B 15.10.14 OCR3CH and OCR3CL – Output Compare Register 3 C The Output Compare Registers contain a 16-bit value that is continuously compared with the counter value (TCNTn). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on the OCnx pin. The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are written simultaneously when the CPU writes to these registers, the access is performed using an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit registers” on page 117. 15.10.15 ICR1H and ICR1L – Input Capture Register 1 15.10.16 ICR3H and ICR3L – Input Capture Register 3 The Input Capture is updated with the counter (TCNTn) value each time an event occurs on the ICPn pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture can be used for defining the counter TOP value. The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read simultaneously when the CPU accesses these registers, the access is performed using an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing 16-bit registers” on page 117. Bit 7 6 5 4 3 2 1 0 OCR3A[15:8] OCR3AH OCR3A[7:0] OCR3AL Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 OCR3B[15:8] OCR3BH OCR3B[7:0] OCR3BL Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 OCR3C[15:8] OCR3CH OCR3C[7:0] OCR3CL Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 ICR1[15:8] ICR1H ICR1[7:0] ICR1L Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 ICR3[15:8] ICR3H ICR3[7:0] ICR3L Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0143 7593L–AVR–09/12 AT90USB64/128 15.10.17 TIMSK1 – Timer/Counter1 Interrupt Mask Register 15.10.18 TIMSK3 – Timer/Counter3 Interrupt Mask Register • Bit 5 – ICIEn: Timer/Countern, Input Capture Interrupt Enable When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the Timer/Countern Input Capture interrupt is enabled. The corresponding Interrupt Vector (see “Interrupts” on page 68) is executed when the ICFn Flag, located in TIFRn, is set. • Bit 3 – OCIEnC: Timer/Countern, Output Compare C Match Interrupt Enable When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the Timer/Countern Output Compare C Match interrupt is enabled. The corresponding Interrupt Vector (see “Interrupts” on page 68) is executed when the OCFnC Flag, located in TIFRn, is set. • Bit 2 – OCIEnB: Timer/Countern, Output Compare B Match Interrupt Enable When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the Timer/Countern Output Compare B Match interrupt is enabled. The corresponding Interrupt Vector (see “Interrupts” on page 68) is executed when the OCFnB Flag, located in TIFRn, is set. • Bit 1 – OCIEnA: Timer/Countern, Output Compare A Match Interrupt Enable When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the Timer/Countern Output Compare A Match interrupt is enabled. The corresponding Interrupt Vector (see “Interrupts” on page 68) is executed when the OCFnA Flag, located in TIFRn, is set. • Bit 0 – TOIEn: Timer/Countern, Overflow Interrupt Enable When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the Timer/Countern Overflow interrupt is enabled. The corresponding Interrupt Vector (see “Interrupts” on page 68) is executed when the TOVn Flag, located in TIFRn, is set. 15.10.19 TIFR1 – Timer/Counter1 Interrupt Flag Register 15.10.20 TIFR3 – Timer/Counter3 Interrupt Flag Register Bit 7 6 5 4 3 2 1 0 – – ICIE1 – OCIE1C OCIE1B OCIE1A TOIE1 TIMSK1 Read/write R R R/W R R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 – – ICIE3 – OCIE3C OCIE3B OCIE3A TOIE3 TIMSK3 Read/write R R R/W R R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 – – ICF1 – OCF1C OCF1B OCF1A TOV1 TIFR1 Read/write R R R/W R R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 – – ICF3 – OCF3C OCF3B OCF3A TOV3 TIFR3 Read/write R R R/W R R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0144 7593L–AVR–09/12 AT90USB64/128 • Bit 5 – ICFn: Timer/Countern, Input Capture Flag This flag is set when a capture event occurs on the ICPn pin. When the Input Capture Register (ICRn) is set by the WGMn3:0 to be used as the TOP value, the ICFn Flag is set when the counter reaches the TOP value. ICFn is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively, ICFn can be cleared by writing a logic one to its bit location. • Bit 3– OCFnC: Timer/Countern, Output Compare C Match Flag This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Output Compare Register C (OCRnC). Note that a Forced Output Compare (FOCnC) strobe will not set the OCFnC Flag. OCFnC is automatically cleared when the Output Compare Match C Interrupt Vector is executed. Alternatively, OCFnC can be cleared by writing a logic one to its bit location. • Bit 2 – OCFnB: Timer/Counter1, Output Compare B Match Flag This flag is set in the timer clock cycle after the counter (TCNTn) value matches the Output Compare Register B (OCRnB). Note that a Forced Output Compare (FOCnB) strobe will not set the OCFnB Flag. OCFnB is automatically cleared when the Output Compare Match B Interrupt Vector is executed. Alternatively, OCFnB can be cleared by writing a logic one to its bit location. • Bit 1 – OCF1A: Timer/Counter1, Output Compare A Match Flag This flag is set in the timer clock cycle after the counter (TCNTn value matches the Output Compare Register A (OCRnA). Note that a Forced Output Compare (FOCnA) strobe will not set the OCFnA Flag. OCFnA is automatically cleared when the Output Compare Match A Interrupt Vector is executed. Alternatively, OCFnA can be cleared by writing a logic one to its bit location. • Bit 0 – TOVn: Timer/Countern, Overflow Flag The setting of this flag is dependent of the WGMn3:0 bits setting. In Normal and CTC modes, the TOVn Flag is set when the timer overflows. Refer to Table 15-4 on page 138 for the TOVn Flag behavior when using another WGMn3:0 bit setting. TOVn is automatically cleared when the Timer/Countern Overflow Interrupt Vector is executed. Alternatively, TOVn can be cleared by writing a logic one to its bit location.145 7593L–AVR–09/12 AT90USB64/128 16. 8-bit Timer/Counter2 with PWM and asynchronous operation Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. The main features are: • Single channel counter • Clear timer on compare match (auto reload) • Glitch-free, phase correct pulse width modulator (PWM) • Frequency generator • 10-bit clock prescaler • Overflow and compare match interrupt sources (TOV2, OCF2A and OCF2B) • Allows clocking from external 32kHz watch crystal independent of the I/O clock 16.1 Overview A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 16-1. For the actual placement of I/O pins, see “Pin configurations” on page 3. CPU accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are listed in the “8-bit Timer/Counter register description” on page 156. The Power Reduction Timer/Counter2 bit, PRTIM2, in “PRR0 – Power Reduction Register 0” on page 54 must be written to zero to enable Timer/Counter2 module. Figure 16-1. 8-bit Timer/Counter, block diagram. Timer/counter DATA BUS OCRnA OCRnB = = TCNTn Waveform generation Waveform generation OCnA OCnB = Fixed TOP value Control logic = 0 TOP BOTTOM Count Clear Direction TOVn (int.req.) OCnA (int.req.) OCnB (int.req.) TCCRnA TCCRnB clkTn ASSRn Synchronization unit Prescaler T/C oscillator clkI/O clkASY asynchronous mode select (ASn) Synchronized status flags TOSC1 TOSC2 Status flags clkI/O146 7593L–AVR–09/12 AT90USB64/128 16.1.1 Registers The Timer/Counter (TCNT2) and Output Compare Register (OCR2A and OCR2B) are 8-bit registers. Interrupt request (abbreviated to Int.Req.) signals are all visible in the Timer Interrupt Flag Register (TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK2). TIFR2 and TIMSK2 are not shown in the figure. The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source is selected. The output from the Clock Select logic is referred to as the timer clock (clkT2). The double buffered Output Compare Register (OCR2A and OCR2B) are compared with the Timer/Counter value at all times. The result of the compare can be used by the Waveform Generator to generate a PWM or variable frequency output on the Output Compare pins (OC2A and OC2B). See “Output Compare unit” on page 147. for details. The compare match event will also set the Compare Flag (OCF2A or OCF2B) which can be used to generate an Output Compare interrupt request. 16.1.2 Definitions Many register and bit references in this document are written in general form. A lower case “n” replaces the Timer/Counter number, in this case 2. However, when using the register or bit defines in a program, the precise form must be used, that is, TCNT2 for accessing Timer/Counter2 counter value and so on. The definitions in the table below are also used extensively throughout the section. 16.2 Timer/Counter clock sources The Timer/Counter can be clocked by an internal synchronous or an external asynchronous clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O. When the AS2 bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see “ASSR – Asynchronous Status Register” on page 161. For details on clock sources and prescaler, see “Timer/Counter prescaler” on page 164. 16.3 Counter unit The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 16-2 on page 147 shows a block diagram of the counter and its surrounding environment. BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00). MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255). TOP The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX) or the value stored in the OCR2A Register. The assignment is dependent on the mode of operation.147 7593L–AVR–09/12 AT90USB64/128 Figure 16-2. Counter unit block diagram. Signal description (internal signals): count Increment or decrement TCNT2 by 1. direction Selects between increment and decrement. clear Clear TCNT2 (set all bits to zero). clkTn Timer/Counter clock, referred to as clkT2 in the following. top Signalizes that TCNT2 has reached maximum value. bottom Signalizes that TCNT2 has reached minimum value (zero). Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock (clkT2). clkT2 can be generated from an external or internal clock source, selected by the Clock Select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of whether clkT2 is present or not. A CPU write overrides (has priority over) all counter clear or count operations. The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in the Timer/Counter Control Register (TCCR2A) and the WGM22 located in the Timer/Counter Control Register B (TCCR2B). There are close connections between how the counter behaves (counts) and how waveforms are generated on the Output Compare outputs OC2A and OC2B. For more details about advanced counting sequences and waveform generation, see “Modes of operation” on page 150. The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by the WGM22:0 bits. TOV2 can be used for generating a CPU interrupt. 16.4 Output Compare unit The 8-bit comparator continuously compares TCNT2 with the Output Compare Register (OCR2A and OCR2B). Whenever TCNT2 equals OCR2A or OCR2B, the comparator signals a match. A match will set the Output Compare Flag (OCF2A or OCF2B) at the next timer clock cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is executed. Alternatively, the Output Compare Flag can be cleared by software by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to generate an output according to operating mode set by the WGM22:0 bits and Compare Output mode (COM2x1:0) bits. The max and bottom signals are used by the Waveform Generator for handling the special cases of the extreme values in some modes of operation (“Modes of operation” on page 150). Figure 15-10 on page 134 shows a block diagram of the Output Compare unit. DATA BUS TCNTn Control logic count TOVn (int.req.) bottom top direction clear TOSC1 T/C oscillator TOSC2 Prescaler clkI/O clk Tn148 7593L–AVR–09/12 AT90USB64/128 Figure 16-3. Output Compare unit, block diagram. The OCR2x Register is double buffered when using any of the Pulse Width Modulation (PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the update of the OCR2x Compare Register to either top or bottom of the counting sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free. The OCR2x Register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has access to the OCR2x Buffer Register, and if double buffering is disabled the CPU will access the OCR2x directly. 16.4.1 Force output compare In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the Force Output Compare (FOC2x) bit. Forcing compare match will not set the OCF2x Flag or reload/clear the timer, but the OC2x pin will be updated as if a real compare match had occurred (the COM2x1:0 bits settings define whether the OC2x pin is set, cleared or toggled). 16.4.2 Compare Match Blocking by TCNT2 Write All CPU write operations to the TCNT2 Register will block any compare match that occurs in the next timer clock cycle, even when the timer is stopped. This feature allows OCR2x to be initialized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is enabled. 16.4.3 Using the Output Compare unit Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock cycle, there are risks involved when changing TCNT2 when using the Output Compare channel, independently of whether the Timer/Counter is running or not. If the value written to TCNT2 equals the OCR2x value, the compare match will be missed, resulting in incorrect waveform generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is downcounting. OCFnx (int.req.) = (8-bit comparator) OCRnx OCnx DATA BUS TCNTn WGMn1:0 Waveform generator top FOCn COMnX1:0 bottom149 7593L–AVR–09/12 AT90USB64/128 The setup of the OC2x should be performed before setting the Data Direction Register for the port pin to output. The easiest way of setting the OC2x value is to use the Force Output Compare (FOC2x) strobe bit in Normal mode. The OC2x Register keeps its value even when changing between Waveform Generation modes. Be aware that the COM2x1:0 bits are not double buffered together with the compare value. Changing the COM2x1:0 bits will take effect immediately. 16.5 Compare Match Output unit The Compare Output mode (COM2x1:0) bits have two functions. The Waveform Generator uses the COM2x1:0 bits for defining the Output Compare (OC2x) state at the next compare match. Also, the COM2x1:0 bits control the OC2x pin output source. Figure 16-4 shows a simplified schematic of the logic affected by the COM2x1:0 bit setting. The I/O Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers (DDR and PORT) that are affected by the COM2x1:0 bits are shown. When referring to the OC2x state, the reference is for the internal OC2x Register, not the OC2x pin. Figure 16-4. Compare Match Output unit, schematic. The general I/O port function is overridden by the Output Compare (OC2x) from the Waveform Generator if either of the COM2x1:0 bits are set. However, the OC2x pin direction (input or output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OC2x pin (DDR_OC2x) must be set as output before the OC2x value is visible on the pin. The port override function is independent of the Waveform Generation mode. The design of the Output Compare pin logic allows initialization of the OC2x state before the output is enabled. Note that some COM2x1:0 bit settings are reserved for certain modes of operation. See “8-bit Timer/Counter register description” on page 156. PORT DDR D Q D Q OCnx OCnx pin D Q Waveform generator COMnx1 COMnx0 0 1 DATA BU S FOCnx clkI/O150 7593L–AVR–09/12 AT90USB64/128 16.5.1 Compare Output mode and Waveform generating The Waveform Generator uses the COM2x1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the COM2x1:0 = 0 tells the Waveform Generator that no action on the OC2x Register is to be performed on the next compare match. For compare output actions in the non-PWM modes refer to Table 16-4 on page 157. For fast PWM mode, refer to Table 16-5 on page 158, and for phase correct PWM refer to Table 16-6 on page 158. A change of the COM2x1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM modes, the action can be forced to have immediate effect by using the FOC2x strobe bits. 16.6 Modes of operation The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins, is defined by the combination of the Waveform Generation mode (WGM22:0) and Compare Output mode (COM2x1:0) bits. The Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do. The COM2x1:0 bits control whether the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COM2x1:0 bits control whether the output should be set, cleared, or toggled at a compare match (see “Compare Match Output unit” on page 149). For detailed timing information refer to Section “Timer/Counter timing diagrams” on page 154. 16.6.1 Normal mode The simplest mode of operation is the Normal mode (WGM22:0 = 0). In this mode the counting direction is always up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case behaves like a ninth bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOV2 Flag, the timer resolution can be increased by software. There are no special cases to consider in the Normal mode, a new counter value can be written anytime. The Output Compare unit can be used to generate interrupts at some given time. Using the Output Compare to generate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time. 16.6.2 Clear Timer on Compare Match (CTC) mode In Clear Timer on Compare or CTC mode (WGM22:0 = 2), the OCR2A Register is used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter, hence also its resolution. This mode allows greater control of the compare match output frequency. It also simplifies the operation of counting external events. The timing diagram for the CTC mode is shown in Table 16-5 on page 151. The counter value (TCNT2) increases until a compare match occurs between TCNT2 and OCR2A, and then counter (TCNT2) is cleared.151 7593L–AVR–09/12 AT90USB64/128 Figure 16-5. CTC mode, timing diagram. An interrupt can be generated each time the counter value reaches the TOP value by using the OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing TOP to a value close to BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC mode does not have the double buffering feature. If the new value written to OCR2A is lower than the current value of TCNT2, the counter will miss the compare match. The counter will then have to count to its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can occur. For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical level on each compare match by setting the Compare Output mode bits to toggle mode (COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the data direction for the pin is set to output. The waveform generated will have a maximum frequency of fOC2A = fclk_I/O/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following equation: The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024). As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the counter counts from MAX to 0x00. 16.6.3 Fast PWM mode The fast Pulse Width Modulation or fast PWM mode (WGM22:0 = 3 or 7) provides a high frequency PWM waveform generation option. The fast PWM differs from the other PWM option by its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOTTOM. TOP is defined as 0xFF when WGM22:0 = 3, and OCR2A when MGM22:0 = 7. In noninverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare match between TCNT2 and OCR2x, and set at BOTTOM. In inverting Compare Output mode, the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC applications. High frequency allows physically small sized external components (coils, capacitors), and therefore reduces total system cost. TCNTn OCnx (Toggle) OCnx Interrupt Flag Set Period 1 2 3 4 (COMnx1:0 = 1) f OCnx f clk_I/O 2 ⋅ ⋅ N ( ) 1 + OCRnx = -------------------------------------------------152 7593L–AVR–09/12 AT90USB64/128 In fast PWM mode, the counter is incremented until the counter value matches the TOP value. The counter is then cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure 16-6. The TCNT2 value is in the timing diagram shown as a histogram for illustrating the single-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2x and TCNT2. Figure 16-6. Fast PWM mode, timing diagram. The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches TOP. If the interrupt is enabled, the interrupt handler routine can be used for updating the compare value. In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when WGM2:0 = 7 (See Table 16-2 on page 157). The actual OC2x value will only be visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OC2x Register at the compare match between OCR2x and TCNT2, and clearing (or setting) the OC2x Register at the timer clock cycle the counter is cleared (changes from TOP to BOTTOM). The PWM frequency for the output can be calculated by the following equation: The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024). The extreme values for the OCR2A Register represent special cases when generating a PWM waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will result in a constantly high or low output (depending on the polarity of the output set by the COM2A1:0 bits.) A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC2x to toggle its logical level on each compare match (COM2x1:0 = 1). The waveform TCNTn OCRnx Update and TOVn Interrupt Flag Set Period 1 2 3 OCnx OCnx (COMnx1:0 = 2) (COMnx1:0 = 3) OCRnx Interrupt Flag Set 4 5 6 7 f OCnxPWM f clk_I/O N ⋅ 256 = ------------------153 7593L–AVR–09/12 AT90USB64/128 generated will have a maximum frequency of foc2 = fclk_I/O/2 when OCR2A is set to zero. This feature is similar to the OC2A toggle in CTC mode, except the double buffer feature of the Output Compare unit is enabled in the fast PWM mode. 16.6.4 Phase correct PWM mode The phase correct PWM mode (WGM22:0 = 1 or 5) provides a high resolution phase correct PWM waveform generation option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOTTOM. TOP is defined as 0xFF when WGM22:0 = 1, and OCR2A when MGM22:0 = 5. In noninverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare match between TCNT2 and OCR2x while upcounting, and set on the compare match while downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has lower maximum operation frequency than single slope operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control applications. In phase correct PWM mode the counter is incremented until the counter value matches TOP. When the counter reaches TOP, it changes the count direction. The TCNT2 value will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 16-7. The TCNT2 value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2x and TCNT2. Figure 16-7. Phase correct PWM mode, timing diagram. The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM value. In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM. An inverted PWM TOVn Interrupt Flag Set OCnx Interrupt Flag Set 1 2 3 TCNTn Period OCnx OCnx (COMnx1:0 = 2) (COMnx1:0 = 3) OCRnx update154 7593L–AVR–09/12 AT90USB64/128 output can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7 (see Table 16-3 on page 157). The actual OC2x value will only be visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is generated by clearing (or setting) the OC2x Register at the compare match between OCR2x and TCNT2 when the counter increments, and setting (or clearing) the OC2x Register at compare match between OCR2x and TCNT2 when the counter decrements. The PWM frequency for the output when using phase correct PWM can be calculated by the following equation: The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024). The extreme values for the OCR2A Register represent special cases when generating a PWM waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the output will be continuously low and if set equal to MAX the output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. At the very start of period 2 in Figure 16-7 on page 153 OCnx has a transition from high to low even though there is no Compare Match. The point of this transition is to guarantee symmetry around BOTTOM. There are two cases that give a transition without Compare Match. • OCR2A changes its value from MAX, like in Figure 16-7 on page 153. When the OCR2A value is MAX the OCn pin value is the same as the result of a down-counting compare match. To ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-counting Compare Match • The timer starts counting from a value higher than the one in OCR2A, and for that reason misses the Compare Match and hence the OCn change that would have happened on the way up 16.7 Timer/Counter timing diagrams The following figures show the Timer/Counter in synchronous mode, and the timer clock (clkT2) is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should be replaced by the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are set. Figure 16-8 contains timing data for basic Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes other than phase correct PWM mode. Figure 16-8. Timer/Counter timing diagram, no prescaling. f OCnxPCPWM f clk_I/O N ⋅ 510 = ------------------ clkTn (clkI/O/1) TOVn clkI/O TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1155 7593L–AVR–09/12 AT90USB64/128 Figure 16-9 shows the same timing data, but with the prescaler enabled. Figure 16-9. Timer/Counter timing diagram, with prescaler (fclk_I/O/8). Figure 16-10 shows the setting of OCF2A in all modes except CTC mode. Figure 16-10. Timer/Counter timing diagram, setting of OCF2A, with prescaler (fclk_I/O/8). Figure 16-11 on page 156 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode. TOVn TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1 clkI/O clkTn (clkI/O/8) OCFnx OCRnx TCNTn OCRnx value OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2 clkI/O clkTn (clkI/O/8)156 7593L–AVR–09/12 AT90USB64/128 Figure 16-11. Timer/Counter timing diagram, clear timer on compare match mode, with prescaler (fclk_I/O/8). 16.8 8-bit Timer/Counter register description 16.8.1 TCCR2A – Timer/Counter Control Register A • Bits 7:6 – COM2A1:0: Compare Match Output A mode These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A1:0 bits are set, the OC2A output overrides the normal port functionality of the I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2A pin must be set in order to enable the output driver. When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the WGM22:0 bit setting. Table 16-1 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to a normal or CTC mode (non-PWM). OCFnx OCRnx TCNTn (CTC) TOP TOP - 1 TOP BOTTOM BOTTOM + 1 clkI/O clkTn (clkI/O/8) Bit 7 6 5 4 3 2 1 0 COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20 TCCR2A Read/write R/W R/W R/W R/W R R R/W R/W Initial value 0 0 0 0 0 0 0 0 Table 16-1. Compare output mode, non-PWM mode. COM2A1 COM2A0 Description 0 0 Normal port operation, OC2A disconnected 0 1 Toggle OC2A on Compare Match 1 0 Clear OC2A on Compare Match 1 1 Set OC2A on Compare Match157 7593L–AVR–09/12 AT90USB64/128 Table 16-2 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM mode. Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Compare Match is ignored, but the set or clear is done at TOP. See “Fast PWM mode” on page 151 for more details. Table 16-3 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to phase correct PWM mode. Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Compare Match is ignored, but the set or clear is done at TOP. See “Phase correct PWM mode” on page 153 for more details. • Bits 5:4 – COM2B1:0: Compare Match Output B mode These bits control the Output Compare pin (OC2B) behavior. If one or both of the COM2B1:0 bits are set, the OC2B output overrides the normal port functionality of the I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2B pin must be set in order to enable the output driver. When OC2B is connected to the pin, the function of the COM2B1:0 bits depends on the WGM22:0 bit setting. Table 16-4 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to a normal or CTC mode (non-PWM). Table 16-2. Compare Output mode, fast PWM mode (1). COM2A1 COM2A0 Description 0 0 Normal port operation, OC2A disconnected 0 1 WGM22 = 0: Normal Port Operation, OC0A Disconnected. WGM22 = 1: Toggle OC2A on Compare Match. 1 0 Clear OC2A on Compare Match, set OC2A at TOP 1 1 Set OC2A on Compare Match, clear OC2A at TOP Table 16-3. Compare Output mode, phase correct PWM mode (1). COM2A1 COM2A0 Description 0 0 Normal port operation, OC2A disconnected 0 1 WGM22 = 0: Normal Port Operation, OC2A Disconnected. WGM22 = 1: Toggle OC2A on Compare Match. 1 0 Clear OC2A on Compare Match when up-counting. Set OC2A on Compare Match when down-counting. 1 1 Set OC2A on Compare Match when up-counting. Clear OC2A on Compare Match when down-counting. Table 16-4. Compare Output mode, non-PWM mode. COM2B1 COM2B0 Description 0 0 Normal port operation, OC2B disconnected 0 1 Toggle OC2B on Compare Match 1 0 Clear OC2B on Compare Match 1 1 Set OC2B on Compare Match158 7593L–AVR–09/12 AT90USB64/128 Table 16-5 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to fast PWM mode. Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Compare Match is ignored, but the set or clear is done at TOP. See “Fast PWM mode” on page 151 for more details. Table 16-6 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to phase correct PWM mode. Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Compare Match is ignored, but the set or clear is done at TOP. See “Phase correct PWM mode” on page 153 for more details. • Bits 3, 2 – Res: Reserved bits These bits are reserved bits in the Atmel AT90USB64/128 and will always read as zero. • Bits 1:0 – WGM21:0: Waveform Generation mode Combined with the WGM22 bit found in the TCCR2B Register, these bits control the counting sequence of the counter, the source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 16-7. Modes of operation supported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes (see “Modes of operation” on page 150). Table 16-5. Compare Output mode, fast PWM mode (1). COM2B1 COM2B0 Description 0 0 Normal port operation, OC2B disconnected. 0 1 Reserved 1 0 Clear OC2B on Compare Match, set OC2B at TOP 1 1 Set OC2B on Compare Match, clear OC2B at TOP Table 16-6. Compare Output mode, phase correct PWM mode (1). COM2B1 COM2B0 Description 0 0 Normal port operation, OC2B disconnected 0 1 Reserved 1 0 Clear OC2B on Compare Match when up-counting. Set OC2B on Compare Match when down-counting 1 1 Set OC2B on Compare Match when up-counting. Clear OC2B on Compare Match when down-counting Table 16-7. Waveform Generation mode bit description. Mode WGM2 WGM1 WGM0 Timer/Counter mode of operation TOP Update of OCRx at TOV flag set on (1)(2) 0 0 0 0 Normal 0xFF Immediate MAX 1 0 0 1 PWM, phase correct 0xFF TOP BOTTOM 2 0 1 0 CTC OCRA Immediate MAX 3 0 1 1 Fast PWM 0xFF TOP MAX 4 1 0 0 Reserved – – –159 7593L–AVR–09/12 AT90USB64/128 Notes: 1. MAX= 0xFF 2. BOTTOM= 0x00 16.8.2 TCCR2B – Timer/Counter Control Register B • Bit 7 – FOC2A: Force Output Compare A The FOC2A bit is only active when the WGM bits specify a non-PWM mode. However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2A bit, an immediate Compare Match is forced on the Waveform Generation unit. The OC2A output is changed according to its COM2A1:0 bits setting. Note that the FOC2A bit is implemented as a strobe. Therefore it is the value present in the COM2A1:0 bits that determines the effect of the forced compare. A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2A as TOP. The FOC2A bit is always read as zero. • Bit 6 – FOC2B: Force Output Compare B The FOC2B bit is only active when the WGM bits specify a non-PWM mode. However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2B bit, an immediate Compare Match is forced on the Waveform Generation unit. The OC2B output is changed according to its COM2B1:0 bits setting. Note that the FOC2B bit is implemented as a strobe. Therefore it is the value present in the COM2B1:0 bits that determines the effect of the forced compare. A FOC2B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2B as TOP. The FOC2B bit is always read as zero. • Bits 5:4 – Res: Reserved bits These bits are reserved bits in the AT90USB64/128 and will always read as zero. • Bit 3 – WGM22: Waveform Generation mode See the description in the “TCCR2A – Timer/Counter Control Register A” on page 156. 5 1 0 1 PWM, phase correct OCRA TOP BOTTOM 6 1 1 0 Reserved – – – 7 1 1 1 Fast PWM OCRA TOP TOP Table 16-7. Waveform Generation mode bit description. (Continued) Mode WGM2 WGM1 WGM0 Timer/Counter mode of operation TOP Update of OCRx at TOV flag set on (1)(2) Bit 7 6 5 4 3 2 1 0 FOC2A FOC2B – – WGM22 CS22 CS21 CS20 TCCR2B Read/write W W R R R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0160 7593L–AVR–09/12 AT90USB64/128 • Bit 2:0 – CS22:0: Clock Select The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table 16-8. 16.8.3 TCNT2 – Timer/Counter Register The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the Compare Match on the following timer clock. Modifying the counter (TCNT2) while the counter is running, introduces a risk of missing a Compare Match between TCNT2 and the OCR2x Registers. 16.8.4 OCR2A – Output Compare Register A The Output Compare Register A contains an 8-bit value that is continuously compared with the counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on the OC2A pin. 16.8.5 OCR2B – Output Compare Register B The Output Compare Register B contains an 8-bit value that is continuously compared with the counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on the OC2B pin. Table 16-8. Clock Select bit description. CS22 CS21 CS20 Description 0 0 0 No clock source (Timer/Counter stopped) 0 0 1 clkT2S/(no prescaling) 0 1 0 clkT2S/8 (from prescaler) 0 1 1 clkT2S/32 (from prescaler) 1 0 0 clkT2S/64 (from prescaler) 1 0 1 clkT2S/128 (from prescaler) 1 1 0 clkT2S/256 (from prescaler) 1 1 1 clkT2S/1024 (from prescaler) Bit 7 6 5 4 3 2 1 0 TCNT2[7:0] TCNT2 Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 OCR2A[7:0] OCR2A Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 0 OCR2B[7:0] OCR2B Read/write R/W R/W R/W R/W R/W R/W R/W R/W Initial value 0 0 0 0 0 0 0 0161 7593L–AVR–09/12 AT90USB64/128 16.9 Asynchronous operation of the Timer/Counter 16.9.1 ASSR – Asynchronous Status Register • Bit 6 – EXCLK: Enable External Clock Input When EXCLK is written to one, and asynchronous clock is selected, the external clock input buffer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead of a 32 kHz crystal. Writing to EXCLK should be done before asynchronous operation is selected. Note that the crystal Oscillator will only run when this bit is zero. • Bit 5 – AS2: Asynchronous Timer/Counter2 When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O. When AS2 is written to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer Oscillator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B might be corrupted. • Bit 4 – TCN2UB: Timer/Counter2 Update Busy When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set. When TCNT2 has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value. • Bit 3 – OCR2AUB: Output Compare Register2 Update Busy When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set. When OCR2A has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new value. • Bit 2 – OCR2BUB: Output Compare Register2 Update Busy When Timer/Counter2 operates asynchronously and OCR2B is written, this bit becomes set. When OCR2B has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that OCR2B is ready to be updated with a new value. • Bit 1 – TCR2AUB: Timer/Counter Control Register2 Update Busy When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set. When TCCR2A has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new value. • Bit 0 – TCR2BUB: Timer/Counter Control Register2 Update Busy When Timer/Counter2 operates asynchronously and TCCR2B is written, this bit becomes set. When TCCR2B has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2B is ready to be updated with a new value. If a write is performed to any of the five Timer/Counter2 Registers while its update busy flag is set, the updated value might get corrupted and cause an unintentional interrupt to occur. Bit 7 6 5 4 3 2 1 0 – EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB ASSR Read/write R R/W R/W R R R R R Initial value 0 0 0 0 0 0 0 0162 7593L–AVR–09/12 AT90USB64/128 The mechanisms for reading TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B are different. When reading TCNT2, the actual timer value is read. When reading OCR2A, OCR2B, TCCR2A and TCCR2B the value in the temporary storage register is read. 16.9.2 Asynchronous operation of Timer/Counter2 When Timer/Counter2 operates asynchronously, some considerations must be taken. • Warning: When switching between asynchronous and synchronous clocking of Timer/Counter2, the Timer Registers TCNT2, OCR2x, and TCCR2x might be corrupted. A safe procedure for switching clock source is: a. Disable the Timer/Counter2 interrupts by clearing OCIE2x and TOIE2. b. Select clock source by setting AS2 as appropriate. c. Write new values to TCNT2, OCR2x, and TCCR2x. d. To switch to asynchronous operation: Wait for TCN2UB, OCR2xUB, and TCR2xUB. e. Clear the Timer/Counter2 Interrupt Flags. f. Enable interrupts, if needed. • The CPU main clock frequency must be more than four times the Oscillator frequency • When writing to one of the registers TCNT2, OCR2x, or TCCR2x, the value is transferred to a temporary register, and latched after two positive edges on TOSC1. The user should not write a new value before the contents of the temporary register have been transferred to its destination. Each of the five mentioned registers have their individual temporary register, which means that, for example, writing to TCNT2 does not disturb an OCR2x write in progress. To detect that a transfer to the destination register has taken place, the Asynchronous Status Register – ASSR has been implemented • When entering Power-save or ADC Noise Reduction mode after having written to TCNT2, OCR2x, or TCCR2x, the user must wait until the written register has been updated if Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode before the changes are effective. This is particularly important if any of the Output Compare2 interrupt is used to wake up the device, since the Output Compare function is disabled during writing to OCR2x or TCNT2. If the write cycle is not finished, and the MCU enters sleep mode before the corresponding OCR2xUB bit returns to zero, the device will never receive a compare match interrupt, and the MCU will not wake up • If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise Reduction mode, precautions must be taken if the user wants to re-enter one of these modes: The interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and reentering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the device will fail to wake up. If the user is in doubt whether the time before re-entering Powersave or ADC Noise Reduction mode is sufficient, the following algorithm can be used to ensure that one TOSC1 cycle has elapsed: a. Write a value to TCCR2x, TCNT2, or OCR2x. b. Wait until the corresponding Update Busy Flag in ASSR returns to zero. c. Enter Power-save or ADC Noise Reduction mode. • When the asynchronous operation is selected, the 32.768kHz Oscillator for Timer/Counter2 is always running, except in Power-down and Standby modes. After a Power-up Reset or wake-up from Power-down or Standby mode, the user should be aware of the fact that this Oscillator might take as long as one second to stabilize. The user is advised to wait for at least one second before using Timer/Counter2 after power-up or wake-up from Power-down or Standby mode. The contents of all Timer/Counter2 Registers must be considered lost after 163 7593L–AVR–09/12 AT90USB64/128 a wake-up from Power-down or Standby mode due to unstable clock signal upon start-up, no matter whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin • Description of wake up from Power-save or ADC Noise Reduction mode when the timer is clocked asynchronously: When the interrupt condition is met, the wake up process is started on the following cycle of the timer clock, that is, the timer is always advanced by at least one before the processor can read the counter value. After wake-up, the MCU is halted for four cycles, it executes the interrupt routine, and resumes execution from the instruction following SLEEP • Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be done through a register synchronized to the internal I/O clock domain. Synchronization takes place for every rising TOSC1 edge. When waking up from Power-save mode, and the I/O clock (clkI/O) again becomes active, TCNT2 will read as the previous value (before entering sleep) until the next rising TOSC1 edge. The phase of the TOSC clock after waking up from Power-save mode is essentially unpredictable, as it depends on the wake-up time. The recommended procedure for reading TCNT2 is thus as follows: a. Write any value to either of the registers OCR2x or TCCR2x. b. Wait for the corresponding Update Busy Flag to be cleared. c. Read TCNT2. • During asynchronous operation, the synchronization of the Interrupt Flags for the asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is therefore advanced by at least one before the processor can read the timer value causing the setting of the Interrupt Flag. The Output Compare pin is changed on the timer clock and is not synchronized to the processor clock 16.9.3 TIMSK2 – Timer/Counter2 Interrupt Mask Register • Bit 2 – OCIE2B: Timer/Counter2 Output Compare Match B Interrupt Enable When the OCIE2B bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2 Compare Match B interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter2 occurs, that is, when the OCF2B bit is set in the Timer/Counter2 Interrupt Flag Register – TIFR2. • Bit 1 – OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter2 occurs, that is, when the OCF2A bit is set in the Timer/Counter2 Interrupt Flag Register – TIFR2. • Bit 0 – TOIE2: Timer/Counter2 Overflow Interrupt Enable When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter2 occurs, that is, when the TOV2 bit is set in the Timer/Counter2 Interrupt Flag Register – TIFR2. Bit 7 6 5 4 3 2 1 0 – – – – – OCIE2B OCIE2A TOIE2 TIMSK2 Read/write R R R R R R/W R/W R/W Initial value 0 0 0 0 0 0 0 0164 7593L–AVR–09/12 AT90USB64/128 16.9.4 TIFR2 – Timer/Counter2 Interrupt Flag Register • Bit 2 – OCF2B: Output Compare Flag 2 B The OCF2B bit is set (one) when a compare match occurs between the Timer/Counter2 and the data in OCR2B – Output Compare Register2. OCF2B is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF2B is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2B (Timer/Counter2 Compare match Interrupt Enable), and OCF2B are set (one), the Timer/Counter2 Compare match Interrupt is executed. • Bit 1 – OCF2A: Output Compare Flag 2 A The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 and the data in OCR2A – Output Compare Register2. OCF2A is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF2A is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2A (Timer/Counter2 Compare match Interrupt Enable), and OCF2A are set (one), the Timer/Counter2 Compare match Interrupt is executed. • Bit 0 – TOV2: Timer/Counter2 Overflow Flag The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared by writing a logic one to the flag. When the SREG I-bit, TOIE2A (Timer/Counter2 Overflow Interrupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when Timer/Counter2 changes counting direction at 0x00. 16.10 Timer/Counter prescaler Figure 16-12. Prescaler for Timer/Counter2. Bit 7 6 5 4 3 2 1 0 – – – – – OCF2B OCF2A TOV2 TIFR2 Read/write R R R R R R/W R/W R/W Initial value 0 0 0 0 0 0 0 0 10-BIT T/C PRESCALER TIMER/COUNTER2 CLOCK SOURCE clkI/O clkT2S TOSC1 AS2 CS20 CS21 CS22 clkT2S/8 clkT2S/64 clkT2S/128 clkT2S/1024 clkT2S/256 clkT2S/32 0 PSRASY Clear clkT2165 7593L–AVR–09/12 AT90USB64/128 The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the main system I/O clock clkIO. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real Time Counter (RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from Port C. A crystal can then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock source for Timer/Counter2. The Oscillator is optimized for use with a 32.768kHz crystal. Applying an external clock source to TOSC1 is not recommended. For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64, clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be selected. Setting the PSRASY bit in GTCCR resets the prescaler. This allows the user to operate with a predictable prescaler. 16.10.1 GTCCR – General Timer/Counter Control Register • Bit 1 – PSRASY: Prescaler Reset Timer/Counter2 When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchronous mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by hardware if the TSM bit is set. Refer to the description of the Section “GTCCR – General Timer/Counter Control Register” on page 97 for a description of the Timer/Counter Synchronization mode. Bit 7 6 5 4 3 2 1 0 TSM – – – – – PSRASY PSRSY NC GTCCR Read/write R/W R R R R R R/W R/W Initial value 0 0 0 0 0 0 0 0166 7593L–AVR–09/12 AT90USB64/128 17. Output Compare Modulator (OCM1C0A) 17.1 Overview The Output Compare Modulator (OCM) allows generation of waveforms modulated with a carrier frequency. The modulator uses the outputs from the Output Compare Unit C of the 16-bit Timer/Counter1 and the Output Compare Unit of the 8-bit Timer/Counter0. For more details about these Timer/Counters see “Timer/Counter0, Timer/Counter1, and Timer/Counter3 prescalers” on page 96 and “8-bit Timer/Counter2 with PWM and asynchronous operation” on page 145. Figure 17-1. Output Compare Modulator, block diagram. When the modulator is enabled, the two output compare channels are modulated together as shown in the block diagram (Figure 17-1). 17.2 Description The Output Compare unit 1C and Output Compare unit 2 shares the PB7 port pin for output. The outputs of the Output Compare units (OC1C and OC0A) overrides the normal PORTB7 Register when one of them is enabled (that is, when COMnx1:0 is not equal to zero). When both OC1C and OC0A are enabled at the same time, the modulator is automatically enabled. The functional equivalent schematic of the modulator is shown on Figure 17-2. The schematic includes part of the Timer/Counter units and the port B pin 7 output driver circuit. Figure 17-2. Output Compare Modulator, schematic. OC1C Pin OC1C / OC0A / PB7 Timer/Counter 1 Timer/Counter 0 OC0A PORTB7 DDRB7 D Q D Q Pin COMA01 COMA00 DATABUS OC1C / OC0A/ PB7 COM1C1 COM1C0 Modulator 1 0 OC1C D Q OC0A D Q (From Waveform generator) (From Waveform generator) 0 1 Vcc167 7593L–AVR–09/12 AT90USB64/128 When the modulator is enabled the type of modulation (logical AND or OR) can be selected by the PORTB7 Register. Note that the DDRB7 controls the direction of the port independent of the COMnx1:0 bit setting. 17.2.1 Timing example Figure 17-3 illustrates the modulator in action. In this example the Timer/Counter1 is set to operate in fast PWM mode (non-inverted) and Timer/Counter0 uses CTC waveform mode with toggle Compare Output mode (COMnx1:0 = 1). Figure 17-3. Output Compare Modulator, timing diagram. In this example, Timer/Counter2 provides the carrier, while the modulating signal is generated by the Output Compare unit C of the Timer/Counter1. The resolution of the PWM signal (OC1C) is reduced by the modulation. The reduction factor is equal to the number of system clock cycles of one period of the carrier (OC0A). In this example the resolution is reduced by a factor of two. The reason for the reduction is illustrated in Figure 17-3 at the second and third period of the PB7 output when PORTB7 equals zero. The period 2 high time is one cycle longer than the period 3 high time, but the result on the PB7 output is equal in both periods. 1 2 OC0A (CTC mode) OC1C (FPWM mode) PB7 (PORTB7 = 0) PB7 (PORTB7 = 1) (Period) 3 clk I/O168 7593L–AVR–09/12 AT90USB64/128 18. SPI – Serial Peripheral Interface The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the Atmel AT90USB64/128 and peripheral devices or between several AVR devices. The AT90USB64/128 SPI includes the following features: • Full-duplex, three-wire synchronous data transfer • Master or slave operation • LSB first or MSB first data transfer • Seven programmable bit rates • End of transmission interrupt flag • Write collision flag protection • Wake-up from Idle mode • Double speed (CK/2) Master SPI mode USART can also be used in Master SPI mode, see “USART in SPI mode” on page 202. The Power Reduction SPI bit, PRSPI, in “PRR0 – Power Reduction Register 0” on page 54 must be written to zero to enable SPI module. Figure 18-1. SPI block diagram (1). Note: 1. Refer to Figure 1-1 on page 3, and Table 11-6 on page 79 for SPI pin placement. The interconnection between Master and Slave CPUs with SPI is shown in Figure 18-2 on page 169. The system consists of two shift Registers, and a Master clock generator. The SPI Master initiates the communication cycle when pulling low the Slave Select SS pin of the desired Slave. SPI2X SPI2X DIVIDER /2/4/8/16/32/64/128169 7593L–AVR–09/12 AT90USB64/128 Master and Slave prepare the data to be sent in their respective shift Registers, and the Master generates the required clock pulses on the SCK line to interchange data. Data is always shifted from Master to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In – Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling high the Slave Select, SS, line. When configured as a Master, the SPI interface has no automatic control of the SS line. This must be handled by user software before communication can start. When this is done, writing a byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be kept in the Buffer Register for later use. When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long as the SS pin is driven high. In this state, software may update the contents of the SPI Data Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt is requested. The Slave may continue to place new data to be sent into SPDR before reading the incoming data. The last incoming byte will be kept in the Buffer Register for later use. Figure 18-2. SPI Master-slave interconnection. The system is single buffered in the transmit direction and double buffered in the receive direction. This means that bytes to be transmitted cannot be written to the SPI Data Register before the entire shift cycle is completed. When receiving data, however, a received character must be read from the SPI Data Register before the next character has been completely shifted in. Otherwise, the first byte is lost. In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure correct sampling of the clock signal, the frequency of the SPI clock should never exceed fosc/4. When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden according to Table 18-1 on page 170. For more details on automatic port overrides, refer to “Alternate port functions” on page 76. SHIFT ENABLE170 7593L–AVR–09/12 AT90USB64/128 Note: 1. See “Alternate functions of Port B” on page 79 for a detailed description of how to define the direction of the user defined SPI pins. The following code examples show how to initialize the SPI as a Master and how to perform a simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins. For example, if MOSI is placed on pin PB5, replace DD_MOSI with DDB5 and DDR_SPI with DDRB. Table 18-1. SPI pin overrides (1). Pin Direction, master SPI Direction, slave SPI MOSI User defined Input MISO Input User defined SCK User defined Input SS User defined Input171 7593L–AVR–09/12 AT90USB64/128 Note: 1. See “About code examples” on page 10. Assembly code example (1) SPI_MasterInit: ; Set MOSI and SCK output, all others input ldi r17,(1<>8); UBRRLn = (unsigned char)baud; /* Enable receiver and transmitter */ UCSRnB = (1<> 1) & 0x01; return ((resh << 8) | resl); }188 7593L–AVR–09/12 AT90USB64/128 The Receive Complete (RXCn) Flag indicates if there are unread data present in the receive buffer. This flag is one when unread data exist in the receive buffer, and zero when the receive buffer is empty (that is, does not contain any unread data). If the Receiver is disabled (RXENn = 0), the receive buffer will be flushed and consequently the RXCn bit will become zero. When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART Receive Complete interrupt will be executed as long as the RXCn Flag is set (provided that global interrupts are enabled). When interrupt-driven data reception is used, the receive complete routine must read the received data from UDRn in order to clear the RXCn Flag, otherwise a new interrupt will occur once the interrupt routine terminates. 19.6.4 Receiver error flags The USART Receiver has three error flags: Frame Error (FEn), Data OverRun (DORn) and Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the Error Flags is that they are located in the receive buffer together with the frame for which they indicate the error status. Due to the buffering of the Error Flags, the UCSRnA must be read before the receive buffer (UDRn), since reading the UDRn I/O location changes the buffer read location. Another equality for the Error Flags is that they can not be altered by software doing a write to the flag location. However, all flags must be set to zero when the UCSRnA is written for upward compatibility of future USART implementations. None of the Error Flags can generate interrupts. The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable frame stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly read (as one), and the FEn Flag will be one when the stop bit was incorrect (zero). This flag can be used for detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn Flag is not affected by the setting of the USBSn bit in UCSRnC since the Receiver ignores all, except for the first, stop bits. For compatibility with future devices, always set this bit to zero when writing to UCSRnA. The Data OverRun (DORn) Flag indicates data loss due to a receiver buffer full condition. A Data OverRun occurs when the receive buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a new start bit is detected. If the DORn Flag is set there was one or more serial frame lost between the frame last read from UDRn, and the next frame read from UDRn. For compatibility with future devices, always write this bit to zero when writing to UCSRnA. The DORn Flag is cleared when the frame received was successfully moved from the Shift Register to the receive buffer. The Parity Error (UPEn) Flag indicates that the next frame in the receive buffer had a Parity Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more details see “Parity bit calculation” on page 181 and “Parity Checker” on page 188. 19.6.5 Parity Checker The Parity Checker is active when the high USART Parity mode (UPMn1) bit is set. Type of Parity Check to be performed (odd or even) is selected by the UPMn0 bit. When enabled, the Parity Checker calculates the parity of the data bits in incoming frames and compares the result with the parity bit from the serial frame. The result of the check is stored in the receive buffer together with the received data and stop bits. The Parity Error (UPEn) Flag can then be read by software to check if the frame had a Parity Error.189 7593L–AVR–09/12 AT90USB64/128 The UPEn bit is set if the next character that can be read from the receive buffer had a Parity Error when received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer (UDRn) is read. 19.6.6 Disabling the Receiver In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing receptions will therefore be lost. When disabled (that is, the RXENn is set to zero) the Receiver will no longer override the normal function of the RxDn port pin. The Receiver buffer FIFO will be flushed when the Receiver is disabled. Remaining data in the buffer will be lost 19.6.7 Flushing the receive buffer The receiver buffer FIFO will be flushed when the Receiver is disabled, that is, the buffer will be emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal operation, due to for instance an error condition, read the UDRn I/O location until the RXCn Flag is cleared. The following code example shows how to flush the receive buffer. Note: 1. See “About code examples” on page 10. 19.7 Asynchronous data reception The USART includes a clock recovery and a data recovery unit for handling asynchronous data reception. The clock recovery logic is used for synchronizing the internally generated baud rate clock to the incoming asynchronous serial frames at the RxDn pin. The data recovery logic samples and low pass filters each incoming bit, thereby improving the noise immunity of the Receiver. The asynchronous reception operational range depends on the accuracy of the internal baud rate clock, the rate of the incoming frames, and the frame size in number of bits. 19.7.1 Asynchronous clock recovery The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 19-5 on page 190 illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times the baud rate for Normal mode, and eight times the baud rate for Double Speed mode. The horizontal arrows illustrate the synchronization variation due to the sampling process. Note the larger time variation when using the Double Speed mode (U2Xn = 1) of operation. Samples denoted zero are samples done when the RxDn line is idle (that is, no communication activity). Assembly code example (1) USART_Flush: sbis UCSRnA, RXCn ret in r16, UDRn rjmp USART_Flush C code example (1) void USART_Flush( void ) { unsigned char dummy; while ( UCSRnA & (1<